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Abstract
In today’s society, a large proportion of transportation is carried out on land by
fossil-fueled vehicles but there is an increasing trend towards electrifying vehicles.
A fundamental disadvantage of Electric Vehicles (EVs) is the limited range. An of-
ten overlooked aspect of the energy consumption is the auxiliaries, which especially
for trucks can be a substantial proportion of the total energy consumed. This thesis
investigates data-driven methods to predict the energy of electric trucks’ auxiliaries
using historical data from Volvo Group.

The analysis and predictions were done on preprocessed data to ensure that the
results are derived from feasible values of the signals measured. The analysis laid
the groundwork for determining the quality of the data and which methods were ap-
plicable to the problem. Results indicate that the energy consumption of auxiliaries
is difficult to predict with the inputs available and does not always follow a typical
nor expected pattern, despite a significant correlation with the ambient temperature
and time. Furthermore, preprocessing of data proved to be a fundamental process
in enabling accurate predictions.

Testing models of different complexity and types, the thesis found significant im-
provements in the energy prediction compared to algorithms found in relevant re-
search papers when applied to the data. Machine Learning (ML) models performed
well considering the complexity of the problem, the available signals, and the large
amount of data. Lastly, important future work is presented that can further im-
prove the prediction of auxiliaries and thereby contribute to more accurate range
estimations.

Keywords: energy prediction, electric vehicles, auxiliaries, machine learning, MLP,
XGBoost
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1
Introduction

Transportation of goods is an important part of today’s society and trucks are an
integral part of it. In the European Union (EU) there are about 6.2 million trucks
circulating and 73.1% of all freight transportation on land is carried out by trucks
[1]. There is an increasing trend in the EU to decarbonize vehicles as 0.24% of the
trucks on road in January of 2022 have a powertrain with zero-emission compared to
0.04% in 2019 [2], and the adoption of electric trucks has been projected to surpass
30% by 2030 [3]. The fleet of buses in the EU consists of 0.9% Electric Vehicles
(EVs) and 1.4% hybrid electric, but in the Netherlands, the share of electric buses is
12.4% [2]. Following improvements in battery capacity and lower costs of batteries,
the trend of electrifying vehicle fleets is expected to continue. Electric trucks can
either have electric energy on-board, for instance, inside a battery, or receive energy
externally, like a trolley truck that is given electricity by overhead lines along its
path. This thesis will however only cover EVs with batteries on-board, sometimes
named Battery Electric Vehicle (BEV).

A study made in 2012 presents that EVs powered by the European electricity mix
and with an assumed lifetime of 150,000 km for the vehicle and batteries, can achieve
a 10% to 24% decrease in global warming potential compared to conventional diesel
or gasoline vehicles [4]. The lifetime was set by the authors to 150,000 km but they
found the lifetime at the time to range between 150,000 and 300,000 km. A longer
lifetime typically benefits EVs more than fossil-fueled vehicles due to the greater
production impact of EVs. The decrease in global warming potential is projected
to grow larger in the EU since the Renewable Energy Sources’ (RES) share in the
gross final energy consumption has increased steadily from 10 to 21.3% between the
years 2005 and 2020, and the proposed RES share target in 2030 from the ’Fit for
55 package’ is 40% [5]. There is also a pledge to achieve climate neutrality by 2050
in the EU [5].

The potential of electrifying trucks for transporting goods differs greatly when com-
paring countries. In a study from 2019 EVs can cover up to 71% of the freight
transport in Switzerland in comparison with 38% in Finland, greatly due to differ-
ences in average trip length and gross vehicle weight [6]. Increased electrification
of vehicles however introduces considerable strains on the electrical grid. The total
energy needed in society increases and having numerous trucks charging simultane-
ously at a local charging station can require power in the magnitude of megawatts.
The work of [6] further states that the potential of EVs is significantly affected by
the available fast recharging infrastructure. In particular overnight charging is ex-
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1. Introduction

pected to be the dominant choice of charging as it is viewed as the cheapest option
and the technology for it is already available [3].

BEVs today have a limited range due to the battery capacity on-board making
it important to accurately predict the energy consumption for a given route. In the
EU there are also regulations on driving, introducing further constraints on when
and where the vehicle can charge. For instance, a driver must take a break of at least
45 minutes after driving for four and a half hours according to regulation 561/2006
[7]. Accurate energy predictions can assist in finding a suitable charging station
to charge at during the required break. Precise predictions are also very useful for
battery sizing and planning routes more efficiently. These factors are very important
for a successful implementation of BEVs in society, which in turn can contribute to
lowering the impact on the environment compared to fossil-fueled vehicles.

1.1 Background
The energy consumption of trucks can be divided into two main categories; propul-
sion of the vehicle and auxiliaries. The auxiliaries account for the extra energy
needed to operate the vehicle, such as the Air-Conditioning (AC), cabin displays,
temperature control of batteries, and in some cases add-ons to the exterior of the
vehicle. Examples of such add-ons are a fridge unit, a crane, or a tail-lift, and are
called electrical Power Take-Off (ePTO).

Predicting the energy consumption of the auxiliaries can be more difficult to per-
form accurately on trucks compared to passenger cars due to the increased number,
size, and complexity of sources drawing power from the batteries. The major power
sources for a car are typically the propulsion of the vehicle, AC, and heating/cooling
of the cabin. A passenger car usually has a similar weight and purpose of each trip,
to transport people between destinations, unlike trucks which can have additional
applications added to the exterior of the vehicle depending on the mission. The
energy consumption of the add-ons can be difficult to predict as they can have an
energy consumption of various types and depend on the route as well as driver be-
havior. For instance, a fridge unit typically consumes energy depending mainly on
time and temperature, while a crane has sudden power spikes when lifting heavy
loads. As for the increase in size compared to cars, an example is that air compres-
sors have a wider field of application for trucks as it is used for braking, suspension,
and controlling the height of the chassis.

Several studies have shown that it is possible to accurately predict the energy con-
sumption of hybrid and electric vehicles with various methods. Mean absolute per-
centage errors of 5.9% with an instantaneous energy consumption model including
auxiliaries [8] and 5.76% or 3.56% (down- or uphill) for an electric bus with a proba-
bilistic Machine Learning (ML) approach excluding auxiliaries [9] have been achieved
previously for their respective choice of validation. Less research has however been
conducted on how well the auxiliaries’ energy consumption of electric trucks can be
predicted.
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1. Introduction

The auxiliaries typically consume less energy than the propulsion and are often
considered to be linearly time-dependent or even omitted. Examples include an
electric bus and medium-duty truck in [9], electric medium-duty truck in [10], and
small cars as well as small trucks in [11]. However, several factors such as the ambi-
ent temperature and usage of add-ons can increase the energy consumption of the
auxiliaries. This can make the auxiliaries hold a significant share of the total energy
consumed making it an important factor to accurately predict when estimating the
range of the vehicle.

1.2 Related Work
In [12], data from EVs has been collected in Japan indicating an asymmetrical ’U ’
shape of a relationship between the total energy efficiency (kWh/km) and ambient
temperature. When they fitted second and third-order polynomials the minimum
was approximately 17.5 ◦C. The preferred temperature of the batteries and cabin
play an important role regarding which ambient temperature results in the lowest
auxiliary consumption. In [13] linear regression was used for the auxiliary energy E
stated as

∆Eauxiliaries = B|20 − T |Duration of auxiliaries switched on
Total duration of trip ∆t (1.1)

with regression coefficient B, ambient temperature T in ◦C, and time t in seconds.
In [14], (1.1) is extended with a constant energy term EAux,const, the minimum en-
ergy consumed by some auxiliary systems at 20◦C, multiplied with ∆t. For regular
vehicle use, it has been shown that nearly no heating or cooling is needed when the
ambient temperature is 20◦C, and for the total energy consumption, the parameter
with the largest uncertainty is the average auxiliary power [15]. Additionally, [16]
presents an EV fleet simulation in which the efficiency (km/kWh) is maximized at
an ambient temperature near 20 ◦C.

The definition of auxiliaries can differ and the modeled parameters of them can
vary greatly, including which temperature ranges the power of auxiliaries are de-
fined within. For a Nissan Leaf model, 300 W is used as a baseline in [17] while
[18] has a minimum of 200 W at 20◦C and a maximum of 6000W at -15◦C. In [8] a
higher baseline of 700 W, 850W at 25◦C, 1200 W at 35◦C and 2200 W at -5◦C was
used. Again for a Nissan leaf, the auxiliary energy consumption at -7◦C during the
WLTC driving cycle when simulating was about 33% of the total consumption in
[14], highlighting the importance of predicting the auxiliary load.

The predictions in [9] are done on links, which is also done in this work but only for
the auxiliaries. The definition of a link is the distance traveled on a road between two
nodes, for example, two road intersections, lacking any intersection between them.
A route in this work is defined differently than in [9]. One of the main reasons is
that the vehicle does not always drive in a loop in the logged data. In this work, a
route is defined as a sequence of links for which the time difference between the links
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1. Introduction

does not exceed 5 minutes. Effectively, a new route is created whenever the vehicle
starts to log data again after it has been turned off for at least 5 minutes before
logging data. Furthermore, the predictions made in this work are average power per
link instead of energy per link as in [9]. By doing this the possible range of target
values is restricted to in between zero and the maximum power of the auxiliaries,
which also makes it easier to interpret the results. The time duration for each link
is however known, meaning the predicted energy is simply the known time duration
multiplied by the predicted power. The final prediction and evaluation will be done
both per link and on entire routes by aggregating the energy per link of each route.

