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An implementation of a stochastic partial differential equation in FEniCS
MARIO IÑIGUEZ ORDOÑEZ
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
Computational platforms based on intuitive and efficient software can allow for
a easy and accessible computational mathematical modelling. FEniCS is an open-
source software that allows for automated way of implementing finite element method(FEM)
code for partial differential equations from the variational formulation of a differen-
tial equation. Using the FEniCS platform we implement the Poisson equation with
variable coefficients

∇ · (a(x)∇u(x)) = f(x).

The noise term is chosen as a = exp(T ) where T is a Gaussian random field modelled
as a solution to a stochastic differential equation of the form

(−∆)α/2T =W α ∈ N.

where W . This equation was solved using fractional approximation of the operator
and a finite element discretisation. For both equations a thorough step-by-step
implementation is presented with the aforementioned equation being completely
implemented in FEniCS. As a measure of quality of implementation a strong mean
square error was estimated. The convergence rate of the strong error results for
the Gaussian random field is compared to the theoretical results. The result of our
implementation quality, confirms the theory.
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1
Introduction

Within engineering there are many problems that require the application of random
models. One of these application is in fluid dynamics where the flow of a medium
can be described by a partial differential equation. Where due to diverseness in the
structure of the medium there is an uncertainty that can be modelled by adding
a stochastic component to the equation, [1]–[3]. Other application with random
coefficients can be found in oil reservoir management and seismic engineering,[4]–
[6] or when generating Gaussian noise for spacial analysis, [7]. Consider the the
mathematical model given by the elliptic partial differential equation

∇ · (a(x)∇u(x)) = f(x), x ∈ D,
u(x) = 0, x ∈ ∂D.

with random coefficient a. The random field a can be simulated by representing T
as a solution to the equation

(−∆)α/2T (x) =W(x), α ∈ N, x ∈ D,
T (x) = 0 x ∈ ∂D,

(1.1)

whereW denotes white noise, and letting a = exp(T ). However methods for solving
fractional equation have already been studied in [7] and the Galerkin discretisation of
the elliptical differential equation has been studied in [8]. In this thesis we will look to
present an efficient and accesible implementation of the differential equations above
utilising the open-source software FEniCS. We will implement a FEM approximation
to the partial differential equation where the random coefficients are generated by
solving the fractional differential equation using the method described in [7].

We begin by showing how to find an approximate solution to the Gaussian field
T by using the methods described in [7]. We present the theory behind the rational
approximation of a function and describe the derivation of the scheme used for
finding an approximation of T . An algorithm that can be used to directly implement
the code is provided as well. Then we show how to implement a Galerkin finite
element approximation of the partial differential equation in FEniCS. We show how
the partial differential equation is discretised by the Galerkin method and how from
the discrete formulation we can implement a FEM approximation in FEniCS.

Finally we give a quality of our implementation by a numerical example in one-
dimension in the form of convergence rates which are compared to theoretical values.
The convergence rates are found by looking at how the strong error ‖v−vh‖L2(Ω;L2(D)),
v = {u, T} behaves asymptotically for different meshsizes. In the error analysis
we use a solution solved on a fine grid as an approximation to the real solution
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1. Introduction

when estimating the strong error. We also look at the difference in the convergence
estimates when projecting the finer solution onto the coarser grids, when calculating
the norm, and when interpolating the coarser solutions onto the finer grid. When
using the the later our results confirm the theory while when projecting we get faster
convergence rates.

1.1 Thesis outline
This thesis is organised as follows: In Chapter 2 we introduce the concepts needed
in the implementation of the Gaussian random field as well as provide the algorithm
for implementation. Section 2.1 introduces the approximation of a function as a
truncated Chebychev series and how to find the coefficients of the expansion. And
in Section 2.2 we find a rational approximation of a function utilising the Chebychev
approximation. In Section 2.3 we present the method to solve the fractional partial
differential equation using the FEM as described in [7] along with a theorem of
strong convergence. In Section 2.4 we present the implementation of the fractional
differential equation.

In Chapter 3 we describe how to implement the chosen partial differential equa-
tion in FEniCS. In Section 3.1 we show the Galerkin discretisation of the equation
as well as a theoretical strong convergence. And in Section 3.2 we show how to
implement the FEM in FEniCS from the Galerkin discretisation.

Finally in Chapter 4 we show the results of our implementation and compare
our observed strong errors convergence rates to the theoretical values.

2



2
Gaussian random fields as

solutions of SPDEs

In this chapter we introduce the concepts required in the implementation of the
problem

(−∆)α/2T (x) =W(x) α ∈ N, x ∈ D
T (x) = 0 x ∈ ∂D,

(2.1)

where W denotes white noise on the probability space (Ω,A,R), by its rational
decomposition

PlT
R(x) = PrW(x), x ∈ D,

TR(x) = 0, x ∈ ∂D,
(2.2)

where the operators Pl and Pr are defined in terms of polynomials. We start of by
looking at Padé–Chebychev approximants to determine the needed properties of Pl
and Pr, then equation (2.2) is solved in a finite element space using the method
described in [7].

2.1 Approximant Chebyshev series
For our implementation of the Padé–Chebychev approximants we must look at the
theory behind the representation of a function f as a series of Chebychev polynomials
of the first kind. The polynomials are defined according to the following definition.
Definition 1. The Chebyshev polynomial Tn(x) of the first kind is a polynomial in
x of degree n, defined by the relation

Tn(cos(θ)) = cos(nθ) where x = cos(θ). (2.3)

Note that in the case |x| < 1, θ = arccos(x) and the Chebyshev polynomials
can be written as

Tn(x) = cos(n arccos(x)). (2.4)

Define the weighted L2 inner product on the interval I = [a, b] for two functions f
and g defined on I with respect to the continuous and non-negative weight function
w as

(f, g)L2
w

:=
∫ b

a
f(x)g(x)w(x) dx (2.5)

3



2. Gaussian random fields as solutions of SPDEs

and the norm as
‖f‖2

L2
w

:=
∫ b

a
f(x)2w(x) dx. (2.6)

The following theorem and corollary, [9] allow us to find a polynomial approximation
of a L2

w integrable function.
Theorem 1. The best L2

w polynomial approximation pBn of degree n to a given L2
w

integrable function f is unique and is characterised by the necessary and sufficient
property that

(f − pBn , pn)L2
w

= 0
for any other polynomial pn of degree n.
Corollary 1. The best L2

w polynomial approximation pBn of degree n to f may be
expressed in terms of the orthogonal polynomial family {ρi} ∈ L2 in the form

pBn =
n∑
i=0

ĉiρi,

where
ĉi =

(f, ρi)L2
w

(ρi, ρi)L2
w

.

By setting the interval to I = [−1, 1] and letting w(x) = (1 − x2)−1/2 we have by
the definition of the L2

w product (2.5) and using the substitution x = cos(θ),

(Ti, Tj)L2
w

=
∫ 1

−1
Ti(x)Tj(x)(1− x2)−1/2 dx

=
∫ π

0
cos(iθ) cos(jθ) dθ.

If i 6= j, using the relation 2 cos(v) cos(u) = cos(v − u) + cos(v + u)

(Ti, Tj)L2
w

=
∫ π

0
cos(iθ) cos(jθ) dθ

= 1
2

∫ π

0
cos(iθ − jθ) + cos(iθ + jθ) dθ

= 1
2

∫ π

0
cos((i− j)θ) + cos((i+ j)θ) dθ

= 1
2

[
sin((i− j)θ)

i− j
+ sin((i+ j)θ)

i+ j

]π
0

= 0,

otherwise if i = j 6= 0

(Ti, Ti)L2
w

=
∫ π

0
cos2(iθ) dθ (2.7)

=
∫ π

0

1 + cos(2iθ)
2 dθ (2.8)

=
[
θ

2 + sin(2iθ)
4i

]π
0

= π

2 (2.9)
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2. Gaussian random fields as solutions of SPDEs

while i = j = 0 gives (T0, T0)L2
w

= π. Hence with the chosen interval and weight
function, the Chebyshev polynomials of the first kind form an orthogonal family of
polynomials. Letting c0 = 2ĉ0 and ci = ĉi for all i 6= 0 we may approximate f by
the polynomial

STn (x) = 1
2c0 +

n∑
i=1

ciTi(x), (2.10)

where
ci = 2

π
(f, Ti)L2

w
= 2
π

∫ 1

−1
f(x)Ti(x)w(x), dx, (2.11)

To show that the function f can be represented as a series of Chebyshev poly-
nomials

f(x) = 1
2c0 +

∞∑
i=0

ciTi(x) (2.12)

we again use the substitution x = cos(θ). Define g(θ) = f(cos(θ)), 0 ≤ θ ≤ π, then
g is an even function and by (2.6) L2

w-integrable with unit weight since

‖f‖2
L2
w

=
∫ π

0
f(cos(θ))2(1− cos(θ)2)−1/2dx =

∫ π

0
g(θ)2 dθ.

