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Abstract

The nature of atomic clusters has increasingly attracted the attention

of researchers over the last few decades. One of the primary reasons

for the rise in interest is that the physical and chemical properties

of atomic metal clusters are different from their corresponding bulk

metals. To understand cluster properties, knowledge of the relevant

structures are needed. However, structural information is very diffi-

cult to acquire from experiments. In this thesis, a theoretical approach

is used instead. In particular, a Basin-Hopping global optimization

algorithm is implemented where the atomic interactions are calculated

from first principles by use of the Density Functional Theory (DFT).

The Basin-Hopping code is written with the Python programming

language and the Siesta and Dmol softwares are used to run the DFT

calculations. Structures of bimetallic structures are the primary focus,

as they are known as highly-effective hydrogenation catalysts. In ad-

dition, the monometallic cluster structures of Sn and Ru are explored.

Sn clusters in a range from 2 to 20 atoms with higher stability than

previously reported structures were obtained. The optimized Ru clus-

ters match with previous reported results. The electronic, magnetic,

and chemical properties of ground state clusters are discussed. The

new method was, furthermore, used to study structures of a range of

bimetallic systems including Ru-Sn, Ru-Pd, Pd-Au, and other similar

structures.

Keywords: Basin-Hopping, Density Functional Theory, Atomic Clus-

ters, Ruthenium, Tin



Contents

Contents iv

List of Figures viii

1 Introduction 1

1.1 Overview of Atomic Clusters . . . . . . . . . . . . . . . . . . . . . 1

1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Experimental Methods . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Cluster Synthesis . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.2 Characterization . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Metal Clusters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.1 Ruthenium . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.2 Tin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4.3 Ruthenium Tin . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.1 Catalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.5.2 Magnetic Applications . . . . . . . . . . . . . . . . . . . . 9

1.5.3 Hydrogen Storage . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.4 Biodiagnostics . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Theoretical Background 11

2.1 Potential Energy Surface (PES) . . . . . . . . . . . . . . . . . . . 11

2.2 Lennard-Jones Potential . . . . . . . . . . . . . . . . . . . . . . . 11

2.3 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Cluster Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 14

iv



CONTENTS

2.5 Energetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.1 Atomic Unit . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.2 Binding Energy . . . . . . . . . . . . . . . . . . . . . . . . 14

2.5.3 Vertical Electron Affinity . . . . . . . . . . . . . . . . . . . 16

2.6 Distance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Electronic and Magnetic Properties Analysis . . . . . . . . . . . . 16

3 Global Optimization Schemes 18

3.1 Genetic Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Basin-Hopping Algorithm . . . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2.2 Monte Carlo Method . . . . . . . . . . . . . . . . . . . . . 19

3.2.3 Metropolis-Hastings Algorithm . . . . . . . . . . . . . . . 20

3.2.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 20

4 Methodology 24

4.1 Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1.1 Atomic Simulation Environment . . . . . . . . . . . . . . . 24

4.1.2 Avogadro . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.1.3 Density-Functional Theory Softwares . . . . . . . . . . . . 25

4.1.4 Supercomputer . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Simulation with ASE . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2.1 Simulating Lennard-Jones Clusters . . . . . . . . . . . . . 25

4.2.2 Construct Random Initial Structure for Monometallic Clus-

ters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.3 Basin-Hopping Code . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 User Input . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.2 Energy Function . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.3 Move Strategies Function . . . . . . . . . . . . . . . . . . . 27

4.3.4 Run Function . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.3.5 Flow Chart for Basin-Hopping Code . . . . . . . . . . . . 28

4.4 Test with Lennard-Jones Potential . . . . . . . . . . . . . . . . . 30

4.4.1 Single Lennard-Jones Clusters . . . . . . . . . . . . . . . . 30

v



CONTENTS

4.4.2 Binary Lennard-Jones Clusters . . . . . . . . . . . . . . . 30

4.5 Evaluations Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5.1 Read Energy Code . . . . . . . . . . . . . . . . . . . . . . 33

4.5.2 Histograms Code . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.3 Bar Chart Code . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5.4 Read Different Structural Coordinate Extension Code . . . 35

4.5.5 Sort the Local Minimum Structures by Order of Energy Code 35

4.5.6 Re-relaxation Code . . . . . . . . . . . . . . . . . . . . . . 36

4.5.7 Measure Distance Code . . . . . . . . . . . . . . . . . . . . 36

4.6 Move Strategies Analysis . . . . . . . . . . . . . . . . . . . . . . . 36

4.7 Relaxation Method Test . . . . . . . . . . . . . . . . . . . . . . . 39

4.8 BH Implementation in SIESTA . . . . . . . . . . . . . . . . . . . 39

4.9 Implementation of Dmol . . . . . . . . . . . . . . . . . . . . . . . 42

5 Sn Clusters 44

5.1 Basin-Hopping Sn Clusters . . . . . . . . . . . . . . . . . . . . . . 44

5.2 Relax the Selected Structures from Basin-Hopping Results . . . . 46

5.3 Structural Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.4 Energetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.1 Binding Energy . . . . . . . . . . . . . . . . . . . . . . . . 51

5.4.2 HOMO-LUMO Gap . . . . . . . . . . . . . . . . . . . . . 53

5.4.3 Negatively Charged Sn Clusters . . . . . . . . . . . . . . . 53

6 Ru Clusters 57

6.1 Basin-Hopping Ru Clusters . . . . . . . . . . . . . . . . . . . . . 57

6.2 Relax the Selected Structures from Basin-Hopping Results . . . . 58

6.3 Energetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.1 Binding Energy . . . . . . . . . . . . . . . . . . . . . . . . 60

6.3.2 HOMO-LUMO Gap and Magnetic Properties . . . . . . . 60

7 Ru-Sn Clusters 63

7.1 Basin-Hopping, Ru-Sn . . . . . . . . . . . . . . . . . . . . . . . . 63

7.2 Relax the Selected Structures from Basin-Hopping Results . . . . 64

7.3 Structure Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 64

vi



CONTENTS

7.4 Energetic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.1 Binding Energy . . . . . . . . . . . . . . . . . . . . . . . . 64

7.4.2 HOMO-LUMO Gap . . . . . . . . . . . . . . . . . . . . . 66

7.5 Ru-Sn Clusters Supported on SiO2 . . . . . . . . . . . . . . . . . 67

8 Basin-Hopping with Hydrogen Atom 70

8.1 Sn Clusters with Hydrogen . . . . . . . . . . . . . . . . . . . . . . 70

8.2 Ru Clusters with Hydrogen . . . . . . . . . . . . . . . . . . . . . 72

8.3 Ru-Sn Clusters with Hydrogen . . . . . . . . . . . . . . . . . . . . 72

8.4 Binding Energy of Hydrogen . . . . . . . . . . . . . . . . . . . . . 72

9 Conclusions 76

Appendix A: Structures of Monometallic Clusters 78

Appendix B: Structures of Bimetallic Clusters 84

References 94

vii



List of Figures

1.1 Schematic representation of how a certain property may evolve as

a function of cluster size. . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 (a) Li4 Planar (b) Li4 3D . . . . . . . . . . . . . . . . . . . . . . . 4

2.1 The Lennard Jones Potential. . . . . . . . . . . . . . . . . . . . . 12

3.1 Example of a Basin-Hopping step. . . . . . . . . . . . . . . . . . . 22

3.2 Basin-Hopping energy landscape. . . . . . . . . . . . . . . . . . . 23

4.1 Schemes for the Basin-Hopping method. . . . . . . . . . . . . . . 29

4.2 Structures for Lennard-Jones clusters obtained with the Basin-

Hopping method. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.3 Structures for Binary Lennard-Jones clusters obtained with the

Basin-Hopping method. . . . . . . . . . . . . . . . . . . . . . . . . 34

4.4 Histograms for number of found global minima . . . . . . . . . . . 38

4.5 Optimized Na8 clusters,where structure 1 corresponds to the global

minima. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Ground States Structures for Sn1 - Sn10 clusters. . . . . . . . . . . 48

5.2 Ground States Structures for Sn11 - Sn20 clusters. . . . . . . . . . 49

5.3 Mean distances of Sn clusters. . . . . . . . . . . . . . . . . . . . . 51

5.4 Binding energy of small Sn clusters. . . . . . . . . . . . . . . . . . 52

5.5 HOMO-LUMO gap of Sn clusters of 1-20 atoms. . . . . . . . . . . 54

5.6 Structures of anionic Sn clusters which are found to have different

structures compared to neutral ones. . . . . . . . . . . . . . . . . 55

viii



LIST OF FIGURES

5.7 Comparison of experimental and theoritical vertical electron affin-

ity of Sn clusters. Experimental values are taken from [32]. . . . . 56

6.1 Ground States Structures for Ru1 - Ru12 clusters. . . . . . . . . . 59

6.2 Binding energy for Ru clusters. . . . . . . . . . . . . . . . . . . . 61

6.3 HOMO-LUMO gap of Ru clusters of 1-20 atoms. . . . . . . . . . 61

7.1 Ground state structures of RuXSnY , X+Y≤16. . . . . . . . . . . . 65

7.2 Mean distance in Ru-Sn clusters. . . . . . . . . . . . . . . . . . . 66

7.3 HOMO-LUMO gap for Ru-Sn clusters. . . . . . . . . . . . . . . . 67

7.4 Ground States structures of Ru1Sn1,Ru2Sn2 on SiO2 surface. . . . 68

7.5 Ground States structures of Ru3Sn3,Ru4Sn4 on SiO2 surface. . . . 69

7.6 Ground States structures of Ru5Sn5,Ru6Sn6 on SiO2 surface. . . . 69

8.1 Ground state Sn clusters(1-6 atoms) with 1 chemisorption hydro-

gen atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

8.2 Ground state Ru clusters(1-6 atoms) with 1 chemisorption hydro-

gen atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8.3 Ground state Ru-Sn clusters(1-6 atoms) with 1 chemisorption hy-

drogen atom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

8.4 Binding energy of an hydrogen atom in each system. . . . . . . . 75

1 Ground States Structures for Au1 - Au10. . . . . . . . . . . . . . . 79

2 Ground States Structures for Ag1 - Ag9. . . . . . . . . . . . . . . 80

3 Ground States Structures for Cu1 - Cu8. . . . . . . . . . . . . . . 81

4 Ground States Structures for Pt1 - Pt10. . . . . . . . . . . . . . . 82

5 Ground States Structures for Pd1 - Pd10. . . . . . . . . . . . . . . 83

6 Ground States structures of NiXPdY , X+Y≤12. . . . . . . . . . . 85

7 Ground States structures of PdXAuY , X+Y≤12. . . . . . . . . . . 86

8 Ground States structures of PtXSnY , X+Y≤12. . . . . . . . . . . 87

9 Ground States structures of RuXAuY , X+Y≤12. . . . . . . . . . . 88

10 Ground States structures of RuXAgY , X+Y≤12. . . . . . . . . . . 89

11 Ground States structures of RuXCuY , X+Y≤12. . . . . . . . . . . 90

12 Ground States structures of RuXGeY , X+Y≤12. . . . . . . . . . . 91

ix



LIST OF FIGURES

13 Ground States structures of RuXPdY , X+Y≤12. . . . . . . . . . . 92

14 Ground States structures of RuXPtY , X+Y≤12. . . . . . . . . . . 93

x



Chapter 1

Introduction

1.1 Overview of Atomic Clusters

Theoretical and experimental studies of atomic metal clusters has grown into an

important research area during the past few decades. On of the motivations for

this research is the novel properties of atomic metal clusters. Physical and chem-

ical properties are generally in clear variance with respect to the corresponding

bulk metals.

