
A Real-Time Testbed for Distributed Algorithms:
Evaluation of Average Consensus in
Simulated Vehicular Ad Hoc Networks

Master’s thesis in the master programmes: Computer Systems and Networks and Algo-
rithms, Languages and Logic

ALBIN CASPARSSON, DAVID GARDTMAN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017





Master’s thesis 2017

A Real-Time Testbed for Distributed Algorithms:
Evaluation of Average Consensus in Simulated

Vehicular Ad Hoc Networks

ALBIN CASPARSSON, DAVID GARDTMAN

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017



A Real-Time Testbed for Distributed Algorithms: Evaluation of Average Consensus
in Simulated Vehicular Ad Hoc Networks
ALBIN CASPARSSON, DAVID GARDTMAN

© ALBIN CASPARSSON, DAVID GARDTMAN, 2017.

Supervisors: Thomas Petig, Elad Michael Schiller; Department of Computer Science
and Engineering. Markus Fröhle, Christopher Lindberg; Department of Electrical
Engineering
Examiner: Olaf Landsiedel, Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2017

iv



A Real-Time Testbed for Distributed Algorithms: Evaluation of Average Consensus
in Simulated Vehicular Ad Hoc Networks
Albin Casparsson, David Gardtman
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract

Intelligent transportation systems consist of applications which use communication
capabilities of vehicles to solve tasks that require cooperation with other vehicles.
One of the possible applications is cooperative positioning, in which vehicles increase
the accuracy of their positions by sharing positioning information with each other.
Previous research has suggested using average consensus to share this information.
Average consensus is a type of distributed algorithm that, in a system where each
node performs a measurement of some value, can make all nodes reach agreement
on the average of the set of measurements. This thesis evaluates the performance of
average consensus algorithms in vehicular ad hoc networks.

Full-scale experiments on vehicular systems are costly, but it is also not necessarily
desired to fully simulate a vehicular system. This thesis presents a testbed where
we opt to fully simulate the vehicular communication network. The vehicles that
are part of the network can be simulated using either virtual nodes or a scaled down
physical robot system. An 802.11p wireless network, which has been suggested for
vehicular ad hoc networks, is simulated using the ns-3 network simulator. Addition-
ally, some properties that cause the wireless network to be unreliable are simulated.

Furthermore, in this thesis, three average consensus algorithms are implemented
with some modifications to account for the properties of vehicular ad hoc networks.
These algorithms are evaluated in the created testbed, in order to study their per-
formance in such a network. We observe that consensus converges asymptotically in
a simulation of randomly moving nodes, and that the consensus states of the nodes
oscillate around the true average when new nodes are allowed to enter the system
during consensus. The consensus converges to a state that does not necessarily co-
incide exactly with the true average, which is to be expected since some packets are
lost due the simulated wireless network not being fully reliable. We also demon-
strate that performing average consensus on the position of an object can improve
the precision of driving in a physical system of moving robots.

Keywords: Average consensus, Vehicular ad hoc networks, Network simulation, ns-3,
Intelligent transportation systems, Distributed algorithms

v





Acknowledgements

We would like to thank the department of Electrical Engineering for providing the
hardware and a workspace. We would like to thank our troop of supervisors, Thomas
Petig, Elad Michael Schiller, Christopher Lindberg and Markus Fröhle, for steering
us in the right direction and helping us make this thesis the best it could possibly
be. We would also like to thank Tomasz Proczkowski and Nithin Syriac Kurien for
always being helpful and making us laugh at least once a day.

Albin Casparsson and David Gardtman, Gothenburg, June 2017

vii





Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Theory and Background 7
2.1 Average Consensus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Convergence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Fast Linear Consensus . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Ratio Consensus . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Intelligent Transportation Systems . . . . . . . . . . . . . . . . . . . 9
2.2.1 Vehicular ad hoc Networks . . . . . . . . . . . . . . . . . . . . 9
2.2.2 Communication Channel Modelling . . . . . . . . . . . . . . . 10
2.2.3 Positioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Network Simulator: ns-3 . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Docker Containers . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Robot Control: ROS . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.4 Camera-based Positioning: GulliView . . . . . . . . . . . . . . 12

3 Methods 13
3.1 Testbed Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Configuration of ns-3 . . . . . . . . . . . . . . . . . . . . . . . 15
3.1.2 Real-time Position Modification of ns-3 . . . . . . . . . . . . . 17

3.2 Simulation Architecture . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.1 Simulation Scenarios . . . . . . . . . . . . . . . . . . . . . . . 18
3.2.2 Implementation of Average Consensus Algorithms . . . . . . . 19

3.2.2.1 Random Movement Implementation . . . . . . . . . 20
3.2.2.2 Intersection Simulation . . . . . . . . . . . . . . . . . 20

3.3 Robot System Architecture . . . . . . . . . . . . . . . . . . . . . . . . 21

ix



Contents

3.3.1 Experiment Scenarios . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.4.1 Exhaustive Flood Comparison . . . . . . . . . . . . . . . . . . 25

4 Results 27
4.1 Random Movement Simulation . . . . . . . . . . . . . . . . . . . . . 27
4.2 Intersection Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Robot System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.4 Ns-3 Modification Performance Evaluation . . . . . . . . . . . . . . . 35

5 Discussion and Conclusion 37
5.1 Discussion of ns-3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Real-time Simulation Performance . . . . . . . . . . . . . . . . 38
5.2 Discussion of Average Consensus Algorithms . . . . . . . . . . . . . . 39

5.2.1 Our Results and Related Work on Consensus . . . . . . . . . . 41
5.3 Robot System Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 Related Work on Vehicular Testbeds . . . . . . . . . . . . . . 43
5.4 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.4.1 Security Aspect . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Bibliography 45

A Additional Intersection Plots I

x



List of Figures

3.1 Architecture of the simulation system. . . . . . . . . . . . . . . . . . 14
3.2 Illustration of the intersection simulation . . . . . . . . . . . . . . . . 19
3.3 Architecture of the robot system. . . . . . . . . . . . . . . . . . . . . 22
3.4 Robot communication scheme . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Ratio consensus random movement plot . . . . . . . . . . . . . . . . . 29
4.2 Fast linear consensus random movement plot . . . . . . . . . . . . . . 29
4.3 Simple consensus random movement plot . . . . . . . . . . . . . . . . 30
4.4 Flood random movement plot . . . . . . . . . . . . . . . . . . . . . . 30
4.5 Plot of consensus in intersection . . . . . . . . . . . . . . . . . . . . . 31
4.6 Error from desired position, with and without consensus. . . . . . . . 33
4.7 Comparison plots of estimation with and without consensus . . . . . 34
4.8 Plot of estimation in a system with three robots . . . . . . . . . . . . 35

5.1 Asynchronous interval intersection problem . . . . . . . . . . . . . . . 39

A.1 Simple consensus intersection plot . . . . . . . . . . . . . . . . . . . . I
A.2 Fast linear consensus intersection plot . . . . . . . . . . . . . . . . . . I
A.3 Ratio consensus intersection plot . . . . . . . . . . . . . . . . . . . . II
A.4 Flood intersection plot . . . . . . . . . . . . . . . . . . . . . . . . . . II

xi



List of Figures

xii



List of Tables

3.1 Simulated network properties in ns-3 . . . . . . . . . . . . . . . . . . 16

4.1 Random movement simulation results, 20 nodes . . . . . . . . . . . . 28
4.2 Random movement simulation results, 48 nodes . . . . . . . . . . . . 28
4.3 Results from intersection simulation . . . . . . . . . . . . . . . . . . . 31
4.4 Processing delay in ns-3 . . . . . . . . . . . . . . . . . . . . . . . . . 35

xiii



List of Tables

xiv



1
Introduction

Simulations of vehicular systems are often limited in scale due to their computational
complexity, and full-scale testing of such systems is associated with high costs [1].
This thesis presents a simulation platform for vehicular ad hoc networks (VANETs)
that can be used for evaluating distributed algorithms. Using this testbed, an
evaluation of the performance and applicability of average consensus algorithms
in VANETs is performed.

In distributed systems, average consensus is a class of algorithms that are used
to let agents or processes in a system reach agreement on the average of a set of
values [2]. These algorithms are interesting in systems that contain sensors, such as
wireless sensor networks, where nodes can use average consensus to combine their
sensor data with data from neighbouring nodes and get a better estimation of the
measured quantity.

This chapter presents the motivation for creating the testbed and the contributions
made by this thesis. Chapter 2 presents background on wireless networks, intelli-
gent transportation systems and average consensus algorithms. Furthermore, it also
describes the systems that are used to create the testbed. In Chapter 3, one can find
the details of how the testbed is defined and how it is used to evaluate consensus.
Finally, the results of experiments on a few select average consensus algorithms in
the simulation can be found in Chapter 4. These results are compared and discussed
in Chapter 5, where we also discuss the qualities of the testbed itself.

1.1 Motivation

Autonomous driving is currently a widely researched topic, and has attracted signifi-
cant interest from companies such as Google, Tesla and Volvo. The implementations
in vehicles on public streets have mostly been limited to specific subsets of the com-
plete driving task, such as highway driving, parking, or braking [3]. These tasks
use only the sensors that the particular vehicle is equipped with. There also exists
research to create simple vehicle awareness messages, which has been shown to be
able to prevent accidents [4].

However, there exists a desire to make future autonomous vehicles able to perform

1



1. Introduction

tasks that require cooperation with other vehicles. For example, collision avoid-
ance can be made more effective if vehicles can coordinate their localisation through
wireless communication [5, 6]. These kinds of systems, where vehicles share their
information to create smarter and safer driving, are referred to as intelligent trans-
portation systems [6]. To make these cooperative tasks possible, it is necessary to
improve the positioning accuracy, as GNSS is not precise enough in all types of
environments.

In open sky areas, GNSS (such as GPS) can provide a positioning accuracy of 5-10
metres [7]. However, the accuracy can be significantly degraded by high buildings
that block line of sight between vehicle and GNSS satellite. The accuracy is also
degraded when multipathing occurs, which is when signals between receiver and
satellite reaches either end-point by being reflected off an object. With the intro-
duction of intelligent transportation systems where vehicles can communicate with
each other, it becomes possible to use the communication capabilities of vehicles to
improve positioning. This is referred to as cooperative positioning.

Intelligent vehicles can form beliefs about their surroundings by using sensors to
measure the positions of other vehicles and objects. By using a protocol where this
data is shared among vehicles, each vehicle in the system can improve the accuracy
of its own position. However, this is a system with changing topologies, where
vehicles may enter and leave the system and the vehicles cannot know in advance
which vehicles are in range to receive data from them. Delays and dropped packets
also occur in VANETs. Therefore, designing an algorithm to share and update
positioning information is a complex task.

Average consensus is an interesting type of algorithm for this task. Consensus al-
gorithms are distributed and can therefore be made more robust when imperfect
communication links are used, compared to a centralised solution. There are mul-
tiple reasons for why a coordinator/leader is not desired in VANETs. Firstly, all
nodes in the system are moving, so the leader might leave the network at any time.
Since the network may change, it is impossible to know how many times a packet
would need to be forwarded in order to reach the leader. Secondly, since the commu-
nication is wireless, the channel around the leader would become congested because
of the large amount of communication to it, and some packets would be lost due to
interference. Average consensus solves these problems since packets do not need to
be forwarded, and each node performs its own calculations [2].