Define
‖ · ‖2

L2 =
∫ π

0
(·)2 dθ.

By [10, Lemma 2.2] we have that the Fourier series of an even function can be
expressed solely by its cosine terms,

g(θ) = 1
2β0 +

∞∑
i=0

βi cos(iθ), (2.13)

where for all i
βi = 2

π

∫ π

0
g(θ) cos(iθ) dθ. (2.14)

By the property of the Fourier series of a L2-integrable function by [10, Theorem
3.4]

‖g − SFn ‖2
L2 =

∫ π

0

[
g(θ)− SFn (θ)

]2
dθ → 0 as n→∞ (2.15)

where
SFn (θ) =

n∑′

i=0
βi cos(iθ).

This implies that

‖f − STn ‖2
L2
w

=
∫ 1

−1

[
f(x)− STn (x)

]2
(1− x2)−1/2 dx

=
∫ π

0

[
f(cos(θ))− STn (cos(θ))

]2
dθ

=
∫ π

0

[
g(θ)−

( n∑′

i=0
ciTi(cos(θ))

)]2

dθ

=
∫ π

0

[
g(θ)−

( n∑′

i=0
ci cos(iθ)

)]2

dθ

=
∫ π

0

[
g(θ)− SFn (θ)

]2
dθ.
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2. Gaussian random fields as solutions of SPDEs

By (2.15) the sum (2.10) converges to f as the number of terms tends to infinity.
Determining the coefficients {ci} equates to calculating the integral (2.11). This can
be done numerically, again substituting x = cos(θ) we have for all i that

ci = 2
π

∫ 1

−1
f(x)Ti(x)w(x) dx = 2

π

∫ π

0
f(cos(θ))Ti(cos(θ)) dθ

= 1
π

∫ 2π

0
f(cos(θ))Ti(cos(θ)) dθ = 1

π

∫ 2π

0
f(cos(θ)) cos(iθ) dθ,

Let {θj} be a partition of the interval [0, 2π] such that 0 ≤ θ1 < ... < θ2n < θ2n+1 ≤
2π and define ∆θj := θj−θj−1 to be the length of the intervals. Choosing θj = (j− 1

2 )π
n

we get uniform interval lengths ∆θj = π/n for all j which we denote by l. Defining
g̃i(θ) := f(cos(θ)) cos(iθ) and utilising the trapezoidal rule yields the approximation

ci = 1
π

∫ 2π

0
g̃i(θ) dθ ≈ l

2π g̃i(θ1) + l

2π g̃i(θ2n+1)

+ l

π

2n∑
j=2

g̃i(θj).
(2.16)

Further we have that

g̃i(2π − θ) = g(cos(2π − θ)) cos(i(2π − θ)) (2.17)
= g(cos(2π − θ)) cos(i2π − iθ) (2.18)
= g(cos(θ)) cos(iθ) = g̃i(θ), (2.19)

hence for all i

g̃i(θ2n+1−j) = g̃i

(
(2n+ 1− j − 1

2)π
n

)
= g̃i

(
2π −

(j − 1
2)π

n

)
= g̃i(2π − θj) = g̃i(θj).

From this relation we see that all the terms in the sum of (2.16) pair up with the
exception of the term with index j = 2n. We get the following approximation of the
coefficients

ci ≈
l

2π g̃i(θ1) + l

2π g̃i(θ2n+1) + l

π
g̃i(θ2n) + 2l

π

n∑
j=2

g̃i(θj).

Again by the relation g̃i(θ2n+1−j) = g̃i(θj) we have g̃i(θ2n) = g̃i(θ1) and by properties
of the function g̃i and by the definition of θj

g̃i(θ2n+1) = g̃i

(
(2n+ 1− 1

2)π
n

)
= g̃i

(
(2n+ 1

2)π
n

)
= g̃i

(
2π + π

2n

)
= g̃i

(
− π

2n

)
= g̃i

(
π

2n

)
= g̃i(θ1).

we conclude that
l

2π g̃i(θ1) + l

2π g̃i(θ2n+1) + l

π
g̃i(θ2n) = 2l

π
g̃i(θ1)

6



2. Gaussian random fields as solutions of SPDEs

utilising that l = π/2 and substituting back to f , the final expression for the ap-
proximation of ci is

ci ≈
2
n

n∑
j=1

f(cos(θj)) cos(iθj) (2.20)

Algorithm 1 Chebyshev coefficients–implementation
1: Initialise array c to store coefficient values
2: Initialise the number coefficient to be calculated nbrOfCoeff
3: Initialise the number terms in the sum (2.20) n
4: for i = 1 to nbrOfCoeff do
5: for k = 1 to n do
6: Calculate the k:th term of the sum (2.20)
7: Add it to the i:th position in the array c
8: end for
9: end for

10: Multiply the array c by 2/n

If we wish to find an approximation of f on a more general interval [a, b], we can
re-scale the domain to [−1, 1] and proceed with the previously established methods.
Define y(x) by the relation y(x) := (x−m)/k where k and m are chosen such that

y(a) = −1
y(b) = 1

which implies that

a−m = −k
b−m = k

which gives k = b−a
2 and m = a+b

2 . Define g(y) = f(ky + m), y ∈ [−1, 1] we may
now implement the algorithm 1 with θ̃j = kθj +m = k

(j− 1
2 )π
n

+m.

2.2 Padé–Chebychev approximants
From [11] the Padé–approximant of a function f is a rational function defined by

[L/M ] = A[L/M ](x)
B[L/M ](x) , (2.21)

where A[L/M ] and B[L/M ] are polynomials of degree L and M respectively such that

A[L/M ](x)
B[L/M ](x) = f(x) +O(xL+M+1) (2.22)

with
B[L/M ](0) = 1.

7



2. Gaussian random fields as solutions of SPDEs

In this section we present how to find the coefficients of the polynomials A[L/M ]

and B[L/M ] when given a polynomial series expansion of f . In particular we will
be looking at the Padé–Chebyshev approximant, which is a rational function of the
type

[L/M ] = A[L/M ](x)
B[L/M ](x) =

a0
2 + a1T1(x) + · · ·+ aLTL(x)
b0
2 + b1T1(x) + · · ·+ bMTM(x)

, (2.23)

where Ti are the first order Chebyshev polynomials.

2.2.1 Rational approximation of a function using the Clen-
shaw and Lord approach

Given the expansion of f in a series of Chebyshev polynomials (2.12) we look at the
problem of constructing an approximation to the function f of the type

p(x)
q(x) =

a0
2 +∑L

i=1 aiTi(x)
b0
2 +∑M

j=1 bjTj(x)
(2.24)

such that f(x) ≈ p(x)
q(x) . Requiring that the Chebyshev series and our approximation

satisfy
c0

2 +
∞∑
i=1

ciTi(x) ≈
a0
2 +∑L

i=1 aiTi(x)
b0
2 +∑M

j=1 bjTj(x)
, (2.25)

we will derive relations between the coefficients ci, ai and bi. Afterwards we describe
the Clenshaw and Lord approach presented in [12, Section 1.6] to calculate the co-
efficients of the denominator bi.

Multiplying both sides of (2.25) by the denominator of the right-hand side gives
the following relation

[
c0

2 +
∞∑
i=1

ciTi(x)
] b0

2 +
M∑
j=1

bjTj(x)
 ≈ a0

2 +
L∑
i=1

aiTi(x). (2.26)

Rearranging the left-hand side making use of the multiplication law Ti(x)Tj(x) =
1
2 [Ti+j(x) + T|i−j|(x)] leads to

[
c0

2 +
∞∑
i=1

ciTi(x)
] b0

2 +
M∑
j=1

bjTj(x)
 = 1

4b0c0 +
M∑
j=1

bjcj

+
∞∑
i=1

1
4b0ci + 1

2

M∑
j=1

bj(ci+j + c|i−j|)
Ti(x).