1.3 Scope

The thesis aims to create a model that can accurately predict the auxiliary energy
consumption for different types of a Volvo medium-duty electric truck. The main fo-
cus will be the auxiliaries’ energy consumption excluding ePTO and the intention is
to apply ML using collected data from electric trucks, primarily field test data from
Volvo Group. The field test data in this work is primarily data collected from electric
trucks driving at test tracks and in scenarios that reflect the intended use. Due to
the secrecy of the data, the publicly available thesis will not include all results. From
here on the term auxiliaries will exclude the ePTO such that they are separated from
each other since the focus is not on the ePTO. Due to using field test data that has
not been preprocessed, a considerable amount of effort is required into using data
engineering methods to make sure the data is viable to use for predicting the energy
accurately. The thesis seeks to contribute with new knowledge to the prediction of
trucks auxiliaries using a data-driven approach by answering the following questions:

• What is the research front regarding the prediction of energy consumption for
electric trucks’ auxiliaries?

• Which ML model is optimal for predicting the energy consumption of an elec-
tric truck’s auxiliaries?

• How well can an ML model predict the auxiliary energy consumption of an
electric truck offline?

The predictions in this work will be done before a truck starts driving and evaluated
after the truck has finished driving. Therefore, the input variables of the model can
only consist of parameters that are available before a truck starts its trip. Only
historical data will be used to train the models and the data used will be limited
to a subset of data of the medium-duty electric truck. Furthermore, the data will
be used in a way that ensures the drivers’ privacy. The algorithms developed for
predicting the auxiliary power will thus not have access to any personal data, and
the predictions can in no way discriminate any driver.
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1. Introduction

1.4 Delimitations
Analyzing and training algorithms on data from only one truck manufacturer, on
one type of model, might not generalize well to other trucks. Moreover, the algo-
rithms used were improved continuously during the implementation phase, but not
optimized to the greatest extent as it was not the focus of the thesis. The same
argument is applied to the componentwise analysis. The number of algorithms and
approaches have also been limited meaning that there is more work necessary to get
the full picture of how well the auxiliary energy can be predicted. As previously
mentioned, ePTO is excluded which presents a considerable limitation for vehicles
with significant energy consumed by the ePTOs.

1.5 Thesis Outline
Chapter 2 presents the theoretical knowledge necessary for understanding the meth-
ods used later. First off is the definition of what an auxiliary component is along
with how they can be grouped is described. Thereafter the theory of selecting fea-
tures as input to the models, the field of ML, and the chosen ML models.

Following the theory is how the chosen methods are implemented in Chapter 3, in-
cluding the essential procedures of processing and analyzing the data before making
predictions. In Chapter 4 the results from the data analysis and models’ predictions
are presented and compared to each other. The baseline is a simple linear regression
algorithm that has been used in several research papers. Conclusions from the thesis
are lastly presented in Chapter 5 along with recommendations for further work.
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2
Theory

This chapter describes the necessary theory to understand and apply the implemen-
tation presented in Chapter 3. At first, the auxiliaries and grouping of them are
defined. Thereafter methods for selecting features as input to ML models, and lastly
basic theory of the ML field and ML models applied are explained.

2.1 Auxiliaries
The electrical system of an electric truck is typically divided into multiple subsys-
tems. A common approach is to separate the energy consumed by the components
directly propelling the vehicle into a subsystem for propulsion, and group the remain-
der of the components as auxiliaries. This work considers all energy consumption
that is not directly connected to the vehicle’s propulsion as auxiliary energy con-
sumption. Some papers also group the Heating, Ventilation, and Air-Conditioning
(HVAC) as a subsystem. Typical auxiliaries in a truck include the HVAC system,
steering pumps, and components for heating/cooling batteries.

The truck model analyzed has three different types depending on the field of appli-
cation; distribution, refuse, and fridge. They all have a similar electrical system in
which the auxiliaries can be divided into low and high-voltage subsystems. The aux-
iliary components consume power in various patterns, such as linearly with time or
per usage. Several components consume energy only when deviating from a specified
metric, for instance, heating or cooling of the cabin and batteries.

2.1.1 Cabin
Examples of components considered to be connected to the cabin include the HVAC
system, displays, and windshield wipers. Several of these auxiliaries depend on both
the individual driver’s preferences, for instance, the cabin temperature, and also
external settings, such as the ambient weather condition. The temperature and solar
irradiation affect the energy consumption of the HVAC system, introducing variance
in the energy consumption of trips despite driving similarly. When comparing plug-
in electric vehicles in different states in the USA the highest AC load to heater load
ratio was 6.3 in Arizona, and the lowest was 0.48 in Alaska [19]. Preconditioning via
heating or cooling using off-board powered thermal preconditioning, however, can
significantly decrease the energy expenditure of the climate control system [20].
In Phoenix, Arizona, an EV has been computed to have a seasonally averaged
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maximum of 8.75% increase in range when preconditioning the cabin [21].

2.1.2 Driveline
During driving, there are several subsystems required to be turned on for opti-
mal performance. Examples include the air compressor, steering assistance for the
driver, and heating/cooling of batteries. The batteries are components that have an
optimal temperature range for operating which introduces a significant correlation
between the ambient temperature and auxiliary energy consumption. They can be
preconditioned to reduce the auxiliary energy consumption during driving by lower-
ing the need for heating/cooling of them [20]. Battery thermal management system
usage and cabin preconditioning when parked before driving increased an EV fleet’s
median efficiency (km/kWh) by 8% and 9% respectively when the ambient temper-
ature is at -10 ◦C and +40 ◦C [16]. Furthermore, temperatures too low can decrease
the energy possible to extract from the batteries while too high temperatures can
increase battery degradation and self-discharging [16].

2.1.3 ePTO
Some types of trucks have external add-ons which consume auxiliary energy. Exam-
ples include a tail-lift for a distribution truck, a compactor for a refuse truck, and
a fridge unit for a fridge truck. These add-ons vary greatly in how often they are
used and how much energy they consume. The ePTO for the truck is considered to
be part of the high-voltage system and is separated from the other auxiliaries which
have a lower voltage.

2.2 Feature Selection
A feature is a measurable variable describing a part of the observed process, and the
process can consist of hundreds of features [22]. Before selecting features as inputs
to a model it is important to consider transforming features for compatibility and
performance reasons, including scaling of features. Thereafter the process of fea-
ture selection is to select the relevant features to choose as input to the models and
the process of selection can include several different methods in combination. The
methods can be derived from statistics, information theory, manifold, and rough
set [23]. Broadly, methods can be divided into two categories that either use the
features’ importance themselves based on the data, filter methods, or the predictor’s
performance to evaluate the features’ importance, wrapper methods [24].

The performance of any model is affected by what input it is given. Given more
features as input, the accuracy can increase but requires more computations making
the training process slower [22]. If not given enough information as input, the accu-
racy will be sub-optimal, resulting in a trade-off regarding the number of features
and computational complexity. Having fewer input features can even result in some
models generalizing better since it has fewer adaptive parameters and can be trained
quicker [25]. Features that do not increase the performance are deemed redundant
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and should not be included. Distinct performance benefits of including a variable
can often be directly determined by investigating the association of variables.

2.2.1 Association of Variables
There exist several types of measures to define how well variables are associated with
each other, for instance, the correlation between variables. Examples of correlation
metrics include Pearson’s r (product-moment correlation) and Spearman’s ρ [26].
Pearson’s r can be written as

r =
∑(xi − x̄)(yi − ȳ)√∑(xi − x̄)2

√∑(xi − x̄)2
(2.1)

where x, y are variables and x̄, ȳ are the sample means. The expression in (2.1)
has limits of ±1 for r and can only handle correlation between two continuous
variables at a time. Pearson’s r evaluates the linear relationship between two nu-
merical variables and is sensitive to outliers, while Spearman’s ρ is robust against
outliers and determines monotonic relationships between two numerical variables
[26]. Spearman’s ρ can thus determine relationships that are nonlinear. To calcu-
late the association of categorical values with other categorical or numerical values,
other methods must be used. A practical correlation coefficient ϕK for categorical
values is presented in [26]. It is based on the Pearson’s χ2 contingency test that can
capture nonlinear dependency and enables correlation of all variable types.

Another available metric of two variables’ association is Mutual Information (MI)
[22]. It can be used for both categorical and numerical values. Using Shannon’s
definition for entropy, H(y) corresponding to the information content in the output
Y , and observing a variable X, the MI can be written as

MI(Y, X) = H(Y )−H(Y |X) = −
∑

y

p(y)log(p(y))+
∑

x

∑
y

p(x, y)log(p(y|x)) (2.2)

with probabilities p and H(Y |X) being the conditional entropy [22]. The expression
in (2.2) will be equal to zero if they are independent, or above zero if they are depen-
dent. It can also be applied to continuous variables by exchanging the summations
for integrals.

2.2.2 Filter Methods
Filter methods utilize a variable ranking technique using a criterion, for instance,
a threshold, to determine which variables to include based on the values used for
ranking [22]. The method is straightforward to implement and it is easy to choose
features from the ranking. There exist several techniques to rank the variables with
regard to their association to the target variable, such as correlation and MI as
explained in Section 2.2.1. A drawback is that both correlation and MI do not take
the used variables’ correlation to other variables into consideration, resulting in the
possibility of having redundant features [22]. In addition, these methods do not take
into account features that individually can have a low association with the target
variable, but in combination be more informative.
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2.2.3 Wrapper Methods

Wrapper methods use the performance of the predictor to evaluate the different
variable subsets, enabling comparison of how features in combination can improve
the performance, unlike filter methods [22]. In turn, this means that for optimal
results the wrapper must be rerun for each new learning algorithm used since they
function differently. When using an exhaustive search procedure to check all possible
combinations of features, the number of possible feature subsets is 2d, d being the
number of possible features [25]. Testing all subsets when having a high-dimensional
space becomes computationally costly and there exist several sub-optimal methods
such as the genetic algorithm that can be applied [22], [23]. One possible approach
to reduce the cost is to only search for subsets of features that have already been
filtered by a filtering method. This two-stage implementation can be called a hybrid
feature selection method [23]. Additionally, subsets of features can be selected with
wrapper methods such as forward selection and backward elimination. In forward
selection, it is common to start with no features selected and then add features
sequentially. In backward elimination, one starts with all features selected and
removes one feature at a time such that redundant features are removed [27].

