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Structural influence of the geometry of masonry vaults
Brick tiling patterns for free-form shells using geodesic coordinates
EMIL ADIELS
Department of Applied Mechanics
Chalmers University of Technology

Abstract

In this thesis, we propose a strategy for generating patterns for brick laying on
compression free-form shells. The strategy is based on geodesic coordinates which
guarantees an equal length between its coordinates curves, which for brickwork
means an equal spacing between the bed joints. The implementation is done for polar
geodesic coordinates using dynamic relaxation. The procedure is implemented in a
parametric design framework and evaluated on a test case. Our study revealed that
the proposed strategy has potential of contributing in the design of complex brick
shells and also being a piece in the puzzle of understanding patterns of historical
vaults.

Keywords: masonry, architectural geometry, brick, shells, polar geodesic coordi-
nates, di�erential geometry
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1
Introduction

For a long time, bricks have been used in construction of vaults and shells in archi-
tecture. In history the shapes of the shells have been a selected few and often based
on rotational surfaces and intersection between those. With time methods for gen-
erating more structurally optimal shapes have been developed. These can be more
mathematically complex and also individual between projects. The concept of brick
constructions is based on the modular manufacturing of bricks. The standardized
building system is viable due to the applicable paste, mortar, which fills gaps and
connects bricks.

The complex nature associated with shells makes construction methods, structural
theory and tessellation complicated. This section will give an introduction and
contextual orientation in the subject of brick shells. It will cover di�erent aspects
of brick shells such as traditional crafts, development of shells, form finding and
geometry, and in the end defining the area and question of research.
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1.1 Bricks

Brick structures consists of bricks that are either stacked or glued together using
mortar forming an almost weaved structure. Bricks are artificial stones that are
made of heated clay and formed into specific cuboid formats. Depending on fab-
ricating technique the bricks form either a perfect cuboid or can become more or
less distorted. The mortar, which initially is a fluid paste, makes it possible to not
only connect the bricks but also compensate di�erences and evenly distribute the
stresses between the bricks. This makes it possible to reach a high level of originality
between the elements but still be a modular fabrication concept. So even though
the format and repetition is one of the key features bricks also contains significant
materiality and uniqueness.

Brick structures are usually made in di�erent types of patterns where the layers, or
courses, are specified along by the mortar bed joints. For a vertical structure the
bed joints become horizontal and for vaults they follow the curvature of the surface
and therefore become curved. A brick layer will produce the structure layer by layer.

Figure 1.1: To the left, terminology for the brick faces and di�erent types of joints
in a brick constellation [11]. To the right it shows that bricks laid along the brick
joints [31].

To read more about bricks, brick making, production and craftsmanship please see
appendix A.1.

1.2 Shells in architecture

Shells are a special type of structure or structural element used in architecture
and engineering. They are sometimes mentioned as vaults in architecture while in
engineering usually referred as only shells. What is significant about shells is their
form and mechanical behaviour. Its form can be described as a surface which is
curved in one or two directions. Mechanically it can convert external loads into
mainly forces in the plane of the surface, inflicting little or no bending [3].
Historically masonry shells are usually based on simple geometric forms like ro-
tational surfaces cut by planes or by other rotational surfaces [31]. Their design
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emphasises production and visual aspects rather then governed by structural e�-
ciency. During the late 19th century Rafael Guastavino started designing masonry
shells with the relatively new method of graphic statics, and by so taking the first
steps into modern age of masonry shells. This meant that engineers could more
easily design shells based on their optimal form. With time the shapes of shells has
proven to be endless with new techniques of construction, materials and numerical
simulations, see figure 1.3.

Since there are so many types and shapes of shells it can be convenient to categorize
them into di�erent families or branches. One can say that it is possible to derive
the form of the shells based on three paradigms. [3]

• Freeform, free-curved or sculptural shells - These shells are generated without
taking into account logic or structural action performance.

• Mathematical, geometrical or analytical shells - These shapes have been de-
rived directly from mathematical expressions of surfaces, such as for instance
the hyperparaboloid. The choice of these expressions can be based on param-
eters such as accurate geometrical analyses or sleek fabrication strategies.

• Form Found shells - These are shells that have their form described by struc-
tural performance. They can have been generated using one of the form finding
techniques described in 1.3. One can say in general that the shape coincides
with a state of static equilibrium.

1.3 Finding forms of equilibrium

The term form-finding usually refers to the process of finding a shape that is in
static equilibrium under a certain design load. This usually applies to shapes of
shells or membranes where an e�cient geometry is hard to conceive using analytical
derivation or reasoning. Linkwitz [3] expresses it as, "As part of the conceptual design
of structures, especially domes, shells and membrane structures, generating adequate
structural shape is crucial to the load-bearing behaviour and aesthetic expression
of design.Their shapes cannot be freely chosen and conceived directly, due to the
intrinsic interaction between form and forces. For such a problem one needs form
finding."
Typical structures that require form finding include:

• soap films within a given boundary.
• prestressed, or hanging fabric membranes.
• prestressed, or hanging cable nets.
• compression structures like masonry and concrete shells.

Even though the shape cannot be chosen freely the designer has measures of control-
ling and influence the outcome. These are examples of di�erent parameters chosen
by the designer:[3]

• Boundary Conditions, which implies the supports and conditions at the edges.
• External loads, the type and magnitude of the load.
• Topology and Geometry, what is the initial condition of the geometry and how

are the members connected.
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• Internal force distribution, this controls how the forces are distributed and
transferred between structural members.

There are di�erent methods that applies to form-finding. In recent years with more
powerful computers form-finding has almost been implying numerical methods using
computers. The art of form finding though goes back in history, and the simplest
method can be performed with a pencil and ruler. A way of categorizing them can
be done in this way:

• Graphical Methods, this includes methods such as graphics statics where the
interactions and amplitudes of forces in a structure can be drawn graphically.
More in depth detail can be read in appendix A.6.1

• Physical Methods, this implies methods that resemble the structural behaviour
through real physical objects. This can be done through hanging chains that
inverts to a catenary or cloth that is pretensioned to simulate fabric structures.
Further reading can be done in section A.6.3

• Analytical Methods derives the form based on the equilibrium equations for
a specific structure and load-case. Assuming a type of loading and stress
distribution it is possible to attain the form for such a specific case. In the
case of shells, it might be very complicated and not always possible to find a
solution. Read further regarding analytical methods in appendix A.6.2

• Numerical Methods uses the power of computing to solve large sets of equations
or iteratively find solutions for nonlinear problems. This is probably the most
common in modern days when trying to find equilibrium states of structures.
This will be described more in detail in section 1.3.1

1.3.1 Numerical methods

Numerical methods have emerged with the possibility to solve large sets of equations
quickly using computers. Rather than solving equations equilibrium analytically one
can find solutions through iterations, which sometimes is easier but more computa-
tionally heavy. There are many examples of numerical methods of form-finding and
they are usually spoke of as quite di�erent, but they all share the same basic idea.
A common recipe can be formulated for numerical form-finding methods [3]:

1. Discretization of geometry. This means that the initial geometry or form needs
to be broken down into elements such as lines or surface elements.

2. Connectivity of internal and external forces, it is necessary to have a clear
topology of how the members are connected and how the external loading and
boundary conditions apply.

3. Equilibrium conditions and equations. The equilibrium conditions define how
the internal and external forces and boundary relate to each other.

4. A solver, a method for how the equilibrium equations can be solved.

This template allows for big diversity if to design a form finding method. To give
a bit of structure to this diversity one can describe di�erent form-finding families[3].
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1. Sti�ness Matrix Methods, these are based on using standard elastic and ge-
ometric matrices. These have a strong connection to traditional structural
analysis and Finite Element Method (FEM).

2. Geometric Sti�ness Methods, these are material independent where the equi-
librium is achieved only with a geometrical sti�ness. The most common and
influential of these is the Force Density Method (FDM), where the equilibrium
equations are based on the ratio of element force to element length. Extensions
have been done and di�erent methods have been emerged such as the Thrust
Network Analysis (TNA).

3. Dynamic Equilibrium Methods, these methods have a dynamic based equilib-
rium condition, i.e. the second Law of Newton q

F = ma which is di�erent
compared to statics where the sum of forces always are equal to zero. Exam-
ples of these methods are Dynamic Relaxation (DR) and Particle-Spring (PS)
systems. You can read further about DR in section 2.4.2. The figure 2.24 can
give an idea of how a DR or PS can behave for a quadratic mesh fixed in the
corners.

1.3.2 Development of form-found bricks shells

Prior to the nineteenth century the shapes of and proportions of masonry shells
was based on experience and intuitive methods. Since they were unreinforced the
bending capacity needed to be ensured by thicker vaults which resulted in over
dimensioned structures that was not only heavy but also uneconomical[23]. Pure
brick structures in general lacks tensile capacities which results in very low bending
capacity. To make slender and e�cient brick shells one must either have a form
that ensures compression only stresses, i.e. no moments, or add bending capacity in
terms of steel reinforcement.
Three important events in the development of form-found brick shells in modern
time can be presented as:

1. Implementation of graphic statics - Rafael Guastavino (1842 - 1908) imple-
ments graphical form-finding methods in the design of brick shells. Enabling
slender shells that are based on the thrust line ensuring compression stresses
in the structure. This reinvention of the traditional vault made it into a con-
tender with the new materials at the time, such as steel.[7]

2. Reinforced brick vaults - Breaking conventional form-play with his reinforced
brick structures Eladio Dieste (1917 - 2000) created new categories of shapes
and design not seen in this field, see right figure of 1.2. Reinforcement had
been implemented previously by for instance the Guastavino company but in
traditional vaults.

3. Computational form-fidning - During the second half of the 20th century com-
putational methods discovered new complex forms of equilibrium. Though
few had been specially made for bricks and masonry. Philippe Block(1980-
) develops the computational method of TNA that ensures compression only
solutions and conducts a full scale testing at Swiss Federal Institute of Technol-
ogy in Zurich (ETHZ), in 2011, proving new possibilities not seen previously,
see figure 1.3.

5



1. Introduction

Figure 1.2: To the left a staircase by the Guastavino company showing both
structural and geometrical complexity achievable using brick vaults[7]. To the right
the roof construction on Citricos Caputto fruit packing plant, by Dieste [48].

Figure 1.3: A free-form compression shell that was developed and built by the
Block Research Group at ETH in Zurich [43].

1.4 Geometry

The geometry of shells makes it necessary to use the theory and properties related
to curves and surfaces in space. Form-found shells are e�cient in the perspective of
structural action but can be very complex to describe mathematically. In general
complex forms means complicated tessellation. This chapter will describe why ge-
ometry and tessellation is di�cult but also that you should not make things more
complicated than you need to.
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1.4.1 Mathematical mappings

Mathematical mappings has been an area of interest historically and is still very rel-
evant. One might say that a mathematical map is a function that transfer geometry
between di�erent domains or surfaces. Examples of di�erent types of mappings [1]:

• Conformal mapping, angles are preserved
• Isometric mapping, distances are preserved.
• Equiareal mapping, areas are preserved.

In architecture one usually wants to cover or represent di�erent surfaces with a
certain patterns or facade panels. Imagine that you have drawn a grid on a paper
and you want to cover a cylinder with this grid, see figure 1.4. This works perfectly
fine and you realise that this is an example of conformal, isometric and equiareal
mapping. Doing the same test onto another simple form as the sphere you will
run into trouble. One does notice that this exercise is impossible for many shapes
without crumbling the paper or cutting parts away distorting and destroying the
grid.

Figure 1.4: Draping a cylinder with a plane is very easy. Trying a similar procedure
with a sphere it is proven impossible without modifications or crumbling of the paper.

To make a 2d representation of the earth one would have the inverse problem going
from the sphere to the plane.To solve this Gerardus Mercator in 1569, made a so
called Mercator Projection[37]. This is a conformal map that basically projects a
sphere onto a cylinder that can be unrolled to a plane. This is of course not a perfect
method since the projection becomes di�erent depending on your distance to the
equator, and the poles cannot even be projected, i.e the distances are not accurate.
550 years later this method is still used in applications such as Google Maps[32].
It is clear that Mercator projection has clear disadvantages but also has the advan-
tage that the map does not contain any gaps or holes which a more accurate map
would need. A more accurate map does not mean that you would have higher success
finding your goal, probably the opposite in this case. This tells us that geometry is
complicated but also that you do not have to solve all issues to still find it useful.
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Figure 1.5: The Mercator projection, which maps the sphere coordinates onto a
plane, invented 1569 by Gerardus Mercator is still used in modern applications such
as Google Maps[32] to illustrate the coordinates of the earth onto a two dimensional
map.[37]

1.4.2 Brick patterns on shells

In section 1.4.1 it became clear that geometry and tessellation might be complicated
even for simple shapes. Though there are many built examples in history and illus-
trations of how to cover traditional vaults in old handbooks for bricklayers. There
are some important aspects to think of regarding historical tessellation of brick shells.

1. The forms are often based on simple mathematical functions that are used in
a repetitive manner in history.

2. The mortar makes it possible to compensate deviations and geometrical lim-
itations, both globally and locally. This means that it allows some tolerance
from the exact mathematical solution.

3. Brick layers does not mark every bricks position but rather the guidelines for
each layer, i.e the direction and propagation of the brick joints, see figure 1.6.

