
Computing Diameters in Slim Graphs

Master’s thesis in Computer Science-Algorithms, Languages and Logic

BENJAMIN BLOCK
MICHAEL MILAKOVIC

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

Computing Diameters in Slim Graphs

Benjamin Block
Michael Milakovic

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

Computing Diameters in Slim Graphs
Benjamin Block and Michael Milakovic

© Benjamin Block and Michael Milakovic, 2018.

Supervisor: Professor Peter Damaschke, Computer Science and Engineering
Examiner: Associate Professor Alexander Schliep, Computer Science and Engineer-
ing

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

Computing Diameters in Slim Graphs
BENJAMIN BLOCK
MICHAEL MILAKOVIC
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
With the use of large graphs with n vertices and m edges, the current approach for
computing the diameter is not efficient. We have investigated a special graph class,
namely slim graphs. Slim graphs are graphs whose diameter is at least some fixed
fraction of the number of vertices. This constraint allows us to prove structural
features in these special graphs. Using these features, we have developed three
algorithms which are asymptotically superior to diameter computation in the general
case. We present the following three algorithms, for a fixed 0 < k < 1/2: a (1− k)-
approximation algorithm of the diameter in O(n+m) time; a deterministic algorithm
which computes the diameter in O(n2) time and a Monte Carlo algorithm which also
computes the diameter in O(n2) time.

Keywords: Computer, approximation, computer science, thesis, algorithms, Monte
Carlo algorithm, graphs, slim graphs, diameter computation

v

Acknowledgements
We want to thank our supervisor Prof. Peter Damaschke, without whom this thesis
would not have been possible, for the valuable insights, discussions and the quick re-
sponses through email. We also want to thank our examiner Assoc. Prof. Alexander
Schliep for the valuable feedback.

Benjamin Block and Michael Milakovic
Gothenburg, June 2018

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Problem definition . 1
1.2 Related work . 2
1.3 Contributions . 2
1.4 Limitations . 2

2 Prerequisites 3
2.1 Algorithms . 3
2.2 Basic graph theory . 4
2.3 Definitions . 6
2.4 Difficulties with computing the diameter 6
2.5 Slim graphs . 8

2.5.1 Computing the diameter in graphs with δ > 1/2 9
2.5.2 Largest Mixed Sum . 10
2.5.3 Computing the diameter in graphs with δ > 1/3 10

3 Results 13

4 Discussion 27
4.1 Bounds . 27
4.2 Comparing the Monte Carlo- with the deterministic algorithm 29
4.3 Further work . 29

5 Conclusion 31

Bibliography 33

ix

Contents

x

List of Figures

2.1 In the graph on the left, the highlighted vertices (b,e,h) form a sep-
arator in the graph. Removing these vertices will disconnect the the
vertices a,d and g from the vertices c,d and i. In the graph on the
right, the highlighted (green) vertices (c,e,g) are the layer with dis-
tance two from the reference vertex a (marked with red). Notice that
the layer forms a separator. 5

2.2 The left depicts the original graph and the right is the block-cut tree
of that particular graph. 5

2.3 An example of a graph where the furthest vertex away from an ar-
bitrary vertex (in this example the vertex v) is not an end point of
a longest geodesic path. The path p-v-q is a longest geodesic path.
The vertex x is not an endpoint of a longest geodesic path. 7

2.4 A graph illustrating the problem of orientation from a BFS. Vertices
p and q are the furthest away from vertex v, but the path p-v-q is
not geodesic, and d(p,q) = 1. 8

2.5 A graph illustrating an articulation point x which splits the graph
into k connected components. 8

2.6 The graph G is depicted as its two subgraphs: C and D with its
corresponding connections (u-v and u’-v’). A longest geodesic path
connecting a vertex p ∈ C to q ∈ D can be computed by 2-dimensional
largest mixed sum. 10

2.7 Shows the vertices u, v, w and the sets C and D containing the end-
points. 11

3.1 An instance of case (i) when k = 3. The length of the subpath with
three intersections, v1−v2−v−v3, is greater than 2i. One can create a
shorter path by choosing the subpath with two intersections instead,
v1 − v − v3, which length is exactly 2i. 14

3.2 An instance of case (ii) when k = 3. The length of the subpath with
three intersections, v− v1− v2− v3, is greater than i. One can create
a shorter path by choosing the subpath with one intersection v − v3,
which length is exactly i. 15

3.3 An instance of case (iii) when k = 3. The length of the subpath with
three intersections, v1− v2− v3− v, is greater than i. One can create
a shorter path by choosing the subpath with one intersection v1 − v,
which length is exactly i. 15

xi

List of Figures

3.4 Depicts a situation in Theorem 1, with the geodesic paths to w1 and
w2 which will be used when computing the largest mixed sum. 22

xii

1
Introduction

Many algorithms for a wide variety of problems have been developed over the years
for general graphs. One such instance is diameter computation. Even though the
diameter can be computed in polynomial time, it becomes computationally expen-
sive for graphs that are not even large [1]. In such graphs, approximation algorithms
are commonly used [1]. But in special graph classes, such as slim graphs, one might
expect to do better (compute faster) than the algorithms running on general graphs.
In a subset of slim graphs with n vertices and m edges, one can compute the diam-
eter in O(m+ n) complexity compared to O(mn) in the general case [2].

The diameter of a graph is defined as the length of a longest of all shortest paths
between any two vertices. In the general case, the fastest known way to compute
the diameter is by computing the shortest path for every vertex-pair in the graph
(all-pair shortest path; APSP) and returning the largest one.

Slim graphs are characterized by having a large diameter. They are of special inter-
est as they appear in road networks [3], chain molecules, connections between two
fixed sites in a network, etc [2]. Slim graphs can inherently behave quite differently
depending on the size of the diameter in relation to the number of vertices, which
is covered with greater detail in Chapter 2.

This thesis extends the results presented by Damaschke for a broader range of slim
graphs by generalizing the properties shown in [2]. A better structural and be-
havioural understanding of slim graphs can lead to new, faster algorithms than the
already known general ones, as shown by Damaschke. There has not been a lot
of research concerning slim graphs, but faster algorithms have been developed for
other special graph classes. This suggest that it might be worthwhile to investigate
slim graphs further.

This chapter introduces diameter computation, the problem definition, scope and
contributions of this thesis. We also mention related work to put the thesis into
context.

1.1 Problem definition
The main research questions we are answering in this thesis are the following:

1

1. Introduction

• Is it possible to extend the properties and techniques used by Damaschke [2]
for a broader range of slim graphs?

• Is it possible to create a Monte Carlo algorithm for a broader range of slim
graphs?

• Is it possible to create a Las Vegas algorithm for a broader range of slim graphs
faster than APSP?

• For a fixed 0 < k < 1/2, is it possible to create an (1-k)-approximation
algorithm faster than APSP?

• Is it possible to create a deterministic algorithm faster than APSP for a broader
range of slim graphs?

• Does a deterministic algorithm, for graphs with diameter greater than n/3, in
O(m + n log n) time exist? This question was first formulated by Damaschke
in [2].

1.2 Related work
There has not been a lot of work concerning slim graphs, but there exists special
graph classes which have been extensively studied. Previous work has demonstrated
that structural features in such graph classes can be exploited to create new faster
algorithms than their general counterpart [4–9]. Many of the concepts and results
presented by Damaschke in [2] have either been generalized or have influenced the
results in this thesis.

1.3 Contributions
We present three algorithms: a Monte Carlo algorithm for computing the diameter
in O(n2) time for slim graphs; for a fixed 0 < k < 1/2, an (1-k)-approximation
algorithm in O(n+m) and a deterministic algorithm in O(n2). We also prove some
structural properties of slim graphs which are not used in the algorithms, in the
hope that future work might make use of these new insights.

1.4 Limitations
We will not conduct any benchmarking on the algorithms we propose in this thesis,
thus the practicality of the algorithms will be difficult to assess. Our primary concern
with this thesis is not to optimize the constant factors in the time complexity of the
algorithms. Our intention is rather to supply novel insights into slim graphs; and
future work might optimize the algorithms further.

2

2
Prerequisites

This chapter covers various prerequisites including: approximation- and randomiza-
tion algorithms, basic graph theory and some concepts and definitions needed for
the results. It also covers more thoroughly the methods of diameter computation
presented by Damaschke [2].