2.2.4 Transformation of Features

Features such as the length of the trip can be used directly as a numerical input to
certain models while a timestamp can be decomposed into multiple features such as
month and time of the day. Various models might only be capable of handling cer-
tain types of inputs, for example, numerical values, and some numerical data have
no natural ordering resulting in a need to be categorized. Thus, certain features
need to be transformed to make use of all the information correctly before they can
be used. Examples of necessary transformations can include encoding categorical
variables to numeric values, transforming numerical values into categories, and scal-
ing.

Feature scaling is a type of transformation that standardizes the range of values
the features can take on. Larger values do not necessarily correspond to a larger
importance of a feature. To exemplify, the values decrease significantly when chang-
ing the metric of weight from kilogram to tonne, but the importance remains the
same. Scaling the input before training ensures that the parameters of a model
can be given a suitable random initialization [25]. The variables can also be made
more interpretable by scaling the features and can improve performance to a varying
degree depending on the values of the feature and the model at hand. Scaling can
furthermore significantly improve the rate of convergence when training a model
with gradient descent, as with Batch Normalization [28]. Caution however must be
taken before transforming the features since it can change the distribution of the
feature. Standardization using the mean and variance does not retain the input
distribution if the input is not Gaussian, resulting in loss of information. Methods
such as standardization and min-max scaling are also sensitive to outliers.
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2.3 Machine Learning
An ML model consists of an algorithm that learns to perform a task from the data
it is given, with the central challenge being to perform well on new, unseen data
[29]. Typically, an ML model has a loss function that it tries to minimize during
training using optimization on the training set. How well the model learns, there-
fore, depends greatly on the quality of the data fed to it since the algorithm tries
to infer patterns from the used data on unseen data. ML models are furthermore
suited differently well to different types of problems and data, for example, if there
exists a target variable or not.

ML problems are commonly divided into supervised and unsupervised learning prob-
lems [30]. In supervised learning, each training input x has a corresponding target
y. The training dataset can thus be written as D = {(xi, yi)}N

i , where N is the
number of samples in the training data with indexing of samples i [30]. The aim
of the supervised learning problem is to train a model to predict y, given x. The
target can be either categorical or real-valued, making it a classification or a regres-
sion problem respectively [30]. In the unsupervised learning problem, the training
inputs in the data have no targets. Instead, the objective is to learn important
properties of the training samples x [30]. The target variable for this thesis is a
measured real-valued variable, the average auxiliary power of a road link, making
the prediction a supervised regression problem.

Typically the algorithms have settings called hyperparameters that are determined
externally from the learning algorithm that change the behavior of the model [29].
Some of the hyperparameters external to the architecture of the model include the
learning rate, number of epochs trained, and the choice of an optimizer. An epoch
is the number of passes of the entire test dataset. When creating an ML model it
is important to determine the model’s hyperparameters which control the capacity
of the model and the ability to fit a variety of functions. Examples of model hy-
perparameters include the topology and size of a network. A too small capacity
tends to underfit the data, so it cannot fit the data well, while a too large capacity
tends to overfit the data. When overfitting the data the model can find patterns
that exist in the training data, but not in the test data. An approach to reduce the
overfitting is to add regularization to the model, for instance, weight decay which
adds a preference for smaller weights of the network. In Figure 2.1 the errors of
training and testing are compared when overfitting.

2.3.1 Optimization of Machine Learning Models
There are many differences between the optimization methods used for ML models
and traditional optimization. One important aspect is that ML models use an indi-
rect way of minimizing the loss [29]. That is, the objective is to minimize the loss
based on the test set but the problem is approached by minimizing the training loss
instead [29]. However, it is often not wise to only focus on minimizing the training
loss as this comes with a great risk of overfitting. A common approach to prevent
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Figure 2.1: Prediction error versus the amount of training of an ML model. When
the training error decreases while the testing error increases consecutively, overfitting
is occurring.

overfitting is to split the data into three different sets and implement early stopping
[29]. One set is used for training the model, the training set, one for validating the
training, the validation set, and the last one for testing the model after the training
is complete, the test set. Early stopping is implemented by evaluating the model
on a validation set after each iteration of training and stopping the training process
when the validation loss consecutively increases [29]. Referring to Figure 2.1 and
having a validation set used instead of a test set, the training should be stopped
when the orange curve starts to increase.

ML models are often optimized with methods applying gradient descent, which
is an optimization algorithm updating the model’s weight vector W as

W(τ+1) = W(τ) − η∇L(W(τ)) (2.3)

with τ as the iteration step, η as the learning rate, and ∇L as the gradient of the
loss function [31]. Furthermore, it is common to use mini-batch gradient descent,
which means that only a randomly selected subset of the data is used to evaluate
the loss function of which the gradient is calculated. This approximation is a lot
less computationally costly compared to computing the exact gradient of the entire
training set and can often result in faster convergence [29]. Moreover, gradient
descent can also converge faster if momentum is used. Momentum uses a velocity
term that is calculated based on previous gradients. This reduces the oscillations of
the gradient trajectory and accelerates the training process [29].

2.3.2 Loss Functions
Optimization of ML models requires that a suitable loss function is chosen. Outliers
can cause a significant decrease in the model’s performance if not dealt with correctly
[32]. For instance, using the squared error loss r2 in the presence of outliers can result
in the outliers having a large impact on the model weights [32]. This effect can be
reduced by using other loss functions that are more robust regarding outliers. One
possible solution is to use the absolute loss |r|, which is robust in the sense that
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Figure 2.2: Comparison of the absolute, squared, Huber, and Pseudo-Huber loss
over residual values r.

residuals are not squared [32]. However, a disadvantage with the absolute loss is
that it is not differentiable as r = 0. One approach that combines favorable aspects
of the squared and absolute loss is the Huber loss

L(r, δ) =


r2

2 , |r| ≤ δ

δ|r| − δ2

2 , |r| > δ
(2.4)

which assigns a quadratic loss to the residual r if it is less than or equal to the
parameter δ, otherwise an absolute loss [30]. As can be seen in Figure 2.2, the
combination ensures a convex function when the loss is near zero and robustness for
outliers when the loss is large. Additionally, the Huber loss is sometimes approxi-
mated to an expression that is twice differentiable and thus enables the loss to be
used for second-order methods [33]. The approximation is called the Pseudo-Huber
loss and can be calculated as in (2.5) [34].

L(r, δ) = δ2
(√

1 +
(r

δ

)2
− 1

)
(2.5)

2.4 Machine Learning Models
Choosing the best model suited to the task at hand is a challenge that often re-
quires testing several different models. In this section, the tested ML models are
theoretically explained.
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2.4.1 Polynomial Regression
A linear regression model calculates a linear function based on the input variables
x1,...,D and model parameters w0,...,D [31]. In [31], the linear regression model is
extended to model nonlinear functions by using basis functions ϕ(x). The model
output can thus become nonlinear if a nonlinear basis function is chosen. For in-
stance, polynomial regression can be obtained by modeling the j-order term in the
polynomial with the basis function

ϕj(x) = xj (2.6)

which enables the modeling of higher-order polynomials [31]. Using the basis func-
tion in (2.6), a j degree polynomial with variable x can be modeled as

ϕ(x) =
[
ϕ0(x), ϕ1(x), ϕ2(x), . . . , ϕj(x)

]
=

[
1, x1, x2, . . . , xj

]
(2.7)

but polynomials are not limited to only using one variable. The extended linear
regression model with variables x, output ŷ and M parameters can be written as

ŷ(x, w) = w0 +
M−1∑
j=1

wjϕj(x) (2.8)

which can be simplified to
ŷ(x, w) = wT ϕ(x) (2.9)

by setting the basis function ϕ0 = 1 [31].

In problems using (2.9), one aims to find suitable values of the model parame-
ters w, given the chosen basis functions ϕ(x). The values of the model parameters
are commonly determined by minimizing the squared error loss with respect to w,
which requires that basis functions of appropriate complexity are chosen to prevent
the model from overfitting the data [31]. In [31], several methods to determine the
model complexity are presented, and the choice of method often depends on the
amount of training data available. For instance, the risk of overfitting can be re-
duced by increasing the number of training data. Furthermore, some of the data can
be used in a validation set on which the different models can be evaluated. However,
in the case of limited data available, a Bayesian approach to the regression problem
can be used instead. The Bayesian approach enables the evaluation of a model’s fit
on the training set by calculating the marginal likelihood [31].

2.4.2 Multi-Layer Perceptron
The objective of a Multi-Layer Perceptron (MLP), also called feedforward neural
networks, is to approximate some function f ∗ which maps an input x to the output
ŷ with parameters θ [29]. The information flows through the function with interme-
diate computations without any feedback, hence the name feedforward. The output
can be viewed as consisting of multiple functions structured as

ŷ = f(x) = f (2)(f (1)(x)). (2.10)
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Figure 2.3: A two-layered MLP with one output having arrows indicating the flow
of information. Input denoted as xi, hidden units as hi and the output as ŷ.

Most commonly the function f (i), using indexing i, is an affine transformation Wx+c
with weights W and bias c [29]. An MLP has one input and output layer respec-
tively and at least one hidden layer. MLPs are fully connected, connecting every
unit from one layer to all other units in the next layer. Figure 2.3 illustrates an
example of a simple MLP. The width of the layers is determined by the number of
units in each hidden layer and the depth of the model is the number of hidden layers
added with the output layer in the network. The depth of the MLP in Figure 2.3 is
2, counting the hidden and output layer, and the hidden layer’s width is 3 since there
are three hidden units (h1, h2, h3). Furthermore, an MLP introduces nonlinearities
by having an activation function g applied elementwise, hi = g(f i) [29]. Common
choices for activation functions include

• logistic sigmoid: 1
1+exp(−x)

• hyperbolic tangent (tanh): tanh(x)
• Rectified Linear Unit (ReLU): max{0, x}.

There exist many different optimizers to choose from when implementing an MLP.
Adam [35] is a popular first-order gradient-based method with momentum and a
stochastic objective function. The simpler Stochastic Gradient Descent (SGD) has
however shown to be able to generalize better [36]. Both can be implemented us-
ing mini-batches. Lowering the batch size affects the choice of learning rate as the
model learns faster due to updating its parameters more times during an epoch. A
larger batch size tends to result in slower learning, but with a lower variance of the
accuracy for the validation set.