4. Craftsmen and brick layers were in general much more skilled in this field
compared to today.[31]

These bullet points and the fact that it is hard to find any theory regarding the
derivation of these drawings could emphasize an empirical approach. An empirical
approach is of course possible if working on similar types of geometries. Form-
found shells that are dependent on project specific parameters can be unique from
case to case in their global geometry which does not favor an empirical approach.
There have been built form-found examples, see figure 1.3, and attempts to make
theoretical strategies for generating brick patters. It is though hard to find much
information upon success regarding the latter.[51]
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Figure 1.6: It is possible to find records of how to tesselate traditional vaults with
bricks.This illustration shows the brick patterns and guidelines for a Cavetto vault,
top, and a Saucer dome below [31]

1.5 Design processes in computational environ-

ments

Design processes of today involves the possibility of, or even demands, incorporat-
ing computers that enables numerical solving capabilities and high user interaction.
Parametric design is relatively new concept in architecture that emerged during the
late 20th century with raised level of computational power. One can say that para-
metric design is a design paradigm that allows describing your design abstraction,
idea or concept through logic using measurable parameters. This means that you
can fully or partially drive your design based on algorithmic thinking and perfor-
mance parameters. "Algorithmic thinking allows designers to rationalize, control,
iterate, analyze and search for solutions in a defined solution space." [21] Concepts
of parametric design has been incorporated in graphical algorithm editors such as
Grasshopper3d, Dynamo and Generative Components. It is therefore relatively easy
these days to integrate for instance numerical methods of form-finding and tessella-
tion strategies in an user friendly design environment.
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1.5.1 Design scheme

Figure 1.7: A possible parametric design process that will be used to adress the
research in a design context.

A parametric design scheme might be structured in many di�erent ways. In figure 1.7
is an example of a scheme to use in a design process made for this thesis. The main
idea is to have a conceptual design phase and a post analysis design phase. These are
based on three main categories; the categories could either be the same or di�erent
for the two stages. From the categories chosen design and evaluation criterion can be
made to narrow the design solution space and rank di�erent alternatives. Criterion
can be based on both measurable or non-measurable metrics depending on category.
In this example the categories are the same for both stages but the criterion goes from
free and basic to advanced and refined. For instance, the structural optimization
in the conceptual phase could assume axial forces and linear behaviour. In the
realization stage bending and shear capacities are evaluated in a non-linear analysis.
The best design can then be feed back and the design and evaluation criterion is
evaluated and developed further based on previous design iteration. This process
should be iterated until su�cient design is achieved.

1.6 Research task

From the contextual orientation in the subject it is possible to state some important
findings:

1. Bricks are placed in layers following the bed joint and that deviance’s can be
handled by adjusting the mortar connecting the bricks.

2. Architectural drawings over brick tessellations describe the bed joints. This
emphasizes that the most vital information is the position and propagation of
the bed joint along the surface and not the position of each brick.
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3. The global geometry of the shell is very influential on its behaviour.
4. Brick shells needs internal compression stresses solutions if not reinforced.
5. Mercator proved that it might not be necessary for the solution to solve all

aspects of a geometrical problem for it to be meaningful.
The contextual review of the subject of masonry shell structures has led to the fol-
lowing research question:

Is it possibile to use polar geodesic coordinates as mean of achieving brick tessellation
patterns of form-found shell structures?.

1.6.1 Aim

The aim of this thesis is to combine craftsmanship, geometry, mechanics of shells and
computational into a generic method of generating tilling patterns on form-found
shells. The method should be possible to apply in an architectural design context.

1.6.2 Purpose

Through history until modern times the methods of tessellation and tiling’s of brick
structures have been made mostly on empirical studies. Therefore, forms in his-
tory have been restricted to a few. Advances in theory, computational power and
fabrication methods has extended the range and complexity of viable shapes. This
means that the shells can be uniquely designed for each architectural project. There-
fore, an empirical approach might not be applicable meaning theoretical methods
are required. Until this day there have been few or none generic methods for this
purpose.

1.6.3 Method

The research question will be put into a parametric design context where two parts
will be separated out, form finding, which generates a global geometry to perform
tessellation, and tessellation of brick patterns. The design scheme was chosen based
on the figure 1.7 in previous chapter. This is illustrated in figure 1.8 which highlights
the di�erent parts focused on in the thesis.
Both parts should be implemented in the parametric environment Grasshopper3d,
which is plug-in to the 3d modelling software Rhinoceros3d.
There are two parts in this:

1. Gain a theoretical ground to base a tessellation procedure on that connects
geometry and fabrication.

2. Transform this to a computational method that can be implemented in a
parametric framework.

This is done by using the knowledge gained in the literature review and going into
depth to the areas of Di�erential geometry, Structural design of masonry vaults,
Mechanics of Shells and Computational methods.
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Figure 1.8: The thesis work will only concern a small portion of the whole design
process. It will concern the tessellation and form generation in the initial conceptual
phase.

1.6.4 Limitations

This report will only concern brick structures, meaning module blocks with the same
dimensions, and no other types of masonry structures such as stone or concrete. The
structural theory though applies to all masonry structures. The report will concern
compressive brick shell structures and not conventional brick structures. Compres-
sion structures meaning in this case structures where the form ensures equilibrium
in compressive axial forces and where reinforcement is not necessary in theory. The
forms generated are of conceptual nature meaning that no detailed calculations or
instability checks are made, such as buckling.

The implementations will be programmed in a parametric development environ-
ment,but no e�ort will be made to develop and evaluate di�erent parametric design
processes. The code will be implemented using the object-oriented language C#.
The methods are though general and should be possible to implement using most
languages.
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2
Theory

This section will cover theory related to the research question. It will cover the
following areas:

1. Structural theory of masonry structures. This section describes a plastic design
approach for masonry structures.

2. Di�erential geometry, the theory of curves and surfaces necessary for under-
standing polar geodesic coordinates.

3. Membrane theory of shells, this section describes general theory of membrane
shells in curvilinear coordinates of free-form shells. It can be seen as a ex-
planatory compliment to theory described by Green and Zerna[26].

4. Numerical solvers. This section describes the algorithms for the numerical
solvers that will be used for the form-finding and geodesic generation onto the
form-found surface.

2.1 Structural theory of masonry structures

Masonry is a composition or assemblage of building elements. The most common
types of these elements are stones and bricks. It can though be in any shape it can
be done with or without mortar but the structural action is similar. According to
Heyman [8] it is wise to and convenient to regard a masonry building as a collection
of dry stones or bricks that are placed on one another to to form a stable structure.
The mortar cannot be accounted since it may have reduced its structural influence
with time - it cannot be assumed to add strength to the construction. The stability
of the structure relies on the compaction under the gravity of its components. "A
general state of compressive stress exists, but only feeble tensions can be resisted."[8]

2.1.1 Structural design

Heyman [8] uses a masonry arch to illustrate this as in figure 2.1. The load applied
on the arch is its self-weight and an external point load. The stresses are low and
the deflection negligible until a certain magnitude of the point load is reached and it
collapses. The stresses are still low in the structure but the internal forces cannot be
held inside the geometry of the arch. This leads to the formation of four frictionless
hinges that turns the structure into a collapse mechanism.
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Figure 2.1: Collapse mechanism of masonry vault by an asymmetric load. The
vault cannot contain the line of thrust within its geometry. This leads to the forma-
tion of plastic hinges at those locations where the line of thrust exceeds or hits the
boundaries. This is not a problem until a su�cient number of hinges are formed to
make the structure collapse[8].

Heyman [8] imposes a method based on plastic analysis for the structural design
of masonry rather than the elastic analysis. One reason is that an elastic solution
might not be possible, an arch consisting of rigid blocks will not deform themselves
and will therefore not obey the rules of elastic analysis. Another reason is that there
are uncertainties regarding the structure and how the boundary conditions change
with time. Therefore, an elastic analysis might change dramatically with time. The
so-called plastic designer accepts that there are infinite ways to achieve equilibrium
and that the solution he has found is just one of them. The plastic designer takes
this into account and applies the theorems of plasticity to ensure that the structure
will not fail. Two common plasticity theorems are:

• The lower bound, or safe theorem
• The upper bound, or unsafe theorem

Heyman[8] suggest the lower bound approach in what he calls the "master safe
theorem". Even though masonry structures do not follow elastic analysis principles
one can still apply elastic equilibrium solutions in plastic design. If one finds an
elastic solution for the structure with respect to the structural criterion the structure
should stand. This means that one can find more or less e�cient solutions leading to

14



2. Theory

more or less slender structures, but all will stand, i.e on the safe side. For masonry
structures this criteria is as stated when the internal forces can be contained with in
the geometrical boundaries of the structure. As long as the settlements are within
margin the safe theorem ensures that future cracks formed should not endanger the
collapse of the structure. Cracks can be considered as a natural behaviour and since
the geometry bears little change the internal forces should still be contained. For
large complex structures it can be hard to evaluate the di�erence between dangerous,
as in figure 2.1, and natural cracking. Figure 2.2 illustrates some typical cracks in a
Gothic vault that can be di�cult to judge for the inexperienced engineer.

Figure 2.2: Typical cracks in Gothic vaults."Pol Abraham(1934) distinguished be-
tween the ’hinging’ cracks near the crown, the ’Sabouret’ cracks parallel to the wall
ribs and the separation of the vault from the walls." [8]

2.1.2 Limit design principles

The limit design principles Heyman purposes for masonry is similar to those used
for plastic design of steel frames. This implies that hinges formed causes the struc-
ture to become a mechanism. To be able to apply the same theory and theorems
for masonry structures Heyman makes three assumptions for the properties of the
material:[14]

1. Stone has no tensile strength.
2. The general stress levels are so low that, for the purposes of calculation, the

compressive strength of stone is e�ectively infinite.
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3. Sliding of one stone upon another cannot occur.
The hinges are formed when, as shown in figure 2.1, the line of thrust cannot contain
itself inside the geometry. A thrust that follows the center line of the structure results
in pure axial forces, and when moving outside it results in a minor moment that
until a certain point that will be negligible due to the compression of the self-weight.

M

M = Nt/2

M = Nt/2

N

t/2

t/2

Figure 2.3: The theoretical limit condition for masonry voussoirs. If the position
of the compressive axial force is placed a distance t/2 from the center a hinge will
be formed. This represents a block of infinite stress capacity since a normal stone
or brick would crush when the contact area gets to small. Therefore, there are some
safety factors that need to be applied, see figure 2.4. [14]

This represents a block of infinite stress capacity since a normal stone or brick would
crush when the contact area gets too small. Therefore, there are some safety factors
that need to be applied.

2.1.2.1 Safety factor

As stated previously in section 2.1.2 a masonry structure is assumed to have zero
tensile capacity. Therefore one seeks a structural solution where the line of thrust lies
in the center line of the cross section, which implies an ideal uni-formal compression
stress distribution along the cross section. The important aspect is though that
there should be no tensile stress distribution over the cross section. A rule that can
be applied to ensure no tensile stress is that the resultant force should be within
the middle third of the cross section, see figure 2.4. Going outside the middle third
one will get a part of the cross section with a tensile force component and the risk
of forming plastic hinges.

2.2 Di�erential geometry

This section will handle definitions and description of the properties of curves and
surfaces. This will be based on classical di�erential geometry which implies contin-
uous and smooth curves and surfaces. This means that we assume that the surfaces
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w / 2 w / 2 w / 3 2w / 3 < w / 3

F F F

Figure 2.4: The middle third rule applied to a block, if going axial force is less
than 1/3 from the edge it will result in tension which will cause possible hinges,
redrawn from [3]

and curves are di�erentiable and that there exists normals and tangents in each
point.

This section will cover the most essential parts related to the research task and
method. Further reading for some of the concepts can be found in appendix A.2.

2.2.1 Curves in space

There are many examples of Curves and most of you have used various of them.
Common examples might be a line, a parabola or a circle, see figure 2.5.

x - y = 0 x2 + y2 = c  y - x2= c

Figure 2.5: Example of curves in Cartesian coordinates, redrawn from [5]
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Using the notation in figure 2.5 means that you describe them in a Cartesian equa-
tion f(x, y) = c, where f is a function of x and y and c is a constant. From this
point of view we see a curve as a set of points namely [5]

C =
Ó
(x, y) œ R2 | f(x, y) = c

Ô

It is sometimes more e�cient to describe curves in another way, as parametrized
curves. Where the curve is described by a vector c of a scalar parameter t (in R2

for a plane curve, in R3 for a curve in space), see figure 2.6 .

c(t) = (x(t) ,y(t) ,z(t))

y

x

z

 

e1e2

e3

t
β  

α

Figure 2.6: A parametrized curve is constructed by a locus of points in space based
on a coordinate vector. To the right one can see how the position of the curve is
related to a one-dimensional parameter.