The first experiment for cluster studies was performed with mass spectrometer

ion sources in 1956 by E.W. Becker [1]. In 1960, clusters were produced through

the evaporation of metal, releasing the particles into the air to be contained and

rendered able to study through a molecular beam. By the 1980s, most of the

elements on the periodic table could be produced as atomic clusters through the

development of laser vaporization techniques. However, there is still no direct way

to determine the structure of the atomic cluster. In the 1990s, researchers shifted

their approach to theoretical studies. The development of global optimization

algorithms, such as Basin-Hopping, and first-principle methodologies, such as

Density Functional Theory, along with the rise in supercomputer power made it

possible to explore the structures of the atomic clusters of up to a few hundred

atoms.

In physics and chemistry, atomic clusters are defined as an aggregate of atoms.

However, terms such as molecules and nanoparticles are also aggregates of atoms.
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Molecules such as H2O, N2, and H2 form an aggregate of atoms in nature. Those

molecules exist in an ambient environment. However, atomic clusters are synthe-

sized in a laboratory environment and, in most cases, are only stable in a vacuum

or inert environments. Interactions between atoms in atomic clusters are gener-

ally stronger than the interaction between closed-shell molecules; however, this is

dependent on the cluster elements, as noble gas clusters have weak interactions.

Because of this, atomic clusters are able to form larger clusters. The size, com-

position, and atomic structures of molecules are fixed by a natural limit, while

atomic clusters are characterized by size, composition, and even structures and,

therefore, are not bound by natural limitations. Thus it can be concluded that the

stabilities of atomic clusters are strongly dependent on their sizes, compositions,

and structure.

Figure 1.1: Schematic representation of how a certain property may evolve as a
function of cluster size.

The difference between atomic clusters and nanoparticles is more difficult
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to determine. Figure 1.1 illustrates that intrinsic properties of clusters are size

dependent and non-scalable. However, these properties become scalable, at which

point the cluster can then be defined as a nanoparticle. In this case, the properties

can be scaled from the corresponding bulk properties.

The size and composition can completely determine the properties for atomic

clusters. Therefore, the evolution of the atomic clusters eventually leads the

clusters to nanoparticles. It must be noted here that the evolution of nanoparticles

with their properties are approximately following smooth curve while properties

of atomic clusters are not.

However, in most cases atomic clusters have completely different structure

than their bulk states. Structures of small gold clusters are particularly inter-

esting. Their ground states structures are planar up to size 12. However, they

start to form three-dimensional structures after size 12 and eventually form face

centered cubic (fcc) structures. The main difference between cluster and bulk

structures is the surface to volume ratio. The surface to volume ratio decreases

with increasing the cluster size. When clusters are small and their surface-to-

volume ratio is high, they have more surface atoms than atoms with full bulk

coordination. Therefore, surface properties of elements are an important factor.

Similarly, gold as a bulk material is inert. However, gold clusters are very reactive,

making them very important in the catalysis field [2]. Moreover, non-magnetic

materials could be magnetic when reducing their sizes. Conductive metal can be

insulators. Opaque materials could be transparent. There are many possibili-

ties of tailoring new materials by knowing cluster properties. This fact opens up

new fields not only in material science, but also in physics, biology, and chem-

istry, with the possibility of technological applications in diverse areas such as

heterogeneous catalysis and environmental chemistry, among others.

1.2 Structure

Knowing the structures of atomic clusters up to a few hundred atoms is one

of the fundamental questions of the field, as the structures will determine the

corresponding chemical and physical properties. One example is Li4, which has

several isomers that exhibit different properties.
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Figure 1.2: (a) Li4 Planar (b) Li4 3D

obtained

Li4 has several different structures, two of which can be seen in Figure 1.2.

The planar isomer represents the stable configuration, whereas the 3D structure

is 0.27 eV higher in energy. Interestingly, the 3D atructure is magnetic as it

has two unpaired spin states. This indicates that the same size of cluster could

have completely different chemical and physical properties. By knowing these

structures, electrical and optical properties can also be determined.

In reality, larger size clusters involving a few hundred atoms are too big to

analyze by spectroscopic methods, and yet are also too small to analyze with

diffraction methods. Determining the structures of atomic clusters is difficult,

as they have unusual, low-symmetry, or non-crystalline shapes. Therefore, a

computational approach is currently the only way to predict the structures of the

cluster.

1.3 Experimental Methods

Atomic clusters can be generated under specific experimental conditions, involv-

ing a few different methods as explained below:

1.3.1 Cluster Synthesis

There are several different methods of preparing clusters [4] [5] [6].

1. Laser vaporization: Mix metallic powders or single alloy rods are vaporized

4



by a laser beam. obtained

2. Ion Sputtering: The metal source is bombarded by the high energy inert

gas ions such as Xe+.

3. Gas aggregation: A material from which clusters are needed are heated

with temperatures high enough for evaporations, with the resulting gas

propelled by an inert gas and cooled to allow the atoms to lose energy and

form aggregates.

One of the most common ways to study clusters is through the use of molecular

beams. Atomic clusters are transformed into gas forms through the vaporization

of the cluster source. Throughout the vaporization process, the atoms exist as a

gas phase. The atoms then start to form a cluster nucleus and grow by gathering

additional atoms. At the end, the small newly-formed clusters start to merge

together and eventually form larger clusters.

During the growth stage, the clusters are expanded by supersonic expansion

because the clusters generally shrink due to the evaporation. Those clusters go

through a narrow nozzle into a vacuum environment. At this stage, clusters are

cooled and condensed until they become a narrow bream. In a molecular beam,

clusters do not collide each other; therefore, their properties of clusters can be

studied.

1.3.2 Characterization

Structural properties are difficult to characterize in atomic clusters through ex-

periments because current technology does not allow for a direct method to char-

acterize all properties. There are some indirect methods used to identify cluster

properties when no direct method is available. Some of useful techniques are

briefly mentioned below. It must be noted that there are currently no direct

methods to get structural information of gas phase atomic clusters. Even though

the diffraction technique has proven to be a useful technique, clusters are de-

posited on the insulating surface, thereby causing a structural change induced by

the interaction with the insulator surface.
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Mass Spectrometry

Mass spectrometry is used to measure the mass-to-charge ratio of charged

clusters. The basic principle behind mass spectrometry is the molecular deflec-

tion of atomic elements. All atoms of the desired element are ionized before

they are hit by a molecular beam. For example, hydrogen atoms are ionized and

then hit by a molecular beam. As hydrogen is very light, large deflection occurs.

In constrast, elements such as nitrogen are considered heavier in comparison to

hydrogen, and predictably have a smaller deflection than with hydrogen. This

demonstrates that mass of the desired element determines the magnitude of de-

flection. From the amount of deflection, speed of element and magnitude of beam

force, the mass of the atomic clusters can be calculated. Moreover, it is possible

to calculate the cluster size from the mass. obtained The following is a basic

procedure of mass spectrometry:

1. Ionization

The clusters are ionized by techniques such as laser ionization or electron

impact. Loss of electron usually yield a cation. After the ionization, those

ions are generally accelerated in order to have same kinetic energy.

2. Deflection

The ionized clusters are deflected by the magnetic field. The amount of

deflection is strongly dependent on the mass of ions and the charge on the

ion.

3. Detection

The sorted cluster ions are measured by the appropriate detector. When

cluster ions hit the detector, an electronic current is produced. This current

is then recorded and plotted as a function of mass and charge (m/Q), thus

producing the mass spectrum.

It has to be noted that all processes must be operated under ultra-high vacuum

conditions because the cluster ions could hit the molecules present in the air,

therefore changing their composition and properties.

6



Diffraction

X-ray diffraction (XRD) is a powerful method to study the structure of larger

atomic clusters. However, smaller clusters, such as 5-atom clusters are, too small

for diffraction. X-diffraction determines the structural information and crys-

tallinity of the atomic clusters. The basic principle of XRD is based on Bragg’s

law equation. The incident beam hits the surface and diffracts. At this stage,

the diffraction angle can be obtained and wavelength should be known. By using

Bragg’s law, lattice spacing can be calculated:

2d sin(θ) = nλ (1.1)

where n is an integer determined by the order given, λ is the wavelength, and

where d is lattice spacing.

By using Equation (1.1), the bond distances of clusters can be determined.

As it was mentioned earlier, it is extremely difficult to determine the structural

information of gas phase clusters. Electron diffraction method is one of the few

options to analyze the gas phase clusters. However, the experimental results are

very complicated and makes it difficult to determine the exact structures. Rough

information such as average cluster size and very rough geometry information,

though, can be acquired.

Transmission Electron Microscopy

For supported clusters, Transmission Electron Microscopy (TEM) is a very

useful technique compared to other microscopy techniques such as scanning elec-

tron microscopy (SEM) due to its penetration ability. SEM is good to use for

bulk materials because of its topographic ability. The principle of TEM is that

incident electron beam transmits through the samples. During the transmission,

those electrons interact with the samples. As a result, the image shows a con-

trast of electron interaction. The advantage of TEM in the cluster study is to its

ability to provide internal information of nanoparticles. It could be possible to

see periodicity of nanoparticles if the cluster size is very large.
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1.4 Metal Clusters

1.4.1 Ruthenium

The ability of Ruthenium to harden platinum and palladium, as well as its lower

cost of production in comparison to rhodium, makes it a highly useful element

when constructing alloys for wear-resistant electrical contacts. It is also used

when constructing thick-film chip resistors. The presence of ruthenium in tita-

nium alloys increases corrosion resistances. With applications also including tur-

bine blades in jet engines, superconductivity of ruthenium-molybdenum alloys at

temperatures lower than 10 K, and radiotherapy of eye tumors, ruthenium is a

highly-useful metal.

1.4.2 Tin

Tin is especially useful for platinum-metal modifications, as it helps metallic

nanoparticles anchor to supports in a uniformly-dispersed manner and increases

catalystic behavior in the nanoparticle cluster[7].

1.4.3 Ruthenium Tin

Ruthenium-Tin is known as a very efficient catalyst for hydrogenation [8]. How-

ever, currently there are no effective experimental methods to establish the struc-

tural characterization of Ru-Sn clusters. A computational approach is currently

the only method to determine their structural information. This is valid for all

types of clusters.

1.5 Applications

1.5.1 Catalysis

Atomic metal clusters are highly sought after in catalysis studies because of their

tuneability and reactivity. It is known that in some cases, catalytic activity

increases by alloying bulk metals. This similarly occurs for metal clusters [2]. In

general, there are several reasons why clusters attract attention within catalysis:
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1. Gold clusters catalyze oxidation reactions.