2.1 Algorithms

As the difficulty of a problem an algorithm is intended to solve increase, often also
does the complexity of the algorithm. There exists a trade off though, if we allow
the output of the algorithm to be in a certain range from the actual value we want to
compute, we can usually create an approximation algorithm with lower complexity
compared to its exact counterpart. The approximation algorithm solves the problem
with a certain guaranteed factor within the optimal solution. One such example is
an approximation algorithm for diameter computation. One can trivially compute
a 2-approximation of the diameter by picking one arbitrary vertex in a graph, per-
forming a breadth-first search (BFS) from that particular vertex and multiplying
the distance of the vertex furthest away by two. This approximation algorithm will
in the worst case output a value twice as large as the actual diameter. The time
complexity of the algorithm is O(n+m) (one BFS) which is significantly better than
the exact algorithm (O(nm), APSP). The algorithm is a so-called 2-approximation
because it returns a value at worst twice as large as the actual diameter.

The use of randomization is another approach for reducing the complexity of an
algorithm. There are two types of randomization algorithms: Monte Carlo and Las
Vegas.

A Las Vegas algorithm always outputs the correct result, but the execution times
vary as a consequence of the randomization. An example is quicksort in which a
pivot element is typically randomized. If the randomized pivot element turns out
to always be the smallest in the collection (or greatest), the time complexity of
quicksort will be O(n2), but in the average case the algorithm has a O(n log n) time
complexity. Notice that even if the randomized pivot element in the collection was
a poor choice, quicksort will always return a sorted collection.

A Monte Carlo algorithm is a randomized algorithm whose output is incorrect with
some (usually small) probability. As a consequence one can never guarantee to

3

2. Prerequisites

output the correct value. Comparing Monte Carlo to Las Vegas, the execution time
does not vary as a consequence of the randomization, but as stated, the output
might be incorrect.

2.2 Basic graph theory
In this thesis we consider only undirected, unweighted and connected graphs with
no loops. A path is a sequence of vertices where any two consecutive vertices are
connected by an edge. A geodesic path between two vertices p and q, denoted p-q,
is the shortest path between vertex p and q. A complete graph is a graph where
there exists an edge from every vertex i to every other vertex j. A subgraph S of
G is a graph which contains a subset of the vertices and edges of G. A biconnected
graph is still connected even if any one vertex is removed. A block (or biconnected
component) is a maximal biconnected subgraph.

The diameter of a graph G = (V,E) is defined as the length of the longest of all
shortest path between any two nodes. Let diam(G) denote the diameter of a graph

G, define δ = diam(G)
n

. One can think of δ as the fraction of vertices on the longest
geodesic path with respect to the number of vertices in the graph. We define dG(u, v)
to be the length of a geodesic path between vertex u and v in the graph G, although
we omit the subscript G if it is clear from context. If a vertex p is unreachable from
another vertex q, we denote the distance between p and q as infinity, d(p, q) =∞.

A layer Nk with respect to a reference vertex r is defined as the set: Nk(r) = {v |
d(r, v) = k}. The k:th layer from a reference vertex r can be interpreted as the
set which contains the vertices with a distance k from r. The depth of a reference
vertex r is defined as max {d(r, v) | v ∈ V }. The depth of r can be interpreted as
the distance to a vertex furthest away from r. The degree of a vertex v is defined as
the number of vertices adjacent to v. A hair is defined as a path with one endpoint
having degree one, the other endpoint having a degree larger than two and the re-
maining vertices having degree two. B(c, u, w) holds if d(c, w) = d(c, u) + d(u,w),
where u, c and w are vertices of a graph. One can think of B(c, u, w) as being true
if the vertex u is "between" vertices c and w, that is, a shortest path from c to w
intersects u.

A separator is a set S ⊂ V , such that G is split into two or more connected compo-
nents when removing all vertices in S from G and all incident edges of S have been
removed from G. An articulation point is a separator of size one. Note that every
layer from a given reference vertex forms a separator. In Figure 2.1 the highlighted
(blue) vertices on the left graph form a separator. The separator (b,e,h) disconnects
the vertices a, d and g from the vertices c, f and i. In the graph on the right in
Figure 2.1, the highlighted vertices (green) c, e and g form the layer N2(a). Notice
that N2(a) forms a separator, in this case disconnecting the vertices a, b and d from
the vertices f, h and i. Even though every layer is always a separator, it is important
to notice that every separator must not be a layer, as can be seen in the left graph

4

2. Prerequisites

in Figure 2.1, where each of the highlighted vertices (b,e,h) are in different layers
from the reference vertex a.

a b c

d e f

g h i

a b c

d e f

g h i

Figure 2.1: In the graph on the left, the highlighted vertices (b,e,h) form a sep-
arator in the graph. Removing these vertices will disconnect the the vertices a,d
and g from the vertices c,d and i. In the graph on the right, the highlighted (green)
vertices (c,e,g) are the layer with distance two from the reference vertex a (marked
with red). Notice that the layer forms a separator.

A block cut tree is a graph G = (V,E), where every v ∈ V is either an articulation
point or a biconnected component. Every articulation point in the block-cut tree
has edges connecting it to one or several biconnected components. In Figure 2.2, 1
(the graph on the right in Figure 2.2) refers to the biconnected component contain-
ing vertices a, b and c. The vertex 2 of the block-cut tree refers to the biconnected
component containing vertices e, f and g. The vertex d is the root of the block-cut
tree and the only articulation point of this particular example.

a

b

c

d

e

f g

d

1 2

Figure 2.2: The left depicts the original graph and the right is the block-cut tree
of that particular graph.

5

2. Prerequisites

2.3 Definitions
To reason formally about different concepts without ambiguity, such as quantities
of layers, this subsection introduces various definitions needed for the results.

For a graph G = (V,E) and vertex v ∈ V and i, b ∈ N, we define ψ(i, v, b) as:

ψ(i, v, b) =
{
1 : |Ni(v)| = b
0 : |Ni(v)| 6= b.

One can think of ψ(i, v, b) as indicating if the size of the i:th layer from the reference
vertex v (|Ni(v)|) is equal to the integer b. One can count the total number of layers
from the reference vertex v using ψ in the following way: ∑n

b=1
∑δn
i=1 ψ(i, v, b).

For a graph G = (V,E) with vertices p, q ∈ V and a separator S, we define Ψ(S, p, q)
as:

Ψ(S, p, q) =
{
1 : dG−S(p, q) =∞
0 : dG−S(p, q) 6=∞.

One can think of Ψ(S, p, q) as indicating if a separator S disconnects vertices p and
q (d(p,q) = ∞) in a graph G.

For a graph G = (V,E) with vertices p, q, v ∈ V and i, b ∈ N, we define Γ as:

Γ(p, q, i, v, b) =
{
1 : ψ(i, v, b) = 1 ∧Ψ(Ni(v), p, q) = 1
0 : ¬

[
ψ(i, v, b) = 1 ∧Ψ(Ni(v), p, q) = 1

]
.

One can think of Γ(p, q, i, v, b) as indicating if the i:th layer of the reference vertex
v is of a particular size b and separates the two vertices p and q in the graph G.

We define min(p) = xa (1 ≤ a ≤ b), where p is a b-dimensional vector p =
(x1, x2, . . . , xb), such that ∀i xa ≤ xi.

In this thesis we are only concerned with the uniform random model. When we
mention "at random", "randomness" etc, we do implicitly mean that all the events
in the sample space have the same probability.

When we mention that a vertex v has x amount of layers, we do implicitly mean
that there exists a vertex w such that d(v, w) = x.

2.4 Difficulties with computing the diameter
Prior to describing how one can compute the diameter in various slim graphs faster
than the general case, it is worth describing some reason why the diameter can per-
haps be difficult to compute.

6

2. Prerequisites

Consider a graph without cycles, namely a tree. In such a graph one can compute
the diameter in the following way [10]: choose an arbitrary vertex v, perform a
BFS from v and choose a vertex w furthest away from v. From w one can find the
diameter by computing the distance (using BFS) to a vertex furthest away from w.

The mentioned approach does however not work in graphs with cycles, as cycles can
create shortcuts. Consider the graph in Figure 2.3 in which there exists cycles and
the tree approach no longer works.

p v q

x

Figure 2.3: An example of a graph where the furthest vertex away from an arbi-
trary vertex (in this example the vertex v) is not an end point of a longest geodesic
path. The path p-v-q is a longest geodesic path. The vertex x is not an endpoint of
a longest geodesic path.