1.2 Related Work

In order to be able to evaluate the properties of average consensus algorithms or
other distributed algorithms in practice on vehicular wireless network channels, it
is necessary to either create or simulate a network with mobile nodes. However,
creating a real VANET using full-scale vehicles is, as mentioned before, associated
with high costs [1]. It is also not always desirable to simulate both the network and

2



1. Introduction

the nodes, since simulations of moving nodes have to be based on models which often
depends on making simplifications of reality [8]. By combining a partly physical and
a partly simulated system, some of these problems can be mitigated. Furthermore,
by using scaled down units to represent vehicles, such as small robots, it is possible
to reduce cost and setup time for experiments [9].

There exists previous research on these types of combined physical and simulated
vehicular network systems [9, 1]. Some research has focused on creating standardised
scaled-down physical testbeds [8]. There also exists multiple simulators that focus
on different aspects of simulating VANETs. Some of them focus on simulating
the interaction between moving vehicles [10], while there are also pure network
simulators with 802.11p implementations (which is one of the proposed protocols
for VANETs) [11, 12].

Work has also been performed on creating simulators for road traffic and integrat-
ing them with network simulators. One example is SUMO, an open source traffic
simulator that can model road networks and vehicles [10]. Using this simulator, top-
ics such as communication, navigation/route planning, traffic light algorithms and
surveillance systems can be researched. For simulation of communication between
vehicles or between vehicles and infrastructure, it is possible to connect SUMO to a
network simulator that can simulate a VANET, such as ns-3 or OMNeT++, so that
the nodes can communicate over a simulated network [10, 13]. Research has also
been done to create a more sophisticated mobility model directly in ns-3, without
the need to connect the network simulator to another application [14].

Two important aspects of studying algorithms in VANETs are that the nodes are
highly mobile, and that link failures can occur through signal interference. The
possibility of link failures when evaluating average consensus has previously been
studied theoretically [15]. Link failures in average consensus has also been studied
in the area of wireless sensor networks (WSNs) [16, 17]. How to implement average
consensus for cooperative control has been evaluated as well [18]. Importantly,
we have not found an evaluation of average consensus in either simulated nor real
VANETs using the 802.11p protocol. However, the effects of switching topologies
on consensus, i.e. in networks where nodes are moving, have been widely studied
[2, 19, 20].

1.3 Aim

The project consists of three aims: defining a testbed in which distributed algorithms
can be evaluated, evaluating average consensus by using the created testbed, and
lastly, connecting a distributed system consisting of multiple physical nodes to the
system.

A testbed will be specified that uses the ns-3 network simulator to simulate a network
that is representative for real-world VANETs. The testbed shall have the capability

3



1. Introduction

to connect the simulator with applications running distributed algorithms so that
their network communication is piped through the simulator in real-time. The
intention is that the testbed can be used as a platform for developing, demonstrating
and prototyping distributed algorithms for vehicular networks.

Using the implemented testbed, an evaluation will be performed on how average con-
sensus algorithms perform on network channels representative for intelligent trans-
portation systems. The network simulated in this scenario adds properties that
might contradict a priori assumptions made by the algorithms. Therefore, some
adjustments to the implementation of the algorithms could be necessary.

In order to demonstrate an application of consensus, a physical system will be
created that uses consensus to improve driving in a cooperative positioning sce-
nario. Furthermore, the communication in this network should be piped through
the testbed, and the quality of the communication should be affected by the real
positions of the robots. As a consequence, ns-3 should receive these positions dur-
ing simulation so that they may be taken into account when simulating the network
communication.

1.4 Limitations

The project will be limited to working with the predefined hardware, and other
hardware configurations will not be tested. The robots used are of the type Pioneer
DX-3. Cameras together with the GulliView software will be used for positioning
and to simulate distance sensors.

This hardware is known to work with the ROS Kinetic framework and alternatives
will not be considered. The physical system experiment will only be based on a
simplified version of cooperative positioning, since the focus of the experiment is to
show that average consensus can improve positioning and that the testbed can be
connected to a physical system.

Network simulation will be limited to the ns-3 simulator. We assume that the
ns-3 models used, including their default settings, are representative for what the
documentation states that they simulate.

1.5 Contribution

This thesis provides a testbed which uses the real-time simulator provided by ns-
3 that can be connected to either physical or virtual nodes. All communication
between these nodes is then redirected through a simulated vehicular ad hoc network
which uses the 802.11p protocol. The thesis also provides an evaluation of average
consensus in this simulated VANET.

4



1. Introduction

1 Real-Time Simulation Testbed: A customised version of the ns-3 simulator
has been created which is configured to simulate a network representative for
a VANET. The simulator has been modified to be able to update the node
positions—which ns-3 uses for propagation and interference calculations—from
an external application in real-time.

1.1. The implemented testbed can be used to evaluate distributed algorithms
where the algorithms run in virtual nodes on a host computer.

1.2. A system with physical robots can be connected to the testbed, where
the robots communicate over a simulated network and their real positions
influence the simulated wireless network connection.

2 Average Consensus Evaluation in VANETs: By using the implemented
testbed, we investigate the performance of three different average consensus
algorithms in a vehicular ad hoc network.

2.1. We propose modifications that allow the evaluated consensus algorithms
to work in a representative VANET setting.

2.2. Through experiments, we show that the modified algorithms converge
consistently in this setting, even under challenging conditions with chang-
ing topologies and dropped packets.

2.3. We observe that the algorithms that set their weights dynamically based
on locally observable information generally converge faster than the al-
gorithm which uses a global weight.

2.4. Using a system with moving robots, we demonstrate a simple application
of consensus in a cooperative positioning problem. We show that even a
simple implementation of consensus can improve positioning.

5



1. Introduction

6



2
Theory and Background

In this chapter, the theory behind average consensus and vehicular ad hoc networks is
presented. The specific consensus algorithms used are also explained. Furthermore,
this chapter also contains required background knowledge for understanding the
software that is used in the system architecture.

2.1 Average Consensus

In distributed systems, average consensus algorithms (hereafter referred to as con-
sensus algorithms) are used for fusing data from multiple nodes into a common
picture [17]. Since nodes in a distributed system do not share any kind of memory,
all information in such a system needs to be shared by message passing. In a system
where every node performs a possibly noisy measurement of some value, the goal
of average consensus is to let the nodes share their measurements and use this data
to ultimately agree on a more accurate estimation. A secondary goal is to converge
to a common estimation as quickly as possible, while limiting the amount of com-
munication in order to avoid congestion in the network. In this section, a survey of
different consensus algorithms is presented and properties such as convergence time
are discussed.

A simple version of consensus is introduced by Olfati et al. (section II.C of [2]).
This version does not deal with packet loss or link failures but is relevant since it
guarantees convergence to the exact average in perfect networks. The equation for
how node i updates its consensus state xi each round is defined as follows,

xi(k + 1) = xi(k) + ε
∑

j∈Ni

(xj(k)− xi(k)) (2.1)

where k is the current time step, ε determines how much the node adjusts its con-
sensus state to those of other nodes in each iteration, Ni is the set of neighbours of
node i. The weight ε is defined as one divided by the degree of the node with the
highest number of neighbours, i.e. the node with the highest degree. This algorithm
will henceforth be referred to as simple consensus.

7



2. Theory and Background

2.1.1 Convergence

In average consensus algorithms, convergence and stability are two important prop-
erties. Convergence is the process where all nodes asymptotically reach the average
of all proposed values. Furthermore, stability determines whether the nodes oscillate
around the average value. If an algorithm is not stable, a node’s consensus state
might oscillate around the average instead of converging [21]. The performance of an
average consensus algorithm can be evaluated by studying the time to convergence
and the error of the final converged consensus states compared to the true average
of all initial consensus states.

If nodes in a distributed system are to communicate with each other, they require
some form of connection to communicate over. However, this connection may be
unreliable. This is why average consensus algorithms often include support for
packet delays, packet drops and changing topologies [2, 22, 17]. One effect of a
dropped packet containing consensus information, is that it may affect the final
consensus state of the nodes. Clearly, if a consensus state is not part of the next
round of consensus calculations because it was dropped, it will affect the results of
that round and thus every round after it as well.

2.1.2 Fast Linear Consensus

The fast linear consensus algorithm aims to improve convergence time by setting
individual weights on each connection [23]. In this algorithm, each node updates its
consensus state every round differently. The formula for getting the consensus state
of node xi for the next timestep t is as follows:

xi(t+ 1) = Wiixi(t) +
∑

j∈Ni

Wijxj(t) (2.2)

WhereWij is the weight on the connection between node i and j, and Ni is the set of
neighbours of node i. The edge-specific weight is what distinguishes this algorithm
from simple consensus. These weights can be calculated in a number of ways, one
of which is the local-degree weight calculation:

Wij(t) = 1
max{di(t), dj(t)}

These weights are determined by which of the nodes xi or xj has the highest out-
degree, i.e. the number of nodes that it can communicate to. The weight for the
node’s own consensus state is then set as one minus the sum of all the other weights.

2.1.3 Ratio Consensus

Another average consensus algorithm is ratio consensus; by performing consensus
on two values at the same time, the algorithm aims to mitigate the consensus state

8



2. Theory and Background

error that arises when drops occur [19]. The consensus equation is equal to the one
used in fast linear consensus (2.2). The weights are defined as one divided by the
node’s own out-degree for its own consensus state and 1/(1+dj) for other consensus
states, where dj is the degree of the node who sent its state.

The first average consensus, called y, simply performs consensus on the consensus
states of each node. In the second consensus being performed, called z, all nodes
begin with the same initial consensus state 1. The actual state xi of node i at
timestep t can then calculated as xi(t) = yi(t)/zi(t) The states of consensus y and
z at each timestep are sent to neighbours in the same message. If a message is lost,
the z consensus will reflect this and will be able to compensate for the lost packet
[19].

2.2 Intelligent Transportation Systems

Intelligent Transportation Systems (ITS) can be seen as a subset of the ongoing
Internet of things research. While a VANET is simply the network over which a
system communicates, ITS can be seen as the actual services and protocols that use
the VANET to, for example, enhance safety and increase the quality of cooperative
driving [4, 6].

2.2.1 Vehicular ad hoc Networks

One possible way to enable V2V communication in an ITS is the use of a Vehicular
ad hoc Network (VANET). An ad hoc network is a decentralised network, where
the nodes communicate directly with each other. This is in contrast to centralised
networks where there exists some kind of access point to which all nodes send their
data and which routes the data for the nodes. A VANET is a mobile ad hoc network
in which the nodes’ positions in the network can change. One of the message stan-
dards proposed for V2V communication is an extension of 802.11 (Wi-Fi) named
802.11p. It has been shown to offer acceptable performance while not being the
perfect solution in all situations [24].

In all kinds of wireless networks, VANETs included, packet loss can occur due to
interference on the channel. If the waves of multiple different signals interfere with
each other at the receiving antenna, the receiver may be unable to extract the
individual waveforms that were originally transmitted by the sender, and therefore
unable to read the packets [25]. Interference can occur due to the same signal
arriving in multiple copies due to multi-pathing. Furthermore, it can also occur due
to multi-user interference, which is when transmissions from different nodes overlap
on the channel.

