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Abstract

This Master thesis work, performed at the Vehicle Energy Efficiency department at
Volvo Car Group, presents a methodology to validate simulation models with refer-
ence to test rig data. VSim, a complete vehicle simulation tool, consists of various
component models that work in unison to replicate energy flows in a vehicle and
come up with performance metrics. There is a need to validate these models and
to subjectively and objectively determine how well these models emulate the energy
flows in real world systems.

Subjective and Objective validation methods were devised based on the literature
survey, and implemented on two power source components in VSim, the High Volt-
age Battery and Combustion Engine. Error plots and box plots were used to analyse
the models subjectively, while the Russell’s error measure and the PCA-Area metric
method were utilised for determining objective validation numbers. Based on these
plots and numbers, a general analysis was done showing specifics about the correla-
tion and the relevance of the validation metrics when related to the plots.

The analysis of the results showed that the validation code provides metrics that
can help the model developer analyse the errors between simulation and test. The
objective measures interpret the behaviour of the output signals and their differences
quite well, and correspondingly reflect the trends seen in the subjective plots. This
analysis aims at providing feedback to the model developers at Volvo Car Group in
order to perform an update where needed in the model. Finally, certain improvement
areas in the methodology were highlighted to be researched for future work.

Keywords: Validation, Energy flow, Simulation, Models, Correlation, Box plots,
Russell’s error measure, Principle Component Analysis, Area Metrics.
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1

Introduction

1.1 Background

The use of virtual simulations to design, understand and evaluate a concept is grow-
ing to make the product development process more efficient. Using virtual sim-
ulations to analyse the behaviour of the physical system has its own advantages.
Firstly, virtual simulations prove to be more time and cost efficient when compared
to real world testing of a system. Secondly, virtual simulations are done usually
during the design phase of the project, which helps in making design decisions at an
early stage based on the analyses. Moreover, it is sometimes seen that simulations
of complex systems is quite possible in a low cost and low risk environment, given
sufficient computational power. These complex systems may not be replicated well
enough (or could be unsafe to do so) in real world situations (weather forecasting
using supercomputers[1], for example).

These advantages make way for applying virtual simulations in the automotive in-
dustry. The definition of "vehicle model" has shifted from the sole-manufactured
expensive prototype in the early 90s to a computer representation that can be simu-
lated for certain scenarios[2]. For instance, Vehicle simulations facilitates analysing
performance of a vehicle with different powertrain options, which would be time and
resource consuming in the case of field testing. Not just vehicle specifications, but
also environmental variables that influence the on-road driving can be controlled,
for instance, in driving simulators[3].

Simulations, however, do not always recreate every test/system behaviour faithfully.
For the process to be efficient, the virtual tools and models used must be reliable
and accurate in representing the physical system. This calls for the need to validate
the models used by comparing them to results obtained from physical tests, hence
by emulating the test conditions in the virtual environment. This aims to increase
the virtual model’s confidence and assist in making them as representative of real
conditions as possible.

Validation of virtual models is thus finding its ground in the industry, and cor-
respondingly, costs are involved. Iterations for model improvements are done by
validating the model at each step. This results in achieving higher confidence levels
for the model at every iteration, and the cost involved also tends to increase. Also,
the value of the model to the user increases. Thus, instead of achieving 'absolute’
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validity, industries aim at achieving certain level of confidence based on the invest-
ment and time (which varies similar to cost), and of course, the user value desired.
Figure 1.1 illustrates this relation[4].

A

Value Value
of
Cost Model

Cost to
User

0%  Model Confidence  100%

Figure 1.1: The effect of desired model confidence on model value and incurred

cost[4]

Numerous validation methodologies are adopted in research and industry, and the
choice depends on various factors. Jack P.C. Kleijnen (1999), in his paper on Val-
idation of models[5], states that validation techniques can be used based on the
availability of data - either no real data available, only output data available or
both input and output data available. In this thesis work, we deal with the third
kind, since both input and output data are available (trace-driven simulation). This
case directs to validate models using the scatter plots, and creating the regression
line to calculate its slope (this is a widely used technique to visually and numerically
analyse model behaviour). Although trace-driven simulations has all input and out-
put data for validation, there are some errors from the experimental data that the
validation methodology must consider. It must consider the random errors and the
correlation bias errors in the test data if possible, and also the uncertainty due to
lack of experimental measurement[6].

Lastly, considering we are dealing with validation specifically in this thesis, we must
note the difference in the meaning of the terminologies Verification and Validation
(V & V). The guide for verification and validation of computational fluid dynamics
simulation[7] defines verification and validation as follows

"Verification is the process of determining that a model implementation accurately
represents the developer’s conceptual description of the model and the solution to the
model. "

"Validation is the process of determining the degree to which a model is an accu-
rate representation of the real world from the perspective of the intended uses of the
model."

Hence, model verification deals with ensuring the developer’s conceptual description
of the model is rightly implemented and programmed or modelled in the computer
simulations. Meanwhile, model validation deals with ensuring how accurately the
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model simulates the real world phenomena with respect to its intended domain of
application.

A clear illustration of validation and verification in the model development process
is given by Figure 1.2, as proposed by Robert Sargent(1998)[8]. The problem en-
tity (system) represents the real world phenomenon, the data from where is used
to wvalidate the computerised model. Verification is making sure the computer pro-
gramming and implementation of the conceptual model is correct[4]. In this thesis,
we deal with comparing the behaviour of the computerised model with that of the
system, mentioned as operational validity in Figure 1.2.

Problem
) " Entity “'\\_\\
/ 4 % \

Operational )/ “\ CO;;ICC(I; rlual

Validity Y oce

, ) Analysis  Validity

Experimentation and \

y Modeling

‘ K Data \\\ “

\ / Validity

Computerized Conceptual

Computer Programming

Model and_Ir_nél_el_n_tn_n;tior{ ] Model

\\\\ Computerized /

Model —
Verification

Figure 1.2: Illustration of Verification and Validation in Modelling process[8]

1.2 Problem statement

Given the background on virtual simulations in the automotive industry and the
validation of those models, there is a requirement to device a generic validation
methodology. The intention was to come up with validation metrics that give a
perspective on the fidelity of the model, both subjectively and objectively.

Volvo Car Group uses an in-house developed tool (based on MATLAB and Simulink)
called VSim for complete vehicle simulations. The tool simulates the energy flows
in the complete vehicle and is used to, for example, predict the fuel consumption,
analyse the vehicle performance and for component dimensioning. All simulations
in VSim intend to simulate correct energy flows in the system. To make the VSim
tool more accurate and reliable, there is a need to validate the component models
used in order to understand how accurately they simulate the real world scenarios.

Moreover, there are components such as the High Voltage Battery that are used in
HEVs and BEVs, and are comparatively newer technologies in the market, hence
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there is a lack of data for validation. Thus, another driving factor for the thesis is
also the need to validate these components (preferably those involved in HEVs and

BEVs) in VSim.