2. The catalytic activity of bimetallic clusters are, in some cases, much higher

than their monometallic counterparts. For example, ruthenium is a good

hydrogeneration catalyst by itself, but mixing with tin increases its perfor-

mance [2].

3. Ruthenium and copper are immiscible in bulk states. However, they are

miscible at the cluster level and are good hydrogenation catalysts.

This shows us that it is possible to tailor a desired catalyst by mixing two

different metals.

1.5.2 Magnetic Applications

Aggregates of atomic clusters, when inside nonmagnetic materials, exhibit giant

magneto-resistance with a variance in resistance of 50% when an external mag-

netic field is applied [9]. Due to this property, there is the potential to increase

the storage space of a hard disk drive.

1.5.3 Hydrogen Storage

Hydrogen storage has caught a considerable amount of interest during the past

few decades due to its potential use as an energy carrier. It has been shown

some interesting results with the atomic clusters. Magnesium hydride is known

for high hydrogen absorption materials. However, they require high temperature

to reverse the process. Small magnesium clusters can release the much more

hydrogen than their bulk because the average number of bond is less than bulk

so that desorption energy is very low [10]. As a results, hydrogen can be reversed

in low temperature with MgH2 clusters. Besides Mg clusters, aluminum clusters

can be able to absorb more hydrogen than their bulk because their surface to

volume ratio of small Al clusters increase with decreasing the cluster size [11].

Thus, unique properties of atomic cluster could bring great results on hydrogen

storage field.
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1.5.4 Biodiagnostics

Nanoparticles are especially useful for biodiagnostic applications such as cellular

labelling and DNA/protein markers. Specially tailor-made nanoclusters can in-

crease the sensitivity and the selectivity of the marker, therefore increasing its

ability to detect the presence of DNA or protein. An example of this is an ap-

plication of Ag particles to Au particles, which proved to amplify a target signal

and detect the desired substances as low as 100 aM.
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Chapter 2

Theoretical Background

2.1 Potential Energy Surface (PES)

In order to understand atomic clusters, their atomic configurations must be

known. In the coupled Basin-Hopping/DFT global optimization algorithm de-

veloped within this project, the potential energy surface (PES) is based on the

Born-Oppenheimer approximation. The Born-Oppenheimer approximation is the

assumption that, when calculating the wavefunction of a molecule, electron and

nuclei are treated as separate entities. Since the mass of the nuclei is considerably

heavier than their electron counterparts, they are considered stationary, allowing

for the electrons to freely move around the nuclei. Thus, the PES is determined

as a function of the cluster atomic positions. This means that the energy of the

system can be calculated from the number of atoms and their configurations.

Simpler interatomic potentials such as Lennard-Jones could also be used in order

to rapidly explore a nanoparticle PES; nevertheless, the accuracy of the simula-

tion can be compromised. Details of the Lennard-Jones potential are explained

below.

2.2 Lennard-Jones Potential

The Lennard-Jones potential is a simple mathematical model for approximating

the interaction between atoms. Although this potential is not very accurate, it
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is still used because it is convenient and time-efficient. It was used in the early

stage of the project, as there is much data available where the Lennard-Jones

potential has been used, making it convenient for making comparisons during the

development of the code.

Figure 2.1: The Lennard Jones Potential.

The basic idea of Lennard-Jones potential is simple. The energy in the LJ

model is expressed as the equation listed below. The relation between bonding

and potential energies are plotted in Figure 2.1 and was calculated by using

Equation (2.1).

E = 4ε((
σ

r
)12 − (

σ

r
)6) (2.1)

E is the potential energy between the atoms. σ represents the distance when

the potential is zero. ε is the depth of potential well. The first part, (σ
r
)12,

represents the repulsive force and the latter one,(σ
r
)6), represents the attractive

term.

Figure 2.1 represents typical LJ potential graph. Assuming that there are two

infinite separated atoms. At this situation, the bonding potential energy is zero.
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As the distance between atoms decreases, their potential energy increases. Even-

tually, they are bonded and reach an equilibrium point, which is characterized by

the lowest potential energy. If the two atoms are pushed together after reaching

the equilibrium point, they start to repulse each other due to the Pauli exclusion

principle. According to this principle, no two electrons in the same system can

be in the same quantum state. It must be noted that potential energy starts to

increase once it passes equilibrium point and atoms begin to repel each other.

2.3 Density Functional Theory

Nowadays, Density Functional Theory (DFT) is probably the most-used ab-initio

methodology in condensed matter physics and material science. The basic princi-

ple of DFT is that energies and properties of ground states can be calculated from

the electron density. Individual particles are treated as a function of its atomic

coordinates, which are represented as X, Y, and Z in the many-body system. The

many-body system means that there are a large number of particles interacting

with each other. The Schrödinger equation is able to solve wavefunctions with

one electron; however, it is unable to solve many-body systems.

In order to solve many-body systems, some approximations need to apply to

the Schrödinger equation. DFT originated from 1964, when Hohenberg and Kohn

proved the total energy of a system can be calculated from the function of the

electron density[12]. Later, Kohn and Sham proved that the ground states of the

system can be calculated by one electron schemes[13]. Reducing the parameters

that describe the many body system has been the goal of DFT. After many years

of development, DFT has also become a useful method in computational chem-

istry. However, there are some disadvantages. One is that DFT is an extremely

time-consuming process. Therefore, the aid of a super computer is generally re-

quired for DFT calculations of nanometer-sized systems. However, this is still a

big issue for global optimization problems. It could take years to find the right

structure in large systems which contain thousands of atoms. Therefore, the ap-

proximation potential system can be useufl to understand the large system until

the arrival of a next-generation supercomputer. The Lennard-Jones potential has

good approximation for noble gas systems.
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2.4 Cluster Relaxation

Atomic relaxation in physics and chemistry means to find the equilibrium states

from a nonequilibrium system. There are many relaxation algorithms. In the

project, three common relaxation algorithms are presented: Broyden-Fletcher-

Goldfarb-Shanno (BFGS), Limited Memory BFGS (L-BFGS), and Fast Inertial

Relaxation Engine(FIRE). The BFGS method is a class of hill-climbing optimiza-

tion methods. In L-BFGS, the Hessian Matrix is inversed. This method is useful

when there are many variables in the system. Fast Inertial Relaxation Engine

(FIRE) is a faster method compared to BFGS [14]. The process consists of one

simple equation. The result is not as accurately as BFGS but it gives one a good

approximation of global minimums. Since it is fast and bring goods results, this

could be used for Basin-Hopping with Lennard-Jones clusters for fast calculation

of monometallic and bimetallic clusters.

2.5 Energetic Analysis

2.5.1 Atomic Unit

The electron volt,eV,an energy unit generally used in quantum mechanics, is the

energy than an electron has after the electron is accelerated by 1 volt. However,

the atomic unit Hartree is often used with software such as Dmol.

The unit Hartree represents the potential energy of a ground-state hydrogen

atom. The unit can be converted to electron volt for convenience.

1 hartree = 27.31138 eV (2.2)

However, it is much more convenient to convert to an electron volt because

the energy difference between the local minima is very small.

2.5.2 Binding Energy

Energetic analysis is an important role in analyzing the cluster from a theoretical

point of view. Total energies are mainly used to compare the energy difference
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between the local minima. However, total energy varies depending on the different

DFT approximations. Instead, the binding energy is used. Binding energy is the

energy necessary to separate the aggregate atoms to individual atoms. A larger

binding energy means the bonds between the atoms are strong. The binding

energy of one element is simply calculated by equation (2.3):

Eb(AX) = ETot(AX)−XETot(A1) (2.3)

To analyze the binding energy, plotting is needed. The Y axis is defined as
Eb

N
. N represent number of atoms. The X axis is defined as ( 1

N
)

1
3 for an easier

analysis. Such a graph would demonstrate how clusters evolve through increasing

the size of clusters. Point zero in the graph is bulk value.

For bimetallic system, the binding energy is calculated by two possible differ-

ent equations (2.4) or (2.5).

Eb(AXBY ) = ETot(AXBY )−XETot(AX)− Y ETot(BX) (2.4)

or

Eb(AXBY ) = ETot(AXBY )−XETot(A1)− Y ETot(B1) (2.5)

Also, the binding energy of hydrogen is Ru-Sn, Ru, and Sn systems are calcu-

lated because experimentally it is known that hydrogenation of bimetallic systems

is much stronger than single-element systems. Equations (2.6) and (2.7) are used

to calculate the binding energy of hydrogen.

For bimetallic system,

Eb(H) = ETot(AXBYH)− ETot(AXBY )− 1

2
ETot(H2) (2.6)

For monometallic system,

Eb(H) = ETot(HAX)− 1

2
ETot(H2) (2.7)
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2.5.3 Vertical Electron Affinity

Vertical electron affinity (VEA) is the ability to form negative ion states from

neutral states. VEA is calculated by Equation (2.8).

V EA = ETot(AX(Neutral)− ETot(AX(Anion)) (2.8)

It has be noted that neutral states here do not mean the structural ground

states. First, total energy of the ground state of the anion is calculated. Then,

the total energy of neutral states is calculated by changing the charged state of

anion.

2.6 Distance Analysis

Besides the energetic analysis, the mean distance of the clusters need to be calcu-

lated. Every distance between the atoms in the structures is calculated. However,

some distances are very large, an example being 5.0 Å. This is obviously too large

for the system like Ruthenium or Tin because their average distance between the

atoms is approximately 3.0 Å. Therefore, these large distances need to be ignored

when calculating the mean distance. Aa graphical representation is also used in

this case. The X axis is the number of atoms, where the Y axis is mean distance.

The graph shows how the average bond distance evolves.

2.7 Electronic and Magnetic Properties Analy-

sis

Electronic properties can be analyzed by inspecting the Kohn-Sham spectrum,

which is obtained in the DFT calculation. An important electronic property

is the HOMO-LUMO separation. It is very interesting to see how the binding

energy of clusters changes as they evolve. Large HOMO-LUMO separations often

designate high stability. From the HOMO-LUMO separation and size graph, the

magic number, which is the number of nucleons that makes a nucleus stable, of

the cluster can be found.
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Magnetic property is all depending on electron spin states. If there are not

any unpaired electrons, the cluster are diamagnetic. If there are unpaired elec-

trons, it is paramagnetic. DFT calculations provide the spin states from a spin

polarization calculation. Therefore, magnetic property can be determined from

number of unpaired electrons.
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Chapter 3

Global Optimization Schemes

The lowest energy structures, also know as the global minima (GM), represent

the stable geometric configurations of the cluster. Finding the global minimum is

a difficult task because structures of atomic metal clusters are unusual and have

low symmetry. Moreover, the number of isomers has been suggested to grow

exponentially with system size as it can be seen in Figure 4.5. As there are no

established experimental methods to find structures, a theoretical approach is

currently the only method of determining them. Presently, there are two suc-

cessful algorithms. One is the Genetic Algorithm (GA), while another is the

Basin-Hopping (BH) algorithm, which is used in this project. Both of them have

comparable efficiency to find GM structures.

