
Scalability w.r.t. number of corrupted processes.
The average latency per sender for a urbBroadcast, in ms.

Results for PlanetLab.

4040

5050

6060

70 7070 70

80
80

80
80

90
90

90
90

100 100

100
100 100

100

110 110
110110 110
110

120 120 120120 120 120

130 130
130

130 130
130

140

140 140
140

140 140

150
150 150

150150
150 150

150

160

160

160

160

160

160

160

160

170
170 170 170

170
170 170 170

180

180
180 180

180

180
180 180

190
190

190
190

190190
190

190
190

190

200

200
200

200

200
200

200
200

200

200

220

220

220
220 220220

220

220
220 220230 230

230
230

230 230

230
230

250 250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of corrupted processes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Self-stabilizing Communication
Abstractions for Replicated Systems

Evaluating a stacking approach implementation of self-stabilizing
distributed communication abstractions

Master’s thesis in Computer science and engineering

Chaiyapruek Muangsiri
Oskar Jedvert

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Self-stabilizing Communication
Abstractions for Replicated Systems

Evaluating a stacking approach implementation of self-stabilizing
distributed communication abstractions

Oskar Jedvert
Chaiyapruek Muangsiri

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Self-stabilizing Communication Abstractions for Replicated Systems
Evaluating a stacking approach implementation of self-stabilizing distributed com-
munication abstractions
Oskar Jedvert
Chaiyapruek Muangsiri

© Oskar Jedvert, 2020.
© Chaiyapruek Muangsiri, 2020.

Supervisor: Elad Michael Schiller, Department of Computer Science and Engineer-
ing
Advisor: Robert Gustafsson, CombiTech
Examiner: Tomas Olovsson, Department of Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Contour graph of the experiment scalability of number of processes with
respect to number of corrupted processes. For more information please see Sec-
tion 5.1.4

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Self-stabilizing Communication Abstractions for Replicated Systems
Evaluating a stacking approach implementation of self-stabilizing distributed com-
munication abstractions
Oskar Jedvert
Chaiyapruek Muangsiri
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
A self-stabilizing application can in the presence of transient faults resume its reg-
ular execution in a finite amount of time. The benefits of self-stabilizing replicated
applications are becoming increasingly important as the traffic on the internet grows
and the need for globally accessibly storage increases as we become more connected.
There are two studied protocols, uniform reliable broadcast and set-constrained
delivery broadcast. These can be used in combination to implement more pow-
erful applications, one such example is the atomic snapshot application which is
implemented and verified together with the studied protocols. By combining multi-
ple protocols together, the implementation become more general and provide more
reusability for the applications.
This report validates the correctness and evaluates the performance of two self-
stabilizing communication protocols as well as the applications. The main focus
of the report is the correctness and performance of the studied protocols under
different system settings and environments. In order to achieve this, two different
environment is used for experimental evaluation and the system settings are varied
across the experiments.
The authors believe that the current implementation is correct, since the system is
able to recover after the last occurrence of a transient fault. The recovery period is
fairly short and has negligible impact on performance.

Keywords: science, computer science, engineering, thesis, self-stabilization, fault-
tolerance, replicated systems, distributed systems, computer network.

v

Acknowledgements
We would like to thank Elad Michael Schiller, our supervisor, for his patience and
great support throughout the project. We would also like to thank CombiTech and
Robert Gustafsson, our company advisor, for their support and for providing us
with a place to work. Finally we would like to thank our peers Oskar Lundström
and Chibin Kou for their suggestions which helped us progress faster.

Oskar Jedvert, Gothenburg, October 2020
Chaiyapruek Muangsiri, Gothenburg, October 2020

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Context and Motivation . 1
1.2 Task descriptions . 2
1.3 Fault Model . 3
1.4 Related Work . 3
1.5 Our Contribution . 4
1.6 Document Structure . 4

2 Scientific Background 5
2.1 System Settings . 5
2.2 Self-Stabilization . 5
2.3 Failure Detectors . 6
2.4 FIFO Uniform Reliable Broadcast . 7
2.5 Set-Constrained Delivery Broadcast 9
2.6 Applications . 13

2.6.1 Atomic snapshot . 13

3 The System 15
3.1 Architecture . 15

3.1.1 Rust Programming Language 16
3.2 Implementation . 17

3.2.1 Client communication . 18
3.2.2 Optimization . 19

4 Evaluation Environment and Plan 21
4.1 Evaluation Criteria and Research Questions 21
4.2 Experiment description . 22
4.3 Evaluation Environment . 23
4.4 Evaluation Plan . 24

4.4.1 Experiment setup . 24
4.4.2 Evaluation utilities . 25
4.4.3 Experiments . 26

5 Result 27
5.1 Uniform Reliable Broadcast . 27

ix

Contents

5.1.1 Scalability of number of servers with respect to throughput
and latency . 27

5.1.2 Scalability of number of senders with respect to latency 28
5.1.3 Scalability of bufferUnitSize with respect to latency 30
5.1.4 Overhead of system recovery 31
5.1.5 Overhead of the self-stabilization property with respect to δ . 33

5.2 Set-Constrained Delivery Broadcast 34
5.2.1 Scalability of number of servers with respect to throughput

and latency . 34
5.2.2 Scalability of number of senders with respect to throughput

and latency . 36
5.2.3 Scalability of bufferUnitSize size with respect to throughput

and latency . 40
5.2.4 Overhead of system recovery 43
5.2.5 Overhead of the self-stabilization property with respect to δ . 46

5.3 Applications . 49
5.3.1 Scalability of read operations with respect to write operations 49
5.3.2 Scalability of write operations with respect to read operations 50

6 Discussion 53
6.1 Summary . 53
6.2 Conclusion . 54
6.3 Future work . 54

Bibliography 55

x

List of Figures

1.1 The system architecture . 3

2.1 The flow of a single urbBroadcast operation in a system of two processes 7
2.2 The flow of a single urbBroadcast operation in a system of two nodes 10

3.1 The URB, SCD and Application layers and how they interact. 15
3.2 Overview of the interactions between the UDP socket, application

and client. 17
3.3 The client and node interactions. 19

5.1 Scalability of number of processes w.r.t. urbBroadcast. 28
5.2 Scalability of number of senders w.r.t. urbBroadcast. 29
5.3 Scalability of number of senders w.r.t. urbBroadcast. 29
5.4 Scalability of bufferUnitSize w.r.t. urbBroadcast. 30
5.5 Scalability of bufferUnitSize w.r.t. urbBroadcast. 31
5.6 Overhead of system recovery w.r.t. urbBroadcast. 32
5.7 Overhead of system recovery w.r.t. urbBroadcast. 32
5.8 Scalability of delta w.r.t. urbBroadcast. 33
5.9 Scalability of delta w.r.t. urbBroadcast. 34
5.10 Scalability of number of processes w.r.t. scdBroadcast. 35
5.11 Scalability of number of processes w.r.t. scdBroadcast. 36
5.12 Scalability of number of senders w.r.t. scdBroadcast. 37
5.13 Scalability of number of senders w.r.t. scdBroadcast. 37
5.14 Scalability of number of senders w.r.t. scdBroadcast. 38
5.15 Scalability of number of senders w.r.t. scdBroadcast. 39
5.16 Scalability of bufferUnitSize w.r.t. scdBroadcast. 40
5.17 Scalability of bufferUnitSize w.r.t. scdBroadcast. 41
5.18 Scalability of bufferUnitSize w.r.t. scdBroadcast. 42
5.19 Scalability of bufferUnitSize w.r.t. scdBroadcast. 42
5.20 Overhead of system recovery w.r.t. scdBroadcast. 44
5.21 Overhead of system recovery w.r.t. scdBroadcast. 44
5.22 Overhead of system recovery w.r.t. scdBroadcast. 45
5.23 Overhead of system recovery w.r.t. scdBroadcast. 45
5.24 Scalability of delta w.r.t. scdBroadcast. 47
5.25 Scalability of delta w.r.t. scdBroadcast. 47
5.26 Scalability of delta w.r.t. scdBroadcast. 48
5.27 Scalability of delta w.r.t. scdBroadcast. 48

xi

List of Figures

5.28 Scalability of delta w.r.t. snapshot operation. 50
5.29 Scalability of delta w.r.t. snapshot operation. 51

xii

1
Introduction

The rapid adoption of the internet is causing traffic to increase and the need for
robust, scalable solutions is higher than ever before. One way to create scalable
services is through distributed systems.

As the name suggest a distributed system refers to several machines connected either
physically or through the internet, trying to perform tasks to accomplish a shared
goal. Distributed systems can come in different forms, modern distributed systems
leverage replication scheme to increase the capacity of the service at a moments
notice. Transient faults are a temporary violation of the assumptions under which
the system is assumed to operate. This can for instance be a memory corruption
leading to some control variable changing unexpectedly, transitioning the system to
an arbitrary state. To recover from such faults the self-stabilization paradigm can
be used.

The purpose of the Master’s thesis is to implement, validate, and evaluate multi-
ple self-stabilizing communication abstractions for recently designed self-stabilizing
communication abstractions by Lundström, Raynal, and Schiller [43, 42]. A commu-
nication abstraction is a communication layer which abstracts the communication
details from the application while providing interfaces for sending and requesting
data. We are using a stacking approach for the implementation. This means that
we have multiple communication layers in which the lower layers provides interfaces
to the upper layers in order to achieve the required properties of the higher layer.
These self-stabilizing communication abstractions provides multiple advantages such
as redundancy and availability to both small and large distributed systems. In case
a minority of replicas fail, the system can recover in a bounded time and resume its
legal execution given that no replicas fail during the recovery period. After imple-
menting a communication abstraction, we validate the implementation with regards
to its correctness and performance using an experimental evaluation.

1.1 Context and Motivation
Cloud solutions are becoming increasingly popular in many business areas since
they provide fast scaling, helping with peak traffic, and redundancy giving more

1

1. Introduction

uptime. This is made possible due to the distributed system that the cloud is based
of. Many cloud solutions, such as Kubernetes, employs what is called state machine
replication to provide fast scaling and redundancy. While there is a mechanism to
detect failing processes in most state machine replication based systems, the common
response is to terminate the failing process and spawn a new one or restart it, such
is the case for Kubernetes [32]. This means the information that the process held
can be lost, imposing restrictions on how information is stored. Meaning that the
developers need to ensure that the state of the system is stored or replicated outside
the processes. While state machine replication is sufficient to create powerful highly
scalable applications, solving the storage issue is not trivial.

The storage issue can be solved by using external storage or by replicating the data
or events across the entire distributed system with some ordering constraints. The
ordering constraint will depend on the applications needs, for instance a consistent
counter application using only increments works regardless of delivery order as long
as all messages delivered are the same across the system. While for a banking system
ordering is very important since by reordering events can make, for instance, the
deposit of some amount followed by a withdrawal for a lower amount might fail if
the events are reordered.

Finally, all systems work under certain assumptions. Most distributed systems are
made to work with the presence of crashes, but for some tasks this is not possible
without enriching the system with failure detectors. For instance, consensus requires
failure detectors, in a crash-prone system the entire system can halt and wait for a
single processor which could be crashed or just progressing slowly. However, in the
real world more things can go wrong other than the process crashing. For example,
we can have a memory corruption in the form of a bit flip causing some essential
variable of an algorithm to change completely. This is what is called a transient
fault, which is discussed further in the Section 1.3. Distributed systems that can
recover from transient faults are called self-stabilizing distributed systems.

1.2 Task descriptions
The studied algorithms are self-stabilizing versions of Uniform Reliable Broadcast
and Set-Constrained Delivery.

Uniform Reliable Broadcast, or URB, informally achieves consistent delivery of mes-
sages across the distributed system. In the algorithm the URB protocol is enriched
with FIFO delivery ordering.

Set-Constrained delivery broadcast, or SCD, allows messages to be delivered as a
set with some constraints. This communication abstraction was first defined in
2017 [36].

The SCD algorithm interfaces with the URB algorithm to achieve reliable broadcast
and FIFO ordering. We call this a “stacking approach” to the implementation of the

2

1. Introduction

algorithms. The architecture in Figure 1.1 provides an overview of this interfacing.
The lower layers provide interfaces to the upper layers which they can leverage to
achieve the desired behaviour. For example, in Figure 1.1, SCD interfaces with URB
to provide set-constrained delivery to the snapshot application.

quorum system reconfiguration

single write
multiple read

snapshot

uniform reliable broadcast

Virtual
Synchrony

total ordercausal orderFIFO order

consensus

state
machine

replication

set-constrained delivery broadcast

snapshot
single write

multiple read
lattice

agreement

Figure 1.1: The system architecture

1.3 Fault Model
We consider an asynchronous message-passing system with no shared memory be-
tween processes. Furthermore, there is no notion of a universal clock and the pro-
cesses can not access the local clock either. The fault model includes node crashes,
transient faults and communication failures such as, packet omission, duplication
and reordering. A transient fault is any temporary violation of assumptions under
which the system is designed to operate, e.g. the corruption of a control variable
such as the current message number or program counter. To handle such faults, the
studied communication abstractions use the property called self-stabilization which
was proposed by Dijkstra in 1973 [7].

If a node crashes, it is assumed that it will never rejoin the system, allowing the
system to ignore crashed nodes which could otherwise lead to slower performance.

1.4 Related Work
Now days, there are many self-stabilizing algorithm for distributed systems, For
example, there are self-stabilizing algorithms for the Internet [21, 3, 22, 4], mobile ad
hoc networks [5, 47, 38, 11, 45, 39, 41, 37, 40, 49, 25, 17, 17], replication systems [28,
31, 30, 29, 13, 23, 16, 19, 29, 15, 14, 10]. The design criteria of self-stabilization was
extended to also consider selfishness [24, 18, 20] and Byzantine faults [34, 12, 33].

This work implements a self-stabilizing version of Set-Constrained Delivery Broad-
cast [35]. We note the existence of a Byzantine-Tolerant version as well [2]. This
algorithm considers Byzantine faults, which is when a process is exhibiting Byzan-
tine behaviour. When a process exhibits Byzantine behaviour this means that it
can behave arbitrarily: it can crash, fail to receive or send messages, send arbitrary
messages, start in an arbitrary state and make any arbitrary state transition. The
algorithm can handle up to t byzantine processes where t < n/4 and n is the number
of processes in the system. This algorithm also assumes these nodes to be faulty

3

1. Introduction

meaning that they are not concerned with the byzantine process when considering
the termination, validity, integrity and order of the algorithm with respect to correct
processes, since a byzantine process is not a correct process.