1.3 Objective

The objective of this thesis work is to answer the research question - What are the
appropriate techniques to validate a virtual model of a component?

Thus, we aim at coming up with a Validation methodology that performs subjective
and objective analysis to determine the fidelity of different models with real world
behaviour.

1.4 Deliverables

In this thesis, we look to
e Deliver a generic validation function giving different validation metrics that
can be used to validate the components in VSim.
o Implement the developed methodology on prioritised vehicle components and
assess the performance of the methodology by showing how well the metrics
illustrate the behaviour of the model with reference to that of the real system.

1.5 Limitations

There were some limitations on the thesis, which were the considerations that falls
beyond the scope of the work done:

o The errors in the test data is a vital factor that tells how well the validation
metrics translate the fidelity of the model. This thesis does not consider the
errors and compensate for errors associated with test data received.

o The test data used to validate the models are obtained from tests that were
already performed. This thesis does not define test procedures that covers all
operating regions in the intended domain of application. Defining test proce-
dures is better to be used in validation since the validation metrics obtained
tell about the fidelity of the model in all the intended operating regions.
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Theory

The foundation of the thesis is based on various theories concerning modelling and
its validation, which were supported by the literature study done. The following
sections explore the physics and mathematics that were involved in achieving the
results.

2.1 Energy flow in a vehicle - Bond graph mod-
elling

Bond graph modelling is a multi-domain modelling technique that is used to model
and simulate mechatronic systems. Here, the domains under consideration can be
mechanical, electrical and /or thermal. The bond graph is a graphical representation
of how energy flows in a system[9][10]. A modelling technique where energy is the
exchange variable is specifically considered in this case. Hence, the two co-variables
used here are called effort and flow. For instance, voltage, pressure and force are
effort variables, while current, coolant flow rate and velocity are the flow variables.
Hence, each domain of energy flow will have the corresponding effort-flow pair. This
energy exchange takes places through interfaces called energy ports. Also notewor-
thy are the two types of models considered in energy flow bond graph modelling,
which are the energy sources (generate the energy - provide system inputs) and en-
ergy transfer elements (transfer energy through energy ports between models and
sometimes from one form to another, also incurring losses)[11].

The energy transfer in V.Sim is based on Bond graph modelling, where energy flow
forms the basis of modelling. The bond graph applied for the complete vehicle
model is illustrated in Figure 2.1. Note the signals in opposite directions (effort and
flow). The flow signals are based on physical quantities representing the load de-
mand from the road (such as wheel input/output speed, transmission input/output
speed, battery input current). The effort signals are physical quantities that cater
to the demanded load, i.e., represent the effort required to put the system into ac-
tion (wheel input torque/output tangential force, transmission input/output torque,
battery output voltage). Respective products of the effort and flow signals give the
power flow (for example, mechanical - torque *angular velocity or force*linear speed,
electrical - voltage*current). These energy flow paths (through the energy ports)
are referred to as Power bonds in VSim.
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Figure 2.1 shows an example of a vehicle with two power sources, which are the
energy sources in the Energy transfer model terminology, while the components
represent the Energy transfer elements, with some energy losses[11].

Effort
Auxiliary loads
T Flow
Power

source 1 |

Components " Wheels T Environment
—— (with energy losses)
Power
source 2
Auxiliary loads

Figure 2.1: Representation of energy transfer in a complete vehicle simulation
(with two power sources)

2.2 Model validation - Statistical methods

The validation methodology adopted consists of Subjective analysis and Objec-
tive analysis. Subjective analysis consists of visual illustrations and plots to give
a more subjective assessment of the validation results. Objective analysis has a sta-
tistical and mathematical approach and aims to achieve validation metrics in the
form of numerical values.

2.2.1 Subjective Analysis

In order to visually assess the error between test and simulation data, Box plots
have been adopted to show the error distribution over the test period.

2.2.1.1 Box plots

Box plots are a method of indicating the distribution of the data using the five num-
ber summary: minimum, first quartile, median, third quartile and maximum[12].
They are used as visual representation of distribution of the error between the test
signal and the simulation output signal. The representation of box plot is shown in
Figure 2.2.
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@ OUTLIER More than 312
Y times of upper guartile

MAXIMUM Greatest value,
excluding outliars

UPPER QUARTILE 25% of
data greater than this value

MEDIAN 50% of data iz
areater than this value;
middle of dataset

LOWER QUARTILE 25% of
data less than this value

MINIMUM Least value,
excluding sulliers

@ OUTLIER Less than 32
tlimes of lower quartile

Figure 2.2: A detailed description of Box plots|13]

The rectangular box in the Figure 2.2 indicates the inner quartile range, spanning
from the first quartile to the third quartile. The line in the inner quartile range
indicates the median. The minimum and maximum are at 1.5 times inner quartile
range from the lower quartile and the upper quartile respectively, these regions are
called whiskers. All the points outside whiskers are called outliers.

2.2.2 Objective Analysis

In order to validate the models objectively, we have come up with two methods
based on our literature study. These methods look to produce objective numbers
that describe how well the model behaves compared to rig tests, thus works as an
objective validation metric.

2.2.2.1 Russell’s Error Measure

Russell’s error measure is a method used to quantitatively compare time history
signals of the simulation and experimental test results. It provides magnitude and
phase errors for each individual simulation output signal and corresponding test
signal, and combines them to give overall comprehensive error[14]. The magni-
tude (M), phase (P) and comprehensive (C) error are given by equations 2.1, 2.2
and 2.3 respectively.

Yaa — UBB

Vaa *¢BB|) (2'1)

M = sign(vaa — ¥pg) * logio(1 + |

_ l -1 @DAB
P = — * oS (—\/m) (2.2)

C = VM2 + P? (2.3)

where,

Zi1 a? ]‘\L1 ? ZAL1 a;b;
K2 7 — (3 3 — K2 2.4
N 7¢BB N ) ¢AB N ( )

¢AA =
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a; and b; represents the test signal and simulation output signal values at each time
instant respectively and N represents the total number of such data points.

The magnitude error indicates the relative difference between the magnitudes of
the test signal and the simulation output signal. The magnitude error is fairly well
bounded and on the same scale as the phase error. The physical interpretation of
the magnitude error is S; ~ 10M x Sy, where S; represents the test signal and S,
represents simulation output signal. The phase error represents the difference in
phase between the signals, independent of the magnitudes. The phase error varies
from 0 to 1. 0 represents the signals are in phase, while 1 represents the signals
are out of phase[15]. The magnitude and phase errors are combined to obtain the
comprehensive error.

2.2.2.2 Principle Component Analysis (PCA) - Area metric

The PCA-Area metric method is used to analyse models where more than one output
have to be considered (multivariate analysis). The approach considered here, based
on the method proposed by Luyi Li and Zhenzhou Lu on multivariate analysis[16],
involves converting the time series model outputs into principle components. The
resulting Principle components(PCs) are thus linearly uncorrelated with each other,
obtained through orthogonal transformation of the original output variables.