Dropout is a regularization method that improves the performance by randomly
dropping units, including their connections, in a neural network with a fixed prob-
ability 1 − p. The method reduces the co-adaptions on the training data and can
thereby reduce overfitting [37]. Referring to Figure 2.3, dropping a unit corresponds
to dropping, for instance, h1, and its incoming and outgoing connections. As a
result, the model has to find parameters that accurately predict the output inde-
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pendently of the dropped unit h1 in this scenario. Typically dropout is only enabled
during training and it increases the training time since it increases the noise of the
parameters’ updates [37].

Due to the added noise when including dropout, a larger learning rate and/or adding
momentum is recommended to speed up the training, and max-norm regularization
to constrain the weights of the network [37]. Common values of p regarding dropout
are in the range [0.5, 0.8], but the value also depends on the choice of hidden units n.
The network’s size is furthermore affected by dropout since it decreases the capacity
of a network, resulting in the recommendation of having n/p units with n being the
optimal size of the layer of a standard neural network [37].

To introduce a measure of the MLP’s uncertainty of its prediction, the method
of adding dropout as a Bayesian approximation can be introduced [38]. An MLP
model with dropout applied before every weight layer can be run, with dropout en-
abled also during prediction, to calculate the mean and predictive uncertainty from
T stochastic forward passes. The final prediction is the mean, and the uncertainty is
represented by the standard deviation. For regression tasks, p = [0.8, 0.9] has been
used in [38].

2.4.3 Classification And Regression Tree

A Classification And Regression Tree (CART), maps a model to the input by passing
the input through a series of binary decisions. The series of binary decisions can be
viewed as a tree with nodes that split into two nodes at each new level of the tree,
where each split divides a decision region into two regions based on a variable and
threshold [31]. See Figure 2.4 for a CART with binary decisions. The first node
is called the root node and the end nodes in the tree are called leaf nodes. Each
leaf node corresponds to a specific decision region to which a model is assigned.
A model can be a single value in regression trees or a class in classification trees
[31]. The model for each leaf node depends on the training samples assigned to it.
For example, the value of the leaf node when using the squared error loss can be
calculated as the average target value of the training samples assigned to the node
[31].

Tree models generally have many possible solutions for a given problem and this
can make traditional optimization methods insufficient to use for training [31]. It is
therefore common to use a greedy optimization method, which sequentially chooses
one node to split among multiple candidates [31]. The candidates also have multi-
ple possible variables and thresholds that can be used to form the split condition,
which must be determined. Finally, the greedy optimization method evaluates all
candidates of nodes, variables, and thresholds, and chooses the one configuration
that yields the lowest loss among all candidates [31].
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Figure 2.4: Example of a decision tree that assigns a model m based on binary
decisions with variables a and b.

2.4.4 Boosting
In boosting, one can get improved accuracy by using several models to perform
predictions [31]. Furthermore, models are added and optimized one at a time and
the models added will emphasize on learning to predict the training samples that
the last model predicted inaccurately [31]. A common type of boosting is gradient
boosting, and an example of gradient boosting is presented in [39]. It proposes a
boosting scheme of regression trees that are optimized with gradient descent. The
method requires little preprocessing of data as it is robust to outliers and does not
require any scaling of the input data [39]. There have been several other tree-based
boosting algorithms developed that make use of the gradient boosting technique, of
which eXtreme Gradient Boosting (XGBoost) [40] is widely used. XGBoost uses
a second-order Taylor approximation of the boosting objective and minimizes it
similarly to the Newton method. The second-order approximation, together with
efficient split finding algorithms and parallel computing, makes XGBoost very fast
compared to many other gradient boosting methods [40]. Furthermore, XGBoost
uses a regularized learning objective that prevents overly complex models and over-
fitting [40].

2.4.5 Clustering
Clustering is an unsupervised ML method performed by partitioning the data into
subsets based on a distance measure, such that the data is grouped into clusters [41].
The algorithms are either partitional (deciding all clusters at one time instance)
or hierarchical (discovering clusters successively based on previous clusters), and
common distance measures include the Manhattan distance and Euclidean distance
[41]. A frequently used partitional algorithm is K-means which assigns points to
the center of the nearest cluster called a centroid. K-means requires the number
of clusters K to be set beforehand unlike many other methods. Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) is a hierarchical, density-
based clustering model based on two thresholds that must be specified [42]. The
thresholds are the minimum number of neighbors within a set distance for a point
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(a) K-means clustering using 3 classes.
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(b) DBSCAN clustering with eps=0.4 and
5 as the minimum points of a cluster.

Figure 2.5: Examples of clustering algorithms applied on the same data.

to be considered a core point, and the radius of each point to search for neighbors
within. An advantage of DBSCAN is that the number of clusters and points that are
considered to be noise can be found by the algorithm itself if the chosen parameters
are set appropriately. The DBSCAN parameters can however be difficult to tune
and greatly affect the results. An example of K-means and DBSCAN is viewed in
Figure 2.5.

2.4.6 Principal Component Analysis
Principal Component Analysis (PCA) is a widely used tool that calculates linear
combinations of a set of orthogonal vectors to describe complex data in a lower
dimensionality [43]. Using PCA and choosing to only include some components
allows for dimensional reduction by keeping the most important dimensions, and
hopefully excluding the redundant dimensions. As explained in [43], the procedure
in PCA is to initially set the first principal component, a vector, to maximize the
variance of the data X. This direction is set as the vector p1. The size of X is m×n
and the following m − 1 vectors are sequentially set to the orthogonal direction of
all previous set vectors that maximize the variance of the data individually. The
new representation of the data Y can be described as PX = Y having X as the
original data and P as a linear transforming matrix consisting of the vectors pi. The
vectors pi can be judged by their importance according to their representation of
the data variance, enabling a metric of how well the components describe the data,
p1 describing it the best. Caution needs to be taken since PCA is only applicable to
numerical data, is designed for continuous variables, and is sensitive to the scaling
of the input data [43]. An example of representing the data with a new set of
components using PCA is shown in Figure 2.6.
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Figure 2.6: Example of two calculated components from a PCA based on the data
points colored in blue.
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Implementation

When using field test data the quality of the data will be heavily influenced by what
is measured and the quality of the sensors. Preprocessing is therefore applied before
analyzing the data to improve the usability of the data collected. The implemen-
tation steps of preprocessing the data and how the analysis of the data has been
done are first presented in this section. Thereafter, the procedures for predicting
and evaluating the different models are described. The implementation procedure
is an iterative process since new insights can be gained from one procedure that
influences another one. An example is that knowledge gained from the analysis can
provide insight into possible improvements in the preprocessing.

3.1 Preprocessing
Raw data can consist of incorrect entries, missing values, and outliers which can
negatively affect learning algorithms. Outliers, also referred to as anomalies, are
in this thesis considered observations that appears to be contrary to the rest of the
data. They can appear in the field test data due to for example faulty measurements
or during test-drives that do not represent realistic driving scenarios. To mitigate
the effect, only the preprocessed data was used. The first step is to analyze and
process the raw data to deduce what data to keep and how it should be processed.
The second step is to divide the data into routes, and lastly, route matching is
done with a map provider to add data of the road and environment before finally
formatting the data into links.

3.1.1 Raw Data Processing
Initial inspection of raw data gave a good insight into which tools should be used
later and descriptive statistics such as the mean, variance, quantiles, and the min-
imum/maximum values served as a good starting point. Filtering and reasonable
saturation limits were set individually for all signals using domain knowledge. The
main cleaning operations considered for the raw data were to adjust or fill in missing
values and remove unreliable measurements. This could in turn result in the loss of
entire routes.

An example of an unreasonable measurement is measuring the weight to be be-
low the minimum possible weight. Saturation limits were assigned to the vehicle
weight signal such that the weight never exceeded the maximum specified weight
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by more than 5 tonnes or fell below the minimum possible weight. Moreover, in-
formation on the vehicle type was added instead of the vehicle’s ID to make the
algorithms more general. For instance, if the vehicle is a distribution truck or a
fridge truck. Thereafter, the consumed auxiliary energy was calculated and set as
the target variable.

Due to the large spread of values for the auxiliary energy consumption per link,
it was decided to predict the average auxiliary power per link instead, as mentioned
in Section 1.2. The new target variable was created by dividing the auxiliary energy
consumption per link by the time of each link. The resulting target variable has a
similar magnitude for all values as a result. To lower the amount of data, the data
when the truck was at a standstill were aggregated into single instances of data.
When at a standstill the auxiliary energy was aggregated and separated from the
data when driving. It was also converted to the average auxiliary power per link.
The result was having two different target variables that depend on if the truck is
moving or not.

3.1.2 Dividing into Routes
The collection of data could be separated for each vehicle, but there was no pre-
defined signal to distinguish when it was stopping for a longer period or moved
without logging data, which could degrade the quality of the data. Therefore it was
decided to divide the data into routes, determining that a new route had started if
the vehicle had not logged data for longer than 5 minutes before starting to drive
as defined in Section 1.3. The choice of 5 minutes as a threshold was based on the
assumption that new routes are not created for temporary stops, for instance at
junctions, and that the temperature of the cabin and batteries do not change much
for such short stops. After longer stops, however, an increased auxiliary power may
be required to get them up to operating temperature. This way of dividing the data
into routes ensured that the potential increase in power demand generally comes at
the beginning of each route when the cabin and batteries are not up to temperature.

After dividing the data into routes, additional cleaning was performed to improve
the quality of the vehicle weight signal. The weight signal was noisy and could vary
during routes that had no stops, which is unreasonable. It is highly unlikely that a
significant change in vehicle weight occurs while driving but the same assumption
does not hold when standing still since the vehicle can be loaded/unloaded. The
oscillations of the weight were therefore reduced by calculating the average vehicle
weight in between stops.