1.5 Our Contribution
We are the first, to the best of our knowledge, to evaluate two important components
of self-stabilization uniform reliable broadcast and set-constrained delivery broadcast
by Lundström, Raynal, and Schiller [43, 42].

We found that for the experiments where computational power is important, such
as for the bufferUnitSize experiment, the PlanetLab environment outperformed the
local network environment. While for experiments where the link latency is more
important, such as the number of senders experiment, the local environment out-
performed the PlanetLab environment thanks to its extremely low link latency. We
also found that the recovery period after a transient fault has negligible impact on
performance, both in terms of throughput and latency of delivered messages in both
environments.

For the sake of supporting scientific progress in the area, the code of the developed
protocols as well as the data used for presenting the experimental results can be
found at www.self-stabilizing-cloud.net.

1.6 Document Structure
We outline our system setting in Chapter 2 as well as introduce the different paradigms
and algorithms used in the project. We describe the system and its implementation
in Chapter 3. The evaluation and experiment plan can be found in Chapter 4 to-
gether with the evaluation environments. We present our results in Chapter 5 with
graphs from the experiments. Finally we discuss our results in Chapter 6.

4

www.self-stabilizing-cloud.net

2
Scientific Background

This chapter introduces the system settings and other important factors to the
success of the algorithms.

2.1 System Settings
The system is an asynchronous message-passing system assuming fair communica-
tion. Fair communication means that if a process pi receives a message from pj, then
said message was previously sent by pj where pi refers to the i’th process. Also, for
any message m, if pi receives m infinitely often from pj then pj has sent m infinitely
often. The system consists of a set, P, of n failure-prone processes with unique iden-
tifiers. The failures include crashes and transient faults. In the case of crashes, the
process is assumed to never restart and is excluded for the rest of the execution. For
transient faults the self-stabilization paradigm is leveraged to transition back into a
legitimate state, more on self-stabilization can be found in Section 2.2. There is no
notion of universal clocks instead the processes use a logical local clock to measure
the local progression.

The execution model can be described using the interleaving model [9]. This model
describes the execution as a series of interleaving configurations and steps. Each
step consists of an internal computation and a single communication operation,
receiving or sending a message. A state si contains all pi’s variables and communi-
cation channels. The term system state, global state or configuration refers to the
collection of all states in the system, c = {s1, s2, s3, .., sn}. Finally, an execution
can then be described as multiple configurations, each followed by a single step,
E = c[0], a[0], c[1], a[1], .. where c[0] is the initial configuration and each following
configuration c[k + 1] is a result of the step a[k] on the configuration c[k].

2.2 Self-Stabilization
The self-stabilization paradigm was first introduced by Edsger W. Dijkstra in 1973[7].
He calls a system self-stabilizing when, “regardless of its initial state, it is guaran-
teed to arrive at a legitimate state in a finite number of steps”. A legitimate state
can be defined as a system state where the system holds the requirements for the

5

2. Scientific Background

current algorithm. For instance, the requirements for a leader election algorithm is
that at one point at most one leader may exist in the system. Self-stabilization was
later formally defined by M. Schneider in 1993[48] as:

“For a system S with respect to a predicate P, over its set of global states,
where P is intended to identify its correct execution. S is self-stabilizing
with respect to predicate P if it satisfies the following two properties:

1. Closure - P is closed under the execution of S. That is, once P is
established in S, it cannot be falsified.

2. Convergence - Starting from an arbitrary global state, S is guar-
anteed to reach a global state satisfying P within a finite number
of state transitions.”

The model of failure used by Schneider to discuss fault-tolerance is transient fault.
Transient failures can change the local state of a process which in turn will change
the global state of the system. A self-stabilizing system can then recover from such
transient failures given that they do not continuously occur.

Furthermore, since transient failures can’t always be detected, a process in a self-
stabilizing system must keep checking if its local state is legitimate. Meaning if a
transient failure occurs, the process will eventually detect that it is no longer in a
legitimate state and then take some action. This requires what is referred to as the
“do forever loop” or “forever loop”.

2.3 Failure Detectors
Asynchronous consensus protocols can fail to reach consensus in the presence of even
a single process crash [8][26]. This stems from the impossibility for a asynchronous
protocol to tell the difference between a slow and a crashed process. In the case
of SCD and URB the system can continue but the performance may be impacted.
Since URB needs to wait for all processes to receive and acknowledge a message,
the performance can be affected or the entire system’s progression can be halted
entirely in the presence of crashes. To prevent this, distributed failure detectors can
be used.

Each local process has access to one or more failure detector modules, each failure
detector module monitors the processes in the system and maintains a list of cur-
rently trusted processes. If a process is erroneously removed from the trusted list
by the failure detector it can later be included again. An asynchronous distributed
system can then use this trusted process list to continue its progression without
having to wait for slow or crashed processes.

However, if a failure detector makes a mistake it should not affect the correct-
ness of the algorithm/implementation running on the processes. This means that

6

2. Scientific Background

if a process is erroneously marked as crashed and later included in the trusted list
again, said process should still behave according to the specification of the algo-
rithm/application. For example, if a process running a broadcast algorithm such
as URB is erroneously marked as crashed it should after some time be marked as
trusted again. Once this happens the messages that were broadcasted during the
period in which the process was marked as crashed should arrive at the this process
at some point. Meaning once all processes finishes, they should all have the same
delivered messages regardless if they were erroneously marked as crashed at some
point and later unmarked. This can also be solved by not allowing processes to
reenter the trusted list once they have been removed from it. This solution is used
in the studied protocols, in this way the system can ignore very slow processes which
may lead to better performance.

2.4 FIFO Uniform Reliable Broadcast

Figure 2.1: The flow of a single urbBroadcast operation in a system of two processes

Uniform Reliable Broadcast, or URB, achieves in informal terms a consistent delivery
of messages across the processes in the system. Figure 2.2 shows the flow of a single
urbBroadcast operation in a system of two processes. For simplicity’s sake, the MSG
send event from process 1 to itself after the first update call and the MSGack send
event after node 2 sends MSG to itself are omitted. This section presents an outline
of the URB algorithm starting with its protocol messages and then a high-level
outline of the algorithm.

Before describing the URB algorithm, the concept of obsolete needs to be explained.
An obsolete record informally means that the record is not of interest for any node
in the system. Specifically, all processes in the system has acknowledged the record
and the record has been URB-delivered by all processes.

The URB algorithm uses three types of protocol messages: MSG, MSGack and
GOSSIP. A MSG protocol message contains (m, j, s) which are: the message m, the
sender’s unique identifier j and the sequence number for the message s. A MSGack
protocol message contains (j, s) which are: the sender of the acknowledged message’s

7

2. Scientific Background

unique identifier j and the sequence number for the acknowledged message s. The
GOSSIP from node j to node i message contains (maximumSeq, receivedObsSJ,
sentObsSJ) which are:

• The maximum sequence number present in the senders buffer for records from
node i.

• The highest received obsolete sequence number from node i for node j.

• The highest sent obsolete sequence number from node j for node i.

Algorithm 1: High-level outline of FIFO-Uniform Reliable Broadcast for pi

1 bufferUnitSize: Maximum number of messages in the buffer per sender
2 sequenceNumber : Message index number
3 receivedObsSeq[1..n]: highest received obsolete sequence number from each node
4 sentObsSeq[1..n]: highest sent obsolete sequence number to each node
5 nextToDeliver [1..n]: next sequence number to deliver for each sender, ensuring

FIFO delivery order
6 buffer : a set of records containing message and extra metadata
7

8 fn obsolete(r): begin
9 True if all nodes have recieved r, r has been delivered and

receivedObsSeq[r.sender] = r.sequenceNumber + 1.
10 end
11 fn urbBroadcast(m): begin
12 wait for room in the buffer then increment sequenceNumber and call update;
13 end
14

15 fn update(m,j,s,k): begin
16 if s ≤ receivedObsSeq[j] then message sequence number s is too old
17 discard the message and return
18 end
19 if message not present in buffer and m is not ⊥ then
20 Create new record with:

• Message m
• Sender j
• Sequence number s
• Delivery flag False
• Received by set: {j,k}

Insert the new record into the buffer
21 else
22 Insert {j,k} into the receivedBy set for the record with sender j and

sequence number s
23 end
24 end

8

2. Scientific Background

25 While true do
26 if The buffer contains duplicate records or records with an ⊥ message then
27 Empty the buffer
28 if sequenceNumber is out-of-bounds or messages are missing from the buffer

then
29 set all indices in sentObsSeq to the value of sequenceNumber

30 foreach pk ∈ P do
31 ensure the gap between receivedObsS [k] and the largest sequence number in

the buffer for sender k is not larger than bufferUnitSize
32 foreach record in buffer do
33 if all trusted nodes have received the record and next[record sender] = record

sequence number then
34 urbDeliver the record and set record delivered flag to true
35 Increment next[record sender]
36 foreach pk ∈ P : k has not received the record and i is the sender of the

record do
37 send MSG(record) to pk

38 While There is an obsolete(record) in the buffer do
39 Increment receivedObsS [record sender]
40 Remove all records in the buffer that are not needed by any node by using

receivedObsS and sentObsS.
41 foreach pk ∈ P do
42 Send gossip message to pk with:

• The maximum sequence number in the buffer for sender k
• receivedObsS [k]
• sentObsS [k]

43 upon MSG(m,j,s) arrival from pk: call update(m,j,s,k) and send MSGack(j,s)
to pk

44 upon MSGack(j,s) arrival from pk: call update(⊥,j,s,k)
45 upon GOSSIP(maximumSeq, receivedObsSJ, sentObsSJ arrival from pj:

• Set sequenceNumber to maximum of itself and maximumSeq
• Set receivedObsS [j] to maximum of itself and sentObsSJ
• Set sentObsS [j] to maximum of itself and receivedObsSJ

2.5 Set-Constrained Delivery Broadcast
The key values of Set-Constrained Delivery Broadcast, or SCD are the sequence
number (sn) which is a logical clock representing the progress of the process and
the buffer which contains a list of messages that have been FIFO-delivered by the
lower layer. This algorithm allows multiple messages to be delivered in a set simul-
taneously, while still ensuring an ordering constraint. The ordering constraint can
be described as: if a message delivers a set of messages with message m and later a

9

2. Scientific Background

Figure 2.2: The flow of a single urbBroadcast operation in a system of two nodes

set of messages with message m’, no process delivers a set of messages with message
m’ before delivering a set of messages with message m.

The SCD algorithm uses FORWARD and GOSSIP messages to progress. A FOR-
WARD message contains (m, j, sJ , f, sF) which are: the message, the sender’s
identifier, the sender’s logical clock, the forwarder’s identifier and the forwarder’s
logical clock. The GOSSIP message from process j to process i contains, (max-
ClockJ, receivedObsClockJ, sentObsClockJ, receivedSpace, sentSpace) which are:

• The maximum clock value for process i in process j’s buffer.

• The highest received obsolete clock value from process i for process j.

• The highest sent obsolete clock value from process j for process i.

• The lowest remotely stored clock value in process j for process i.

• The lowest locally stored clock value for process j.

10

2. Scientific Background

Algorithm 2: High-level outline of the self-stabilizing Set-Constrained Delivery
Broadcast algorithm for pi

1 bufferUnitSize: Maximum number of messages in the buffer per sender
2 buffer : stores message records that has been delivered by the FIFO-URB layer

but not yet SCD-delivered
3 logicalClock: local logical clock used to measure pi’s local progress and to

identify pi’s SCD-broadcast messages
4 receivedObsClock[1..n]: highest received obsolete clock value from each process.
5 sentObsClock[1..n]: highest sent obsolete clock value to each process.
6 receivedSpace[1..n]: lowest clock value stored in the buffer from each process.
7 sentSpace[1..n]: lowest stored clock value for each process.
8

9 fn obsolete(record, k): begin
10 Returns True if the record has been broadcasted, delivered and

receivedObsClock[k] +1 = the record’s clock value for k
11 fn saved(j): begin
12 Returns a set of all clock values stored in the buffer sent by pj

13 fn mS(j): begin
14 Returns one of the following

• Returns 0 if pj is not trusted
• Returns receivedObsClock[j] if j equals to pj’s unique identifier and pj is

trusted
• Returns the minimum value of sentObsClock[k] where k is all the unique

identifiers that pi trusts
15 fn scdBroadcast(m): begin
16 Waits until there is room in the buffer by ensuring that the length of the

set returned by calling saved(i) is less than n · bufferUnitSize forward.
17 fn forward(m, j, sJ, f, sF): begin
18 if Record with sender j and clock[j] = sJ exists then
19 Update clock[f] for the record to sF
20 else if Clock value sJ is not too old, i.e. sJ > receivedObsClock[j] then
21 Create new record with:

• Message m
• Sender j
• Clock, which is a list of clock values for all nodes. Initialized to [∞,,∞]

and then updated with: (clock[i],clock[j],clock[f]) ← (logicalClock, sJ, sF).
• Delivery flag False

22 else if receivedObsClock[f] +1 = sF then
23 Increment receivedObsClock[f]

24 fn tryDeliver() begin
25 Create a toDeliver set containing all records that has been broadcasted but

not yet delivered such that a majority of the indices in the record’s clock
list are less than ∞.