It is possible to mitigate multi-user interference in multiple ways, and for 802.11p,
CSMA/CA has been suggested. CSMA/CA (Carrier-Sense Multiple Access with

9



2. Theory and Background

Collision Avoidance) works by checking the current activity on the channel and
delaying the transmission of a message if an ongoing transmission is detected or
the current signal strength exceeds a certain threshold and no valid message can be
found. This is because it would indicate that interference is occurring on the channel
[25]. However, some studies have been performed which show that Self-organising
Time Division Multiple Access (STDMA) outperforms CSMA in most situations of
both high and low congestion [26]. There is therefore some contention over which
congestion avoidance method that should be used.

2.2.2 Communication Channel Modelling

A number of different models exist for modelling the loss of signal power between
a sender and a receiver in a wireless radio channel. Path loss models account for
the loss over distance from the transmitter [27]. A simple model for path loss is one
where the attenuation in dB is proportional to logarithm of the distance, and can
be configured with constants for path loss, antenna characteristics and the reference
distance to the antenna far-field.

Shadowing, also referred to as slow fading, is the loss caused by obstacles in the
environment such as walls, buildings and terrain. In order to make a model for this
type of loss as accurate as possible, the location, shape, and material properties of
the blocking objects would have to be known. Since this information is generally
not known, statistical models are commonly used.

When a transmitted signal encounters obstacles in the environment, the interaction
between the signal and the obstacles produces additional copies of the signal, called
multipath components, which are reflected, diffracted or scattered before reaching
the receiver. The components are also subject to different delays. This results in
distortion of the received signal, since the signal and its multipath components are
summed together at the receiver. This is referred to as multipath fading or fast
fading. Similar to shadowing, multipath effects are usually modelled statistically.
One such model is the Nakagami fading distribution. This distribution can be
configured with a fading parameter, and if this parameter is set to 1, it is equivalent
to the Rayleigh fading distribution.

2.2.3 Positioning

Currently, it is possible for vehicles to receive their positioning through different
GNSS systems, such as GPS, Galileo or GLONASS. GPS accuracy can be as close
as 5-10 meters in perfect conditions [7]. However, in urban environments, this can
be greatly reduced. This is because some signals could be blocked or affected by
multipathing.

In recently developed work, it has been proposed to apply a consensus algorithm
and belief propagation to improve the positioning accuracy of vehicles [7]. This

10



2. Theory and Background

method is referred to as implicit cooperative positioning (ICP). When all vehicles
have identified the object using sensors, belief propagation can be used to more
accurately determine the location of the feature, which in turn can be used to
improve vehicle positioning.

2.3 Software

This section presents the software used in this project. While similar software could
be used, all software applications used in this project are distributed under a license
such as GNU GPL or BSD-3, which means they are free to download and modify.

2.3.1 Network Simulator: ns-3

The ns-3 network simulator can be used to create realistic simulations of a variety
of different types of networks [28]. It can be used for testing how a system would
operate in a specific network environment. The simulator is implemented as a dis-
crete event simulator and by default uses a non-real-time scheduler, meaning that
after an event has been completed, the simulation time is immediately moved to the
next event. In order to be able to interact with real networks outside the simulator,
a real-time scheduler is also available. Using the real-time scheduler, it is possible
to integrate ns-3 with real-world network stacks so that packets can be transmitted
between the simulator and a real-world application. Various models exist in ns-3
that represent protocols, devices etc. from the real world [11]. These models are
implemented in modules that are part of the ns-3 software.

2.3.2 Docker Containers

A Docker container is an executable package of software, which includes the applica-
tion and libraries and settings needed to run it [29]. It allows applications to be run
isolated from other applications on the system. Unlike a virtual machine, however,
a container does not simulate hardware and does not run a full copy of an operating
system. Instead, it uses the OS kernel of the system it is running on. Therefore, a
container takes up less space. A docker container is also placed on a virtual subnet.
This is done by creating a simulated network bridge to which the docker node is
connected.

2.3.3 Robot Control: ROS

The Robot Operating System (ROS) is a framework that can be used for imple-
menting software for robots [30]. It contains libraries that define a common message

11



2. Theory and Background

passing system and standard message formats which simplifies communication be-
tween parts of a robotic system. ROS can be connected to the ARIA framework,
which is used for communication between a MobileRobots robot and a computer
[31]. Using ARIA, control commands can be sent to the robot and sensor data can
be read.

2.3.4 Camera-based Positioning: GulliView

GulliView is a software application that in combination with a camera can be used
to find the location of AprilTags in the camera’s field of view [32]. AprilTags are
similar to QR codes and, depending on the used camera’s resolution, can be a variety
of sizes [33]. Four tags are used to create an origin of the coordinate system and
how large one unit in the coordinate system is, and the relative position of another
tag can then be calculated by GulliView [32].

12



3
Methods

This section describes the architecture of the testbed with the simulated network
and the physical VANET representative system. How the parts are connected, what
each part does and how we evaluate different consensus algorithms using the testbed
is explained. It also presents the modifications made to the algorithms presented
in Section 2.1 so that they can be run in the environment that is being simulated.
Finally, the experiments which were run on the physical and simulated systems are
also described.

Two systems for evaluation of consensus were created, a simulated one where av-
erage consensus algorithms are run on a single scalar, and a physical one where
consensus is performed on the components of a position in 2D space which is used
in a representative VANET setting in order to improve positioning. The physical
system is to demonstrate a simplified application of consensus and to show how ns-3
can be used with a running system, while the simulation is used to evaluate the
performance of each algorithm.

3.1 Testbed Architecture

In order to evaluate algorithms in a scenario which is not affected by the physical
system properties, a system was created that consists of virtual nodes communicat-
ing over a network connection which is piped through ns-3. The network simulated
by ns-3 is configured to represent an 802.11p network, since this standard has been
proposed for use in VANETs. Figure 3.1 shows the components that are needed for
communication to get from one node to another. Docker containers are the virtual
nodes that are running the algorithms. One container is created for each node in the
network and is needed in order to pipe the communication through ns-3. The figure
shows the setup for only two nodes since additional nodes have the same structure
as the ones shown. The guide on how to run this simulation, and the accompanying
code, can be found in the thesis project’s git repository 1.

The simulation system runs on a single host computer, and nodes in a distributed
VANET system are simulated by Docker containers. Every container is connected

1https://bitbucket.org/exjobb17consensus/consensus

13

https://bitbucket.org/exjobb17consensus/consensus


3. Methods

Host
ns-3

Positioning
server

ns-3 node ns-3 node

WAVE
NetDevice

WAVE
NetDevice

TapBridge
NetDevice

TapBridge
NetDevice

Tap Tap

Bridge Bridge

Container Container

Application Application

Position sender

Simulated wireless connection

Additional
ns-3 nodes

Additional
container

nodes

Figure 3.1: Architecture of the simulation system.

14



3. Methods

to a network bridge created with Docker, which lets applications inside the container
communicate with applications connected to the bridge on the host. The position
sender is an application which runs on the host and informs both the software
running on the virtual nodes and the ns-3 simulation about the current position and
velocity of each node by sending messages over TCP. This way, the system makes
sure that the virtual nodes and the ns-3 simulation are synchronised and have the
same view of where the nodes are.

Each container also has a representation in the ns-3 simulation and a communication
channel to the corresponding node in ns-3. The bridge is connected to a tap interface,
which the representation of the container in ns-3 is also connected to by the ns-3
module TapBridge NetDevice. This module enables ns-3 to connect and receive and
send data through taps. Finally, the data arrives at the WAVE NetDevice. This
ns-3 module simulates many aspects of the network, such as scheduling when the
packets are to be sent in order to simulate sender delay. It is also the module that
simulates the 802.11p network and also the medium access control layer, which is set
to use CSMA. Through this channel, the nodes can communicate with other nodes
over the simulated network in ns-3. What modules are used in the ns-3 simulation
is further specified in Section 3.1.1.

The tap and bridge in Figure 3.1 are virtual devices that are created by the host and
are needed for communication between the docker container and ns-3, and between
host and docker container. Host to ns-3 position sender communication occurs
over localhost. The docker container is put on a different virtual network than the
host itself, which means the virtual bridge is needed to connect the two networks
together. The bridge is also the docker container’s standard gateway and through
which the communication to ns-3 occurs. A tap device is also connected to each
bridge, allowing ns-3 to send and receive packets over the bridges.

3.1.1 Configuration of ns-3

In the ns-3 simulation, the wireless communication channel and the physical and
data link layers of the nodes are simulated. Additionally, ns-3 simulates the positions
and movement of the nodes so that it can take into account how the connection
between them would be affected by the distance and other nearby nodes whose
traffic may cause interference. The simulation makes it possible to evaluate the
performance of distributed algorithms in the presence of dropped packets, delays
and congestion that would occur in a real VANET. The following table summarises
what ns-3 modules are used and what properties of the system they simulate.

15



3. Methods

Property ns-3 module
MAC layer Wave
Wireless channel YansWifiChannel
Physical layer YansWifiPhy
Propagation delay Propagation model (ConstantSpeedPropaga-

tionDelayModel)
Serialisation delay YansWifiChannel
Propagation loss of
signal power

Propagation model. Log distance model for
loss over distance combined with Nakagami-
m model for multipath fading

Receiver side drops
(network)

NistErrorRateModel, based on signal power
and SNIR (signal to noise and interference
ratio) at the location of the receiver

Receiver side drops
(probabilistic)

Error model. Drops with a specified proba-
bility. Modified Wi-Fi model that supports
the error model

Position and move-
ment of vehicles

Mobility model

Positioning data from
external application

Custom implementation in ns-3

Table 3.1: The ns-3 modules used in the simulations and what properties they
simulate.

The WAVE model in ns-3 is used to simulate devices that follow the 802.11p-2010
standard for communication between vehicles. This model uses a 5.9 GHz channel
with a bandwidth of 10 MHz and an OFDM rate of 6 Mbps. Additionally, the
mac layer has support for communication outside a basic service set, meaning that
devices can communicate without setting up some association between them.

The communication channel is modelled using the YansWifiChannel model, and the
physical layer of the nodes is modelled based on the YansWifiPhy model. When
a packet is sent over the channel by a node with YansWifiPhy, it is received by
other nodes (also modelled by YansWifiPhy objects) after the delay which is calcu-
lated based on serialisation delay and propagation delay, and with signal power that
is reduced according to the propagation loss model(s) that the channel has been
configured to use.

YansWifiPhy keeps track of incoming packets and calculates the probability of errors
on received packets. It breaks each packet into a a number of chunks, for which it
individually calculates the signal to noise and interference ratio (SNIR), using the
NistErrorRateModel. Based on the SNIR values, the probability of error for each
chunk is calculated, and these probabilities are combined to a final probability for the
whole packet. When YansWifiPhy object receives a packet, it uses this probability
to decide whether the reception was successful, and if it was, the packet is forwarded
to the MAC layer.