In Figure 2.3, assume that we chose the vertex v. The vertex furthest away from v
is the vertex x with a distance (d(v,x)) of 3. Vertex x has at most a distance of 4 to
every other vertex in the graph. However, a longest geodesic path in this particular
graph has a length of 5 (the p-v-q path). Thus the tree approach does not work
in the general case as demonstrated with the graph in Figure 2.3, which contains
cycles.
Assume that one wants to create a longest geodesic path containing an arbitrary
vertex v. Consider performing a BFS from the vertex v to find two vertices p
and q which are the furthest away from v. One might consider creating a longest
geodesic path including v by choosing the path p-v-q. However, there is a problem of
orientation: p and q are furthest away from v but p and q can still (in the worst case)
be neighbours (d(p, q) = 1). Thus, p-v-q was not even a geodesic path. Figure 2.4
illustrates such a graph:

7

2. Prerequisites

x

p q

Figure 2.4: A graph illustrating the problem of orientation from a BFS. Vertices
p and q are the furthest away from vertex v, but the path p-v-q is not geodesic, and
d(p,q) = 1.

However, if a vertex x is an articulation point and a longest geodesic path containing
x intersects two connected components, then we can find a longest geodesic path
which contains x by measuring the depth of every connected component separated
by x, and connect the two deepest with x. Consider Figure 2.5, where a vertex x
splits a graph into k connected components.

x

c1

c2

c3

ck
Figure 2.5: A graph illustrating an articulation point x which splits the graph into
k connected components.

2.5 Slim graphs

For slim graphs with δ > 1/2, an algorithm for diameter computation in O(n+m)
time has been presented by Damaschke [2]. This result is a significant improvement
compared to APSP. Graphs with δ > 1/2 always contain at least one articulation

8

2. Prerequisites

point. As δ gets smaller the structure of the graphs changes. Graphs with δ ≤ 1/2
do no longer have to contain an articulation point. Since the algorithm in the case of
δ > 1/2 is based on the existence of at least one articulation point, a new approach
is needed. In similar fashion to the case δ > 1/2, Damaschke [2] has proven the
existence of separators of size at most 2 for graphs with δ > 1/3.

The troublesome part with δ > 1/3 is that a longest geodesic path can intersect a
separator of size two. If a longest geodesic path intersects a separator of size two,
then we do not know which of the two vertices lies on the path. Damaschke [2]
present a Monte Carlo algorithm which computes the diameter with high probabil-
ity in O(m+ n log n) time.

The following two subsections will describe these two algorithms. We also explain
an auxiliary problem, largest mixed sum. The diameter of graphs with δ > 1/3 can
be computed by setting up and solving an instance of largest mixed sum.

2.5.1 Computing the diameter in graphs with δ > 1/2

In this subsection we explain the algorithm for computing diameters in graphs with
δ > 1/2 presented by Damaschke [2].

We start by creating a block-cut tree, which can be done in O(n) time [5]. One can
create a block-cut tree since there exists at least one articulation point. If every
connected component from the root vertex in the block-cut tree has fewer than δn
vertices, then a longest geodesic path must intersect the articulation point and two
connected components. This is true because no component has as many vertices as
the diameter, so trivially we have to connect two different components. Thus, in
this case, it is sufficient to do a BFS from the articulation point in order to find the
longest geodesic path. One can do so by first searching one component, then the
second one and so on, and finally combine the two which give the longest distance.

We can remove all vertices in a connected component that are not on a longest
geodesic path, the removal will not alter the diameter of the whole graph. This
observation is needed in the second case.

If there exists at least one connected component with at least δn vertices then we
can not compute the diameter by performing a BFS from an articulation point. In-
stead, we keep the component with largest depth and from all other components we
keep a longest geodesic path. Constructing this new graph results in a connected
component with hairs. A longest geodesic path must have one of its endpoints in
either the longest or second longest hair. Thus it is sufficient to perform two BFS
from the two respective hairs in order to compute the diameter.

9

2. Prerequisites

2.5.2 Largest Mixed Sum
In the this subsection we describe 2-dimensional largest mixed sum, which is a
problem presented and solved by Damaschke [2] in O(n log n) time. The problem
formulations is as following: given n number of pairs (xi, yi) and m number of pairs
(x′j, y′j), the task is to maximize the following expression: min {xi + y′j, yi + x′j}.

To understand why this is relevant for diameter computation consider the following
example: define G as a graph consisting of two subgraphs C and D which are
connected with the paths: u-v and u’-v’ (see Figure 2.6). In this particular graph G,
a geodesic path between a vertex p ∈ C to a vertex q ∈ D can be computed by four
executions of BFS from the vertices u, u’, v and v’. Either u-v or u’-v’ is a subpath of
the geodesic path p-q. d(p,q) is thus the shortest of the following two paths: p-u-v-q
or p-u’-v’-q (which can be computed by the four previously mentioned executions
of BFS). If one wants to compute a longest geodesic path from vertices p ∈ C to
vertices q ∈ D one can solve the 2-dimensional largest mixed sum. We can set up
an instance of largest mixed sum by creating the pairs (xi, yi) and (x′j, y′j), where
x := d(p, u), y := d(p, u′), y′ := d(q, v) x′ := d(q, v′). To compute a longest geodesic
path between a vertex p ∈ C to q ∈ D we maximize the following expression: min
{xi + y′j, yi + x′j}. This is precisely the 2-dimensional largest mixed sum, which is
solvable in O(n log n) time.

u

u’

v

v’

C D

Figure 2.6: The graph G is depicted as its two subgraphs: C and D with its
corresponding connections (u-v and u’-v’). A longest geodesic path connecting a
vertex p ∈ C to q ∈ D can be computed by 2-dimensional largest mixed sum.

2.5.3 Computing the diameter in graphs with δ > 1/3
In this subsection we explain the algorithm for computing diameters in graphs with
δ > 1/3 presented by Damaschke [2]. Graphs with δ > 1/3 do not have to contain an
articulation point, we can therefore not use the approach mentioned in section 2.5.1.

Let P be a longest geodesic path. Randomly choose the vertices u, v and w. The
following happens with constant probability in the lower bound (the probability of
choosing vertices in different layers is constant in the lower bound and therefore the
probability is at least this constant factor): u, v and w are in a layer (the refer-
ence vertex is an endpoint of a longest geodesic path) of size at most 2; u ∈ Ni(r),

10

2. Prerequisites

v ∈ Nj(r), w ∈ Nk(r), where i < j < k. Since a longest geodesic path has to
intersect all the layers, P contains u and w with constant probability. Let Q be
a subpath of P with endpoints in u and w. We have the following two cases with
constant probability:

(1) |Nj(r)| = 1: In this case, v is an articulation point, thus v ∈ P . Remember that
P has to intersect every layer and the layer Nj(r) only contains v, P therefore must
go through v.
(2) |Nj(r)| = 2: In this case, v /∈ Q holds with constant probability. Again, P must
intersect Nj(r) which in this case contains two vertices, thus P either goes through
v or the other vertex.

We do not know if |Nj| = 1 or |Nj| = 2. If v is an articulation point then (1) can
be true. We perform a BFS from v and if it was the case that |Nj| = 1 then we
know that the path returned will be a longest geodesic path. However, in the case
of |Nj| = 2 the BFS may return P, but the important thing is that we only return a
geodesic path between two vertices in two different components. Thus a path longer
than the diameter is never returned.

If v is not an articulation point, then |Nj| = 2 and we suppose (2) is true (Fig-
ure 2.7 shows the case when |Nj| = 2). All vertices vi ∈ P and vi /∈ Q sat-
isfy either B(vi, u, w) or B(u,w, vi). Define C := {vi | B(vi, u, w) ∧ vi ∈ P} and
D := {vi | B(u,w, vi) ∧ vi ∈ P}. These two sets can be constructed by two BFS
with roots u and w. Set up an instance of largest mixed sum where the distances
x, x’, y and y’ are the distances of vertices in C and D to v and w. These distances
can be found by performing a BFS from v (the distances to w have already been
computed by a previous BFS). Largest mixed sum will return vertices corresponding
to endpoints in C and D. Let p ∈ C and q ∈ D denote the endpoints of a longest
path (reconstructed from largest mixed sum). It is important to never return a value
greater than d(p,q), but this never the case because the only way to reach D from
C (or vice versa) requires a path to intersect either Q or v. If u and w happened to
be on a longest geodesic path then the diameter is always returned.

One can repeat these procedures a constant number of times to get the probability
of returning the diameter arbitrarily close to 1.

u w

v
C D

Figure 2.7: Shows the vertices u, v, w and the sets C and D containing the
endpoints.