11

2. Scientific Background

26

27 while ∃r ∈ toDeliver,∃r′ ∈ buffer \ toDeliver: r’ has not been delivered
and a majority of nodes has received r’ before r do

28 Remove r from toDeliver
29 if toDeliver is not empty then
30 foreach record in toDeliver do
31 Set record delivered flag to True
32 scdDeliver all messages in toDeliver

33 while True do
34 if There are duplicate records in the buffer, records with clock value for pi

equals to ∞ or the length of the set returned by saved(i) is greater than n ·
bufferUnitSize then

35 Empty the buffer
36 if If the logicalClock is out-of-bounds or message are missing from the buffer

then
37 Set all indices in sentObsClock to logicalClock and set

receivedObsClock[i] to logicalClock
38 foreach Record in the buffer that has not yet been broadcasted or the

broadcast operation has terminated do
39 FIFO-URB-Broadcast the record and mark the record as broadcasted.
40 tryDeliver();
41 while There exists an obsolete(record, k) in the buffer for pk ∈ P do
42 Increment receivedObsClock[k].
43 Remove all records in the buffer that are no longer needed by observing the

values in receivedObsClock, sentObsClock, receivedSpace, sentSpace.
44 foreach pk ∈ P do
45 if saved(k) returns an empty set then
46 set receivedSpace[k] to ⊥
47 else
48 set receivedSpace to the minimum value between receivedObsClock[k]

and saved(k)
49 Send GOSSIP message to pk with: (Maximum clock value for pk in the

buffer, receivedObsClock[k], sentObsClock[k])

50 upon FORWARD(m, j, sJ, f, sF) FIFO-URB-delivered from pj: call
forward(m, j, sJ, f, sF)

51 upon GOSSIP(maxClockJ,receivedObsClockJ, sentObsClockJ, receivedSpaceJ,
sentObsSpaceJ) from pj:
• Set logicalClock to the maximum of itself and maxClockJ.
• Set receivedObsClock[j] to the maximum of itself and sentObsClockJ.
• Set sentObsClock[j] to the maximum of itself and receivedObsClockJ.
• if receivedSpaceJ is not equal to ⊥ then set sentObsSpaceJ [j] to the

maximum of txSpace[j and itself otherwise if sentObsSpace[j] is not equal to
⊥ and receivedSpaceJ is the next expected value then set txSpace[j] to
receivedSpaceJ

• if sentObsSpaceJ is not equal to ⊥ then set receivedSpace[j] to the maximum
of sentObsSpaceJ and itself otherwise if sentObsSpaceJ is the next expected
value then set receivedSpace[j] ← sentObsSpaceJ

12

2. Scientific Background

2.6 Applications
With the properties provided by SCD and its underlying reliable FIFO-broadcast
mechanism, we can implement applications on top of SCD easily. The application of
interest is Atomic snapshot. The following section presents a high-level description
of the Atomic snapshot.

2.6.1 Atomic snapshot
Atomic snapshot allows multiple readers and writers to access shared memory. In
this case, it is a shared register of integers.

Algorithm 3: High-level outline of the self-stabilizing Atomic snapshot object
for pi

1 reg[1..m]: stores register values
2 tsa[1..m]: stores a timestamp associated with each register value
3 fn snapshot(): begin

1. Call scdBroadcast with a message SYNC(i) as an argument.
2. Wait until the unique identifier(txDes) returned from SCD is ⊥ or the

SCD-layer hasTerminated(txDes) returns true, return reg.
4 fn write(r, v): begin

1. Call scdBroadcast with a message SYNC(i) as an argument.
2. Wait until the unique identifier(txDes) returned from SCD is ⊥ or the

SCD-layer hasTerminated(txDes) returns true, return reg.
3. Call scdBroadcast with a message WRITE(r, v, <tsa[r].date + 1, i>).
4. Wait until the unique identifier(txDes) returned from SCD is ⊥ or the

SCD-layer hasTerminated(txDes) returns true, return reg.
5 upon a set (WRITE[1..k], SYNC[1..l]) is SCD-delivered:
6 foreach r ∈ {1,...,k} do
7 if tsa[r] is less than the maximum timestamp contained in

WRITE[1..k].timestamp then
8 reg[r] ← WRITE[r].v
9 tsa[r] ← the maximum timestamp contained in WRITE[1..k].timestamp

13

2. Scientific Background

14

3
The System

The following section describes the architecture of the communication abstractions
and how they cooperate. The next section continues with the implementation of the
communication abstractions and the applications.

3.1 Architecture
The three main layers in the implementation are Uniform Reliable Broadcast (URB),
Set-Constrained Delivery Broadcast (SCD) as well as the application layer imple-
mented on top of the SCD layer as depicted in Figure 1.1.

Figure 3.1: The URB, SCD and Application layers and how they interact.

An overview of how the layers interact can be found in Figure 3.1. The left-hand
side is the flow of an operation invocation until Send_MSG which invokes the kernel
function call send() which sends the message to a socket. The right-hand side is the
flow of of an incoming broadcast operation starting from the MSG_Received which
consumes an incoming messages on a socket by using the recv() kernel function call
and ending with a response containing the operation result.

15

3. The System

The following describes the interactions between the layers for a sender of a message.
When a new application operation is invoked, the node generates a new application
message with contents specified by the application algorithm. This application mes-
sage is then passed down to the SCD layer. The SCD layer creates a new forward
message with the node’s identifier and a logical timestamp. The forward message is
then handed to the underlying URB broadcast layer by calling the urbBroadcast op-
eration having the forward message as an argument. The URB layer then broadcast
this message according to the URB algorithm specification.

Once a message arrives at a node, the behaviour is the same regardless if it is the
sender of the message or not. When the URB message arrives, it is included in
the URB buffer. Thereafter, the receiving node must wait for acknowledgements
from all of the system nodes before URB-delivering this message. Once the message
has been URB-delivered, the URB layer passes the delivered message to the upper
SCD layer and the message can then be treated as a SCD-layer record. The SCD
layer iterates over all records and use the lower layer’s urbBroadcast to broadcast
the records to the rest of the system if needed. In order for a SCD-layer record to
be delivered, it must be received and acknowledged by the majority of the nodes in
the system. After that, the message is consumed by the application layer and the
application layer can perform tasks depending on the contents of the message and
which application algorithm is being executed.

3.1.1 Rust Programming Language

The system is implemented in the Rust programming language[44]. Rust is a stat-
ically typed compiled language which is designed to fully support concurrent pro-
gramming. The borrow checker in Rust guarantees memory safety and isolation
which prevents data races, stack and buffer overflow and access to uninitialized
or unallocated memory. However, this presented some implementation challenges,
which are discussed in Section 3.2.1.

To exchange messages between modules the implementation uses the Rust synchro-
nization primitive channel. A channel is used to send data between two threads in a
safe manner allowing for coordination without using shared memory or locks. The
channel provides two ends, a send end and a receiver end. Data can be sent on the
send end and then consumed by continuously receiving from the receive end until
there is no more pending data.

The implementation also uses another flavor of channel called ring channel. Unlike
a normal channel ring channel is bounded and overwrites older messages when full.
Ring channel favors throughput over lossless message passing, making it ideal when
produced messages needs to be sent on the channel as soon as possible. In the
implementation this is used to keep the Linux socket buffer clear by consuming
messages and sending them on the ring channel.

16

3. The System

Figure 3.2: Overview of the interactions between the UDP socket, application and
client.

3.2 Implementation
This section provides an overview of the implementation and outline how the algo-
rithms have been implemented. The implementation contains the following modules

• A client, an external module which initiates operations and sends them to the
node operations to the node via a communication channel.

• A node, a module which contains the logic of the implemented algorithms. It
uses a single thread that receives operations from the client, receives messages
from other nodes and processes the messages based on the algorithms.

– The node contains a UDP socket to send and receive messages.

– The node has a ring channel buffer which continuously consumes messages
from the UDP buffer and provides these consumed messages to the node
when needed in order to prevent the UDP buffer from getting full.

The illustration of these modules and their interactions can be found in Figure 3.2.

The node can be initialized without starting the ’do forever loop’, the client can then
access the node to modify or access internal variables. Once the ’do forever loop’
has started the ownership of the node belongs to the node itself and can therefore
not be accessed by the client anymore. The method which starts the ’do forever

17

3. The System

loop’ provides three channel ends, which purpose is outlined later in this section.
The ’do forever loop’s flow of execution can be described as follows:

1. Receive messages

2. Receive operations

3. URB ’do forever loop’ iteration

4. SCD ’do forever loop’ iteration∗

Starting with receiving pending messages, the node iterates over the ring channel
which contains messages received from the UDP socket owned by the node. For each
type of message, the corresponding method for handling such an incoming message
is invoked and then the message is removed from the ring channel.

The node then receives pending operations, this is done similarly by looping through
operations pending in the operation channel’s receive end. For each operation, the
node ensures there is enough room left in the buffer as specified by the algorithm. If
there is room the corresponding broadcast operation is invoked and OK is sent on
the status channel, if there was no room ErrNoSpace is sent on the status channel.

After the node has received all pending operations and all pending messages, it can
then start the main message processing logic. First, the URB processing logic is
executed as described by the URB algorithm, of which an overview can be found in
Section 2.4. Lastly if the application or abstraction running is based on the SCD
component, the SCD processing logic is executed as described by the SCD algorithm,
of which an overview can be found in Section 2.5.

3.2.1 Client communication
Due to Rust’s strict memory safety, the client has to use channels in order to commu-
nicate with the node. An overview of the client and node interactions can be found
in Figure 3.3. The client can initialize the node and modify public variables until
the client starts the node ’forever loop’. When the client starts the ’forever loop’
ownership of the node is passed to the node itself and the node can at this point no
longer be modified by the client. Starting the ’forever loop’ provides provides the
client with three channel ends, two send ends and one receive end. These channel
ends are: the operation channel send end, the terminate channel send end and the
status channel receive end. The client can use the operation channel’s send end to
send messages to the node which are then broadcasted according to the algorithm.
Finally, the receive end can be used by the client to learn about the status of the
last operation. To ensure an operation has been accepted by the node, the client
therefore first sends on the operation channel and then after waits for the status
from the status channel receive end. If the status channel receive end contains an

∗When running the SCD component or applications built on top of the SCD component

18

3. The System

Figure 3.3: The client and node interactions.

OK, the operation was processed and is going to be broadcasted. However, if the
status receiver returns ErrNoSpace, the operation was not accepted as there was no
space left for the resulting message.

3.2.2 Optimization
A number of optimizations can be implemented in order to improve the overall per-
formance of the URB and SCD. In this section, we briefly discuss the optimizations
done to URB and SCD. First, we alter the data type of recBy, a set of nodes that
have received and acknowledged the record stored together with each record in the
buffer, which initially was a HashSet into a compact form of vector of bits called
BitVec. BitVec stores a specified size of continuous bits in which each bit can be
conveniently used as a Boolean variable, a bit implies true if it is set to 1, or false
otherwise.

The recBy BitVec associated with each record is sent to other nodes along with
the actual message when the node execute line 38-39 of the URB algorithm. When
other nodes receive this message, they perform a set union operation between the
current recBy coupled with the record stored in the buffer and the recBy contained
in the received message. This means that pi can infer that pk has received the
message when pi receives a message from pj that contains the unique identifier of pk
in the recBy. This information is further used to infer if all the nodes have received
and acknowledged this message. Doing this can speed up the acknowledgement
process since the node does not have to wait for all the acknowledgement messages
from all other nodes in the system, but instead it can be inferred by a chain of
acknowledgements contained in the message.

The delivery mechanism of URB is also optimized. Normally, a node would wait
for all acknowledgement messages from all other nodes in the system before URB-
delivering a message. Instead, a message can be URB-delivered if it has been ac-
knowledged by a majority of the current trusted nodes in the system.

19

3. The System

Both URB and SCD contain self-stabilization statements at the beginning of the do
forever loop. This can be expensive if executed every iteration. Instead of executing
these statements every iteration, the delta parameter is used to specify how often
the self-stabilization statements are executed, i.e., the self-stabilization statements
are executed in every delta iterations. The same delta parameter is also applied
to determine the frequency of gossip sending. This means that a gossip message is
also sent every delta rounds in order to reduce the message sending and processing
overhead.

20

4
Evaluation Environment and Plan

The evaluation of our implementations is done through experiments. Our experi-
ments are constructed to answer one or more research questions. The experiments
are measured against a set of evaluation criteria. Some of the evaluation criteria
are parameters which are modified to observe the effect on the other evaluation cri-
teria. This chapter outlines our evaluation criteria, research questions, evaluation
environments as well as the experiment plan.

4.1 Evaluation Criteria and Research Questions

The criteria measures the performance of the system by observing the number of
completed operations and the run length of the experiments. The operations con-
sidered depends on which implementation is being evaluated. For the SCD/URB
implementations we are concerned with the scdBroadcast/urbBroadcast operations,
i.e. the messages broadcasted by SCD/URB. For the applications we are interested
in the read/write operations. Our evaluation criteria focus on the following aspects:

1. Throughput. The number of operations the system can complete over a
period of time.

2. Latency. The time it takes from the invocation of an operation to its com-
pletion.

3. Recovery time. The time during which the system recovers after the occur-
rence of a transient fault.

4. Fault-tolerance. Given that fair communication is guaranteed the system
should be able to operate normally in the presence of packet omission, dupli-
cation and reordering, as long as at most a minority of nodes are crashed.

5. Scalability. How the performance of the system is affected by increasing the
number of servers or other scalable factors, such as senders, readers, writers,
etc.

21

4. Evaluation Environment and Plan

Following this criteria we have selected a few research questions. The evaluation
focuses on the following research questions:

• How does the evaluation criteria for the system change with respect to the
number of nodes as well as the number of senders?

• How does the bufferUnitSize parameter affect the evaluation criteria?

• How is the evaluation criteria affected by the trade-off parameter δ? The
parameter δ describes how often we execute the self-stabilization code, i.e. the
self-stabilization statements are executed every δ iterations.

• How does the the number of application-level writers and readers affect the
evaluation criteria?

4.2 Experiment description
Some of our experiments are conducted on multiple implementations since their
behaviours are similar and the properties under test are the same. For the com-
munication implementations, URB and SCD, we are interested in measuring the
evaluation criteria with respect to the broadcast operations and the delivery events,
while for the application implementations the evaluation criteria is measured against
the read and write operations. The experiments 1 to 5 are used to evaluate the com-
munication abstraction implementations SCD and URB, while experiments 6 and
7 are used to evaluate the applications built on top of these communication layers.
Our list of experiments includes:

1. Scalability of number of servers with respect to throughput and
latency. As the number of servers in the system increases the number of
acknowledgement protocol-level messages required to deliver a single message
increases as well. The experiment is conducted by considering a varying num-
ber of servers in the system, i.e. 1 to 15 servers.

2. Scalability of number of senders with respect to throughput and
latency. The senders are the servers that generate new messages. Increasing
the number of senders increases the rate at which we generate new messages.
The experiment is conducted by selecting a number of servers between 1 and
15 and then using a varying number of senders between 1 and the chosen
number of nodes.

3. Scalability of bufferUnitSize size with respect to throughput and
latency. The parameter bufferUnitSize determines how many messages that
can be stored for a single sender. Increasing this allows the node to store
more messages simultaneously. This is a trade-off to consider since the more
messages in the buffer the more processing time is required to iterate over
the buffer. However using a very small bufferUnitSize would cause the client

22

4. Evaluation Environment and Plan

operations to be blocked and the client will have to wait for the buffer to be
consumed more often. The experiment is conducted using a varying number
of nodes between 1 and 15 nodes and the buffer size increases logarithmically
from 1 to 10 and so on.