3.1.3 Route Matching and Filtering
The final step of the preprocessing was to match the GPS coordinates of the data
with a map provider. The map provider took the data as input, linked the measured
position to a road based on GPS coordinates, and returned the data as a sequence
of shorter road links. The road links could vary in size but were typically between
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5-100 meters. It also returned the road inclination of each link, which was consider-
ably more accurate than the vehicles’ estimated inclination. The resulting dataset
consisted of the data aggregated into road links with added information from the
map provider, assigned to a unique route-ID.

After having all the data divided into routes the final step in the preprocessing
was to filter out those routes not deemed valid. The filtering was performed based
on the criteria

• Driven distance of at least 2.5 kilometers
• Time while driving at least 10 minutes
• Difference in GPS coordinates corresponding to a Manhattan distance of at

least 2.5 kilometers

to exclude short routes and the most unreliable GPS measurements due to the
matching of GPS measurements with the map provider.

3.2 Data Analysis
Following the preprocessing of data was the procedure of gaining a better under-
standing of the data by analyzing it. The two specific procedures used were to see
how the data was distributed and the relationships between variables. After gaining
new knowledge about the data it could be applicable to go back to preprocessing to
modify the dataset used for better performance.

3.2.1 Exploratory Data Analysis
Since there can be hundreds or even thousands of signals available, an initial selection
of signals was done by using domain knowledge to eliminate the signals that with
high certainty were not useful. Descriptive statistics and histograms were thereafter
used to check the distribution of the data. PCA was performed for inspecting the
potential of dimensional reduction. As PCA is designed to find the directions that
maximize the variances of the data, it does not function well for categorical data.
Similarly, many clustering methods tend to function poorly for categorical data that
do not have a natural ordering. Therefore, PCA and clustering were only performed
on numerical features.

By using clustering the presence of outliers and redundant features could be de-
tected, which gave indications of how to remove or handle them in the preprocessing
stage, if possible. The inputs were scaled with min-max scaling before clustering
since a distance measure was used. In addition, clustering the data and checking
each cluster’s distribution of average auxiliary power per link served as an indicator
of how well classification is suited to the prediction. In particular, DBSCAN was
used to enable outlier detection by a combination of the criteria distance and the
minimum number of samples in a cluster. Due to the sensitivity of the DBSCAN
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parameters, the tuning was very important to get satisfying results. The parameters
were set according to the recommendations presented in [42].

3.2.2 Componentwise Energy Consumption
The signals used to calculate the total auxiliary power were the measured time,
current, and voltage of the entire low voltage system directly. To validate the use
of these signals and gain more domain knowledge, a componentwise analysis of the
low voltage system energy consumption was performed. The difference between the
summed energy of all measured components and the total was compared, anticipat-
ing a relatively small difference due to only measuring the major energy-consuming
components.

The componentwise analysis provided domain knowledge of which components have
a substantial impact on the total auxiliary energy consumption. This information
was helpful to indicate the importance of the measured components. For example,
if components related to heating and cooling had a high contribution the ambient
temperature is likely an important feature. This knowledge was also used to de-
termine how the individual components’ consumption varied between vehicles and
seasons, and if some components’ consumption can be considered to be constant.

3.2.3 Creation and Transformation of Features
Following the analysis of already existing features was the process of investigating
the transformation of features and creating new ones. Only features available for
offline predictions were considered and examples of signals added are:

• Tdev20: Ambient temperature deviating from 20◦C. The signal is calculated as
|T − 20| and is used in previous work for predicting the auxiliary power, see
Section 1.2 for a more detailed description.

• toff_time: Total time the vehicle has been turned off before starting the route.
This signal was created to make assumptions about the temperature in the
cabin when starting the vehicle. If the vehicle has been turned off for a long
time in very cold/warm climates, the cabin is considered to not be in operating
temperature when starting.

• troute: Measures the time the vehicle has been turned on during a route. It was
assumed that additional auxiliary power generally is required at the beginning
of the route to get the cabin close to the set temperature.

• Bpre_cond: A combination of the signals toff_time and troute. The variable is
equal to 1 when troute is greater than 10 minutes or toff_time is less than 20
minutes, indicating that the vehicle is up to temperature. The variable is equal
to 0 otherwise.

• Month, hour, weekday: Categorical variables obtained by decoding the times-
tamp signal.

Attention was also given to which signals were chosen and how they were used.
For instance, using the ID of the vehicle, GPS coordinates, and sensitive customer-
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specific information, the data can be coupled to an individual driver, resulting in
possible privacy issues. Lastly, transformations were done on the features depending
on the data according to Section 2.2.4, since much of the transformation depends
on the distribution of data.

3.2.4 Feature Selection
Numerous methods were used to identify and select important features for predict-
ing the average auxiliary power. The thresholds were initially set to relatively low
values to ensure that only the features with very low association with the power
were filtered out. The values were then increased slightly to filter out more features
to reduce the computational complexity. The variables having Pearson’s r or Spear-
man’s ρ correlations with the auxiliary power above the threshold of 0.15 were kept.
Firstly, filtering was performed with Pearson’s r to search for linear relationships.
The results could then be compared to Spearman’s ρ correlation such that nonlinear
relationships also were captured. Additionally, as both Pearson’s r and Spearman’s
ρ are not suitable for capturing correlations of categorical variables, filtering was
also performed based on MI and ϕK correlation. The threshold decided for MI was
set to 0.15, the same as for Pearson’s and Spearman’s. The ϕK metric generally
assigned greater values compared to the other methods and was therefore given a
threshold of 0.2 to avoid including too many features.

The correlation between all features selected from the filter methods could then
be calculated and visualized in a correlation matrix to search for redundant fea-
tures. That is, if two features were highly correlated, one of them could possibly be
removed. However, the final decision regarding redundancy was made based on the
wrapper method backward elimination for each model individually.

3.3 Prediction of Auxiliary Energy
How the development of the models and their respective procedures for prediction
of the energy was done is described in further detail in this section. The baseline
from the current research was set up as (1.1), which is a linear predictor. According
to Chapter 2, the training and tuning were done differently depending on the model
at hand and some of the models needed additional processing of the input such as
numerical encoding and scaling. Common for all models is that they are initially
only trained on the data when the vehicle is driving, and then evaluated also on the
standstill data independently to check if a separate model for standstill is needed.

The data was divided into sets for training, validation, and testing. The split ratio
was initially decided to be 80% for training which is commonly used in ML [30], and
10% respectively for the validation and testing set. The ratio was later modified
to ensure that the number of routes in the test set was large enough to get a good
estimate of the generalization properties. An alternative is k-fold cross-validation,
but since the dataset is large it was not considered. Due to a large correlation of
the power between links within the same route the data was split such that all links
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within a route are only within one of the sets of data. When splitting the data a
random seed was set such that all models are always trained and tested on the same
data to enable a fair comparison. The test set is unseen data for the models and was
only used when the training was complete while the validation set was used during
training to determine when to stop. To prevent data leakage from the training set
to the validation and test set, the scaling parameters were calculated on the training
set only and later applied to the other sets.

The tuning differed greatly between the models as they have different kinds of hy-
perparameters. Two searches for parameters were done to find satisfactory hyperpa-
rameters for the different models. Firstly a grid-search was performed with values
spread out to find a good starting point. Thereafter a finer search was done to find
values that performed better. For both searches, the Mean Absolute Error (MAE)
was set as the evaluation metric.

3.3.1 Polynomial Regression
The Scikit-learn package [44] was used to create and fit polynomial regressors by
minimizing the squared error function. The first polynomial considered was a linear
regression model with only Tdev20 as a variable. This polynomial was also considered
as the baseline model in this thesis, as it has been used in related work. The basis
functions of the baseline, ϕ, can be written as

ϕ(Tdev20) =
[
ϕ0, ϕ1

]
=

[
1, T 1

dev20

]
(3.1)

where ϕ0 = 1 is added as a bias term. As the baseline is of very low model complexity,
higher-order polynomials were created by adding basis functions of Tdev20 with an
increased exponent to the baseline model. The polynomial order was increased until
the loss on the test set stopped decreasing. To investigate the effect of potential
outliers in the data, polynomials were also fitted with the Huber loss instead of the
squared error loss. The best polynomial for each loss function were compared, and
the polynomial with the lowest Mean Absolute Error (MAE) was considered to use
the more appropriate loss function. With a suitable degree of polynomial based on
Tdev20 and an appropriate loss function, other features were added to further improve
the model’s performance.

3.3.2 Multi-Layer Perceptron
MLP was chosen as a model as it is widely used and can fit many different types of
functions. Since it can only handle numerical input it was decided to one-hot encode
the categorical features and also scale the inputs per Section 2.2.4. One-hot encod-
ing encodes categorical features by adding a binary variable for each category that
is possible and setting those variables to either one or zero. Zero corresponds to not
having a certain category present, and a one if the category is present. The hyper-
parameters and how they were set initially for a grid-search to find the best model
are shown in Table 3.1, excluding the optimizers’ parameters. The optimizers, loss
functions, and activation functions used are popular choices applicable for regression
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Table 3.1: Hyperparameters and their initial values considered to be tested for an
MLP model, excluding the optimizers’ hyperparameters.

Hyperparameter Value/Method
Optimizer SGD Adam
Loss function Squared Absolute Huber
Batch size 32 128 512
Activation function ReLU sigmoid tanh
Hidden layers 1 2 4
Units in each hidden layer 10 40 160
Dropout rate (1-p) 0.1 0.2 0.3

and served as a good starting point. Dropout served as regularization of the network
and the choice of optimizer was done empirically as there are several pros and cons
to consider. The values were set with some distance between each other such that
the search was done coarsely and with incremental gains of the numerical values.
The architectures of the models were initially set to be of a small size and were
sequentially increased to find when the models’ added complexity only gave minor
improvements. Only architectures with the same number of units in each layer were
tested to limit the number of combinations to test. When the improvement of a
larger size dropped to a small percentage compared to the previous size, new sizes
were not tested. Considering the accuracy and computational complexity, a model
was thereafter selected. The parameters of the optimizer were set to fixed values,
but for the final model, a decaying learning rate was used to reach slightly better
results.