Stoker[24] describes a regular curve as the locus defined by a vector

c(t) = x(t)e1 + y(t)e2 + z(t)e3, – Æ t Æ — (2.1)

such that the functions x(t), y(t), z(t) have continuous second or third derivatives,in
the interval of – and —, and such that the derivative of c(t) with respect to t is not
zero.

c(t)
dt

= c
Õ(t) = (xÕ(t), y

Õ(t), z
Õ(t)) ”= 0 (2.2)

The locus means that a set of points are related and governed by a set of equations
or rules, in this case the rules of the curve. The latter statement ensures that the
mapping of t into the space of (x, y, z) is one-to-one. When we speak of curves later
on we impose that they are regular curves.
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To give an example when this is useful we can take the circle which can be described
as x

2 + y
2 = 1. A common choice to parametrize is to choose x = cos(t) and

y = sin(t) which clearly holds the initial statement cos(t)2 + sin(t)2 = 1.
Written in parametric form “(t) = (cos(t), sin(t)). A useful property of this parametriza-
tion is that we can di�erentiate this expression infinitely many times. This is very
useful when computing the properties of the curve, which will be obvious in the
section 2.2.1.2.

2.2.1.1 Geometry of the space curve

If we have a curve c(t), where the parameter t is not necessarily an unit speed
parametrization, it is possible to express the curve in what is called an arch length
parametrization. The arch length of the curve is defined by the integral

s(t) =
⁄ t1

t0

Û
dc

dt
· dc

dt
dt (2.3)

With an arch length parametrization, we ensure that the tangent of the curve is a
unit speed vector, which can be quite convenient. Evaluating a curve in a point, we
define a tangent, t, a principal normal, n, and a binormal vector, b, of the curve,
see figure 2.7. The tangent and principal normal vector lies in what is called the
osculating plane.

n
b

t

C(t)
c´´

c´

Figure 2.7: The geometry of the curve with its tangent,t, principal normal n and
binormal b vectors, redrawn from [5]

If we have a unit speed curve with s as arch length parameter we have the tangent
defined as

t = dc

ds
, t · t = 1 (2.4)

Note that dc/dt is also a tangent but not necessarily a unit vector. The principal
vector, n, is defined as following if we still assume s as our arch length parameter.

n = 1
Ÿ

dt

ds
(2.5)
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Where Ÿ is the curvature in that specific point of the curve. It is easy to get the
binormal vector b due to the following relations between the vectors.

b = t ◊ n, n = b ◊ t, t = n ◊ b (2.6)

2.2.1.2 Curvature and Torsion

Curvature can be seen as a measure of how much a curve deviates from a straight
line [2], or as Struik [1] defines it as a measure of the rate of change of the tangent
moving along the curve. Torsion can be seen as a measure of the rate of change of
the osculating plane.

The definition of curvature, Ÿ, for regular curves c(t), can be expressed as [1].

Ÿ = ||d2
c/dt

2 ◊ dc/dt||
||dc/dt||3 (2.7)

For arch length parameter curves it is a bit more convenient and Ÿ can be defined
as

Ÿ = ||d2
c/ds

2|| (2.8)

A similar definition can be made for torsion,· , as for the curvature for a regular
curve with an arbitrary parameter t.

· = d
3
c/dt

3 · (dc/dt ◊ d
2
c/dt

2)
||dc/dt ◊ d2c/dt2||2 (2.9)

It is possible to read the applied properties of the curve in vector form using the
Frenet - Serret equations, which implies.

dt/ds = Ÿn (2.10)
dn/ds = ≠Ÿt + ·b (2.11)
db/ds = ·n (2.12)

2.2.2 Surfaces

Surfaces in three-dimensional space are two dimensional objects, meaning that we
can describe them in a two dimensional domain using two parameters, it can be u, v

or ◊
1
, ◊

2. Surfaces range from quite simple, as the plane, to very complex such as
fractals. In mathematics it is quite uncommon to handle surfaces that are possible
to parametrize as whole, like the sphere or the cylinder. More common is that only
a part, or patch, is parametrized[24]. In figure 2.8 are two physical examples of
surfaces in space, a "Monkey Saddle"- surface and a Hyperbolic paraboloid.
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Figure 2.8: Two examples of surfaces made of ribbed wood structures. To the left
is a "Monkey saddle"- surface described in Cartesian coordinates z = x

3 ≠ 3xy
2, to

the right a Hyperbolic paraboloid z = (y2)/(b2) ≠ (x2)/(a2)

A proper mathematical definition of regular surfaces can be found in most books of
concerning di�erential geometry. One of the most comprehensible for non-mathematicians
is made by Stoker[24].
A regular surface is defined as follows.

1. A surface is a locus of points in the Euclidean three-space defined by the end
points of a vector r = r(◊1

, ◊
2), depending on two real parameters ◊

1 and ◊
2,

see figure 2.9.

r(◊1
, ◊

2) = x1(◊1
, ◊

2)e1 + x2(◊1
, ◊

2)e2 + x3(◊1
, ◊

2)e3 (2.13)

with xi(◊1
, ◊

2) being the components of the vector. These real functions are
assumed to be defined over an open connected domain of a Cartesian ◊

1
, ◊

2 -
plane and to have continuous fourth partial derivatives.

2. The vectors r,– = ˆr/ˆ◊
–, to be called coordinate vectors, or covariant base

vectors, are assumed to be linearly independent:
ˆr

ˆ◊1 ◊ ˆr

ˆ◊2 ”= 0 (2.14)

To give an example of how to parametrize a surface one can take the sphere. A
sphere can be described in Cartesian coordinates as:

x
2 + y

2 + z
2 = R

2 (2.15)

where R is the radius. Writing this example in the general form we get:

x1 = R cos(◊1) sin(◊2), x2 = R sin(◊1) cos(◊2), x3 = R sin(◊2) (2.16)
In the coming sections surfaces are described using parametric form.
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r(x1(θ1,θ2),x2(θ1,θ2),x3(θ1,θ2))

θ1

θ2

R2

R3

x1
e1

e2

e3

x2

x3

Figure 2.9: Parametrizes surface in three dimensional space R3, is described using
a position vector which is r(◊1

, ◊
2) and how it relates to the parametrization in R2.

2.2.2.1 Geometry on a surface

To orientate on the surface one can see the surface having a mapped set of curves,
like a net. These are what is called coordinate curves and are the curves that are
generated when parameter ◊

1 has a constant value and ◊
2 is allowed to vary, and

vice versa, see figure 2.10.

θ1

θ2

R2 R3
θ2

θ1

Figure 2.10: The coordinate curves are straight lines in domain R2 that forms the
curved net on the surface in R3.

This type of orientation along these curves on the surface is called curvilinear coor-
dinates. The orientation of these curves can be chosen after convenience by changing
the parameters of the position vector, r, to say ◊̄1 and ◊̄2, defined as

◊̄1 = „(◊1
, ◊

2), ◊̄2 = „(◊1
, ◊

2) (2.17)

A commonly used type of curve linear coordinates are for instance geodesic coordi-
nates which is described in detail in section 2.2.2.4.

To describe properties of the geometry on the surface one can use two pair of base
vectors, covariant and contravariant base vectors, as in [26], see figure 2.11. The
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covariant basis vectors, a–, are the tangent vectors of the curve linear curves on the
surface and they are defined as:

a– = ˆr

ˆ◊–
= ˆx

ˆ◊–
e1 + ˆy

ˆ◊–
e2 + ˆz

ˆ◊–
e3 = r,– , for – = 1, 2 (2.18)

The covariant base vectors are rarely orthogonal to each other, but are however
always orthogonal to the normal of the surface and therefore lies in the tangent
plane of the surface. The contravaiant basis vectors, a

–, also lies in the tangent
plane of the surface and are defined through the covariant basis vectors[3]. This is
described in equation 2.19 and illustrated in figure 2.11.

a– · a
— = ”

—
– (2.19)

a– · a
3 = 0 (2.20)

Where ”
—
– is the Kronecker delta and has the properties ”

—
– = 0 if – ”= — and ”

—
– = 1

if – = —.

a2

a1
a1

a2

a3

θ1

θ2

Figure 2.11: basis vectors of a surface described using curvilinear coordinates. a1
and a2 are the ,the covariant basis vectors which are the tangent to coordinate curves.
a

1 and a
2 are the contravariant basis vectors and can be described in equation 2.19

above.

The use of the two sets of basis vectors can be illustrated by this example [3].
By specifying a vector p it can be written in both contravariant and covariant
basis vectors. And depending on the situation one might use one or the other or a
combination.

p = pxe1 + pye2 + pze3 (2.21)
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p = p
–
a– + pa

3 = p
1
a1 + p

2
a2 + pa

3 (2.22)

p = p–a
– + pa

3 = p1a
1 + p2a

2 + pa
3 (2.23)

a2

a1
a1

a2
θ1

θ2

p2a
2

pa3p2a2

p1a
1

pa3

p1a1

p

p

p

a3

Figure 2.12: A vector p can be constructed using either covariant or contravariant
basis vectors.

The properties such as length and curvature can be described using the basis vectors.
The length of a line element of ds can be described using Pythagoras:

ds
2 = dr · dr = a–—d◊

–
d◊

— = a
–—

d◊–d◊— (2.24)

Equation 2.24 is what is called the First fundamental Form [26] and describes dis-
tances on the surface. a–— are the components of the metric tensors and can be
defined as:

a–— = a– · a— =
C
a11 a12
a21 a22

D

(2.25)

a
–— = a

– · a
— =

C
a

11
a

12

a
21

a
22

D

(2.26)

The quantity a can be seen as the determinant of the covaraiant metric tensor.

a = a11a22 + a
2
12 (2.27)

To measure the curvature of the surface, which refer to what is called the Second
fundamental Form, the following definition is used:

≠ dr · da3 = b11(d◊
1)2 + 2b12d◊

1
d◊

2 + b22(d◊
2)2 (2.28)

b–— = a3 · a–,— =
C
b11 b12
b21 b22

D

(2.29)

Read more about the First and Second fundamental form in appendix A.2.1 and
A.2.2.
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2.2.2.2 Geodesics

The most common description of a geodesic curve is that it follows the shortest
path between two points on a surface. More interesting might be to think of the
experience of moving along a geodesic on the surface. Presley [5] describes it as even
though the curve does not in fact look straight the notion is that we are progressing
in a straight direction, i.e we do not need to turn to keep ourselves on the curve.
To visualize this on a physical surface one can mount a straight paper strip upon the
surface, without wrinkling the paper. A straight piece of paper laid over a smooth
surface will follow a geodesic on the surface" [4]. This is visualised in the figures
2.13 where the ribbons are geodesics on the surface.

Figure 2.13: Straight ribbons laid out flat on a surface will follow the geodesics
on that surface[4].

So you can think of a geodesic as a shortest path between A and B but you can
also say that standing in A there is a geodesic in every direction. "Through every
point of the surface passes a geodesic in every direction. A geodesic is uniquely
determined by an initial point and tangent at that point"[1] This means that one can
construct a geodesic by either specifying two points, i.e finding the shortest path,
or by specifying the starting point and direction, see figure 2.14.
To describe geodesics in a more mathematical way you would say that the geodesic
curvature is zero in every point on the curve.

2.2.2.3 Normal and geodesic curvature

Recall from section 2.2.1.2 the curvature is defined as dt/ds = Ÿn for a unit speed
curve. This is also true even if the curve lies on a surface. It is though possible to
separate the curvature into two parts, geodesic curvature, Ÿg, and normal curvature,
Ÿn, and refer it to the framework and properties of the surface. This gives a better
understanding of how the curvature relates to the surface since the principal normal
vector for space curves might be hard to anticipate. In figure 2.15 it is possible to
get an idea of how the geodesic curvature and the normal curvature behaves on the
surface.

Ÿn = Ÿna3 + Ÿga3 ◊ t (2.30)
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A

A

B

B

Figure 2.14: There are two possible boundary conditions when constructing a
geodesic on a surface. Either one specifies two points and finds the geodesic between
those, illustrated to the left, or one specify a starting point and direction and the
geodesic is aloud propagates without restriction, illustrated to the right.

Ÿn = d
2
c/ds

2 · a3, Ÿg = d
2
c/ds

2 · (a3 ◊ t) (2.31)

a3

θ1

θ2

n t

Cκ = κn

κn

κg

Figure 2.15: The curvature Ÿ, for a curve C(t) that lies in the surface, can be
divided into two separate parts Ÿn, normal curvature, and Ÿg which is the geodesic
curvature.

One particular important case is when the geodesic curvature is zero and the curva-
ture is only based on the normal curvature. Those curves that fulfills those require-
ments are called geodesics.

2.2.2.4 Geodesic coordinates

The geodesic coordinates are based on two di�erent sets of coordinate curves that
forms what is called a geodesic set. The first set of curves are geodesics and the
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other set are curves that intersect the geodesics at a right angle, and is therefore
called orthogonal trajectories to the geodesics. The parametric curves are chosen as
◊

2 = constant and the orthogonal trajectories as ◊
1 = constant [17], see figure 2.16.

Struik[1] states that "Equation 2.32(in this thesis) is called the ’geodesic form’ of the
line element and (◊1

, ◊
2) form a set of ’geodesic coordinates’; or, for short, ’geodesic

set’.On every surface we can find an infinite number of geodesic sets, depending on
an arbitrary curve C0, along which the curves ◊

2 = constant can still be spaced in
an arbitrary way."

θ2 = constant

θ1 = constant

θ1 =  0

C0

geodesics

Figure 2.16: A Geodesic coordinate set which consists of two types of coordinate
curves, geodesics and parallel trajectories to the geodesics. Notice the right angle in
the intersection between the two types of curves. Redrawn picture from [1]

ds
2 = (d◊

1)2 + a22(◊1
, ◊

2)(d◊
2)2 (2.32)

The geodesic form states that a11 = 1 and a12 = a21 = 0. This means that a1 and a2
are perpendicular everywhere on the surface since a1 · a2 = 0 . Struik[1] also states
that the segments on all geodesics included between any two orthogonal trajectories
are equal according to this theorem.