4. Overhead of system recovery. When the system recovers from an invalid
configuration, the performance of the system could be affected as some pro-
cessing time and messages are needed to recover. The aim is to observe how
the evaluation criteria is affected by the number of nodes that transitions to
an invalid configuration at a single point in time. The experiment is conducted
using a varying number of nodes between 3 and 15. The number of "failing"
nodes varies depending on the number of nodes but is at least 1.

5. Overhead of the self-stabilization property with respect to δ. Since
the node must keep iterating over the buffer every δ iterations in order to
achieve self-stabilization, this can reduce the performance of the algorithm.
The experiment is conducted with a set number of servers of 8 and with a
logarithmically increasing δ argument, i.e., 1 to 10 until a very large number
such as 264.

6. Scalability of read operations with respect to write operations. Since
the writers and readers compete for resources when running concurrently, the
number of possible read operations to perform depends on the number of write
operations that is performed. The experiment is conducted using 10 readers
and a varying number of writers, between 0 and 10.

7. Scalability of write operations with respect to read operations. The
aim is to observe how the number of read operations is affected by the number
of concurrent write operations. The experiment is conducted using 10 writers
and a varying number of readers, between 0 and 10.

4.3 Evaluation Environment
In order to validate the communication abstractions in an efficient manner and at
the same time be able to test them on a global scale we consider three evaluation
environments:

• Local Machine: At this local test environment the implementation runs on a
single machine for the sake of preliminary functionality testing and debugging
during development. The nodes are represented as processes and the com-
munication is done using the UDP stack in order to mimic communication
between remote nodes.

• Local Network: A local network evaluation environment where the imple-
mentation runs on a set of local machines. We are using three Raspberry Pis,
one model 3 and two model 2 connected together by a HP Procurve V1410-24

23

4. Evaluation Environment and Plan

Ethernet Switch, capable of 100 Mbit/s transmission. This environment also
serves as a demonstration platform for showing the system’s ability to work in
local networks that, for example, Cloud system often use. These machines are
running Raspbian without any desktop environment. In such environments,
the nodes are limited in capacity so we might reach the bounds of the Linux
socket buffer. Such corner cases of the studied algorithms are validated.

• PlanetLab: PlanetLab provides a number of geographically distributed con-
nected machines, in various places in Europe [6]. PlanetLab was chosen to
evaluate our implementation as it can reflect a real-world scenario, where the
nodes provided have varying performances and network conditions. This in-
troduces real-world challenges such as latency, packet loss and congestion. The
machines in PlanetLab are running different versions of Linux.

4.4 Evaluation Plan

We run the experiments on two environments: geographically distributed computers
by using PlanetLab [6] as well as the local network environment described in Section
4.3. Next we describe our experiment setup and the algorithmic test cases.

4.4.1 Experiment setup

Each physical PlanetLab and Raspberry Pi machine runs a single node which in
turn runs the program being tested. Each node is assigned a unique identifier at
the start of the execution. Senders and writers are assigned from the lowest node
identifier while readers are assigned from the highest node identifier. The number
of servers in the system is dependant on which experiment is being conducted.

Each combination of experiment, number of servers or other varying parameter is
run for 60 seconds during which the program generates new operations. After this
period no new operations are generated and we allow the system to process the
remaining messages before terminating. To determine if a node should terminate
we observe the buffer of messages. If the length of the buffer is 0 or it remains
unchanged over a fixed number of iterations we assume that the node is unable to
progress further and can therefore terminate. In addition, we also require a node to
run for a minimum number of iterations since a node can have no messages in its
buffer when it starts its final iterations but there might be incoming messages.

The operation latency is measured by the sender attaching a timer to each invoked
operation. For every delivered operation from itself the sender can then store the
value of the timer for the newly delivered operation in a list. The average operation
latency for a sender is then calculated by the average of this list. Finally the average
operation latency per sender in the system is then calculated by average of each
process latency list.

24

4. Evaluation Environment and Plan

4.4.2 Evaluation utilities

The evaluation can be divided into three steps: the installation of the source code
on the computers in the current evaluation environment, running the experiments
and aggregating the results. We use a host file to store the available hosts which is
shuffled randomly before each experiment. A number of hosts present in PlanetLab
are inserted into the hosts file. The hosts were chosen based on plcli [46], which
provided us with a list of healthy hosts in the slice.

To run the experiments without requiring too much user input we use a scenario
file. This is a text file in which each line represents a scenario to run. A scenario
has the following options:

• Number of servers: how many nodes should run this scenario.

• Variant: the communication abstraction or application that should be exe-
cuted.

• Number of writers/senders: how many writers should be present in the system.

• Number of readers: how many readers should be present in the system.

• Number of "corrupted" nodes: how many nodes that should, at one point in
time, corrupt an internal variable.

In order to simulate a transition into an invalid configuration, we flag some nodes
as "corrupted" nodes, how many such nodes exist is defined by the experiment. A
corrupted node will, after a fixed number of iterations, corrupt an internal variable.
An internal flag is then flipped to ensure this only occurs once. Otherwise the node
behaves the same way as all other nodes.

As described by the scenario, a number of nodes are executed on the hosts in the
hosts file. Each node is executed on a separate host. The scenarios are executed
sequentially. When a scenario finishes its execution the evaluation files are down-
loaded to the local machine which executed the evaluation. After downloading these
evaluation files a merged result file is created, or if the result file is already present,
the evaluation files are merged into the result file.

Once all scenarios have finished their execution, the result file containing the results
of all executed scenarios is present locally. The result file contains a list of JSON
objects. Each JSON object in this list represents the results of a single scenario.
This result object contains the name of the scenario and a map with node identifiers
used as keys and JSON objects as values. The JSON objects used as values in this
map contains:

• The set of broadcasted messages.

25

4. Evaluation Environment and Plan

• The set of URB delivered messages.

• The set of SCD delivered messages.

• The run length of the scenario.

This result file is used to aggregate the results from the scenarios and output the
experiment graph.

4.4.3 Experiments
Experiments 1 to 5 are used to evaluate the communication abstraction implemen-
tations URB and SCD, while the experiments 6 and 7 are used to evaluate the
application built on top of these communication layers. Each combination of the
parameters for every experiment is run 10 times. The highest and the lowest values
of the run results are removed in order to avoid having outliers in the results. Then,
the average is used to calculate the result of the experiment.

26

5
Result

In this chapter we present the results of our experiments which are conducted on two
environments, more information about the environments can be found in Section 4.3.
Each parameter combination on every experiment have been executed ten times with
the highest and lowest result removed to mitigate the effect of outliers. More on
how the experiments are conducted can be found in Chapter 4.

We found that for the experiments where computational power is important, such
as for the bufferUnitSize experiment, the PlanetLab environment outperformed the
local network environment. While for experiments where the link latency is more
important, such as the number of senders experiment, the local environment out-
performed the PlanetLab environment thanks to its extremely low link latency. We
also found that the recovery period after a transient fault has negligible impact on
performance, both in terms of throughput and latency of delivered messages in both
environments.

The chapter first presents the results from the experiments on Uniform Reliable
Broadcast followed by the results from the Set-Constrained Delivery Broadcast.
Finally we present the results from the experiments on a snapshot application im-
plemented with our communication abstractions.

5.1 Uniform Reliable Broadcast

5.1.1 Scalability of number of servers with respect to through-
put and latency

Latency is the focal evaluation criterion, Experiment 1 vary the number of processes
and measure the average latency. We expect the latency to grow with the number
of processes. Indeed, this is the observed result from Figure 5.1 both for the local
network and PlanetLab.

27

5. Result

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of processes

1
10

100

200

250

La
te

nc
y

fo
r

ur
bB

ro
ad

ca
st

 in
 m

s

Scalability w.r.t. number of processes.
The average latency per sender for a urbBroadcast, in ms.

Results for Local Network and PlanetLab.

Figure 5.1: Scalability of number of processes w.r.t. urbBroadcast.

5.1.2 Scalability of number of senders with respect to la-
tency

Since the latency is expected to grow as the number of processes is growing, there is
a need to try to point out the key contributors for such growth. In Experiment 2, we
aim at investigating whether the number of senders can incur a greater impact on
the latency than the number of servers. From Figure 5.2 we observe that the growth
in the number of servers has a slightly higher impact than the growth in the number
of senders for the case of local network. Broadly speaking, similar observations can
be made for the experiment on PlanetLab, see Figure 5.3.

28

5. Result

Scalability w.r.t. number of senders.
The average latency per sender for a urbBroadcast, in ms.

Results for Local Network.

1

2

3

3

4

4

4

5

5

5

5

6

6

6

6

7

7

7

7

8

8

8

8

9

9

9

10

10

11

11

12
13

1 2 3
Number of senders

1

2

3

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.2: Scalability of number of senders w.r.t. urbBroadcast.

Scalability w.r.t. number of senders.
The average latency per sender for a urbBroadcast, in ms.

Results for PlanetLab.

202020

3030

40

40

50

50

60

60

60
60

60

60

60
60

70

70

70

70

70

70

70

70

70

70

80

80

80

80

80

90

90

90

90

90

90

100

10
0

100

100

100

10
0

100

10
0

100

100

100

10
0

110

11
0

110

110

110

110

11
0

110

110

110

120

120

120

120

120

120

130

130

130

130

130

130

140

140

140

150

150

150

170

170

170

170

180

180

180

180

200
200

220
220

240240
250250

260260

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of senders

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.3: Scalability of number of senders w.r.t. urbBroadcast.

29

5. Result

5.1.3 Scalability of bufferUnitSize with respect to latency

Since the number of messages per sender allowed in the buffer is limited by the
bufferUnitSize, increasing it would also increase the number of records in the buffer.
The program needs to iterate over the entirety of the buffer to process its contents.
This means more resources are required to iterate over the buffer with a larger buffer-
UnitSize. Because of this, we would expect to see a performance loss in latency with
an increasing bufferUnitSize but we should see an increase in throughput. However
we expect the throughput gain to diminish as the bufferUnitSize grows past a certain
point. In Figure 5.4 we observe that as the bufferUnitSize increases the latency de-
creases, as we expected. However in Figure 5.5 we see a smaller performance penalty
until bufferUnitSize=100 when the latency increases significantly. The difference be-
tween the environments can be explained by the fact that the Local Network uses
lower computational power devices, increasing the performance impact of a large
bufferUnitSize.

Scalability w.r.t. bufferUnitSize.
The average latency per sender for a urbBroadcast, in ms.

Results for Local Network.

3000
3000

3000

3000

3000

3000

3000

3000

3000

6000

6000

6000

6000

6000

6000

6000

6000

9000

9000

9000

9000

9000

9000

9000

12000

12000

12000

12000

12000

12000

12000

15000

15000

15000

15000

15000

15000

18000

18000

18000

18000

18000

18000

21000

21000

21000

21000

21000

24000

24000

24000

24000

24000

27000

27000

27000

27000

27000

30000

30000

30000

30000

33000

33000

33000

33000

36000

36000

36000

39000

39000

39000

42000

42000

42000

45000

45000

45000

48000

48000

51000

51000

54000

54000

57000

57000

60000
63000

66000
69000

1000

1000
1000

1000

1000

1000

1000

1000
1000

1000

2000
2000

2000

2000

2000

2000

2000

2000

2000

200
200

200
200

200

200

200

200

400
400

400

400
400

400

400

400
400

600
600

600

600
600

600

600

600
600 600

800
800

800
800

800

800

800

800
800 800

110 100 400 800 1000
BufferUnitSize

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.4: Scalability of bufferUnitSize w.r.t. urbBroadcast.

30

5. Result

Scalability w.r.t. bufferUnitSize.
The average latency per sender for a urbBroadcast, in ms.

Results for PlanetLab.

50000

50000

50
00

0

50000

100000

100000
150000

200000

10
10 10

10

20

20

20

20
10

10 10
10

20

20

20

20

40

40
40

40

40

40

40

40

10
10 10

10

40

40
40

40

40

40

40

40

50

50

50

50

50

50

50

50

50

50

50

50

50

50

10
10 10

10

50

50

50

50

50

50

50

50

50

50

50

50

50

5070

70

70

70

70

70

70

70

70

70

70

10
10 10

10

100

10
0

100

100

100
100

100

100
200

200

20
0

200

20
0

200

20010
10 10

10
200

200

20
0

200

20
0

200

200

400

400

400

400

400

40
0

400

400

400

400

400

10
10 10

10

400

400

400

400

400

40
0

400

400

400

400

400

700 70
0

700

70
0

700

700

70
0

700

700

700

700

10
10 10

10

700 70
0

700

70
0

700

700

70
0

700

700

700

700

1000

10
00

1000

10
00

1000

1000

1000

1000

1000

1000

10
10 10

10

1000

10
00

1000

10
00

1000

1000

1000

1000

1000

1000

2000

2000

2000

2000

2000

2000

20
00

2000

10
10 10

10

2000

2000

2000

2000

2000

2000

20
00

2000

10
10 10

10

50
00

5000
5000

5000

5000

5000

20
00

0

20000

20000

20000

20000

10
10 10

10

20
00

0

20000

20000

20000

20000

30
00

0

30000

30000

30000

1 5 50 100 500 1000
BufferUnitSize

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.5: Scalability of bufferUnitSize w.r.t. urbBroadcast.

5.1.4 Overhead of system recovery

In Experiment 4, we aim to observe whether the performance of the system is
affected when corrupted processes are introduced. A corrupted process executes
the program normally until a set point in time when it randomly changes its local
sequence number and thereafter continue normal execution. It is important to point
out that processes are corrupted at different times during the execution. Therefore,
the performance should not greatly increase or decrease as the number of corrupted
processes grows as long as the recovery periods do not overlap. In Figure 5.6 we
observe that the latency increases slightly when the number of corrupted processes
grows from 0 to 1 but afterwards there is a clear linear trend. For Figure 5.7 we can
observe a similar trend, increasing the number of corrupted processes has no clear
impact on the latency. There is some noise in the PlanetLab environment, this can be
explained by the fact that the machines in PlanetLab have varying processing power
and the network condition can vary as well which could cause these fluctuations.
As expected, in both environments there was not a clear correlation between the
number of corrupted processes and latency.

31

5. Result

Scalability w.r.t. number of corrupted processes.
The average latency per sender for a urbBroadcast, in ms.

Results for Local Network.

10 10 10

20 20 20

30
30 30

30

40
40

40

40 40

50
50 50

50
50

60
60 60

60 60

70
70 70 70 70

80 80 80 80 80 80

90 90 90 90 90 90

0 1 2 3
Number of corrupted processes

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.6: Overhead of system recovery w.r.t. urbBroadcast.