The algorithm used here to obtain the PCs is the Eigenvalue decomposition of the
variance-covariance matrix. Consider a model with p output variables dy, ds, ds...d,,
each containing N observations or data points. If we have the output variable
matrix as Ye[N,d| (where d = [dy,ds,ds, ..., dp]), Ye is the matrix obtained from
mean centering and normalising the outputs(columns of V). The variance-covariance
matrix of Y. (VCy,) is obtained as

VCy, = Lyry, (2.5)

- N c c

Consider Aj, A9, A3, ...\, as the eigenvalues obtained from the VCy, matrix, and
o1, P2, Ps3, ..., ¢p as the corresponding eigenvectors. Then, the p PCs are given as

PCy =Y. ¢ (2.6)
where kK =1,2,3,...,p.

From the original output matrix Y, we now have the Principle component matrix
PC (both Y and PC matrices are of the same dimensions, the original output
columns have just undergone a transformation). The PCs can be found for both
the simulation and test data, and the next step is to perform area metric on the
corresponding outputs of simulation and test.

This is done by finding the difference in area between the cumulative normalised PC
plots. Consider the area difference values to be Ay, As, A3, ..., A,. Also considered is
another factor called the Contribution Rate(CR), which is a PCA weighing factor
and determines the contribution based on the output variability, given as

8
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Ak

CRy, =
LA VD VN VNI W

(2.7)

where £k =1,2,3, ..., p.

In order to obtain the Overall validation metric (OVM) from the PCA and Area
metric, the area differences are multiplied with their corresponding CRs (obtained
from equation 2.7), and this term is normalised to the length of the data (number of
observations V) available, as shown in equation 2.8. This normalising to N makes
sure that this method is generic in the sense that it can be applied to test data of
any number of data points, the OV M can still be comparable between two different
simulations/components.

p
ovir =y A Ch (2.8)
k=1 N

The method to find A, used here deviates from the one used in the original refer-
ence literature[16], where the area difference is found by comparing the Cumulative
Distribution Function (CFD) of the polynomial curves of the simulation and test
data, and integrating the difference polynomial between —oo to oo. This is replaced
here by normalising both the X and Y axes (between 0 and 1) and calculating the
area difference between the cumulative curves.

2.2.2.3 Energy Validation Metric (EVM)

Apart from the Overall Validation Metric (OVM) determined, another objective
metric called Energy Validation Metric (EVM) is obtained, which basically utilises
the same method (Area metric) to determine the error in calculating energy flow
from a component. Since here we shall be considering one "output', PCA step
is eliminated, and the Area metric is determined between the output power plots
(Power = VoltagexCurrent for electrical energy flow, Forcex Speed for mechanical
energy flow, and so on) of the simulation and the test. Thus, similar to equation
2.8, we have the relation for the EVM as
Ae

EVM = — 2.
VM= (29)

where, A, is the absolute area difference between the simulation and the test power
plot (indicating energy flow correlation). Note that like the OV M, the EV M is also
normalised by N again to make the method generic.

Overall values for multiple tests - In case of multiple tests of the same type
performed (giving us a higher confidence in the results), all of the above metrics
have to be averaged to give an overall value. For this, the Mean and the Standard
deviation (SD) were employed. The mean gives an idea of the average value of
multiple metric values obtained from multiple tests, while the SD talks about the

9
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spread/deviation of the values from the mean. The standard deviation gives ad-
ditional information in cases when the mean does not convey enough information
(for instance, if the mean of many metric values was zero, even though some of the
metric were non-zero values, the standard deviation conveys how much the other
values deviate around zero).

10
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Methods

The concepts discussed in chapter 2 are used to validate the model. Each method
used has a specific purpose and conveys specific information about the model which
will be discussed further in this Chapter, indicating the fidelity of the model being
validated. The validation methodology employed consists of Subjective Analysis
and Objective Analysis.

3.1 Validation methodology

3.1.1 Subjective Analysis

Subjective analysis consists of visual illustrations and graphical displays to give a
more qualitative assessment of the model. In subjective analysis the simulation out-
put signals are compared with corresponding test signals, to assess the fidelity of the
model. One method employed is Error Plots. They are graphical representation
of the simulation output signal and corresponding test signal with respect to time
and the error between them.

Box Plots are used to visually represent the error between the simulation output
signal and corresponding test signal over time. Box plots here are used to analyse
the error between the signals, even though the signals are dependent on the previous
time step.

3.1.2 Objective Analysis

In objective analysis, quantitative metrics are obtained to validate and indicate the
fidelity of the model. The Russell’s error measure, Overall Validation Metric
and Energy Validation Metric discussed are used to validate the models objec-
tively. A simulated model, as discussed, can have multiple outputs. To quantify how
well each individual output is predicted with respect to corresponding test signal,
Russell’s error measure is adopted.

To validate the model as a whole considering all the necessary model outputs, Over-
all Validation Metric obtained from PCA-Area metric is used. It considers all
the necessary model outputs of the VSim models and test data, and arrives at a
single OVM for the model, irrespective of number of outputs and data points.

11
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The Energy Validation Metric, which was also discussed, is used for validating
the model based on energy. The EVM considers only the signals contributing to the
energy flow for validation of the model.

3.2 Model Validation

The methodologies discussed in section 3.1 were applied to components High Voltage
Battery and Combustion Engine. The decision to chose these two models was done
analytically by running complete vehicle simulations on different vehicle architecture
models and calculating the relative power loss in the components with respect to
the complete vehicle power loss. In addition, an extra weighing factor was given to
the component priority if the component was a power source. And, the availability
of test data was considered as a factor, without which validation was not possible.
From this study, the High Voltage Battery and the Combustion Engine were
the top two priority components (quite intuitively as both are power sources).

3.2.1 Generic Validation Function

A generic function was developed in MATLAB, to accept the results from simulation
and output the metrics. The inputs to the function are simulation results which
contain simulation output signals and corresponding test signals. The outputs are
the subjective and objective metrics discussed. This function developed is generic,
which accepts any number of inputs (which are outputs from the simulation model),
any number of data points in a test and any number of similar tests on the same
component and provides the metrics.

3.2.2 High Voltage Battery

The High Voltage (HV) Battery was one of the important components to validate
since it is a power source in a vehicle, and has considerable relative power loss.
The test data against which the VSim battery model had to be validated was ob-
tained from the Battery test rig at Volvo Cars. Although we were unable to or-
der predefined test to cover all operating regions of the battery (due to the non-
availability of test rig), we were provided with data from tests that were already
performed at the rig. The data available was for 3 test types given, namely,

Discharge test - In this test, a constant current demand was made from the bat-
tery, followed by the current demand cut-off as a cooldown period as noticed in
Figure 3.1. Thus, for the model, the same current signal from the test rig is given
into the input port. The discharge ideally results in a constant reduction in the SoC'
value.