Defining ai = 0 for i > L and comparing the expression above with

a0

2 +
L∑
i=1

aiTi(x)

8



2. Gaussian random fields as solutions of SPDEs

for i = 0, 1, ..., L+M the following relations hold

1
4b0c0 +

M∑
j=1

bjcj = a0,

1
4b0ci + 1

2

M∑
j=1

bj(ci+j + c|i−j|) = ai for i = 1, ..., L,

1
4b0ci + 1

2

M∑
j=1

bj(ci+j + c|i−j|) = 0 for i = L+ 1, ..., L+M,

(2.27)

According to the scheme described in [12, Section 1.6] assuming that the coefficients
{ci} originate from a rational approximation [L/M ], the following relation hold

cj =
M∑
k=1

αkz
j
k for all j ≥ max(L−M + 1, 0), (2.28)

where zk ∈ C for all k are roots to the complex polynomial
M∑
j=0

γjz
j = 0, (2.29)

with real coefficients γj ∈ R, i = 0, · · · ,M and normalised such that γ0 = 1. Further
the coefficients {cj} satisfy the relation

M∑
j=0

γjc|k−j| = 0, k = L+ 1, L+ 2, ..., L+M. (2.30)

From the above definitions, equations (2.27) and by [12, Theorem 1.6.1] the denom-
inator can be expressed in z as

q̄(z) = µ

 M∑
j=0

γjz
j

 M∑
j=0

γjz
−j

 .
where z relates to x by x = cos(θ) = 1

2(z + z−1).
Next we wish to rewrite the expression as a sum of Chebyshev polynomials in

x to find the coefficients bj. Writing the product as a double sum

q̄(z) = µ
M∑
i=0

M∑
j=0

γiγjz
i−j, (2.31)

and noting that the coefficient in front of the term zj−i is the same as for zi−j, allows
us to rearranging the sum giving

q̄(z) = µ
M∑
i=0

γ2
i + µ

M−1∑
i=0

M∑
j=i+1

γiγj(zi−j + zj−i). (2.32)

Set ζi,j = γiγj(zi−j + zj−i) and define the diagonal series associated to the double
sum in (2.32) as

M∑
k=1

ηk, (2.33)

9



2. Gaussian random fields as solutions of SPDEs

where ηk is a sum of all ζi,j whose indices satisfy i− j = k, that is

ηk =
M−k∑
l=0

ζl,l+k =
M−k∑
l=0

γlγl+k(zk + z−k), (2.34)

hence
q̄(z) = µ

M∑
k=0

γ2
k + µ

M∑
k=1

M−k∑
l=0

γlγl+k(zk + z−k). (2.35)

From the definition of the Chebyshev polynomials and Euler’s formula we have that

Tk(x) = Tk(cos(θ)) = cos(kθ) = 1
2(eikθ + e−ikθ) = 1

2(zk + z−k).

and thus we have that the denominator is given by

q(x) = µ
M∑
k=0

γ2
k + 2µ

M∑
k=1

M−k∑
l=0

γlγl+kTk(x). (2.36)

Comparing the denominator in (2.23) to our found expression we get that the coef-
ficients {bj} satisfy

b0

2 = µ
M∑
i=0

γ2
i (2.37)

bj = 2µ
M−j∑
i=0

γiγi+j for j = 1, ...,M. (2.38)

Thus the equations (2.27) and (2.37)-(2.38), where the {γi} are calculated by (2.30),
define the coefficients of the rational approximate (2.24). Normalising such that
b0 = 2 we have that µ is determined by (2.37).

Given the coefficients {cj} the algorithm can be implemented as follows:

Algorithm 2 Clenshaw and Lord algorithm
1: Initialise M
2: Initialise L
3: Determine {γj} from equation (2.30) taking γ0 = 1
4: Calculate µ from (2.37), letting b0 = 2
5: Determine {bj} from equation (2.38)
6: Determine {ai} from the system of equations (2.27)

2.3 Rational approximation of the fractional Lapla-
cian

The steps needed in implementing the fractional equation Lα/2T =W where D ⊂ R
open, bounded and convex polytope and W white noise. For this purpose we make
use of the method described in [7, Appendix A]. The problem is discretisised by

10



2. Gaussian random fields as solutions of SPDEs

FEM imposing homogeneous Dirichlet boundary conditions. Set L = −∆ and let
L2(D) be the space of square-integrable real-valued functions equipped with the
inner product

(w, v)L2(D) =
∫
D
w(s)v(s) ds.

Further set V := H1
0 (D), where H1

0 is the Hilbert space containing the set of function
with vanishing trace and that satisfy w ∈ L2(D), ∇w ∈ L2(D). A finite element
space is introduced, Vh ⊂ V , with a basis consisting of continuous piecewise polyno-
mials {φj}nj=1 of degree p ∈ N. These are defined with respect to a triangulation T
on the chosen domain D with a mesh size of h = maxτ∈T diam(τ). Further denote
by Lh the discretised operator of L on Vh defined by (Lhψh, φh)L2(D) = BL(ψh, φh),
where

BL : V × V −→ R, BL(u, v) = (∇u,∇v)L2(D)

is a symmetric, bilinear mapping [7, Section 3.1]. The following SPDE in Vh is then
considered

L
α/2
h Th =Wh, (2.39)

where Th is the finite element approximation of T ,

Wh =
n∑
j=1

ξjej,h

is WN in Vh, ξj ∼ N (0, 1) independent and identically distributed and {ej,h}nj=1 is
a basis of Vh that is orthonormal in L2(D). Next a non-fractional equation of (2.2)
in Vh is constructed,

Pl,hT
R
h,m = Pr,hWh. (2.40)

such that TRh,m approximates Th. The discrete operators Pl,h and Pr,h are constructed
in terms of polynomials such that TRh,m approximates Th [7, Section 3.3]. To spec-
ify Pl,h and Pr,h a rational function r is found such that TRh,m = r(L−1

h )Wh. For
this purpose a rational approximation of the function f(x) = xα/2 is considered.
Defining mα := max{1, bα2 c} we have by decomposition f(x) = f̂(x)xmα where
f̂(x) = xα/2−mα . The choice of mα is in accordance to the choice in article [7, Sec-
tion 3.3] to assure smoothness properties.

Finding the rational expansion f̂(x) ≈ q1(x)
q2(x) , where q1 and q2 are polynomials of

degree m1 = m ∈ N and m2 = m+ 1, respectively, the function f can be expressed
as

f(x) ≈ r(x) := q1(x)
q2(x)x

mα .

For simulation purposes the approximation is written in terms of the roots r1,i
and r2,j of the polynomials q1 and q2

f(x) ≈ am
∏m
i=1(x− r1,i)

bm+1xmα
∏m+1
j=1 (x− r2,j)

xmα = amx
m∏m

i=1(1− r1,ix
−1)

bm+1xm+1∏m+1
j=1 (1− r2,jx−1)

xmα

= am
∏m
i=1(1− r1,ix

−1)
bm+1x

∏m+1
j=1 (1− r2,jx−1)

xmα .

11



2. Gaussian random fields as solutions of SPDEs

Then
x−α/2 = f(−x) ≈ am

∏m
i=1(1− r1,ix)

bm+1xmα−1∏m+1
j=1 (1− r2,jx)

. (2.41)

Choosing pl(x) = am
∏m
i=1(1− r1ix) and pr(x) = bm+1x

mα−1∏m+1
j=1 (1− r2jx), Pl,h

and Pr,h are defined by

Pr,h := pl(Lh) = am
m∏
i=1

(I − r1iLh)

Pl,h := pr(Lh) = bm+1L
mα−1
h

m+1∏
j=1

(I − r2jLh).

From how the operators Pl,h and Pr,h are defined they commute which will allow us
to express (2.40) as a the nested SPDE, [7, Section 3.3]

Pl,hvh =Wh, (2.42)
TRh,m = Pr,hvh. (2.43)

In order to calculate vh from (2.42) the functions vk ∈ L2(Ω, Vh) for k ∈
{1, ...,m+mα} are defined by

bm+1(I − r21Lh)v1 =Wh, (2.44)
(I − r2kLh)vk = vk−1, k = 2, . . . ,m+ 1 (2.45)

Lhvk = vk−1, k = m+ 2, . . . ,m+mα (2.46)

where vm+mα = vh. Expanding the functions in the finite element basis vk =∑n
i=1 vk,jφj the weights vk = (vk,1, ..., vk,n)T will satisfy for all i = 1, . . . , n

bm+1

n∑
j=1

v1,j(φi, (I − r2,1Lh)φj)L2(D) = (φi,Wh)L2(D)

n∑
j=1

vk,j(φi, (I − r2,kLh)φj)L2(D) =
n∑
j=1

vk−1,j(φi, φj)L2(D) k = 2, . . . ,m+ 1

n∑
j=1

vk,j(φi, Lhφj)L2(D) =
n∑
j=1

vk−1,j(φi, φj)L2(D) k = m+ 2, . . . ,m+mα.

