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Abstract
The fast paced nature of modern combat situations has increased the need for quick
and adaptable radar classifications to identify potential threats. One potential op-
tion to increase accuracy and performance is to introduce machine learning in radar
classification tasks. Utilising convolutional neural networks to identify patterns
within radar data provides an additional stream of information that could be used
to classify targets. These neural nets require high-performance processing whilst
still conforming to the low power and mobility requirements inherent in defence
applications. These requirements make FPGAs a natural choice to be used as a
hardware platform in radar classification tasks.
This project explores the capabilities of the new Xilinx Versal VCK190 ACAP which
combines regular FPGA architecture with AI Cores, which can be used to accelerate
neural network tasks. Our findings show that the amount of radar classifications
per second can be increased by at least 20x compared to a neural net running on
a consumer grade CPU. This increase was achieved by utilising the low latency
interfaces and high performance acceleration of the AI cores which are unique to the
new Versal platform. These aspects make the VCK190 an interesting platform to
further develop upon but more research needs to be made to improve the accuracy
of the model.

Keywords: Xilinx, Versal, VCK190, Convolutional neural networks, Radar classifi-
cation, FPGA, Thesis.
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1
Introduction

Modern radar systems gather vast amounts of data to accurately identify incoming
threats using advanced algorithms [1]. These algorithms could potentially benefit
from a convolutional neural network (CNN) that is trained to recognize common
radar targets. But a CNN that analyses large amounts of data requires high pro-
cessing power, usually found in graphic processing units (GPUs) [2]. Therefore, the
need for high-performance processing in a small, durable and cost effective form
factor becomes apparent. This need could possibly be satisfied using modern field-
programmable–gate-arrays (FPGAs), which are a more configurable alternative to
regular computers. FPGAs are already commonplace in military and space ap-
plications due to being highly customisable, power-efficient and portable [3]. But
most FPGAs on the market don’t excel at the types of tasks carried out by neural
networks (NNs), due to them requiring high levels of parallelism [4].
The new Versal adaptive compute acceleration platform (ACAP) [5] from Xilinx
is a advancement on the FPGA architecture which introduces AI Engines [6]. AI
Engines are designed to handle large vector arithmetics in parallel, which is done
by interconnecting a grid of smaller processors. This allows vector operations to
be handled with minimal latency within the grid and Xilinx claims that this will
greatly improve performance for neural network tasks [7]. The ACAP also has other
advancements compared to regular FPGA architectures; the most notable one being
programmable network-on-chip (NoC) which allows for low latency data transfer
throughout the device. This low latency could minimise delays caused by input
and output from the system as well as reading and writing to the memory. This
project aims to evaluate the capabilities of the Xilinx Versal AI Core Series VCK190
production board [8]. The focus will be upon the AI Core feature of the platform
by implementing a CNN tasked with classifying radar targets. Evaluation of the
platform will be done in comparison with the same CNN running on a consumer
grade CPU and will focus on metrics such as throughput.

1.1 Versal VCK 190 platform
The Versal VCK 190 platform is the flagship product in the current Versal iteration
produced by Xilinx. The platform combines the regular FPGA architecture with
the new AI Engine hardware block, which contains 400 individual AI Cores. This
platform is intended to target real-time digital signal processing tasks as well as
machine learning applications. A block diagram of the architecture can be seen
in Fig. 1.1, which shows the scalar and adaptable engines that have become more
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1. Introduction

common in Xilinx FPGA architecture in recent years. It also shows the intelligent
engines and NoC which are more advanced features of the new ACAP architecture.

AI EnginesScalar Engines Programmable
engines

Inputs, outputs and DDR memory

Figure 1.1: Functional diagram of Versal VCK 190.

The Versal VCK 190 offers the possibility to optimise the implementation for la-
tency and deterministic performance, whilst still achieving good throughput even
on a smaller batch size due to their flexible memory hierarchy [9]. The flexible
memory hierarchy can be utilised in conjunction with AI Engines to increase com-
pute efficiencies for neural network tasks of up to two times compared to leading
GPUs [9]. The new 7nm Versal platform also allows for higher power efficiency in
comparison to previous FPGA iterations [7]. This efficiency proves highly desirable
in an active radar environment which, often has a limited power budget and strict
latency requirements [10].

1.2 Neural networks
The term neural networks stems from the actual neural pathways present in a human
brain and the way in which they interact. These complex brain functions can be
simplified and turned into algorithms which can adapt and learn from the data they
process, much like an actual neural network but on a smaller scale [11]. Artificial
intelligence is nothing new in the world of automatic target recognition (ATR) and
threat assessment. In fact the defence and aerospace industry have been among those
driving this technology forwards [12],[13]. But this technology is also becoming more
common in the automotive sector with autonomous vehicles [14]. The reasons are
readily apparent as these systems are essential in providing information for different
systems. The types of tasks that ATR systems carry out are perfectly suited for
learning algorithms that can increase reliability and performance.
Neural network inference is a computationally intensive workload, often requiring
billions of operations per second and 100s of MB of parameters [4]. One of the
most commonly used accelerators for this type of workload are GPUs which offer a
high degree of parallelism [2],[15]. One drawback of GPUs is that to achieve a high
throughput, large data batch sizes are typically required which result in increased
latency [16].
The use of neural networks and artificial intelligence (AI) for targeting algorithms
is becoming more commonplace in active radar technology [17] and with the intro-
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1. Introduction

duction of AI Engines there is an opportunity to evaluate performance compared to
current software based solutions running on a CPU.

1.3 Ground-based radar
Modern ground-based air-defence radar solutions are often used as early warning
systems to protect against aerial attacks and ballistic targets [18]. Thus quick and
accurate target recognition is essential in giving civilians and military personnel vital
time to react to incoming threats. A typical ground-based radar system sweeps an
entire 360° field at a rate of one to two seconds [18]. The range of ground-based radar
arrays varies depending on the task at hand; short range radars covering around 50
km, medium range 200 km and long range around 500 km [18]. The amount of
data captured by the radar during one revolution partially depends on the range
and pulse repetition frequency (PRF) of the radar array [19]. PRF refers to the
rate of pulses sent out by the radar during operation. The PRF of the radar array
depends both on the accuracy required and the range of the radar. A higher PRF
is preferable for short-range radars as there will be less time between sending the
signal and receiving the echo response. The opposite is true for long-range radars,
as the echo response takes a longer time to travel back to the array [19].

1.4 Problem description
AI in radar system applications have shown promise but the hardware required to
achieve sufficient performance has hampered the implementation of these systems.
Because ground and air based radar solutions are inherently portable they have
limitations both in terms of size and power consumption. The new Versal VCK
190 platform opens up new possibilities as new AI features could be integrated into
existing FPGA architecture on the same platform. This integration would improve
performance both in reducing latency between different systems and by utilising the
new AI Engine architecture.

1.4.1 Purpose
The primary mission of this project is to analyse the potential performance benefits
of the Versal VCK 190 platform when implementing a CNN in comparison to the
same network implemented in software. An existing TensorFlow [20] implementation
of the CNN written in Python has been provided by Saab. The CNN has been
trained to perform classification of common radar targets in the form of airplanes,
jets, drones and helicopters. The implementation uses matrices of IQ radar data
describing the strength of the radar signal after pulse compression as an input.
The TensorFlow neural network consists of complex floating-point IQ values and
depending on the precision required these can be either 16-bit or 32-bit values. The
Versal VCK 190 board has the ability to use 8-, 16- or 32-bit values to represent
floating-points, depending on the accuracy required.

3



1. Introduction

The project will be split into two parts which explore different methods of creating
the CNN within the Versal architecture. The first part utilises Xilinx proprietary
software Vitis-AI [21] which is able to compile a TensorFlow model into code that
can be run on the Versal platform. This conversion should create an implementation
that can be directly compared to the software implementation but it does somewhat
limit the scope of the project. The implementation utilises a deep learning processing
unit (DPU) core to accelerate neural networks tasks. This DPU core is a Xilinx
IP component and cannot be modified which could potentially limit performance.
These problems made it apparent that a second part of the project needed to be
implemented, which involved building a CNN from the ground up in C++. The
implementation utilises Petalinux [22] which is a lightweight unix operating system
designed for Xilinx devices. The operating system allows for full configurability of
the platform and the implementation will be customised to fit the small size of the
CNN model. The TensorFlow model provided by Saab will act as a reference during
this part of the project, providing the specification for layers, nodes and weights.
The custom implementation will not be trained but instead import the weights used
by the TensorFlow model. This implementation gives the project a chance to explore
wider possibilities with the Versal platform and avoids the limitations the come with
the DPU implementation.
The two implementations will be considered functional if they provide the same level
of accuracy as the quantized TensorFlow model while performing inference on a set
of test data provided by Saab. The project focuses on the hardware architecture
and the achieved performance, which will be compared to that of the software im-
plementation developed by Saab, running on a CPU. The second goal is to evaluate
the system, with the main performance metrics being the latency (time from input
to output of the CNN) and throughput. Additional metrics of interest will be the
resource allocations for the implementations. To summarise, the goals of the project
are to:

• Implement a CNN and other system components on a Xilinx Versal VCK190
• Compare performance to TensorFlow results using the following metrics:

– Latency
– Throughput
– Resource allocation

1.4.2 Scope and limitations
The focus of this thesis is the hardware implementation of a neural network using
the Xilinx ACAP platform and evaluating the potential benefits and shortcomings
of this implementation. This involves utilising an existing CNN graph and adapting
it to work on a new platform. The performance of the hardware implementation
was compared to that of a CPU implementation done using the same CNN. Because
the TensorFlow model is a small CNN the training will be done on a regular CPU,
requiring no more than 10 minutes. No training will therefore be done on the Versal
platform, this would theoretically be possible but would require a larger amount
of development time. The custom implementation will not be trained in any way
but instead import the weights and biases generated via the TensorFlow model, the
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1. Introduction

intention being that these two systems should be comparable. The project does
not intend to delve into topics regarding the signal processing side of the radar
data. The input radar data used for this thesis was captured by Saab AB. Both
implementations utilised pre-processed data which contained cutouts around targets
and labels for each sample.

1.5 Thesis outline
The report structure starts with a chapter that will take a closer look at the tech-
nical background of the project. Starting out with a section on ground-based radar
systems, this section gives insight into the type of data that will be utilised by the
system. This section will also briefly talk about the equipment used to capture this
data and how the system might fit into that infrastructure. The chapter continues
with a section looking at convolutional neural networks, both the theory behind
them, how they are implemented and application areas they might be used for. The
next part of the chapter introduces the hardware platform utilised for this project
and the features that make it an interesting platform to evaluate. The approach
taken during the project will be described in chapter 3. It will describe how the
neural network was implemented on the hardware platform as well as other compo-
nents that are required for the system to function. It will also look at the evaluation
methods used during this project and why the chosen parameters for performance
are relevant to the project. In chapter 4 the results of the project will be shown, this
includes both the output from the completed system as well as the results from the
performance evaluation. These results will be discussed in chapter 5 and an evalua-
tion of the hardware platform will be made. The conclusions from these discussions
can be found in chapter 6 where several aspects of the project are weighed against
each other.
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2
Technical background

The following sections gives an insight into the technical background to give a bet-
ter understanding of the implementations developed in this project. The chapter
includes sections on radar theory, artificial neural networks and the hardware plat-
form itself.