11

2. Prerequisites

12

3
Results

Lemma 1. Given a graph G = (V,E) with a longest geodesic p-q path P, the
following holds: ∀v ∀z v ∈ P ∧ z /∈ P : d(z, p) + d(z, q) ≥ d(v, p) + d(v, q).

Proof. Assume that there exists w /∈ P such that d(w, p)+d(w, q) < d(v, p)+d(v, q).
In that case we can create a shorter path (from p to q) by choosing the path p-w-q.
This contradicts the assumption that P was a longest geodesic path. �

In the following Lemmas we make use of the functions ψ and Ψ. Remember that
ψ is used for indicating if a given layer is of a specific size, and Ψ is used for in-
dicating if a given separator disconnects two vertices. Both are defined in section 2.3.

Lemma 2. Given a graph G = (V,E), the following holds: ∀v ∃i |Ni(v)| ≤ 2/δ.

Proof. Let P be a longest geodesic p-q path. The following holds for v ∈ P :
d(v, p) ≥ δn/2 or d(v, q) ≥ δn/2. For every vertex z /∈ P , by Lemma 1, z has a
distance of at least δn/2 to either p or q. Since the following holds for every vertex
v: ∑δn

b=1
∑∞
i=1 ψ(i, v, b) ≥ δn/2, we conclude by the pigeonhole principle that there

exists at least one layer with at most 2/δ vertices. �

Lemma 3. Given a graph G = (V,E) with n vertices, we have ∀v∀i |Ni(v)| ≤
n− nδ/2.

Proof. From Lemma 2, the following holds for every vertex v: ∑δn
b=1

∑∞
i=1 ψ(i, v, b) ≥

δn/2. To create the largest possible layer we let nδ/2 − 1 layers be articulation
points. Let the remaining vertices be in the largest layer, thus the largest layer can
at most contain n− δn/2 vertices. �

Lemma 4. Given a graph G = (V,E) with a longest geodesic p − q path P , for
every v ∈ P , the following holds: ∀i |Ni(v) ∩ P | ≤ 2.

Proof. Assume for contradiction ∃i |Ni(v) ∩ P | > 2, that is, P intersects the i:th
layer k times, where k > 2. Let the first intersecting vertex on Ni(v) be v1 ∈ P and
the last intersecting vertex be vk ∈ P , thus Ni(v) ∩ P = {v1, . . . , vk}. We have only
three possible cases when traversing the path P from p to q: (i) v is somewhere be-
tween the first and the last intersection, (ii) v is located before the first intersection
and (iii) v is located after the last intersection.

13

3. Results

We describe what each of the following cases imply, when traversing the longest
geodesic p-q path P:

(i) One will reach v1, then reach v after h intersections, and finally traverse the
remaining k-h-1 intersecting vertices, that is:
P := {. . . , v1, . . . , vh+1, . . . , v, . . . , vj, . . . , vk, . . . } (vj only exists if k − h− 1 ≥ 2).

(ii) One will first reach (or start) in v and from v, one will eventually reach v1 and
the remaining intersecting vertices, that is: P := {. . . , v, . . . , v1, . . . , vk, . . . }.

(iii) One will reach v1 first, then reach the remaining k−1 intersecting vertices, that
is: P := {. . . , v1, . . . , vk, . . . , v, . . . }.

Consider the proofs for each case:
(i) If h > 0, the distance is d(vh+1, v) = d(v1, v) = i, as vh+1 and v1 are on the
same layer. However, if h = 0 then d(v, vj) = d(v, vk) = i. We choose the subpath
v1 − v − vk, creating a shorter path. Thus P was not a longest geodesic path,
contradiction. Figure 3.1 shows an instance of case (i) when k = 3.

d(v1,
v2)
>

0

d(v1, v) = i d(v, v3) = i

d(
v 2
, v

) =
i

vp qv3

v2

v1

Figure 3.1: An instance of case (i) when k = 3. The length of the subpath with
three intersections, v1−v2−v−v3, is greater than 2i. One can create a shorter path
by choosing the subpath with two intersections instead, v1− v− v3, which length is
exactly 2i.

(ii) The distances d(v, v1) and d(v, vk) are equal, as the vertices v1 and vk are in the
same layer. We choose the subpath v − vk which creates a shorter path. Thus P
was not a longest geodesic path, contradiction. Figure 3.2 shows the instance of (ii)
when k = 3.

14

3. Results

d(v1,
v2)
>

0

d(v, v1) = i d(v, v3) = i

d(v
2 , v

3)
>

0

v

p

qv3

v2

v1

Figure 3.2: An instance of case (ii) when k = 3. The length of the subpath with
three intersections, v− v1− v2− v3, is greater than i. One can create a shorter path
by choosing the subpath with one intersection v − v3, which length is exactly i.

(iii) The distances d(v1, v) and d(vk, v) both equal i, as the vertices v1 and vk are
in the same layer. We choose the subpath v1 − v, creating a shorter path. Thus P
was not a longest geodesic path, contradiction. Figure 3.3 shows an instance of (iii)
when k = 3. These contradictions conclude the proof. �

d(v1,
v2)
>

0

d(v1, v) = i d(v3, v) = i

d(v
2 , v

3)
>

0

vp

q

v3

v2

v1

Figure 3.3: An instance of case (iii) when k = 3. The length of the subpath with
three intersections, v1− v2− v3− v, is greater than i. One can create a shorter path
by choosing the subpath with one intersection v1 − v, which length is exactly i.

Note that every layer of any vertex on a longest geodesic path can at most be in-
tersected twice by that particular longest geodesic path. Thus the total amount of
intersected layers is at least δn/2.

15

3. Results

Lemma 5. Given a graph G = (V,E) with a longest geodesic path P , if ∀u ∀w
u,w ∈ Ni(v) ∧ v ∈ P , then d(u,w) < 2i =⇒ {u,w} 6⊂ P .

Proof. Let p be an endpoint of P . A consequence of Lemma 4 is the follow-
ing: |Ni(v)| = 2 =⇒ p /∈ ∪i−1

k=0Nk(v). Assume for contradiction u,w ∈ P and
d(u,w) < 2i. From Lemma 4 we have the case that v is traversed between u and
w by P . We can create a shorter P by choosing the subpath u − w instead of the
current u− v − w. Thus v is not on P , which is a contradiction. �

We define 0 < k < 1/2 as follows: for any vertex v ∈ P , where P is a longest
geodesic p− q path, the distance of v to one endpoint (p or q) is kδn. We can now
bound tighter (than Lemma 2) how many layers a vertex on a longest geodesic path
at least has. In particular, the number of layers for any v ∈ P is at least (1− k)δn.

Lemma 6. Let P be a longest geodesic p − q path, given a vertex v ∈ P and a
0 < k < 1/2 such that

[
d(v, p) = (1− k)δn

]
∨
[
d(v, q) = (1− k)δn

]
, the following is

true:∑d2/δe
b=1

∑∞
i=1 ψ(i, v, b) > (1− k)δn− n/(1 + 2/δ). That is, the amount of layers from

the reference vertex v that have a size of at most d2/δe is greater than
(1− k)δn− n/(1 + 2/δ).

Proof. The amount of layers (Ni(v)) with size at most d2/δe is the number of layers
with size at least d2/δe+1 subtracted from the total amount of layers (see eq. (3.1)).

d2/δe∑
b=1

∞∑
i=1

ψ(i, v, b) =
n∑
b=1

∞∑
i=1

ψ(i, v, b)−
n∑

b=d2/δe+1

∞∑
i=1

ψ(i, v, b) (3.1)

The total amount of layers is at least (1− k)δn, as by assumption
d(v, p) = (1− k)δn ∨ d(v, q) = (1− k)δn.

(1− k)δn ≤
n∑
b=1

∞∑
i=1

ψ(i, v, b) (3.2)

If one distributes all n vertices among layers of size d2/δe + 1, then the vertex v
would have exactly n/(1 + d2/δe) layers. Since there must exist a layer of size at
most 2/δ (Lemma 2) we can conclude the following:

n∑
b=d2/δe+1

∞∑
i=1

ψ(i, v, b) < n

1 + 2
δ

. (3.3)

Using the results from eq. (3.2) and eq. (3.3) in eq. (3.1) we get the result in eq. (3.4).

d2/δe∑
b=1

∞∑
i=1

ψ(i, v, b) > (1− k)δn− n

1 + 2
δ

(3.4)

16

3. Results

Lemma 7. Given a graph G = (V,E) with a longest geodesic p − q path P , for
any vertex v ∈ P and a 0 < k < 1/2 such that d(v, p) = kδn ∨ d(v, q) = kδn, the
following holds:∑∞
i=1 Ψ(Ni(v), p, q) ≥ (δ − 2kδ)n − 2. That is, the amount of layers Ni(v) which

separate p and q is at least (δ − 2kδ)n− 2.