3.3.3 Tree-based Models
A single regression tree was firstly implemented with Scikit-learn as it is the least
complex tree-based model. Features could be used directly as input, without any
scaling, since tree-based models generally do not require any transformation of vari-
ables. Tuning of the regression tree was performed by changing the depth of the
tree while evaluating the loss on the validation set. Moreover, the minimum required
number of samples of each leaf node was specified to reduce the risk of overfitting.
The tuned regression tree could then be evaluated on the test set and be used as a
reference for comparing models with multiple regression trees.

As mentioned in Section 2.4.4, boosting can be used to train an ensemble of re-
gression trees. In this work, two different algorithms were used to develop gradient
boosted trees. Initially, gradient boosting similar to the scheme presented in [39]
was implemented with Scikit-learn. For convenience, this model will be referred to
as regular gradient boosting. Similar to a single regression tree, the boosting mod-
els required tuning of the depth of the tree and the minimum required number of
samples per leaf node. Additionally, hyperparameters specific to the boosting such
as the learning rate and the number of trees used had to be specified. The number
of trees is equivalent to the number of training iterations, and there is a trade-off
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between this hyperparameter and the learning rate. Moreover, the models can be
tuned to use a randomly selected subset of the training data to optimize each tree,
which reduces the risk of overfitting.

The second algorithm used for applying gradient boosting was XGBoost. The chosen
hyperparameters for the previous gradient boosting algorithm served as a starting
point for tuning the XGBoost model. The implementation used for XGBoost also
provides additional methods for reducing the effect of overfitting. For example, the
percentages of randomly sampled features to be used for each tree, level of depth,
and node can be specified individually. Each tree can therefore be restricted to
only use a subset of input features during training. Thereafter one can further
limit the number of available features by sampling for each depth of the tree and
finally sampling features for each node. As there were a limited amount of features
available, features were only sampled for each tree and no more restrictions were
made regarding the levels and nodes. After tuning the XGBoost model, the results
were evaluated and compared with the previous gradient boosting algorithm and
the single regression tree in terms of accuracy and computational time.

3.3.4 Evaluation
The evaluation was done on the links individually and for entire routes to see how
well the models performed at the intended level. For evaluating the models, various
metrics were used as they offer different pros and cons. The metrics deemed relevant
to use were

• Mean Bias Error (MBE) = 1
n

∑n
i=1(yi − ŷi)

• Mean Absolute Error (MAE) = 1
n

∑n
i=1 |(yi − ŷi)|

• Mean Absolute Percentage Error (MAPE) = 1
n

∑n
i=1 | (yi−ŷi)

yi
|

having y as the target variable and ŷ as the predicted value. They provided metrics
to get the total difference in power, with and without considering the absolute value
to check if it consistently predicts too low or much, as well as the percentage error.
For a single link, the only difference between MBE and MAE is the sign, but when
aggregating links they can differ more. MAE is always a positive number that will
accumulate the error of the links while MBE will evaluate the total bias of the
aggregated links. See Figure 3.1 for a comparison of the metrics when the MBE is
similar but MAE is significantly different for two different models evaluated on the
same data. An accurate model will have a low MBE, but not necessarily for MAE.
An accurate and robust model on the other hand has low values for both metrics.
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Figure 3.1: Comparison of how MBE, MAE and MAPE differ for two different
models when evaluated on the same data, colored in blue. Input is denoted as x
and the output as y.
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4
Results

The results of the data analysis and predictions using the preprocessed data are
presented in this chapter. The predictions of the models are compared with each
other using the presented evaluation metrics and it was done both per link and per
route. The models were analyzed and trained only on data when driving unless
stated otherwise.

4.1 Data Analysis
The average auxiliary power of the links will in this section be presented with differ-
ent metrics and grouping of the data. Firstly, how the data is distributed, thereafter
the analysis of the auxiliary components, and lastly the results from the feature se-
lection.

4.1.1 Data Distribution
The preprocessing of data resulted in about 1 million road links (5873 routes) ready
for analysis. Since the predictions are done on links individually the analysis was
done on the links as well. The split ratio for the training/validation/test data was
set to 70%-10%-20% since 1000 routes in the test set were deemed to be enough to
validate the results. A lot of data was available for fridge and refuse trucks but not
as much data for distribution trucks. The dataset was therefore imbalanced regard-
ing vehicle classes. Moreover, the data was also somewhat imbalanced in terms of
ambient temperature. Figure 4.1 shows that a lot of data is available for temper-
atures between 0 and 25 ◦C but little data is available with temperatures outside
this span.

To visualize how the average auxiliary power per link, while driving, is distributed
a histogram was produced, see Figure 4.2. The power was then also compared with
the temperature in a 2D-histogram, see Figure 4.3. It shows that the data has sev-
eral peaks. Interestingly, there are many values with either relatively high or low
auxiliary power for temperatures near 20◦C, indicating that temperature alone is
insufficient for accurate predictions.
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Figure 4.2: Distribution of the average auxiliary power per link, when driving.
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Figure 4.4: Correlation using Pearson’s r of different lags of the auxiliary power
per link when driving.

33



4. Results

0
PDrive - PStandstill

Nr
 o
f o

cc
ur
re
nc

es

Figure 4.5: Distribution of how the average auxiliary power per link differs when
driving or standing still.

To investigate how the auxiliary power changes during driving an analysis was done
on how different lags of average auxiliary power per link are correlated with each
other, see Figure 4.4. The results indicate a strong correlation of auxiliary power
between links meaning that the power is strongly correlated in time since the aver-
age time of a link is about 8 seconds.

Since the auxiliary power was separated into variables when it was either at a stand-
still or driving, the distribution of how they differed was investigated. In Figure 4.5
the difference proved to be relatively small, and most importantly centered about
zero. Therefore, it was deemed that the models developed could be applied to both
types of target variables without losing too much accuracy.

Performing PCA on the numerical features proved that most of the variance in the
data is explained by a smaller subset of features, as seen in Figure 4.6. Using PCA
and then clustering with a tuned DBSCAN, provided the number of outliers and
location of the clusters, see Figure 4.7. The worst outliers could then be handled
in the preprocessing by either removing or correcting data if possible, but not all
outliers could be removed.

The clustering and PCA analysis showed that using classification and/or tree-based
models could yield decent results, but far from perfect. This was done by analyzing
the auxiliary power of the clusters. When using all components, most of the clusters’
standard deviation of auxiliary power per link was similar to the standard deviation
of the entire dataset. This implies the difficulty of using classification for accurate
predictions, as each cluster has a wide variety of possible values of auxiliary power.
These results were however only applicable to the numerical features, meaning that
some features were excluded.
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Figure 4.6: Explained variance of components using PCA (on the numerical fea-
tures), scaling used prior.

Figure 4.7: DBSCAN clustering using the first two principal components of the
numerical features, scaled by min-max scaling.
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4.1.2 Componentwise Energy Consumption
In Figure 4.8 the result of aggregating the energy consumption of the auxiliaries
for one vehicle is visualized. As anticipated, the total auxiliary consumption of the
measured components, the brown bar, is less than the total auxiliary consumption
shown in pink. About 85% of the total auxiliary consumption was measured in
Figure 4.8 for a refuse truck driving in Gothenburg, Sweden. The data is only
from a few chosen days of driving but the results are consistent across vehicles
and periods. Typically, signals of all components were not available and the known
auxiliary power was close to the actual when the most significant components’ power
were measured.
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Coolingpump
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Total auxiliary energy measured

Figure 4.8: Consumption of the major auxiliary components that are most often
measured. The vehicle analyzed here is of the type refuse driving in January.

4.1.3 Feature Selection
As indicated by the data analysis, there exist several features adding little to no
valuable information to predict the auxiliary power. Therefore, not all features were
selected. The initial selection of features was done by filtering based on Pearson’s
r and Spearman’s ρ correlation, the latter viewed as a correlation matrix in Figure
4.9. The correlation matrix shows that there is a high correlation of 0.86 between
the auxiliary power per link during stops and driving. Moreover, the auxiliary power
per link when driving and at a standstill have a similar association with the other
variables in the correlation matrix, except for the average vehicle speed. The cor-
relation matrix also shows that the ambient temperature and Tdev20 are the most
important features. Using the temperature deviating from 20◦C instead of the actual
temperature thus yields an increased correlation with the auxiliary power. Similar
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results were given when Pearson’s r correlation was used instead, indicating that
the relationships between features are fairly linear.
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Figure 4.9: Correlation matrix viewing important correlations with the auxiliary
power per link based on Spearman’s ρ.

A different set of features was selected when MI was used instead of correlations, see
Figure 4.10. According to MI, the vehicle weight is the most important feature for
predicting the auxiliary power. Other relevant features based on MI are the GPS
position and toff_time, which all had a low correlation in Pearson’s r and Spearman’s
ρ correlation. The two signals of temperature are also considered to be important
with MI, but not as important as in the correlation methods. Additionally, the
results in Figure 4.10 show that categorical features such as the month, hour of the
day, and vehicle type are among the top features regarding MI with the auxiliary
power. The vehicle type signal provides information on whether the vehicle is a
refuse, fridge, or distribution truck.

The final method used for selecting features was the ϕK correlation. As explained in
section 2.2.1, ϕK can be used for all variable types and the resulting features when
performing filtering can be seen in Figure 4.11. Filtering with the ϕK metric gives a
similar set of features as in Spearman’s correlation and MI combined. Two features
with much higher importance compared to previous methods are the vehicle-ID and
vehicle type, with correlations of 0.51 and 0.44 with the auxiliary power respectively.
The vehicle-ID is the name of each vehicle, which cannot be used for prediction as
there will be no training data available for newly produced vehicles. However, the
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Figure 4.10: Bar plot of features with MI above 0.15 with the auxiliary power.

information on vehicle type is available when making predictions and can thus be
used as a feature. Another interesting result in Figure 4.11 is that some features
with a high correlation with the auxiliary power also have a high correlation with
the temperature. Examples of such features are the month and vehicle type. The
month may be a useful feature as it provides information on the ambient temper-
ature, but knowing the ambient temperature might make the month a redundant
feature.