2.1 Radar and beamforming systems
This section aims to give the reader a basic understanding of the ground-based radar
systems that were utilised during this project to gather testing data. The section
will give a brief overview of general radar systems.

2.1.1 Passive Electronically Scanned Array
A passive electronically scanned array utilises an array of antennas to send a coordi-
nated wave of radio signals using a steered beam [23] which can be seen in Fig. 2.1.
The emitted radio waves bounce off potential targets and return to the array which
captures incoming signals via a sensor array and locates targets via beamforming.
A passive electronically scanned array (PESA) is able to steer emitted waves into a
plane wave by phase shifting the feed for each antenna which delays the array pro-
gressively, allowing the radio waves to overlap and form a wavefront. The beam can
quickly change direction by altering the phase shift value for each antenna, this is
usually done in a predetermined scan pattern at high frequency to gather sufficient
data to build a three dimensional model of the target [23].

2.1.2 Beamforming
A beamformer refers to a set of sensor arrays connected to a processing unit with the
purpose of amplifying signals from a specific direction or angle [24]. This arrange-
ment allows a beamformer to perform spatial filtering to determine the location of
an incoming signal, in this case radio waves that have reflected from a potential
target. By utilising arrays of sensors the beamformer can map out incoming signals
in three dimensions, giving a precise location to the source of the signal [25]. The
signals received by the sensors are first delayed in proportion to the delay it takes
for the signal to travel to the different sensors. The signals are then multiplied by
complex weights and summated, giving a complex value which is added to a three
dimensional output array. Fig. 2.2 gives a general overview of a radar beamforming
system.

7



2. Technical background

Antenna
Input
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Figure 2.1: PESA array with beam steering via phase shifters.

Sensor
Array Delay

Stage

Figure 2.2: General overview of beamforming system. Adapted from: [26]

2.2 Artificial neural networks
The basis of this section is to provide a fundamental understanding of the neural
network architecture used as a basis for this thesis. The section will give a brief
background on what neural networks are and explain how they are implemented.

2.2.1 History of neural networks
The neural networks described in this chapter draw their inspiration from the neu-
rological findings of researchers dating back to the 15th century. The most basic
neural network designs were created in 1960 and only had a single layer between
input and output, which limited training [27]. But the history of artificial neural
networks is much more recent and the first articles started appearing in 1970. In
1986 a break through was discovered when backpropagation was introduced as an
alternative during training [28]. The defining feature of this algorithm is that it
propagates through the network backwards, training the neurons in the layer clos-
est to the output first. This process means that each weight that is calculated is
impacted by the weights of the layers in the previous layers, increasing accuracy.
This method of training is still used today in CNNs due to the advantages it offers
in image recognition. Deeper research on the topic started out in the 1990 and

8



2. Technical background

continues to this day as the subject evolves in unison with increased performance of
memory and processors. The field of ANNs is still in its early stages and advances
in network architecture evolves every year. It is the task of the developer to find a
suitable network architecture for the task at hand and whilst modern ANNs often
excel at certain tasks there are many older models that could be re-explored using
modern hardware.

2.2.2 Artificial neuron implementation
Artificial neural networks implement a highly simplified version of a biological neural
model. In the simplified model each neuron is limited to two states, active and
inactive. Each neuron has a given number of inputs (xj), depending on the number
of neurons present in the network. Each input has an adjustable weight (wj) which
allows the network to influence how much effect an input has on the output. These
weight values are adjusted dynamically by the ANN during training to find the
correct relation between input and output. The dynamic training is done by having
a specific set of inputs used for training where each sample has a label identifying
the correct output. Once the ANN is trained each input along with its weights is
summated along with a bias (θi) as seen in (2.1).

y(i) =
n∑

j=1
xjωj + θi (2.1)

The bias is used as a threshold to adjust the impact of the neuron on the network.
The activation function that follows the summation is used to set the neural output
to active or inactive depending on the outcome of the summation along with the
given bias [11]. Different activation functions are used depending on the task at
hand, a common one used is the rectified linear unit (ReLU) activation function
which can be seen in (2.2).

ϕ(i) =

y(i) if ∑
xω + θ ≥ 0

0 if ∑
xω + θ < 0

(2.2)

As shown in Fig. 2.3 the neuron produces a single output ϕ(i) which is fed to all
neurons in the next layer.

2.2.3 Convolutional neural network architecture
There are many different ways of modeling a neural network based on the types of
problems they are implemented for [29]. In the field of signal processing the CNN
stands out due to its ability to process high-dimensional input data using several
different layers [30]. This allows a CNN to map complex problems such as LiDAR
or radar data in a three-dimensional (3D) array allowing for more advanced forms
of recognition [31].
The basic layout of a CNN consists of an input map which takes the form of an
array of input values as seen in Fig. 2.4. In most cases CNN is utilised for image
processing which means that these values take the form of pixels. In the case that

9



2. Technical background

......

Inputs Weights

Threshold
(bias)

Summation
function

Activation function
Output

Figure 2.3: Schematic of artificial neuron. Each neuron has the index i and takes
n inputs.

Input map Activation map Pooling Fully connectedFlatten

Figure 2.4: Basic layout of CNN including input mapping, activation map, pooling
and finally fully connected layers.

the input data is three-dimensional the input map can come in several layers, each
layer representing a certain depth in the 3D image. Activation maps are generated
from the input maps using the convolutional layer, in some cases each input map
can generate several activation maps, depending on how many parameters the CNN
is looking at. Each activation map needs to be minimized using a pooling layer
to reduce the size of the fully connected network. This pooling can be done using
either the maximum or the average method but maximum is more common in image
recognition to find outlying values [11].

2.2.4 Input layer

The input layer is the first layer within a CNN and it consists of a map containing
the input data sets. From this map several different layers gather data depending
on the features they are focused upon such as corners, edges and other areas of the
map [11]. The input map can also come in several dimensions depending on the
input data mapped. The process remains the same and subsequent layers gather
relevant data from their respective areas.
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2. Technical background

2.2.5 Convolutional layer
The main feature of a CNN is the convolutional layer which utilises convolution
between a convolution kernel and the input data. This process can be done in several
layers utilising different input streams such as a three dimensional array of IQ data.
Each input stream is iterated through using a stride value and the dot product is
calculated between the input and the kernel. The result from the convolution is a
two dimensional activation map for each layer [30] as seen in Fig. 2.5.

Input channel

Activation map

Kernels: 1

Individual weights
for each channel

Figure 2.5: Convolution with 7x7x4 inputs and a 3x3 convolution kernel. The
activation map is the dot product of x and w.

In a CNN the kernel weights are adjusted during training to find features in the
input data that lead to correct conclusions. But convolution layers are a common
occurrence in image processing and can be used to add blur and distortion effects to
images. All of these use cases depend on the kernel weights, dimensions and stride
length. The use of convolution layers does not necessarily mean that the input data
is shrunk. By using zero padding and additional kernels the amount of data gathered
increases exponentially as seen in Fig. 2.6.

Kernels: 6Input channel
Activation map

6 
x 

4 
w

ei
gh

ts

Figure 2.6: Each kernel has individual weights for each channel and the convolution
between these are summated into one activation map per kernel.
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Each additional kernel added has its own individual weights which makes the con-
volutional layer able to distinguish several different features in a single layer. To
achieve true convolution the kernel should be reversed as it iterates upon the input,
this can be seen in Fig. 2.7. If the kernel is not reversed then the layer simply
calculates the cross correlation of the kernel and the input. But since the weights
are estimated via training this does not matter, the flipping would be counteracted
by changing the weights. This detail only becomes a factor when using weights from
a CNN in another network, if flipping was done during training it must be done
during all subsequent testing.

1 0 1

0 1 0

0 0 1

0 0 1

0 1 0

1 0 1

1 0 0

0 1 0

1 0 1

Figure 2.7: Flipping of kernel, sometimes done in convolutional layers.

2.2.6 Pooling layer
The pooling layer is commonly used in CNN to decrease the size of the activation
map. This is beneficial to limit the amount of data that is being processed. Different
pooling methods are used depending on the task at hand. An average pooling
method will even out the results of the activation map, this means that outlying
values might not be detected, which in some cases is preferred. A maximum pooling
layer is more commonly used as this allows distinguishing features in the activation
map to stand out. The act of shrinking the amount of data available might seem
unintuitive if accuracy is the main focus of the CNN. But if used correctly the
pooling layers allow the CNN to more clearly map the features that lead to a correct
conclusion. Both methods of pooling can be seen in Fig. 2.8

3 3 2 1 0

0 0 1 3 1

3 1 2 2 3

2 0 0 2 2

2 0 0 0 1

2 2 2

1 1 3

1 1 3

6 3 2 1 0

0 5 1 4 1

3 1 2 2 3

2 7 9 8 2

2 0 0 0 1

6 5 4

9 9 9

9 9 9

Average pooling

Maximum pooling
Activation map

Activation map

Figure 2.8: Average and maximum pooling. The 3x3 kernel takes either the average
of the 9 values or the maximum.
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2.2.7 Batch normalization layer
A common method for speeding up the training of a neural network is using batch
normalization. This process involves using backpropagation to shift and normalise
the data sets for the hidden layers [11]. Claims have been made that batch nor-
malization reduces the impact of covariate shifts in hidden layers. Covariate shifts
occur when a preceding layer in the network changes their output value due to shift-
ing parameters, this change effects the upcoming layers, making the network more
difficult to train. The claims that batch normalization reduces these effects have
been disputed but the inherent quality of this layer allows for more normalised data
sets, speeding up training and giving a similar result as that of eliminating covariate
shifts [32].

2.2.8 Flatten layer
The flatten layer is used to reshape data that has been convoluted and pooled into
different dimensions that can easily be modeled onto a fully connected layer. It
is commonly used after pooling to reshape several layers of data into one graph.
The reason why this is done at the very end of the CNN is due to the size of
the network. As the data gets convoluted and pooled it becomes minimized and
unnecessary information is discarded. Once this is done the data set is small enough
to be flattened and fully connected.

2.2.9 Fully connected layer
The fully connected layer (FCL) also known as dense layer (DL) consists of the
artificial neurons described in section 2.2.2. What separates a CNN from other NNs
is the convolution and pooling that takes place before the FCL to minimize the
neurons that are required to process the task. The FCL starts with an input layer
which flattens and reshapes the pooled data that will be mapped to the neurons,
this can be seen in Fig. 2.9. Each neuron takes inputs from previous neurons in the
network and passes the produced output to the next set of neurons using hidden
layers. This process allows the fully connected layer to pick out the values that are
deemed important in identifying a specific target. These values are used by the final
set of the fully connected, which is called the output layer, to determine if the inputs
can be labeled as a specific target [29].