(2.47)

Utilising the proprieties of BL and the L2(D) inner product the following relations
hold

(φi, Lhφj)L2(D) = (Lhφj, φi)L2(D) = BL(φj, φi)L2(D)

= (∇φj,∇φi)L2(D) = (∇φi,∇φj)L2(D)

for k = m+ 2, ..,m+mα and

(φi, (I − r2,kLh)φj)L2(D) = (φi, φj)L2(D) − r2,k(φi, Lhφj)L2(D)

= (φi, φj)L2(D) − r2,kBL(φi, φj)L2(D)

= (φi, φj)L2(D) − r2,k(∇φi,∇φj)L2(D)

12



2. Gaussian random fields as solutions of SPDEs

for k = 2, . . . ,m + 1. Denoting Ci,j = (φi, φj)L2(D), Li,j = (∇φi,∇φj)L2(D) and
di = (φi,Wh)L2(D) (2.47) is equivalent to

bm+1

n∑
j=1

v1,j(Cij − r21Lij) = di

n∑
j=1

vk,j(Cij − r2kLij) =
n∑
j=1

vk−1,jCij k = 2, . . . ,m+ 1

n∑
j=1

vk,jLij =
n∑
j=1

vk−1,jCij k = m+ 2, ..,m+mα.

We note that the equations above are matrix multiplications expressed as sums. As
a result we can make further simplification by using matrix notation

bm+1(C− r21L)v1 = d
(C− r2kL)vk = Cvk−1 k = 2, . . . ,m+ 1

Lvk = Cvk−1 k = m+ 2, ..,m+mα.

(2.48)

Next (2.43) is solved in the same procedure as x. The functions T1, . . . , Tm satisfy

T1 = am(I − r11Lh)vh
Tk = (I − r1kLh)Tk−1 k = 2, . . . ,m.

Again expanding T1, . . . , Tm with respect to the finite element basis Tk = ∑n
i=1 Tk,jφj

the weights satisfy for all i = 1, . . . , n
n∑
j=1

T1,j(φi, φj)L2(D) = am
n∑
j=1

vh,j(φi, (I − r1,1Lh)φj)L2(D)

n∑
j=1

Tk,j(φi, φj)L2(D) =
n∑
j=1

Tk−1,j(φi, (I − r1,kLh)φj)L2(D) k = 2, . . . ,m.

Using the same notations as before the system is equivalent to

CT1 = am(C− r11L)vh
CTk = (C− r1kL)Tk−1 k = 2, . . . ,m.

(2.49)

Taking a second look at the system (2.48), repeated iteration for k ∈ 2, . . . ,m+ 1
results in

bm+1

 k∏
j=1

(C− r2jL)
vk = Ck−1d.

Multiplying with the inverse of C on both side k − 1 times gives us the relation

bm+1C

 k∏
j=1

(I− r2jC−1L)
vk = d.

Similarly for the indices k = m+ 2, ..,m+mα iterating down to vm+1 yields

Lk−m−1vk = Ck−m−1vm+1.

13



2. Gaussian random fields as solutions of SPDEs

Making use of the relation (C− r2kL)vk = Cvk−1 iterating down to d resulting in

bm+1Lk−m−1

m+1∏
j=1

(C− r2jL)
vk = Ck−m−1Cmd

which simplifies to

bm+1C(C−1L)k−m−1

m+1∏
j=1

(I− r2jC−1L)
vk = d k = m+ 1, . . . ,m+mα.

Let Lk := ∏k
j=1(I− r2jC−1L) and define the matrix

Pl,k =

bm+1CLk k = 1, . . . ,m+ 1,
bm+1C(C−1L)k−m−1Lm+1 k = m+ 2, ..,m+mα,

(2.50)

thus Pl,kvk = d which results in

vk ∼ N (0,P−1
l,kC(P−1

l,k )T ) k = 1, . . . ,m+mα,

vh ∼ N
(
0,P−1

l,m+mαC(P−1
l,m+mα)T

)
. (2.51)

Similarly iterating (2.49) the following relation between Tk and vh if found

Ck−1Tk = am
k∏
i=1

(C− r1kL)vh.

Multiplying from the left with the inverse of C k − 1 times and letting

Pr,k := am
k∏
i=1

(I− r1iC−1L) (2.52)

the relation Tk = Pr,kvh if found. Hence the weights of the sought approximation
TRm,h are found from Tm = Pr,mvh.

2.3.1 Theoretical strong error of fractional approximation
For a Gaussian field T on a bounded domain D ∈ Rd the theoretical strong conver-
gence of the rational approximation is given by [7, Theorem 3.3]
Theorem 2. Suppose that α/2 > d/4 and L given by Lu = −∇ · (H∇u) + κ2u
where H and κ satisfy the assumptions:

I. H : D −→ Rd×d is symmetric, Lipschitz continuous on the closure D̄, that is
there exists a constant CLip such that

|Hij(s)−Hij(s′)| ≤ CLip‖s− s′‖ ∀s, s′ ∈ D̄, i, j ∈ {1, · · · , d}

and uniformly positive definite,i.e.,

∃C0 : ess inf
s∈D

ξTH(s)ξ ≥ C0‖ξ‖2

14



2. Gaussian random fields as solutions of SPDEs

II. κ : D −→ R is bounded, κ ∈ L∞(D).
Let T and TRh,m be the solutions to (3.1) and (2.40), respectively. and m ∈ N. Then
there is a constant C > 0, independent of h,m, such that, for sufficiently small h,

‖T − TRh,m‖L2(Ω:L2(D)) ≤ C
(
hmin{α−d/2,2}

)
. (2.53)

In our case κ = 0 satisfying II and H = I gives |Hij(s) − Hij(s′)| = 0 ≤
CLip‖s − s′‖ for all CLip > 0 and ξTH(s)ξ = ξT Iξ = ξT ξ = ‖ξ‖2. Thus H Lips-
chitz continuous and uniformly positive definite. From the theorem we see that the
expected convergence rate is given by min{α− d/2, 2}.

2.4 Implementation of the random field in FEn-
iCS

To avoid re-calculating the coefficients of the rational approximation for every mesh
size h, the approximation of the function f(x) = xα/2−mα is considered on the interval
[δ, 1] where δ = 10−(5+m)/2. The interval is chosen in accordance to [7, Section 3.5].
In order to generate a sample of the approximation T rm,h, we need to construct the
matrices Pr,m and Pl,m+mα . To do so we need to know the roots r1,1, . . . , r1,m and
r2,1, . . . , r2,m+1 in the rational approximation (2.41) as well as the two coefficients
am and bm+1. For this purpose we make use of the Padé–Chebychev expansion on
a general interval section as introduced in 2.2.1. Note that the transformation uses
a linear transformation, g(y) = f(Ky + M), that we must take into account to get
the correct values of the sought roots and coefficients. By Algorithm 2 we find the
arrays

ã = [ã0, ã1, . . . ãm],
b̃ = [b̃0, b̃1, . . . b̃m+1]

holding the coefficients of the Padé–Chebychev approximation on the interval [0, 1].
Utilising the built in functions chebroots() from the NumPy package [13], the roots
in the interval are

r̃1k = chebroots(ã)
r̃2k = chebroots(b̃).

The roots r̃1k, r̃2k are related to {rik}, i = 1, 2, by a linear transformation
rik = (r̃ik −M)/K.

To get the corresponding polynomial coefficients we apply the function cheb2poly()
to the arrays ã and b̃

â = cheb2poly(ã)
b̂ = cheb2poly(b̃).

We can get an accurate approximation of the mass matrix and stiffness matrix with
the help of FEniCS. Start by setting up the finite element space. Specify the mesh
by

mesh = IntervalMesh(nx, x0,x1)
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2. Gaussian random fields as solutions of SPDEs

The built-in function creates a uniform mesh of the interval [x0, x1], nx states the
number of cells along the x-axis. As a result there are (nx+ 1) number of vertices.
Now that the mesh is determined, the spaces Vh and V̂h are implemented by the
code

Vh = FunctionSpace(mesh, family, degree),
note that in our case Vh = V̂h. Selecting the type of element in our finite element
space is done by the second argument family(string), the degree of the element is
decided by the argument degree(integer). Following this the trial and test function
are written in the program as

u = TrialFunction(Vh)
v = TestFunction(Vh).