Theorem 1 If geodesics be drawn orthogonal to a curve C, and segments of equal
length be measured upon them from C, then the locus of their end points is an
orthogonal trajectory of the geodesics.
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This means two things:
1. That the curve segment of the geodesics between orthogonal trajectories are

of equal length.
2. If there exist one orthogonal trajectory too the geodesics, one can measure an

equal segment length along the geodesics from the intersection to find the next
orthogonal trajectory, see figure 2.17.

Move points an equal distance, 
d , on all geodesics.

d 

d 

geodesics

Arbitrary curve C, that are 
intersected at an right angle 
by geodesics.

d 

Ortogonal trajectory generat-
ed by the moved points on the 
geodesics.

Figure 2.17: Interpretation of Theorem 1, of Struik [1], which states that if one
parallel trajectory is found for a set of geodesics a parallel trajectory is found at an
equal distance from the first parallel trajectory.

The proof of the geodesic form is done by both Stoker [24] and Williams [17] and can
be done as following. Assume that a1 and a2 are orthogonal and that the distance
a11 is constant.

a1 · a2 = a21 = a12 = 0 (2.33)

a11 = 1 = constant (2.34)

Since a12 is zero the derivative of a12 should equally be zero.

ˆa12
ˆ◊1 = a1 · a2,1 + a1,1 · a2 = 0 (2.35)

Similarly the derivative of a11 should be zero.

ˆa11
ˆ◊2 = a1 · a1,2 + a1,2 · a1 = 2a1 · a1,2 = 2a1 · a2,1 = 0 (2.36)

Since a1 · a2,1 = 0 it means that also a1,1 · a2 = 0 from equation 2.35, hence the
coordinate curve ◊

1 is a geodesic.
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A special case of geodesic coordinates is Polar geodesic coordinates. The polar
geodesic set is based on that the geodesics has their starting point in a point O, see
figure 2.18, the geodesics become a radial set of curves. The orthogonal trajectories
become a set of curves in the angular direction that cuts the geodesics at a right
angle.

O

Geodesics ,  θ1 =constant

Orthogonal trajectories ,  θ2=constant

Figure 2.18: A polar geodesic coordinate set redrawn from [1]. The polar geodesic
coordinates set possess the same properties as an arbitrary geodesic set, see figure
2.16, the di�erence is that the geodesics meet in a pole.

The properties of the geodesic coordinates makes it interesting and useful for brick
structures, which became clear during a conversation with Williams [52]. The most
important for brick patterns is that the height of the brick is made consistent every-
where, as proved above. This means that the orthogonal trajectories follows the bed
joints and can be seen as the patterns for the brick courses of the brick structure,
see figure 2.19.
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θ1

θ2

θ2

θ1

Geodesics 

Orthogonal trajectories 

Bricks

Figure 2.19: Since the length between two orthogonal trajectories bricks, assuming
uniform height, might be placed between them. [52]

2.3 Membrane theory of shells

Shells, in which bending moments and thickness can be neglected are called mem-
brane shells. In this section we will derive the equilibrium of free-form membrane
elements using curvilinear coordinates. The geometry of the structure is assumed
to be known, but no assumptions are made about constitutive or kinematic rela-
tions for the structure. There is an advantage to use curvilinear coordinates due
to that the basis vectors changes along the surface. This means that the normal
and shearing forces for each element always are in the direction of its basis vectors,
see figure 2.20. Using for instance Cartesian coordinates of x,y and z might seem
more natural but does become complicated for curved elements since it becomes
dependent of direction cosines. The equations, notations and definitions are based
on Green and Zerna [26] and Williams [20].
Figure 2.20 illustrates a part of membrane surface. It will be considered a small
element with edges bounded by the lines ◊

1
, ◊

1 + d◊
1
, ◊

2 and ◊
2 + d◊

2, where d◊
1

and ◊
2 are considered small.

The membrane force N1 is expressed as:
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N1  + (∂/∂θ1)N1dθ1

θ1

θ2

(pαa α
 + pa3) √a  dθ1dθ2

(θ1,θ2)

(θ1+dθ1 ,θ2+dθ2)

a1

a2

N1 = n1βaβ√a dθ2

N2 = n2βaβ√a dθ1

N2  + (∂/∂θ2)N2dθ2

Figure 2.20: Equilibrium for a three dimensional membrane element in curvilinear
coordinates.

N1 = (n11
a1 + n

12
a2)

Ô
ad◊

2 (2.37)

Using Einstein summation convention, it can be reduced to.

N1 = (n1—
a—)

Ô
ad◊

2 (2.38)

Similarly for N2

N2 = (n2—
a—)

Ô
ad◊

1 (2.39)

The tensor, n–—, contains the surface stress tensor components of the membrane
element.

n
–— =

C
n

11
n

12

n
21

n
22

D

(2.40)

The shell is subjected to external loads denoted by p and is measured per unit area
of the middle surface. The loading is divided into two parts, one in the tangent
plane of the the surface and the other in the direction of the normal, see figure 2.21.

p = p
–
a– + pa3 = p

1
a1 + p

2
a2 + pa3 (2.41)

The membrane forces and loading can be gathered into the following expression for
equilibrium of the membrane shell element:

ˆ

ˆ◊1 (n1—
a—

Ô
a)d◊

2
d◊

1 + ˆ

ˆ◊2 (n2—
a—

Ô
a)d◊

1
d◊

2 + (p–
a– + pa3)

Ô
ad◊

1
d◊

2 = 0 (2.42)

This can be simplified further:
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Figure 2.21: The two kinds of loading referring to loading in normal direction from
equation 2.50, to the left, and the in plane loading from equation 2.49, to the right.

) ˆ

ˆ◊–
(n–—

a—

Ô
a) + (p–

a– + pa3)
Ô

a = 0 (2.43)

Dividing 2.43 with
Ô

a and using the following condition of the Christo�el symbol
�⁄

⁄– =
Ô

a,–Ô
a we get the following expression:

n
–—
,– a— + n

–—
a—,– + n

–—
a—�⁄

⁄– + (p—
a— + pa3) = 0 (2.44)

The di�erentiation of the covariant basis vectors for surfaces is defined [26]

ˆa—

ˆ◊–
= �⁄

–—a⁄ + b–—a3 (2.45)

Inserting 2.45 into 2.44

n
–—
,– a— + n

–—(�—
⁄–a— + b⁄–a3) + n

–—
a—�⁄

⁄– + (p—
a— + pa3) = 0 (2.46)

One can now separate equation 2.46 into the two parts, the first containing the basis
vectors a—, where — = 1, 2.

(n–—
,– + n

–—�—
⁄– + n

–—�⁄
⁄– + p

—)a— = 0 (2.47)

The second part is in the direction of the normal vector, a3.

(n–—
b–— + p)a3 = 0 (2.48)

Equilibrium equations can then be simplified to the following form as in [26]:

n
–—

b–— + p = 0 (2.49)

n
–—|– + p

— = 0 (2.50)

Where n
–—|– is the covariant di�erentiation.
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n
–—|– = n

–—
,a + �—

–fln
–fl + �–

–fln
fl— (2.51)

The two equilibrium equations represents the two loading situations in figure 2.21.
Equation 2.50 is handling the loading in the plane of the surface(two directions),
and equation 2.49 refers to the loading in the direction of the normal.

2.4 Numerical solvers and form finding

The main concepts of form finding and under what circumstances it can be used is
described in section 1.3. This chapter will get into detail in how these equilibrium
equations and the solving procedure.

2.4.1 Force density method(FDM)

A key concept in Force density method(FDM) is as the name states the "Force
densities". The force density is the ratio, that can be defined or chosen, between the
force in a bar and its length [3].

Force Density, q, = Force in bar

stressed length of bar

The FDM is a numerical solver placed under the branch of Geometric Sti�ness
Methods, as described in section 1.3. This means that the solution and internal
forces can be derived through the geometry and chosen force densities without the
need for material properties, kinematic assumptions or constitutive relations.
To understand the concept one can make an example, this is found more in detail
in [3]. In figure 2.22 is a node attached to three bars. The node is also subjected to
an external force,pi in node i.

pi

Fli

Fki

Fji
l

k

j

i

Figure 2.22: A node connected to three bars with load applied in the z-direction
with labeled nodes and internal forces.
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Equilibrium for node i in the x-direction can be described as follows,

(xj ≠ xi)
lji

Fji + (xk ≠ xi)
lki

Fki + (xl ≠ xi)
lli

Fli + pxi = 0 (2.52)

F and l refers to the to the force and length quantity in each member.It is now
possible to apply the definition of the force densities qji = Fji/lji.

(xj ≠ xi)qji + (xk ≠ xi)qki + (xl ≠ xi)qli + pxi = 0 (2.53)

One can solve this by rewriting the equations in a matrix format and using matrix
operations as done in [3]. The C matrix describes the topology of the system. For
the system above it should be a [3 ◊ 4] matrix for the system above. The condition
for the components are described below.

Cij =

Y
]

[

+1 if branch j ends in node i

≠1 if branch j begins in node i

0 otherwise

(2.54)

The equilibrium equation 2.53 can then be written in matrix form. Q is a diagonal
matrix containing the force densities and x is a position vector for the nodes and p

is also a vector containing the loads.

C
T
NQCx + p = 0 (2.55)

CN refers to the free nodes and CF to the fixed nodes, described as C = [CN CF ].
The same goes for position vector x and matrix D in equation 2.56. Linkwitz [3]
rewrites the equation 2.55 to get it into the standard form for linear equations Ax=b

Dx + p = 0 (2.56)

DN = C
T
NQCN , DF = C

T
NQCF (2.57)

The node positions of the free nodes can be solved for in a standard manor for linear
equations on matrix form for all three directions x,y and z.

xN = D
≠1
N (px ≠ DF xF )

yN = D
≠1
N (py ≠ DF yF )

zN = D
≠1
N (pz ≠ DF zF )

The solving procedure is described in a flow diagram as in figure 2.23.

2.4.2 Dynamic relaxation(DR)

DR is a numerical procedure that has been commonly used in engineering to find
forms of equilibrium for tensile and cable structures[42]. The method was invented
in 1965 by Alistair Day to solve sets of non-linear equations. The main concept of
dynamics and DR is based on Newton’s second law of motion, see equation 2.58.
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Define boundary conditions xF 

Define Topology C

     Input force densities Q

Input or calculate loads p

Solve the positions 
of the nodes xN

Choose stiffnesses EA or
inital length L0

Materialize by computing 
unknown EA or L0

START

END

No
Design satisfactory?

update

update

update

update

Yes

O
pt

io
na

l

Figure 2.23: Flow diagram showing the computational procedure for FDM. This
diagram is redrawn from [3]

This means that the equilibrium equation can result in a residual force that can be
interpreted as an acceleration of a (fictitious) mass.

ÿ
F = ma (2.58)

Applying Newton’s second law it is possible to derive the equation of motion, 2.59,
which is a second order di�erential equation which is the core of structural dynamics.
[22].

mü(t) + cu̇(t) + ku(t) = p(t) (2.59)

u(t) is the displacement parametrized by the time, t, and u̇, ü is the first and the
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second di�erentiation of u with respect to time, t, c(t) refers to damping and p(t)
is the applied loading. DR will step by step trace the motion in time, using small
time increments, finding the position of static equilibrium for a certain loading,
sti�ness and boundary conditions of the system, see figure 2.24. There are di�erent
possibilities on how to structure the time stepping in numerical integration schemes,
such as: Symplectic Euler, Forth Order Runge-Kutta and Velocity Verlet Method. For
further reading and how it can be applied see for example Poulsen [41].
A typical flow diagram of dynamic relaxation can be constructed as in figure 2.25.
Figure 2.25 is a reconstruction from [3] where axial and shear forces have been
replaced with a more general definition of forces only.

Figure 2.24: Visualization of dynamic relaxation applied on a plane mesh that is
under gravitational load where the corner points are fixed. It shows how the struc-
ture reach equilibrium tracing through time. Initial state at t = 0 and equilibrium
at t = 4.
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Set kinetic energy KE = 0 
and nodal velocites vt  = 0 

Apply loads P1,P2...PN

Compute force in elements F

Update residual forces R

Compute nodal acceleration at

Compute nodal velocites vt

Update coordinates  xt+Δt

Determine current KE

Previous KE<current

Convergence occured?

START

END

No

Yes

Yes

No

Figure 2.25: Flow diagram describing the di�erent stages of Dynamic Relaxation.
A reconstruction from [3], where axial and shear forces has been replaced with a
more general definition of forces only. The main idea of dynamic relaxation is to
transform a residual force into an acceleration leading to a new position. Iterate
this process until the residual force vanish, meaning that the equilibrium of external
and internal forces is found.
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Method

This chapter will describe methods and definitions implemented to solve the research
task. The aim is to generate patterns for brickwork on a form-found shell using polar
geodesic coordinates. The implemented algorithm and procedure will be derived
from the theory described in the previous chapter. The procedure will separate
the form generation and the generation of polar geodesic coordinates, see figure 3.1.
This means a decoupled process enabling more freedom for the designer in each part.