12
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Current Battery

|_Batt [A]

0 500 1000 1500 2000 2500 3000 3500 4000 4500
Time (seconds)

Figure 3.1: Current input for the discharge test

Fast charge test - This test involves increasing current demand in steps, where a
certain amount of current demands are made for a given duration at each current
level as shown in Figure 3.2, which is given as input to the simulation model. This
is gradually charging the battery, as opposed to the constant current charging. This
test ideally results in a gradual increase in SoC' value.

Current Battery

|_Batt [A]

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Time (seconds)

Figure 3.2: Current input for the fast charge test

Cooling homogeneity test - In this test, the current fluctuates between the same
negative and positive values in a cyclic manner, followed by a cooldown period of zero
current demand as shown in Figure 3.3a. Figure 3.3b can be referred to get a clear
picture of the current behaviour, showing a certain section of the test. This test is
more dynamic compared to the other two tests. While the discharge and fast charge
test data was for one test each, we received data from 11 cooling homogeneity tests,
each test varying by the input conditions such as rate of coolant flow and current
level. Out of the 11 test, only 9 were considered for model validation as two tests
had very noisy coolant flow rate signals.

13
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Current Battery Current Battery
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(a) (b)

Figure 3.3: (a)Current input for one of the cooling homogeneity tests, (b)One
section of the current input in detail showing the current fluctuations

The HV Battery component in VSim having same configuration as the HV Battery
for which test data was obtained, was simulated. The HV Battery component has
certain number of inputs ports, to which signals from the test data was fed. The
model was simulated for each test, and the outputs derived from the model were
then compared with the corresponding test signals obtained from the test rig, and
stored in a file. And the stored data was used to analyse and interpret the fidelity
of the model using validation methodologies discussed. This was done with the help
of the generic MATLAB function developed. Hence, a fair comparison of the model
behaviour and the real world system behaviour for the same input conditions was
made.

Considering that the domain of the model’s intended applicability lies in analysing
energy flows, three outputs of the model are given importance and considered for
model validation, namely, the State of Charge (SoC), Temperature and Voltage.

3.2.3 Combustion Engine

The Combustion Engine had the highest relative power loss and since it was a power
source as well, it was an important component to be validated. The test data for
combustion engine was obtained from FPD test rigs at Volvo Cars. FPD test rig
is a Hardware in the Loop (HiL) system where the test object is the combustion
engine, and it simulates the vehicle components not installed in the test rig. As in
the case of HV Battery, due to the non-availability of test rigs, we utilised test data
that was already available from the FPD test rigs.

For validation of the combustion engine model against the test data, the combus-
tion engine plant along with combustion engine controller was considered in VSim,
having the same specifications as the engine for which test data was obtained. The
combustion engine plant model requires actuators signals fed back by the controller,
hence the controller is simulated along with the plant.
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The test data was obtained for two test under the NEDC (New European Driving
Cycle) and one test under the WLTP (Worldwide harmonised Light vehicles Test
Procedure) driving cycles, and combustion engine model was validated for the ob-
tained test data. The velocity profiles for the driving cycles are shown in Figure 3.4.
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Figure 3.4: Velocity profiles of the NEDC and WLTP driving cycles

Certain necessary input signals such as brake pedal position, coolant flow rate in
the engine and torque from starter motor were unavailable for setting up the com-
bustion engine model simulation. It was necessary to mock the unavailable signals,
similar to the test environment and provide it to the model to be able to simulate.
A similar vehicle was setup in V.Sim as the vehicle used in test environment and
simulated for the same driving cycles. The required signals were then mocked from
this simulation and provided it to the combustion engine model as a input, along
with other test signals as inputs to simulate the combustion engine model. The sim-
ulations results were used to analyse the fidelity of the model using the validation
methodologies discussed. The outputs considered based on the model’s intended

purpose of simulating energy flows are Torque delivered, Temperature of the coolant
and Fuel Mass Flow Rate.
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4.1 Validation of High Voltage Battery Model

4

Results

The following sections present the results obtained from the simulation run on the
High Voltage battery, and the correlation of the outputs with corresponding test
data to obtain the validation metrics.

4.1.1 Discharge test

Figure 4.0 shows the results obtained from the discharge test performed on the HV

Battery.
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Voltage Battery
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Figure 4.0: Discharge test - comparison between simulation and test data -
(a)State of Charge(SoC), (b)Temperature, (c)Voltage
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The State of Charge (SoC) behaviour can be analysed from Figure 4.1. As an-
ticipated from a constant current demand on a battery, the SoC gradually decreases
until the current demand lasts. However, few anomalies can be seen between the
Simulation and test data.

The region of gradual descent in the SoC (approximately between 10 to 900 sec-
onds) is overestimated (lower slope) in the simulation model, i.e, estimates a slower
discharge rate, as illustrated in Figure 4.1a. Also, during the second part of the test,
the cooldown section, the battery in the rig appears to self charge slightly, showing a
slow increase in the SoC, while the model shows a very slow drop in the SoC, owing
to the almost zero current demand. This behaviour is illustrated in Figure 4.1b.
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Figure 4.1: SoC for the Discharge test - detailed illustration of the differences

The Voltage behaviour is illustrated in Figure 4.2. Compared to the SoC, the
voltage plot of the model follows the test data much better. Moreover, there is a
sudden dip in voltage at the start of the discharge. This phenomenon is captured
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quite well by the model, as seen in Figure 4.2a. After the initial dip, the voltage
reduces gradually, which depends on the current drawn and the resistance of the
battery. This section is underestimated throughout by the model, as seen in Figure
4.2Dh.

The voltage suddenly rises at the end of the discharge. However, the levels of this
voltage rise does not match well between the simulation and test data, as seen
in Figure 4.2c. After this region, there is an almost constant error between the
simulation and test values. This can be seen again in Figure 4.2c.
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Figure 4.2: Voltage for the Discharge test - detailed illustration of the differences

The Temperature varies as shown in Figure 4.1b. The correlation in tempera-
ture keeps decreasing as the battery heats up rapidly due to a constant high valued
current demand. But as the cooldown period starts, the error keeps reducing and
the end state depicts more or less the same value between the simulated and test
data values. Overall, the simulation model over estimates the temperature, and the
maximum overestimation is seen right at the beginning of the cooldown period.

The Box plots for the discharge test signals can me seen in Figure 4.3. The error in
SoC (Figure 4.3a) is distributed symmetrically about the median, which is located
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in the negative region, in case of the discharge test. This is owing to the explanation
provided and noticed from the Figures 4.1a to 4.1b, in the initial discharge region
the simulation overestimates the SoC and towards the end of cooldown region the
simulation underestimates SoC. The major part of inner quartile region and whiskers
are present in the negative region, indicating the SoC overestimated for major part
of the test.