Scalability w.r.t. number of corrupted processes.
The average latency per sender for a urbBroadcast, in ms.

Results for PlanetLab.

4040

5050

6060

70 7070 70

80
80

80
80

90
90

90
90

100 100

100
100 100

100

110 110
110110 110
110

120 120 120120 120 120

130 130
130

130 130
130

140

140 140
140

140 140

150
150 150

150150
150 150

150

160

160

160

160

160

160

160

160

170
170 170 170

170
170 170 170

180

180
180 180

180

180
180 180

190
190

190
190

190190
190

190
190

190

200

200
200

200

200
200

200
200

200

200

220

220

220
220 220220

220

220
220 220230 230

230
230

230 230

230
230

250 250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of corrupted processes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.7: Overhead of system recovery w.r.t. urbBroadcast.

32

5. Result

5.1.5 Overhead of the self-stabilization property with re-
spect to δ

In Experiment 5, we want to find out whether the delta parameter imposes an impact
on the overall performance of the protocol. Since the self-stabilization statements
are only executed every delta rounds, increasing delta would free up processing re-
sources to be used on processing messages instead, and thus the overall performance
should be improved. In order to propagate the local information to the system, gos-
sip messages are sent every delta rounds. In addition, gossip messages are always
attached with every outgoing message. Thanks to the attached gossip messages,
stale records can be removed from the buffer once they are delivered by all trusted
nodes due to the information inside the attached gossip message. Given this we do
not expect a higher delta to increase the latency, rather we expect it to decrease it
since computational resources are freed.

As observed in Figure 5.8, the latency for the case of Local Network slightly decreases
as the value of delta increases as expected. Similar observations can be seen in
Figure 5.9 for the case of PlanetLab with some noise. Both environments have a
similar trend, the latency decreases slightly as the value of delta increases. For
instance, the latency is approximately 55 for the case of 4 nodes and delta 1. The
latency slightly decreases to 50 and remains the same until the delta approaches
500. When the delta is 500, the latency increases to 55 again, and then drops to
50 after that. This can be explained by the unstable network conditions and also
varying computational resources of the machines we used.

Scalability w.r.t. delta.
The average latency per sender for a urbBroadcast, in ms.

Results for Local Network.

10

10

10
10 10 10

20

20

20

20 20 20

30

30

30

30 30 30

40

40

40

40 40 40

50

50

50

50 50 50

60

60

60

60 60
60

60

70

70

70

80

80

10 0 10 1 10 2 10 3 10 4

Delta

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.8: Scalability of delta w.r.t. urbBroadcast.

33

5. Result

Figure 5.9: Scalability of delta w.r.t. urbBroadcast.

5.2 Set-Constrained Delivery Broadcast

5.2.1 Scalability of number of servers with respect to through-
put and latency

Similarly as Experiment 1 in Section 5.1.1, we aim to find out how the number of
processes affects the overall performance of both evaluation environments. Ideally, in
a system with nodes that have similar network and computational power, we would
expect to see a linear increase in latency as the number of processes grows. We
would also expect the throughput to decrease as the number of processes increases.
From Figure 5.10 we can see that the local environment’s latency increases faster
than for PlanetLab due to the lower computational power of the local environment.
In Figure 5.10 we also observe a trend similar to a linear increase for the PlanetLab
environment between 3 and 10 processes. However after that we can see steeper slope
until 15 processes, this could be explained by the fact that the PlanetLab machines
and networks differ a lot in performance and a few machines might be slow. Why
these slow machines do not affect the lower results as much can explained through
probability. Given that there is a minority of slow machines, the odds of picking a
slow machine increases as the number of processes increases. This could explain the
behaviour for values more than 10 processes.

In Figure 5.11 we observe a sharp decrease in throughput as the number of processes
grows. This could be explained by the fact that in order to achieve high throughput

34

5. Result

we need to remove message fast to make room for new messages in the buffer. In
order to remove a message from the buffer, a sender needs to know that all receivers
have received, delivered and removed this message. This means a slow receiver can
decrease the throughput for all senders in the system.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of processes

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000

6500

7000

7500

8000

La
te

nc
y

fo
r

sc
dB

ro
ad

ca
st

 in
 m

s

Scalability w.r.t. number of processes.
The average latency per sender for a scdBroadcast, in ms.

Results for Local Network and PlanetLab.

Figure 5.10: Scalability of number of processes w.r.t. scdBroadcast.

35

5. Result

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of processes

1
10

100

200

300

350

D
el

iv
er

ed
 m

es
sa

ge
s

pe
r

se
co

nd

Scalability w.r.t. number of processes.
The average throughput per sender, in delivered SCD messages per second.

Results for Local Network and PlanetLab.

Figure 5.11: Scalability of number of processes w.r.t. scdBroadcast.

5.2.2 Scalability of number of senders with respect to through-
put and latency

In addition to Experiment 2 in Section 5.1.2, this experiment measures throughput
as well. We aim at investigating whether the number of senders can incur a greater
impact on the latency and throughput than the number of processes.

With an increasing number of senders, more records can be stored in the buffer at
the same time. Furthermore, there is a need to wait for more round trip times to
deliver a message as the number of processes grows. In a system with low computa-
tional power and low link latency, we would expect the number of senders to be the
dominant factor. Oppositely, in a system with high computational power and high
link latency we would expect the number of processes to be the dominant factor.

36

5. Result

Scalability w.r.t. number of senders.
The average latency per sender for a scdBroadcast, in ms.

Results for Local Network.

10
00

10
00

10
00

10
00

20
00

20
00

20
00

20
00

30
00

30
00

30
00

40
00

40
00

40
00

50
00

50
00

60
00

70
00

100

200

200

200

300

300

300

300

30
0

300

400

400

400

40
0

40
0

400

500

500

50
0

50
0

50
0

500

500

600

600

60
0

60
0

60
0

600

700

70
0

70
0

70
0

70
0

80
0

80
0

80
0

80
0

1 2 3
Number of senders

1

2

3

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.12: Scalability of number of senders w.r.t. scdBroadcast.

Scalability w.r.t. number of senders.
The average throughput per sender,

in delivered scdBroadcast messages per second.
Results for Local Network.

10
10

10

10

10

20

20

20

20

30

30

30

40

40

50

50

60

70

5
5

5

5

5

5
10

10

10

10

10
15

15

15

15
15

1 3
3

3

3

1 2 3
Number of senders

1

2

3

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.13: Scalability of number of senders w.r.t. scdBroadcast.

In the local environment, in Figure 5.12, we can see a decrease in latency when the
number of senders grows from one to two. This could be explained by the fact that

37

5. Result

in every outgoing message, some gossip information is attached. With more senders,
messages are sent more often leading to less stale gossip information in the system.
However when the number of senders grows from 2 to 3 we can see an increase in
a latency. There is also a large increase in latency when the number of processes
grows from 2 to 3. This can be explained by the fact that we only need to wait
for a majority to deliver a message. Meaning that when there is 2 processes and 1
sender, the sender can immediately deliver its own messages. On the other hand
when there is 3 processes and 1 sender in the system, the sender has to wait for an
acknowledgement from at least one more process.

In Figure 5.13 we can observe that the number of processes seems to be the dominant
factor for throughput. This could be explained by the fact that the main problem
for throughput is the removal of messages. To remove a message we need to wait
for all processes to receive, deliver and notify the sender of the message that the
message was delivered. However, there is also a slight increase in throughput when
the number of senders grows, which could be due the same gossip piggybacking
mechanism as explained earlier.

Scalability w.r.t. number of senders.
The average latency per sender for a scdBroadcast, in ms.

Results for PlanetLab.

1000

1000

1000

10
00

1000

2000

2000

2000

30
00

3000

40
00

4000

5000

5000

6000

7000

8000

100100

150150

300

300

300

300

50
0

500

500

500

50
0

500

500

500

700

700

700

700

700

700

700

700

1000

1000

1000

10
00

1000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of senders

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.14: Scalability of number of senders w.r.t. scdBroadcast.

38

5. Result

Scalability w.r.t. bufferUnitSize.
The average throughput per sender,

in delivered scdBroadcast messages per second.
Results for PlanetLab.

50

100

0.1

0.1 0.1

0.1

0.1 0.1

0.30.3

0.3

0.1

0.1 0.1

0.30.3

0.3

0.5

0.5

0.5

0.5

0.
5

0.5

0.5

0.1

0.1 0.1

0.5

0.5

0.5

0.5

0.
5

0.5

0.5

1

11

1

1

1

11

1

1

1.5

1.5

1.5

1.51.
5

1

11

1

1

1.5

1.5

1.5

1.51.
5

2

2

2

2

2

1

11

1

1

2

2

2

2

2

3

3

3

3

3

3

3

3

1

11

1

1

3

3

3

3

3

3

3

3

4
4

4

1

11

1

1

4
4

4

6

6

1

11

1

1

6

6

8
8

1

11

1

1

8
8

10

10

1

11

1

1

10

10

20 20

1

11

1

1

40
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of senders

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.15: Scalability of number of senders w.r.t. scdBroadcast.

In Figure 5.14 we can see a different trend compared to the local environment. As
the number of processes grows there is an increase in latency. However as the number
of senders grows the impact of the number of processes decreases. For example, for
8 senders there is a smaller increase in latency as the number of processes grows
compared the case when we 3 senders.

As illustrated in Figure 5.15, we can observe a similar trend compared to the local
environments throughput. However, when the number of processes grows above 7
the number of senders starts to impact the throughput slightly.

The local environment did not behave as we expected with regards to the both
latency and throughput. Our expectations for latency only hold for the case above
2 senders while for throughput it is in fact the opposite from what we expected, the
number of processes is the dominant factor.

The latency for PlanetLab also behaved differently from what we would expect, when
the number of senders grows above 8. However, below that the trend is similar to
what we expected. The throughput behaviour is similar to the local environment
for which the number of processes is also the dominant factor.

39

5. Result

5.2.3 Scalability of bufferUnitSize size with respect to through-
put and latency

In Experiment 3 we aim to find out how the performance of the system is affected
by the bufferUnitSize which defines the maximum number of records per sender in
the buffer. In this case this translates to a maximum of N · bufferUnitSize SCD
records, where N is the number of processes in the system. However every SCD
record requires N URB records in order to reliably deliver it. This means that the
effective maximum number of records in the buffer is N2 · bufferUnitSize.

Therefore we expect the number of processes, N, to be the dominant factor in this
experiment. We would then expect to see a large decrease in throughput as the
number of processes grows. However, we would expect to see a smaller increase in
latency as the number of processes grows since delivering a message requires less
iterations over the buffer than removing it.

From Figure 5.16 we see that throughput peaks at bufferUnitSize 10 and decreases
as the number of processes grows. In Figure 5.4 we see a smaller increase in latency
when the number of processes grows and bufferUnitSize is the dominant factor in
this case, this could be due to the low computation power of the local environment.

Scalability w.r.t. bufferUnitSize.
The average throughput per sender, in delivered SCD messages per second.

Results for Local Network.

10

10

10

10
10

10

10

20

20

20

20

20

20

20

30

30

30

3030

30

30

40

40

40

40

40

40

50

50

50

50

50

60

60

60

70

70
80

1 10 20 50 100
BufferUnitSize

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.16: Scalability of bufferUnitSize w.r.t. scdBroadcast.

40

5. Result

Scalability w.r.t. bufferUnitSize.
The average latency per sender for a scdBroadcast, in ms.

Results for Local Network.

10000

10000

10000

10000

10000

10000

20000

20000

20000

20000

30000

30000

30000

40000

40000

40000

50000

50000

60000

10
00

10
00

10
00

1000

10
00

10
00

1000

1000

1000

1000

1000

2000

2000

2000

2000

2000

2000

2000

2000

2000

3000

3000

3000

3000

3000

3000

3000

3000

4000

4000

4000

4000

4000

4000

4000

4000

5000

5000

5000

5000

5000

5000

5000

5000

6000

6000

6000

6000

6000

6000

6000

7000

7000

7000

7000

7000

7000

7000

8000

8000

8000

8000

8000

8000

8000

9000

9000

9000

9000

9000

9000

10000

10000

10000

10000

10000

10000

100
100

100
100

100
100

100

20
0

20
0

20
0

200
200

200

200

1 10 20 50 100
BufferUnitSize

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.17: Scalability of bufferUnitSize w.r.t. scdBroadcast.

For the PlanetLab environment we can see in Figure 5.18 that throughput decreases
significantly after 3 processes. For values below 3 processes bufferUnitSize we see a
similar trend as for the local environment, we have a peak in throughput at buffer-
UnitSize 10 and the number of processes is the dominant factor for the throughput
decrease. For larger values of number of processes we can see that the bufferUnitSize
starts to affect the throughput, making both number of processes and bufferUnitSize
affect the throughput.

Lastly, in Figure 5.19 a small increase in latency as the number of senders grows
and a larger increase in latency as the bufferUnitSize grows, as we would expect.

41

5. Result

Scalability w.r.t. bufferUnitSize.
The average throughput per sender,

in delivered scdBroadcast messages per second.
Results for PlanetLab.

50

50
50

5050 100
100100

100100
150

150150
150150

200

200200
200200 250250

250250 300300300

0.01

0.01

0.01

0.
01

0.01

0.01

0.01

0.01

0.01

0.
01

0.01

0.01

0.1

0.1

0.1

0.1

0.1

0.1

1

1

1

1

1

1

0.1

0.1

0.1

0.1

0.1

0.1

1

1

1

1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2
2

2

1

1

1

1

1

1

2

2

2

2

2

2

2
2

2

3

3

3

3

3

3

3

3

3

1

1

1

1

1

1

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4
4

4

4 4

44
1

1

1

1

1

1

4

4

4

4

4

4

4
4

4

4 4

44

6

6

6

6
66

6
6

6

6

6

6

6

1

1

1

1

1

1

6

6

6

6
66

6
6

6

6

6

6

6

10

1010

10
10

1 10 20 50 100
BufferUnitSize

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.18: Scalability of bufferUnitSize w.r.t. scdBroadcast.

Scalability w.r.t. bufferUnitSize.
The average latency per sender for a scdBroadcast, in ms.

Results for PlanetLab.