START

END

Part 1: Form Finding 

Part 2: Generate the geodesics 
and orthogonal trajectories

Figure 3.1: The method separates the form-finding and the generation of polar
geodesic coordinates. Decoupling of the process enables more freedom to change
and alter di�erent aspects of the design.

The form generation will be based on form finding method of FDM. The reason is
that it gives direct results based on the solution of the matrix set-up. This means a
quick feedback in a design process. A FDM routine based on the theory described
in 2.4.1 will be implemented.

Generation of the polar geodesic coordinates will be based on the theory of polar
geodesic coordinates in section 2.2.2.4 and implemented using DR, section 2.4.2. To
connect the theory and the numerical solver the continuous theory of 2.2.2.4 was
transformed to discrete equivalent theory. The discrete mathematics can be applied
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in a mathematical model which is solved using DR. The theoretical framework is
illustrated in figure 3.2.

Continuos theory of 
polar geodesic 

coordinates

Chapter 2: Theory  

Chapter 3: Method

Theory of numerical
solvers

Formulate a mathematical 
model applicable in a

numerical solver

Convert continuos theory 
to  discrete 

equivalent theory

Impliment algotrihm

Assumptions

Figure 3.2: The theoretical framework of the generation of polar geodesic coordi-
nates. From theory to formulating a mathematical model that is implemented in a
numerical solver.

Both parts of the method will be implemented in a parametric framework in Grasshop-
per3d. To enhance the user interaction in the design process a user interface will
connect Grasshopper3d with Rhinoceros3d, which is a 3d modelling software, see
figure 3.3. Grasshopper3d and Rhinoceros3d have already in-built connection and
compatibility so the purpose of the user interface is to expose specific functionality
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from Grasshopper3d. The user interface will be created using Human UI which is
an open source library for Grasshopper3d.

3D modelling Software
(Rhinoceros3d)

User interface

Parametric Environment
(Grasshopper3d)

Functionality

Figure 3.3: To enhance the user interaction in the design process a user interface
will extend the connection between the parametric development environment and
the 3d modelling software.

The user interaction and experience is chosen and illustrated in figure 3.4. It is
divided into two parts referring to the di�erent parts of this method. The intention
is to ease the intractability and possibility to make many di�erent options, in line
with design scheme in figure 1.7, and the aim to place the research question in a
design context.

3.1 Part 1: form-finding

As mentioned the form generation will be based on an implemented routine FDM
based on routine in section 2.4.1. This will be implemented in Grasshopper3d com-
ponent written in C#. The implementation will take the user intractability account,
illustrated in figure 3.4, part 1. This is formalized into a flow diagram for the user
implemented routine and interface illustrated in figure 3.5. This leads to the follow-
ing inputs and adjustable parameters for the FDM software:

• The surface external and internal edge boundaries
• Fixed or free edge boundaries
• Loading amplitude in gravitational direction
• Force densities at di�erent parts of domain and boundary:

– Along external edges
– Along internal edges
– Internal domain

The FDM routine will output a discrete surface. This means that this surface needs
to be converted to a NURBS surface for further implementation in part two of the
method. This is done using a built in functionality in Grasshopper3d.
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3.2 Part 2: Polar geodesic coordinates

This section will describe the theoretical framework and the procedure of generation
the polar geodesic coordinates. It is based on the figure 3.2.

Elaborate surface
border - 2d in plan

Choose free and 
constrained edges
- 2d in plan

Perform form finding 
elborating with differnt 
parameters - 2d in plan and 
section 

Part 1: Form
Generation

Part 2: Generation 
Geodesic Coordinates

Choose position and 
number of poles

Choose position and 
number the resolution of 
geodesics and ortogonal 
trajectories

Run simulation

Generate the polar 
geodesic coordinate by 
running the simulation

Figure 3.4: The method should be integrated in a easily navigated design scheme
where the designer can change the design thorough di�erent parameters.
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START

NO

update

update

update

update

Part2: Generate the geodesics 
and orthogonal trajectories

END

Pa
rt 

1:
 F

or
m

 F
in
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ng

 

YES

Define the in plane surface
 border of the base

Define free and fixed
edges along surface border 

Mesh surface domain choosing
appropriate mesh resolution

Choose an equilbrium solver and
 adress associated parameters

  Run the solver and attain 
  form-found discrete shell

Design satisfactory?

Figure 3.5: The flow diagram for the FDM routine is formalised based on the user
interaction diagram of figure 3.4.

3.2.1 From continuous to discrete mathematics

This section will describe how the continuous theory have been interpreted into
discrete mathematics for this thesis work. These interpretations will be qualified
assumptions that through the results should be evaluated.

3.2.1.1 Discrete polar geodesic coordinates

Recall from section 2.2.2.4 that the orthogonal trajectories intersects the geodesics
at a right angle, in which an equal length segment can be measured between to
orthogonal trajectories along the geodesics. This means that by finding one orthog-
onal trajectory to a set of geodesics, you should easily the next orthogonal trajectory
by measuring an equal length along the geodesics. The problem will be to find the
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first orthogonal trajectory. Therefore this method will impose using polar geodesic
coordinates based on this assumption:

If generating geodesics radially from an origin point the intersection points of the
first orthogonal trajectory will be found an equal length along the geodesics from the
origin point.

Suppose this is true and that we have the intersection points. Connecting these
points generates discrete curves in both directions. For a small enough distance this
will resemble the continuous origin of the geodesic coordinates, see figure 3.6.
This method will invert this procedure. This means that it will strive to generate
discrete geodesic curves with equal length segments starting from the pole. Since the
segments are equal length segments their end points serve as the intersection points
to the orthogonal trajectories. Connecting these points in the transverse direction
creates the discrete interpretation of the orthogonal trajectories.

not necessarily 
right angle

Right angle

The more geodesics the more the discrete 
model will reseamble the analytical model

Figure 3.6: To the left the continuous definition of polar geodesic coordinates and
to the right a discrete interpretation. For the discrete polar geodesic coordinate the
angles are not necessarily orthogonal.

To simulate this procedure one need two things:
1. A discrete definition of geodesic curves, described in section 3.2.1.2
2. A numerical method to generate the discrete geodesics with equal segments,

described in section 3.2.1.3

3.2.1.2 Discrete geodesics

The continuous definition of a geodesic curve is that in each point along the curve
the geodesic curvature is zero, i.e. curve can only be curved in the normal direction.
This could be interpreted as the tangent of the curve and the normal forming a
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plane. For a discrete definition one can imagine three points on a surface where the
points are connected through two vectors, A and B, starting in the middle point, see
figure below. If the normal of the middle point and the two vectors lies in the same
plane the geodesic curvature in the middle point can be considered zero. This means
that the cross product of A and B is orthogonal to the normal and the projection
onto the normal would be zero, i.e. the geodesic component is zero.

Based on the figure 3.7 the following condition should hold for all points of the
geodesic curve.

A ◊ B · N = 0 (3.1)

A

B

N

Plane of A,B and N.

AxB
N

A

B

Surface patch geodesic point

Normal of surfacePoints on surface

The normal to the surface and 
the two vectors connecting
the three surface points 
contained in plane

Figure 3.7: Definition of a point on a discrete geodesic curve on a continuous
surface. A point, that is part of set of points forming a discrete curve,is connected
by vectors A and B to its adjacent neighbouring points. The vectors A and B

should be contained within a plane together with the normal vector of the surface.

For a small enough distance on the surface a collection of points with zero geodesic
curvature will form a continuous geodesic curve.

3.2.1.3 Simulate geodesics using dynamic relaxation

To simulate and generate the discrete geodesics using DR a physical model will be
needed to achieve the state described in equation 3.1. The model will consist of
a system of springs connected, according to the left figure 3.8, spanning between
two fixed points on the surface. Each node connecting these springs will have the
following force relationship, also illustrated in figure 3.8:

si + si+1 = ma = r (3.2)
In equation 3.2 the sum of the spring forces, si results in a residual force r. The aim
of this model is to minimize the geodesic component of the residual force in each
node. The spring force for this simulation will be based on a pretension force s:
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s = k(lt=i ≠ lt=0 ú –) (3.3)

In equation 3.3 the spring, at each time step i, will strive for its initial length at
t=0. The initial length is multiplied by a factor –, where 1 < –<0, resulting in a
contracting spring force, s, when multiplied with sti�ness, k. Fixing the end points
and letting the nodes slide on a surface the DR simulation should converge towards
the state where the residual force in each node is parallel with the normal of the
surface, see bottom of figure 3.9. The sliding on the surface can be simulated by
pulling the node back onto the surface in each iteration. The DR procedure can
be illustrated in top of figure 3.9, where t=0 is the initial state and convergence is
reached at t =3.

a3s1

s2

s1+s2

s2

s1
s1

s2

sN

((s1+s2)·a3)a3

Figure 3.8: The mechanical equivalent of zero geodesic curvature is that the there
is no di�erence between the force s1 + s2 and its projection onto the normal, a3, in
that point.

3.2.2 Procedure

The procedure will be based on theoretical framework derived in sections 3.2.1.1,
3.2.1.2 and 3.2.1.3. From section 3.2.1.1 a possible strategy was made that stated
if finding the point of the geodesics an equal distance from the pole one can gen-
erate the orthogonal trajectories, see figure 3.6. In section 3.2.1.3 a possible way
to generate a geodesic fixed between two points on a surface using DR was shown.
To connect these, it is needed to be assured that the points of the discrete geodesic
are equally spaced. This implies that the following conditions are required for all
geodesics:

1. The spring sti�ness, k, is the same for all springs.
2. The initial spring length and the factor – is the same for all springs.
3. The initial lengths should be based on a reasonable guess
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t = 3, final state

t = 0

t =3

t = 0, Initial state

Residual force

Spring forces

Norm
al

Norm
al

Residual
 force

Added Force 
pulling node
onto surface

Surface

Fixed node

Fixed node

Figure 3.9: The DR procedure in which the points are connected with pretensioned
springs. In the final state the residual force is parallel with the normal vector in
that point.

The first two conditions will assure that the nodes between the springs will be
spaced at an equal distance. The last condition indicates that it is necessary to
have a small change in distance between the nodes before and after the simulation.
This is achieved in this method by projecting the line between the end points of
each geodesic.

Making these assumptions the procedure can now be described as follows and pre-
sented graphically in figure 3.10:

1. Decide the start and end points of the geodesics on the surface.
2. Generate an initial curve that lies on the surface based on the start and end

points. Discretize the curve into segments, small enough to resemble the curve
properties, of the same length. These segments will be modelled as springs in
a physical model where the springs have the same sti�ness.

3. Apply the same pretension in all elements and ensure that the nodes move
along the surface, this can be done by either a force or just moving the point
to the surface in each iteration. Start the solver, and for each iteration check
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the geodesic requirement for each point, or node.
4. When all nodes have zero geodesic curvature the solution has converged and

the iterations end. The points should, due to the equal initial length and
tension, still have equal distance.

5. Connect the points in the transverse direction to construct the discrete or-
thogonal trajectories.

This procedure will be implemented in Grasshopper3d in which the DR will be
performed using the built in physics engine Kangaroo3d.
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Model Preperation

Dynamic Relaxation

Results

End points

Surface

Pole

Fixed points

Equal length 
segments

Curves on surface
1. 2.

3.

5.4.

Geodesic points

Equal spacing Discrete curves defined 
by geodesics points 

Orthogonal trajectories
constructed from the 
geodesic points

Section of Surface

Pretension in elements Move point to surface if it 
slides of

Figure 3.10: The procedure of generating the polar geodesic coordinates on a
surface.
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4
Results

The results of the thesis work include the idea and theory of using geodesic coordi-
nates as a strategy for making brick patterns on complex shells and how to transform
it into a computational method. The method was implemented and made into a
design tool that can be used for architectural exploration in a parametric design
scheme to find brick patterns on free form compression shells.

This section consists of two parts. The first presents how the model preparation
in the parametric design scheme was implemented. The second part is a detailed
study using the procedure of generating polar geodesics on a surface described in
section 3.2.2 on a specific test case. This test case will be evaluated based on four
di�erent aspects that are relevant to ensure conformity between the application and
the underlying theory, those aspects are as follows:

1. The definition of the points of the geodesic curve. Will the algorithm fulfill
the angular requirements of the points on the geodesic, referring to definition
in section 3.2.1.2

2. The length between the geodesic points. The basis of the idea is that the brick
patterns coincide with the orthogonal trajectories which cuts the geodesics at
equal length.

3. The assumption that the discrete polar geodesic coordinate will converge to-
wards the continuous, referring to definition in section 3.2.1.1.

4. Deviance going from the discrete, form founded surface, to the continuous
surface.

4.1 Model preparation and generation

This section will present how the research work is implemented as a parametric
design scheme and how the geodesic coordinates generation procedure is structured.
Figure 4.1 shows how the connection between Rhinoceros3d and Grasshopper3d is
extended via a designed user interface, referring to figure 3.3. This connection allows
for easy set up and modifications of generating a form and setting up the necessary
steps for the pattern generation.The full procedure and its stages is presented in
the appendix A.7.1. Since the parametric framework is open the code is exposed
and one can easily modify or control the generation process. Figure 4.2 shows how
the coding has been structured in Grasshopper3d. A larger picture can be found in
appendix A.30.
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Figure 4.1: The connection between the 3dmodelling software Rhinoceros and the
parametric design plug-in is enhanced by a user interface.