3.1 Genetic Algorithm

The GA was first applied in atomic cluster studies by Hartke [15]. Later on,

Deaven did the structural optimization of Lennard-Jones clusters through a GA

[16]. The underlying principle of GA is natural evolution. The methodology

is based on the Darwinian evolution process. Brief instruction of GA is well

explained by Johnston [17]. At first, some possibly random structures as known

as initial population are constructed. The structures are relaxed by a chosen

relaxation method. Next, the energy of the previously relaxed structure is set

as the criteria of fitness. The parameter, fitness, is a measurement of quality of
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the structure. High fitness means lower energy. From there, fifty percent of the

structure is taken as parents. Those selected parents are now randomly paired

(mutation) and make new structures (next generation of structures). This whole

evolution process is repeated until there is no further energy reduction. As a

result, ground state structure should be found. Compared to the Basin-Hopping

algorithm, GA is a relatively faster process. However, GA could have issues with

bimetallic systems. With the bimetallic system, the position of the element causes

energy differences. In the GA method, it is quite difficult to test the system that

has same coordinate but different element positions. For the bimetallic case, the

Basin-Hopping algorithm is a better option, as it allows researchers to explicitly

account for atom-exchange, thus carefully mapping the cluster PES.

3.2 Basin-Hopping Algorithm

3.2.1 Overview

Basin-Hopping algorithms (BH) are one of the most sophisticated global opti-

mization techniques based on the Monte Carlo method. Wales and Doye proved

the efficiency and accuracy of BH by using Lennard-Jones clusters up to 110

atoms [18]. The basic idea of BH is to generate a new cluster structure and relax

it at every step. The energy of each relaxed structure is called local minimum

and the lowest energy structure from those local local minimums are now called

global minimum (GM). However, the BH algorithm does not guarantee to find

the global minimum of the system. For instance, larger cluster sizes have a lower

probability of reaching the global minimum than compared to smaller clusters

because the combination of atoms increases exponentially when the number of

atoms are increased. Therefore, the number of steps must increase in order to

increase the probability of finding the global minimum.

3.2.2 Monte Carlo Method

Basin-Hopping is primarily based on the Monte Carlo algorithm (MC). MC is

based on the idea of repeated random sampling in order to calculate results for
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a specific problem. It does not guarantee the correct result, but statistically

should reach the right result. MC can be used to simulate a variety of physical

and mathematical phenomenon: for example, electron beam distribution of scan-

ning electron microscopy, simulating turbulence flow and even in finance field to

analyze investments and stocks.

3.2.3 Metropolis-Hastings Algorithm

The Monte Carlo Metropolis algorithm is the method used to collect random

samples from the probability distribution where direct sampling is difficult. The

method was first introduced in 1953 by Metropolis [19]. The principle of the

Metropolis method provides two possibilities for every step in the Monte Carlo

method. One is the acceptance of the step. Another is rejection of the step.

Details can be explained by assuming that the system has the energy, EStart and

the “new“ energy ENew resulting from the randome sampling. The acceptance of

the system is now dependent on the sign of the energy difference. The probability,

P, that a new system is acceptable is expressed by Equation (3.1).

P = 1 if ∆E ≤ 0

P = e
− ∆E

kBT if ∆E > 0
(3.1)

where kB is the Boltzmann constant (8.617343 × 10−5 ev
K

),and T is the ab-

solute temperature. Absolute temperature can be changed so that probability

can be controlled. In other words, probability is very much temperature sensi-

tive. Increasing the absolute temperature increases the probability when ∆E has

positive sign. Therefore, Equation shows that the system is always accepted if

the new energy is lower than the previous energy. Otherwise, the probability is

dependent on the magnitude of energy difference and the absolute temperature,

T.

3.2.4 Methodology

Here, the methodology of the BH algorithm is explained as follows:

1. Random structure is constructed. The distance between atoms in the cluster
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is set according to the nearest distance allowed, which is dependant upon

the elements being used.

2. The cluster structure is relaxed by an appropriate method such as DFT

or Lennard-Jones potential. The total energy of the relaxed structure cor-

responds to a local minimum. Structure and energy information are both

recorded.

3. The relaxed structure is completely taken out of its local minimum (de-

stroyed) by an appropriate move strategy such as ”shake”. The new result-

ing structure is relaxed again.

4. The Metropolis-Hastings method is used in order to decide whether or not

to accept the new cluster structure. If the new energy is lower than the

energy of the previous structure, then probability is 1 and is automatically

accepted. If the new energy is higher than the previous one, then the

probability is based on Equation. In the case of the latter situation, the step

is accepted if the probability is greater than a random generated number

from range 0 to 1.

5. Points 1-4 are considered as one step within the simulations. Furthermore,

in order to search for global minima structures, points 1 through 4 were

repeated for 100 and 500 BH steps (see Figure 14).

Figure 14 shows step 1-4.

Figure 3.2 is complete basin-hopping method for 4 steps. Global minimum

are located after 4 BH “shake” moves. As each local minimum region looks like

a basin and energy moves to next basin, the method was named Basin-Hopping.
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Figure 3.1: Example of a Basin-Hopping step.
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Figure 3.2: Basin-Hopping energy landscape.
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Chapter 4

Methodology

4.1 Tools

The code for this project is written in Python. Python is one of the most powerful

programing languages up to today. There are other options such as MATLAB

and Fortran. MATLAB is very good at numerical simulation but it is extremely

expensive, both computationally and economically. Most DFT softwares are still

written in Fortran, as it is efficient for scientific computing. However, Python

code is much more simpler than Fortran. Python code can be easily read by the

users even they do not know the Python syntax, making it easier to share with

the scientific community. In this project, Python is also used to process massive

data and text processing. Python simplifies programming as it provides a lot of

basic scientific modules as default. Moreover, Python is open source and is free of

cost. Besides Python, all other tools in the project are also open source software

with the exception of Dmol. The main softwares that are used in the project are

mentioned in this section.

4.1.1 Atomic Simulation Environment

Atomistic Simulation Environment(ASE) is used to simulate atomic cluster struc-

tures [20]. ASE is part of the Python module. It is very suitable for this project

because it has already contains basic modules which can construct bulk and sur-

face structures for a desired element or compound. ASE is also easy to couple
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with many DFT software, such as SIESTA and Dmol.

4.1.2 Avogadro

One of the drawbacks of ASE is that is does not provide a good graphic interface

for atom visualization. Therefore, Avogadro, a molecular visualization software,

was selected as it provides good quality graphic images, as well as is very simple

to use. All figures of atomic structures in the project are done by Avogadro.

4.1.3 Density-Functional Theory Softwares

There are many different type of DFT calculation softwares available. One must

note that faster calculation speed is key with BH algorithms because it generates

a new structure which must be relaxed at every BH step. Since BH requires

quick relaxation for each step in order to save time, SIESTA and Dmol are used

[21][22].

4.1.4 Supercomputer

DFT calculations require access to high performance computers. Therefore, the

aid of a supercomputer is necessary. The supercomputer in the project is provided

by Chalmers Centers for Computational Science and Engineering, which is one

of six nodes that belong to the Swedish National Infrastructure for Computing

centers. The supercomputer named ’SVEA’ is mainly used in the project. It

consists of 16 RAM for 1 node (which is equivalent to 8 core processors). Since

the project is dealing with small number of atoms, only 1 node is used.

4.2 Simulation with ASE

4.2.1 Simulating Lennard-Jones Clusters

Wales and Doye have successfully found the lowest energy structures of Lennard-

Jones clusters containing up to 110 atoms [18]. The lists of those global minimums

are reported at Cambridge Cluster Database [23]. The database contains the xyz

25



coordinates of those GM structures. This project’s code contains a function that

reads the xyz coordinates from those files in order to visualize them by using ASE

graphic user interface.

4.2.2 Construct Random Initial Structure for Monometal-

lic Clusters

The next step is to write a routine code that generates initial structures of a

single element cluster (i.e. monometallic code). The initial structures have to be

generated randomly with certain constraints. The first atom is set at coordinate

(0,0,0). Next, a new atomic coordinate has to be created. The code generates a

random array of xyz coordinates in the range -1 to +1 Å. Depending on the type

of element, the range can be adjusted. Python consists of ’type’ which can be ASE

atom function, list,tuple,array,string and dictionary. Interaction between those

types are very tricky. Most of time, two different types are not interacting each

other. For example, ASE atom function only accepts tuples. However, the ’type’

of atomic positions are first written by ’array’. Therefore, atom function does

not take array as position so that array is converted to a tuple. The coordinate

is the added to the initial coordinate at (0,0,0).

The code then generates a new randomly-generated atom and continues to add

them to the system until the requested number of atoms is fulfilled. However,

there are important conditions that have to be considered. The distance between

atom must not be too close or too far. The distance between the atoms is based

on σ = ε = 1. Therefore, the code checks if the distance between atoms are above

1.0 σ and less than 1.3 σ every time new atoms are added. The constrainting

distance is changeable depending on the type of elements. If the new atom does

not satisfy the distance condition, the new atom is discarded and new random

coordinate is generated until it satisfies the condition.
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4.3 Basin-Hopping Code

4.3.1 User Input

At this stage, the BH code is now constructed with aids of Python and ASE. At

first, user changeable parameters are defined. Temperature, which is expressed

as absolute temperature is an important role in Monte Carlo algorithm because

it affect probability of accepting each step or not. The type of relaxation method

can be chosen by the user from FIRE, BFGS and LBGS [14][24]. “Step-width“ is

also crucial, as it determines the range of distance that atoms can move during

the move stage. ”Step-width” can be also selected by the user.

4.3.2 Energy Function

During the optimization, energies are calculated based on calculators that was

chosen by users. For instance, energy is calculated by the Lennard-Jones potential

or DFT, if the calculator is set to any of these options. The calculator here means

the way to sample the PES. At every relaxation step, total energies are calculated

until the cluster structure reaches equilibrium state. The trajectory file is also

created for each local energy minimum. The trajectory file corresponds to the

Python ASE module and it can be easily converted to .xyz or .pdb files to be

read using other molecular visualization software.

4.3.3 Move Strategies Function

There are two efficient move strategies implemented within the code: “shake“

and “swap“. The idea of the ”shake” move is that every single atom in the

system are displaced at same time. According to Rossi et al. [25], “shake“ is

the most efficient of the move strategies. In fact, the ”swap” move does not

work with a single element cluster because swapping the same element does not

affect the cluster structure. Therefore, random xyz coordinates are generated

in the “shake“ move. The xyz coordinates are multiplied by “step-width“ so

that the overall magnitude of the atom movement can be regulated. Finally,

these coordinates replace the previous ones. As a result, a completely new xyz
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coordinate set is obtained.

The ”swap” move is most effective in binary and ternary clusters because

different elements in different position make a complete difference in the cluster

total energy as well as its location in the PES. Two atoms are randomly chosen.

If the same atoms in the “swap“ move are chosen, the process is redone until the

code finds a different atoms.

Beside these two movements, other movements are also created to increase the

randomness. One is named ’hybrid move’, where ”shakes” and ”swaps” occur

simultaneously. The code accounts for this by having the “swap“ movement

to occur right after the ”shake” movement. Another strategy is that after every

tenth “hybrid“ move, only “swap“ movements are carried out. The code accounts

for this by defining the two moves as two different functions.