Figure 4.11: Correlations with auxiliary power above the threshold 0.2 using the
metric ϕk.
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Filtering based on Pearson’s r, Spearman’s ρ, MI, and ϕK resulted in 12 features
being selected. All features were initially kept for developing models, although some
features were suspected to be redundant. A wrapper method was therefore used to
determine the redundancy of features and which features to discard. The full list
of selected features can be seen in Table 4.1. Worth noting is that Bpre_cond is the
only created feature that was not selected in the end.

Table 4.1: Resulting features from filtering and the corresponding criteria each
feature was selected by.

Feature Method(s) selected by
T all

Tdev20 all
Weight all
Speed ρ, ϕK

GPS longitude MI, ϕK

GPS latitude MI, ϕK

Month MI, ϕK

Vehicle type MI, ϕK

toff_time MI
tlink MI
troute ϕK

Hour ϕK

The association of different powers of Tdev20 with the auxiliary power was also ana-
lyzed. Since the feature is monotonically increasing, Spearman’s ρ gives a correlation
of 1 for all powers. An important takeaway when checking Pearson’s r, ϕK and MI
was that Tdev20 and T 2

dev20 were very similar to each other for the mentioned metrics,
and that increasing the power of Tdev20 decreased the association with the auxiliary
power. As a result, one should consider adding powers of Tdev20 as an input to the
models but making sure to perform the wrapper method to not include redundant
features. For the tree-based models however, including powers of Tdev20 does not
add any new information due to the nature of the model.

4.2 Power Prediction per Link
The results of the average auxiliary power predictions per link are presented in this
section for the various models used. As explained in Section 3.3, the models were
evaluated on a test set which is unseen data for the models. Moreover, a random
seed was used when dividing the data into sets such that all models were trained and
evaluated on the same data. The evaluation is based on several metrics presented
in Section 3.3.4, but MAE is considered to be the most important metric when
predicting the links. This is due to MAE evaluating the total absolute deviation
from the target variable, whereas MAPE quantifies the relative error. That is, using
MAE ensures that the accuracy is not evaluated based on the size of the target
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variable. The training and prediction of all models were done with a laptop having
commonly used specifications.

4.2.1 Polynomial Regression
The first polynomial regression models considered were polynomials using Tdev20 as
a variable and fitted by minimizing the squared error loss. Table 4.2 views the result
of evaluating polynomials of different degrees on all links in the test set based on the
metrics MAE and MAPE. As can be seen in the table, the performance is improved
when the polynomial degree of the baseline is increased. A polynomial degree of
4 is considered the best, as it achieves the smallest error and higher degrees gave
insignificant improvements. The effect of outliers was investigated by fitting the
same polynomials with the Huber loss instead of the squared error loss. Table 4.3
views the result of using the Huber loss, which shows that a polynomial degree of
4 or 5 are appropriate model complexities. Moreover, using the Huber loss gives a
decrease in MAE but an increase in MAPE. This means that the polynomials fitted
with the Huber loss generally deviates less from the target value, but still has a
higher relative error. The relative error favors models that are more accurate on
links with low power, as the deviation is scaled with the target value. Hence, the
polynomials using the squared error loss tend to perform better on links with low
power, while it deviates more on the links with high power. As MAE is considered
to be the most important metric for predicting links, the Huber loss is deemed the
more appropriate loss function.

Table 4.2: Performance of polynomials of various degrees with Tdev20 as the vari-
able, fitted with the squared error loss. The MAE given by the baseline model is
used as reference for the reduction.

Polynomial degree MAE reduction [%] MAPE [%]
1st (baseline) Ref 45.2

2nd 0 45.3
3rd 0.5 45.2
4th 1.5 44.9
5th 1.5 44.9

As found in Section 4.1.3, several other features have a meaningful association with
the average auxiliary power per link. Backward elimination was therefore used
to add more features to the best performing polynomial with Tdev20. The resulting
polynomial was a third-degree polynomial with Tdev20, and with the vehicle speed and
weight as additional features. The performance of the final polynomial is visualized
in Table 4.4.
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Table 4.3: Performance of polynomials of various degrees with Tdev20 as the vari-
able, fitted with the Huber loss. The MAE given by the baseline model is used as
reference for the reduction.

Polynomial degree MAE reduction [%] MAPE [%]
1st 2.0 47.7
2nd 3.0 47.1
3rd 5.5 46.7
4th 6.5 48.1
5th 7.5 49.0
6th 7.0 48.3

Table 4.4: Performance of the best polynomial using Tdev20, the vehicle speed and
weight, fitted with the Huber loss. The MAE given by the baseline model is used
as reference for the reduction.

MAE reduction [%] MAPE [%]
10.5 47.2

4.2.2 Multi-Layer Perceptron
The MLP model was decided to be of a simple architecture that can easily be ex-
tended to include the Bayesian approximation method as explained in Section 2.4.2.
Therefore, dropout was introduced as the regularizer and p was initially set to 0.2
according to the recommendations. Hidden layer depths of [1, 2, 3] in combination
with hidden units ranging from 5×2j

j=0,...,5 were initially tested. The size of the
network is in the thesis denoted as hidden layers × hidden units per layer since all
variants will have an output layer consisting of one unit for the regression problem.
The features used when determining the size were the ones in Table 4.1.

The evaluation of some different architectures for the MLP model is summarized
in Table 4.5 using the same hyperparameters. The results indicate that increasing
the depth and number of hidden units improves the accuracy, but the improvement
rate is low after reaching the size of 3 × 100. A size of 3 × 160 only gave a small
improvement compared to 3 × 100. Therefore, 3 × 100 was chosen as the size of the
model. Using a size of 3×100 compared to 3×160 results in having 25301 trainable
parameters instead of 59681.

Table 4.5: Performance of varying MLP architectures when predicting links in the
test set. The MAE given by the baseline model is used as reference for the reduction.

Size of MLP MAE reduction [%] MAPE [%]
3 × 80 20.1 35.5
3 × 100 22.1 34.6
3 × 160 22.5 34.5
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Table 4.6: Values of the hyperparameters used for the final MLP model, excluding
the optimizers’ hyperparameters. ReLU and dropout were applied between each
layer, always using the same dropout rate.

Hyperparameter Method/Value
Optimizer Adam
Loss function Huber
Batch size 32
Activation function ReLU
Dropout rate (1-p) 0.2

Having determined the size of the MLP, the final hyperparameters that performed
the best according to empirical testing are shown in Table 4.6. Adam was selected
as the optimizer as it converged faster than the SGD and made the tuning of hyper-
parameters easier. The hyperparameters of Adam were initially set to the standard
values of it and then modified by lowering the learning rate. Using the absolute
loss or the Huber loss achieved similar performance, both better than the squared
error loss. However, the Huber loss was used for the final MLP model to ensure
that a similar loss function is used as for the other models. ReLU was chosen as
the activation function as it gave the best results. Choosing a smaller batch size
enhanced the training and the accuracy on the training set when lowering it from
512 until 32, after which the test accuracy decreased.

Finally, the backward elimination method was performed to determine the final
features of the MLP. Powers of Tdev20 were also tested along with the features in
Table 4.1. The features used in the final model were all features in the table with an
added term of T 2

dev20 which gave a final performance as shown in 4.7. The presented
MLP model took about 30 minutes to train.

Table 4.7: Performance of the final MLP architectures when predicting links in
the test set. The MAE given by the baseline model is used as reference for the
reduction.

Size of MLP MAE reduction [%] MAPE [%]
3 × 100 24.6 33.5

4.2.3 Tree-based Models
As the tree-based models are optimized with greedy optimization methods, all fea-
tures in Table 4.1 were used for developing the models. The performance of a single
regression tree for different tree depths is shown in Table 4.8. A suitable choice of
tree depth for a single regression tree proved to be 11, as this setting achieved the
lowest loss on all links in the test set. Furthermore, the model was less prone to
overfit the data when the minimum required number of samples per leaf node was
increased. Appropriate values of this parameter were approximately 20-40 samples
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as other values gave a higher loss.

Table 4.8: Performance of a single regression tree for various depths, trained with
the squared error loss. The MAE given by the baseline model is used as reference
for the reduction.

Depth MAE reduction [%] MAPE [%]
8 11.5 55.0
9 12.5 54.4
10 13.5 53.4
11 14.0 53.7
12 13.0 53.7

Increasing the model complexity by using boosting algorithms gave a significant
improvement compared to a single regression tree, see Table 4.9. XGBoost has
better performance than regular gradient boosting in terms of MAE and MAPE
and there is a big difference regarding the computational time as XGBoost is about
10 times faster during training. XGBoost is considered to be the better choice of
boosting algorithm, and will therefore be the only tree-based model considered for
the remainder of this thesis. The results in Table 4.9 also show that using the Huber
or Pseudo-Huber loss gives better accuracy compared to using the squared error loss.

Table 4.9: Performance of gradient boosting and XGBoost on all links in the test
set, using different loss functions. The MAE given by the baseline model is used as
reference for the reduction.

Algorithm Loss MAE reduction [%] MAPE [%]
Regular Squared 18.5 49.8

XGBoost Squared 19.0 50.2
Regular Huber 20.5 48.0

XGBoost Pseudo-Huber 15.0 42.9

Table 4.10 views the hyperparameters used for the XGBoost model that achieved
the lowest loss on the test set. The model took about 1-2 minutes to train with this
configuration of hyperparameters. Early stopping was used such that the training is
halted if 10 trees have been added without a reduction in validation loss. This usually
occurs at around 550-600 trees, which means that the number of trees specified as
a hyperparameter generally is not equal to the actual number of trees. The best
choice of depth of each tree was found to be 8 and therefore not as deep as the single
regression tree. Furthermore, using a subset of training samples and features for
each tree proved to reduce overfitting and increase the model performance. Finally,
backward elimination was used to exclude redundant features, which resulted in
Tdev20 and tlink being removed without affecting the model performance.
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Table 4.10: Fine-tuned hyperparameters used in XGBoost.