The mass matrix and stiffness matrix is then easily constructed by
mass = u*v*dx
stiff = inner ( grad ( u ) , grad ( v ) ) *dx
mass_matrix = assemble(mass).array()
stiffness_matrix = assemble(stiff).array(),

where u*v*dx represents the inner product (u, v)L2(D) in FEniCS [14]. With the
roots am and bm+1 known we can implement the matrices defined by (2.50) and
(2.52) according to

Algorithm 3 Implementation of matrix (2.50)
Lm+1 = I
for i = 1 to m+1 do

Lm+1 := Lm+1(I− r2jC−1L)
end for
Pl,m+mα = bm+1C (C−1L)mα−1 Lm+1

and

Algorithm 4 Implementation of matrix (2.52)
1: Pr,0 = amI
2: for i = 1 to m do
3: Pr,m := Pr,m(I− r1iC−1L)
4: end for

Since Wh is white noise in Vh, d = ((φi,Wh)L2(D))nhi=1 ∼ N (0,C). We can gen-
erate d from a sample of uncorrelated standard normal variables Z by d = CcholZ
where Cchol is the Cholesky factorisation of the mass matrix satisfying CcholCT

chol =
C By solving the equation Pl,m+mαvh = d we find the weight of the sought ap-
proximation as Tm = Pr,mvh. Simulations of the approximation are found in the
Figure 2.1 and 2.2
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2. Gaussian random fields as solutions of SPDEs

Figure 2.1: Simulation of the noise generated on a mesh with 211 vertices, α = 5/4
and with different values on the parameterm. On the left the value of the parameter
is chosen to bem = 3, in the centre figurem = 4 and on the right-most figurem = 5.

Figure 2.2: Simulation of the noise generated on different mesh sizes with α = 5/4
and m = 3. In the left figure h = 1/27, centre figure h = 1/29 and right figure
h = 1/211
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3
Stochastic partial differential

equations in FEniCS

In the following sections we describe how to implement a SPDE in FEniCS by
looking at the problem defined by

∇ · (a(x)∇u(x)) = f(x) x ∈ D
u(x) = 0 x ∈ ∂D,

(3.1)

where D = [0, 1] and f is a real-valued, bounded and continuous function on the
domain D and a is a log-normal random field given by a = exp(T ), where T is a
stationary solution to (2.1).

3.1 Variational formulation of the partial differ-
ential equation

Here we look at the formulation of equation (3.1) that will be needed for implemen-
tation in FEniCS.

Let V = {v ∈ H1
0 (D) : v(x) = 0 ∀x ∈ ∂D} and multiply both sides of the ex-

pression ∇ · (a(x)∇u(x)) = f(x) by v ∈ V , we have that

(a∇u, v)L2(D) = (f, v)L2(D). (3.2)

Integrating by parts and utilising that v has a vanishing trace allows us to write the
left hand side of (3.2) as

(a∇u, v)L2(D) = −(a∇u,∇v(x))L2(D).

Using the same finite element discretisation that was introduced in Chapter 2.3 the
discrete variational formulation is as follows: find uh ∈ Vh such that

−(a∇uh,∇vh(x))L2(D) = (f, vh)L2(D) (3.3)

for all vh ∈ Vh. To approximate a solution to equation (3.1) we need to solve (3.3).
In FEniCS this is equivalent to expressing the space Vh, the discrete variational
formulation (3.3) and the function a.
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3.1.1 Theoretical strong error estimate for the partial dif-
ferential equation

In this section we will present a strong estimate of the partial differential equation
specific to our case. If [1, Assumption 3.1] holds, by [1, Definition 3.3]

Rγ
N = max

∑
j≥N

λ̂j‖ej‖2
∞,

∑
j≥N

λ̂j‖ej‖2(1−γ)
∞ ‖∇ej‖2γ

∞

 ,
where ‖x‖∞ = max(|x1|, · · · , |xn|). A strong error estimate is given in [1, Theorem
4.2].
Theorem 3. For all p > 0 uN converges to u in Lp(Ω, H1

0 (D)), and for any γ as in
Assumption 3.1, there exists a constant Fγ,p such that

‖u− uh‖Lp(Ω,H1
0 (D)) ≤ Fγ,p(Rγ

N)1/2. (3.4)

Representing the white noise by the truncated Karhunen–Loève expansion with
respect to the eigenfunction ej,h of Lh we have

Wh =
nh∑
j=1

ξjej,h

where ξj independent identically distributed standard normal variables. By the
construction of Lh the solution uh can be represented as a truncated Karhunen-
Loève expansion

uh(x) = L
−α/2
h Wh =

nh∑
j=1

λ
−α/2
j,h ξjej,h(x)

where λj,h is the eigenvalue corresponding to ej,h.
In the case of L = −∆ we have by that the eigenpairs, in the one-dimensional

case, are given by
λj,h = π2j2,

and
ej,h(x) =

√
2 sin(πjx).

Letting λ̂j = λ−αj,h , ej(x) = ej,h(x) and unh = uh

unh(x) =
nh∑
j=1

√
λ̂jξjej(x),

we can show that the assumption made in Assumption 3.1 holds. In our case since
both the eigenvalues and eigenfunctions are known we have that

‖ej‖2
∞ = ‖

√
2 sin(πjx)‖2

∞ =
√

2

and
‖∇ej‖2

∞ = ‖ δ
δx

√
2 sin(πjx)‖2

∞ = ‖
√

2πj cos(πjx)‖2
∞ =

√
2πj
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hence

Rγ
nh

= max
∑
j≥nh

√
2(π2j2)−α,

∑
j≥nh

(π2j2)−α2(1−γ)2γπ2γj2γ


= max

∑
j≥nh

√
2(π2j2)−α,

∑
j≥nh

2(π2j2)−α(πj)2γ


=
∑
j≥nh

2(π2j2)−α(πj)2γ = 2π2(γ−α) ∑
j≥nh

j2(γ−α).

From the integral test we see this the series converges for−2(γ−α) > 1. In particular
for all α > 1 the series is convergent for any 0 < γ ≤ 1

2 . Also from the integral test

∑
j≥nh

j2(γ−α) ≤ n
2(γ−α)−1
h

1− 2(γ − α) (3.5)

and thus for our example we have the strong error estimate

‖u− uh‖L2(Ω,H1
0 (D)) ≤ Cγn

2(γ−α)−1
2

h (3.6)

3.2 FEniCS implemention of SPDE
Finding the formulation (3.3) from the problem described in (3.1) allows us to start
our implementation of our SPDE in FEniCS. As before we start by specifying a
mesh of the domain D = [0, 1] with

mesh = IntervalMesh(nx, a,b)
next the finite element space is implemented

Vh = FunctionSpace(mesh, family, degree),
and the trial and test functions are written

u = TrialFunction(Vh),
v = TestFunction(Vh).

For the boundary condition we must first construct the function boundary that
returns TRUE if a point lays on the boundary. This can be done by utilising the
FEniCS provided variable on_boundary that holds information of which point x lies
on the boundary. Thus we can have boundary return this variable.
def boundary(x, on_boundary):

return on_boundary

Alternative on_boundary can be omitted but then we need the boundary function
to test the value of the coordinate x. Furthermore the Dirichlet boundary condition
is specified by the function

boundary_condition = DirichletBC(Vh, u_d, boundary)
where u_d is an object that represents the boundary condition. It is established by

u_d = Expression(cppcode),
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3. Stochastic partial differential equations in FEniCS

where cppcode is a string of C++ code corresponding to the right hand side of
the boundary condition in (3.1), in our case cppcode = ’0’. Using the Expression
function we also define the source term f . For the random field a we use a different
approach since when solving (2.1) we do not get an analytic expression, we get an
array Tm that holds the weights of T rh,m on the vertices of mesh. From section 2.4 we
find T, then we create an array a = exp(T) and use Function. The class Function
represents a function uh given by

uh =
n∑
i=1

Uiφi (3.7)

in the function space Vh. We wish to set our values in a as the weights {Ui}, this is
done by first construction a Function object

a = Function(V),
then we set the weights

a.vector()[:] = a[vertex_to_dof_map(V)].
The function vertex_to_dof_map maps the vertex indices to the indices of {Ui}.
Finally we implement the expression (3.3)

A = a dot(grad(u), grad(v))*dx
L = f*v*dx

We can now solve for uh
u_h = Function(V)
solve(A == L, u_h, boundary_condition)
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4
Quality of implementation by

numerical example

To analyse the quality of our estimations we look at an estimate of a strong error
defined by