Figure 4.2: The code in grasshopper structured in di�erent units. Starting from the
input of geometry one can follow the procedure to the generation of polar geodesics
on the surface.
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4.2 Test case: polar geodesic coordinates on shell

This second part will show the results of a test-case where the procedure of gen-
erating polar geodesic coordinates was applied on a shell. It will challenge the as-
sumptions and the procedure constructed in section 3.2 to model the polar geodesic
coordinates based on the aspects described in section 4.

4.2.1 Visual output

This is the visual output of the polar geodesic coordinates on the shell. Blue lines
are the discrete geodesics and the orange discrete curves relate to the orthogonal
trajectories.

Figure 4.3: Output of discrete geodesic coordinates in top view

Figure 4.4: Output of discrete geodesic coordinates in right view
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Figure 4.5: Output of discrete geodesic coordinates in front view

Figure 4.6: Output of discrete geodesic coordinates in back view

4.2.2 Discrete geodesics

This section analyses angle based on equation 3.1 in section 3.2.1.2 and refers to
aspect 1 in section 4. The analysis is presented and described graphically in figure
4.7.

• Maximal angle deviance from 90 °of all geodesic points: 0.97 °

This is the highest value of all geodesics points, meaning that the deviance
cannot be higher than this.

• Average angle deviance from 90 °of the worst nodes in each geodesic

curve: 0.034 °

For each geodesic curve the nodes with highest deviance from 90 degrees was
put together in a list. This measure only includes the results of those nodes.

• Average Angle of all geodesic points: 90.000 °

This is an average for all geodesic points in all geodesic curves.
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89      91 degrees

Figure 4.7: Graphical output of the angle between the normal and the cross prod-
uct of the two connecting vectors to each point.The angle is evaluated in the range
89 and 91 degrees.

4.2.3 Geodesic segment length

This section analyses the length of the segments of the discrete geodesics, and refers
to aspect 2 in section 4. The results are presented in figure 4.8.

• Average geodesic segments: 1.499 length units

This is an average for the distance between all geodesic points in all geodesic
curves.

• maximal deviation from average segment segments: 0.0005 length

units

This is the maximal length deviation compared to the average segment length.
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0          4 units

1.495           1.505 units

Figure 4.8: Analysis of the length of the discrete lines between the geodesic points.
The figure above consists of all segments, both geodesics and orthogonal trajectories.
Below the analysis is done with only the geodesic segments. The analysis shows great
length consistency of the geodesic elements with small deviations.
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4.2.4 Maximum angle di�erence of mesh face

These results refers to the analysis of the di�erences between the maximum and
minimum angle of the mesh faces in the geodesic coordinate mesh, see figure and
definition in 4.9, and refers to aspect 3 in section 4. This analysis will also investigate
what happens to the results going from coarse to finer mesh resolution. Due to the
computational time the fine resolution mesh is only part of a patch of the entire
shell. The results are presented in figures 4.10 and 4.11.

Figure 4.9: The analysis criteria where the result is the subtraction of the maxi-
mum and the minimum angle of each face.

• Coarse resolution mesh:

– Average angle deviance: 7.1 °

– Average size of mesh panel: 2.57 area units

• Fine resolution mesh:

– Average angle deviance: 0.9 °

– Average size of mesh panel:0.13 area units
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0      10 degrees

Mesh Resolution: Coarse

Mesh Resolution: Fine

Figure 4.10: Analysis with two types of mesh resolution, the top is coarser and
below is a small patch that is of very fine resolution. They are evaluated between 0
and 10 degrees.
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0        2 degrees

Mesh Resolution: Fine

Figure 4.11: Analysis of the fine resolution mesh, same model as in figure 4.10
but with the evaluation ranging between 0 and 2 degrees to give a more detailed
analysis.
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4.2.5 Transformation of discrete to continuous surface

Figure 4.12: Comparison between the form-found mesh, in blue, and the sur-
face generated from that mesh in grey which is used for the generation of geodesic
coordinates.

Transforming the form found the mesh to a surface is not uncomplicated, and the
NURBS surface did have small deviations from the form found mesh. To give a
measure of how much the following metric was used. The average length of the
mesh edges gets to resemble average panel, in this case, 4, 16 units. The average
distance to the surface was 0.025 units. One corner that has deviated 0.025 units

results in an angle of 0.34 degrees.

4.16 units

0.025 units

0.34 degrees

Mesh panel

Figure 4.13: The average deviation going from the discrete surface, the form-
found mesh, to the continuous surface that is used during the dynamic relaxation is
relatively small compared to the size of the mesh face.
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Discussion

In the following chapter a discussion concerning the results and methods presented
in the thesis is held. Finally some recommendations for further work is presented.

5.1 Reflections

There are some areas concerning the method and results worth reflecting upon:
• Organisation of the method
• Credibility of the method - how are the results connected to the theory and

hypothesis applied in the method.
• Implementation
• Design Aspects

5.1.1 Organisation of the method

The organisation of the method is based on that the form-finding and the tessel-
lation is separated. By separating the process one gives the architect or engineer
the opportunity to let the form be governed by for instance room configurations
and volume or structural properties. Usually this is a luxury that can lead to a lot
of problems when merging form and tessellation strategies. For steel structure and
facade systems this can become quite tricky to post-process since e�cient mathe-
matical mappings is quite complicated on free-form structures. For brick structures
this might not be a problem since the technique and craft implies that one allows
for a certain tolerances, either through the joint or through modification of the brick
itself.

5.1.2 Credibility of the method

The results and analysis of the chosen example were chosen to challenge the def-
initions and hypothesis made in the method. Three types of analysis were made,
the first concerns the discrete geodesic definition, the second the line segment of
the discrete geodesic curves and the third examines the convergence from discrete
towards continuous.

The first analysis shows that there was very little deviance from the geodesic con-
dition. The maximum deviance was less then one degree and the average deviance
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was less then 0.001 degrees. This proves that the implementation can achieve the
desired state made in the definition.

The second analysis is very important due to two reasons. Firstly, it is a vital part
in the definition of geodesic coordinates. According to the definition two orthogonal
trajectories should encapsulate equal length geodesic curves between themselves.
Secondly, this is the vital and necessary part for the bricklaying. It was on this
basis that the geodesic coordinates were chosen in the first place. If one could not
ensure this part the method or the implementation would fall. Luckily the results
show very little deviance between the segments. The maximum deviance from the
average length was less then 0.04 percent.

The third analysis, was made to test the assumption that the discrete geodesic
coordinates will converge towards the continuous geodesic coordinates. There were
two cases, one with a course mesh covering the entire surface, and one with finer
mesh that covers a patch of the surface. The measurement was based on measuring
the di�erence of the internal angles of a mesh face. It is not fair to say that the
di�erence should be zero since in the continuous theory there is not existing meshes,
since they are based on line elements. What you can say is that for a very fine mesh
resolution the di�erence should be close to zero. The result shows that it clearly
converges towards smaller di�erence and that the fine mesh results in an average
di�erence of 0.9 degrees for each mesh face.

5.1.3 Implementation

This section will discuss questions and aspects that are related to implementation
of the method.

5.1.3.1 Computational e�ciency

The method of generating the geodesics, even though giving good results, needed
much computer power and therefore took long time to produce. This limited the
mesh resolution of the geodesic coordinates and how fast new designs could be
generated. This area can be greatly improved since the work did not intend to find
the most optimal way, but rather find a way to produce geodesics and a geodesic
coordinates mesh. In Rhinoceros3d there is for instance a command for creating a
shortest path between two points on a surface. This is done relatively fast so there
is a great potential in improving the computational power and speed required.

5.1.3.2 Form generation

The generation was done using force density method (FDM), which is a suitable
method to derive e�cient shapes. For brick shells it would be more beneficial to im-
plement, or use, thrust network analysis (TNA) developed by Block and Ochsendorf
[16] which ensures a compression solution. For unreinforced brick shells one must
check manually if the solution only consists of compression members using FDM.
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There is a TNA software implemented for Rhinoceros3d which could well have been
used. The FDM was chosen based on its simplicity. This meaning quick results
during form generation and simpler implementation in the parametric framework.

One down-side with the form-generation is that the form-finding algorithms pro-
duce discrete surfaces while the method of generating the geodesics are based on a
continuous surface. This is not ideal since it is not without complications and the
continuous surface will deviate from the discrete. Either the method needs to be
modified or the form-finding needs to produce a surface. This might not be a big
problem as long as the line of thrust can be kept within the thickness of the shell.

5.1.4 Design

This section will discuss aspects of designing brick patterns with geodesic coordi-
nates.

5.1.4.1 General and polar geodesic coordinates

For some shapes and designs it seems natural to use polar geodesic coordinates
for brick tessellation. Looking at domes in history they have in many cases been
designed based on a center pole strategy. This can be seen in for instance Pantheon
but also less flamboyant structures such as igloos. Even though it might seem
natural there is a problem having this center pole. This is due to that all geometry
is meeting in a small point causing detailing problems needed to be taken care of.
One possibility is to leave a hole in the pole as can be seen in Pantheon. In Bath
abbey they have chosen multiple poles, one for each fan vault, that meets in the aisle
roof. Their approach has been to highlight rather then hide. The space created is
used as extra decoration, see figure 5.1.

For some shapes the designer might like to have more control of how the geodesics
should be drawn, which is not possible in a polar geodesic coordinate system. In a
catenary vault it would be more natural to have bricks laid either along or orthogonal
to the catenary. This would be similar to using general geodesic coordinates rather
than polar geodesic coordinates. Using this approach one can design the brick
patterns to follow the edge conditions for instance, as will be discussed in section
5.1.4.2. It also enables decorative and creative ways to tessellate the shell in line
with the design intention.
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5. Discussion

Figure 5.1: In Bath abbey each fan vault has its geometry based on a pole. The
geometry then meets in the aisle roof. [47]

5.1.4.2 Edge-conditions

Considering build-ability one should think of how the edges are related to the bed
joints of the bricks. Choosing arbitrary edge boundaries can make it necessary to
perform modifications on the bricks or design necessary supports, like a concrete
foundation. This might not be an optimal solution for a real project. Best thing
would be to edge boundaries to follow the orthogonal trajectories so that they are
leveled with the bed joints.
There are two ways to construct a geodesic, as described, either through a starting
and an end point or by a starting point and a direction. One approach would
be to design the edge-curves and let the geodesics be based on a starting point
on the edge and a direction that is orthogonal. This would imply that the edge
curve would become an orthogonal trajectory due to the approach of the geodesic
generation. One problem might be that there is no control of how the geodesics will
propagate on the surface and that they might intersect each-other at some point.
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Surface  boundary follow an 
orthogonal trajectory

Geodesics

Orthogonal 
trajectory

Not equal length 
at ends

Arbitrary surface 
boundaries

Figure 5.2: Problems that can occur along the edges if the edges and the orthog-
onal trajectories di�er. A good design approach would be to design the edges are
described by an orthogonal trajectory.

Starting point and direction of the geodesics on the 
edge curve (which becomes a orthogonal trajectory) 

There is a possibility of getting points 
of intersection between the geodesics

Figure 5.3: It is possible to construct the geodesic coordinates by generating
geodesics orthogonal to a curve, using for instance the edge curve. There is a
possibility though that the geodesics will propagate on the surface in such a way
that they intersect each other.

5.2 Future work and improvements

• Further Validation - To prove the method and the theory of this thesis
further testing and validation is needed. This means doing the same procedure
on new shells or choosing di�erent pole positions one shell. Even though the
results look very promising further evaluation is needed.

• Geodesic generation - The speed of generating the geodesics using dynamic
relaxation was successful but the method was computationally heavy. To solve
this one could either find a more e�cient method or solver for this matter.
Since there already existed a dynamic solver this was not of priority to imple-
ment a new dynamic relaxation solver. Implementing a specialized solver can
give many advantages. One could for instance set limits for which which the
geodesic set is considered to be geodesic points, and focus its power on the
sets that have harder time finding its position.
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5. Discussion

• Implement general geodesic coordinates - Within the time-frame of the
thesis there was only time to present a reliable method for polar geodesic coor-
dinates. General geodesic coordinates though could be useful where the polar
geodesic polar coordinates have disadvantages, as described in the reflections.
This could well be a future research task.

• Prototyping - Another way to validate the results would be to physically
build models based on the guide lines generated with this method. Unfortu-
nately, there was not time to make a real physical object challenging or proving
the results for this thesis. It could be a good follow up in this subject to make
both small models and a full scale mock-up that test this research question
fully. Before a full scale model can be built a more rigorous structural design
and assessment must be made.
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6
Conclusion

The objective of this thesis was to investigate a new strategy for generation of brick
patterns based on geodesic coordinates. This was done by combining mathematical
theory of di�erential geometry with manufacturing processes of brick structures. The
theory became the basis of a computational method constructed and implemented
to generate polar geodesic coordinates on shells. The assumptions and theory of the
method was evaluated on a test case where the form was derived using form-finding
algorithms. The evaluation was based on the necessity to convert continuous theory
of geodesic coordinates into discrete equivalent mathematics implemented in the
computational method.