Pooling layer

Input layer
Hidden layer 1 Hidden layer 2

Output layer

Flatten

Figure 2.9: Fully connected layer with two hidden layers and four outputs.
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2.2.10 Training
One of the standout features of an artificial neural network is the ability to learn
from the given sample data and map a relationship between the inputs and the
expected output. This learning process is done by adjusting the weights and bias
of the network in small steps to create a generalized map of the system. These
steps are often referred to as learning algorithms and together they create a training
set. A complete run of all the sample data within a training set is often referred
to as an epoch. Depending on the complexity of the relationship between inputs
and outputs there might be a need for several training epochs to be run before a
NN is fully trained [27]. This is an important aspect as running too few epochs
might result in underfitting which means that the NN is unable to adapt efficiently
to the sample data. Similarly if too many epochs are run the NN can suffer from
overfitting which means that the system is too attuned to the samples used during
training sets and cannot recognize other sample data outside the training set [29].

2.2.11 Supervised learning
During supervised learning the sample data for each training set has a given outcome
which has been predetermined. The focus of this training is to coach the NN into
finding the relations between input and output data. This requires a specific type of
input data that has been formatted in such a way that it has a clear outcome which
is obtainable as an output. The specific data used is referred to as a training set
and is only used during training. Validation of the training is done using a separate
validation set which reduces the risk of overfitting. During this process the weights
and bias of the NN will be adjusted to find relevant connections in the sample data
that leads to a correct output. The NN will be deemed sufficiently developed once
it reaches a maximum accuracy for the validation set [27].

2.2.12 Unsupervised learning
The process during unsupervised learning is similar in many ways but it lacks the
predetermined knowledge of the sample data output. This lack of output means that
the NN needs to make certain assumptions about the sample data that it receives
and adjust weights and biases in a way that seems plausible to end up with outputs
within a given range. This method is useful in cases where the outcome of a problem
is not readily apparent and further insight is required [11].

2.2.13 Evaluation of performance
Performance of the fully trained model is evaluated via a number of metrics. These
metrics are based on the models ability to perceive the intended target and how
often it misses. A fundamental part of this evaluation is the confusion matrix which
allows insight into correctly identified targets and false-positives.
The most useful metrics can be seen in Fig. 2.10, recall and precision being the most
important. Recall allows developers to see how many relevant items are selected by
the model and precision specifies how many selected items are relevant. These two
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Figure 2.10: Confusion matrix showing useful metrics for CNN evaluation.

metrics can be used to calculate the F1 score, which is a measurement of the accuracy
of the model. The score is a harmonic mean of the precision and recall metrics and
has a maximum value of 1 and a minimum of 0.
The F1 score can be calculated as

F1 = 2 · precision · recall
precision+ recall

2.2.14 Application areas
The ability to model nonlinear problems make ANNs a useful tool in a number of
different application areas. In prediction systems the ANNs can be used to estimate
the next set of values given a number of samples. This can be used to estimate
financial trends [33], predict the behaviour of different targets [34] and to recognise
and classify a number of different signals [35]. Pattern recognition and classification
is a particularly application for CNNs as these deep networks allow for mapping
multilayered signals. These types of systems also have a given set of expected
outcomes, making the network easier to train [27].

2.3 Hardware platform
This section will further describe the hardware platform that was evaluated and some
of the features that made it a suitable target for this project. The ACAP device
category was launched by Xilinx in unison with the new Versal series. This category
was launched as an iteration upon the regular SoC and FPGA platforms produced
by Xilinx and attempts to integrate the features of both into a single device along
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with new standout features such as AI Engines and NoC. The platform has access
to several high-speed interfaces such as eight lanes of PCI-express 4.0 which is a
high-speed bus commonly found on most GPUs and motherboards. There is also an
Ethernet interface which has a rate of 600 Gbps allowing for quick communication
with external devices in the system [5]. These features make the Versal ACAP
an especially interesting platform for projects involving real-time signal-processing
and neural networks. It also allows projects implemented on older FPGA platforms
to utilise the 7nm process which provides great benefits to performance, power
efficiency and area usage.

2.3.1 Scalar processing system
The scalar processing system consists of a dual-core Arm Cortex-A72 and a dual-
core Arm Cortex-R5F for safety-critical real-time applications. These processors
use state of the art 7nm processes allowing for much lower power consumption and
higher density than previous scalar processors. The platform is able to utilise the
scalar processors for running real time applications such as lightweight operating-
systems. This feature allows developers to create more advanced systems that can
be tweaked and debugged via console commands running on the platform itself.

2.3.2 Programmable logic
The programmable logic (PL) utilises regular hardware-level programming as well as
high-level synthesis to create hardware implementations of functions. The VCK190
platform consists of building blocks in the form of 1 968 400 system logic cells, 899 840
lookup tables and a distributed RAM of 27.5 Mbit. Together with programmable
interconnect these building blocks can create logic circuits for real-time components.
The PL uses regular FPGA architecture with logic blocks (LB) connected to pro-
grammable interconnects (PI) which allows several LBs to be connected together as
is described in Fig. 2.11.
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Figure 2.11: Programmable logic module consisting of LBs and PIs.
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2.3.3 AI Engines

The VCK190 platform’s main feature are the 400 interconnected AI Engines that
promise to massively improve performance of neural network tasks compared to
previous Xilinx platforms. Each AI Engine contains its own 16kB program memory
as well as an 32b RISC scalar unit and 512b fixed and floating point vector unit.
The AI Engines sit in an array where each nearby engine tile is interconnected with
each other as seen in Fig. 2.12. These interconnections allow for multiple levels of
parallelism; the first is the instruction level where each AI Engine can carry out two
scalar operations, two loads, one vector multiplication and one store in a single clock
cycle. The second data level parallelism is accomplished by vector-level operations
which allows for multiple sets of data to be processed on a per clock-cycle basis. The
AI Engine array sits within the architecture of the Versal platform and is connected
to the programmable logic, scalar processors and IO via the NoC.

AI
EngineM

EM AI
EngineM

EM

AI
EngineM

EM AI
EngineM

EM

AI
EngineM

EM AI
EngineM

EM

AI
EngineM

EM
AI

EngineM
EM

AI
EngineM

EM

Network-on-chip

Figure 2.12: AI engine grid with data memory modules. Each AI Engine is
connected to adjacent AI Engines via interconnect and to the rest of the grid via
NoC.

Each AI Engine tile has its own memory module associated with it, allowing for
low latency fetching of data as seen in Fig. 2.13. As the AI Engine tiles sit in a
grid like array they have access to the memory modules of AI Engine tiles to the
north, south, east and west assuming that the AI Engine tile is not placed at an
edge or corner. Communication between tiles that are not neighbors is done via
32-bit stream interfaces which utilises the AXI network that surrounds each tile.
The 384-bit cascade interface can quickly move data along a row in the array but
cannot send data to other rows, thus it is useful to place AI Engines in either a
cluster or a row depending on the size of the implementation.

17



2. Technical background

AI Engine
(including scalar unit)

Vector
processing

unit
(VLIW)

Local Memory

Shared between
neighbors

Cascade
Interface

Memory
Module

DMA

Interconnect

Data syncronization
unit

Figure 2.13: Detailed view of AI Engine architecture. Source: [36]

2.3.4 Network on Chip
The Versal ACAP platform contains a programmable NoC which consists of an
AXI-4 interconnect within the ACAP architecture. AXI-4 is an interface protocol
developed and freely distributed by ARM which allows for high-speed communi-
cation between on-chip components. The protocol allows for intercommunication
between target and host via ready signals that communicate that the component
is ready for transmission or reception. The interconnect allows for high-bandwidth
data transfer across the platform which minimizes the resource requirements needed
for interconnect between components. The Versal ACAP platform relies on NoC
communication to provide low latency data streams both to and from IO and for
intercommunication between modules. Since certain tasks perform better on certain
hardware, operations can be split up without concern for routing.

2.3.5 Development
The Versal ACAP AI core platform allows for development in several different ways.
Common real-time applications that are regularly used in signal-processing systems
and developed for FPGAs can be created using an assortment of different languages.
These languages include HDL (VHDL and Verilog) as well as HLS (C and C++).
These languages can also be freely combined between different components, for ex-
ample writing input and output components in VHDL and writing signal processing
components in HLS. This freedom in development allows more complex designs to be
hardware accelerated via FPGA architecture. These tasks include neural networks
such as CNNs which benefit greatly from the increased parallelism introduced with
the AI Engines. CNNs can be developed in a number of different ways on the plat-
form but the simplest way is to import an existing design from a neural network
framework such as CAFFE, PyTorch or TensorFlow. The models are converted
to instructions for Xilinx’s Deep Learning Processing Unit (DPU) via Xilinx pro-
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prietary software Vitis-AI. Another way to develop CNNs on the platform is via
C/C++ coupled with HLS which can be targeted to make use of specific resources
including the scalar, adaptable or intelligent engines. A number of intrinsic func-
tions are available to be used within the AI Engines. The intrinsic functions allow
the developer to easily write large vector computations as well as load and store
operations, all within one clock cycle.
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3
Approach

This chapter explains the process of hardware implementation on the Versal ACAP
platform as well as the process of evaluating the performance data of the completed
system and comparing it to real world counterparts. The implementation was split
into two parts as it became apparent that the DPU implementation would only
allow for a limited amount of design decisions to be made. Therefore a custom
implementation was developed in C++ that rebuilt the neural network from the
ground up to take full advantage of the Versal platform, including the AI-Engine
feature.

3.1 Radar input data
The input to the neural network consists of radar data captured at five separate
occasions which amounts to approximately 100 000 detections. This data consists of
complex in-phase and quadrature (IQ) values in a three-dimensional array and an
example can be seen in Fig. 3.1. The pulses refer to the radar wave echo received
by the radar array. The range bins are a measurement of how far away the target
is, the actual measurements cannot be disclosed.
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Figure 3.1: Raw radar data before cutout represented by absolute values.
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To test the system the radar data has been annotated to show where targets can be
found within the array and the type of target has also been specified. This means
that there were an estimated 100 000 data points that contain useful information
within the captured radar data. A basic overview of the radar data capture can be
seen in Fig. 3.2

Radar perception vector

Radar

Radar cutout

Figure 3.2: Radar cutout from raw radar data.

The sample data was preprocessed before it was sent to the CNN model for training.
This pre-processing was done in two steps, first the targets within the sample data
were labeled to provide a dataset for the supervised training. The target data was
also cut out from the raw radar data sample by taking three depth layers, one height
layer and 32 pulses as seen in Fig. 3.3.
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Figure 3.3: Comparison between raw radar sample and cut sample represented as
absolute values.