20000

20000

20000

20000

40000

40000

40000

40000

60000

60000

60000

80000

80000

80000

100000

100000

120000

120000

140000

140000

160000

180000
200000

10 10
10

10 10
10

30
30

30

30
10 10

10

30
30

30

30

50

50

50

50
10 10

10

50

50

50

50

100

100

100

100

100
10 10

10

100

100

100

100

100

150

150

150

150

150

150
10 10

10

150

150

150

150

150

150

300

300

300

300

300

300

300
10 10

10

300

300

300

300

300

300

300

500

500

500

500

500

500

500

50010 10
10

500

500

500

500

500

500

500

500

700

700

700

700

700

700

700

70010 10
10

700

700

700

700

700

700

700

700

1000

1000

1000

1000

1000

1000

1000

10 10
10

1000

1000

1000

1000

1000

1000

1000

1500

1500

1500

1500

1500

1500

1500

10 10
10

1500

1500

1500

1500

1500

1500

1500

3000

3000

3000

3000

3000

3000

10 10
10

2500

2500

2500

2500

2500

2500

3000

3000

3000

3000

3000

3000

10 10
10

5000

5000

5000

5000

50
00

5000

6000

6000

6000

6000

60
00

6000

10 10
10

6000

6000

6000

6000

60
00

6000

7000

7000

7000

7000

7000

7000

10 10
10

7000

7000

7000

7000

7000

7000

8000

8000

8000

8000

8000

8000

10 10
10

8000

8000

8000

8000

8000

8000

10000

10000

10000

10000

10000

10000

10 10
10

10000

10000

10000

10000

10000

10000

15000

15000

15000

15000

1 10 20 50 100
BufferUnitSize

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.19: Scalability of bufferUnitSize w.r.t. scdBroadcast.

42

5. Result

5.2.4 Overhead of system recovery

In this Experiment we aim to find out how corrupted processes can affect the perfor-
mance of the system. The corrupted processes randomly changes their local sequence
number variable at different times as explained in Section 4.4.2.

When a corrupted process change its sequence number, some self-stabilization state-
ment will eventually be executed. After some local computation, the now stabilized
process needs inform the rest of the system of its current local state. This means
that some extra overhead is introduced in order for the system to recover after a
random change in sequence number. This overhead is finite as long as the process
or processes do not continuously incur this change and fair communication is guar-
anteed. To prevent this, in the experiment each corrupted process is only allowed
to change the sequence number once and at different times. Given this we believe
that there should be a small decrease in performance when the number of processes
grows and a larger decrease with the growth of the number of processes.

For the local environment, which can be found in Figure5.21 for latency and Fig-
ure 5.20 for throughput, this seems to be correct as there is a small decrease in
performance when the number of corrupted processes grows beyond 2. However the
pattern is not as clear for lower number of corrupted processes.

As illustrated in Figure 5.23 and Figure 5.22 the PlanetLab environment has a sim-
ilar trend. There is not a clear increase or decrease in performance as the number
of corrupted processes grows. This could be explained by the fact that the compu-
tational overhead will not be as big of a problem for the more powerful PlanetLab
machines compared to the local environment machines.

43

5. Result

Scalability w.r.t. number of corrupted processes.
The average throughput per sender, in delivered SCD messages per second.

Results for Local Network.

5

5

555

10

10

10

15

15

15

20

20

25

25

30

30

35

40

45

1 2 3
Number of corrupted processes

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.20: Overhead of system recovery w.r.t. scdBroadcast.

Scalability w.r.t. number of corrupted processes.
The average latency per sender for a scdBroadcast, in ms.

Results for Local Network.

200

400

600

600

800
800

800

1000
1000

1000
1000

1200
1200

1200
1200 1200

1400
1400

1400 1400 1400

1600
1600

1600 1600 1600

1 2 3
Number of corrupted processes

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.21: Overhead of system recovery w.r.t. scdBroadcast.

44

5. Result

Scalability w.r.t. number of corrupted processes.
The average throughput per sender,

in delivered scdBroadcast messages per second.
Results for PlanetLab.

50

100

0.
1

0.1

0.1

0.
1

0.1

0.1
0.1

0.
1

0.1

0.1

0.
1

0.1

0.1
0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.
1

0.1

0.1

0.
1

0.1

0.1
0.1

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2 0.
3

0.3

0.3

0.3

0.3

0.3

0.3

0.
3

0.3

0.
1

0.1

0.1

0.
1

0.1

0.1
0.1

0.
3

0.3

0.3

0.3

0.3

0.3

0.3

0.
3

0.3

0.5

0.5

0.5

0.5

0.5

0.5

0.
1

0.1

0.1

0.
1

0.1

0.1
0.1

0.5

0.5

0.5

0.5

0.5

0.5

1

1

1

1
1

1

1

1

1.51.5
1.5

1

1

1

1

1.51.5
1.5

22
2

1

1

1

1

22
2

3
3

3

3
3

1

1

1

1

3
3

3

3
3

5

55

1

1

1

1

5

55

8
8

1

1

1

1

8
8

10

1

1

1

1

10

20

1

1

1

1

40
50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of corrupted processes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.22: Overhead of system recovery w.r.t. scdBroadcast.

Scalability w.r.t. number of corrupted processes.
The average latency per sender for a scdBroadcast, in ms.

Results for PlanetLab.

1000 1000

2000 2000

3000
3000 3000

4000 4000

4000

50
00

5000

5000

5000

6000

6000

6000

6000
6000

7000 7000 7000 7000

8000 8000
8000 8000 8000

9000
9000 9000 9000

900010000 10000

100100

200200

400400

700 700700 700

1000 1000

1500 1500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number of corrupted processes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.23: Overhead of system recovery w.r.t. scdBroadcast.

45

5. Result

5.2.5 Overhead of the self-stabilization property with re-
spect to δ

As described in Section 5.1.5, the aim of this experiment is to find out the impact of
the delta parameter to the overall performance of the system. In addition to latency,
this experiment measures the throughput of the system.

We expect low delta values to be more problematic on low computational power
machines since self-stabilization statements are executed and gossip messages are
sent more frequently. However, for high computational machines the impact of the
additional self-stabilization statements and extra messages is not as problematic.

In Figure 5.25 we can see that increasing the delta decreases the latency, just as we
expected from a low computational power system. However, from Figure 5.24 we
observe a peak in throughput at delta 10.

From Figure 5.27 we can observe that delta does not affect the latency in the Plan-
etLab environment. As the number of processes grows latency increases while a
growing delta does not seem to have as big of an impact on latency.

Illustrated in Figure 5.26, we can see that when number of processes is less than 4
delta does not seem to have an impact when it grows beyond 10. For higher number
of processes the throughput decreases as the delta grows beyond 50. For delta 1000
we can see a significant decrease in throughput for more than 3 processes.

From this we can draw the conclusion that for low computational machines a high
delta is preferred if latency is the priority, if not then there is a drawback when
increasing the delta beyond 10. For high computational machines delta does not
seem to impact the latency at all, however throughput does decrease when delta
grows and the system is larger than 4 machines.

46

5. Result

Scalability w.r.t. delta.
The average throughput per sender, in delivered SCD messages per second.

Results for Local Network.

10

10

10

10

10

10

10

10

20

20

20

20

20

20

20

30

30

30

30

30

30

30
40

40

40
40

40

40

40

50

50

50

50

50

60

60
60

60

1 10 50 100 1000
Delta

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.24: Scalability of delta w.r.t. scdBroadcast.

Scalability w.r.t. delta.
The average latency per sender for a scdBroadcast, in ms.

Results for Local Network.

200

200

20
0

200

200

200

200

20
0

20
0

20
0

400

400

40
0

40
0

400

40
0

40
0

40
0

600

600

60
0

60
0

600

60
0

60
0

800

80
0

80
0

80
0

800

80
0

1000

10
00

10
00

10
00

10
00

1200

12
00

12
00

12
00

14
00

14
00

1 10 50 100 1000
Delta

1

2

3

N
um

be
r

of
 s

er
ve

rs

Figure 5.25: Scalability of delta w.r.t. scdBroadcast.

47

5. Result

Scalability w.r.t. delta.
The average throughput per sender,

in delivered scdBroadcast messages per second.
Results for PlanetLab.

5050

5050
50

100100
100100100 150150
150

150
150

200200
200200

200

250250
250

250
300

300

300300
350

350 400400 450

0.
050.05 0.
050.05

0.1

0.
1

0.1

0.
1

0.1

0.1

0.
1

0.1

0.
1

0.1

0.
2

0.
2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.1

0.
1

0.1

0.
1

0.1

0.
2

0.
2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.2

0.3
0.3

0.3

0.30.3

0.3
0.3

0.3

0.1

0.
1

0.1

0.
1

0.1

0.3
0.3

0.3

0.30.3

0.3
0.3

0.3

0.5

0.5

0.5

0.5

0.5

0.5

0.5
0.1

0.
1

0.1

0.
1

0.1

0.5

0.5

0.5

0.5

0.5

0.5

0.5

1
1

1

1

1

1
1

1
1

1

1

1

1
1

1.5

1.
5

1.5

1.5

1.5

1.5
1.5

1
1

1

1

1

1
1

1.5

1.
5

1.5

1.5

1.5

1.5
1.5

2

2

2

2

2

2

2

1
1

1

1

1

1
1

2

2

2

2

2

2

2

3

3

3

3

3

3

3

1
1

1

1

1

1
1

3

3

3

3

3

3

3

4

4

4
4

4

4

1
1

1

1

1

1
1

4

4

4
4

4

4

8

8

8
8

8

1
1

1

1

1

1
1

8

8

8
8

8

10

10

1010

10 1
1

1

1

1

1
1

10

10

1010

10

2020

20
2020

1
1

1

1

1

1
1

4040
4040

40
5050

5050
50

1 10 50 100 1000
Delta

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.26: Scalability of delta w.r.t. scdBroadcast.

Scalability w.r.t. delta.
The average latency per sender for a scdBroadcast, in ms.

Results for PlanetLab.

1000

1000

1000

1000
1000

1000

1000

1000

2000

2000

2000

2000

2000
2000

3000

3000

3000

3000 3000

4000

4000

4000

4000

4000
4000

5000

5000

5000 5000

5000 5000
6000

6000 6000

6000
6000

7000

7000

7000

7000 7000

8000

8000

8000
8000

8000

9000

9000
9000

9000 900010000

10 1010 10
50 50

50
50 50

10 10
50 50

50
50 50100 100

100
100 100

10 10

100 100

100
100 100

300
300 300

300 300

10 10

300
300 300

300 300

500

500

500

500
500

500500

10 10

500

500

500

500
500

500500

700

700
700

700 700

700

700

700

700

10 10

700

700
700

700 700

700

700

700

700

1000

1000

1000

1000
1000

1000

1000

1000

1 10 50 100 1000
Delta

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

N
um

be
r

of
 p

ro
ce

ss
es

Figure 5.27: Scalability of delta w.r.t. scdBroadcast.

48

5. Result

5.3 Applications

In this section we present our experimental results from the applications evaluated.
As specified in Section 4.2 only two experiments are used to evaluate the appli-
cation’s performance since we are interested in the two client latencies, write and
read.

5.3.1 Scalability of read operations with respect to write
operations

This experiment investigates how the snapshot, or read, latency changes with re-
spect to write operations. The experiment is conducted using a fixed number of
snapshotters, which is 3 and 10 for the local and PlanetLab environment respec-
tively. The number of writers is then varied without adding new processes, meaning
that processes have more than one roles.

In an efficient implementation we would expect to see some performance penalty
when increasing the number of writers, since this means more messages to process
and send over the network.

As observed in Figure 5.28 we can see a slight increase for the local network for all
values. However the trend is not as clear for PlanetLab, on average there is a slight
increase but there are some fluctuations. For more writers than 8 the performance
impact grows faster and for 2 and 6 number of writers the performance is decreased.

This could be because we randomly pick the physical PlanetLab machines from a
set of 15 which vary in computational and network performance. The application
needs to wait for a majority before finishing a snapshot operation, which means that
if the machines used in an execution consists of a majority of slow or fast machines
the performance will be impacted.

49

5. Result

1 2 3 4 5 6 7 8 9 10
Number of writers

0

0.5

1

1.5

2

2.5

La
te

nc
y

fo
r

sn
ap

sh
ot

 o
pe

ra
tio

n
in

 m
s

10 4

Scalability w.r.t. number of snapshotters.
The average latency per sender for a snapshot operation, in ms.

Results for PlanetLab.

Figure 5.28: Scalability of delta w.r.t. snapshot operation.

5.3.2 Scalability of write operations with respect to read
operations

This experiment investigates how the write latency changes with respect to snapshot,
or read, operations. The experiment is conducted using a fixed number of writers,
which is 3 and 10 for the local and PlanetLab environment respectively. The number
of snapshotters is then varied without adding new processes, meaning that processes
have more than one roles.

To complete a write operation, the process needs to send and deliver two messages
in succession. This means that we need to wait for two round trips to a majority
of the system. We expect there to be a performance penalty when increasing the
number of snapshotters as this introduces more messages.

As illustrated in Figure 5.29, the latency for local network is higher than the Plan-
etLab environment when we have 1 and 3 snapshotters, which can be explained by
the higher computational power of PlanetLab machines. The latency increases a
lot when the number of snapshotters grows past 3. This could be explained by the
rate of which we invoke operations, snapshot operations are invoked more frequently
than write operations when a process has both roles.

50

5. Result

1 2 3 4 5 6 7 8 9 10
Number of snapshotters

100

500

1000

1500

2000

2500

La
te

nc
y

fo
r

a
w

rit
e

op
er

at
io

n
in

 m
s

Scalability w.r.t. number of snapshotters.
The average latency per sender for a write operation, in ms.

Results for PlanetLab.

Figure 5.29: Scalability of delta w.r.t. snapshot operation.

51

5. Result

52

6
Discussion

Before presenting the summary and our conclusions we would like to remind the
reader that our implementation is a single threaded application since this project
focuses on the correctness and validation of the studied protocols. This leads to
some inefficiencies, for instance the responsibility of polling messages from the Linux
socket and pushing incoming messages to a intermediary buffer could be done us-
ing a separate thread to improve performance. There are more examples of this
in the implementation, therefore the implementation should not be viewed as an
efficient implementation. This is especially true when the message buffer grows,
since the single thread needs to execute both protocols logic in order to complete
one iteration. Therefore the authors recommend to refactor the implementation
into a multi-threaded application, which it used to be before it was merged in this
project to verify correctness. Please refer to www.self-stabilizing-cloud.net for
the source code of the old multi-threaded version and the projects single-threaded
implementation.