From the Figure 4.3b, it can be noted that the inner quartile is concentrated for the
error in voltage. It indicates there are many error data points concentrated in one
region during the test. As explained, this can be noticed from the Figure 4.2¢ in the
long cooldown stage of the test. Also, the voltage is underestimated by simulation
during this period, leading to the presence of inner quartile region in the positive
region. And the Figure 4.3b also shows presence of many outlieres, which indicates
the error in voltage varies to a large extent during the test as seen in Figure 4.0c,
the large variation is mainly present in discharge stage of the test.

Similar to the box plot for voltage, there is large variation for error in temperature
which can be noticed in the Figure 4.1b. The median is not symmetrically present
in the inner quartile region, which indicates the error data points from median to
upper quartile is more concentrated as can be inferred from the Figure 4.1b. The
major part of inner quartile region and whiskers are present in the negative region,
indicating the temperature is overestimated for major part of the test.

The results obtained from using the Objective analysis methods (Russell’s error
measure and PCA-Area metric method) are summarised into Table 4.1. From the
magnitude of Russell’s error measure of SoC and temperature, it can be noticed
they are negative, indicating they are overestimated for major part of the test and
the magnitude error of voltage is positive, indicating it is underestimated as inferred
from respective box plots(Figure 4.3), and also the error plots(Figure 4.0). As is
evident from all the plots, the temperature shows the lowest level of correlation,
while the voltage shows the highest, as reflected in the Comprehensive errors for the
3 outputs.

The OVM and EVM metrics are as shown in Table 4.1. The OVM shows a high
(relatively higher, as will be seen further) value. As seen for Figure 4.0, there is
significant area difference between the simulation and test plots, especially for the
temperature and voltage. Since the Contribution rates are comparatively much
higher for the temperature than for the SoC and voltage, the OVM returns a higher
value, showing a comparatively poor level of overall correlations. The EVM shows
an intermediate value (which is worse by a very small amount than the fast charge
test, but much better than the cooling homogeneity test, as will be further seen),
where the correlation in only the voltage plays a factor in determining how well
energy flow is captured.
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(a)

Figure 4.3: Bozx plots for the Discharge test - (a)State of Charge(SoC),
(b) Voltage, (c)Temperature

(c)

(b)

Table 4.1: Objective analysis of discharge test

Russell’s Error Measure

Magnitude Phase Comprehensive
SoC -0.0243 0.0196 0.0312
Temperature -0.0560 0.0174 0.0587
Voltage 0.0165 0.0016 0.0166

Overall Validation Metric

0.0622

Energy Validation Metric

0.0138
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4.1.2 Fast charge test
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Figure 4.4: Fust charge test - comparison between simulation and test data -
(a)State of Charge(SoC), (b)Voltage, (c)Temperature
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Figure 4.4 shows the results obtained from the fast charge test (described in sec-
tion 3.2.2) performed on the HV Battery.

The State of Charge (SoC) behaviour can be analysed from Figure 4.4a. The
SoC is slightly underestimated by the model during the fast charge period. However,
it is seen that the battery in real world conditions do not reach as close to 100 %

SoC, but the model predicts a final state which is closer to 100 %. This is clearly
seen in Figure 4.5.
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Figure 4.5: SoC for fast charge test - depiction of SoC error after fast charge
ends

The Voltage behaviour is illustrated in Figure 4.6. The model voltage is very well
correlated with test data, except for few regions. The initial peak in voltage occurs
when a battery suddenly begins to charge. This phenomenon is underestimated by

the model, but is very slightly overestimated during the charging period. This is
illustrated in Figures 4.6a and 4.6b.
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Figure 4.6: Voltage for the Fast charge test - detailed illustration of the
differences
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The Temperature behaviour is shown in Figure 4.4c. It is seen that the model
follows the test data much better that it did for the discharge test (refer Figure 4.1b).
Discharge test is a direct constant current demand of high value, while fast charge
involves current supply at shorter intervals and hence has more gradual dynam-
ics. Thus the thermal model follows the test data better during slow load demand
changes, as compared to high load demand at a quicker pace.

The Box plots for the signals in the Fast charge test is shown in Figure 4.7. From
the Figure 4.7a it can be seen that the error distribution for SoC is skewed. The
Figures 4.4a and 4.7a indicate that the error is concentrated from the lower quartile
to the median, this is due to the nearly constant error present after fast charge
period. From the Figure 4.7a it can also be noticed the entire inner quartile region
is present in the negative region, stating the SoC is overestimated for major part of
the test by the model.

Similar to the discussion on box plot for voltage in case of the discharge test, it
can be noticed in the Figure 4.7b the inner quartile region is concentrated, because
of many error data points present in one region of the test, this is after the fast
charge period. But in this case, the inner quartile region is present in the negative
region, unlike discharge test. This indicates the voltage is overestimated for the ma-
jor region of test. The presence of many outliers is due to large variation of voltage
noticed in the fast charge period.

Since, the temperature is predicted very well by the model for the fast charge test,
the magnitude of variation in error for temperature is much smaller. The median is
close to zero and not symmetrically present in the Figure 4.7¢c, indicating the inner
quartile is region is skewed and present more in the negative region.

The results obtained from using the Objective analysis methods are summarised
into Table 4.2. From the magnitude errors or Russell’s error measure, it can be
inferred all the outputs are overestimated by the model, as noticed from box plots.
As it is evident from the plots in section 4.1.2, the SoC shows the lowest level of
correlation, while the temperature shows the highest, as reflected in the Compre-
hensive errors for the 3 outputs.

The OVM and EVM metrics are as shown in Table 4.2. It is seen that both the
factors are lower than those of the discharge test. The increase in correlation in
the temperature and voltage accounts for this. Also, the Contribution Rate of the
temperature is much higher compared to the other two signals (higher imbalance
than for the discharge test), hence the considerably poor correlation in SoC is not
given much weightage, further lowering the OVM value. The EVM is much lower
compared to the discharge test (and the cooling homogeneity test, as seen further),
since the voltage correlation is much better here.
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;
=
!

(c)

(b)

Figure 4.7: Bozx plots for the Fast charge test - (a)State of Charge(SoC),

(b) Voltage, (c)Temperature

Table 4.2: Objective analysis of Fast charge test

Russell’s Error Measure

Magnitude Phase Comprehensive
SoC -0.0243 0.0057 0.0249
Temperature -0.0008 0.0015 0.0017
Voltage -0.0070 0.0011 0.0071

Overall Validation Metric

0.0076

Energy Validation Metric

0.0026
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4.1.3 Cooling homogeneity
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Figure 4.8: Cooling Homogeneity test - comparison between simulation and test
data - (a)State of Charge(SoC), (b)Voltage, (c)Temperature
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Figure 4.8 shows the results obtained from one of the cases of the Cooling homo-
geneity tests (described in section 3.2.2) performed on the HV Battery.