16



3. Methods

For the wireless channel, we use a constant speed propagation delay model where
the delay is calculated based on the distance and the speed of light. For propagation
loss, we use a log distance model with its default settings, namely an exponent of 3
and a reference loss of 46.6777 dB at a reference distance of 1 m. The log distance
model is combined with the Nakagami-m model for multipath fading. For the fading
parameter of the Nakagami-m model, the default values of 1.5 for distances smaller
than 80m and 0.75 for larger distances are used.

The error model is used to simulate random drops according to a predefined proba-
bility or pattern. The model drops packets at the receiver, meaning that the packet
is sent over the channel before being dropped. By default, the error model is not
supported by the Wi-Fi model. Therefore, the Wi-Fi model was modified to take
the error model into account.

The propagation module is used to model propagation loss and propagation delay in
the communication between simulated nodes based on their position and movement.
The propagation loss model calculates the signal power at the receiver based on the
signal power at the sender and the position of the respective antennas. Several
propagation models can be used together and the simulation then takes both into
account when calculating the receiving power.

The mobility model keeps track of the position and movement of the nodes in the
simulation. Using this model, initial positions of the nodes can be allocated, and
movement of nodes during the simulation can be predefined. The movement can
either be defined in a trace file that is read by the simulator, or by defining constant
velocity, constant acceleration or random movement. This model was modified to
support reception of new node positions from an external application as explained
in Section 3.1.2

While using ns-3, certain performance limitations were encountered. Therefore, the
real-time scheduler was configured to use a hard limit so that it keeps track of how
far the simulation has fallen behind real-time and generates a fatal error if it falls
behind by more than a predefined tolerance threshold. Additionally, the real-time
scheduler was modified so that it can log how far behind real-time it is.

3.1.2 Real-time Position Modification of ns-3

When using ns-3 to simulate wireless networks, it can calculate propagation loss and
interference between signals. This requires the use of a position model which makes it
possible for ns-3 to allocate a position to each node in the simulation. Originally, ns-3
only supports pre-calculated traces for node positions, which removes the possibility
of certain kinds of experiments. The most significant limitation is the case where
the paths are unknown, or can change dynamically during the simulation. Since the
robots in the robot system in this thesis drive based on a controller output, it is
impossible to tell ns-3 the exact paths of the robots in advance. It was therefore
deemed necessary to modify ns-3 so that it may receive position updates in real-time.

17



3. Methods

The modification was implemented by creating a TCP server, running on a separate
thread, which receives packets that contain the ID of the node whose position should
be updated, the 2D position, and the velocity in each axis. Since the simulation
originally only changes position in one thread, locks needed to be implemented where
positions are altered in the mobility model. It was also necessary to add locks to the
reference counting implementation in ns-3. The addition of this new thread and the
locks to an otherwise sequential updating of positions might lead to a performance
impact in the simulation. The impact depends on how often the original thread
checks and updates the positions itself. However, the impact is difficult to calculate;
the frequency of updating depends not only on the number of nodes, but also on
how many packets are being sent through the simulation. The performance impact
of this modification has been studied, and the results of these experiments can be
seen in Section 4.4.

3.2 Simulation Architecture

In the simulation system, each Docker container runs one of the nodes that per-
form consensus. Each consensus node is implemented as a python program which
communicates with the other nodes, keeps track of the current consensus state and
performs the updating of this state as defined by the consensus algorithms. Con-
sensus is performed on a scalar value, since the result can easily be compared to the
exact average value.

The position sender in this case is implemented as a python program which com-
municates through a TCP connection with ns-3 and each consensus node. It reads
positioning updates from a predefined trace file and sends them to ns-3 and the
corresponding consensus node, and also sends the command to the nodes to begin
consensus.

3.2.1 Simulation Scenarios

This system will be used for two different simulation scenarios, referred to as the
random movement simulation and the intersection simulation. In the random move-
ment simulation, all nodes participate in average consensus at all times. By running
experiments with moving nodes, the effect of time-varying topologies can be eval-
uated. The paths of each node is predefined according to a randomly generated
trace file. Every second, nodes are instantly moved by up to 21 metres in a random
direction. However, there is a restriction on the nodes which makes sure they will
stay inside a square-shaped region of 200 by 200 metres.

The intersection simulation is designed to represent a possible cooperative position-
ing situation. The paths of the nodes are defined to simulate vehicles driving in an
intersection, as can be seen in Figure 3.2. In order to be able to reuse nodes, they
turn around after driving through the intersection so that they may go through it

18



3. Methods

Figure 3.2: How the nodes move in the intersection simulation. The two black
lines represent the lanes in which the nodes are moving back and forth. Additionally,
nodes are moving in both directions simultaneously in both lanes. The inside of the
ring represents the area in which the nodes are able to perform consensus.

again and act as new nodes, which means few nodes can be used to simulate a much
larger system. All nodes drive at a speed of 10 m/s and they turn at slightly dif-
ferent times in order to create a randomness to when they reenter the intersection.
The roads are 200 metres long and a node is considered being in the intersection
when it is at most 70 metres from the middle point. The nodes perform consensus
on noisy measurements of the position of an imagined object, which is defined to
be in the middle of the intersection. Because of this, not all nodes in the system
are performing consensus; only those that are close enough to the intersection can
observe the object and perform consensus.

The result of having moving nodes in an ad hoc network is that some modifications
to the algorithms are required, which will affect their properties (these modifications
can be seen in Section 3.2.2). Furthermore, since the focus of this simulation is to
evaluate consensus algorithms, a few surrounding assumptions and simplifications
are made. We assume that the object that consensus is performed on is decided
on and found by the nodes with the help of another algorithm. There is also no
collision avoidance in the intersection; the paths are only for ns-3 to calculate how
the network would be affected in this kind of situation.

3.2.2 Implementation of Average Consensus Algorithms

While this thesis uses the three algorithms introduced in Section 2.1, simple, ratio,
and fast linear consensus, they are implemented with some modifications. This is
due to the random movement and intersection scenarios adding new properties to the
system that do not directly fit with the original definitions of the algorithms. The
largest of these problems being a priori assumptions such as knowledge about the

19



3. Methods

connections in the graph. Moreover, it was also decided that these changes should
not focus on being improvements. The goal was to make the implementations simple
and with as few assumptions as possible. These implementations, combined with
the results gathered during experimenting, could be used as a baseline for future
modifications to average consensus. If the algorithms were already modified greatly
during experimenting, it would be harder to compare and contrast them to each
other.

3.2.2.1 Random Movement Implementation

In the random movement simulation, the nodes have no knowledge about who their
neighbours are. The algorithms therefore use UDP broadcast to send their consensus
state. Since they do not know how many neighbours they have, they cannot know
how long they should wait for messages from all neighbours to arrive. Therefore,
an interval-based consensus round is implemented where they receive messages for
a certain time interval and then perform consensus on the oldest message from each
node that arrived inside that time interval.

The unknown number of neighbours also creates a problem for the algorithms that
require an out-degree to calculate their weights (fast linear and ratio consensus).
This is solved by having an announcement round before the first round of consensus
state messages, where they broadcast a message without state information. From
that point on they use the in-degree (the number of nodes they received messages
from the last round) from the last round as their out-degree. In this simulation,
all nodes perform consensus at all times and almost synchronously since the host
commands all the nodes to start at roughly the same time.

3.2.2.2 Intersection Simulation

In the intersection simulation, the same problem arises as in the moving node sim-
ulation. We therefore need to use UDP broadcasts, update consensus at a time
interval and set out-degree as the last observed in-degree. However, it also adds
the problem that only the nodes close enough to the intersection should perform
consensus. There will need to exist an initiator that starts the consensus when it
reaches the intersection. When a node receives a message, it checks if it can see the
object consensus should be performed on, or in other words, it checks if it is in the
intersection. The node then starts consensus and continues for as many intervals as
it is inside the intersection. Since nodes are joining at random times, it is important
to note that the time intervals for the nodes in the system are asynchronous as
opposed to the moving node system.

A further modification is made to the simple consensus algorithm in the intersection
simulation. In this scenario, the consensus states of new nodes weigh less than the
nodes already performing consensus. The argument for this is that nodes that have
already performed consensus for any amount of rounds higher than one, should have

20



3. Methods

a more accurate state of the value than a node that just arrived. An added effect
is also that the consensus states inside the intersection should be more stable, and
not change as much when a new node enters, since the new consensus state will
weigh less. This is implemented by raising the ε-value for the new node the first two
rounds. The effect of this is that the node will weigh the consensus states of the
existing nodes more at first.

3.3 Robot System Architecture

An overview of the architecture of the system is shown in Figure 3.32. The idea is
that the robots drive in a circle around a centre point with the use of a P-controller
that controls on the current position error and angle with regards to the intended
circle. The position of the reference object and the robots is measured with a camera
hanging from the ceiling and the GulliView software by placing tags on the robots,
and another tag placed at an arbitrary location to represent the reference object.
This data is used to simulate imprecise GNSS data and precise measurements of the
distance between the robots and the reference object. The position of the reference
object is then estimated by using these two measurements and is used as the initial
estimation. Consensus is then used to improve the robots’ estimations of the position
of the reference object. The improved estimation is then used by the robots to more
accurately determine their own position, which should make it possible for them to
more accurately follow the circle around the reference point.

A laptop is placed on top of each robot. This laptop performs all controlling of
the robot by using the ROS environment. It sends commands to the robot by
using the ROSARIA library and a serial connection. The laptop is also used for
average consensus communication to the laptops of other robots and for receiving
the position of itself and the robot from GulliView. In order to simulate a network
environment representative for a real VANET, communication between the laptops
is piped through ns-3. Therefore, all data needs to be sent to a host containing ns-3
and the docker containers. The ns-3 simulation is set up as defined by our testbed
(shown in Figure 3.1). The Docker containers are in this case only used to forward
the communication between the robots and ns-3.

In order for the robots to reach a Docker node with its own subnet on the host, ip
routing has to be performed. An example of how a packet is sent from one robot
to another can be seen in Figure 3.4. The laptops and the host computer are all
connected to the same wireless network. However, the laptops cannot immediately
connect to the docker node which is connected to the simulated network bridge. It
is therefore necessary to tell Node1 that for it to send packets to Docker1 it has to
route all packets to the Bridge1 network via the host.

The communication between the laptop and docker container is implemented using
2The accompanying code for this architecture and how to run it can be found in the thesis

project’s second repository: https://bitbucket.org/exjobb17consensus/consensusros

21

https://bitbucket.org/exjobb17consensus/consensusros


3. Methods

Absolute
position sensor
(GulliView)

(x, y) of robot distance, angle from
robot to object

Distance and
angle sensor

GNSS error
Estimated
position of
object

(x, y) of object

Consensus Connected
robots via ns-3

(x, y) of object
Control
angular

velocity of
robot

(x, y) of
robot

(x, y) of
robot

(x, y) of
object

distance, angle from
robot to object

Figure 3.3: Architecture of the robot system.

TCP to make sure that no packets are dropped outside of ns-3. However, this
can lead to delays if a packet is dropped and is required to be resent. There is
also a small delay that is added because the data from the robots has to be sent
over a network in order to reach the docker nodes (robot, to host through wireless
network, to docker). It is therefore important to run this system on a reasonably
reliable network, so that the results, which are dependent on communication in the
system, have only been affected by the network simulated by ns-3.

Figure 3.4: The path taken by a packet sent by Node1 with Node2 as destination.