The output from the method applied on the test-case suggest a correlation between
initial continuous theory and discrete mathematics generated by the numerical pro-
cedure. This means that the necessary conditions of the fabrication process of brick
structures was met, that is that the pattern ensured consistent brick courses on the
shell. Further testing will be needed to draw a general conclusion of the method.
The strategy was also possible to implement in a parametric design process, proving
that this can be a possible tool assisting projects in early design stages.

As concluding remark, the work in this thesis is a first step towards a general strategy
of generating brick patterns on free form shells. The knowledge gained can not
only apply to modern production but also be used to understand tiling patterns of
historical vaults.
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A
Appendix 1

The following content is in many ways relevant for the thesis but did not fit in the
structure of the thesis. It is a good place for more information regarding the subjects
and sections covered in the thesis.

A.1 Bricks

A.1.1 The brick

What is the essence of a brick? What one might say is the format and the materiality.
A good definition is made by Mitchell [12], Bricks are an artificial kind of stone,
made of burnt or baked argillaceous or clayey earth, and the quality depends upon
(a) the chemical properties of the earth, (b) the preparation of the earth, and (c) the
di�erent degrees of burning and baking . There are many di�erent types of clays, or
silicate of alumina, with di�erent chemical compositions. Mitchell gives a thumb-
rule for a good clay, or brick earth, "Silica, three-fiths; alumina, one fifth; iron, lime,
magnesia, manganese, soda and potash forming the remaining fifth"[12]. To get a
more detailed view of chemical composition for di�erent clays, see table A.1.

Table A.1: The chemical composition of di�erent types of brick clay. The propor-
tions are described in percentage. [12]
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A.1.2 Brick Making

The fabrication of the brick is crucial for the performance of the brick structure.
Many of the properties are closely related to composition of the brick earth [12] and
the kiln temperature, see figure A.17. The brick fabrication can be divided into the
following steps.[25]

1. Preparation of the raw material
2. Forming of the bricks
3. Drying
4. Burning and cooling
5. Sorting

The forming of the bricks is a quite an important step for the format of the brick.
There are two main principles.

1. the machine made, wire-cut, figure A.2
2. The machine-made pressed, or hand moulded, figure A.1

Wire-cut bricks usually gets very precise with a smooth surface. The pressed or
molded bricks can get quite rough and the shape is usually a little bowed, curved
or twisted. The deformations are in general not a problem due to the adaptability
for tolerances of the mortar joints. The deformations should though not be greater
than the joints allow.

Figure A.1: A traditional method of brick making is by putting it into wooden
forms. Today this is not very common and the bricks are usually pressed by a
machine. This method gives the brick marks of the form and also results in some
deformation and transformations from the cuboid. The deformations is in general
not a problem due to the adaptability for tolerances of the mortar joints.This method
is more in line with traditional brick making then the wire-cutting method. [30]

There are di�erent kinds of kilns. The principles are though the same even though
they can be constructed di�erently. Figure A.3 describes a tunnel kiln and its
di�erent stages of the process.

A.1.3 Craftsmanship

The art of bricklaying is to combine bricks with mortar, which is a workable paste
in its initial state that binds the bricks together, to form a composition of structural
elements. This composition must meet the requirements of the engineer or architect
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Figure A.2: An industrialised way of making bricks using a wire-cutter. This
results in concise and precise forms of the brick with less deformations. The feeling
of these bricks are usually more industrial.[30]

in terms or geometrical, aesthetic, structural and thermal requirements (it should be
dense so that water and air cannot directly pass through). It is a very unforgiving
craft since you have no margins for error due to the quick setting of the mortar.
If the craftsmanship has been lacking it is very time consuming and require much
e�ort to correct or repair afterwards.
What di�ers the brick layer from other crafts is the pure simplicity, not much has
changed with time and the execution is still very traditional. A description from
Swedish text book for bricklayers states For brick laying only a few tools are required:
spatula, hammer( specialized for cutting bricks), plump, spirit-level,cord and corner
sticks[31]., see figure A.4.
With the spatula the brick layer applies just enough mortar to make the brick attach
to the underlying brick and assures the bed joint height is level.It is also important
to apply enough mortar and pressure in the placement of the vertical joint,figure
A.6 The hammer is used to cut the stones for situations where the normal format
does not fit, it can be at corners or vaults. A brick layer always works within in line
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Figure A.3: Principles of a tunnel kiln. Above is the di�erent stages and below
one can follow the di�erence in temperature during these stages [10]

Figure A.4: Typical tools for a brick layer from a Swedish brick layer handbook
from 1938. 1)Plumb 2)spatula 3)spirit level 4)Wooden jointer 5)Hammer for brick
cutting [31]

with the bedding layer so the brick is always cut in the vertical direction.
The most common technique of keeping the brick level is to work with a cord at-
tached between two corners sticks, figure A.5. When not possible a brick layer must
be able to work with only a spirit level and plump to keep ensure the geometrical
entities level,figure A.6. The working stages is illustrated in the illustrations below.
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Figure A.5: The bricks should all be level in the horizontal direction. The most
common way to achieve this is to use string that is attached between to rods.[31]

Figure A.6: To the left one can see how the bricklayer uses a spatula to apply
mortar to both the brick and the place of the brick. To the right one can see how
the brick layer can use both the spirit level and a plumb to ensure geometrical
correctness[31]

A.1.4 Brick formats and terminology

A fundamental property of the brick wall is the unity of the single format of the
bricks. There are though many di�erent types of formats and it is usually a historical
or cultural tradition that defines the dimensions in each country, see figure A.7. The
most common Swedish brick format is for instance a bit larger than the Danish brick
dimension. Usually the bed joint height is set depending on the brick to give an
even number at say the 5th and 10th layer.Figure A.7 shows some di�erent brick
sizes and the associated height of the bed joint.
The brick composition has common terminology and the name of the brick sides are
determined by which edge is facing the bed joint, see figure 1.1. The most common
placement is the stretcher and header, see figure 1.1. The bed joint is the the mortar
joint between the courses, one layer of bricks is called a course, and the vertical joint
is called perpend. Bats are a piece of a brick, 1/2 or 3/4. The bats can be fabricated

V



A. Appendix 1

Figure A.7: Di�erent sizes formats of typical brick constellations. [11]

but the brick layer must also be able make them himself, or herself, by splitting the
brick the right size with his hammer.[12]

A.2 Di�erential geometry

A.2.1 First fundamental Form

The First Fundamental(FF) is the measure of the length of a surface. This is an
intrinsic property since the length always is the same for real surfaces. It can tell us
how its measures will behave on the surface. For example, a plane and a cylinder
has the same first fundamental form which means that a line drawn on a paper has
the same length as the curve on the folded cylinder by the same paper, see figure
A.8.
The plane and the sphere for example does not have the same first fundamental form
which is why we cannot form a paper directly to a sphere without modifications, see
figure A.9. Therefore, a curve drawn on the sphere would not have a true relation
to the plane as the cylinder and the plane has.
If we were to measure the line length from P and Q which is say ”s. Then

”s
2 = ”r · ”r = a– · a—”◊

–
”◊

— = a–—”◊
–
”◊

— (A.1)

The components of the covariant metric tensor a–— described in 2.25 are also what
is called the coe�cients of the first fundamental form. It is common that these
are described di�erently in math literature such as Struik which uses the following
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Figure A.8: The first fundamental form is way of describing how the measure of
lengths on the surface will behave and propagate. If two surfaces has the same first
fundamental form means that the length of a mapped curve will have the same length
as before mapping. Since the plane and the cylinder has the same first fundamental
form the curve will have the same length if mapping between these surfaces.

Figure A.9: The sphere and the plane does not have the same FF and therefore it is
not possible to mapp these curves between the two without constraints. If flattening
out a sphere on the plane, to the right, one might understand the geometrical issue
graphically.

notation:
E = a11, F = a12, G = a22

The curve distance P and Q can be described as following for a curve C(t) =
r(◊1(t), ◊

2(t)):
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s =
⁄ Û

a11

3
d◊1

dt

42
+ 2a12

3
d◊1

dt

43
d◊2

dt

4
+ a22

3
d◊2

dt

42
dt

A.2.2 Second fundamental Form

The second fundamental form is the measure of how much the surface deviates from
a tangent plane.[24] It is useful property in describing the curvature of the surface.

a3

dP

Q

Figure A.10: A surface with a tangent plane in the point P = r(◊1
, ◊

2). The
point Q is described as increment from P, Q = r(◊1 + d◊

1
, ◊

2 + d◊
2). The second

fundamental form is the measure of how much the surface deviates from a tangent
plane, in this figure the measure d. Redrawn from [24]

Suppose we have points P and Q on the surface that are described as r(◊1
, ◊

2) and
r(◊1 + d◊

1
, ◊

2 + d◊
2).

A taylor expansion of r(◊1 + d◊
1
, ◊

2 + d◊
2).

r(◊1+d◊
1
, ◊

2+d◊
2) = r(◊1

, ◊
2)+r,1d◊

1+r,2d◊
2+1

2(r,11(d◊
1)2+2r,12d◊

1
d◊

2+r,11(d◊
2)2)+remainder

Therefore the vector connecting P and Q, PQ, can be described as

PQ = r(◊1+d◊
1
, ◊

2+d◊
2)≠r(◊1

, ◊
2) = r,1d◊

1+r,2d◊
2+1

2(r,11(d◊
1)2+2r,12d◊

1
d◊

2+r,11(d◊
2)2)

Projecting PQ onto a
3 and using the fact that r,– · a

3 = 0.

d = PQ · a
3 = 1

2(r,11(d◊
1)2 + 2r,12d◊

1
d◊

2 + r,11(d◊
2)2) · a

3

Recall from equation 2.18 that r,– = a– And that a–— are the coe�cents of the
first fundamental form. In similar fashion we define the coe�cents of the Second
fundamental form b–—
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b–— = a3 · a–,— (A.2)
Applying this the second fundamental form can be written as:

II = b11(d◊
1)2 + 2b12d◊

1
d◊

2 + b22(d◊
2)2 = ≠dr · da3

Reading literature by Presley, Stoker and Struik they have other conventions of
describing the components of the second fundamental form, but it can be related
like this.

e = L = b11, f = M = b12, g = M = b22

It is appropriate to distinguish four di�erent cases depending on the determinant of
the tensor of the second fundamental form [24]. Please see illustration of these cases
in figure A.11.

1. Elliptic Case, b11b22 ≠ b
2
12 > 0

2. Hyperbolic Case, b11b22 ≠ b
2
12 < 0

3. Parabolic Case, b11b22 ≠ b
2
12 = 0, b

2
11 + b

2
12 + b

2
22 ”= 0

4. Planar Case, b12 = b11 = b22 = 0

plane plane plane

Figure A.11: On the left is the elliptic case, In the middle the hyperbolic case and
to the right the parabolic case.

A.2.3 Christo�el Symbols

Applying a curve linear coordinate system on a surface means that the coordinate
base vectors are dependent on the curvilinear coordinate curves, and importantly
the curves do change with the surface. This means that the coordinate base vectors
do change, which is a big di�erence to a Cartesian coordinate system where the
base vectors are the same. Therefore, Christo�el Symbols are defined and used to
measure the rate of change from a point P to a point Q in the base vectors of P. In the
book Einstein’s Theory: A Rigorous Introduction for the Mathematically Untrained,
you can read this description "The Christo�el symbol �“

–—, is the “ component of the
change of the coordinate basis vector a— by an infinitesimal coordinate displacement
d◊

–, per unit coordinate distance." [6]
This definition can be written in a formula as:

�“
–— = ˆa—

ˆ◊–
· a

“ (A.3)

IX



A. Appendix 1

This is what is called the Christo�el of the Second Kind.This leads on defining the
Christo�el of the Second Kind.

�–—“ = ˆa—

ˆ◊–
· a“ (A.4)

According to the definition one is moving along one of the coordinate curves — with
respect to parameter –, and projects the change onto coordinate vectors “. And
depending if first or second kind it is the covariant or the contravariant base vectors
that the projection applies to. Since it is a scalar product the result must be a
scalar. Below is a graphical interpretation of the Christo�el symbol, for both kinds.

a1

â1
â2

a2

a3 θ2

∂θ1

â3
∂a2/∂θ1

a3
p

a2

∂a2/∂θ1 Γ121=â1
â1

Figure A.12: Geometric representation of Christo�el Symbol of Second kind

a1

â1
â2

a2

a3 θ2

∂θ1

â3
∂a2/∂θ1

a3
p

a2

∂a2/∂θ1 â1
 Γ121=

Figure A.13: Geometric representation of Christo�el Symbol of First kind

The Christo�el symbols are necessary to describe the di�erentiation of the covaraiant
and contravariant basis vectors. The covariant di�erentiation on a surface can be
defined as:

ˆa—

ˆ◊–
= �⁄

–—a⁄ + b–—a3 (A.5)

Notice that one needs to apply a normal component since the coordinate base vectors
lie in the tangent-plane of the surface and cannot describe the changes in the normal
direction. For general 3d cases it is much simpler since one can describe it much
simpler:

ˆgi

ˆ◊j
= �k

ijgk (A.6)
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A.2.4 Gauss-Codazzi Equations

The Gauss-Codazzi Equations means the equations of Codazzi and the Gauss equa-
tion of the surface. They are important in the sense that it tells us that the first and
second fundamental forms are related. Williams states [20], "The Gauss-Codazzi
equations (Gauss’ theorem and the Codazzi equations) are compatibility equations,
which ensure that the coe�cients of the first and second fundamental forms are
related in such a way that the surface ’fits together’."
Green and Zerna[26] gives the following definition of the Codazzi equations:

b–1|2 = b–2|1 (A.7)

Struik writes them out as in the following [1]:

b11,2 ≠b12,1 = b11�1
12 + b12(�2

12 ≠ �1
11) ≠ b22�2

11 (A.8)

b12,2 ≠b22,1 = b11�1
22 + b12(�2

22 ≠ �1
12) ≠ b22�2

12 (A.9)

The Gauss equation of the surface can be written as[26]:

K = b11b22 ≠ b
2
12

a
(A.10)

Equation A.10 can also be written as:

K = 1
4‘

⁄–
‘

—“
R̄⁄–—“ (A.11)

Where Green and Zerna calls R̄⁄–—“ the associated Riemann-Christo�el tensor which
is defined as.