Hyperparameter XGBoost
Learning rate 0.0075

Number of trees 1000
Max depth 8

Minimum samples per leaf node 35
Percentage of training samples per tree 75

Percentage of features per tree 75

4.2.4 Comparison of Predictions per Link
In Table 4.11, the best polynomial regression, MLP, and tree-based models are com-
pared when evaluated on all links in the test set. As can be seen in the table,
the MLP and XGBoost model achieve very similar performance in terms of MAE,
but the MLP has a quite much lower MAPE. Referring back to when comparing
polynomials with the squared and Huber loss in section 4.2.1, the MLP thus gener-
ally performs better on links with low power and worse on links with high power,
compared to XGBoost. The polynomial regression model is unable to match the
performance of the other two models, but it is also the least complex model among
the three.

Table 4.11: Results of predicting the power of each link in the test set using the
best performing models. The MAE given by the baseline model is used as reference
for the reduction.

Model MAE reduction [%] MAPE [%]
Polynomial 10.5 47.2

MLP 24.6 33.5
XGBoost 25.0 42.9

4.2.5 Comparison of Predictions per Stop
As the auxiliary power proved to be fairly similar when driving or standing still, the
best model of each model type was also evaluated on the auxiliary power when at a
standstill. The result is visualized in Table 4.12, which shows that all models have
an increased MAE and MAPE compared to their performance on the auxiliaries
while driving in Table 4.11. This is reasonable as the models were trained to predict
the auxiliary consumption while driving. Separate models for the auxiliaries when
at a standstill were therefore created by training the same models but with the
auxiliary power when standing still as the target variable. The result can be seen in
Table 4.13, which shows a slight improvement for all models. Although the models
improve when trained on the auxiliaries at a standstill, there is still a quite large
performance gap when comparing results between driving and standing still. This is
probably due to the limited amount of training data for the auxiliary power during
stops, as approximately 8% of the links in the training data contain a stop.
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Table 4.12: Results of predicting the auxiliary power of each stop in the test set
using the best performing models trained on data when driving. The MAE increase
is relative to the models’ own performance on the auxiliaries while driving.

Model MAE increase [%] MAPE [%]
Polynomial 15.6 52.8

MLP 35.1 38.7
XGBoost 13.4 52.1

Table 4.13: Results of predicting the auxiliary power of each stop in the test
set using the best performing models trained on data when at a standstill. The
comparison with the baseline is when it has been trained on the standstill data, and
the drive reduction is relative to the models’ own performance on the standstill data
when trained on data when driving.

Model MAE reduction (Baseline) [%] MAE reduction (Drive) [%] MAPE [%]
Polynomial 6.9 1.9 52.6

MLP 11.6 5.3 36.7
XGBoost 16.5 3.2 45.8

4.3 Energy Prediction per Route
In this section, the predictions are done on entire routes made up of sequences of
links. The predictions are still the power of each link, but the final prediction is the
energy consumption of routes. The energy is calculated by multiplying the power
and time of each link, and then aggregating them into routes. To get a better
understanding of how the auxiliary power changes during a route, the power of the
routes’ links were plotted over time. An example of some difficult routes to predict
the power of are shown in Figure 4.12. As can be seen, the power can vary a lot,
while the temperature, which is the most important feature, can be close to constant.
This is also the case with many of the other important features used in the models,
and it is therefore difficult for the models to predict sudden power spikes similar to
those viewed in the routes.

When predicting routes it was decided to use MAPE as the deciding evaluation
metric to retrieve a relative error of the energy predictions of entire routes. Using
MAE would favor the algorithms predicting the total absolute amount of energy the
best instead of each route individually.

4.3.1 Comparison of Predictions per Route
In Table 4.14 the best results from the different models are compared to each other
when predicting the total energy of the routes in the test set. The MLP and XGBoost
outperform the baseline and polynomial with a large margin and have a similar
accuracy when compared to each other. XGBoost is the best performing model for
routes despite being worse than the MLP regarding MAPE and similar in terms
of MAE when evaluated on links. The underlying reasons for this could be the
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Figure 4.12: Links’ auxiliary power and ambient temperature aggregated over time
for different routes. The blue and red line corresponds to the auxiliary power and
ambient temperature, respectively.

slightly lower MAE and MBE per link of the XGBoost compared with the MLP. The
computational complexity of them differs, but all models predicted the entire test
dataset within 10 seconds when using a laptop with commonly used specifications.
The polynomial is the quickest to evaluate and the MLP is the slowest.

Table 4.14: Results of predicting the total energy of the routes while driving in
the test set.

Model MAPE [%]
Baseline 40.4

Polynomial 31.5
MLP 22.9

XGBoost 22.0

In Figure 4.13, the baseline, best polynomial, MLP, and XGBoost models are evalu-
ated on four randomly selected routes. The results in the figure accurately reflect the
models’ performance when evaluated on all links and routes (Table 4.11 and 4.14).
The MLP and XGBoost models predict with similar accuracy and are generally quite
close to the target energy. The two models also consistently outperform the baseline
and the polynomial model, which shows that the given problem of predicting the
auxiliaries requires a model of higher complexity.
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Figure 4.13: Results when predicting four randomly selected routes with the best
models.

4.3.2 Uncertainty Estimates using Dropout
Selecting the same four random routes as in Figure 4.13, the resulting predictions of
the MLP with uncertainty included are visualized in Figure 4.14. The uncertainty
is provided by using dropout as explained in Section 2.4.2. The uncertainty grows
cumulatively and typically includes the target within the interval even when the
predictions are not very accurate. An interesting property is that for the routes
plotted, the uncertainty seems to increase more when a sudden change of the target
energy appears.
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Figure 4.14: Results when predicting the same four routes as in Figure 4.13 with
an MLP of size 3 × 100 trained with uncertainty estimates included. The shaded
area in gray represents ±2 standard deviations.
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The thesis has successfully implemented a pipeline to process field test data and
perform energy predictions of the auxiliaries with great improvements compared to
other algorithms suggested in the literature, when applied to the data provided.
All models outperformed the baseline, revealing the lack of research that has been
invested in predicting electric trucks’ auxiliaries. As presented by the association
of variables and the large difference in power during a route, it is very difficult to
accurately predict the energy consumption of auxiliaries for entire routes. The tem-
perature proved to be the most important feature but is by itself far from enough
to enable accurate predictions. Therefore, the algorithms found in the related work
are significantly worse than the models developed in this thesis. Models with low
complexity such as polynomial regression proved to be far too simple to accurately
predict the auxiliary energy. Using more features and ML models with higher com-
plexity fared well considering the problem at hand and the large amount of data.
The results are however very dependent on preprocessing of data to ensure that they
learn correctly.

This work has found data preprocessing to be a very significant step to enable accu-
rate predictions. During the implementation, the preprocessing steps were updated
in an iterative process coupled with the analysis after gaining new knowledge about
the data. There still seem to be improvements that can be done on the preprocessing
when analyzing the results, but it is difficult to determine the significance since the
errors of the links accumulate when predicting routes. For instance, adding more
features could be an important step to improving the predictions. The auxiliary
power during driving is expected to be large initially when it is very cold outside,
but no robust feature has been found to handle if the truck has been preconditioned
or not, despite creating new features that try to tackle the problem. The desired
temperature or range of temperature is a variable for both the batteries and the
cabin, which might be helpful. It has a large effect on the HVAC system and there-
fore the total auxiliary energy consumption.

The MLP and XGBoost predicted the auxiliary power while driving with relatively
high accuracy. However, using the same models to predict when at a standstill
resulted in a quite large decrease in performance. Separate models trained specifi-
cally on auxiliaries when standing still were thus created to reduce the performance
gap between driving and standstill, but with limited success. In conclusion, the
XGBoost model is deemed the most appropriate model when evaluated on entire
routes, although similar results were given with the MLP. What makes XGBoost fa-
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vorable other than the lowest MAPE is that it is easier to implement, as it is robust
to scaling of features and has fewer hyperparameters than the MLP. Additionally,
the Huber loss is considered to be a suitable choice of loss function as it provides
robustness to outliers.

The approach of adding the uncertainty of the predictions using dropout as a
Bayesian approach seems to work decently in many cases, but the uncertainty region
is large and the approach should be investigated further. One reason why the regions
can be very large is that a few of the features are very important, in particular the
temperature-related features. Not including them makes it very difficult to predict
accurately.

An important note is that the inputs to the model are actual values measured
during driving. When predicting the energy in a real-life application ahead of time,
the input variables such as the temperature and time are also predicted beforehand.
The energy predictions’ accuracy will therefore be dependent on how accurate other
predictions are, for instance, the vehicle routing and weather forecasts. It would
therefore be interesting to test the performance in such a scenario.

5.1 Further Work
The thesis has accomplished improved energy predictions of auxiliaries but has also
resulted in recommendations on how to further improve the accuracy. It includes
which data is collected and used, processing of the data, and predictions using dif-
ferent models. Many aspects can be further analyzed and the most significant areas
of future work we consider are

• Including more features, such as the weather conditions, features representing
a built-in memory of states, and the preferred temperature of the cabin and
batteries.

• Testing new models applicable for the regression problem and further optimiz-
ing the currently tested ones.

• Stating the problem differently. Testing models when assessing the problem as
a time-series prediction is interesting since the power of the links have a very
large correlation with each other within a route. For instance, a time-series
recurrent neural network. One could also try to predict the energy of each link
instead of the power.

Allocating the time to further investigate the mentioned areas is believed to increase
the accuracy, but how much is difficult to tell. The problem at hand is difficult
and the models developed need to be further tested on new data to validate their
performance. Another interesting topic to investigate is the approach of updating the
predictions during the route in real-time to produce more accurate results. Since the
auxiliary power is very correlated in time it is believed that significant improvements
can be made.
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