6.1 Summary

In general the results looked as we would expect, the local environment outperformed
PlanetLab when link latency was the dominant factor for performance while when
computational power was more important PlanetLab performed better. The lower
URB protocol delivered messages faster and at a faster rate than the higher SCD
protocol, which of course makes sense since SCD uses multiple URB messages to de-
liver a single SCD message. Furthermore, the recovery period after a transient fault
is fairly short and has negligible impact on performance. The snapshot application
also performed as we would expect. A read/snapshot operation only requires a sin-
gle SCD message to be delivered, making the latency of a read/snapshot operation
very close to the SCD message latency. Similarly the write operation requires two
SCD messages to be delivered in succession, the second message being broadcasted
after the first delivery, which gave us a faster growth of latency in the evaluation.

53

www.self-stabilizing-cloud.net

6. Discussion

6.2 Conclusion
Self-stabilization provides fault-tolerance in the presence of transient faults. This
allows systems to recover in a finite amount of time if something goes wrong. How-
ever, it is hard to simulate transient faults since they can have many forms and can
occur at any time during the execution. This makes it hard for developers to test
their self-stabilizing implementations, creating tests to cover all possible transient
faults is impossible. What the authors recommend is to set up a testing suite that
automatically runs the application all day and night while randomly introducing
message delays and changing local variables. This together with an automatic re-
porting system when the execution fails should provide the developers with more
cases which in turn should help finding problems earlier.

6.3 Future work
The evaluator component used in the project can be extended to automatically
run any group of tests repeatedly and report in case of failures. As we said in the
previous section this could help developers find issues with their implementations
sooner.

Both studied protocols were implemented with generality in mind, this should allow
developers to use these layers as building blocks in new protocols or applications.
Developers can use the URB implementation to get self-stabilizing uniform reliable
broadcast, similarly, SCD provides self-stabilizing set-constrained delivery to the
developer.

54

Bibliography

[1] Mohamed Faouzi Atig and Alexander A. Schwarzmann, eds. Networked Sys-
tems - 7th International Conference, NETYS 2019, Marrakech, Morocco, June
19-21, 2019, Revised Selected Papers. Vol. 11704. Lecture Notes in Computer
Science. Springer, 2019. isbn: 978-3-030-31276-3. doi: 10.1007/978-3-030-
31277-0. url: https://doi.org/10.1007/978-3-030-31277-0.

[2] Alex Auvolat, Michel Raynal, and François Taïani. “Byzantine-Tolerant Set-
Constrained Delivery Broadcast”. In: 23rd International Conference on Prin-
ciples of Distributed Systems (OPODIS 2019). Ed. by Pascal Felber et al.
Vol. 153. Leibniz International Proceedings in Informatics (LIPIcs). Dagstuhl,
Germany: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2020, 6:1–6:23.
isbn: 978-3-95977-133-7. doi: 10.4230/LIPIcs.OPODIS.2019.6. url: https:
//drops.dagstuhl.de/opus/volltexte/2020/11792.

[3] Marco Canini et al. “A Self-Organizing Distributed and In-Band SDN Control
Plane”. In: 37th IEEE International Conference on Distributed Computing
Systems, ICDCS 2017, Atlanta, GA, USA, June 5-8, 2017. Ed. by Kisung Lee
and Ling Liu. IEEE Computer Society, 2017, pp. 2656–2657. isbn: 978-1-5386-
1792-2. doi: 10.1109/ICDCS.2017.328. url: https://doi.org/10.1109/
ICDCS.2017.328.

[4] Marco Canini et al. “Renaissance:A Self-Stabilizing Distributed SDN Control
Plane”. In: 38th IEEE International Conference on Distributed Computing
Systems, ICDCS 2018, Vienna, Austria, July 2-6, 2018. IEEE Computer So-
ciety, 2018, pp. 233–243. isbn: 978-1-5386-6871-9. doi: 10.1109/ICDCS.2018.
00032. url: https://doi.org/10.1109/ICDCS.2018.00032.

[5] António Casimiro, Emelie Ekenstedt, and Elad Michael Schiller. “Self-Stabilizing
Manoeuvre Negotiation: The Case of Virtual Traffic Lights”. In: 38th Sym-
posium on Reliable Distributed Systems, SRDS 2019, Lyon, France, October
1-4, 2019. IEEE, 2019, pp. 354–356. isbn: 978-1-7281-4222-7. doi: 10.1109/
SRDS47363.2019.00048. url: https://doi.org/10.1109/SRDS47363.
2019.00048.

[6] Brent Chun et al. “Planetlab: an overlay testbed for broad-coverage services”.
In: ACM SIGCOMM Computer Communication Review 33.3 (2003), pp. 3–12.

[7] Edsger W Dijkstra. “Self-stabilization in spite of distributed control”. In: Se-
lected writings on computing: a personal perspective. Originally published in
1973. Springer, 1982, pp. 41–46.

55

https://doi.org/10.1007/978-3-030-31277-0
https://doi.org/10.1007/978-3-030-31277-0
https://doi.org/10.1007/978-3-030-31277-0
https://doi.org/10.4230/LIPIcs.OPODIS.2019.6
https://drops.dagstuhl.de/opus/volltexte/2020/11792
https://drops.dagstuhl.de/opus/volltexte/2020/11792
https://doi.org/10.1109/ICDCS.2017.328
https://doi.org/10.1109/ICDCS.2017.328
https://doi.org/10.1109/ICDCS.2017.328
https://doi.org/10.1109/ICDCS.2018.00032
https://doi.org/10.1109/ICDCS.2018.00032
https://doi.org/10.1109/ICDCS.2018.00032
https://doi.org/10.1109/SRDS47363.2019.00048
https://doi.org/10.1109/SRDS47363.2019.00048
https://doi.org/10.1109/SRDS47363.2019.00048
https://doi.org/10.1109/SRDS47363.2019.00048

Bibliography

[8] Danny Dolev, Cynthia Dwork, and Larry Stockmeyer. “On the minimal syn-
chronism needed for distributed consensus”. In: Journal of the ACM (JACM)
34.1 (1987), pp. 77–97.

[9] Shlomi Dolev. Self-stabilization. MIT press, 2000.
[10] Shlomi Dolev, Ronen I. Kat, and Elad Michael Schiller. “When consensus

meets self-stabilization”. In: J. Comput. Syst. Sci. 76.8 (2010), pp. 884–900.
doi: 10.1016/j.jcss.2010.05.005. url: https://doi.org/10.1016/j.
jcss.2010.05.005.

[11] Shlomi Dolev, Omri Liba, and Elad Michael Schiller. “Self-stabilizing Byzan-
tine Resilient Topology Discovery and Message Delivery”. In: Stabilization,
Safety, and Security of Distributed Systems - 15th International Symposium,
SSS 2013, Osaka, Japan, November 13-16, 2013. Proceedings. Ed. by Teruo Hi-
gashino et al. Vol. 8255. Lecture Notes in Computer Science. Springer, 2013,
pp. 351–353. isbn: 978-3-319-03088-3. doi: 10.1007/978- 3- 319- 03089-
0_27. url: https://doi.org/10.1007/978-3-319-03089-0%5C_27.

[12] Shlomi Dolev, Omri Liba, and Elad Michael Schiller. “Self-stabilizing Byzan-
tine Resilient Topology Discovery and Message Delivery - (Extended Ab-
stract)”. In: Networked Systems - First International Conference, NETYS
2013, Marrakech, Morocco, May 2-4, 2013, Revised Selected Papers. Ed. by
Vincent Gramoli and Rachid Guerraoui. Vol. 7853. Lecture Notes in Com-
puter Science. Springer, 2013, pp. 42–57. isbn: 978-3-642-40147-3. doi: 10.
1007/978-3-642-40148-0_4. url: https://doi.org/10.1007/978-3-
642-40148-0%5C_4.

[13] Shlomi Dolev, Thomas Petig, and Elad Michael Schiller. “Self-Stabilizing and
Private Distributed Shared Atomic Memory in Seldomly Fair Message Passing
Networks”. In: CoRR abs/1806.03498 (2018). arXiv: 1806.03498. url: http:
//arxiv.org/abs/1806.03498.

[14] Shlomi Dolev and Elad Schiller. “Communication Adaptive Self-Stabilizing
Group Membership Service”. In: IEEE Trans. Parallel Distrib. Syst. 14.7
(2003), pp. 709–720. doi: 10.1109/TPDS.2003.1214322. url: https://
doi.org/10.1109/TPDS.2003.1214322.

[15] Shlomi Dolev and Elad Schiller. “Self-stabilizing group communication in di-
rected networks”. In: Acta Informatica 40.9 (2004), pp. 609–636. doi: 10.
1007/s00236-004-0143-1. url: https://doi.org/10.1007/s00236-004-
0143-1.

[16] Shlomi Dolev, Elad Schiller, and Jennifer L. Welch. “Random Walk for Self-
Stabilizing Group Communication in Ad Hoc Networks”. In: IEEE Trans.
Mob. Comput. 5.7 (2006), pp. 893–905. doi: 10.1109/TMC.2006.104. url:
https://doi.org/10.1109/TMC.2006.104.

[17] Shlomi Dolev et al. “Autonomous virtual mobile nodes”. In: Proceedings of
the DIALM-POMC Joint Workshop on Foundations of Mobile Computing,
Cologne, Germany, September 2, 2005. Ed. by Suman Banerjee and Samrat
Ganguly. ACM, 2005, pp. 62–69. isbn: 1-59593-092-2. doi: 10.1145/1080810.
1080821. url: https://doi.org/10.1145/1080810.1080821.

[18] Shlomi Dolev et al. “Game authority for robust and scalable distributed selfish
computer systems”. In: theor. Comput. Sci. 411.26-28 (2010), pp. 2459–2466.

56

https://doi.org/10.1016/j.jcss.2010.05.005
https://doi.org/10.1016/j.jcss.2010.05.005
https://doi.org/10.1016/j.jcss.2010.05.005
https://doi.org/10.1007/978-3-319-03089-0_27
https://doi.org/10.1007/978-3-319-03089-0_27
https://doi.org/10.1007/978-3-319-03089-0%5C_27
https://doi.org/10.1007/978-3-642-40148-0_4
https://doi.org/10.1007/978-3-642-40148-0_4
https://doi.org/10.1007/978-3-642-40148-0%5C_4
https://doi.org/10.1007/978-3-642-40148-0%5C_4
https://arxiv.org/abs/1806.03498
http://arxiv.org/abs/1806.03498
http://arxiv.org/abs/1806.03498
https://doi.org/10.1109/TPDS.2003.1214322
https://doi.org/10.1109/TPDS.2003.1214322
https://doi.org/10.1109/TPDS.2003.1214322
https://doi.org/10.1007/s00236-004-0143-1
https://doi.org/10.1007/s00236-004-0143-1
https://doi.org/10.1007/s00236-004-0143-1
https://doi.org/10.1007/s00236-004-0143-1
https://doi.org/10.1109/TMC.2006.104
https://doi.org/10.1109/TMC.2006.104
https://doi.org/10.1145/1080810.1080821
https://doi.org/10.1145/1080810.1080821
https://doi.org/10.1145/1080810.1080821

Bibliography

doi: 10.1016/j.tcs.2010.02.014. url: https://doi.org/10.1016/j.
tcs.2010.02.014.

[19] Shlomi Dolev et al. “Practically-self-stabilizing virtual synchrony”. In: J. Com-
put. Syst. Sci. 96 (2018), pp. 50–73. doi: 10.1016/j.jcss.2018.04.003.
url: https://doi.org/10.1016/j.jcss.2018.04.003.

[20] Shlomi Dolev et al. “Rationality Authority for Provable Rational Behavior”.
In: Algorithms, Probability, Networks, and Games - Scientific Papers and Es-
says Dedicated to Paul G. Spirakis on the Occasion of His 60th Birthday. Ed.
by Christos D. Zaroliagis, Grammati E. Pantziou, and Spyros C. Kontogian-
nis. Vol. 9295. Lecture Notes in Computer Science. Springer, 2015, pp. 33–
48. isbn: 978-3-319-24023-7. doi: 10.1007/978-3-319-24024-4_5. url:
https://doi.org/10.1007/978-3-319-24024-4%5C_5.

[21] Shlomi Dolev et al. “Self-Stabilizing Automatic Repeat Request Algorithms
for (Bounded Capacity, Omitting, Duplicating and non-FIFO) Computer Net-
works”. In: CoRR abs/2006.05901 (2020). arXiv: 2006.05901. url: https:
//arxiv.org/abs/2006.05901.

[22] Shlomi Dolev et al. “Self-stabilizing End-to-End Communication in (Bounded
Capacity, Omitting, Duplicating and non-FIFO) Dynamic Networks - (Ex-
tended Abstract)”. In: Stabilization, Safety, and Security of Distributed Sys-
tems - 14th International Symposium, SSS 2012, Toronto, Canada, October
1-4, 2012. Proceedings. Ed. by Andréa W. Richa and Christian Scheideler.
Vol. 7596. Lecture Notes in Computer Science. Springer, 2012, pp. 133–147.
isbn: 978-3-642-33535-8. doi: 10.1007/978- 3- 642- 33536- 5_14. url:
https://doi.org/10.1007/978-3-642-33536-5%5C_14.

[23] Shlomi Dolev et al. “Self-stabilizing Reconfiguration”. In: Networked Systems -
5th International Conference, NETYS 2017, Marrakech, Morocco, May 17-19,
2017, Proceedings. 2017, pp. 51–68. doi: 10.1007/978-3-319-59647-1_5.
url: https://doi.org/10.1007/978-3-319-59647-1%5C_5.

[24] Shlomi Dolev et al. “Strategies for repeated games with subsystem takeovers
implementable by deterministic and self-stabilizing automata”. In: IJAACS
4.1 (2011), pp. 4–38. doi: 10 . 1504 / IJAACS . 2011 . 037747. url: https :
//doi.org/10.1504/IJAACS.2011.037747.

[25] Shlomi Dolev et al. “Virtual Mobile Nodes for Mobile Ad Hoc Networks”. In:
Distributed Computing, 18th International Conference, DISC 2004, Amster-
dam, The Netherlands, October 4-7, 2004, Proceedings. Ed. by Rachid Guer-
raoui. Vol. 3274. Lecture Notes in Computer Science. Springer, 2004, pp. 230–
244. isbn: 3-540-23306-7. doi: 10.1007/978- 3- 540- 30186- 8_17. url:
https://doi.org/10.1007/978-3-540-30186-8%5C_17.