The second step was to split the cut sample data into four separate channels by
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taking the logarithmic absolute value, range-doppler map and the real- and imagi-
nary part each as a separate channel as seen in Fig. 3.4. This was done to provide
as much information as possible to the model with the limited amount of samples
available.
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Figure 3.4: Splitting of sample data into four channels.

In Fig. 3.5 the channels for one sample can be seen. Once the sample data had
been preprocessed into datasets they were split into four different sets: training,
validation, testing and demonstration. The splitting of the datasets was done to
provide unique sample data for each task carried out by the NN, for example the
training and validation data must be independent from each other to ensure that
the NN was not modeled only onto the sample data. This splitting can be done
randomly so that each dataset was unique from any previous run or they can be
split along predetermined tracks which was useful when comparing how the model
performs on different hardware platforms.
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Figure 3.5: Representation of radar data from a drone sample. Plot shows all split
channels.
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3.2 DPU implementation
The neural network model was implemented using Xilinx proprietary software Vitis-
AI which can compile several different neural network models to run on Xilinx DPUs.
The model was first built and trained using a TensorFlow model from a previous
project provided by Saab. After the model was built and trained it was frozen and
quantized before it was compiled into DPU instructions and tested on the hardware
platform.

3.2.1 Building and training the TensorFlow model
This project utilized code from a previous Saab project involving classification of
radar targets using neural networks. As the focus of the project was on the hardware
implementation of the neural network there were no attempts made to optimize the
initial TensorFlow models provided by Saab. Certain adjustments to the model had
to be made to get it to compile for the VCK190 DPU. The initial model used a
kernel size during pooling of (2,1), which was not supported by the compiler. The
pooling kernel was adjusted to (2,2) which alters the output shape of the layer from
a depth of three in the initial model. The new depth from the output of the pooling
layers was two for the first pooling, making the output shape (16,2,16) and one
for the second pooling, making the shape (8,1,16). The CNN design consisted of a
sequence of layers used to manipulate and interpret the dataset using a TensorFlow
model.

In Fig. 3.6 the original CNN model provided by Saab is shown. This model had to be
slightly adjusted as it utilised uneven pooling kernels, a feature that is unavailable
in Vitis-AI. The adjusted model can be seen in Fig. 3.7. The CNN starts of with an
input layer followed by two iterations of convolution, batch normalization and max
pooling layers. These layers were designed to decrease the size of the network to
make it manageable as a fully connected model. Once the data had been minimized
a flattening layer was added which reshaped the layered data into one graph that
could be modelled onto a fully connected layer. The fully connected layer consisted
of two dense layers each with 16 nodes and rectified linear unit (ReLU) activation
functions. The choice of using ReLU came from the previous implementation of the
neural network by Saab but as this was the most common and reliable [37] activation
method at the time there was no reason to change it.

3.2.2 Freezing model
Once the model was built and trained it was saved using the keras package in
TensorFlow. The saved model contains variables for all nodes, weights and biases
in the CNN as well as additional nodes utilised for training and loss functions used
for optimisation. The saved model has to be frozen in order to be compatible with
the Vitis-AI framework. This freezing can be done using the freeze_graph function
in the Vitis-AI TensorFlow anaconda environment. Freezing the graph means that
all variables in the model turn into constants. In addition, training nodes and
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Figure 3.6: Original CNN model implemented in TensorFlow 1.15.

4

32

Input

16

32

Conv1
Pool1

16

16

Conv2
Pool2

12
8

Flatten

+

Fully Connected

Figure 3.7: Adjusted CNN model utilising even pooling kernels that reduce the
width of the pooled output.

optimisation functions are discarded as they were no longer necessary. The output
from the freezing function is a single .pb file which can be used for quantization.

3.2.3 Quantising model
The hardware platform accelerator utilised 8-bit integer values for all neural network
functions. The network built in TensorFlow 1.15 used 32-bit floating point values. A
conversion to fixed-point values was necessary for the model to be compilable for the
hardware platform. This conversion is done using Vitis-AI quantisation software.
The software takes a frozen TensorFlow model along with a sample dataset and
calibrates the weights using cross-layer equalisation (CLE) [38]. Quantisation via
CLE is done by adapting the weights of the frozen model for each layer as the quan-
tisation of one layer will impact the weights of a subsequent layer. This relationship
between layers can be exploited to derive scaling factors for each layer that allows
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for minimal accuracy loss. But this technique can only be used on weights, the error
introduced in the bias during quantisation still needs to be taken into account. This
error can be calculated during output by comparing the original bias value with the
quantised one, the calculated error can then be subtracted from the biased output.
To avoid unnecessarily large scaling due to one outlying bias value, high biases are
absorbed into subsequent layers. This allows the bias values to be more normalised
across the model, increasing the resolution of the 8-bit quantisation.

3.2.4 Compiling and deploying model on Versal platform
For the CNN model to function on the Xilinx hardware platform the model had
to be compiled into a file which can be interpreted by the hardware. The Vitis-AI
framework included a compiler which allows quantised models to be compiled for
hardware deployment. Each DPU has a different architecture which meant that the
compilation had to be made with a specific DPU in mind. Once the model was
compiled for the VCK190 platform it was ready to be deployed to hardware. The
simplest option when it came to transferring the necessary files was to use an SD-
card. A bootable image was created on the SD-card which contained not only the
compiled model and DPU but also library files and the Petalinux operating system
files.

3.3 Custom implementation
The DPU implementation allowed for a simple hardware implementation of the CNN
which could be tested and compared to the same neural network on a software imple-
mentation. While this implementation was a good outline for the project it did not
allow an in-depth look at the hardware platform as the Vitis-AI software took care
of all design decisions when recreating the TensorFlow model. A C/C++ model of a
neural network was created which allowed for more customisation in the hardware
implementation of the network.

3.3.1 System overview
The system was designed to utilise the primary features of the Versal ACAP AI-
Core platform as well as to achieve a high level of performance. To allow for a fair
comparison between the different implementations the CNN design was identical
for the custom implementation. The dimensions and depth of the CNN were kept
equal, the only differentiating factor being the type of hardware acceleration used.
The system utilised the AI Engines for vector multiplications which were done in
the convolution and fully connected layers. For pooling layers programmable logic
(PL) was used since these tasks had low compute requirement [39]. A direct memory
access (DMA) component was implemented in PL which was tasked with moving
data to and from the memory as well as to and from the input and output of the
system. Another step needed was the pre-processing of data before it was sent
to the AI Engines, this process is described in Section 3.3.4. An overview of the
implemented system can be seen in Fig. 3.8.
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Figure 3.8: Overview of custom system.

3.3.2 Quantisation
To maximize performance as well as minimizing the memory requirements for the
system the 32-bit floating point values used for inputs, weights and biases had to
be quantised to 8-bit integers. This required the values to be normalised within a
range of -128 to 127. Once normalized the values could be safely converted to 8-bit
values as they no longer had the potential to overflow the variable. The weights
and bias values were taken as quantised values from the TensorFlow model so no
runtime adjustments had to be made. The input values were quantised during run-
time to provide a fair comparison to the other implementations. The normalisation
ratio that was used for the input data was taken from the quantisation calibration
described in Section 3.2.3.

3.3.3 Data transfer
Data is transferred between the PL and AI Engines occur several times per sample,
requiring low-latency, high-throughput communication. We decided to use AXI4
streams because they were compatible with the AI Engine array’s interface. The
streams were programmed to send 128-bits per cycle as this was the largest data
size supported by the AI Engine libraries. AXI4 memory mapped interfaces were
used for DMA transfers to and from the DDR memory which housed the input
and output buffers. During runtime, these interfaces were given the address of the
buffers as well as the length of the data to transfer. The NoC module was an IP
block which could be integrated into the design, configured and then connected to
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the relevant modules and hardware blocks.

3.3.4 Pre-processing layer
To take full advantage of the large vector multiplication functions performed by
the AI Engine the quantised sample data had to be prepared into a vector format.
The convolution layer used a 3x3 kernel with a stride of one to iterate through the
quantised sample data. With the smallest 8-bit vector type of the AI Engine being
16 elements, the kernel data was vectorised and padded with seven trailing zeros to
this length to allow for efficient memory loads during computation. This process
can be seen in Fig. 3.9.

Vectorized sample data

Quantized sample data

Figure 3.9: Illustration showing vectorisation of sample data. The nine kernel
values are padded with seven trailing zeros.

In Fig. 3.10 a block diagram of the pre-processing layer can be seen. Double buffering
was used so that one sample could be vectorised while the next sample was being
quantised and stored. Depending on the performance and resource usage goals the
convolution could be split onto several AI Engines. This affected the pre-processing
as the samples could be split up into several sub-samples which each could be zero-
padded and processed into vectors in parallel.

Input pre-processing

From memory/128 Quantise Store input

Buffer 1

Buffer 2

Rearrange To first convolution/128

Figure 3.10: Block diagram of pre-processing layer

3.3.5 Pooling and rearrange layers
The pooling and rearrange layers of the CNN were implemented in PL as these layers
would not gain any significant benefit from the intrinsic functions available in the AI
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Engine. Data received from the convolutional layer was stored in a three dimensional
vector which contains the pulses and depth for each kernel. The convolutional data
received from layer one has the dimensions 32x3x16, resulting in 1536 8-bit values
that need to be stored. The shape of the convolutional data must be retained as
each value relates to the value next to it. A block diagram of the maxpool layer can
be seen in Fig. 3.11.

Maxpool

From convolution/128 Store input

Buffer 1

Buffer 2

Maxpool To rearrange/128

Figure 3.11: Block diagram of maxpool layer

The accumulated data was then iterated upon and pooling was done in a 2x2 matrix,
taking the maximum value and outputting it to an activation map. Each kernel
generates one activation map and the output dimensions of each map was 16x2. If
a 2x1 matrix were used instead then the output shape would have been 16x3 as the
matrix only iterates one step in the y-axis. The choice to use a 2x2 matrix was done
in accordance with the initial TensorFlow model provided by Saab. The calculated
activation maps was then sent to the rearrange layer where the data was prepared
for the second convolution layer. A block diagram of the rearrange layer can be
seen in Fig. 3.12, note the similarities to the pre-processing layer. The rearrange
layer utilises a slightly modified version of the pre-preprocessing module to prepare
samples for the second convolution.

Rearrange

To rearrange/128 Store input

Buffer 1

Buffer 2

Rearrange To convolution/128

Figure 3.12: Block diagram of rearrange layer

3.3.6 Convolutional layers
The main function of the AI Engines was to implement the convolutional and fully
connected layers as the AI Engines excel at large vector arithmetics. These vector
operations were done using intrinsic functions created specifically for the AI Engine.
By adapting the code to use intrinsic functions the performance could be greatly
increased as the very long instruction word (VLIW) processors allow for large vector
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arithmetics within one clock cycle. This gives a great performance boost compared
to one scalar operation per clock cycle. The weights and biases used in the custom
implementation were extracted from the quantised TensorFlow model as 8-bit integer
values. The data memory present in each AI Engine was used to store the weights
and biases as arrays.