‖g − gh‖L2(Ω;L2(D)) = E
[
‖g − gh‖2

L2(D)

]1/2
. (4.1)

If gh is a finite element approximation of g on the finite element space Vh it can be
expressed in the finite element basis {φi}nhi=1 of Vh

gh(x) =
nh∑
i=1

giφi(x),

where gi ∈ R, i = 1, . . . , nh. Next we approximate g by a FEM solution solved on a
refined finite element space Vref denoted by gref. Projecting the refined solution onto
Vh we have

gPref(x) =
nh∑
i=1

gi,Pφi(x).

where gPref denotes the projection. Comparing gh with gref we approximate ‖g −
gh‖2

L2(D) by

‖gPref − gh‖2
L2(D) =

∫
D

(gPref(x)− gh(x)) · (gPref(x)− gh(x)) dx

=
∫
D

(
nh∑
i=1

(gi,P − gi)φi(x)
)
·
(
nh∑
i=1

(gi,P − gi)φi(x)
)

dx

=
∫
D

 nh∑
i=1

nh∑
j=1

(gi,P − gi)(gj,P − gj)φi(x)φj(x)
 dx

=
nh∑
i=1

nh∑
j=1

(gi,P − gi)(gj,P − gj)
∫
D
φi(x)φj(x) dx = gTPCgP ,

where C is the mass matrix with entries Ci,j =
∫
D φi(x)φj(x) dx and gP is a vector

with entries (gi,P − gi).
Alternatively we can instead choose to instead interpolate the finite element

approximation gh onto the refined grid. As before let gref be the refined finite element
approximation of g on the finite element space Vref with finite element basis {ψi}nref

i=1.
Expressing gref in this basis we have

gref(x) =
nref∑
i=1

ĝiψi(x),
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and interpolating gh onto Vref

gIh(x) =
nref∑
i=1

ĝi,Iψi(x).

We then approximate ‖g − gh‖2
L2(D) by

‖gref − gIh‖2
L2(D) = gTI CgI

where gI is a vector with entries (ĝi − ĝi,I)
Definition 2. Given a sequence {X(i)}Nmc

i=1 of independent identically distributed
random variables the Monte-Carlo estimator is defined by

EN [X] := 1
Nmc

Nmc∑
i=1

X(i) (4.2)

Given the samples {g(i)
e }Nmc

i=1 we have with the Monte-Carlo estimator the fol-
lowing approximations of the strong error

‖g − gh‖L2(Ω;L2(D)) = E
[
‖g − gh‖2

L2(D)

]1/2
≈ E

[
‖ĝref − gh‖2

L2(D)

]1/2
≈
[

1
Nmc

Nmc∑
i=1
‖g(i)

ref − g
(i)
h ‖2

L2(D)

]1/2

≈
[

1
Nmc

Nmc∑
i=1

gT (i)
e Cg(i)

e

]1/2

.

To evaluate the quality of the implementation of TRh,m we compare the estimate
convergence rate of ‖T −TRh,m‖L2(Ω,D) with the theoretical convergence rate given by
Theorem 2. Similarly we compare the convergence rate of ‖u − uRh,m‖L2(Ω,D) to the
theoretical values given by Theorem 3.

4.1 Estimation of the strong error convergence
The strong mean-square error between the exact solution T and the numerical ap-
proximation Th, for meshsize h, is given by

‖T − TRh,m‖L2(Ω,D). (4.3)

Since an exact solution, T, cannot be found we must instead find an approximation.
This approximation is chosen to be the FEM solution of the rational approximation
(2.2) denoted by TRref,m, solved on a refined uniform mesh D̄ref with a total of nref =
211 + 1 vertices and meshsize, h = 1/(nref − 1).

To find the weights, Tref, of TRref,m we follow the method described in Section 2.4
with d = dref = ((Wref, φi))nref

i=1. To find the convergence rate of our implementation
we estimate the strong error on a subset of coarser grids. We let D̄h1 ⊂ · · · ⊂ D̄h10 ⊂
D̄ref be uniform meshes with Nhl = 2l + 1 vertices and meshsize hl = 1/(Nhl − 1).
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x2j+1x2j−3 x2j−1 x2jx2j−2

1
φ̂2j−2

φ̂2j−1

φ̂2j

Figure 4.1: Three consecutive basis functions.

For the refined and coarser solution to be comparable, when we project or in-
terpolate, we need to make sure that underlying noise is the same. That is in the
coarser grids we need to find {(Wref, φi)L2(D)}

nhl
i=1. In the one dimensional case the

basis functions are given by

φi(x) =


x−(i−2)h

h
, (i− 2)h ≤ x ≤ (i− 1)h,

ih−x
h
, (i− 1)h ≤ x ≤ ih,

0 else,
i = 2, · · · , nhl − 1

φ1(x) =


h−x
h
, 0 ≤ x ≤ h,

0 else,

φnhl (x) =


x−(nhl−2)h

h
, (nhl − 2)h ≤ x ≤ (nhl − 1)h,

0 else.

Assume we have {(Wref, φ̂i)L2(D)}
nhl
i=1 and wish to find {(Wref, φi)L2(D)}

nhl−1
i=1 . Since

we have chosen hl = 2−l we find that for i = 2, · · · , nhl − 1

φi(x) = 0.5φ̂2i−2(x) + φ̂2i−1(x) + 0.5φ̂2i(x), (4.4)

and

φ1(x) = φ̂1(x) + 0.5φ̂2(x), (4.5)
φnhl (x) = 0.5φ̂nhl−2(x) + φ̂2nhl−1(x). (4.6)

This can be seen by direct computations, using the definition of the basis functions
above. Taking a look at Figure 4.1 we have four cases
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φi(x) = 0.5φ̂2i−2(x) + φ̂2i−1(x) + 0.5φ̂2i(x)

=


0.5φ̂2i−2(x), x2j−3 ≤ x ≤ x2j−2

0.5φ̂2i−2(x) + φ̂2i−1(x), x2j−2 ≤ x ≤ x2j−1,

φ̂2i−1(x) + 0.5φ̂2i(x), x2j−1 ≤ x ≤ x2j,

0.5φ̂2i(x), x2j ≤ x ≤ x2j+1,

=


x−(i−2)h

h
, (i− 2)h ≤ x ≤ (i− 1)h,

ih−x
h
, (i− 1)h ≤ x ≤ ih,

0 else.

The results for i = 1, nhl can be shown in a similar way. Using the relation (4.4) we
find

(Wref, φi)L2(D) = (Wref, 0.5φ̂2i−2 + φ̂2i−1 + 0.5φ̂2i)L2(D)

= 0.5(Wref, φ̂2i−2)L2(D) + (Wref, φ̂2i−1)L2(D) + 0.5(Wref, φ̂2i)L2(D).

Thus starting with the refined mesh we can find dhl for the subsequent coarser grids
and by the method described in Section 2.3 we find the weights Thl of TRhl,m. Once
we have our solution we can either project the refined solution onto the coarser grid
making use of FEniCS built in function project.

Using the weights of the refined solution we may express it as a function in
FEniCS by

T_ref = Function(V_ref),
T_ref.vector()[:] = Tm[vertex_to_dof_map(V_ref)].

Then we can project onto the coarser grid by
T_ref_h = project(T_ref,V_h),
Tref,h = T_ref_h.vector().get_local(),

where the second line gives us the weights of the projection. We have now a sam-
ple of ge,p = Tref,h − Thl . Generating Nmc samples of d(1)

ref, . . . ,d
(Nmc)
ref we find

g(1)
e,p, . . . ,g(nmc)

e,p and the estimate of the strong error

ep,hl =

√√√√ 1
Nmc

Nmc∑
i=1

((
g(i)
e,p

)T
Cg(i)

e,p

)
. (4.7)

If we instead wish to interpolate TRhl,m onto the refined grid we can use the interpolate
function

T_hl = Function(V_h),
T_hl.vector()[:] = Tm[vertex_to_dof_map(V_h)],
T_h_ref = interpolate(T_hl,V_ref),
Th,ref = T_h_ref.vector().get_local().

As before we find an estimate of the strong error when interpolating as

eI,hl =

√√√√ 1
Nmc

Nmc∑
i=1

((
g(i)
e,I

)T
Cg(i)

e,I

)
. (4.8)
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where ge,I = Tref −Th,ref.
When computing estimates of the strong error

‖u− uh‖L2(Ω,D) (4.9)

we follow the same method as for the Gaussian noise. Our refined solution is found
by solving (3.1) with with a = exp(Tref) similarly we get uh by solving the equation
with Thl .