4.3.4 Run Function

The run function is created in order to start the BH algorithm. In this code,

the position and energy of starting point are calculated. From here, the starting

coordinates are displaced by a ”shake” or ”swap“ movement and the total energy

then calculated by an energy function (e.g. LJ or DFT). If the new energy is

lower than the energy of the starting point, it is then automatically accepted

and the previous structure is replaced with the new one. This prevents having

a higher energy structure at each step during the BH runs. If the user wish to

accept higher energy structures, then temperature can be simply increased so

that probability to accept the higher energy structures increases. It has to be

noted that the code overwrites the energy and its structural information every

time a lowest energy structure is found.

4.3.5 Flow Chart for Basin-Hopping Code

All necessary functions for the BH code have been written and are shown in

Figure 4.1 below.
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Figure 4.1: Schemes for the Basin-Hopping method.
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4.4 Test with Lennard-Jones Potential

The Basin-Hopping code was tested for Lennard-Jones clusters in order to confirm

that the code is able to work. Since LJ clusters are represented by a simple

potential, it does not take time to run for small cluster size, even on a desktop

computer. Lennard-Jone clusters for mononary and binary systems are shown in

this section. The results are compared against at the Cambridge cluster database.

4.4.1 Single Lennard-Jones Clusters

Lennard-Jones clusters up to 20 atoms were successfully reproduced by the BH

code and compared against those found by Wales and Doye [18]. LJ clusters with

σ=1 and ε=1 are chosen. The number of BH steps for each process is set to 100.

Step-width is set to 0.5. The results are summarized in Table

Number of Atoms This work /ε Wales/ε Point Group
5 -9.1038260 -9.1038520 D3h

6 -12.711983 -12.712062 Oh

7 -16.505307 -16.505384 D5h

8 -19.821446 -19.821489 Cs

9 -24.113308 -24.113360 C2v

10 -28.422445 -28.422532 C3v

11 -32.765864 -32.765970 C2v

12 -37.967464 -37.967600 C5v

13 -44.326669 -44.326801 Ih
14 -47.845109 -47.845157 C3v

15 -52.322527 -52.322627 C2v

Table 4.1: Total energies for LJ clusters.

4.4.2 Binary Lennard-Jones Clusters

Since the project is dealing with bimetallic clusters such as Ru-Sn, the code has

to be able to generate random structures for binary clusters. The code which
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Figure 4.2: Structures for Lennard-Jones clusters obtained with the Basin-
Hopping method.
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is used in producing random single element structures is then simply modified.

First of all, the number and type of each element can be defined through user

input. Element lists are created according to the number of each element. When

random coordinates are chosen, random elements from created element lists are

randomly chosen. It means that coordinate and elements are both randomly

determined. If the new coordinate is not too far or too close, the new coordinate

and its element are added. If it does not satisfy the distance condition, the atom

is deleted and the same process is repeated. Once the new atom is added, the

element is removed from the element list so that the code does not pick the exact

same element again. After repeating the process based on number of atoms and

their element, a random binary structure are constructed.

The Lennard-Jones potential for binary clusters also has to be modified. Doye

defines the following equation based on the Lorenz rule [26].

ε = εAA = εBB = εAB (4.1)

σ =
σA + σB

2
(4.2)

Thus, the Lennard-Jone potential defined in Equation (2.1) needs to incorpo-

rate parameters from Equations (4.1) and (4.2).

Therefore,the Lennard-Jones potential code has to consider three combina-

tions. One is LJA-LJA with σA, while another is LJB-LJB and σB and finally

LJA-LJB. When two atoms are of the same element, the Lennard-Jones potential

for one element is used. The values of sigma are changeable by the users. When

two atoms have different elements, σ is simply replaced by Equation (4.2). The ε

value remains the same. In this case, ε is 1. The code checks the type of element

and whether its combination is A-A, B-B or A-B during the calculation. Depend-

ing on these combinations, the code chooses the correct Lennard-Jones equation

and calculates the potential energy. Once the Lennard-Jones potential code for

the binary system was written, randomly-generated binary initial structures are

able to be relaxed successfully.

In the BH code for the Lennard-Jones potential for binary systems, the value

of σ is set to 1.1 and sizes up to 15 atoms is tested. 100 BH steps were chosen for
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each cluster size. The corresponding optimized geometries and its correspond-

ing energies are shown in Figure 4.3 and Table 4.2, respectively. Results were

obtained similar to those reported by Doye [26]. Slight energy differences are

due to the lack of BH steps. Interestingly, binary Lennard-Jones clusters tend to

elongate around size 14 atoms, compared to monoatomic clusters.

Number of Atoms This work /ε Doye/ε Point Group
5 -9.1192430 -9.1193020 D3h

6 -12.715190 -12.715734 D4h

7 -16.556935 -16.557098 D5h

8 -19.942861 -19.948687 C1

9 -24.268611 -24.300649 C2v

11 -33.388284 -33.371304 C2v

12 -38.853496 -38.954245 C5v

13 -45.360619 -45.543272 Ih
14 -49.040845 -49.049816 C3v

15 -53.501576 -53.599281 Cs

Table 4.2: Total energies for Binary LJ clusters.

4.5 Evaluations Tools

Several evaluation codes were written in order to evaluate move strategies, opti-

mization methods, structural analysis and structures by energy order.

4.5.1 Read Energy Code

The energy code read each local energy minima from output files which contains

the number of steps, local energy minimum and lowest energy minimum up to

the number of steps. The code was simply written to read specific lines of output

files. Furthermore, the code allows for sorting the cluster structures by energetic

ordering, i.e. an important feature to analyze these structures.
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Figure 4.3: Structures for Binary Lennard-Jones clusters obtained with the Basin-
Hopping method.
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4.5.2 Histograms Code

To see how many local minima the BH reaches, the code generates a histogram

of local energy minima. In this code, local energy minimum lists, created by the

”read energy” code, are read as a string format. The data is then converted to

a tuple and then further converted to a value. The histogram shows how many

times the BH code visits each same minimum.

4.5.3 Bar Chart Code

The code creates a bar chart that shows the number of steps taken to reach the

equilibrium states. The code counts the number of steps in each BH step. This

bar chart is useful to make comparisons between different optimization methods.

4.5.4 Read Different Structural Coordinate Extension Code

In molecular design software, there are many different file formats for structure

coordinates such as xyz files. The Python ASE environment generally uses the

’.traj’ format. When comparing the results against published data, other authors

generally use a variety of different formats. Therefore, a code that can read any

types of structural files such .xyz, .car and .pdb file extensions is necessary. These

coordinates are also automatically converted to Python ASE atom functions.

4.5.5 Sort the Local Minimum Structures by Order of En-

ergy Code

When the BH simulations finished, several hundreds of structures are saved as

output. However, these structures are not sorted by order of energy. Addition-

ally, there are many very small energy differences between structures that are

considered as same structures. Therefore, a code that orders structures by en-

ergy and screens for duplicable energy is needed. In this code, all structures that

are created during BH and all local energy minima are read. Each structure has

to match with their corresponding energies. In order to do this, structures and

their corresponding energies are paired by using the Python dictionary function.

35



During this step, duplicate energy values and their structures are automatically

removed from the list. Once the code is executed, the output returns the energies

and their structures in order of lower energies to higher energies. For convenience,

the index tag and energy difference from the lowest energies are also shown.

4.5.6 Re-relaxation Code

Fine relaxations are needed once the BH process is finished. This code reads

the lowest energy structures from a .traj file and can relax again with new in-

put parameters such as a larger basis set and smaller thermal smearing of the

occupations.

4.5.7 Measure Distance Code

Once these processes are complete, another code is implemented. This code

automatically calculates all bond distances within the cluster and the average of

all of them. This code basically reads re-relaxed lowest energy structures from

the .traj file as well as measures all distances. In this step, the code also checks

if two atoms are the same or different type, in order to distinguish distances

between atoms of the same or different element. At the end, the code calculates

the average distance of each element combination.

4.6 Move Strategies Analysis

Move strategies are carefully evaluated in this section. Four different move strate-

gies are implemented. They are “shake“, “hybrid“ of shake and swap the different

atoms, ”swap every 10” hybrid , and “shake every 10 hybrid”.

Analyzing move strategies is one of the key points, as it allows the code to

get as many different structures as possible. One of the main differences between

binary and monoatomic element systems is the move strategy when dealing with

the Monte Carlo method. “Shake“ moves are commonly used due to its high

efficiency [25]; however, this method has two drawbacks. One problem is its large

CPU and time consumption. Every time the code finds local minima, structures

are destroyed and moved to completely random coordinates. This new structure,

36



now in effect after the shake movement, could have much larger energy value

depending on the ”step width“. This means that it takes a lot of time to determine

an equilibrium state. In order to prevent this, the step-width has to be carefully

chosen. A larger ”step width” is ideal, but a big energy jump must be avoided.

Another issue is randomness of the “shake“ movement in binary system. As

mentioned, different types of atomic elements causes energy differences. It is the

best to add ”swap” movement in the binary system in order to get as many local

minima as possible. It has to be noted that within the single atomic element

structure, swapping the same atom does not change its energy.

The results of using each of these types of movements are plotted as his-

tograms. Simulations were run for each of these movements in order to compare

results and determine the most efficient means of collecting the most accurate

data. As seen from Figure 4.4, these histograms show the number of times local

minima has been visited vs the total number of local minima. Table 4.3 shows

the global minima, time to get global minima and the number of steps to achieve

those global minima of each move strategies.

Shake Hybrid Swap every10 Hybrid every10
Global Minima -12.715669 -12.715682 -12.715664 -12.715606

Time 10min6s 9min16s 10min22s 2min8s
Steps to get GM 37 13 23 6

Table 4.3: Evaluation of move strategies.

The histograms in Table 4.3 indicate that the “shake“ method and the swap

every 10 hybrid steps method found the largest number of local minima out of the

four methods. Finding as many local minima as possible is very important when

it comes to much more complex cluster systems because it is important to know

all possibles isomers. The shake every 10 hybrid is particularly interesting, as it

cannot find as many local minima as the other methods could, but it compiles

5-times faster than any of the three other systems. As a result, ”swap every 10

hybrid” is the best choice here.
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Figure 4.4: Histograms for number of found global minima
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4.7 Relaxation Method Test

There are few different structural optimization methods in Python ASE envi-

ronment: Broyden-Fletcher-Goldfarb-Shanno, (BFGS)[27], limited memory vari-

ation of BFGS, fast inertial relaxation engine (FIRE)[28]. The test was run for

a binary system. The code generated a random binary structure which contains

a total of 14 atoms. The same structure is used for all the tests because initial

structures have to be the same in order to compare. The code thus reads the

initial structure and relaxed by each optimization method.

N=14 BFGS LBFGS FIRE
Steps 197 294 450
Time 6s 9s 10s

Lowest Energy(eV) -46.936798 -47.258899 -44.430068

Table 4.4: Comparison of different optimization methods.

Table 4.4 compares the lowest energy, number of steps, and time to finish, for

each relaxation method. As Table 4.4 indicates, LBFGS found the lowest energy

configurations among three of them. However, LBFGS takes approximately 100

steps more compared to BFGS.