Since both the robots and ns-3 need the positioning data, it was necessary to mod-
ify GulliView. The modified version sets up a TCP connection to ns-3 and also

22



3. Methods

broadcasts positions with UDP so that the robots can receive their positions.

3.3.1 Experiment Scenarios

The robot system is run with and without consensus to evaluate how consensus
improves the positioning. As with the simulation, it is assumed that the finding
and recognition of the object that consensus is to be performed on is done by some
other algorithm. In the setting without consensus, the robot calculates an estimated
position of the object once every second by the distance given by GulliView and its
own skewed GNSS position. During this second it controls itself by estimating its
own position using the distance to the object. After one second, it once again
calculates an estimation of the reference object position by taking half of its old
estimation and half of the new estimation calculated as last time.

In the setting with consensus, the robot calculates the position of the object in the
same way. However, during the second it is controlling on the old value, the robot
is also performing consensus on the reference object position with the robots that
it is able to communicate with. After one second, the robot starts controlling on
the results of the consensus algorithm. The new estimation that is sent to the next
second of consensus is set as half of the old consensus results and half of the newly
performed measurement of the object.

The consensus algorithm used in this system is mostly similar to the modified sim-
ple consensus algorithm for the random movement simulation presented in Section
3.2.2: It uses UDP broadcast since it does not know its neighbours, and it performs
consensus in a set interval. However, since the robots in this system introduce new
values to the consensus on every second, this will cause fluctuations in the consensus
states of other nodes. This effect would be significant if the new consensus state
would weigh as much as the ones already in the system. Therefore, a small change
to the algorithm is made, so that when a node introduces a new estimation during
consensus, the node raises its ε-value during the following two rounds. This way, the
node trusts the estimations of the other nodes more than its own estimation these
rounds, which should lead to a more stable consensus estimation.

3.4 Experiments

By creating the simulated and the physical system as specified, experiments on con-
sensus algorithms can be performed. To investigate the performance of consensus
algorithms, it is possible to look at how the algorithm converges in different situa-
tions and configurations. The effect of using consensus to improve the driving of a
robot can be evaluated by looking at the position error from the desired trajectory
and the estimation of its position.

In the random movement simulations, the consensus algorithms are compared by

23



3. Methods

finding at what point all nodes in the system have reached a consensus state that is
within a certain range from the final average that the nodes converged to. Because
of drops and delays, a system with the same set of starting consensus states may
converge to different averages. It is also uncertain when the system actually will
converge. The simulations are therefore run multiple times and for a longer time
than is expected to be needed for convergence. After simulations are finished, the
history of consensus states for each node is checked in order to find out when all
nodes in that specific simulation reached a consensus state within the range.

The results that are gathered from the simulations are: the number of rounds until all
nodes are within the range, a convergence plot which shows the rate of convergence,
the error from the achieved convergence compared to the true average of the initial
consensus states. The intersection simulation convergence graph is slightly different;
since nodes forget the results when they leave the intersection, they start with their
initial consensus states and act as new nodes when they rejoin. All nodes will
therefore never converge at the same time. However, it will be possible to see if
the consensus states of the nodes inside the intersection converge and if new nodes
joining in the ongoing consensus converge faster over time.

In summary, the following are the different configurations and experiment scenarios
that are used to evaluate consensus algorithms with the testbed.

• Random movement simulation

– Convergence time (number of rounds) and skew of the final consensus
state in a changing topology with different number of nodes and added
drops

– Comparison to exhaustive flood with regards to convergence time

• Intersection simulation

– Error over time from the true average in a system where nodes enter and
leave the system at different times, with different number of nodes and
added drops

– Comparison to exhaustive flood with regards to error over time from true
average

• Robot system

– Comparison of distance error over time from the circle with and without
consensus

– Show how the estimation of the position changes when using consensus

24



3. Methods

3.4.1 Exhaustive Flood Comparison

The average consensus algorithms are compared to an exhaustive flood. They are
compared in regards to convergence time for the two different types of algorithms.
The exhaustive flood describes an algorithm in which every new message that is
received is forwarded, so that all nodes in a connected network with perfect com-
munication will ultimately have received the value of every node in the network.
When running exhaustive flood in the simulation, each node starts by broadcasting
a message containing their ID and value. By checking the ID, a node can see if they
have received the value before. If it is a new value, they append it to their own mes-
sage and broadcast this newly combined message. The nodes compute the average
of all values they have received when a new value is arrives, Sum of known values

Number of known nodes , but
keep sending the list of original values. When and if all values have propagated to a
certain node, this computation will yield the true average of all values. At a certain
amount of nodes, the message with the gathered values will become too large for a
single packet. In order to be able to send the message at this point, it will have to
be split up in parts and will be sent in separate packets in a round-robin fashion.

In our experiments, flood does not rebroadcast values immediately when receiving
them. Instead, each node only listens for packets for a defined interval, similarly
to how consensus is implemented. It then sends out its own value and the whole
list of all values it has ever received at the end of each interval. Since new nodes
arrive continuously in the intersection simulation, the list of values would grow
continuously. At a certain point the list would become unmanageable and even a
round-robin sending model would not be able to send all values before the interval
finished. It is therefore necessary to, at some point, remove old values from the
system. Therefore, we add a lifetime number to each value which is also sent to the
other nodes. This lifetime number is decreased each round until it reaches zero, at
which point it is removed from the list of values.

Comparing average consensus to an exhaustive flood is important since it shows
at what network connectivity, and at which number of nodes, average consensus
is faster in a network with limited capacity. Average consensus updates consensus
states gradually between neighbours while exhaustive flood requires all data to have
reached all nodes. Furthermore, in average consensus, the nodes do not need to
forward the consensus states of other nodes. Therefore, the packets are smaller
which might mitigate some interference and waiting in the network. By comparing
the implemented consensus algorithms to exhaustive flood, it is possible to see when
and even if average consensus is helpful.

Consensus and flooding are compared on how long it takes for all nodes in the system
to reach a value within a specific range from the final value when convergence is
complete. For exhaustive flood, the final value is always the true average, since this
is the the situation where a node has received the values of all other nodes. For
average consensus, as explained before, the final value may not be the true average
since a single dropped packet will skew the final consensus state. The simulations
are therefore run until both average consensus and exhaustive flooding have reached

25



3. Methods

their final value but the comparisons are made at the point where all nodes in the
system have reached the specified range.

26



4
Results

In this chapter, the results gathered from experiments, as defined in Section 3.4,
are presented. For simulations, the time needed for convergence and how much the
result is skewed from the average is shown. Due to the large number of experiment
scenarios, only some of the data is presented in graphs. These graphs have been
selected to give a general idea of the behaviour of each algorithm, and to demonstrate
what each scenario looks like. For the robot system, data on how the robots drive
is presented in addition to data on the consensus process.

4.1 Random Movement Simulation

This section presents results from the simulation scenario where all nodes move ac-
cording to a predefined pattern of random movement. Experiments were performed
with 20 and 48 nodes, and five experiments were run for each algorithm and sit-
uation. This was done in order to get the average time to convergence and error
from average, since these varied from run to run. The initial consensus states were
defined randomly according to a uniform distribution and adjusted so that the true
average was equal to zero. The same predefined movement pattern and set of initial
consensus states were used for all experiments with the same number of nodes.

Tables 4.1 and 4.2 present the performance in terms of average time to convergence,
measured in number of rounds, and average error from the true average of the initial
consensus states for all evaluated algorithms in the random movement simulation,
with 0% and 20% added drop chance. These drops are simulated as receive drops
and are simulated by the ns-3 rate error module which described in Section 3.1.1.
It should be noted that this drop chance is in addition to the modules that create
the chance of drop due to interference and propagation fading. Simple consensus
requires an ε-value and is set to to 1/20 for 20 nodes, and 1/48 for 48 nodes.

27



4. Results

Convergence
time

Error
from average

Ratio 7.6 0.57
Fast linear 7.8 0.28
Simple 13.0 0.26
Flood 4.0 0.00

(a) 0% added drop chance

Convergence
time

Error
from average

Ratio 7.6 0.44
Fast linear 7.8 0.48
Simple 14.8 0.20
Flood 4.8 0.00

(b) 20% added drop chance

Table 4.1: Convergence time in number of intervals and skew from true average for
random movement simulation with 20 nodes for the evaluated consensus algorithms.

Convergence
time

Error
from average

Ratio 4.2 0.29
Fast linear 5.4 0.20
Simple 9.8 0.40
Flood 3.6 0.00

(a) 0% added drop chance

Convergence
time

Error
from average

Ratio 4.6 0.30
Fast linear 5.4 0.22
Simple 12.0 0.26
Flood 4.2 0.00

(b) 20% added drop chance

Table 4.2: Convergence time in number of intervals and skew from true average for
random movement simulation with 48 nodes for the evaluated consensus algorithms.

Figures 4.1, 4.2, 4.3 and 4.4 show the consensus update process of the evaluated
algorithms in the random movement simulation. For the sake of brevity, only the
experiments with 20 nodes and 0% added drop chance are shown. However, the
general behaviour of the algorithms is similar when run with 48 nodes or 20% drop
chance, even though the number of rounds to convergence and final average is dif-
ferent. The reason why ratio consensus and fast linear consensus wait for one round

28



4. Results

before updating their consensus states is due to the modifications made to the al-
gorithms when implementing them for distributed simulation (these modifications
are explained in Section 3.2.2). One of these modifications being the addition of an
announce round to let the nodes find how many neighbours they have. Since simple
consensus and flood do not have this requirement, they can begin updating their
state immediately.

0 2 4 6 8 10 12 14
Round number

10

5

0

5

10

C
o
n
se

n
su

s 
st

a
te

Figure 4.1: Ratio consensus with 20 nodes and 0% added drops.

0 2 4 6 8 10 12 14
Round number

10

5

0

5

10

C
o
n
se

n
su

s 
st

a
te

Figure 4.2: Fast linear consensus with 20 nodes and 0% added drops.

29



4. Results

0 2 4 6 8 10 12 14
Round number

10

5

0

5

10

C
o
n
se

n
su

s 
st

a
te

Figure 4.3: Simple consensus with 20 nodes and 0% added drops.

0 2 4 6 8 10 12 14
Round number

10

5

0

5

10

C
o
n
se

n
su

s 
st

a
te

Figure 4.4: Flood with 20 nodes and 0% added drops.

4.2 Intersection Simulation

In this section, we present the results from the scenario where nodes represent vehi-
cles driving through an intersection and participate in consensus only while they are
within a certain distance from the centre point of the intersection. We used 20 and
48 nodes for this scenario as well. These numbers and the intersection range defined
in Section 3.2.1 translate to an average of 14 and 34 nodes being inside the inter-
section and performing consensus during simulation. Initial states were randomised
according to a uniform distribution and adjusted to make the true average equal to
zero.

The ε-value for the simple algorithm was set based on the expected number of nodes
inside the intersection and the slow weights. When slow weights were used, the ε-
value was increased by 0.04 for the first interval, and 0.02 for the second interval after

30



4. Results

a node joins consensus. With 48 nodes, the ε-value was set to 0.025 ≈ 1/34− 0.04,
and for 20 nodes, it was set to 0.067 ≈ 1/14− 0.04.