Proof. Without loss of generality, assume p is the closest endpoint (of P) to v
(d(v, p) < d(v, q)). Since d(v, p) = kδn, we know p ∈ Nkδn(v) and d(v, q) = (1−k)δn,
thus q ∈ N(1−k)δn(v). Any layer L "between" Nkδn(v) and N(1−k)δn(v) (L = Nj(v),
where kδn < j < (1−k)δn), separates p and q (dG−L(p, q) =∞). The amount of lay-
ers L is: (1−k)δn−1−(kδn+1). We do not include Nkδn(v) (hence the + 1) because
that particular layer contains p, removing the vertices in Nkδn(v) from G would re-
move p from the graph G. We do neither include N(1−k)δn(v) for the same reason (ex-
change p for q), thus: ∑∞i=1 Ψ(Ni(v), p, q) ≥ (1−k)δn−1−(kδn+1) = (1−2k)δn−2.
�

A consequence of Lemma 7 is that a given vertex on a longest geodesic path with
a distance of at most kδn to one endpoint has at least (δ − 2kδ)n− 2 layers which
disconnect the endpoints of a longest geodesic path. If such a separator (of constant
size) can be found, we can find a longest geodesic path by solving an instance of
b-dimensional largest mixed sum.

Lemma 8. The inequality (1 − k)δn − n
1+ 2

δ

− (δn −
[
(1 − 2k)δn − 2

]
) > 0, where

n > 0 and δ > 0, has a solution for k < δ+1
3δ+6 −

2
3δn .

Proof. We want to show that the inequality
(1− k)δn− n

1+ 2
δ

− (δn−
[
(1− 2k)δn− 2

]
) > 0 has a solution for k < δ+1

3δ+6 . We do
this by algebraic manipulation:

(1− k)δn− n

1 + 2
δ

− (δn−
[
(1− 2k)δn− 2

]
) > 0

(1− k)δn− n

1 + 2
δ

− δn+ (1− 2k)δn− 2 > 0

(1− k)δn− n

1 + 2
δ

− δn+ (1− 2k)δn > 2

n
[
(1− k)δ − 1

1 + 2
δ

− δ + (1− 2k)δ
]
> 2

n
[
(1− k)δ − δ

2 + δ
− δ + (1− 2k)δ

]
> 2

nδ
[
(1− k)− 1

2 + δ
− 1 + (1− 2k)

]
> 2

1− k − 1
2 + δ

− 1 + 1− 2k > 2
δn

1− k − 1
2 + δ

− 2k > 2
δn

17

3. Results

1− 3k − 1
2 + δ

>
2
δn

−3k > 2
δn

+ 1
2 + δ

− 1

k <
1
3 −

2
3δn −

1
3(2 + δ)

k <
2 + δ

3(2 + δ) −
2

3δn −
1

3(2 + δ)

k <
δ + 1
3δ + 6 −

2
3δn.

�

In Lemma 9, we use the function Γ which is defined in section 2.3, Γ(p, q, i, v, b) can
be interpreted as indicating if Ni(v) of a particular size b separates the two vertices
p and q in a graph G.

Lemma 9. Given a graph G = (V,E) with a longest geodesic p− q path P , for any
v ∈ P with d(v, p) = kδn ∨ d(v, q) = kδn, where 0 < k < δ+1

3δ+6 −
2

3δn , the following

holds for a constant c > 0:
∑d2/δe
b=1

∑∞
i=1 Γ(p, q, i, v, b)
n

≥ c.

Proof. When we mention: the amount of layers, total amount of layers etc, we refer
to layers with reference vertex v (Ni(v)).

The amount of layers, which are of size d2/δe or smaller, is given from Lemma 6:
d2/δe∑
b=1

∞∑
i=1

ψ(i, v, b) >
(1− k)δn− n

1 + 2
δ

. (3.5)

We subtract the layers which separate p and q (which are (1−2k)δn−2 from Lemma
7) from the total amount of layers (which are at most δn), and get the following
expression (the greatest amount of layers which do not separate p and q):

δn−
[
(1− 2k)δn− 2

]
. (3.6)

We subtract eq. (3.6) from eq. (3.5) and get the least amount of layers (which are
of size d2/δe or smaller) which separates p and q:

d2/δe∑
b=1

∞∑
i=1

Γ(p, q, i, v, b) ≥ (1− k)δn− n

1 + 2
δ

− (δn−
[
(1− 2k)δn− 2

]
). (3.7)

We want the amount of layers, which are of size d2/δe and separate p and q, to be
strictly greater than 0. We set up the equation 3.8:
d2/δe∑
b=1

∞∑
i=1

Γ(p, q, i, v, b) ≥ (1− k)δn− n

1 + 2
δ

− (δn−
[
(1− 2k)δn− 2

]
) > 0. (3.8)

18

3. Results

Equation (3.8) has a solution for the following values of k (proved in Lemma 8):

k <
δ + 1
3δ + 6 −

2
3δn. (3.9)

Since k has to be greater than 0, we conclude the following:

δ + 1
3δ + 6 −

2
3δn > 0

δ + 1
3δ + 6 >

2
3δn

n
δ + 1
3δ + 6 >

2
3δ

n >
2(3δ + 6)
3δ(δ + 1)

n >
2(δ + 2)
δ(δ + 1) .

Since n > 2(δ+2)
δ(δ+1) , the lowest possible value for n is therefore 2(δ+2)

δ(δ+1) +1. We substitute
n with 2(δ+2)

δ(δ+1) + 1 in eq. (3.9) to get the following inequality:

k <
δ + 1
3δ + 6 −

2
3δ(2(δ+2)

δ(δ+1) + 1)

k <
δ + 1
3δ + 6 −

2
6(δ+2)
δ+1 + 1

k <
δ + 1
3δ + 6 −

2
6(δ+2)
δ+1 + δ+1

δ+1

k <
δ + 1
3δ + 6 −

2
7δ+13
δ+1

k <
δ + 1
3δ + 6 −

2
7δ+13
δ+1

k <
δ + 1
3δ + 6 −

2(δ + 1)
7δ + 13

k <
(δ + 1)2

3(δ + 2)(7δ + 13) .

Notice that k < (δ+1)2

3(δ+2)(7δ+13) is a lower bound on the value of k, since we substituted
n for the smallest possible value. From eq. (3.9) we have: limn→∞

[
k < δ+1

3δ+6−
2

3δn

]
=

k < δ+1
3δ+6 . Thus as n gets greater, the bound on k becomes greater. Furthermore,

eq. (3.8) can be rewritten as:

19

3. Results

d2/δe∑
b=1

∞∑
i=1

Γ(p, q, i, v, b) ≥ n
[
(1− k)δ − 1

1 + 2
δ

− (δ − (1− 2k)δ)
]
> 2⇔

d2/δe∑
b=1

∞∑
i=1

Γ(p, q, i, v, b) ≥ nc > 2. (3.10)

From eq. (3.10), we have:
∑d2/δe
b=1

∑∞
i=1 Γ(p, q, i, v, b)
n

≥ c > 2
n
, where c > 0 is a con-

stant. �

Lemma 10. Given a graph G = (V,E) with a longest geodesic p−q path P , for any
vertex v ∈ P , the following holds:

(
d(v, p) < i

)
∧
(
d(v, q) > i

)
=⇒ |P ∩Ni(v)| = 1.

Proof. P consists of the two subpaths: p − v and v − q. We prove the statement
of the Lemma by showing |(p − v) ∩ Ni(v)| = 0 and |(v − q) ∩ Ni(v)| = 1, thus
|P ∩Ni(v)| = 1. Below follows a case for each subpath:

(i) p − v: Assume one intersecting vertex v1 (i.e v1 ∈ Ni(v) ∧ v1 ∈ (p − v)). We
know d(p, v1) > 0 and d(v1, v) = i, but d(p, v) < i holds by the assumption in the
statement of Lemma 10, thus choose the subpath p− v instead of p− v1 − v which
creates a shorter path. Thus, P was not a geodesic path, leading to a contradiction.
Trivially, having more than one intersecting vertex in the subpath p − v will make
the subpath p− v longer, we conclude: |(p− v) ∩Ni(v)| = 0.