4.8 BH Implementation in SIESTA

Lennard-Jones clusters were explored to ensure the BH code was working cor-

rectly. The next step was to move away from the Lennard-Jones potential and

instead employ the DFT to get an accurate PES representation of the analyzed

clusters. There are many different softwares available that use DFT, but for the

purposes of this project, a program named SIESTA was used. It is an efficient

implementation of the DFT calculations.

To start, a well-studied cluster with a known structure was needed to ensure

the program was giving correct output once the code was modified to perform

BH-DFT. Na8 was chosen for this purpose, as it fulfills these prerequisites [29].

Sodium has a body-centered cubic structure (bcc) with a lattice constant of 4.29

Å. The structural factor of bcc is even so that position (110) may be chosen.
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From this, the distance between the sodium atoms can be calculated by Bragg’s

law 4.3), resulting in a value of approximately 3.0334 Å.

d =
a√

h2 + k2 + l2
(4.3)

Therefore, a +/-20% range distance between sodium atoms is considered.

In this way, initial structures, constructed by the project code, show that the

distances between sodium atoms are of the order of 2.8-3.6Å.

The SIESTA calculations required a cell environment in order to perform

periodic DFT calculations. The cell size cannot be too large or too small. A larger

cell requires more time to calculate, making it time-consuming. Additionally, if

the cell is smaller than the structure, SIESTA cannot make any calculations and

would return an error. To account for this, a Na8 cluster cell was placed in a cell

with the dimensions 20×20×20 Å.

Within the cell, the randomly-generated structures were successfully relaxed

when using the BFGS relaxation method. After this, a different mesh cut-off value

and d and s set. It comes that the 160 mesh cut-off point is most stable and that

the d set can have lower energy. Also, “step-width“ and temperature (Boltzmann

factor) are tested. ”Stepwidth” at 0.8, 1.0 and 1.2 at constant temperature T =

100K are tested. Then, temperature at 50, 100, 150 and 200K with a constant

“stepwidth“ of 0.1Å is tested. Overall stepwidth of 1.0Å and a temperature of

150K are the best ones. ”Step-width” of 1.2 Å found lower energy structures;

however, it is very time consuming during the relaxation process.

BH with Na8 was then performed once the previous steps were tested. How-

ever, the code could not find the global minima reported by Rothlisberger [29]. It

turned out to be that the maximal force during optimization was set too high. To

account for this, the maximal force is now set from 0.1 to 0.01 ev/Å. Once this

change was done, the code successfully determined the global minima for Na8.

Figure 4.5 shows the different local energy minima structures for Na8. Their en-

ergy difference is listed on Table 4.5. BH was run with 1000 steps to make sure

to get all possible structures.

These results prove that the BH code performs really well when coupled with

SIESTA.
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Figure Energy(eV) Difference(eV)
1 -99.57 0
2 -99.45 0.12
3 -99.44 0.13
4 -99.42 0.02
5 -99.16 0.41
6 -99.01 0.15
7 -99.00 0.57
8 -98.91 0.09

Table 4.5: Na8 energy differences.

Figure 4.5: Optimized Na8 clusters,where structure 1 corresponds to the global
minima.
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Ru-Sn clusters were also optimized by the BH code and SIESTA. During the

relaxation process, Sn clusters were successfully relaxed; however, Ru clusters

were not. The output files indicate that the total energy does not converge for

Ru clusters. Within SIESTA, there are few parameters that are controllable

by the user. While several tests were made using different parameters such as

changing the mesh cut-off energy or basis set, none of them helped to converge

the total energy. Exact reasons why SIESTA does not work with Ru clusters

remains unknown. Therefore, alternative DFT calculators, such as Dmol, was

considered.

4.9 Implementation of Dmol

Dmol is the default DFT calculator for the commercial software Materials Studios,

which is owned by Accelrys. Dmol is an efficient implementation of the DFT

and its efficiency has been proved [30]. Because of its efficiency and the speed

of calculation, Dmol was used instead of SIESTA. However, the Python ASE

environment does not support Dmol as a DFT calculator. Therefore, a script

that accepts Dmol as a DFT calculator had to be written. The main purpose

of this script is to convert Python atom coordinates to a .car file, which is a

coordinate file extension for Dmol. The converted .car file can now be used to

calculate the total energies of Sn, Ru, and Ru-Sn clusters. Then, the cluster

structure coordinate file (.car) is then re-converted to a Python .ase file after

each Dmol relaxation is done.

A code that converts from Python .ase to .car format was written. The code

basically read elements and their coordinates and organize it as a .car file format.

The code reverses the process in order to convert from .car to Python .ase format.

The code that sends the .car file to Dmol is also made. The code simply sends

the .car file to Dmol calculator, where it is relaxed with the BFGS method, and

outputs the data that includes the total energy. All of the codes here are placed

in get-energy function in the basin-hopping code.

Furthermore, Dmol has a lot of user input parameters. The lists below show

tunable parameters. Only relevant parameters are described here.
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• Opt-energy-convergence - Tunes the criteria for total energy convergence

during optimization.

• Spin-polarization - Decides whether to perform a spin polarized calculation

or not.

• Charges - Decides the charge state of system.

• Basis - Chooses the basis set.

• Pseudopotential - Chooses a potential to treat core levels.

• Functional - Specifies the LDA and GGA functionals to be used for exchange

and correlation.

• Integration-grid - Decide the mesh point grid.

• Occupation - Control the temperature of the system so that orbital occu-

pation can be controlled (electric smearing).

Relaxation using Dmol was firstly tested for the Ru2Sn2 cluster. The cluster

was successfully relaxed by Dmol. The imput parameters have to be tuned de-

pending on cluster size and element, however, it indicates that Dmol deals well

with Ru-Sn systems.
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Chapter 5

Sn Clusters

BH was tested for Sn clusters up to 20 atoms. It is possible to run the test on

cluster sizes of more than 20 atoms, but it becomes much more time consuming

since the probability of finding the global minimum decreases when increasing the

cluster size. Therefore, it is best to stop at 20 atoms. For comparison, the results

are compared to those reported by Assadollahzadeh et al., [31]. The article shows

the structures of Sn clusters of up to 20 atoms.

5.1 Basin-Hopping Sn Clusters

To start, the BH code was tuned. The “shake“ move was chosen because of single

element cluster. The value of ”step-width” was selected as 0.5 Å.

Input parameters for Dmol are, firstly, determined. Occupation was set ther-

mal 0.03eV at first because metal clusters have a very small HOMO-LUMO gap.

Therefore, a larger value was chosen here. The distance between atoms of initial

structures for the BH code were set between 2.5 and 3.5 Å [31]. Tin clusters size

from 2 to 10 were first tested.

However, the results did not compare to those reported by Assadollahzadeh

et al., [31]. For example, the Sn12 does not display a symmetrical structure

[31], while a tetrahedronal structure with symmetry was found as the lowest

structure within the simulations. To confirm the structural differences between

the project’s and Assadollahzadeh’s et al., results, structural coordinates files
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were acquired from the author of paper. To compare the structural differences,

both structures are again relaxed by the same input parameter of Dmol. As a

result, the diamond-like structure has lower energy than the tetrahedron structure

in Sn12 cluster. This indicates that the BH code is not working correctly.

After an investigation, it was found that the occupation values were set very

high within the input parameters. Therefore, the occupation set the thermal

value to 0.008 instead of 0.03. The BH code was then used to run the Sn12

cluster, with thermal value 0.008. As a result, the diamond-like structure became

lowest structure and tetrahedron structure became second lowest. This indicates

that occupation (i.e. electronic smearing) is a very important parameter when

running BH with Dmol, because high temperature shifts up the virtual orbitals.

Therefore, temperature must be set as low as possible in order to acquire the

correct energy.

There is another important factor in BH-DFT with Dmol. BH is generally run

approximately 500 steps for each cluster size. During this process, relaxation is

the most time consuming process. Therefore, it is best to do faster relaxations in

order to get as many structures as possible within the limited usage time allotted

for the super computer. To do so, an integration grid is set as “coarse”. This

means that computational time is faster but decreases the quality of the DFT

calculation. The results regarding cluster geometries still remain to be trusted.

With those input parameters, BH was run for Sn clusters for sizes up to 20

atoms. The corresponding global minima of Sn clusters (up to 15 atoms) were

successfully found. However, cluster sizes 16 to 20 had major issues with total

energy convergence. For example, during the BH runs, unacceptable structures

were generated, e.g. one of the atoms exists out of cluster aggregation or irregular

shapes. These type of structural shapes induced an error in energy convergence.

Once the total energy of a particular cluster did not converge, the BH code

generates new coordinates from a structure that causes non-energy convergence.

As a result, new structures start to spread and energy is never converged. This

means that the BH code is not working anymore.

To prevent the problem, the BH code itself needed to be fixed because chang-

ing the input parameters does not solve the issues. In fact, input parameters such

as occupation was tuned to converge the total energy but made it much more time
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consuming; additionally the results were not trusted due to high temperature oc-

cupation. Therefore, the BH code was fixed. The most effective method was to

reset the BH system every 100 steps depending of the size of the cluster. It means

that the BH code stopped “moving“ the relaxed structures and generated com-

pletely random structure every 100 steps. In this way, energy can be converged

again every 100 steps even when energy stops converging. With this approach,

global minima for Sn clusters from 16 to up to 20 atoms were determined.

5.2 Relax the Selected Structures from Basin-

Hopping Results

Approximately 5 cluster structures were chosen from the results because the BH

code was not run with Fermi temperature, so there is a possibility that the lowest

energy structure may not be the lowest when the structure is re-relaxed using

Fermi temperature. In this step, relaxation must be strict. Therefore, few changes

in input parameters are needed. The input parameters now used are:

• Optimal energy convergence: 1.0×10−4eV

• Spin polarization: unrestricted

• Basis: dnp

• Pseudopotential: dspp

• Functional: pbe

• Auxiliary density: octupole

• Integration grid: fine

• Occupation: Fermi

In input parameters, occupation was set to Fermi, and the integration grid is

set from ”medium” to “fine”. However, total energy did not converge with Fermi

in some of structures. Therefore, relaxations were performed using Thermal =

46



0.005. If the structures are relaxed with 0.005, then temperature is reduced to

0.001. At the end, relaxation with Fermi temperature was performed. In this way,

all relaxations were successfully completed using Fermi temperature. The total

energies of all relaxed structures were carefully compared and the lowest energy

structures were chosen from Sn clusters from 2 to up to 20 atoms. Cluster sizes

and their lowest energies are shown in Table 5.1 and Figures 5.1 and 5.2, along

with Assadollahzadeh’s structures. The article structures were also re-relaxed

with same input parameters as mentioned above.