We estimate the strong error for both u and T on the mesh sizes h = 2−10, 2−9, . . . ,
2−3, 2−1 with the refined solutions solved on a grid with mesh size href = 2−11. By
transforming the results to a log scale we can fit a line by linear-regression find-
ing the estimated convergence rate as the slopes. The values we use to estimate
the convergence rate correspond to mesh sizes h = 2−9, 2−8, 2−7, 2−6. The theoret-
ical convergence rate for T is found in Theorem 2 as min{α − d/2, 2} and for u in
Theorem 3, taking into account that nh = 1/h and letting γ = 1/2, as α.

Figure 4.2 shows our results for T when projecting the refined solution onto
the coarser grid. The left column shows the strong error estimates of ‖TRref,m −
TRh,m‖L2(Ω,D) for the previously chosen mesh sizes. The values used to estimate
the convergence rate are shown on the right figure. A line with the estimated
convergence rate is shown in blue while the theoretical convergence rate is shown
as a reference in red. The same results in the case when the coarser solutions are
interpolated onto the refined grid are shown in Figure 4.3. The results for u when
projecting can be seen in Figure 4.4 and when interpolating in Figure 4.5.

A table of the observed convergence rate and the theoretical convergence can be
found in Table 4.1 and Table 4.2.
When α = 5/4 in Figure 4.2 and Figure 4.4 we see that our observation of the
convergence rate coincides better with the theoretical when projecting compared to
when interpolating. This is the case for both the Gaussian field and the solution u.
When interpolating 4.2 and 4.4 it seems that we get slower convergence than what
is to be expected, our observed line falls below the theoretical one, which would
contradict the theory. However one should also note that in this case there is no
clear asymptotic behaviour. This can be seen in the right side of Figure 4.2 and
Figure 4.4 in the case α = 5/4.

For the values α = 6/4, 7/4 we instead find that interpolating the coarser grid
onto the finer results in our observed convergence rate coinciding better with the
theoretical one see Figure 4.2 and Figure 4.4 compared to Figure 4.3 and Figure 4.5
respectively.

These results can be better seen by looking at Table 4.1 and Table 4.2. From
looking at the tables it is also worth noting that we get a slower convergence rate
when interpolating.

Based on the results we have that our implementation agrees with the theory
when interpolation of the coarser grids is used in calculating the norms. And that
when projecting the fine solution we get faster rates of convergence.
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Figure 4.2: Strong-error estimates for the Gaussian noise when projecting the
refined solution onto the coarser grid. Left figures: log-log plots of the strong error
estimates for different mesh sizes. Right figures: log-log plot of the strong error
estimates used in estimating the convergence rate. Observed convergence is shown
by the blue line and the theoretical convergence by the red line.

Table 4.1: Observed and theoretical rate of convergence for the strong error of the
Gaussian noise T

Case α = 5/4 α = 6/4 α = 7/4
Projecting 0.662 1.812 1.736

Interpolating 0.582 1.260 1.120
Theoretical 0.75 1.0 1.25
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Figure 4.3: Strong-error estimates of the Gaussian noise when interpolating the
coarser grid onto the refined grid. Left figures: log-log plots of the strong error
estimates for different mesh sizes. Right figures: log-log plot of the strong error
estimates used in estimating the convergence rate. Observed convergence is shown
by the blue line and the theoretical convergence by the red line.

Table 4.2: Observed and theoretical rate of convergence for the strong error of u

Case α = 5/4 α = 6/4 α = 7/4
Projecting 1.292 2.432 2.195

Interpolating 0.720 1.719 1.740
Theoretical 1.25 1.50 1.75
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Figure 4.4: Strong-error estimates of uh when projecting the refined grid onto the
coarser grid. Left figures: log-log plots of the strong error estimates for different mesh
sizes. Right figures: log-log plot of the strong error estimates used in estimating the
convergence rate. Observed convergence is shown by the blue line and the theoretical
convergence by the red line.
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Figure 4.5: Strong-error estimates of uh when interpolating the coarser grid onto
the refined grid. Left figures: log-log plots of the strong error estimates for different
mesh sizes. Right figures: log-log plot of the strong error estimates used in estimating
the convergence rate. Observed convergence is shown by the blue line and the
theoretical convergence by the red line.
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A
Python code

Here we list the code use to generate the results of the thesis

A.1 Rational approximation of a function
import numpy as np
import math
from numpy.polynomial import chebyshev as C
from numpy.polynomial import polynomial as P
import scipy.linalg as linalg
pi = math.pi
def rational_approximation(ll, ul, L, M, alpha,n):
# Finds the coeffficients of the Pade--Chebyshev approximation [L/M] of
# the function f = x^(alpha/2-m_alpha) on the interval [ll,ul].

# ll - lower limit of interval of approximation
# ul - upper limit of interval of approximation
# L - degree of numerator
# M - degree of denominator

# Find the first L+M+1 coefficients of the Chebyshev series of f, rescaling
# the domain to [-1,1]
m_alpha = max(1,math.floor(alpha/2.0))
exponent = alpha/2.0 - m_alpha
nbrOfCoeff = L+M+1 # total number of coefficients
pi = math.pi
k = 0.5*(ul-ll)
m = 0.5*(ul+ll)
c = np.zeros(nbrOfCoeff)
for i in range(nbrOfCoeff):

for j in range(1,n+1):
x1 = np.cos(pi*(2*j-1)/(2*n))
x2 = k*x1+m
c[i] = c[i] + (2.0/n)*(x2**exponent) * np.cos(i*pi*(2*j-1)/(2*n))

### Clenshaw--Lord approach
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A. Python code

# Find the gamma coefficients normalised such that gamma_0 = 1.
gamma = np.zeros(M+1)
A = np.zeros((M,M))
b = np.zeros(M)
for i in range(L+1,L+M+1):

for j in range(1,M+1):
if i==j:

A[i-(L+1)][j-1] = c[abs(i-j)]
else:

A[i-(L+1)][j-1] = c[abs(i-j)]

for i in range(L+1,L+M+1):
b[i-(L+1)] = -c[i]

LU = linalg.lu_factor(A)
sol = linalg.lu_solve(LU,b)

# Gather the values of gamma in a array
gamma = np.zeros(M+1)
gamma[0] = 1.0
for i in range(0,len(sol)):

gamma[i+1] = sol[i]

# Determing the mu normalising such that b_0=2
mu = 2.0/np.sum(np.square(gamma))

# Find the coefficients of the denominator
q = np.zeros(M+1)
for i in range(M+1):

for j in range(M-i+1):
q[i] = q[i] + 2*mu*gamma[j]*gamma[i+j]

# Find the coefficients of the numerator
A = np.zeros((L+1,M+1))
for i in range(L+1):

for j in range(M+1):
if j == 0:

A[i][j] = 0.25*(c[i+j] + c[abs(i-j)])
else:

A[i][j] = 0.5*(c[i+j] + c[abs(i-j)])
p = A.dot(q)

p[0] = p[0]/2
q[0] = q[0]/2

# Transform back to interval [ll,ul]

II
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p_C = C.Chebyshev(p)
p_P = P.Polynomial.cast(p_C,[-1,1],[ll,ul])
q_C = C.Chebyshev(q)
q_P = P.Polynomial.cast(q_C,[-1,1],[ll,ul])

# roots of the polynomials
r1 = p_P.roots()
r2 = q_P.roots()

# Coefficients of the highest order terms
a_m = p_P.coef[-1]
b_m1 = q_P.coef[-1]

# Normalise such that a_m=1
b_m1 = b_m1/a_m
a_m = 1
return r1,r2, a_m,b_m1;

A.2 Rational approximation of the fractional Lapla-
cian

from fenics import*
import numpy as np
import math
import scipy.linalg as spl
from rational_approximation import rational_approximation

def rational_equation_sol(m,mass_matrix,stiffness_matrix,d,r1,r2,coef_L,coef_M):
# Finds an observation of the rational approximation to T

# m
# r1 - roots of the numerator in the ratinal approximation
# r2 - roots of the denominator in the ratinal approximation
# coef_L - coefficent of the highest order term in numerator
# coef_M - coefficent of the highest order term in denominator
# d - projection of Wh onto the finite element space

[nbr_row,nbr_col] = np.shape(mass_matrix)
N_vertices = nbr_col # nbr of vertices in the finite element grid
mass_inv = np.linalg.inv(mass_matrix)
massInv_time_stiff = np.matmul(mass_inv,stiffness_matrix)

# Generate the matrix Pl
I = np.identity(N_vertices)
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Lk = I-r2[0]*massInv_time_stiff
for j in range(1,m+1):

Lk = np.matmul(Lk,(I - r2[j]* massInv_time_stiff))
Pl = coef_M*np.matmul(mass_matrix,Lk)

# solve first part of the nested equation
A = Pl
b = d
LU = spl.lu_factor(A)
v = spl.lu_solve(LU,b)

# Generate the matrix Pr
Pr = I-r1[0]*massInv_time_stiff
for j in range(1,m):

Pr = np.matmul(Pr,(I-r1[j]*massInv_time_stiff))
Pr = coef_L*Pr

# Calculate T
T = np.matmul(Pr,v)
return T;

A.3 FEM solution of a partial differential equa-
tion

from fenics import*
import numpy as np

def partial_equation_sol(f,T,V):
# Solves an elliptical differential equation with random
# coefficients and homogeneous Dirichlet
# boundary condition by the FEM in FEniCS.