(ii) v − q: Assume k > 1 intersecting vertices in the subpath v − q ({v1, . . . , vk} ⊂
(v − q) ∧ |{v1, . . . , vk} ∩Ni(v)| = k), the subpath can be written as v − v1 − vk − q.
Since d(v, v1) = d(v, vk) and ∀i∀j i 6= j =⇒ d(vi, vj) > 0, we choose the subpath
v − vk − q instead, creating a p − q path shorter than P and |Ni(v) ∩ p − q| = 1.
Thus, P was not a geodesic path, leading to a contradiction.

To conclude, |P ∩ Ni(v)| 6= 0 as by the assumption in the statement of Lemma 10
the distance dG−Ni(v)(p, q) =∞, thus |P ∩Ni(v)| = 1. �

Lemma 11. Given a graph G = (V,E) with a longest geodesic path P =
{v1, v2, . . . , vk}, the following holds: ∀i∀j

(
i > 0∧ i ≤ k∧ j > 0∧ j ≤ k∧ i 6= j

)
=⇒

|vi − vj| = d(vi, vj).

Proof. Let Q be a subpath of P with endpoints a ∈ P and b ∈ P . Assume for
contradiction |Q| > d(a, b), we can create a shorter path between the endpoints of
P by replacing the subpath Q with the shorter geodesic path a− b. Thus P was not
a geodesic path, leading to a contradiction. �

Proposition 1 (b-dimensional largest mixed sum). Given h b-dimensional
vectors pi = (x1, x2, . . . , xb)i and h′ b-dimensional vectors p′j = (x′1, x′2, . . . , x′b)j
(h ≥ h′). We want to maximize: min{pi + p′j}. b-dimensional largest mixed sum

20

3. Results

can be solved in O(hh′b) time.

Proof. We have h b-dimensional vectors pi := (x1, x2, x3 . . . xb)i and h′ b-dimensional
vectors p′j := (x′1, x′2, x′3 . . . x′b)j. Computing the min (pi + p′j) can be done in O(b)
time. We compute the min for every pair of h and h′ vectors. We keep track of
the maximum value (and the corresponding vertices) after every min computation.
Computing all these values can be done in O(hh′b). �

Theorem 1. Given a graph G = (V,E) with δ > 0, we can compute the diameter
in O(n2) time with high probability.

Proof. Choose a vertex v at random. Perform a BFS from v to compute all the
layers Ni(v). Remove the layers with size strictly greater than 2/δ. From the re-
maining layers, choose one layer L = {w1, w2, . . . , w|L|} at random. All vertices in
L are on a distance l from v. Mark every vertex in G red which has a distance
less than l to v. Mark every vertex blue which has a distance greater than l to
v. Precisely: ∀w ∈ V

(
d(v, w) > l =⇒ blue(w)

)
∧
(
d(v, w) < l =⇒ red(w)

)
.

Define B as the set of blue vertices, and R as the set of red vertices. Perform a BFS
from every wi ∈ L, where 1 ≤ i ≤ |L|. With all of these distances, we set up an
instance of |L|-dimensional largest mixed sum in the following way: create the two
sets, H and H ′. H contains an |L|-dimensional vector for every red vertex, and is
defined as H = {(d(r, w1), d(r, w2), . . . , d(r, w|L|)) | r ∈ R}. Similarly, H ′ is defined
as H ′ = {(d(c, w1), d(c, w2), . . . , d(c, w|L|)) | c ∈ B}. Largest mixed sum will return
two vertices o ∈ {w | d(v, w) < l} and s ∈ {w | (d(v, w) > l}. We reconstruct the
o− s path by performing a BFS from o, and output the length of the o− s path.

Analysis. With constant probability, v will be on a longest geodesic p− q path P
with a distance kδn (where k < δ+1

3δ+6 −
2

3δn) from either p or q. The layer L will with
constant probability separate p and q (consequence of Lemma 9).

The algorithm always outputs the result of largest mixed sum since it always returns
a geodesic path. The path returned is always geodesic as a consequence of Lemma
11. It does not matter if a path from a red vertex r to a blue vertex b intersects
L multiple times, largest mixed sum still returns a geodesic path. If L separated p
and q, we are guaranteed to return a longest geodesic path since p ∈ R and q ∈ B
(or vice versa). By Proposition 1, |L|-dimensional largest mixed sum is solvable in
O(|H||H ′||L|) time. Since |H| ≤ n, |H ′| ≤ n and |L| ≤ 2/δ (δ is a constant), we can
solve L-dimensional largest mixed sum in O(n2) time. Thus the total complexity
of the algorithm is O(n2) since the rest of the computations consist of a constant
number of BFS computations. �

Figure 3.4 illustrates a situation in Theorem 1. The vertices w1 and w2 are on the
randomly chosen layer (depicted as a circle around the vertex v) which separates the
two endpoints p and q of a longest geodesic path. The vertices a and b are arbitrary
red and blue vertices.

21

3. Results

a

b

p

q

v

w2
w1

Figure 3.4: Depicts a situation in Theorem 1, with the geodesic paths to w1 and
w2 which will be used when computing the largest mixed sum.

There are different parts of the algorithm in Theorem 1 which can be improved. The
algorithm has two stages of randomization, the first is to choose a random vertex v.
With constant probability, the vertex v is on a longest geodesic path with a distance
of kδn from one endpoint. The second stage is to randomly choose a layer (Ni(v)) of
constant size. When both these stages are successfully randomized, the algorithm is
guaranteed to output the diameter. However, to guarantee that the algorithm will
output the diameter, it is sufficient for a randomly chosen vertex to be in the kδn
neighbourhood of some endpoint of a longest geodesic path (consequence of Lemma
11). Consider the following Lemma:

Lemma 12. Given a graph G = (V,E) with a longest geodesic p − q path
P . If a vertex v ∈ V has the property d(v, p) = kδn ∨ d(v, q) = kδn, then∑n
b=1

∑∞
i=1 ψ(i, v, b) ≥ (1− k)δn holds.

Proof. Without loss of generality, we assume d(v, p) = kδn. Since v is not necessar-
ily on P , we know d(v, q) ≥ (1− k)δn is true. d(v, q) can not be less than (1− k)δn,
since it would imply that p − q was not a geodesic path, which is a contradiction.
Thus ∑n

b=1
∑∞
i=1 ψ(i, v, b) ≥ (1− k)δn holds. �

A consequence of Lemma 12 is that any vertex v in a kδn-neighbourhood of an
endpoint of a longest geodesic path has at least as many layers as a vertex on a
longest geodesic path with distance kδn to an endpoint. The logic in Lemmas 6-9
will still apply for v. Thus we can choose a layer from v, which separates the two

22

3. Results

endpoints of a longest geodesic path, with constant probability. A consequence of
this result is that the probability of returning the diameter in Theorem 1 is greater.

If one can deterministically find a vertex within a kδn-neighbourhood of some end-
point of a geodesic path, then one can also construct a (1-k)-approximation algo-
rithm of the diameter, consider the following proposition:

Proposition 2. Given a graph G = (V,E) with a longest geodesic p − q path
P . Finding a vertex v deterministically in O(n2) time, such that d(v, p) = kδn ∨
d(v, q) = kδn, where 0 < k < 1/2, implies that an (1-k)-approximation algorithm of
the diameter in O(n2) time exists.

Proof. Perform a BFS from the vertex v and return the distance to a vertex furthest
away from v. This distance will at least be (1−k)δn, as v is in a kδn-neighbourhood
of some endpoint of a longest geodesic path. �

Lemma 13. Given a graph G = (V,E), a vertex v ∈ V , a k > 0 and a a ≥ 0, then
∃x |Nx(v)| ≤ 1−(δ2−kδ)

kδ
, where akδn < x ≤ (a+ 1)kδn.