The average error, presented in Table 4.3, represents how far from the true average
the nodes are, from the first consensus update they do when entering the intersection
to the last update they do before they leave it. Two different variations of the simple
algorithm are included. Simple slow refers to the modified version of the simple
algorithm, explained further in Section 3.2.2, where new nodes give a higher weight
to nodes already in the system for the first rounds after joining consensus, while
simple refers to the version where the weight is constant.

48 Nodes 20 Nodes
0% 20% 0% 20%

Ratio 0.42 0.37 0.58 0.67
Fast linear 0.35 0.35 0.51 0.60
Simple 0.36 0.36 0.65 0.69
Simple slow 0.27 0.30 0.64 0.68
Flood 0.40 0.38 0.86 0.95

Table 4.3: Average error from true average during a 100 second run of the inter-
section simulation for 20 and 48 nodes with 0% or 20% added drop chance.

Figure 4.5 demonstrates the consensus update process in the intersection simula-
tion. Lines that start after 0 seconds represent new nodes joining the consensus.
Intersection simulation plots for the other algorithms can be found in Appendix A.

0 20 40 60 80 100
Time (seconds)

10

5

0

5

10

Co
ns

en
su

s 
st

at
e

Figure 4.5: Ratio consensus with 20 nodes and 0% added drops in the intersection
simulation.

31



4. Results

4.3 Robot System

This section presents the results from experiments performed with the robot system.
The scenario was as follows. The robots move in a circle around a predetermined
point, and use measurement data from a reference AprilTag placed on the floor to
orient themselves, as described in Section 3.3. A simulated measurement noise with
a Gaussian distribution and standard deviation of 0.8 metres is used to simulate
an imprecise GNSS system. The reference tag is initially placed at position (0.79,
0.72) metres. The system is run for 30 seconds before the logging starts. After an
additional 90 seconds, the reference tag is moved to (0.21, 0.72). The system then
runs for an additional 90 seconds. The ε-value is set to 0.3 while a node has been
part of the consensus for more than two intervals. As explained in Section 3.3.1,
this value is increased for the first two rounds when a new estimation is introduced.
For the first interval, it is set to 0.4, and 0.35 for the second.

Each robot logs its estimation of the position of the reference tag, and how far it is
from the circle it should follow (position error). The logged position error is based
directly on the position data sent by GulliView, rather than the simulated noisy
measurement that the robot controller uses. Additionally, the host which runs ns-3
and Docker logs the estimations of the reference object position sent by every node
to the other nodes. Experiments were performed with one, two and three robots.

Figure 4.6 shows how the position error evolves throughout the experiment for one
of the robots. The position error is defined as the absolute value of the difference
between the actual and desired distance between the robot and the middle point of
the circle.

32



4. Results

0 20 40 60 80 100 120 140 160 180
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Po
si

tio
n 

er
ro

r (
m

)

(a) Position error without consensus. Average error is 0.18 metres and stan-
dard deviation 0.15.

0 20 40 60 80 100 120 140 160 180
Time (seconds)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Po
si

tio
n 

er
ro

r (
m

)

(b) Position error with consensus. Average error is 0.06 metres and standard
deviation 0.08.

Figure 4.6: Error from desired position, with and without consensus.

The estimation of the reference object position by one of the nodes is shown in
Figure 4.7. Only the estimations in the x dimension are shown, but the error for
the y dimension is similar. The values are what is actually used by the controller,
and do not show the whole consensus process. This is because the controller of a
node gets the estimation from consensus one second after the node last added a new
measurement to the consensus.

33



4. Results

0 20 40 60 80 100 120 140 160 180
Time (seconds)

1.0

0.5

0.0

0.5

1.0

1.5

2.0
Po

si
tio

n 
(m

)
Estimated value
Actual value

(a) Estimation without consensus. Average estimation error is 0.39 metres
and standard deviation is 0.57.

0 20 40 60 80 100 120 140 160 180
Time (seconds)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Po
si

tio
n 

(m
)

Estimated value
Actual value

(b) Estimation with consensus. Average estimation error is 0.11 metres and
standard deviation is 0.30.

Figure 4.7: Estimation of reference object position in the x dimension, without
consensus and using consensus with two additional nodes.

While the system was also run with two nodes, the corresponding plots have not been
included for the sake of brevity. However, the performance for two nodes is generally
in between the single node and three nodes with consensus. Both the step from one
to two nodes and the step from two to three nodes show notable improvements
both to the estimation of the reference object position and the position error of the
robots. The average estimation error with two nodes was 0.19 m, standard deviation
of the estimation error 0.36, the average position error was 0.14 m, and the standard
deviation of the position error was 0.16 m.

34



4. Results

Figure 4.8 demonstrates the consensus process when running the system with three
nodes. The figure shows the estimations sent by all nodes in each iteration, instead
of just the consensus result value used by the controller (as in Figure 4.7).

60 65 70 75 80 85
Seconds

0.5

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Po
si

tio
n 

(m
)

Value estimated by node 0
Value estimated by node 1
Value estimated by node 2
Actual value

Figure 4.8: Estimation of reference object position in the x dimension by all three
nodes in the system.

4.4 Ns-3 Modification Performance Evaluation

These results show how the real-time position server that was implemented in ns-
3 affects the performance of the simulation. Table 4.4 shows the internal delay
ns-3 suffers from when too many packets enter ns-3 and it cannot keep up. This
experiment were performed on a system with an Intel(R) Core(TM) i5-6300 CPU
@ 2.40 GHz.

Average delay Highest observed delay Standard deviation of delay
Without With Without With Without With

20 Nodes 9 21 39 51 4 10
48 Nodes 35 98 81 251 16 49

Table 4.4: Internal ns-3 delay in milliseconds with and without the positioning
server for 20 and 48 nodes.

It can be seen that a delay occurs both with and without the positioning server,
but increases when the positioning server is active and it slows down the simulation
significantly for a large number of nodes.

Because of this, an experiment using a system with an Intel(R) Core(TM) i7-4790
CPU @ 3.60GHz was also performed. This experiment did show some promise; the

35



4. Results

maximum delay was up to 116 ms for 48 nodes with random movement, a round
interval of 0.4 seconds and the position sender enabled.

36



5
Discussion and Conclusion

In this chapter, we discuss the results and what can be derived from them. The
advantages and disadvantages of each algorithm in the different experiments is dis-
cussed. Problems and important findings about the testbed and ns-3 are discussed.
Furthermore, some comments about the robot system are brought up. This chap-
ter also discusses some possible future applications of and extensions to the project.
Finally, some conclusions regarding our testbed and consensus in VANETs are made.

5.1 Discussion of ns-3

More modules exist in ns-3 that could be interesting to add in order to better
resemble a VANET scenario. For example, there are a number of propagation models
that could be used other than logarithmic and Nakagami-m propagation. So for
future use of this project, one could investigate whether other models or different
parameters for the models used would be more appropriate for the scenario one
wants to simulate. Furthermore, while ns-3 simulates path loss due to the distance
between sender and receiver and fast fading due to multipath effects, it does not
simulate slow fading due to objects blocking the signals.

We are not aware of any model in ns-3 that simulates slow fading statistically for
the frequency we use. There exists a building model which can be combined with a
propagation loss model such as Okamura-Hata in order to simulate an environment
for slow fading. However, none of the propagation models that the building model
can be combined with support frequencies of more than 2600 MHz. If such a model
were implemented, it could be used to make the intersection simulation more real-
istic. Interference from signals from nodes outside the system is also not simulated.
The possibility to add extra receiver-side drops according to a configurable proba-
bility was implemented in order to account for such additional phenomena that are
not simulated, and to be able to evaluate algorithms under even more challenging
conditions.

37



5. Discussion and Conclusion

5.1.1 Real-time Simulation Performance

The ns-3 performance results (Section 4.4) show that the implemented position mod-
ification actually slows down the simulator. However, it also shows an existing delay
in the real-time simulator in ns-3 even without the position modification. Our per-
formance experiment also only evaluates how ns-3 is affected when all nodes send
packets at approximately the same time. It is likely that the performance impact
would be smaller if packets are not sent in simultaneously. Since ns-3 processes
events sequentially, it cannot take advantage of a multi-core system. A system with
a strong single-core performance should therefore improve the ns-3 simulation per-
formance. Other network simulators exist that can simulate an 802.11p network,
such as Omnet++ [12], which can also be configured to interact with real network
devices in real-time [34]. Thus, as a future extension of the project, it might be in-
teresting to investigate whether there is a better alternative for real-time simulation
than ns-3.

Because of the processing delay created by ns-3, the experiments could not study
all aspects of consensus. Inspecting the effects of delays created by the network is
impossible, since one cannot determine if the delay was created by features of the
simulated network such as CSMA or simply by processing in ns-3. In the random
movement simulation, a workaround was used. By setting the interval higher than
the observed ns-3 processing delay for a specific number of nodes, we guarantee that
all messages that are sent at the start of an interval are also received during that
same interval. However, by setting such a large interval, we are unable to observe
what happens when packets are received one round later because of delays that
should occur (such as CSMA). Consequently, the effect of delays on the algorithms
has not been studied at all. We could not guarantee that ns-3 would not delay the
packets more than it should and therefore affect the results.

The ns-3 processing delay is also the reason for why flood is implemented so that
it does not immediately send a value every time it receives a new one. By making
flood only send in intervals, we should get the same delay to occur in ns-3 as for
average consensus. If all nodes were allowed to send messages when a new value
was received, ns-3 would be delayed even further. It might even be the case that
the extra processing delays would make flood converge slower. As a consequence, it
was decided that flood should only send at the beginning of the intervals to ensure
correctness when comparing to average consensus.

For the intersection simulation, the same workaround of long intervals was used.
Unfortunately, the problem of the processing delay cannot be mitigated completely
in this experiment. All nodes in this experiment are not necessarily synchronised
because they only start consensus when they enter the intersection and receive a
message. As can be seen in Figure 5.1, when Node i sends a message at the start
of its interval, it will be received by Node j either in Region A or Region B. We
know for certain that the packet will be received in A or B because of how long the
interval is set in our experiments.

38



5. Discussion and Conclusion

Node i Interval

Node j Interval

Region A Region B

Figure 5.1: Example of asynchronous intervals in the intersection simulation. Node
i sends a packet at the start of its interval and Node j receives this packet either
during Region A or Region B. The packet could be received even later if the intervals
are short.

As explained above, the interval is set so that all messages sent at the beginning of
a certain node’s interval are received by others during that interval. The probability
of the message being received in these regions differ depending on how close the
intervals are to being synchronous and how much the packet is delayed by the
network. However, the processing delay caused by ns-3 affects the simulation so
that the probability for Node j receiving the packet in Region B will be higher.
As a result, the algorithms in the intersection simulation will converge slower than
they should have, which is important to note when comparing the results of these
experiments.