Size This work(eV) Assadollahzadeh(eV) This work,Anion(eV)
1 -3335.4280 No Data -3336.08220
2 -6672.9289 -6672.9282 -6674.43600
3 -10011.7850 -10011.7882 -10013.3129
4 -13350.8726 -13350.8748 -13352.1654
5 -16689.6377 -16689.6380 -16691.4007
6 -20028.6751 -20028.6772 -20030.2988
7 -23367.6783 -23367.6698 -23369.3442
8 -26705.5775 -26705.5737 -26707.3310
9 -30044.5247 -30044.2631 -30046.4072
10 -33383.3762 No data -33385.1561
11 -36721.1582 -36721.1019 -36723.2614
12 -40059.6742 -40059.4185 -40061.5478
13 -43398.1833 -43398.1831 -43400.3186
14 -46736.9890 -46736.9896 -46738.7455
15 -50075.5487 -50075.5201 -50077.7688
16 -53413.9824 -53413.9824 -53415.9961
17 -56752.2972 -56752.1954 -56754.5342
18 -60091.0562 -60090.7742 -60093.2418
19 -63429.2387 -63428.9346 -63431.4635
20 -66767.5677 -66767.5521 -66770.1352

Table 5.1: Comparison of Sn total energies.

5.3 Structural Analysis

Table 5.1 shows that Sn cluster sizes 7 to 13 and 15 to 20 have lower total

energies than those reported in [31]. Moreover, cluster sizes 9,12,15,17 and 19 have
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Figure 5.1: Ground States Structures for Sn1 - Sn10 clusters.
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Figure 5.2: Ground States Structures for Sn11 - Sn20 clusters.
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significantly different structures in comparison to [31]. Cluster size 18 and 20 have

similar structures, but those found with the BH method structures have higher

symmetry. Another interesting result is the elongation of the cluster structures.

From Sn16, the structures start to elongate. Eventually, Sn20 clusters spreads to

2 aggregates of Sn10 cluster each. They form the exact same structure.

The mean distance between atoms of each Sn clusters are measured by the

“distance calculate“ program. Atoms are considered to be bonded if the inter-

atomic distance lies between 2.5 - 4 Å. Table 5.2 shows the mean distance for

each Sn cluster size; while the mean distance as a function of cluster sizes are

plotted in Figure 5.3, Figure 5.3 shows that mean distance increases rapidly from

size 2 to 8. Above 8, there are not significant changes.

Size E b(eV) HOMO-LUMO gap(eV) Mean Distance Å
1 0.00000 1.361 0.0000
2 -2.07278 1.669 2.8895
3 -5.50088 0.671 2.9402
4 -9.16042 1.061 2.9418
5 -12.49744 1.561 3.0051
6 -16.10685 1.575 3.1476
7 -19.68200 1.478 3.1053
8 -22.15316 1.001 3.2207
9 -25.67224 1.403 3.1647
10 -29.09569 1.774 3.2290
11 -31.44968 0.822 3.2239
12 -34.53767 1.585 3.1939
13 -37.61670 0.931 3.1784
14 -40.99638 1.267 3.1617
15 -44.12800 1.420 3.1545
16 -47.13371 1.328 3.1740
17 -50.02042 0.868 3.1732
18 -53.35141 1.159 3.1981
19 -56.10582 0.833 3.1792
20 -59.00674 0.491 3.1263

Table 5.2: Binding energy, HOMO-LUMO gap and mean distances for Sn clusters,
from 1-20 atoms.
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Figure 5.3: Mean distances of Sn clusters.

5.4 Energetic Analysis

5.4.1 Binding Energy

The binding energy of each Sn cluster was calculated from Equation (2.3). Bind-

ing energies of each cluster size are listed on Table 5.2. Figure 5.4 shows how Eb

changes as a function of cluster size.

The x axis implies the cluster size change from one atom to the ”bulk“ limit.

0 means bulk limit and 1 means one atom. Y axis shows the calculated E b

at each cluster size. The graph shows a very interesting result. Sn has two

different crystal structures in the bulk states. One is alpha-tin, also known as

gray tin. It has a diamond-like crystal structure, is stable below 13.0 C and has

non metallic properties. Another is beta-tin, also known as white tin. It has

a tetragonal structure, is stable above the room temperature and has metallic

properties. The binding energy of bulk alpha tin was used because it has similar

property as Silicon and Germanium so that it is easier to compare against it.
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Figure 5.4: Binding energy of small Sn clusters.
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The cohesive energy of Sn bulk is -3.13 ev, which was calculated by Dmol. The

cohesive energy of tin bulks state is pointed at 0 on the x-axis. From size 2 to 7,

the binding energy dramatically evolves and rapidly approaches the bulk limit.

This indicates that those clusters have metallic bonds. Moreover, Sn clusters

have different properties up to approximately 7 atoms and have bulk properties

above size it. Above 7 atoms, energy changes are very smooth. To get to the bulk

limit, one needs an infinite number of Sn atoms. The dash line is a prediction of

how Sn clusters should evolve after size 20 (see Figure 5.4).

5.4.2 HOMO-LUMO Gap

During the relaxation process using Dmol, the HOMO-LUMO gap (which is anal-

ogous to the band gap for bulk system) is calculated by subtracting the LUMO

from HOMO. The HOMO-LUMO gap of Sn clusters are shown on Table 5.2. For

an easier comparison, HOMO-LUMO gaps as a function of Sn cluster sizes are

plotted in Figure 5.5.

One interesting feature in the graph is that cluster size 10, the HOMO-LUMO

gap is much larger compared to the other Sn clusters. Larger HOMO-LUMO gaps

indicate higher stability. Sn10 is, in this case, a magic number and perfect jellium

model cluster with an electronic shell closing at 40 electrons. The HOMO-LUMO

gap of Sn10 is 1.77 eV, which makes it a good semiconductor.

5.4.3 Negatively Charged Sn Clusters

Negatively charged Sn clusters up to 20 atoms were tested with BH. Most of the

structures are the same as neutral Sn clusters. However, Sn clusters at 8, 9, 10,

12, 14, 15 atom sizes have different ground states structures than neutral states.

Structures are shown in Figure 5.6.

Furthermore, Vertical Electron Affinity between experimental values and the-
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Figure 5.5: HOMO-LUMO gap of Sn clusters of 1-20 atoms.
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Figure 5.6: Structures of anionic Sn clusters which are found to have different
structures compared to neutral ones.
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oretical results are compared (see Figure 5.7). Experimental data was acquired

from the work by Morave et al., [32], while VEA was calculated according to the

Equation (2.8).

Figure 5.7: Comparison of experimental and theoritical vertical electron affinity
of Sn clusters. Experimental values are taken from [32].
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Chapter 6

Ru Clusters

After successfully finding the global minima of Sn, ruthenium clusters were also

tested. Ruthenium is a very tricky cluster because of its many closed laying

spin states. Ruthenium has an open d-shell (d7s1) which means that it could

have high spin states or low spin states. Because of many spin states, energy

convergence is a main issue. After all, global minima of Ru clusters up to 12

atoms are successfully found by the BH code. The articles by Anguilera-Granja

et al. and Shetty et al. are used in order to compare the Ru clusters [33] [34].

6.1 Basin-Hopping Ru Clusters

Since the BH code deals with single elements, the “shake“ move strategy was

applied. Occupation was first set to ’thermal 0.008’ because the value was the

most efficient for the Sn clusters. However, total energies did not converge at all.

Therefore, occupation values were increased until total energies start to converge.

As a results, occupation:’thermal 0.03’ came as the appropriate value. Even

though it is a very high value (and though the results are not completely trusted),

it was the only possible value that worked for the BH code. Another important

parameter is spin polarization. As mentioned earlier, Ru has a spin state since

it has (d7s1) orbital. Therefore,different spin states have to be considered during

the relaxation. Calculations were carried out using a ”coarse” integration grid

for faster calculation time. Below are the input parameters that were used for
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Ru clusters:

• Spin polarization: unrestricted

• Basis: min

• Integration grid: coarse

• Functional: pbe

• Occupation: thermal 0.03

BH successfully found the local minimum and its structures for each step.

However, the lowest energy structures from each cluster size are completely dif-

ferent compared to those reported in [33]. For example, Ru8 has an identical

structure which is a complete cube. The lowest energy structure found by BH

a is complete dodecahedron. Both of the structures were relaxed with the same

input parameters to confirm which of the structures have the lowest energy. The

cubic structure was found to have a lower energy than dodecahedron. This was

expected, as the occupation was set too high during the BH runs. However, it

is impossible to lower the occupation values because the BH will not able to be

run. Therefore, the only solution was to pick approximately 10 local minima Ru

structures, in order to explore different atomic configurations up to 12 atoms size.

6.2 Relax the Selected Structures from Basin-

Hopping Results

Approximately 10 local minima structures were picked from the BH results. They

were relaxed with the input parameters that were used in re-relaxation of Sn

clusters. During the re-relaxation process, the values of occupation was decreased

slowly. It took approximately 10 relaxations before they can be relaxed with

occupation ’Fermi’. As was expected, the lowest energy structures from BH are

not the lowest energy ones. After going through every single relaxed structure,

the lowest energy structures were successfully found to be the same as references
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[33], [34]. Figure 6.1 shows the corresponding global minima Ru structures that

were found with BH.

Figure 6.1: Ground States Structures for Ru1 - Ru12 clusters.

Figure 6.1 shows that Ru clusters tend to form cubic-like structures.
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6.3 Energetic Analysis

6.3.1 Binding Energy

Binding energy of Ru was calculated by Equation (2.3). Table 6.1 shows binding

energy at each cluster size. Evolution of E b as a function of Ru cluster size is

plotted in Figure 6.2.

Size Eb(eV) HOMO-LUMO Gap(eV) Mean Distance Å
1 0.00000 0.921 0.0000
2 -4.18646 0.582 2.1696
3 -8.51990 0.512 2.3954
4 -12.90218 0.360 2.3141
5 -18.47746 0.693 2.4432
6 -23.28891 0.231 2.4052
7 -28.55767 0.032 2.4484
8 -34.87034 0.050 2.3753
9 -39.06253 0.099 2.4672
10 -43.99072 0.462 2.3699
11 -49.11250 0.169 2.4626
12 -55.56250 0.555 2.4057

Table 6.1: Binding energy, HOMO-LUMO gap and mean distances.

Binding energy of Ru bulk was also calculated by using Dmol. It has -7.06

eV, which is pointed at 0 on the x-axis. Compared to Sn clusters, Ru have a

rather smooth straight line evolution of Eb as a function of size.

6.3.2 HOMO-LUMO Gap and Magnetic Properties

Ru has smaller HOMO-LUMO gap than Sn does. From Figure 6.3, it can be

noticed that sizes 7,8 and 9 atoms have a particularly small HOMO-LUMO gap.

Bulk Ru behaves paramagnetic because of its unpaired electron. However,

some small Ru clusters behave non-magnetic. Table 6.2 shows that Ru clusters
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Figure 6.2: Binding energy for Ru clusters.

Figure 6.3: HOMO-LUMO gap of Ru clusters of 1-20 atoms.
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at sizes 5,10 and 12 atoms have no unpaired electrons. It is interesting that a

magnetic material in the bulk state can be nonmagnetic in some of their small

clusters.

Size Unpaired Electron Magnetism
1 6 Paramagnetic
2 4 Paramagnetic
3 6 Paramagnetic
4 2 Paramagnetic
5 0 Diamagnetic
6 2 Paramagnetic
7 2 Paramagnetic
8 4 Paramagnetic
9 8 Paramagnetic
10 0 Diamagnetic
11 2 Paramagnetic
12 0 Diamagnetic

Table 6.2: Magnetic properties of Ru clusters.
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Chapter 7

Ru-Sn Clusters

Bimetallic clusters RuXSnY are tested in this chapter. For ease of analysis and

comparison with single Ru and Sn clusters, the values of x and y were made

equivalent to each other (i.e. 50-50% composition).