R̄⁄–—“ = a⁄µR̄
µ
.–—“ (A.12)

Where R̄
µ
.–—“ which is called the Riemann-Christo�el tensor can be written in

Christo�el Symbols.
R̄

⁄
.–—“ = �3

–—�⁄
3“ ≠ �3

–“�⁄
3— (A.13)

Equation A.13 shows what A.10 can be written in terms of the first fundamental
form, since Christo�el symbols can be written in the first fundamental form compo-
nents.

A.2.5 Gaussian and Mean Curvature

Two measures to describe the curvature of a surface are what is called Gaussian
Curvature and Mean Curvature. Both can be described through the principal cur-
vatures or in terms of first and second fundamental form.

The mean curvature, H, is the mean value of the principal curvatures.

H = Ÿ1 + Ÿ2
2 = b11b22 ≠ 2b12a12 + b22a11

2(a11a22 ≠ (a12)2) (A.14)
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The Gaussian curvature, K, is the product of the two principal curvatures.

K = Ÿ1Ÿ2 = b11b22 ≠ (b12)2

a11a22 ≠ (a12)2 (A.15)

The geometrical meaning of the Gaussian curvature can be seen in figure A.14. A
point of positive Gaussian curvature is a point where you have positive principal
curvature in both directions as in a sphere. This is a point where you have two
parabolas whose openings are directed the same way. A negative Gaussian curva-
ture means that you have two parabolas but where they are directed in opposite
directions. Zero Gaussian curvature is a result of one or both Principal curvatures
are zero as in a cylinder.

Figure A.14: To the left is a sphere which has positive curvature in two directions.
In the middle is a hyperparabolid which has both positive and negative curvature
in its saddle point, which results in negative Gaussian curvature. To the right is the
cylinder which has positive in one and zero curvature in the second direction which
results in zero Gaussian curvature.

Surfaces of no mean curvature is what we are calling minimal surfaces. Usually we
define that as a surface of the smallest area spanned by a given closed space curve,
even though this is not always true according to Struik [1].

A.2.5.1 Principal Curvature

The directions in the tangent plane for which Ÿn, normal curvature, takes maximum
takes maximum and minimum values are called principal directions. There are
always two principal curvatures Ÿ1 and Ÿ2 corresponding to the principal directions
and the directions are always orthogonal to each other. [1]
The principal curvatures are the roots of the determinant of the combined matrix
of the two tensors b–,— and a–,—, see below. [5]

-----
b11 ≠ Ÿa11 b12 ≠ Ÿa12
b12 ≠ Ÿa12 b22 ≠ Ÿa22

----- = 0 (A.16)

and the principal vectors corresponding to the principal curvature Ÿ are the tangent
vectors t = ›a1 + ÷a2. [5]

A
b11 ≠ Ÿa11 b12 ≠ Ÿa12
b12 ≠ Ÿa12 b22 ≠ Ÿa22

B A
›

÷

B

=
A

0
0

B

(A.17)
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A.3 Tensor Analysis

This thesis uses a fare amount of tensor analysis. Tensor can be described as follow-
ing [50] "Tensor analysis, branch of mathematics concerned with relations or laws
that remain valid regardless of the system of coordinates used to specify the quanti-
ties. Such relations are called covariant. Tensors were invented as an extension of
vectors to formalize the manipulation of geometric entities arising in the study of
mathematical manifolds."

A.3.1 Index notation

The index notation simplifies writing quantities as well as equations. In the index
notation there are two types of indices, free indices and summation indices.

Free indices are those who are used only once per quantity. If you have a Cartesian
coordinate system the integer will take values 1,2 and 3. It is possible to use several
free indices.[45]

a– … a1, a2, a3

a–— … a11, a12, a13, a21, a22, a23, a31, a32, a33

Summation indices are used twice per quantity and indicates a summation of that
index. Using Cartesian coordinates it will range from 1 to 3.

a–– …
3ÿ

–=1
a––

a–b– …
3ÿ

–=1
a–b–

A.3.2 2nd order Tensors

2nd order tensors are physical quantities that describe how vectors change with e.g
direction and position in space. A 2nd order tensor T is represented in a orthonormal
coordinate system {ê1, ê2, ê3} as [45]

T = T–—ê–, ê— (A.18)

A.4 Material

A.4.1 Material Properties

Bricks belongs to the group of materials called ceramics. There are some general
properties that applies to clay based ceramic materials.[25]

• Hard and brittle
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• They have little or no creep and plastic deformation
• Heat resistant
• Resistant against acid and biological attacks
• Have small volumetric deformations, i.e. no deformations related to heat and

moisture.
The mechanical of physical properties of bricks are that they are very favourable
under pure compression and unfavourable. The very high compressive strength is
in contradiction to it tensile and flexural capacity. In figure A.15 to the left one
sees how the compressive strength relates the flexural strength and the modulus of
elasticity.

8
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4

0
0 20 40 60

2

Flexural strength [MPa]

Compressive strength [MPa]

Young moduls [GPa]

Compressive strength [MPa]

30

20

10

0
0 20 40 60

Figure A.15: The flexural strength and Young modules compared to the compres-
sive strength of bricks. These pictures are remakes from[25]

Figure A.16 shows the elasticity modulus of brick compares to other materials.
Notice the very low Elasticity modulus compared to for instance steel which could
go well over 200 GPa.
The properties of bricks are very much controlled and related to the composition of
the raw material and the kiln temperature. This give the possibility to design the
brick for the right circumstances and demands during the fabrication process, which
can result and in a wide range of di�erent bricks. The figure A.17 shows how for
instance the density and the pore properties change with the temperature.[25]
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Figure A.16: Brick are part of category called ceramics which has relatively low
elastic modulus compared to most metals. [25]

Figure A.17: The properties of bricks are very much controlled and related to the
composition of the raw material and the kiln temperature. [10]

A.4.2 Mortar

Mortar is material used in building construction to bond brick, stone, tile, or concrete
blocks into a structure. Mortar consists of inert siliceous (sandy) material mixed
with cement and water in such proportions that the resulting substance will be
su�ciently plastic to enable ready application with the mason’s trowel and to flow
slightly but not collapse under the weight of the masonry units.[13]
Main ingredients of mortar are:

• Water
• Aggregates - The aggregates in mortar is mostly sand. Sand is a rock mixture
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of rock particles of di�erent sizes from 10 mm in diameter down to 75µm.
• Binder - Widely used binders are based on one of these categories

– Hydraulic cements, which reat chemically with water at normal site tem-
peratures.

– lime-silica mixtures, which react only in the presence of high-pressure
steam.

– lime-pozzolan mixtures, which set slowly at ambient temperatures, or pure
lime which sets slowly in air by carbonation.

• Admixtures, examples are: plasticisers,super plasticisers,accelerators, retarders.
• Pigments

A.5 Geometry

A.5.1 Stereotomy

Long before computers practitioners of stereotomy managed to create structures
and patterns of very complex surfaces. The book "Le premier tomede l’Architecture"
was released in 1567 by Philibert de l’Orme and is considered to contain the first
description and definition of stereotomy[40]. Stereotomy is defined as "the science
or art of cutting solids into certain figures or sections". It includes, and the term is
sometimes used as a synonymous with, the art of cutting stones for masonry shells.
[28]. Even though miss-used sterotomy is not the science of cutting stone but more
the theoretical and mathematical construction of these shapes and solids. "This
is a practice not so much concerned with the actual physical means to cut through
stone, but with the intellectual means to find the correct shapes to be produced."[40].
in figure A.18 one can see an example of sketches and drawings of shapes that are
constructed by di�erent kinds of solid elements. One of the most famous examples
in architecture is Hotel de Ville by Jules Hardouin Mansart, see figure A.19.

Figure A.18: Sketches and drawings from a notebook of Stereotomy from 1896
showing how structures are discretized and how those elements are constructed.[28]
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Figure A.19: The stone vault at Hotel de Ville by Jules Hardouin Mansart is a
famous example of stereotomy in architecture [49]

These methods are not very common today since it involves quite complex building
elements that need to be manufactured. Though it is possible to read the research of
the Block Research Group where they have investigated in how to use computational
methods and digital fabrication to generate these kind of geometries. Figure A.20
and A.21 show how geometry and solids are generated digitally[18] and finished
stone blocks that are digitally fabricated[19].

Figure A.20: Blocks can be generated from a discrete surface representation with
computational methods [18]
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Figure A.21: Stone blocks that have been fabricated using digital fabrication
methods [19]

A.6 Form Finding

A.6.1 Graphical Methods

Graphical methods are one of the basic categories of form finding, but not less
powerful. An example of these is called graphic static or force polygon method. This
method can be used to seek a form of equilibrium such as arches or analysing already
designed structural members such as trusses. The method originates from the work
of Karl Culmann published in Die graphische statik in 1866. Graphic Statics has
had much influence for modern structural design in the late 19th century and early
20th century and was used by modern structural pioneers such as Rafael Guastavino,
Antoni Gaudi, Felix Candela and Robert Maillart [9]. Figure A.22 shows the method
applied on a vault consisting of di�erent shaped blocks.
The main idea of the force polygons, which are represented in what is called a
reciprocal force diagram, is that the polygons should always be closed to ensure
that the forces are in equilibrium. In figure A.23 a hanging cable is illustrated
where the internal forces and global forces are constructed as triangles, and since
they are closed polygons the structure is in equilibrium. The powerful aspect of
graphic statics is the illustrative way of expressing the force connections and how
the design relates the force patterns.
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Figure A.22: Graphic statics applied to vault with di�erently shaped elements.
To the right on can see triangles forming of the internal and external forces which
illustrates equilibrium.[9]

Figure A.23: Example of graphic statics applied to a hanging cable. Figure to the
left shows the collected force polygons and how they relate to the internal forces of
the hanging cable. To the right one can see the global equilibrium illustrated. [9]

A.6.2 Analytical Methods

It is possible to analytically derive shapes of pure tension or compression, most
common example might be the catenary but it is also possible to derive various
shell forms. This method allows the engineer to decide a certain stress distribution
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that governs the shape. It is not very common since it easily gets very complicated
applying it to complex demands, both architectural and structural. Williams [3]
describes in the book Shell Structures for Architecture how to attain the mathemat-
ical expressions for both arches and shells, with varying constraints. You might also
read Tensile Structures Volume 2, Cable nets[33] by Frei Otto for a descriptive way
to analytically describe single cables and cable nets.

A.6.3 Physical methods

Using physical models to understand and communicate design has been a vital part
in proceeding in the field of structural engineering. Many have seen the hanging
cable models of Gaudi but the modern pioneers in this field was structural engineers
and architects such as Frei Otto and Heinz Isler. During the 20th century both of
them elaborated with physical models to understand the shapes and design of light
weight structures. Otto is most known for his works with membrane structures and
soap film models, while Isler worked much with compression shells.[44]

Figure A.24: Soap-film experiment to achieve minimal surfaces from the research
of Frei Otto [34]

The need for physical models can be for various reasons. "Designers of structures
have used small-scale models when it is beneficial to do so, especially in order to
raise the engineers confidence in the design being proposed. This may have been for
many reasons. For example:" [3]

• The available calculation methods were to complex or time-consuming
• It would be too costly to build a full-size prototype
• It was believed that normal structural analysis methods would not adequately

model the structure.
• The geometry of the structure could not be defined using a mathematical

equation
• There were no other means available

A.7 Results

This section will compliment the and show results that did not fit inside the results
section.
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A.7.1 Model preparation

This section shows the di�erent stages of model preparation in the design framework,
described in 4.1.

Figure A.25: It is easy to apply and change the boundary conditions. One can
draw initial lines that are then projected onto the edge of the bottom form.
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Figure A.26: It is possible to change the force densities to get di�erent properties
and attributes to the form.
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Figure A.27: It is possible to adjust the position of the pole depending on the
aesthetics or the properties of the form itself.
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Figure A.28: Dynamic relaxation is applied to generate the geodesics. it is possible
to analyse during the process by either looking at the values for each point, top
picture, or look graphically, bottom picture.
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Figure A.29: The generation of the geodesics are done at this stage. And it is
now possible to generate the polar geodesic coordinate based on the points from the
previous stage.
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A.7.2 Parametric Framework

Figure A.30: The grasshopper definition made for this thesis.
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