The State of Charge (SoC) shows the least correlation amongst the 3 outputs,
with simulation values overestimated throughout, and the difference keeps increasing
over time (refer Figure 4.8a). The test data shows a small sudden dip in SoC
during the last 1000 seconds of the current fluctuation, which is not reflected in
simulation (refer Figure 4.9). The difference very gradually reduces after end of
current fluctuation, but the final state still shows considerable differences in the
SoC values.
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Figure 4.9: SoC from Cooling homogeneity test - depiction of differences during
the last section of the current fluctuation

The Voltage correlation increases over time, where the simulation value is under-
estimated throughout. Thus, the conversion of current input into voltage output is
not very representative, but reaches more towards real world value over time. After
the end of current fluctuation, the correlation is higher. This behaviour can be seen
previously from Figure 4.8b and the increasing correlation can be seen for a partic-
ular region in Figure 4.10. In comparison, the voltage has the highest correlation in
this test.
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Voltage Battery
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Figure 4.10: Voltage from Cooling homogeneity test - depiction of decreasing
model underestimation

The Temperature in the simulation is overall underestimated, following a simi-
lar trend as voltage. But after end of current fluctuation, the difference non-linearly
reduces towards zero. This can be noticed in Figure 4.8c.

The Box plots for the signals in the Cooling homogeneity test is shown in Fig-
ure 4.11. As discussed, the simulation overestimates the SoC for the most part of
cooling homogeneity test. Hence the inner quartile of the box plot shown in the
Figure 4.11a is completely in the negative region. The error does not vary to a large
extent as well, which can be inferred from the absence of outliers in the Figure 4.3a.
In this case, the error data points is skewed and concentrated from lower quartile
to median region.

The error in voltage varies largely during the entire cooling homogeneity test, but
the variation is repetitive, hence there are no outliers in the box plot for error in
voltage as seen in 4.11b. Since the voltage is underestimated throughout, the inner
quartile is present on the positive region. And since the simulation predicts the
voltage better with time, which can be noticed in Figure 4.8b the error data points
are concentrated from lower quartile to the median.

Similar to the voltage, the temperature is underestimated throughout, hence the in-
ner quartile is present in the positive region. The variation for error in temperature
is large and this can identified from the outliers present in the Figure 4.11c. Also,
the outliers are present below the lower whiskers, indicating that the extreme error
data points are present only one side of the median.

The results obtained from using the Objective analysis methods are summarised
in Table 4.3. From the results, the magnitude errors of Russell’s error measure, it
can be inferred that the SoC is overestimated, the voltage and temperature outputs
are underestimated by the model, as observed from box plots and error plots (Figures
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4.11 and 4.8 respectively). As is evident from the plots in section 4.1.3, the SoC
shows the lowest level of correlation, while the Voltage shows the least, as reflected
in the Comprehensive errors for the 3 outputs.

However, this is the result from one of the 9 tests. By looking at the results from
the other tests, the voltage is the best correlated in all the tests, while the worst
correlation is taken over by SoC sometimes, and temperature otherwise. A summary
of the mean and standard deviations of the metrics considering all 9 tests is shown
in Table 4.4.

From the validation numbers, it is seen that the averaged OVM is higher than that
of discharge test and much higher than the fast charge test. The Contribution rate
in this case weighs heavily towards the SoC, and also considering the large area
difference between the simulation and test plots for SoC, shoots up the SoC, as
noticed in Tables 4.4 and 4.4. Moreover, the energy flow correlation is very low for
the Cooling homogeneity tests, which is reflected in the EVM, which is the highest
of the three tests.
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(a) (b)
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(c)

Figure 4.11: Boz plots for the Cooling homogeneity test - (a)State of
Charge(SoC), (b)Voltage, (c)Temperature

Table 4.3: Objective analysis of cooling homogeneity test 1

Russell’s Error Measure

30

Magnitude Phase Comprehensive
SoC -0.1244 0.0362 0.1295
Temperature 0.0628 0.0078 0.0633
Voltage 0.0059 0.0028 0.0065

Overall Validation Metric

0.0972

Energy Validation Metric

0.1532
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Table 4.4: Objective analysis of multiple cooling homogeneity tests (averaged)

Russell’s Error Measure

Magnitude

Phase

Comprehensive

Mean | SD

Mean | SD

Mean | SD

SoC

0.0144 | 0.0713

0.0185 | 0.0070 | 0.0682 | 0.0321

Temperature | 0.0444 | 0.0179

0.0074 | 0.0027 | 0.0450 | 0.0180

Voltage

0.0059 | 0.0014

0.0024 | 0.0006 | 0.0063 | 0.0015

Overall Validation Metric

Mean

SD

0.0722

0.0144

Energy Validation Metric

Mean

SD

0.1615

0.0196
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4.2 Validation of Combustion Engine Model

The following sections show the results obtained from simulations of the Combustion
engine model for the NEDC and WLTP tests and its correlation with the test data,

giving the validation metrics.

4.2.1 NEDC test

The results obtained for the combustion engine model, from simulating the model
for the NEDC test data acquired (described in section 3.2.3) are presented below.
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Figure 4.11: NEDC test - comparison between simulation and test data,
(a)Torque delivered, (b)Temperature of Coolant, (c¢)Fuel Mass Flow Rate

The torque delivered by the simulation model and the comparison to test data can be
observed from Figure 4.12a and detailed illustrations for analysis can be observed
from Figures 4.12a and 4.12c. It can be noticed that there is a phase difference
between the simulation and test results. From the Figure 4.12b, it can be noticed
engine starts at t = 213s, 251s and 320s. When the engine starts, there is a difference
in torque delivered by the engine. The torque from starter motor is mocked(as
discussed in section 3.2.3) and provided to the combustion engine simulation model,
the mocked torque induces errors in torque delivered by the engine when the engine
starts, increasing the discrepancies further between simulation and test data. For
the extra urban driving cycle region of NEDC, it can be noticed that the torque
delivered the phase difference still persists as seen in Figure 4.12c. The torque is
underestimated for the most part of the test. Fuel Mass Flow Rate comparison
follows similar trend as torque delivered, that is there is a phase difference between
simulated and test signal and it is underestimated for the most part of the region.
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Figure 4.12: Torque, Fuel Mass Flow Rate and engine speed for the NEDC test -
detailed illustration of the differences

The comparison of temperature of coolant can be seen in 4.12b. The coolant flow
rate was one of the mocked signals, and this induces some errors in the simulation
results. The temperature is underestimated for major part of the test. The test
data indicates drop in temperature levels when the vehicle is at standstill, which
can be noticed in the error plots as negative peaks during standstill. This indicates
the cooling of the engine during standstill isn’t captured well. Also, there is a large
error in temperature of coolant towards the end of driving cycle which reduces the
correlation and increases the errors in metrics.