5.2 Discussion of Average Consensus Algorithms

The scenarios in which the algorithms were evaluated represent a somewhat different
set of assumptions than the algorithms were originally designed for, since the scenar-
ios were primarily defined to resemble a VANET as closely as possible. Therefore,
the nodes do not have knowledge of:

• The maximum degree of the network topology

• Their out-degree (the number of nodes that will receive a broadcasted message)

• Which nodes they are connected to

• When the network topology changes

• When other nodes perform their consensus updates (i.e. they are not synchro-
nised)

39



5. Discussion and Conclusion

The absence of this knowledge means that the experiment scenario is generally more
challenging than what the algorithms were created for. Despite this, the evaluated
algorithms all converge to a value that is close to the true average of initial consensus
states. It can also be noted that the algorithms still converge even if an additional
20% chance for packet drops is added, and convergence speed is only slightly affected.

While the round interval in the simulations was set to one second to account for
the performance limitations of ns-3, it could be set lower when applied in a real
network. Since several algorithms consistently converge in 5-10 rounds, they can be
expected to converge within a few seconds or even less than a second if the round
interval can be set lower. The algorithms were observed to generally converge faster
if the number of nodes is higher. Since the size of the area on which the nodes are
distributed is constant in the simulation, the nodes will have more neighbours if the
number of nodes is higher, and the connectivity of the network increases. Thus they
get more data in each round.

The simple algorithm is generally slower than the fast linear and ratio consensus
algorithms. This is primarily explained by how the ε-value (weight) is set. Since
this value is defined in a way that depends on the maximum degree of the network
topology and this information is not known, we made the assumption that the
maximum degree can be at most equal to the number of nodes in the network minus
one. However, it is possible that the maximum degree is actually lower which would
allow for a higher ε-value. The way the ε-value is defined does not account for
variations in connectivity, so a node with few neighbours will update its consensus
state more slowly than a node with many neighbours. If an algorithm similar to the
simple algorithm were to be applied in a system where neither the maximum degree
nor the number of nodes are known, a new way to define the weight dynamically
based on information that each node can observe would need to be developed.

The ratio and fast linear consensus algorithms need to know their out-degree, and
therefore it was necessary to implement an announce round before consensus starts
up. In the case where a node joins an already running consensus, it will need
to passively listen without contributing its own consensus state until it knows its
number of neighbours. Therefore, its contribution to the consensus will be delayed
by one round, while the simple algorithm and flood do not suffer from this delay.

In the random movement simulation, flood always reaches the true average and
converges at a speed similar to the fastest consensus algorithms. The drawback of
flood compared to consensus is the amount of data that needs to be transmitted.
Since every node needs to transmit not only its own value, but also forward values
from other nodes, they will either need to send very large or many packets, increasing
the risk of interference. While this did not turn out to be a significant enough
problem in the simulations to make it perform worse than consensus, it may become
a problem if applied in a network with a larger number of nodes.

Flood was found to deviate more from the true average than the consensus algo-
rithms in the intersection simulation, even though it always converged to the true
average in the random movement scenario. This difference comes from the way data

40



5. Discussion and Conclusion

from new nodes is handled by our implementation of flood. We deemed it necessary
that the nodes do not keep old values forever, otherwise the amount of data they
store and send on the network would eventually become very large. Therefore, they
disregard old values after a set number of seconds. Because of this, the average
can change abruptly when a node receives a new value or disregards an old one.
Since flood keeps the original values received, it would be possible to design a more
sophisticated way for the nodes to use the data without affecting the protocol.

5.2.1 Our Results and Related Work on Consensus

As mentioned in Section 1.2, some studies have been performed on how average
consensus should work in wireless sensor networks. Some of this research has focused
on how additive noise on consensus packets affects the results and how to mitigate
the effects of noise [16]. We use checksums in our system, which means we notice if
a packet has been changed but this also means that we ignore and drop the packet.
If checksums were not desired, one could use their solution which almost surely
converges, and where the average error can be made arbitrarily small at the cost
of convergence rate [16]. However, WSNs are typically considered to communicate
digitally with coded packets, rather than using pure analog transmissions; hence,
the packet drop model seems more appropriate than additive noise.

We described in Section 3.2.2 how we modified the algorithms, and that the mod-
ifications were made with regards to making no assumptions, and not trying to
improve but rather make a simple implementation that will work in VANETs. As
a result, it should be easier to add some improvements for average consensus from
previous research such as [2, 19, 20], since our low amount of modifications should
lower the amount of incompatibilities. Nevertheless, conflict is still possible if the
improvements require the a priori assumptions we removed when implementing.

Hadjicostis and Charalambous [19] present a modified version of the ratio consensus
algorithm which can derive the true average even in switching topologies. They
assume that no new nodes arrive during consensus, and further study is required to
see if the implementation is correct without that assumption. Furthermore, they also
assume that every node knows its out-degree, which is also one of the assumptions
we removed during our implementation. This could be ’fixed’ by adding an echo
request just before each consensus round, but is not desired since it would raise the
number of packets in the system substantially.

It is also important to mention that delays affect average consensus, and how they
should be handled has been previously researched [20, 19, 35]. It has been shown
that a modified ratio consensus algorithm converges asymptotically in the pres-
ence of changing topologies and communication delays, provided that the delays
are bounded [19]. Their findings about the convergence speed without delays ap-
pear to agree with ours (5-10 rounds to convergence), and the number of rounds to
convergence increases as the length of the delays increases.

41



5. Discussion and Conclusion

Other researchers have also explored consensus in an asynchronous setting, such as
our intersection simulation [36]. Similar to us, Mehyar et al. identify problems with
the simple algorithm (described in Section 2.1) that make implementation in a real
network impractical [36]. They also propose improved algorithms that are robust to
asynchronous nodes and changing topologies. Furthermore, their results show that
asynchronous consensus convergence in changing topologies is possible.

5.3 Robot System Discussion

The robot system demonstrates an example application of consensus in a cooperative
positioning scenario. Since this system was mostly to show how the testbed can
interact with the real world and that positions from a physical system can be sent
to ns-3 in real-time, a number of simplifications were made. We consider it important
to mention some of them here, since our choices affected the results in a few ways.

Because of how the simple consensus algorithm was implemented, where it gives a
higher weight to the current consensus value than to new measurements, it made
consensus fairly stable even if the new measurements have a significant amount
of noise. However, it also slows down the speed with which the estimations are
adjusted to movement of the actual object being measured. This can be seen in
Figure 4.7, where it takes more time for the nodes using consensus to adjust their
estimations to the new tag position compared to the single node which does not use
consensus. However, as can be seen in Figure 4.6, this slow update did not make the
standard deviation or average error higher than what is was for the position error
when running without consensus.

Since we knew the number of nodes in the physical system, we could set the ε-
value for the consensus algorithm optimally. This would, as mentioned before, not
be possible in a real system. However, one might instead use the fast linear or
ratio consensus which do not require a predefined global weight value. Furthermore,
in the original cooperative positioning paper we based our simplified system on,
consensus is only one part of a more complicated system of belief propagation [7].
Moreover, consensus in that system is also not performed on the estimated x and y
position but on the components of a node’s belief of an object, where the belief is
represented as a probability density function. Nodes with a better belief accuracy
actually weigh higher in this system, which means adding slow weights would not be
as necessary. For systems where consensus is performed on scalar values or similar,
the concept of slow weights is still interesting since the intersection results showed
that slow weights does improve the average. Slow weights for ratio and fast linear is
therefore also interesting, and implementing it should be possible, but would require
a different implementation than for simple consensus.

42



5. Discussion and Conclusion

5.3.1 Related Work on Vehicular Testbeds

Simulators such as SUMO that can integrate a simulated network with simulations
of vehicles and traffic have previously been implemented. A testbed has also been
implemented that connects miniature vehicles with SUMO and a network simula-
tor [9]. However, the network simulator employed (TOSSIM) has a quite simplistic
error model compared to what ns-3 uses, and does not use sophisticated propaga-
tion models [37]. Our implemented testbed also allows the robots to communicate
directly through the network simulator, without involving SUMO.

5.4 Future Work

The current docker node assumes that all data that is being received should be broad-
casted by UDP in ns-3. If communication to specific nodes (for example through
TCP) would be necessary for a future experiment, a new node would need to be
implemented. However, it would make the docker nodes actually need to parse the
message sent by the outside node instead of just passing it on which would add
a slight processing delay to the communication. It would also mean the system
connected to ns-3 would have to create packets differently (it would for example
need to specify where it would want the message sent). This would lead to more
modifications being needed to the original system, but is probably still desired since
only UDP broadcasts limits the usage somewhat.

In Section 2.2.1, it was mentioned that the congestion avoidance method STDMA
has been suggested as an alternative to CSMA. Gaugel et al. have studied this
further and implemented an STDMA model for ns-3 [38]. Their findings agree
mostly with previous studies that show that STDMA is a better alternative than
CSMA. However, they see that STDMA degrades in performance to levels of CSMA
when packet reception errors are simulated. Nevertheless, they argue that further
investigation is required, and by using our testbed, their STDMA model could also
be evaluated in real-time.

5.4.1 Security Aspect

Security is another important aspect that needs to be considered when using con-
sensus in VANETs, and for any type of VANET communication. In this project,
no security has been added to the packets, such as encryption. Neither is there any
way for the nodes to check if incoming packets are from an authentic node. It would
therefore be possible for someone malicious, that is in range of the network, to sniff
packets and either pretend to be one of the existing nodes or pretend to just have
joined the network.

For consensus specifically, a malicious node could send a faulty consensus state

43



5. Discussion and Conclusion

that is much higher, or lower, than the true value. A possible way to prevent this
attack is to ignore states that are not within a certain range of the node’s own
state. However, an attacker might also create a large number of fake nodes, whose
consensus states are all within the range. This attack would be much harder to
detect and defend against. In a paper by Sundaram and Hadjicostis, they study
the effects of malicious nodes (byzantine and faulty nodes) and find the theoretical
maximum of possible malicious nodes in the system without affecting the result of
consensus, which depends on the connectivity of the graph [39]. Furthermore, they
also study this effect in a system similar to ours; only broadcasts are used in the
network. It would therefore be interesting to use our testbed to evaluate how their
theoretical results are affected by a simulated network.

5.5 Conclusion

Through experimenting, it has been shown that our testbed is functional: docker
to docker container communication through ns-3 is possible and sending positions
to ns-3 has been implemented. However, the positioning modification has also been
shown to slow down ns-3 significantly when a large number of nodes are simulated.
Nevertheless, we believe that optimisation of the implementation could be made
to improve performance. Furthermore, ns-3 already exhibited quite a large delay
for a high number of nodes. A more thorough inspection of ns-3 as a whole would
be needed in order to conclude if certain elements of ns-3 could be parallelised to
improve real-time performance.

The simplified physical cooperative positioning system has shown that the testbed
can be connected to a physical system where communication between the nodes is
piped through a simulated network. It also demonstrates that sending positioning
data to ns-3 in real-time is viable. Since position data can be scaled when sending it
to ns-3, it is possible to simulate the effects of communicating on a network over long
distances while the actual hardware is just moving a few metres. Piping through
ns-3 can be added as described in this thesis and in a way which is transparent to
the physical system in itself. The system can therefore act as it did before, without
any added limitations by ns-3.

Average consensus has been shown to be viable for VANETs. With some modifica-
tions, the average consensus algorithms we have studied can run on a representative
simulated network with both changing topologies and drops. The algorithms have
been shown to converge consistently, even in an unreliable network. It was observed
that the consensus algorithms where the nodes can adjust their weights based on
locally observable information (fast linear and ratio) generally converge faster than
the simple algorithm that uses a global weight value. Finally, we have shown that
consensus works as a tool in cooperative positioning, even when the system is simple.