7.1 Basin-Hopping, Ru-Sn

Global optimization of Ruthenium Tin (Ru-Sn) clusters are now performed with

the BH code. The BH code had to be modified for this binary system. “Swap

every 10 hybrid“ move was used as a move strategy. Dmol input parameters are

listed below:

• Spin polarization: unrestricted

• Basis: dn

• Integration grid: medium

• Functional: pbe

• Occupation: thermal 0.01
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7.2 Relax the Selected Structures from Basin-

Hopping Results

Approximately 5 structures were choosen from the BH results. Those Ru-Sn

structures were all relaxed with input parameters which were also used for Ru

and Sn clusters. Figure 7.1 shows the ground states structures of Ru-Sn up to

size x+y=16.

7.3 Structure Analysis

Figure 7.1 shows some interesting feautures. Ru tends to stay together (occupying

core positions) and Sn clusters cap to Ru. One explanation of this is that Ru has

larger surface energy than Sn.

Figure 7.2 and Table 7.1 shows the mean distance of Ru-Sn, Ru-Ru and Sn-Sn

in the Ru-Sn cluster. It has to be noted that there are not any Sn-Sn bonds in

Ru5Sn5. The graph indicates that Ru has strong bonds with Ru and Sn.

7.4 Energetic Analysis

7.4.1 Binding Energy

The binding enegy of Ru-Sn clusters were calculated by Equation (2.5). Table

7.1 shows the Binding energy of Ru-Sn clusters. Binding energy of Ru5Sn5 has

a particularly large value. The rest of the clusters behave more linearly by in-

creasing the cluster size. Therefore, Ru5Sn5 could be said magic number clusters

because of its high stability.
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Figure 7.1: Ground state structures of RuXSnY , X+Y≤16.
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Figure 7.2: Mean distance in Ru-Sn clusters.

RuXSnY Eb(eV) H-L gap(eV) Ru-Sn(Å) Ru-Ru(Å) Sn-Sn(Å)
11 -3.81904 0.778 2.5035 None None
22 -5.88108 0.697 2.5983 2.3830 3.2079
33 -6.38230 0.886 2.5227 2.5227 3.1156
44 -6.95585 0.374 2.6916 2.5963 3.0417
55 -6.55546 0.403 2.6732 2.5650 None
66 -8.25574 0.202 2.7128 2.6404 3.1798
77 -8.91014 0.377 2.7342 2.7071 3.3922
88 -9.09476 0.294 2.7533 2.6449 3.2598

Table 7.1: Binding energy, H-L gap and Mean distance.

7.4.2 HOMO-LUMO Gap

The HOMO-LUMO gap of Ru-Sn is listed and plotted in Table 7.1 and Figure

7.3. It has to be noted that total size of Ru-Sn corresponds to the number of Ru

and Sn Atoms in Figure 7.3. Figure 7.3 also indicates that the HOMO-LUMO

gap of Ru-Sn clusters is located somewhere between Sn and Ru clusters.
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Figure 7.3: HOMO-LUMO gap for Ru-Sn clusters.

7.5 Ru-Sn Clusters Supported on SiO2

So far, all cluster structures have been studied in the gas phase. However, clusters

are generally grown on insulating surface such as silicon dioxide. For this project,

the (001) face of α-christobalite was used as the surface. Therefore, it is inter-

esting to see if clusters supported on an oxide surface have the same structural

arrangements compared to those in the gas phase.

For this, the BH code had to be modified to include the oxide surface, i.e. 2

layers of an SiO2 surface had to be created during the BH process so that only

the top layer of the surface was relaxed along with the clusters. Then, only the

clusters added to the surface are ”shaken” and ”swapped” during the BH process.

Throughout the whole process, the surface remains unchanged.

With the modified code, the BH code was run for 500 steps. Figures 7.4,7.5

,7.6 show the ground state structure of Ru-Sn clusters on the SiO2 surface. One
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interesting thing to notice is that the ground state structures of supported Ru-

Sn clusters differ from their gas phase counterparts. Therefore, it is shown that

Ru-Sn cluster structures are directly affected by the oxide-surface where they are

supported.

Figure 7.4: Ground States structures of Ru1Sn1,Ru2Sn2 on SiO2 surface.
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Figure 7.5: Ground States structures of Ru3Sn3,Ru4Sn4 on SiO2 surface.

Figure 7.6: Ground States structures of Ru5Sn5,Ru6Sn6 on SiO2 surface.
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Chapter 8

Basin-Hopping with Hydrogen

Atom

It has been noted that bimetallic clusters are much more efficient catalysts than

pure element clusters. However, the reason for that is still remains unknown. In

order to understand the reason, one hydrogen atom was chemisorbed to Ru,Sn and

Ru-Sn clusters. Those cluster configurations involving 1 H atom were optimized

using the BH code.

8.1 Sn Clusters with Hydrogen

Global optimizations of Sn clusters up to size 6 atoms, involving one hydrogen

atom, where analyzed with the BH code. Figure 8.1 shows the ground state

structures of Sn clusters with chemisorbed hydrogen. From these structures, it

is quite hard to find a bonding trend, but one could say that hydrogen is always

attached at the surface of Sn clusters at both top and bridge positions.
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Figure 8.1: Ground state Sn clusters(1-6 atoms) with 1 chemisorption hydrogen
atom.
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8.2 Ru Clusters with Hydrogen

Global optimizations were also performed for Ru clusters involving one hydro-

gen atom. Figure 8.2 shows the ground state structures of Ru clusters with 1

chemisorbed hydrogen atom. After comparing the Ru and Sn cluster with hy-

drogen, a feature was found. Ru4 and Sn4 are both planar structures. For these

two clusters, the hydrogen atom is bound to one element only, in a top position.

However, hydrogen bonds with two atoms in the bridge position when the clusters

are three dimentional(with the exception of Sn6H and Ru5H.

8.3 Ru-Sn Clusters with Hydrogen

Global optimization of Ru-Sn clusters with one hydrogen atom was performed

using the BH code. Figure 8.3 shows the ground state structure of Ru-Sn clusters

with 1 chemisorbed hydrogen atom. One of the interesting features is that the

hydrogen atom is always found to be bound to Ru atoms (both in top and bridge

configurations).

8.4 Binding Energy of Hydrogen

The binding energy of a hydrogen atom in Ru-Sn, Ru and Sn clusters was cal-

culated by Equations (2.6) and (2.7). Table 8.1 and Figure 8.4 shows the corre-

sponding binding energy of a hydrogen atom for each cluster size. At sizes 4,5 and

6 atoms in Sn clusters, the sign of the binding energy becomes positive, meaning

it is endothermic. The hydrogen does not want to bond with Sn. It is interesting

to note that Ru6Sn6 also shows endothermicity towards the hydrogen atom, i.e.

the binding between a hydrogen atom and the bimetallic cluster is not favorable.
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Figure 8.2: Ground state Ru clusters(1-6 atoms) with 1 chemisorption hydrogen
atom.
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Figure 8.3: Ground state Ru-Sn clusters(1-6 atoms) with 1 chemisorption hydro-
gen atom.
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Size Eb(H in Sn)/(eV) Eb(H in Ru)/(eV) Eb(H in Ru-Sn)/(eV)
1 -0.28944 -1.27270 -0.80962
2 -0.76980 -0.29670 -0.47266
3 -0.41425 -0.61464 -0.39750
4 0.46546 -0.87973 -0.50394
5 0.20291 -0.43417 -0.99704
6 0.47567 -0.56151 0.157469

Table 8.1: Binding energy of an hydrogen atoms in each system.

Figure 8.4: Binding energy of an hydrogen atom in each system.
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Chapter 9

Conclusions

The Basin-Hopping (BH) algorithm, coupled with a DFT sofwtare (Dmol), was

successfully constructed and proven to be a useful tool in determining the lowest

energy structures of clusters up to 20 atoms for both of mono- and bimetallic

clusters. The BH-DFT method found much more stable structures of Sn clusters

up to 20 atoms than previously-reported structures. Sn10 in particular had a

very large HOMO-LUMO gap and its structure can be considered a magic num-

ber structure. The most interesting part of Sn cluster is the rapid evolution of

binding energy towards bulk limit by increasing the cluster size. The binding en-

ergy of a Sn8 cluster already has a similar binding energy compared to the bulk

cohesive energy. The vertical energy affinity of Sn cluster, calculated by BH and

DFT methods presents the same trend as the experimental results. This proves

that the results with BH-DFT can be trusted. Ru clusters were very tricky be-

cause of its unstable spin states. However, BH-DFT was able to find the global

minimum for each cluster size, even though the global minimum does not always

initially appear as the lowest energy configuration during the initial BH-DFT

runs. Therefore, approximately five different structures needed to be selected

from the results to be strictly relaxed. As a result, the ground state structures of

Ru clusters up to 12 atomic were successfully found. It is interesting to see that

some of the small Ru clusters have non-magnetic properties, which are in con-

trast with the bulk metal. The ground state structures of Ru-Sn clusters up to 20

atoms were also successfully found. These clusters demonstrated that Ru tends

to bond together with other Ru atoms occupying core positions and Sn attaches
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to Ru like a cap(segregates to the surface). The electric properties of Ru-Sn clus-

ters are located somehow between Sn and Ru clusters. Supported Ru-Sn clusters

on SiO2 tend to have different atomic arrangements compared to the gas-phase

counterparts. Global optimization of Ru, Sn, and Ru-Sn clusters including 1

chemisorbed hydrogen atom was very difficult to analyze because there were no

clear trends. However, hydrogen tends to bond with Ru within Ru-Sn clusters.

Until experimental work catches up with technology, the BH-DFT global opti-

mization method will be key to understanding the atomic structures of clusters

consisting of a few tens of atoms.
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Appendix A: Structures of

Monometallic Clusters
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Figure 1: Ground States Structures for Au1 - Au10.
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Figure 2: Ground States Structures for Ag1 - Ag9.
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Figure 3: Ground States Structures for Cu1 - Cu8.
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Figure 4: Ground States Structures for Pt1 - Pt10.
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Figure 5: Ground States Structures for Pd1 - Pd10.
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Appendix B: Structures of

Bimetallic Clusters
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Figure 6: Ground States structures of NiXPdY , X+Y≤12.
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Figure 7: Ground States structures of PdXAuY , X+Y≤12.
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Figure 8: Ground States structures of PtXSnY , X+Y≤12.
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Figure 9: Ground States structures of RuXAuY , X+Y≤12.
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Figure 10: Ground States structures of RuXAgY , X+Y≤12.

89



Figure 11: Ground States structures of RuXCuY , X+Y≤12.
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Figure 12: Ground States structures of RuXGeY , X+Y≤12.
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Figure 13: Ground States structures of RuXPdY , X+Y≤12.
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Figure 14: Ground States structures of RuXPtY , X+Y≤12.
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