...

Kernels
Input 
vectorPaddingKernel matrix

Convolved
data

Figure 3.13: Convolution between kernels and input in AI Engines.

As seen in Fig. 3.8 there were 16 AI Engines used for the two convolution layers.
The implementation of the two layers were very similar as both utilised 16 kernels
but they differ in that they operated on different input dimensions. The first convo-
lution layer used the input dimensions 32x3x4 which was convolved using 16 kernels
with individual weights for each channel. These convolutions were performed us-
ing intrinsic vector instructions, which made it possible to perform a [16 × 8] ×
[8 × 1] matrix multiplication in a single clock cycle. An example of how these
multiplications were done can be seen in Fig. 3.13.

INLINE_DECL void core01 (
input_window_int8 *Sample_in ,
output_stream_acc48 *C_out)

Figure 3.14: Convolutional layer function declaration.

The function declaration in Fig. 3.14 shows two arguments used by the convolutional
layer. The input to the function is a window, which is a buffer that is filled with
input values. The output is a cascade stream of accumulator values containing the
32x3x16 activation map of the convolution. This is sent to the next AI Engine,
which performs bias addition and the ReLU activation function.
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v16int8 * restrict pRow = ( v16int8 *) Sample_in ->ptr;
v16int8 * restrict pRow2 = pRow + N_CHANNELS ;
v16int8 * restrict pRow3 = pRow + N_CHANNELS *2;
v16int8 * restrict pRow4 = pRow + N_CHANNELS *3;
v16int8 * restrict pWeights = ( v16int8 *) Weights ;

Figure 3.15: Pointers used in convolutional layer

The input sample window and weights were stored in the data memory of the AI
Engine and loaded using pointer dereferencing as shown in Fig. 3.15. To minimize
the number of times the weights had to be loaded, four sub-samples were calculated
at the same time. The restrict keyword allows for more aggressive optimisations
by the compiler by stating that the data the pointers are pointing to are independent
of each other.

acc = mul16(Xbuff ,0,0 x33323130 ,32 ,0 x3120 ,
Zbuff ,0,0 x00000000 ,2,0 x1010 );

acc = mac16(acc ,Xbuff ,0,0 x33323130 ,32 ,0 x3120 ,
Zbuff ,0,0 x00000000 ,2,0 x1010 );

Figure 3.16: Intrinsic vector multiplication functions.

AI Engines provide high-performance vector multiplications using intrinsic func-
tions, examples of which are shown in Fig. 3.16. The specific functions used in this
implementation were mul16 and mac16. These functions can perform 128 multiply-
accumulate (MAC) operations using 8-bit input vectors. The configuration of these
operations depend on the length of the input vectors. If Xbuff in Fig. 3.16 is a
128-element vector and Zbuff is a 32-element vector, the operations are arranged
in 16 rows and 8 columns and the sum of each row is the output. Both mul16 and
mac16 perform the same operation except that mac16 accumulates the result with
the values in the given accumulator register. The first five arguments of the func-
tions, excluding the accumulation argument for the mac16 function, refer to the first
vector. They specify which vector to use, the starting index in the vector, the offsets
for the rows, index step size between columns and finally the square value used for
fine-grain data permutation. Using the square value, we could specify in which order
the elements in the vector were placed as can be seen in Fig. 3.17. Subsequent five
arguments refer to the second vector used in the multiplication. The mul16 function
was applied to the first input of each sub-sample and subsequent inputs utilised the
mac16 function as all channels were added into the activation maps.
The matrix multiplication calculates one value for each of the 16 kernels. However,
with the intrinsic function limited to 8 columns only 8 of the 16 input values for each
channel could be part of the computation, requiring two function calls per channel.
When all channels had been processed, the 16 output values in the accumulator were
sent to the next AI Engine using a cascade stream. This AI Engine added the bias
to the accumulated values and the ReLU activation function was applied, which sets
negative values to zero. The ReLU function was applied using the intrinsic function
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acc = mul16(acc,xbuff,0,0x33323130,32,0x3120,zbuff,0,0x00000000,2,0x1010)

4 6

5 7

20 22

21 23

xstart

xoffset

xstep zstart

zoffset

zstep

0 1

0 1

2 3

2 3

0 2

0 2

1 3

1 3

xsquare

acc1  += z0x0+z1x16  + z2x32+z3x48 + z4x64+z5x80 +…
acc2  += z0x1+z1x17  + z2x33+z3x49 + z4x65+z5x81 +…
acc3  += z0x2+z1x18  + z2x34+z3x50 + z4x66+z5x82 +…
acc4  += z0x3+z1x19  + z2x35+z3x51 + z4x67+z5x83 +…
...
acc13 += z0x12+z1x28 + z2x44+z3x60 + z4x76+z5x92 +…
acc14 += z0x13+z1x29 + z2x45+z3x61 + z4x77+z5x93 +…
acc15 += z0x14+z1x30 + z2x46+z3x62 + z4x78+z5x94 +…
acc16 += z0x15+z1x31 + z2x47+z3x63 + z4x79+z5x95 +…

After square
acc1  += z0x0 +z1x2  + z2x32+z3x34 + z4x64+z5x66 +…
acc2  += z2x1 +z3x3  + z4x33+z5x35 + z6x65+z7x67 +…
acc3  += z0x16+z1x18 + z2x48+z3x50 + z4x80+z5x82 +…
acc4  += z2x17+z3x19 + z4x49+z5x51 + z6x81+z7x83 +…
...
acc13 += z0x12+z1x14 + z2x44+z3x46 + z4x76+z5x78 +…
acc14 += z2x13+z3x15 + z4x45+z5x47 + z6x77+z7x79 +…
acc15 += z0x28+z1x30 + z2x60+z3x62 + z4x92+z5x94 +…
acc16 += z2x29+z3x31 + z4x61+z5x63 + z6x93+z7x95 +…

Before square
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xstep=32

Figure 3.17: Selection of vector data via the square argument. Adapted from [40].

maxdiff32, which takes the maximum of 0 and the difference between the two input
vectors, where the null_v32int16() intrinsic returns a 32-element vector of zeros.
Two output vectors were calculated in parallel, resulting in the 32-element vector
seen in Fig. 3.18. The output of the ReLu function was then stored in the output
window, transferring the convolved data to the maxpool layer.

v32int16 vPreReLU = add32(val ,bias );
v32int16 result = maxdiff32 (vPreReLU , null_v32int16 ());

Figure 3.18: Addition of bias and application of ReLU.

3.3.7 Fully connected layers
The fully connected layers, also known as dense layers, were implemented using a sin-
gle AI Engine as described in Fig. 3.8. Similarly to the convolutional layer described
in Section 3.3.6 the dense layer utilised intrinsic vector functions for acceleration of
vector multiplications. The input to the first dense layer was a 128-element 8-bit
vector which contained the output of the maxpool2 layer. These values have already
passed trough ReLU and as such the vector contained only positive values which
meant that the first dense layer required no activation function. In Fig. 3.19 we can
see the structure of the dense layers including the shape of the input and output.
The dense layer comprised artificial neurons, the number of neurons was specified
by the output shape and each one was connected to all inputs. Each input to the
neuron was weighted, which meant that for dense layer 1 there were: 128 ·16 = 2048
individual weights. Along with each neuron a bias value was added which was
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...

Output layer 

Input layer 

Dense1 layer 

Dense2 layer 

Figure 3.19: Fully connected layer consisting of two dense layers, an input layer
and an output layer.

derived from supervised training. The formulas used to calculate the neuron output
can be seen in (2.1) and (2.2). The multiplication and summation of inputs used
the same mul16 and mac16 functions as the convolutional layer.

Softmax(xi) = exp(xi)∑
j exp(xj)

(3.1)

The activation functions for the dense2 and output layers differ. The dense2 layer
applied the regular ReLU function, which was used in the convolutional part of the
network. For the output layer a softmax activation function was used, the function
can be seen in (3.1). Softmax was used to calculate the probability between the two
output types, drone or other. The output with the highest statistical likelihood was
chosen as the prediction for the sample.

3.4 Evaluation of performance
The final evaluation of the system was performed with the full system implementa-
tion running on the evaluation board. The performance metrics that were compared
to the CPU baseline implementation consisted of: latency, throughput and resource
allocation. The reason for choosing a CPU as baseline instead of running the Ten-
sorFlow model on a GPU was due to the size of the neural network. The time taken
to transfer data to the GPU, process it, and sending it back creates more overhead
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than time gained by the higher performance. This made a CPU baseline more fa-
vorable for the TensorFlow model which is in line with the findings that Saab had
during their previous project.
The development of the system followed the design flow recommended by Xilinx [41].
The components were developed and tested individually before being integrated into
the system and tested together. Testing of the system was done via simulator and
test-benches in the Vitis platform. This was done to speed up development but final
testing was done on the hardware itself. The system was implemented using C/C++,
making use of high-level synthesis (HLS) which was helpful in avoiding some of the
time sinks present in VHDL coding such as pipelines.
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Results

This chapter intends to present the results of the project. These include the pre-
processing of radar data, modifications of model to fit the hardware requirements
and a summary of the achieved performance.

4.1 Developing and training the model
The provided TensorFlow implementation seen in Fig. 3.6 was used as a baseline
for performance comparisons. The model had to be slightly adapted to be compiled
and deployed to the VCK190 board as can be seen in Fig. 4.1. This meant that the
previous results provided by Saab were not representative of the final model and
new evaluations had to be made. These evaluations are an integral part of training
a new CNN model as they determine if each training epoch has had a positive or
negative effect on the overall accuracy of the system.

Input
32x3x4

Convolution1
32x3x16

Maxpool1
16x2x16

Convolution2
16x2x16

Maxpool2
8x1x16

Flatten
128x1x1

Figure 4.1: Alternative view of adapted CNN model shown in Figure 3.7.

The adapted model was trained for 50 epochs using a specified training set that was
balanced in that it contained an equal number of positive and negative outcomes. As
can be seen in Fig. 4.2 the model only improves slightly after 30 epochs, this makes
50 epochs a safe assumption that the model is fully trained. Once a training epoch
was completed a validation set was run that contained separate data to that of the
training set. The weights and biases of the model were updated if the accuracy in
the validation set improved compared to previous epochs.