Proof. The least amount of layers for a vertex v (Ni(v)) (shown in Lemma 1) is
shown in the following expression:

n∑
b=1

∞∑
i=1

ψ(i, v, b) ≥ δn

2 . (3.11)

The layers Nx(v) (akδn < x < (a+1)kδn) have the greatest size when the remaining
layers are of size one. The remaining layers are the layers Ni(v) with the following
constraint on i

(
1 ≤ i ≤ akδn

)
∨
(
(a+ 1)kδn < i

)
. The total amount of vertices in

these remaining layers is shown in the following expression:

δn

2 − ((a+ 1)kδn− akδn)) = δn

2 − kδn. (3.12)

We calculate the amount of vertices a layer Nx(v) (akδn ≤ x < (a + 1)kδn) has, if
all the remaining vertices are distributed evenly among these Nx(v) layers:

n− (δn2 − kδn)
kδn

=
1− (δ2 − kδ)

kδ
. (3.13)

�

Lemma 14. Given a graph G = (V,E) with a δ > 0 and a longest geodesic p − q
path P , we can deterministically find a set of vertices S ⊂ V ∧ |S| = c (where c > 0
is a constant), such that ∃i vi ∈ S∧d(vi, p) ≤ kδn∨d(vi, q) ≤ kδn, in O(n+m) time.

Proof. Take an arbitrary vertex v and count the number of vertices in the graph
by performing a BFS. Compute the greatest k which satisfy k < δ+1

3δ+6 −
2

3δn . We do
not know if v has a distance kδn to p or q, but it could be the case so we add v to
the set S. Choose the layer |Nx(v)| ≤ d1−(δ2−kδ)

kδ
e, for the largest x in the interval:

23

3. Results

1 ≤ x ≤ kδn (the existence of such layer is shown in Lemma 13). Add all the vertices
in Nx(v) to the set S. Continue to take another layer |Nx′(v)| ≤ d1−(δ2−kδ)

kδ
e for the

largest x′ in the interval: x + 1 ≤ x′ ≤ x + kδn. Add all the vertices in Nx′(v) the
set S. Continue this approach until there are no interval of size kδn left.

Analysis. The number of intervals is at most d δn
kδn
e = d 1

k
e, which is a constant.

Furthermore, every layer is of a constant size (|Nx(v)| ≤ d1−(δ2−kδ)
kδ

e). The intervals
together cover the whole graph such that any vertex v ∈ V has a distance of at most
kδn to one of the vertices in the set S. �

Theorem 2. Given a graph G = (V,E) with δ > 0, fixed k > 0 and a longest
geodesic p− q path P . We can compute an (1-k)-approximation in O(n+m) time.

Proof. Compute a set of vertices S as described in Lemma 14. S contains at least
one vertex v which has the property

(
d(v, p) ≤ (1− k)δn

)
∨
(
d(v, q) ≤ (1− k)δn

)
.

Computing S can be done in O(n+m) time (shown in Lemma 14). For every vertex
vi ∈ S, execute the procedure described in Proposition 2, and return the largest
distance. S is of constant size, which implies that only a constant number of BFSs
are computed, and therefore the (1-k)-approximation can be computed in O(n+m)
time. �

Lemma 15. Given a graph G = (V,E) with a δ > 0, a vertex v and a longest
geodesic p−q path P such that d(v, p) = kδn ∨ d(v, q) = kδn, where k < δ+1

3δ+6−
2

3δn .
We can deterministically find in O(n + m) time, a layer |Nx(v)| ≤ d1−(δ2−kδ)

kδ
e such

that dG−Nx(v)(p, q) =∞.

Proof. Define x such that kδn < x ≤ 2kδn, the following is true dG−Nx(v)(p, q) =∞.
By Lemma 13, the following holds ∃x kδn < x ≤ 2kδn =⇒ |Nx(v)| ≤ 1−(δ2−kδ)

kδ
.

Choose the first layer Na(v) such that a > kδn and |Na(v)| ≤ d1−(δ2−kδ)
kδ

e. One can
compute k and all the layers from v with one BFS, thus the total complexity is
O(n+m). �

Theorem 3. Given a graph G = (V,E) with a δ > 0. We can deterministically
compute the diameter in O(n2) time.

Proof. Execute the procedure in Lemma 14 which creates a set S where at least one
vertex v ∈ S satisfies

(
d(v, p) ≤ kδn

)
∨
(
d(v, q) ≤ kδn

)
, where p and q are endpoints

of a longest geodesic path. For every w ∈ S, execute the procedure in Lemma 15
which finds a layer of constant size. We have now arrived at the same setup as
Theorem 1, where we colour vertices red and blue depending on their distance to
the layer returned by executing the procedure described in Lemma 15. Similarly to
Theorem 1, set up an instance of largest mixed sum from which a geodesic path is
constructed. Since these procedures are ran for every w ∈ S, and v ∈ S ∧ |S| = c
(where c is a constant), we only perform the procedure in Theorem 1 a constant

24

3. Results

number of times. Thus the total time complexity is O(n2). When the procedure
is ran for vertex v, the layer returned by the procedure in Lemma 15 will separate
p and q, thus we will in this case reconstruct a longest geodesic path from largest
mixed sum. �

25

3. Results

26

4
Discussion

In this chapter we discuss the results, primarily focusing on various bounds, proba-
bility and constant factors in the time complexity of the algorithms. We also propose
different directions for future work.

4.1 Bounds
In this subsection we will cover various bounds used in the results. We will argue
why some of the bounds might be too generous, leading to longer execution times
in the algorithms (hidden constants in the time complexity). Moreover, we will also
argue why some bounds are tight.

Consider eq. (3.6) where we compute how many layers from a reference vertex v
that do not not separate two endpoints of a longest geodesic path:

δn−
[
(1− 2k)δn− 2

]
.

Any vertex has at most δn layers (amount of layers can never be larger than the
diameter), thus we assume the worst case, i.e. a randomly chosen vertex has pre-
cisely δn layers. This bound is trivially tight because one might randomly choose
one of the endpoints of a longest geodesic path. Even if one does not choose an
endpoint, any vertex on a longest geodesic path can still have δn layers. Consider
graphs where all vertices are on the same cycle, in such graphs every vertex is an
endpoint of a longest geodesic path, thus every vertex has δn layers.

The amount of layers which separate p and q ((1 − 2k)δn − 2) is exact given that
the reference vertex is on a longest geodesic p− q path with distance kδn from one
endpoint. However, if the reference vertex is in the kδn-neighbourhood of either
p or q (the setup in Lemma 12), the amount of layers (from the reference vertex)
which separate p or q ((1− 2k)δn− 2) is a lower bound. Assume a vertex v is in a
kδn-neighbourhood of p, then the distance to q is at least (1 − k)δn, as we do not
know if v ∈ p− q or v /∈ p− q.

The size of the separating layer in Lemma 15 (d1−(δ2−kδ)
kδ

e) is not tight since we only
consider the existence of a constant sized layer in an interval of size kδn. One can
make a tighter bound by finding the largest b such that (1− 2k)δn > bkδn, and use
this b to set up an equation similar to Lemma 13.

27

4. Discussion

The algorithms have a bound on the number of vertices n ≥ 2(δ+2)
δ(δ+1) + 1. A bound

on n is necessary as the graph has at least 1/δ vertices (a graph with diameter 1).
A graph with diameter one is a complete graph, and complete graphs do not have
any separators. The Monte Carlo algorithm and the deterministic algorithm rely on
separators to compute the diameter.

Lemma 2 proves the existence of a layer, for an arbitrary vertex v (Ni(v)), of size at
most 2/δ for any graph with a fixed δ > 0. Since the randomly chosen layer in the
Monte Carlo algorithm (presented in Theorem 1) is only guaranteed to separate the
endpoints of a longest geodesic path with constant probability, if the random vertex
v has a distance kδn from one of the endpoints of a longest geodesic path, v must
have at least (1−k)δn layers. Consequently, one can calculate a tighter bound than
2/δ, as the assumption in Lemma 2 was that the reference vertex only has δn/2
layers. Similarly as in Lemma 2, one can calculate the constant sized layer by using
the pigeonhole principle:

n

(1− k)δn = 1
(1− k)δ . (4.1)

We know therefore that any vertex v with (1 − k)δn layers has at least one layer
with size at most 1/(1− k)δ. We also know (from Lemma 9) that
k < (δ + 1)/(3δ + 6)− 2/(3δn). The parameter k will always be less than
(δ + 1)/(3δ + 6) for any n. We substitute this bound on k in the equation eq. (4.1)
and get the following expression for the size at least one of the layers has to have:

1
(1− δ+1

3δ+6)δ
=

1
δ − δ(δ+1)

3δ+6

=

1
δ − δ2+δ

3δ+6
=

1
δ (3δ+6)

3δ+6 −
δ2+δ
3δ+6

=

1
3δ2+6δ
3δ+6 −

δ2+δ
3δ+6

=

1
2δ2+5δ
3δ+6

=

3δ + 6
2δ2 + 5δ .