[26] Michael J Fischer, Nancy A Lynch, and Michael S Paterson. “Impossibility
of distributed consensus with one faulty process”. In: Journal of the ACM
(JACM) 32.2 (1985), pp. 374–382.

[27] D. Frisk. “A Chalmers University of Technology Master’s thesis template for
LATEX”. 2016, Unpublished.

[28] Chryssis Georgiou, Oskar Lundström, and Elad Michael Schiller. “Self-Stabilizing
Snapshot Objects for Asynchronous Failure-Prone Networked Systems”. In:
Proceedings of the 2019 ACM Symposium on Principles of Distributed Com-

57

https://doi.org/10.1016/j.tcs.2010.02.014
https://doi.org/10.1016/j.tcs.2010.02.014
https://doi.org/10.1016/j.tcs.2010.02.014
https://doi.org/10.1016/j.jcss.2018.04.003
https://doi.org/10.1016/j.jcss.2018.04.003
https://doi.org/10.1007/978-3-319-24024-4 \ _5
https://doi.org/10.1007/978-3-319-24024-4%5C_5
https://arxiv.org/abs/2006.05901
https://arxiv.org/abs/2006.05901
https://arxiv.org/abs/2006.05901
https://doi.org/10.1007/978-3-642-33536-5_14
https://doi.org/10.1007/978-3-642-33536-5%5C_14
https://doi.org/10.1007/978-3-319-59647-1_5
https://doi.org/10.1007/978-3-319-59647-1%5C_5
https://doi.org/10.1504/IJAACS.2011.037747
https://doi.org/10.1504/IJAACS.2011.037747
https://doi.org/10.1504/IJAACS.2011.037747
https://doi.org/10.1007/978-3-540-30186-8 \ _17
https://doi.org/10.1007/978-3-540-30186-8%5C_17

Bibliography

puting, PODC 2019, Toronto, ON, Canada, July 29 - August 2, 2019. Ed. by
Peter Robinson and Faith Ellen. ACM, 2019, pp. 209–211. isbn: 978-1-4503-
6217-7. doi: 10.1145/3293611.3331584. url: https://doi.org/10.1145/
3293611.3331584.

[29] Chryssis Georgiou, Oskar Lundström, and Elad Michael Schiller. “Self-stabilizing
Snapshot Objects for Asynchronous Failure-Prone Networked Systems”. In:
Networked Systems - 7th International Conference, NETYS 2019, Marrakech,
Morocco, June 19-21, 2019, Revised Selected Papers. Ed. by Mohamed Faouzi
Atig and Alexander A. Schwarzmann. Vol. 11704. Lecture Notes in Computer
Science. Springer, 2019, pp. 113–130. isbn: 978-3-030-31276-3. doi: 10.1007/
978-3-030-31277-0_8. url: https://doi.org/10.1007/978-3-030-
31277-0%5C_8.

[30] Chryssis Georgiou et al. “Self-stabilization Overhead: A Case Study on Coded
Atomic Storage”. In: Networked Systems - 7th International Conference, NE-
TYS 2019, Marrakech, Morocco, June 19-21, 2019, Revised Selected Papers.
Ed. by Mohamed Faouzi Atig and Alexander A. Schwarzmann. Vol. 11704.
Lecture Notes in Computer Science. Springer, 2019, pp. 131–147. isbn: 978-
3-030-31276-3. doi: 10.1007/978-3-030-31277-0_9. url: https://doi.
org/10.1007/978-3-030-31277-0%5C_9.

[31] Chryssis Georgiou et al. “Self-stabilization Overhead: an Experimental Case
Study on Coded Atomic Storage”. In: CoRR abs/1807.07901 (2018). arXiv:
1807.07901. url: http://arxiv.org/abs/1807.07901.

[32] Kelsey Hightower, Brendan Burns, and Joe Beda. Kubernetes: up and running:
dive into the future of infrastructure. " O’Reilly Media, Inc.", 2017.

[33] Jaap-Henk Hoepman et al. “Secure and Self-stabilizing Clock Synchronization
in Sensor Networks”. In: Stabilization, Safety, and Security of Distributed Sys-
tems, 9th International Symposium, SSS 2007, Paris, France, November 14-
16, 2007, Proceedings. Ed. by Toshimitsu Masuzawa and Sébastien Tixeuil.
Vol. 4838. Lecture Notes in Computer Science. Springer, 2007, pp. 340–356.
isbn: 978-3-540-76626-1. doi: 10.1007/978- 3- 540- 76627- 8_26. url:
https://doi.org/10.1007/978-3-540-76627-8%5C_26.

[34] Jaap-Henk Hoepman et al. “Secure and self-stabilizing clock synchronization
in sensor networks”. In: Theor. Comput. Sci. 412.40 (2011), pp. 5631–5647.
doi: 10.1016/j.tcs.2010.04.012. url: https://doi.org/10.1016/j.
tcs.2010.04.012.

[35] Damien Imbs et al. “Set-Constrained Delivery Broadcast: Definition, Abstrac-
tion Power, and Computability Limits”. In: Proceedings of the 19th Interna-
tional Conference on Distributed Computing and Networking, ICDCN 2018,
Varanasi, India, January 4-7, 2018. Ed. by Paolo Bellavista and Vijay K.
Garg. ACM, 2018, 7:1–7:10. isbn: 978-1-4503-6372-3. doi: 10.1145/3154273.
3154296. url: https://doi.org/10.1145/3154273.3154296.

[36] Damien Imbs et al. “Set-constrained delivery broadcast: Definition, abstrac-
tion power, and computability limits”. In: Proceedings of the 19th International
Conference on Distributed Computing and Networking. 2018, pp. 1–10.

[37] Pierre Leone, Marina Papatriantafilou, and Elad Michael Schiller. “Reloca-
tion Analysis of Stabilizing MAC Algorithms for Large-Scale Mobile Ad Hoc

58

https://doi.org/10.1145/3293611.3331584
https://doi.org/10.1145/3293611.3331584
https://doi.org/10.1145/3293611.3331584
https://doi.org/10.1007/978-3-030-31277-0 \ _8
https://doi.org/10.1007/978-3-030-31277-0 \ _8
https://doi.org/10.1007/978-3-030-31277-0%5C_8
https://doi.org/10.1007/978-3-030-31277-0%5C_8
https://doi.org/10.1007/978-3-030-31277-0_9
https://doi.org/10.1007/978-3-030-31277-0%5C_9
https://doi.org/10.1007/978-3-030-31277-0%5C_9
https://arxiv.org/abs/1807.07901
http://arxiv.org/abs/1807.07901
https://doi.org/10.1007/978-3-540-76627-8_26
https://doi.org/10.1007/978-3-540-76627-8%5C_26
https://doi.org/10.1016/j.tcs.2010.04.012
https://doi.org/10.1016/j.tcs.2010.04.012
https://doi.org/10.1016/j.tcs.2010.04.012
https://doi.org/10.1145/3154273.3154296
https://doi.org/10.1145/3154273.3154296
https://doi.org/10.1145/3154273.3154296

Bibliography

Networks”. In: Algorithmic Aspects of Wireless Sensor Networks, 5th Interna-
tional Workshop, ALGOSENSORS 2009, Rhodes, Greece, July 10-11, 2009.
Revised Selected Papers. Ed. by Shlomi Dolev. Vol. 5804. Lecture Notes in
Computer Science. Springer, 2009, pp. 203–217. isbn: 978-3-642-05433-4. doi:
10.1007/978-3-642-05434-1_21. url: https://doi.org/10.1007/978-
3-642-05434-1%5C_21.

[38] Pierre Leone and Elad Schiller. “Self-Stabilizing TDMA Algorithms for Dy-
namic Wireless Ad Hoc Networks”. In: Int. J. Distributed Sens. Networks 9
(2013). doi: 10.1155/2013/639761. url: https://doi.org/10.1155/2013/
639761.

[39] Pierre Leone and Elad Michael Schiller. “Interacting Urns Processes for Clus-
tering of Large-Scale Networks of Tiny Artifacts”. In: Int. J. Distributed Sens.
Networks 6.1 (2010). doi: 10.1155/2010/936195. url: https://doi.org/
10.1155/2010/936195.

[40] Pierre Leone and Elad Michael Schiller. “Interacting urns processes: for cluster-
ing of large-scale networks of tiny artifacts”. In: Proceedings of the 2008 ACM
Symposium on Applied Computing (SAC), Fortaleza, Ceara, Brazil, March
16-20, 2008. Ed. by Roger L. Wainwright and Hisham Haddad. ACM, 2008,
pp. 2046–2051. isbn: 978-1-59593-753-7. doi: 10.1145/1363686.1364182.
url: https://doi.org/10.1145/1363686.1364182.

[41] Pierre Leone et al. “Chameleon-MAC: Adaptive and Self-* Algorithms for Me-
dia Access Control in Mobile Ad Hoc Networks”. In: Stabilization, Safety, and
Security of Distributed Systems - 12th International Symposium, SSS 2010,
New York, NY, USA, September 20-22, 2010. Proceedings. Ed. by Shlomi
Dolev et al. Vol. 6366. Lecture Notes in Computer Science. Springer, 2010,
pp. 468–488. isbn: 978-3-642-16022-6. doi: 10.1007/978- 3- 642- 16023-
3_37. url: https://doi.org/10.1007/978-3-642-16023-3%5C_37.

[42] Oskar Lundström, Michel Raynal, and Elad Michael Schiller. “Self-stabilizing
Set-constraint Delivery Broadcast”. In: 40th IEEE International Conference
on Distributed Computing Systems, ICDCS. 2020.

[43] Oskar Lundström, Michel Raynal, and Elad Michael Schiller. “Self-stabilizing
Uniform Reliable Broadcast”. In: CoRR abs / 2001.03244 (2020). Also appears
in NETYS’ 2020. url: https://arxiv.org/abs/2001.03244.

[44] Nicholas D Matsakis and Felix S Klock. “The rust language”. In: ACM SIGAda
Ada Letters 34.3 (2014), pp. 103–104.

[45] Mohamed Mustafa et al. “Autonomous TDMA Alignment for VANETs”. In:
Proceedings of the 76th IEEE Vehicular Technology Conference, VTC Fall
2012, Quebec City, QC, Canada, September 3-6, 2012. IEEE, 2012, pp. 1–5.
isbn: 978-1-4673-1880-8. doi: 10.1109/VTCFall.2012.6399373. url: https:
//doi.org/10.1109/VTCFall.2012.6399373.

[46] Axel Niklasson. plcli. https://github.com/axelniklasson/plcli. 2019.
[47] Thomas Petig, Elad Schiller, and Philippas Tsigas. “Self-stabilizing TDMA

algorithms for wireless ad-hoc networks without external reference”. In: 13th
Annual Mediterranean Ad Hoc Networking Workshop, MED-HOC-NET 2014,
Piran, Slovenia, June 2-4, 2014. IEEE, 2014, pp. 87–94. isbn: 978-1-4799-

59

https://doi.org/10.1007/978-3-642-05434-1_21
https://doi.org/10.1007/978-3-642-05434-1%5C_21
https://doi.org/10.1007/978-3-642-05434-1%5C_21
https://doi.org/10.1155/2013/639761
https://doi.org/10.1155/2013/639761
https://doi.org/10.1155/2013/639761
https://doi.org/10.1155/2010/936195
https://doi.org/10.1155/2010/936195
https://doi.org/10.1155/2010/936195
https://doi.org/10.1145/1363686.1364182
https://doi.org/10.1145/1363686.1364182
https://doi.org/10.1007/978-3-642-16023-3_37
https://doi.org/10.1007/978-3-642-16023-3_37
https://doi.org/10.1007/978-3-642-16023-3%5C_37
https://arxiv.org/abs/2001.03244
https://doi.org/10.1109/VTCFall.2012.6399373
https://doi.org/10.1109/VTCFall.2012.6399373
https://doi.org/10.1109/VTCFall.2012.6399373
https://github.com/axelniklasson/plcli

Bibliography

5258-8. doi: 10.1109/MedHocNet.2014.6849109. url: https://doi.org/
10.1109/MedHocNet.2014.6849109.

[48] Marco Schneider. “Self-stabilization”. In: ACM Computing Surveys (CSUR)
25.1 (1993), pp. 45–67.

[49] Axel Wegener et al. “Hovering Data Clouds: A Decentralized and Self-organizing
Information System”. In: Self-Organizing Systems, First International Work-
shop, IWSOS 2006, and Third International Workshop on New Trends in Net-
work Architectures and Services, EuroNGI 2006, Passau, Germany, September
18-20, 2006, Proceedings. Ed. by Hermann de Meer and James P. G. Sterbenz.
Vol. 4124. Lecture Notes in Computer Science. Springer, 2006, pp. 243–247.
isbn: 3-540-37658-5. doi: 10.1007/11822035_22. url: https://doi.org/
10.1007/11822035%5C_22.

60

https://doi.org/10.1109/MedHocNet.2014.6849109
https://doi.org/10.1109/MedHocNet.2014.6849109
https://doi.org/10.1109/MedHocNet.2014.6849109
https://doi.org/10.1007/11822035_22
https://doi.org/10.1007/11822035%5C_22
https://doi.org/10.1007/11822035%5C_22

	List of Figures
	Introduction
	Context and Motivation
	Task descriptions
	Fault Model
	Related Work
	Our Contribution
	Document Structure

	Scientific Background
	System Settings
	Self-Stabilization
	Failure Detectors
	FIFO Uniform Reliable Broadcast
	Set-Constrained Delivery Broadcast
	Applications
	Atomic snapshot

	The System
	Architecture
	Rust Programming Language

	Implementation
	Client communication
	Optimization

	Evaluation Environment and Plan
	Evaluation Criteria and Research Questions
	Experiment description
	Evaluation Environment
	Evaluation Plan
	Experiment setup
	Evaluation utilities
	Experiments

	Result
	Uniform Reliable Broadcast
	Scalability of number of servers with respect to throughput and latency
	Scalability of number of senders with respect to latency
	Scalability of bufferUnitSize with respect to latency
	Overhead of system recovery
	Overhead of the self-stabilization property with respect to

	Set-Constrained Delivery Broadcast
	Scalability of number of servers with respect to throughput and latency
	Scalability of number of senders with respect to throughput and latency
	Scalability of bufferUnitSize size with respect to throughput and latency
	Overhead of system recovery
	Overhead of the self-stabilization property with respect to

	Applications
	Scalability of read operations with respect to write operations
	Scalability of write operations with respect to read operations

	Discussion
	Summary
	Conclusion
	Future work

	Bibliography