The prediction score for the model can be seen in Fig. 4.3. These results were
captured using a CPU and show the effects of quantization on the overall accuracy
of the system. Small differences in accuracy can be seen between the platforms
due to platform architecture and rounding errors but the quantized model is a
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Figure 4.2: Left plot shows loss values for the model during training, right plots
shows accuracy.

representation of the accuracy achieved on the VCK190. The confusion matrix
allows us to see the correct and incorrect predictions as described in Section 2.2.13.
The dataset used for testing, which contained 10 092 samples, was separate from
the ones used during training and validation. By splitting up the datasets we could
minimise the likelihood of overfitting. The size of the training dataset was around
100 000 samples and the validation set contained around 30 000 samples. The same
datasets was used for all implementations to get a fair comparison between different
approaches.
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Figure 4.3: Prediction score of frozen and quantised model.
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4.2 Performance comparison
Once developed the model was trained and tested using the TensorFlow framework
running on an Intel Core i7-9850H CPU. The clock frequency used for the PL was
300 MHz while the AI Engine array was clocked at 1.2 GHz. The first implemen-
tation, which was developed using Vitis-AI, utilised the created TensorFlow model
file to compile the model for the DPU. The second implementation used extracted
weights from the TensorFlow model in the convolution and fully connected layers.
The results from each layer were compared to the corresponding outputs from the
TensorFlow model to assure that the two models had the same behaviour.

Table 4.1: Description of performance metrics used.

Metric Measurement Description
Throughput Samples/s Number of samples classified per second
Latency Milliseconds Time from input to output for one sample
Execution time Milliseconds Time to execute entire dataset

The metrics described in Table 4.1 were used to rate the performance of the imple-
mentations in comparison with the TensorFlow model. All results were gathered by
taking the average of 1000 runs on the unbalanced test dataset containing 10 092
samples.

Table 4.2: Results from all implementations, measurements found in Table 4.1.

Implementation Tensorflow DPU 1 thread DPU 2 threads Custom
Troughput (S/s) 124 838 15 102 20 400 2 446 520
Latency (ms) 14.5 0.468 N/A 0.042
Execution time (ms) 80.8 640 588 4.125

Performance was measured by logging the time taken to complete one run of the
unbalanced test dataset. Timing was only measured during the computational part
of the execution, removing the overhead caused by loading data from memory. Re-
sults measured in Table 4.2 shows throughput measured on the entries test dataset.
The latency for the implementations was measured by sending one single sample
through the model. Latency could not be measured for the 2-threaded DPU as a
single sample could not be split over two threads. The resource usage for the two
implementations running on the VCK190 can be found in Table 4.3.

Table 4.3: Resource usage of hardware implementations.

Implementation DPU (Both) Usage (%) Custom Usage (%) Available
LUTs 225 253 25.03 22 036 2.45 899 840
FFs 283 103 15.73 32 896 1.86 1 766 784
BRAMs 33 3.41 84 8.68 967
DSPs 200 10.16 29 1.47 1968
AI Engines 96 24 18 4.5 400
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5
Discussion

This chapter discusses some of the different aspects of the project as well as the
results presented in chapter 4.

5.1 Evaluation of the VCK190 platform
The primary focus of this project was to evaluate the potential benefits and draw-
backs of the VCK190 platform, both in terms of performance and functionality.
The intention of using two separate implementations to evaluate the platform was
to highlight different aspects of the development process.

5.1.1 DPU implementation
The DPU implementation shows a decrease in performance compared to the Ten-
sorFlow implementation which might be attributed to the small size of the model.
As the DPU implementation utilises a larger amount of resources it might waste
performance by trying to fit such a small model. The amount of time required to
create a functional DPU implementation is quite low, due to the fact that the tools
can compile an implementation from a TensorFlow model. There are drawbacks to
this method as not all TensorFlow layers are supported by the Vitis-AI tools, which
could require small modifications to the model.

5.1.2 Custom implementation
The custom system provides an immense performance boost compared to the other
approaches as seen in Fig. 5.1. This performance is achieved by efficiently pipelining
data throughout the implementation. This approach heavily relies on Vitis HLS to
synthesize C++ code but most parts of the implementation could be written in VHDL
if more precise management of clock cycles was necessary. The AI Engines however
can only be programmed using C++ and vector instructions are given using intrinsic
functions. These intrinsic functions use fixed data widths, which means that if the
provided data does not fit within these dimensions it either needs to be split up or
padded. Limiting the amount of padding done by efficiently handling the data can
provide big performance benefits. Similarly the amount of AI Engines used can be
increased by splitting up sample data, due to the small sample sizes used during
this project it was deemed unnecessary to use more than four cores per convolution
layer.
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Figure 5.1: Bargraph of throughput for all implementations.

5.2 Loss of accuracy due to quantisation
While the performance of the custom implementation is many times better than
that of the baseline TensorFlow implementation it also has reduced accuracy of the
model due to quantisation of the input data and weights. As the quantisation is
an important step to extract maximum performance from the platform it would be
beneficial to explore possible ways to improve the accuracy without removing the
quantisation. Since the difference between the maximum and minimum value in the
sample set is used to normalise the sample before quantisation it might be beneficial
to decrease this difference for each sample, increasing the resolution of the 8-bit
value. Another way to increase resolution of the 8-bit quantised value is by looking
at the channelised data. Is there one channel that is reducing performance? Would
it be beneficial to remove a channel to reduce the spread of values? It might also
be useful to look at different methods for processing the complex IQ data. Maybe
there is a signal transformation that would be more suitable for neural networks?

5.3 Hardware acceleration of CNN tasks
Convolutional neural networks are inherently compute heavy tasks with multiply ac-
cumulate (MAC) operations accounting for more than 99% of all operations run [42].
These types of operations benefit from parallelisation to minimise downtime asso-
ciated with load and store operations. By applying hardware acceleration to run
MAC tasks in parallel it is possible to increase the performance of the CNN. This ap-
plication is becoming more commonplace with manufacturers developing hardware
intended specifically for neural network tasks, such as the Google Tensor processing
units [43]. These high-performance platforms are mostly aimed at cloud computing
applications in data centers. Platforms developed for edge applications have to com-
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promise performance to allow for lower power consumption and minimal hardware
requirements. The VCK190 platform tries to bridge this gap by providing high-
performance computing for neural network tasks as an edge device. The platform
provides opportunities for tasks such as real-time classification of radar targets as
these systems are highly mobile and have strict power consumption requirements.
These perks accrue a higher purchasing price compared to other AI edge devices
due to the complexity of the hardware. Another limiting factor is the development
time and hardware knowledge required to develop a high-performance architecture
for the system.

5.4 Comparing CNN model between platforms
Comparing a CNN model between different hardware platforms or implementations
presents certain problems. Some kernel sizes are not supported by other frameworks
and certain layers might not behave the same way in different platforms. These types
of problems requires research into how a specified framework builds the CNN model.
When creating the custom implementation these issues were taken into consideration
as the created implementation needed to mimic the provided model as closely as
possible. However, the accuracy and precision of the different implementations will
be slightly skewed compared to the TensorFlow model. This skew is due to several
factors which includes rounding errors and how the compiler interprets the code that
is compiled into hardware instructions.

5.5 Possibility of real-world use
The developed implementations as well as the original TensorFlow model suffer
from low accuracy. This is partly due to the limited amount of radar data that was
available to train the network. The accuracy could also be affected by the chosen
CNN model and other models might provide better results. A reliable CNN should
preferably be able to accurately classify targets within a certain precision range.
This range depends on the type of application area that the network is deployed
in [44]. One option to evaluate a CNN is by meeting the baseline requirements
of MLPerf [45], an open-source project aimed at evaluating the performance of
cloud-based neural networks. This baseline requirement states that an accuracy
of 76.46% must be measured using the Resnet50 [46] model on the ImageNet [47]
dataset. While these circumstances are not applicable to the project at hand it is
an interesting baseline to consider when evaluating the accuracy of the model. A
CNN that identifies hundreds of thousands of targets per second demands a higher
accuracy to avoid a large number of incorrect conclusions.
The outcome of the classification also plays a part in the amount of accuracy
needed [48]. A CNN could be deployed to help sort unripe produce from a conveyor
belt. This type of task have no immediate risk involved if an incorrect classification
is made. Applying a CNN in a radar application carries a higher risk as an incorrect
classification can lead to severe consequences. Finding an acceptable accuracy value
for radar applications is a subject of its own but it is likely that a value above 95% is
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achievable with enough data and a more optimized network. In its current state it is
unlikely that any implementation could see real-world use due to the low reliability
associated with the accuracy readings.

5.6 VCK 190 development environment
The development process for the Versal series of ACAPs has different environments
depending on the type of implementation that needs to be done. The two environ-
ments both utilise Vitis to compile code into instructions for the platform but differ
in the programming language used. This difference also extends to the underlying
knowledge needed to work with the platform.

5.6.1 DPU implementation
The DPU implementation allows developers to transfer a pre-existing neural net-
work written in one of the most popular frameworks to the Xilinx hardware. This
transfer is highly useful in quickly gauging the performance of the platform and the
potential benefits of it without prerequisite knowledge of the hardware. It is however
important to remember that the created neural network will be limited by the DPU
it is compiled for. A basic platform layout can be sourced from Xilinx which allows
developers without insight into embedded systems to still develop on the platform.
But a basic platform might not always provide the right solution and adaptations
might have to be made for the platform to function according to specifications.

5.6.2 Custom implementation
The custom implementation allows for more freedom in development as components
can be written in both C++ and VHDL. However this freedom means that the de-
veloper needs to have more in-depth knowledge about the hardware that they are
developing for. Connections between components need to be specified and need to
adhere to the specifications of the component. These specifications could include
read and write speeds for interface ports, the datawidth possible during transfer
and the clocking of specific components on the platform. Documentation for some
of these specifications are hard to come by and often intricate in nature. This makes
development using the custom framework more time-consuming but ultimately re-
sults in higher performance.

42



6
Conclusion

The main benefits of the VCK190 platform when performing neural network tasks
is increased performance and smaller batch sizes compared to a CPU implemen-
tation. The performance is increased in a number of different ways. Throughput
is increased by utilising VLIW processing units for vector multiplications and by
pipelining and buffering data efficiently. The latency is reduced by utilising the in-
terconnects between memory, programmable logic and AI Engines. In addition the
7nm architecture provides lower power consumption thus reducing the heat emission
from the device. This lower heat emission proves highly beneficial in a military as-
pect as the device will have a smaller thermal signature, which means that it will be
harder to spot the radar array with infrared sensors. The small scale of this project
means that only a fraction of the resources available on the platform are utilised.
It would be advisable to increase the number of tasks running on the device, for
example by introducing radar pre-processing or beamforming. A smaller version of
the device could also be acquired which should lower the power consumption of the
platform.

6.1 Future research
Due to the limitations set early on in the project some aspects could not be explored
but warrant further research. Here are some of the suggestions for future work that
would greatly benefit the project.

6.1.1 Implementing training and backpropagation
As the created custom implementation attempted to mimic the original design as
closely as possible it was natural that it used the same weights. This is however a
limitation as training the model and exporting the weights to the custom platform is
both time consuming and inefficient as training via CPU is sub-optimal. Supervised
training of the model could be accomplished by introducing backpropagation [49],[50]
and dynamically updating the weights during training. This training becomes more
necessary if the model is adjusted to fit higher resolution data as mentioned in
section 6.1.2.