Lemma 3 shows that the maximum size of a layer could be n−nδ/2, thus a longest
geodesic path could be entirely in one layer or in arbitrary many layers. Since a
longest geodesic path can intersect arbitrary many layers we can not easily reject
layers which a longest geodesic path will not traverse or localize the layers a longest

28

4. Discussion

geodesic path will traverse.

4.2 Comparing the Monte Carlo- with the deter-
ministic algorithm

The Monte Carlo algorithm and the deterministic algorithm have the same time
complexity O(n2), but the deterministic algorithm has a large hidden constant. It
would be of interest to compare the constant in the deterministic algorithm’s time
complexity with the constant in the Monte Carlo algorithm’s time complexity. The
Monte Carlo algorithm’s constant mainly depends on repeating the procedure a
constant number of times to get the probability of returning the diameter arbitrary
close to 1. Assume that the constants (of the deterministic and Monte Carlo al-
gorithm) are equal after x repetitions of the Monte Carlo procedure. One could
calculate the probability of returning the diameter in the Monte Carlo algorithm
after x repetitions of the procedure. If one finds the probability of returning the
diameter inadequate, then one never has to consider performing the Monte Carlo
algorithm and instead choose the deterministic one since it will perform better. It is
therefore of interest to calculate and compare the constant probability in the Monte
Carlo algorithm with the deterministic algorithm. Perhaps the Monte Carlo algo-
rithm is more practical if the probability is high even after a relatively small number
of repetitions of the procedure.

4.3 Further work

Even if the probability of finding a layer (in the Monte Carlo algorithm) from a ran-
domly chosen vertex v which separates two endpoint of a longest geodesic path does
not seem high, one must remember that all the calculations are based on a worst case
scenario. In our equations we consider that a vertex v has as many layers as possible
(δn) and that all of the layers which do not separate the endpoints are of constant
size (at most 2/δ). Thus we believe that the worst case is pessimistic. It would be
very interesting if one could compute the probability of the average case or at least
benchmark the Monte Carlo algorithm on a sample of representative realistic graphs.

We have solved the b-dimensional largest mixed sum in O(n2) time. This result is
worse compared to the 2-dimensional case where Damaschke [2] presents a solution
in O(n log n) time. Our solution could be considered quite naive as we approach
the problem in a brute-force way. The 2-dimensional case is solved in a more so-
phisticated way, which suggests that the b-dimensional case can be improved. If
one solves the b-dimensional largest mixed sum in better than O(n2) time, the com-
plexity of both the Monte Carlo and deterministic algorithms become better as the
bottle neck is the largest mixed sum computation. It is also of interest if one can
prove that the worst case is O(n2).

29

4. Discussion

The deterministic algorithm has a large constant factor. One possible approach for
making the deterministic algorithm more practical is to reduce the size of the set S
in Lemma 14. In graphs which are not huge, the constant factor will bottleneck the
algorithm since the set of vertices can get big, and b-dimensional largest mixed sum
is computed for every vertex in S. The reduction of vertices in S must be done in
O(n2) time to reduce the constant factor and preserve the time complexity of the
algorithm.

We think that it could be of interest to introduce a new ratio or quantifier which
further limits the structure of slim graphs. Such a new ratio or identifier could
supply even more information about the structure and perhaps allow for even faster
algorithms to be developed.

30

5
Conclusion

We have exploited structural features of slim graphs, mainly involving separators, to
create three new algorithms: a Monte Carlo, an approximation and a deterministic
algorithm. The approximation algorithm yields a better approximation than the
general graph diameter approximation, in O(n + m) time. The deterministic algo-
rithm computes the diameter in O(n2) time, which makes it asymptotically superior
to APSP. We have not calculated the constant factors in the time complexity of
these algorithms, and we have neither benchmarked any of the algorithms. Thus
it makes reasoning about the practicality difficult, but we have proposed several of
natural directions for further work. Even if the algorithms are not practical yet,
we have presented multiple results which supply more knowledge about how slim
graphs behave, in particular when δ gets smaller than what was considered by Dam-
aschke [2]. We will conclude this thesis by referencing the research questions and
describing their respective outcomes.

Is it possible to extend the properties and techniques used by Dam-
aschke [2] for a broader range of slim graphs?
The answer is yes. We have generalized parts of the results presented by Damaschke
in various Lemmas, most notably Lemma 2 which generalizes the existence of a
constant size separator for smaller δ. We have also presented a solution for largest
mixed sum for higher dimensions.

Is it possible to make a Monte Carlo algorithm for a broader range of
slim graphs?
Yes, Theorem 1 describes a Monte Carlo algorithm for δ > 0.

Is it possible to create a Las Vegas algorithm for a broader range of slim
graphs faster than APSP? This question becomes irrelevant as we present a
deterministic algorithm in Theorem 3, although one might develop a Las Vegas al-
gorithm with lower complexity than the algorithm in Theorem 3.

For a fixed 0 < k < 1/2, is it possible to create an (1-k)-approximation
algorithm faster than APSP? Yes, Theorem 2 presents an algorithm for an (1-
k)-approximation in O(n+m) time, for a fixed 0 < k < 1/2.

Is it possible to create a deterministic algorithm faster than APSP? Yes,
Theorem 3 presents a deterministic algorithm for a fixed δ > 0, which computes the
diameter in O(n2) time.

31

5. Conclusion

Does a deterministic algorithm, for graphs with diameter greater than
n/3, in O(m + n log n) time exist? We can not answer this question, although if
someone solves b-dimensional largest mixed sum in O(m + n log n) time, then it is
possible to not only solve for δ > 1/3, but also for δ > 0 in O(m+ n log n) time.

32

Bibliography

[1] Corey Pennycuff and Tim Weninger. Fast, exact graph diameter computation
with vertex programming. In 1st High Performance Graph Mining workshop,
Sydney, 10 August 2015. Barcelona Supercomputing Center, 2015.

[2] Peter Damaschke. Computing giant graph diameters. In 27th International
Workshop on Combinatorial Algorithms IWOCA, Helsinki, Lecture Notes in
Computer Science, vol. 9843, pages 373–384. Springer, 2016.

[3] Giso H Dal, Walter A Kosters, and Frank W Takes. Fast diameter computation
of large sparse graphs using gpus. In Parallel, Distributed and Network-Based
Processing (PDP), 2014 22nd Euromicro International Conference on, pages
632–639. IEEE, 2014.

[4] Derek G. Corneil, Feodor F. Dragan, Michel Habib, and Christophe Paul. Diam-
eter determination on restricted graph families. Discrete Applied Mathematics,
113(2):143 – 166, 2001.

[5] Jens M. Schmidt. A simple test on 2-vertex- and 2-edge-connectivity. Informa-
tion Processing Letters, 113(7):241 – 244, 2013.

[6] John Hopcroft and Robert Tarjan. Algorithm 447: Efficient algorithms for
graph manipulation. Commun. ACM, 16(6):372–378, June 1973.

[7] Derek G. Corneil, Stephan Olariu, and Lorna Stewart. Asteroidal triple-free
graphs. SIAM Journal on Discrete Mathematics, 10(3):399–430, 1997.

[8] Boaz Ben-Moshe, Binay Bhattacharya, Qiaosheng Shi, and Arie Tamir. Effi-
cient algorithms for center problems in cactus networks. Theoretical Computer
Science, 378(3):237 – 252, 2007. Algorithms and Computation.

[9] Liam Roditty and Virginia Vassilevska Williams. Fast approximation algo-
rithms for the diameter and radius of sparse graphs. In Proceedings of the
Forty-fifth Annual ACM Symposium on Theory of Computing, STOC ’13, pages
515–524, New York, NY, USA, 2013. ACM.

[10] Derek G Corneil, Feodor F Dragan, and Ekkehard Köhler. On the power of bfs
to determine a graph’s diameter. Networks, 42(4):209–222, 2003.

33

	List of Figures
	Introduction
	Problem definition
	Related work
	Contributions
	Limitations

	Prerequisites
	Algorithms
	Basic graph theory
	Definitions
	Difficulties with computing the diameter
	Slim graphs
	Computing the diameter in graphs with > 1/2
	Largest Mixed Sum
	Computing the diameter in graphs with > 1/3

	Results
	Discussion
	Bounds
	Comparing the Monte Carlo- with the deterministic algorithm
	Further work

	Conclusion
	Bibliography