The Box plots for the simulation output signals are shown in Figure 4.13. From
Figure 4.13a it can be noticed there are many outliers present. This is due to large
variations in error of torque as noticed in 4.12a. The median and inner quartile
region is close to zero, but the magnitude of variation in error is large. The variation
of error is large even for the temperature and the mass flow rates. The temperature
and fuel mass flow rate Figures 4.13b and 4.13c show presence of outliers, indicating
variations of error. The temperature and MFR are underestimated for most part of
the test as discussed and this can be observed from the presence of inner quartile
regions in the positive side, in the Box plots.
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The results of Objective analysis methods are shown in Table 4.5. As inferred
from the Box plots, due to large variations of error, the Russell’s error measures
are high. The magnitude error is positive for Russell’s error measure, indicating the
signals are underestimated as observed from box and error plots. The lowest corre-
lation is seen in the torque delivered, and the highest correlation is in temperature
of coolant, as observed from the comprehensive errors.

The OVM and EVM metrics are shown in Table 4.5. The OVM, is comparatively
lower than the battery model for Discharge and Cooling homogeneity test. This is
due to the fact that OVM measures the area difference between the plots, which are
normalised. Hence OVM gives an idea of the shape of the area difference (the trend in
which the simulation plot follows the test plot), which is followed much better for the
Combustion engine NEDC test compared to the HV Battery. The Contribution rate
weighs more towards the Coolant temperature, and its bad correlation contributes
further to the OVM. The EVM is lower than the Cooling homogeneity test in the
battery model. The mean and standard deviation of the objective metrics obtained
for the two NEDC tests is shown in Table 4.6.

Error Tq,,, [A Nm
TempCinty,, [ C]

; ,H_ﬂ_””

(a) (b)

MFR,,, lkg/s]

|
I

(c)

Figure 4.13: Boz plots for the NEDC test, (a)Torque delivered, (b)Temperature
of Coolant, (c)Fuel Mass Flow Rate
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Table 4.5: Objective analysis of NEDC test 1

Russell’s Error Measure

Magnitude Phase Comprehensive
Torque 0.0796 0.1044 0.1313
Temperature of | 0.0397 0.0118 0.0414
Coolant
Fuel mass flow | 0.1175 0.0756 0.1397
rate
Overall Validation Metric
0.0166
Energy Validation Metric
0.0934
Table 4.6: Objective analysis of NEDC test(averaged)
Russell’s Error Measure
Magnitude Phase Comprehensive
Mean | SD Mean | SD Mean | SD
Torque 0.0756 | 0.0041 | 0.1035 | 0.0009 | 0.1282 | 0.0031
Temperature | 0.0445 | 0.0048 | 0.0115 | 0.0003 | 0.0459 | 0.0045
of Coolant
Fuel mass | 0.1152 | 0.0023 | 0.0759 | 0.0003 | 0.1380 | 0.0017
flow rate
Overall Validation Metric
Mean SD
0.0126 0.0041
Energy Validation Metric
Mean SD
0.0922 0.0013
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4.2.2 WLTP test

The simulation of combustion engine model was run for WLTP tests, the results
obtained are discussed below. The error plots are shown in Figure 4.14.
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Figure 4.14: WLTP test - comparison between simulation and test data,
(a)Torque delivered, (b)Temperature of Coolant, (c)Fuel Mass Flow Rate
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Similar to the NEDC test, the there is a phase difference in WLTP test for torque
delivered and fuel mass flow rate, the temperature is not predicted well by the model
during a region of test. The box plots illustrated in Figure 4.15. It can be noticed
from box plots that the magnitude of variation of outputs and inner quartile regions
in WLTP tests is larger than NEDC tests. This results in higher comprehensive
error in Russell’s error measure as noticed in Table 4.7. The OVM and EVM are
higher in case of WLTP tests when compared to NEDC tests as seen in Table 4.7.
The OVM from WLTP test similar to NEDC test is higher that fast charge test
and comparatively lower than discharge and cooling homogeneity test of battery
model. The Contribution rate weighs more towards the badly correlated Coolant
temperature, more than that for the NEDC test, hence the OVM is a bit higher
than that for the NEDC tests. The EVM is lower only when compared to cooling
homogeneity test of the battery model.
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1=

(a) (b)

(c)

Figure 4.15: Box plots for the WLTP test, (a)Torque delivered, (b)Temperature
of Coolant, (c)Fuel Mass Flow Rate

Table 4.7: Objective analysis of WLTP test 1

Russell’s Error Measure

Magnitude Phase Comprehensive
Torque 0.1227 0.1276 0.1771
Temperature of | 0.0501 0.0310 0.0589
Coolant
Fuel mass flow | 0.1753 0.1194 0.2121
rate
Overall Validation Metric
0.0183
Energy Validation Metric
0.1353
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Discussion

The results obtained from implementing the validation code on the two power source
components help us judge the performance of the methodology used. Even though
the number of outputs considered in both the cases were the same, the kind of tests
performed were varied for both the components, which gives us a broad perspective
to discuss the behaviour of the signals and the validation code.

5.1 Signal behaviour

From the simulations of various test cases, some interesting behaviours of the signals
can be noticed.

From the discharge and the fast charge tests for the HV Battery, we notice that
the current inputs change differently. For the discharge test, it a constant current
demand of a high value, while in the fast charge test, the current charges in gradual
steps (observed respectively from Figures 3.1 and 3.2). This affects the tempera-
ture changes, where the maximum error for the discharge test is about three times
that of the fast charge test (due to the sudden high current demand in discharge
test compared to the gradual change in current in the fast charge test). The higher
dynamics of the discharge test is not well handled by the simulated temperature,
which shows worse correlation with test data when compared to the temperature
correlation for fast charge (which is reflected finally in the OVM).

All three tests for HV battery are devised to have a "cooldown"' phase, i.e., the
signals are logged for sometime even after the actual experiment with the
changing input current has ended. This has an effect on the validation metrics
as considerable amount of poor correlations can be observed during this cooldown
phase (especially for the discharge and fast charge tests). Hence, if the tests are
redefined to have only the dynamic section and remove the cooldown phases, the
metrics would give different interpretations.

In the cooldown phase of the fast charge test, it is seen that the simulation values
for SoC reach closer to 100%, whereas in reality, it is not as close to full charge
(as discussed in section 4.1.2). This is probably due to the lack of controller for
the HV battery for the simulation. The charge and discharge limits are set for the
battery in order to maintain a longer battery life cycle.
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From the model structure of the HV Battery, it is seen that the SoC is logged as
an output signal, calculated each simulation step using values of current and ref-
erence cell charge (The initial SoC is set as an initial condition in the simulation
and further values of SoC are calculated at each time step and given as an output).
However, the SoC is considered more as an input in real world phenomenon.

For the Combustion engine, we see that 3 input signals, which were not available
from test data, was mocked in the simulation (Brake pedal position, coolant flow
rate and starter motor torque). An important consideration is that the mocked
signals may not be representative of the actual signals in the test environment
and may induce some errors in validation of the combustion engine model. The
starter motor torque, for instance, induces errors in torque delivered by the engine
when the engine starts, increasing the discrepancies further between simulation and
test data.