6.1.2 Larger datasets
The dataset provided by Saab comprises approximately 100 000 samples. In com-
parison, the popular dataset ImageNet [47], which is used as a standard for verifying
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functionality in CNNs, contains 1 281 167 training samples, 50 000 validation samples
and 100 000 test samples. Increasing the amount of training data available should
theoretically increase the accuracy of the model, making it more viable in a radar
classification scenario. The quality of the data provided is also a factor that should
be further investigated. Could accuracy and training performance be improved with
higher-resolution data? Modifying the CNN to allow for processing of raw radar
data instead of pre-processed radar cutouts is a natural step for the project to take
in the future. The project utilises radar cutouts for samples that measure 32 pulses
and 3 range bins. The raw radar data available is much larger than this, each sample
containing up to 21 range bins and up to 134 pulses. The cutting of data is always
made from the center of the sample, meaning that sometimes vital data used to
identify a target might be cut out. This cutting was done to be able to run the
system on a CPU which is no longer a concern as the VCK190 can handle larger
sample sizes.

6.1.3 New network model
One alternative to increase accuracy is to use a new neural network model that takes
full advantage of the considerable resources available on the VCK190 platform. The
current custom implementation utilises 18 AI Engines out of the 400 available on
the platform. This utilisation means that the neural network could easily be ex-
panded without any substantial degradation in throughput. A different CNN model
that could be investigated is VGGNet [51], which has a very deep neural network
structure. Whether the input data is detailed enough to warrant this type of deep
processing is currently unknown. Another alternative CNN is ResNet [46], which
utilises deep residual learning in an 18 or 34 layer architecture. A common theme
with these CNN models is that they are significantly deeper than the implementa-
tions used in this project. This difference in size is due to the dimensions of the
input data, which in the case for this project are much smaller than other CNNs.
Thus research into CNNs that employ similar dimensions might be the best course
of action to increase accuracy and performance of the model.

6.2 Ethical considerations
This project is done in cooperation with Saab which means it is in nature defense
related. As stated in chapter 7 article 51 of the United Nations charter [52] it is every
nations right and duty to protect its citizens from armed attack. The implemented
system is intended for classification of radar targets which is an essential tool in
protecting both civilians and military personnel. As such any failure of the system
could have steep consequences including damage to vital infrastructure and potential
loss of life. These consequences are something that have to be taken into account
when testing and evaluating the hardware implementation.

44



Bibliography

[1] J. Bosse, O. Krasnov, and A. Yarovoy, “Direct target localization with an
active radar network,” Signal Processing, vol. 125, pp. 21–35, 2016. doi: 10.
1016/j.sigpro.2016.01.001.

[2] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. E. Lefohn,
and T. J. Purcell, “A survey of general-purpose computation on graphics
hardware,” Computer Graphics Forum, vol. 26, no. 1, pp. 80–113, 2007. doi:
10.1111/j.1467-8659.2007.01012.x.

[3] “2020 Military and Aerospace Technology Innovators Awards announced for
aerospace and defense achievement,”Military and Aerospace Electronics, vol. 31,
no. 9, pp. 4–14, 2020.

[4] K. Guo, S. Zeng, J. Yu, Y. Wang, and H. Yang, “A Survey of FPGA-Based
Neural Network Inference Accelerator,” ACM Transactions on Reconfigurable
Technology and Systems, vol. 9, no. 4, 2017. doi: 10.1145/3289185.

[5] S. Ahmad, S. Subramanian, V. Boppana, S. Lakka, F.-H. Ho, T. Knopp, J.
Noguera, G. Singh, and R. Wittig, “Xilinx First 7nm Device: Versal AI Core
(VC1902),” no. 2019 IEEE Hot Chips 31 Symposium, HCS 2019, 2019. doi:
10.1109/HOTCHIPS.2019.8875639.

[6] Xilinx, AM009 - Versal ACAP AI Engine, https : / / www . xilinx . com /
support / documentation / architecture - manuals / am009 - versal - ai -
engine.pdf, 2020. (visited on 06/21/2021).

[7] S. Ahmad, S. Subramanian, V. Boppana, S. Lakka, F. Ho, T. Knopp, J.
Noguera, G. Singh, and R. Wittig, “Xilinx First 7nm Device: Versal AI Core
(VC1902),” in 2019 IEEE Hot Chips 31 Symposium (HCS), 2019, pp. 1–28.
doi: 10.1109/HOTCHIPS.2019.8875639.

[8] Xilinx, UG1366 - VCK190 Evaluation Board - User Guide, https://www.
xilinx.com/support/documentation/boards_and_kits/vck190/ug1366-
vck190-eval-bd.pdf, 2021. (visited on 06/25/2021).

[9] ——, WP505 - Versal: The First Adaptive Compute Acceleration Platform
(ACAP), https : / / www . xilinx . com / support / documentation / white _
papers/wp505-versal-acap.pdf, 2020. (visited on 06/21/2021).

[10] M. Iriarte, “The path to smarter, autonomous radar and ew platforms,” Mil-
itary Embedded Systems, vol. 14, no. 1, pp. 20–23, 2018.

[11] B. Mehlig, Artificial Neural Networks, In arXiv: 1901.05639v2 [cs.LG], 2019.
[12] N. M. Nasrabadi, “DeepTarget: An Automatic Target Recognition Using Deep

Convolutional Neural Networks,” IEEE Transactions on Aerospace and Elec-
tronic Systems, vol. 55, no. 6, pp. 2687–2697, 2019. doi: 10.1109/TAES.2019.
2894050.

45

https://doi.org/10.1016/j.sigpro.2016.01.001
https://doi.org/10.1016/j.sigpro.2016.01.001
https://doi.org/10.1111/j.1467-8659.2007.01012.x
https://doi.org/10.1145/3289185
https://doi.org/10.1109/HOTCHIPS.2019.8875639
https://www.xilinx.com/support/documentation/architecture-manuals/am009-versal-ai-engine.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am009-versal-ai-engine.pdf
https://www.xilinx.com/support/documentation/architecture-manuals/am009-versal-ai-engine.pdf
https://doi.org/10.1109/HOTCHIPS.2019.8875639
https://www.xilinx.com/support/documentation/boards_and_kits/vck190/ug1366-vck190-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vck190/ug1366-vck190-eval-bd.pdf
https://www.xilinx.com/support/documentation/boards_and_kits/vck190/ug1366-vck190-eval-bd.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://www.xilinx.com/support/documentation/white_papers/wp505-versal-acap.pdf
https://doi.org/10.1109/TAES.2019.2894050
https://doi.org/10.1109/TAES.2019.2894050


Bibliography

[13] H. Du, T. Jin, Y. He, Y. Song, and Y. Dai, “Segmented convolutional gated
recurrent neural networks for human activity recognition in ultra-wideband
radar,” Neurocomputing, vol. 396, pp. 451–464, 2020. doi: 10.1016/j.neucom.
2018.11.109.

[14] X. Gao, G. Xing, S. Roy, and H. Liu, “Ramp-cnn: A novel neural network for
enhanced automotive radar object recognition,” 2020. doi: 10.1109/JSEN.
2020.3036047.

[15] M. Bader, A. Bode, H.-J. Bungartz, M. Gerndt, G. R. Joubert, and F. Pe-
ters, Parallel Computing : Accelerating Computational Science and Engineer-
ing (CSE), ser. Advances in Parallel Computing: v.25. IOS Press, 2014.

[16] A. Gupta, “Architecture Apocalypse Dream Architecture for Deep Learning
Inference and Compute,” in Embedded World, 2020. [Online]. Available: https:
/ / www . xilinx . com / support / documentation / white _ papers / EW2020 -
Apocalypse-Dream-Arch-DeepLearning-Inference-AICore.pdf.

[17] S. Z. Gurbuz, H. D. Griffiths, A. Charlish, M. Rangaswamy, M. S. Greco, and
K. Bell, “An Overview of Cognitive Radar: Past, Present, and Future,” IEEE
Aerospace and Electronic Systems Magazine, vol. 34, no. 12, pp. 6–18, 2019.
doi: 10.1109/MAES.2019.2953762.

[18] L. Melvin William and A. Scheer James, “8. Ground-Based Early Warning
Radar (GBEWR): Technology and Signal Processing Algorithms,” in Princi-
ples of Modern Radar, Volume 3 - Radar Applications. Institution of Engi-
neering and Technology, 2015. doi: 10.1049/SBRA503E_ch8.

[19] H. You, X. Jianjuan, and G. Xin, Radar Data Processing with Applications,
ser. Wiley - IEEE Ser. John Wiley & Sons, Incorporated, 2016. doi: 10.1002/
9781118956878.

[20] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,
Craig Citro, et al., TensorFlow: Large-scale machine learning on heteroge-
neous systems, https : / / www . tensorflow . org/, Software available from
tensorflow.org, 2015. (visited on 06/21/2021).

[21] Xilinx, Vitis-AI: Adaptable and Real-Time AI Inference Acceleration, https:
//www.xilinx.com/products/design-tools/vitis/vitis-ai.html, 2020.
(visited on 06/25/2021).

[22] ——, PetaLinux Tools, https://www.xilinx.com/products/design-tools/
embedded-software/petalinux-sdk.html, 2020. (visited on 06/25/2021).

[23] Z. Bahman, Radar Energy Warfare and the Challenges of Stealth Technology.
Springer, 2020, vol. 1st ed. 2020. doi: 10.1007/978-3-030-40619-6.

[24] B. Van Veen and K. Buckley, “Beamforming: A versatile approach to spatial
filtering,” IEEE ASSP Magazine, vol. 5, no. 2, pp. 4–24, 1988. doi: 10.1109/
53.665.

[25] L. Wei and W. Stephan, Wideband Beamforming : Concepts and Techniques,
ser. Wiley Series on Wireless Communications and Mobile Computing. Wiley,
2010, pp. 1–18. doi: 10.1002/9780470661178.

[26] D. Antonsson and M. Li, “Ultrasonic Source Localization with a Beamformer
Implemented on an FPGA Using a High-density Microphone Array,” URL:
https://hdl.handle.net/20.500.12380/255327, M.S. thesis, Chalmers Univer-
sity of Technology, 2018.

46

https://doi.org/10.1016/j.neucom.2018.11.109
https://doi.org/10.1016/j.neucom.2018.11.109
https://doi.org/10.1109/JSEN.2020.3036047
https://doi.org/10.1109/JSEN.2020.3036047
https://www.xilinx.com/support/documentation/white_papers/EW2020-Apocalypse-Dream-Arch-DeepLearning-Inference-AICore.pdf
https://www.xilinx.com/support/documentation/white_papers/EW2020-Apocalypse-Dream-Arch-DeepLearning-Inference-AICore.pdf
https://www.xilinx.com/support/documentation/white_papers/EW2020-Apocalypse-Dream-Arch-DeepLearning-Inference-AICore.pdf
https://doi.org/10.1109/MAES.2019.2953762
https://doi.org/10.1049/SBRA503E_ch8
https://doi.org/10.1002/9781118956878
https://doi.org/10.1002/9781118956878
https://www.tensorflow.org/
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/vitis/vitis-ai.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://www.xilinx.com/products/design-tools/embedded-software/petalinux-sdk.html
https://doi.org/10.1007/978-3-030-40619-6
https://doi.org/10.1109/53.665
https://doi.org/10.1109/53.665
https://doi.org/10.1002/9780470661178


Bibliography

[27] I. N. da Silva, D. Hernane Spatti, R. Andrade Flauzino, L. H. B. Liboni, and
S. F. dos Reis Alves, Artificial Neural Networks: A Practical Course. Springer
International Publishing, 2017. doi: 10.1007/978-3-319-43162-8.