# f - Expression class representing the source term
# T - Gaussian random field
# V - Class representing the function space

v = TestFunction(V)
u = TrialFunction(V)

# Define boundary condition
u_D = Expression('0', degree=1)
def boundary(x, on_boundary):

return on_boundary
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bc = DirichletBC(V, u_D, boundary)

# Specify the random coefficients
a = np.exp(T)
a_fun = Function(V)
a_fun.vector()[:] = a[vertex_to_dof_map(V)]

## Define the variational problem
u = TrialFunction(V)
v = TestFunction(V)

L = a_fun*dot(grad(u), grad(v))*dx
F = f*v*dx
u_fun = Function(V)

# Solve
solve(L == F, u_fun, bc)
nodal_values_u = u_fun.vector()
u = nodal_values_u.get_local()
return u;

A.4 Estimation of the strong error convergence
rates

Here we present the main code used in estimating the strong error as well as auxiliary
code.
from fenics import *
import numpy as np
import scipy.linalg as spl

from rational_approximation import rational_approximation
from solve_rational_equation import rational_equation_sol
from solve_partial_equation import partial_equation_sol
from L2_error import L2_error_interpolate

def MC(sample):
# Monte carlo estimate
n_mc = len(sample)
mc_estimation = np.sum(sample)/n_mc
return mc_estimation

def massMatrix(h,N_c):
# Generates mass-matrix with uniform meshsize h and N_c nbr interior nodes

d0 = np.concatenate([[2.0],4.0*np.ones(N_c),[2.0]])

V
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d1 = np.ones(N_c+1)
d2 = d1
tridiagonal = np.diag(d0,0) + np.diag(d1,1) + np.diag(d2,-1)
mass_matrix = h/6.0 * tridiagonal
return mass_matrix

def stiffnessMatrix(h,N_c):
# Generates stiffness-matrix with uniform meshsize h and N_c nbr
# interior nodes

#
d0 = np.concatenate([[1],2.0*np.ones(N_c),[1]])
d1 = (-1.0)*np.ones(N_c+1)
d2 = d1
tridiagonal = np.diag(d0,0) + np.diag(d1,1) + np.diag(d2,-1)
stiffness_matrix = 1.0/h * tridiagonal
return stiffness_matrix

def project_noise(arr,level):
# Finds the projection of white noise onto the function space with a
# mesh of meshsize 2^-(level-1)

# arr - projection of white noise onto the function space with a
# mesh of meshsize 2^-(level)
#

arr_len = arr.size
length = np.sqrt(arr_len-1)
arr_proj = np.zeros(2**level+1)
w = np.array([0.5,1,0.5])
w_first = np.array([1,0.5])
w_last = np.array([0.5,1])

ind = 0
for i in range(0,arr_len,2):

if i==0:
arr_proj[ind] = np.sum(w_first*arr[0:2:1])

elif i==(arr_len-1):
arr_proj[ind] = np.sum(w_last*arr[i-1:i+1:1])

else:
arr_proj[ind] = np.sum(w*arr[i-1:i+2:1])

ind = ind + 1
return arr_proj;

# Initialise parameters
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alpha = 5.0/4.0

level = 11
N_ok = 2**level
h_ok = 1.0/N_ok # meshsize
N_interior_ok = N_ok-1 # number of interior nodes
nbrSamples = 1000

error_samples_T = np.zeros((nbrSamples,level-1))
error_samples_u = np.zeros((nbrSamples,level-1))

# Mass- and stiffness- matrices for the coarser grid
mass_matrix_list = []
stiffness_matrix_list = []
for j in range(1,level):

N_c = 2**(j)-1
h = 2**(-j)
mass_matrix_list.append(massMatrix(h,N_c))
stiffness_matrix_list.append(stiffnessMatrix(h,N_c))

# Mass- and stiffness- matrices for the refined grid
mass_matrix_ok = massMatrix(h_ok,N_interior_ok)
stiffness_matrix_ok = stiffnessMatrix(h_ok,N_interior_ok)

Csqrt = np.linalg.cholesky(mass_matrix_ok)
# Determine coefficients of rational approximation
n = 1000
m = 3
delta = 10**((-(5.0+m))/2.0)
ll = delta
ul = 1
L = m
M = m+1
[r1,r2, coef_L,coef_M] = rational_approximation(ll,ul,L,M,alpha,n)

for s in range(nbrSamples):
# Simulate the initial overkill estimation
dW_ok = np.matmul(Csqrt,np.random.normal(0,1,N_ok+1))
dW = dW_ok
dW_list = []
projected_vector = dW
for j in range(level-1,0,-1):

projected_vector = project_noise(projected_vector,j)
dW_list.append(projected_vector)

level_ind = len(dW_list)
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dW_list.reverse()

# Define the refined function space
mesh = IntervalMesh(N_ok,0,1)
V = FunctionSpace(mesh, 'P', 1)
f = Constant(1)

# Overkill approximation
T_ok = rational_equation_sol(m,mass_matrix_ok,stiffness_matrix_ok,dW_ok,

r1,r2,coef_L,coef_M)
u_ok = partial_equation_sol(f,T_ok,V)

# Get error estimates for the coarser grids
levelInd = 0
for hl in range(level_ind-1,-1,-1):

level_h = hl+1
N_h = 2**(level_h)
nbrVert = N_h+1

mesh_h = IntervalMesh(N_h,0,1)
V_h = FunctionSpace(mesh_h,'P',1)

mass_matrix = mass_matrix_list[hl]
stiffness_matrix = stiffness_matrix_list[hl]

d_h=dW_list[hl]

T_h = rational_equation_sol(m,mass_matrix,stiffness_matrix,d_h,
r1,r2,coef_L,coef_M)

u_h = partial_equation_sol(f,T_h,V_h)

err_T = L2_error_interpolate(T_ok,T_h,V,V_h,mass_matrix_ok)
err_u = L2_error_interpolate(u_ok,u_h,V,V_h,mass_matrix_ok)

error_samples_T[s,levelInd] = err_T
error_samples_u[s,levelInd] = err_u

levelInd = levelInd + 1
strong_errors_T = np.zeros(level-1)
strong_errors_u = np.zeros(level-1)

for i in range(level_ind-1):
strong_errors_T[i] = np.sqrt(MC(error_samples_T[:,i]))
strong_errors_u[i] = np.sqrt(MC(error_samples_u[:,i]))
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np.save('err_T_alpha_5_tmp',strong_errors_T)
np.save('err_u_alpha_5_tmp',strong_errors_u)

A.4.1 Error estimates
from fenics import*
import numpy as np

def L2_error_interpolate(x_ok,x,V_ok,V,mass_matrix_ok):
# finds the L2-error estimate by interpolating a coarser solution
# onto a finer grid

# x_ok - fine grid estimate
# x - coarser solution
# V_ok - functionspace with where x_ok lies
# V - functionspace where x lies

x_fun = Function(V)
ix_fun = interpolate(x_fun,V_ok)
ix = ix_fun.vector().get_local()

g_e = x_ok-ix
error = np.dot(g_e,np.dot(mass_matrix_ok,g_e))
return error;

def L2_error_project(x_ok,x,V_ok,V,mass_matrix):
# finds the L2-error estimate by projecting a fine solution
# onto a coarser grid

# x_ok - fine grid estimate
# x - coarser solution
# V_ok - functionspace with where x_ok lies
# V - functionspace where x lies

x_ok_fun = Function(V_ok)
px_ok_fun = project(x_ok_fun,V)
px_ok = px_ok_fun.vector().get_local()

g_e = px_ok-x
error = np.dot(g_e,np.dot(mass_matrix,g_e))

return error
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