5.2 Metric behaviour

Metrics and their interpretations - In subjective analysis, we qualitatively
asses the direction of poor correlation between simulation output signals and cor-
responding test signals and also, based on the variation of error, if the model is
performing reasonably well. Knowing how well individual simulation output signal
is predicted by the model, will help the model developer identify the subsystems in
the model which needs attention and focus to improve the model as a whole. Error
plots are used to identify which simulation output signals are being predicted well
by the model. They are useful in analysing different phases of the test, and identify-
ing phenomena and regions where the model captures the physical system well. The
Box plots qualitatively represent how well the simulation output signal is being
predicted by the model, like error plots and the analysis from box plots supplements
the quantitative results obtained from Russell’s error measure. The Box plots also
provide variation of error for the entire test, and based on the magnitude of variation
of the error, we can subjectively analyse if the model is performing reasonably well.

The objective metrics quantitatively indicate how well the model is performing.
Russell’s error measure apart from indicating the direction of poor correlation
like box and error plots, it also gives measures for the errors. Higher the magnitude,
the phase and the comprehensive error measures, lesser the correlation. Russell’s
error measure provides information about individual signal, but does not quantify
the fidelity of the model as a whole, i.e., it is not a multivariate analysis(does not
consider the simultaneous effect of all the outputs of the model). To overcome the
shortcoming of Russell’s error measure, OVM is used. OVM is a generic metric, and
can be compared for different tests or different models to analyse how the model be-
haves and represents the real physical system. The EVM considers only the signals
contributing to energy flow where as the OVM consider all the necessary outputs
for validating the model. EVM would indicate the correlation in energy between
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the physical system and virtual model. Since VSim mainly deals with energy flows
and losses between the components, this would be an important metric. Similar to
OVM, this is a generic metric and can be used to compare results from different
tests and models to validate the model based on energy flow.

Trends between the OVM and EVM - Extending on the previous point of
EVM, it is evident that the trends between the OVM and EVM can be different,
i.e., a component with higher value of OVM can have a lower value of EVM and
vice versa. This opposing trend can happen when the OVM gives a higher weighing
factor (Contribution Rate CR) to an output signal which is not involved in energy
flow calculation equation (such as temperature, fluent flow rate, etc.). However, we
see that for the two components considered in this thesis, the OVM and EVM follow
the same trend.

Relative measure of correlation - Having mentioned about OVM and EVM,
we notice that both these values are relative measures, and not absolute. Both the
area metric factors have a defined minimum value, i.e., OVM = EVM = 0 for a
perfect correlation (areas between the simulation and test plots = 0). However, there
is no definite number for the "worst" correlation, since the metric keeps increasing
indefinitely with increasing area difference. This implies that the single component
alone cannot have a good or a bad OVM or EVM, but can have a better/worse OVM
or EVM relative to another component.

Basis for weighing outputs in OVM - With respect to the Contribution Rates
(CRs) in the OVM metric, another anomaly can be noticed. We see that the CRs
are based on the wvariability of the output signals, implying that an output with
the highest variance gets a higher weighing factor. Here, the PCA method weighs
outputs by recognising "hidden patterns' in the data set[17]. However, this may
sometimes suppress information that may be relevant (for instance SoC is given
very low weighting factor in fast charge, even though the poor correlation may have
considerable impacts on the credibility of the model). Thus, the basis for calculating
Contribution rates may have to be reconsidered.

Difference between OVM and Russell’s measure - A difference in the in-
terpretation of results is also noticed between OVM and Russell’s error measure.
By definition, OVM is meant to interpret the overall difference in the area of the
normalised PCs, while the Russell’s error measure interprets the error values lumped
together. In fact, the theory behind Russell’s measure shows the error calculated
as the ratios of the simulation and test data points added-up (refer section 2.2.2.1),
while the OVM calculates the area of the shape between the respective cumulative
principle component curves.
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Application of Principle Component Analysis (PCA) - Generally in data
analysis, performing PCA serves to extract the relevant information (largest vari-
ability) in order to remove the redundant information. However, for the models
that we have validated in this thesis, we consider 3 outputs for both, and we wish to
consider all of them as important for assessing the performance of the component.
Thus, here we do not eliminate any outputs in PCA, but only weigh them using
CRs by their variances (using their eigen values).

Influence of phase on magnitude in Russell’s measure - In the current
method of quantifying the magnitude and phase errors in Russell’s error measure,
the presence of phase difference influencing the magnitude error is not accounted for.
To reduce the influence of phase difference on magnitude, the global phase difference
can be identified in terms of time steps and one signal can be shifted by the identified
time steps. The shifted signals will still have local phase difference which can be
further reduced by employing dynamic time warping method. Then the magnitude
error can be calculated, which is not influenced by phase difference[14].

Errors in test data unaccounted - The validation methodology developed
doesn’t take into account the errors from the measurement in the test data. Non-
trustworthy data may not be appropriate to compare with simulation results, as
the results may underestimate or overestimate more than the actual differences in
signals.

Specific variant of models - The battery model or combustion engine model
validated was of one specific variant for which test data was procured. The metrics
talk about fidelity of one variant. Models of different variants (defined by different
parameters), say a Combustion engine of a sedan car compared to an engine of a
heavy duty truck, may have different behavioural characteristics, and the Validation
code may give different results. Applying the code to different model variants will
also help in verifying its generic nature, and can be observed how the metric behave
for different cases.
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Conclusion

From the mathematical approaches made in devising validation methodologies, we
have a generic validation code that can validate energy flow models in VSim. This
validation can be done on models that have any number of outputs, and for test
cases with any number of data points. The outputs considered can be of different
physical units. This code was implemented by comparing the output signals of both
the simulation and test, resulting in the metrics obtained for the two power source
components.

The numbers from the objective metrics well reflect the trends noticed from the
subjective plots. The different objective metrics (Russell’s measure, OVM, EVM)
are able to convey different aspects of the model behaviour, and is consistent with
the observations made from the Error and Box plots.

Finally, we see that there are few areas of improvements with respect the objective

analysis that can be made in order to illustrate the correlation better, which can be
a scope for future research beyond this thesis.
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Future scope

A few observations were made, which can be taken up as tasks for future develop-
ment on this topic, beyond the scope of this thesis.

The energy validation metric can be split into three metrics, one for mechanical, one
for electrical and one for thermal energy flow. This given a more diverse impression
of the model, saying how well it replicates each type of energy flow.

The validation code needs to verified by giving dummy inputs for which the val-
idation metrics is known. Extreme cases as dummy signals can help verify the
authenticity of the methodology, and also help determine the metric value for the
"worst case scenario’.

The test data obtained here were obtained from tests already being done. It would
be a vital future task to develop a test code that defines test cases that covers all
the operating regions of each component in its intended domain of application. This
would depend on the availability of the test rigs to order the tests.

By working on the above mentioned improvements, this methodology can be further

used to validate other component models in VSim, including components that deal
with mechanical, electrical and thermal energy flows, or a combination of all these.
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