[28] D. Rumelhart, R. Williams, and G. Hinton, “Learning representations by back-
propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536, 1986. doi: 10.
1038/323533a0.

[29] V. K. Ojha, A. Abraham, and V. Snášel, “Metaheuristic design of feedfor-
ward neural networks: A review of two decades of research,” Engineering Ap-
plications of Artificial Intelligence, vol. 60, pp. 97–116, 2017. doi: https :
//doi.org/10.1016/j.engappai.2017.01.013.

[30] J. Schmidhuber, “Deep learning in neural networks: An overview,” 2014. doi:
10.1016/j.neunet.2014.09.003.

[31] D. Maturana and S. Scherer, “VoxNet: A 3D Convolutional Neural Network for
real-time object recognition,” in IEEE International Conference on Intelligent
Robots and Systems, vol. 2015-December, Robotics Institute, Carnegie Mellon
University, 2015, pp. 922–928. doi: 10.1109/IROS.2015.7353481.

[32] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network
training by reducing internal covariate shift,” in Proceedings of the 32nd Inter-
national Conference on Machine Learning, F. Bach and D. Blei, Eds., ser. Pro-
ceedings of Machine Learning Research, vol. 37, Lille, France: PMLR, Jul.
2015, pp. 448–456. doi: 10.5555/3045118.3045167.

[33] J. French, “The time traveller’s CAPM,” Investment Analysts Journal, vol. 46,
no. 2, pp. 81–96, 2017. doi: 10.1080/10293523.2016.1255469.

[34] D. Zissis, E. K. Xidias, and D. Lekkas, “A cloud based architecture capable of
perceiving and predicting multiple vessel behaviour,” Applied Soft Computing,
vol. 35, pp. 652–661, 2015. doi: https://doi.org/10.1016/j.asoc.2015.
07.002.

[35] N. Sengupta, M. Sahidullah, and G. Saha, “Lung sound classification us-
ing cepstral-based statistical features,” Computers in Biology and Medicine,
vol. 75, pp. 118–129, 2016. doi: 10.1016/j.compbiomed.2016.05.013.

[36] Xilinx, WP506 - Xilinx AI Engines and Their Applications, https://www.
xilinx.com/support/documentation/white_papers/wp506-ai-engine.
pdf, 2020. (visited on 06/21/2021).

[37] A. Nader and D. Azar, “Searching for activation functions using a self-adaptive
evolutionary algorithm,” in Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, ser. GECCO ’20, Cancún, Mexico: Asso-
ciation for Computing Machinery, 2020, pp. 145–146. doi: 10.1145/3377929.
3389942.

[38] M. Nagel, M. V. Baalen, T. Blankevoort, and M. Welling, “Data-Free Quan-
tization Through Weight Equalization and Bias Correction,” 2019 IEEE/CVF
International Conference on Computer Vision (ICCV), Computer Vision (ICCV),
2019 IEEE/CVF International Conference on, pp. 1325–1334, 2019. doi: 10.
1109/ICCV.2019.00141.

[39] M. Blott, “Overview of Deep Learning and Computer Architectures for Ac-
celerating DNNs,” in Hot Chips 2018 Tutorial. [Online]. Available: https://
old.hotchips.org/hc30/0tutorials/T2_Part_1_Overview_finalv3.pdf.

47

https://doi.org/10.1007/978-3-319-43162-8
https://doi.org/10.1038/323533a0
https://doi.org/10.1038/323533a0
https://doi.org/https://doi.org/10.1016/j.engappai.2017.01.013
https://doi.org/https://doi.org/10.1016/j.engappai.2017.01.013
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/IROS.2015.7353481
https://doi.org/10.5555/3045118.3045167
https://doi.org/10.1080/10293523.2016.1255469
https://doi.org/https://doi.org/10.1016/j.asoc.2015.07.002
https://doi.org/https://doi.org/10.1016/j.asoc.2015.07.002
https://doi.org/10.1016/j.compbiomed.2016.05.013
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://www.xilinx.com/support/documentation/white_papers/wp506-ai-engine.pdf
https://doi.org/10.1145/3377929.3389942
https://doi.org/10.1145/3377929.3389942
https://doi.org/10.1109/ICCV.2019.00141
https://doi.org/10.1109/ICCV.2019.00141
https://old.hotchips.org/hc30/0tutorials/T2_Part_1_Overview_finalv3.pdf
https://old.hotchips.org/hc30/0tutorials/T2_Part_1_Overview_finalv3.pdf


Bibliography

[40] Xilinx, UG1079 - AI Engine Kernel Coding - Best Practices Guide, https:
//www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/
ug1079-ai-engine-kernel-coding.pdf, 2021. (visited on 06/21/2021).

[41] ——, UG1273 - Versal ACAP Design Guide, https://www.xilinx.com/
support/ documentation /sw_ manuals/xilinx2020_ 1/ug1273 - versal-
acap-design.pdf, 2020. (visited on 06/21/2021).

[42] T.-J. Yang, Y.-H. Chen, and V. Sze, “Designing Energy-Efficient Convolu-
tional Neural Networks Using Energy-Aware Pruning,” 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), Computer Vision and
Pattern Recognition (CVPR), 2017 IEEE Conference on, CVPR, pp. 6071–
6079, 2017. doi: 10.1109/CVPR.2017.643.

[43] K. Brooker, “Google on the brain,” Fast Company, no. 235, pp. 76–92, 2019.
[Online]. Available: https://search.ebscohost.com/login.aspx?direct=
true&db=bsu&AN=138329165&site=eds- live&scope=site&authtype=
guest&custid=s3911979&groupid=main&profile=eds.

[44] F. Libano, B. Wilson, M. Wirthlin, P. Rech, and J. Brunhaver, “Understanding
the Impact of Quantization, Accuracy, and Radiation on the Reliability of
Convolutional Neural Networks on FPGAs,” IEEE Transactions on Nuclear
Science, vol. 67, no. 7, pp. 1478–1484, 2020. doi: 10.1109/TNS.2020.2983662.

[45] MLCommons,MLPerf, https://mlcommons.org/en/. (visited on 06/21/2021).
[46] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recog-

nition,” 2016 IEEE Conference on Computer Vision and Pattern Recogni-
tion (CVPR), Computer Vision and Pattern Recognition (CVPR), 2016 IEEE
Conference on, pp. 770–778, 2016. doi: 10.1109/CVPR.2016.90.

[47] Stanford Vision Lab and Stanford University and Princeton University, Ima-
geNet image database, https://www.image-net.org/. (visited on 06/21/2021).

[48] B. Du, S. Azimi, C. de Sio, L. Bozzoli, and L. Sterpone, “On the Reliability
of Convolutional Neural Network Implementation on SRAM-based FPGA,”
2019 IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems, pp. 1–6, doi: 10.1109/DFT.2019.8875362.

[49] I. Goodfellow, Y. Bengio, and A. Courville, “Back-propagation and other dif-
ferentiation algorithms,” in, http://www.deeplearningbook.org, MIT Press,
2016, p. 200.

[50] T. Liu, S. Fang, Y. Zhao, P. Wang, and J. Zhang, Implementation of training
convolutional neural networks, 2015. arXiv: 1506.01195 [cs.CV].

[51] K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-
scale image recognition,” in 3rd International Conference on Learning Rep-
resentations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference
Track Proceedings, Y. Bengio and Y. LeCun, Eds. arXiv: 1409.1556 [cs.CV].

[52] United Nations, United Nations Charter, Chapter VII: Action with Respect to
Threats to the Peace, Breaches of the Peace, and Acts of Aggression, https://
www.un.org/en/about-us/un-charter/chapter-7. (visited on 06/21/2021).

48

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1079-ai-engine-kernel-coding.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1079-ai-engine-kernel-coding.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_2/ug1079-ai-engine-kernel-coding.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1273-versal-acap-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1273-versal-acap-design.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2020_1/ug1273-versal-acap-design.pdf
https://doi.org/10.1109/CVPR.2017.643
https://search.ebscohost.com/login.aspx?direct=true&db=bsu&AN=138329165&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=bsu&AN=138329165&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://search.ebscohost.com/login.aspx?direct=true&db=bsu&AN=138329165&site=eds-live&scope=site&authtype=guest&custid=s3911979&groupid=main&profile=eds
https://doi.org/10.1109/TNS.2020.2983662
https://mlcommons.org/en/
https://doi.org/10.1109/CVPR.2016.90
https://www.image-net.org/
https://doi.org/10.1109/DFT.2019.8875362
http://www.deeplearningbook.org
https://arxiv.org/abs/1506.01195
https://arxiv.org/abs/1409.1556
https://www.un.org/en/about-us/un-charter/chapter-7
https://www.un.org/en/about-us/un-charter/chapter-7

	List of Abbreviations
	Introduction
	Versal VCK 190 platform
	Neural networks
	Ground-based radar
	Problem description
	Purpose
	Scope and limitations

	Thesis outline

	Technical background
	Radar and beamforming systems
	Passive Electronically Scanned Array
	Beamforming

	Artificial neural networks
	History of neural networks
	Artificial neuron implementation
	Convolutional neural network architecture
	Input layer
	Convolutional layer
	Pooling layer
	Batch normalization layer
	Flatten layer
	Fully connected layer
	Training
	Supervised learning
	Unsupervised learning
	Evaluation of performance
	Application areas

	Hardware platform
	Scalar processing system
	Programmable logic
	AI Engines
	Network on Chip
	Development


	Approach
	Radar input data
	DPU implementation
	Building and training the TensorFlow model
	Freezing model
	Quantising model
	Compiling and deploying model on Versal platform

	Custom implementation
	System overview
	Quantisation
	Data transfer
	Pre-processing layer
	Pooling and rearrange layers
	Convolutional layers
	Fully connected layers

	Evaluation of performance

	Results
	Developing and training the model
	Performance comparison

	Discussion
	Evaluation of the VCK190 platform
	DPU implementation
	Custom implementation

	Loss of accuracy due to quantisation
	Hardware acceleration of CNN tasks
	Comparing CNN model between platforms
	Possibility of real-world use
	VCK 190 development environment
	DPU implementation
	Custom implementation


	Conclusion
	Future research
	Implementing training and backpropagation
	Larger datasets
	New network model

	Ethical considerations

	Bibliography