44



Bibliography

[1] M. Pahlavan, M. Papatriantafilou, and E. M. Schiller, “Gulliver: A test-bed for
developing, demonstrating and prototyping vehicular systems,” in 2012 IEEE
75th Vehicular Technology Conference (VTC Spring), May 2012, pp. 1–2.

[2] R. Olfati-Saber, J. A. Fax, and R. M. Murray, “Consensus and cooperation in
networked multi-agent systems,” Proceedings of the IEEE, vol. 95, no. 1, pp.
215–233, 2007.

[3] J. Levinson, J. Askeland, J. Becker, J. Dolson, D. Held, S. Kammel, J. Z.
Kolter, D. Langer, O. Pink, V. Pratt et al., “Towards fully autonomous driving:
Systems and algorithms,” in Intelligent Vehicles Symposium (IV), 2011 IEEE.
IEEE, 2011, pp. 163–168.

[4] S. Biswas, R. Tatchikou, and F. Dion, “Vehicle-to-vehicle wireless communi-
cation protocols for enhancing highway traffic safety,” IEEE Communications
magazine, vol. 44, no. 1, pp. 74–82, 2006.

[5] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless
networks,” Proceedings of the IEEE, vol. 97, no. 2, pp. 427–450, 2009.

[6] N. Alam and A. G. Dempster, “Cooperative positioning for vehicular networks:
facts and future,” IEEE Transactions on Intelligent Transportation Systems,
vol. 14, no. 4, pp. 1708–1717, 2013.

[7] G. Soatti, N. Garcia, H. Wymeersch, M. Nicoli, B. Denis, and R. Raulefs,
“Implicit cooperative positioning,” unpublished, in review.

[8] C. Berger, “From a competition for self-driving miniature cars to a standardized
experimental platform: concept, models, architecture, and evaluation,” arXiv
preprint arXiv:1406.7768, 2014.

[9] C. Berger, E. Dahlgren, J. Grunden, D. Gunnarsson, N. Holtryd, A. Khazal,
M. Mustafa, M. Papatriantafilou, E. M. Schiller, C. Steup et al., “Bridging
physical and digital traffic system simulations with the gulliver test-bed,” in In-
ternational Workshop on Communication Technologies for Vehicles. Springer,
2013, pp. 169–184.

[10] M. Behrisch, L. Bieker, J. Erdmann, and D. Krajzewicz, “Sumo–simulation

45



Bibliography

of urban mobility: an overview,” in Proceedings of SIMUL 2011, The Third
International Conference on Advances in System Simulation. ThinkMind,
2011.

[11] ns-3 project, “ns-3 model library,” Accessed: 2017-03-21. [Online]. Available:
https://www.nsnam.org/docs/release/3.26/models/html/index.html

[12] D. Eckhoff and C. Sommer, “A multi-channel ieee 1609.4 and 802.11 p
edca model for the veins framework,” in Proceedings of 5th ACM/ICST in-
ternational conference on simulation tools and techniques for communica-
tions, networks and systems: 5th ACM/ICST international workshop on OM-
Net++.(Desenzano, Italy, 19-23 March, 2012). OMNeT, 2012.

[13] C. Sommer, R. German, and F. Dressler, “Bidirectionally coupled network and
road traffic simulation for improved ivc analysis,” IEEE Transactions on Mobile
Computing, vol. 10, no. 1, pp. 3–15, 2011.

[14] H. Arbabi and M. C. Weigle, “Highway mobility and vehicular ad-hoc networks
in ns-3,” in Simulation Conference (WSC), Proceedings of the 2010 Winter.
IEEE, 2010, pp. 2991–3003.

[15] F. Fagnani and S. Zampieri, “Average consensus with packet drop communica-
tion,” SIAM Journal on Control and Optimization, vol. 48, no. 1, pp. 102–133,
2009.

[16] S. Kar and J. M. Moura, “Distributed consensus algorithms in sensor networks
with imperfect communication: Link failures and channel noise,” IEEE Trans-
actions on Signal Processing, vol. 57, no. 1, pp. 355–369, 2009.

[17] C. Chen, S. Zhu, X. Guan, and X. S. Shen, Wireless sensor networks: Dis-
tributed consensus estimation. Springer, 2014.

[18] W. Ren, R. W. Beard, and E. M. Atkins, “Information consensus in multivehicle
cooperative control,” IEEE Control Systems, vol. 27, no. 2, pp. 71–82, 2007.

[19] C. N. Hadjicostis and T. Charalambous, “Average consensus in the presence
of delays and dynamically changing directed graph topologies,” arXiv preprint
arXiv:1210.4778, 2012.

[20] Y. G. Sun, L. Wang, and G. Xie, “Average consensus in networks of dynamic
agents with switching topologies and multiple time-varying delays,” Systems &
Control Letters, vol. 57, no. 2, pp. 175–183, 2008.

[21] R. A. Freeman, P. Yang, and K. M. Lynch, “Stability and convergence proper-
ties of dynamic average consensus estimators,” in Decision and Control, 2006
45th IEEE Conference on. IEEE, 2006, pp. 338–343.

[22] Y. Cao, W. Yu, W. Ren, and G. Chen, “An overview of recent progress in the
study of distributed multi-agent coordination,” IEEE Transactions on Indus-
trial informatics, vol. 9, no. 1, pp. 427–438, 2013.

46

https://www.nsnam.org/docs/release/3.26/models/html/index.html


Bibliography

[23] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,” Systems
& Control Letters, vol. 53, no. 1, pp. 65–78, 2004.

[24] Z. H. Mir and F. Filali, “Lte and ieee 802.11 p for vehicular networking: a
performance evaluation,” EURASIP Journal on Wireless Communications and
Networking, vol. 2014, no. 1, p. 89, 2014.

[25] F. Schmidt-Eisenlohr, Interference in Vehicle-To-Vehicle Communication Net-
works: Analysis, Modeling, Simulation and Assessment. KIT Scientific Pub-
lishing, 2010.

[26] K. S. Bilstrup, E. Uhlemann, and E. G. Strom, “Scalability issues of the mac
methods stdma and csma of ieee 802.11 p when used in vanets,” in Commu-
nications Workshops (ICC), 2010 IEEE International Conference on. IEEE,
2010, pp. 1–5.

[27] A. Goldsmith, Wireless communications. Cambridge university press, 2005.

[28] ns-3 project, “ns-3 manual,” Accessed: 2017-03-22. [Online]. Available:
https://www.nsnam.org/docs/release/3.26/manual/html/index.html

[29] Docker Inc., “What is docker?” Accessed: 2017-06-09. [Online]. Available:
https://www.docker.com/what-docker

[30] Open Source Robotics Foundation, “Ros core components,” Accessed:
2017-06-09. [Online]. Available: http://www.ros.org/core-components/

[31] Omron Adept MobileRobots, LLC. , “Aria,” Accessed: 2017-06-09. [Online].
Available: http://www.mobilerobots.com/Software/ARIA.aspx

[32] E. Olson and M. Zucker, “Gulliview,” Accessed: 2017-06-09. [Online].
Available: https://bitbucket.org/thpe/visionlocalization

[33] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2011,
pp. 3400–3407.

[34] A. Varga, “Omnet++,” Modeling and tools for network simulation, pp. 35–59,
2010.

[35] C. N. Hadjicostis and T. Charalambous, “Average consensus in the presence of
delays in directed graph topologies,” IEEE Transactions on Automatic Control,
vol. 59, no. 3, pp. 763–768, 2014.

[36] M. Mehyar, D. Spanos, J. Pongsajapan, S. H. Low, and R. M. Murray, “Dis-
tributed averaging on asynchronous communication networks,” in Decision
and Control, 2005 and 2005 European Control Conference. CDC-ECC’05. 44th
IEEE Conference on. IEEE, 2005, pp. 7446–7451.

[37] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: Accurate and scalable
simulation of entire tinyos applications,” in Proceedings of the 1st international

47

https://www.nsnam.org/docs/release/3.26/manual/html/index.html
https://www.docker.com/what-docker
http://www.ros.org/core-components/
http://www.mobilerobots.com/Software/ARIA.aspx
https://bitbucket.org/thpe/visionlocalization


Bibliography

conference on Embedded networked sensor systems. ACM, 2003, pp. 126–137.

[38] T. Gaugel, J. Mittag, H. Hartenstein, S. Papanastasiou, and E. G. Strom, “In-
depth analysis and evaluation of self-organizing tdma,” in Vehicular Networking
Conference (VNC), 2013 IEEE. IEEE, 2013, pp. 79–86.

[39] S. Sundaram and C. N. Hadjicostis, “Distributed function calculation via linear
iterative strategies in the presence of malicious agents,” IEEE Transactions on
Automatic Control, vol. 56, no. 7, pp. 1495–1508, 2011.

48



A
Additional Intersection Plots

These plots show the consensus update process of the algorithms in the intersection
simulation scenario. They correspond to the results in Table 4.3.

0 20 40 60 80 100
Time (seconds)

10

5

0

5

10

Co
ns

en
su

s 
st

at
e

Figure A.1: Simple consensus with 20 nodes and 0% added drops in the intersection
simulation.

0 20 40 60 80 100
Time (seconds)

10

5

0

5

10

Co
ns

en
su

s 
st

at
e

Figure A.2: Fast linear consensus with 20 nodes and 0% added drops in the
intersection simulation.

I



A. Additional Intersection Plots

0 20 40 60 80 100
Time (seconds)

10

5

0

5

10

Co
ns

en
su

s 
st

at
e

Figure A.3: Ratio consensus with 20 nodes and 0% added drops in the intersection
simulation.

0 20 40 60 80 100
Time (seconds)

10

5

0

5

10

Co
ns

en
su

s 
st

at
e

Figure A.4: Flood with 20 nodes and 0% added drops in the intersection simula-
tion.

II


	List of Figures
	List of Tables
	Introduction
	Motivation
	Related Work
	Aim
	Limitations
	Contribution

	Theory and Background
	Average Consensus
	Convergence
	Fast Linear Consensus
	Ratio Consensus

	Intelligent Transportation Systems
	Vehicular ad hoc Networks
	Communication Channel Modelling
	Positioning

	Software
	Network Simulator: ns-3
	Docker Containers
	Robot Control: ROS
	Camera-based Positioning: GulliView


	Methods
	Testbed Architecture
	Configuration of ns-3
	Real-time Position Modification of ns-3

	Simulation Architecture
	Simulation Scenarios
	Implementation of Average Consensus Algorithms
	Random Movement Implementation
	Intersection Simulation


	Robot System Architecture
	Experiment Scenarios

	Experiments
	Exhaustive Flood Comparison


	Results
	Random Movement Simulation
	Intersection Simulation
	Robot System
	Ns-3 Modification Performance Evaluation

	Discussion and Conclusion
	Discussion of ns-3
	Real-time Simulation Performance

	Discussion of Average Consensus Algorithms
	Our Results and Related Work on Consensus

	Robot System Discussion
	Related Work on Vehicular Testbeds

	Future Work
	Security Aspect

	Conclusion

	Bibliography
	Additional Intersection Plots

