
Securing Chaos

An Ultra Low-Latency Wireless Network Protocol for Mission
Critical Applications

Master’s Thesis in Computer Systems and Networks

ROBIN KARLSSON

Department of Computer Science & Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s Thesis 2016

Securing Chaos

An Ultra Low-Latency Wireless Network Protocol for Mission
Critical Applications

ROBIN KARLSSON

Department of Computer Science & Engineering
Chalmers University of Technology

Gothenburg, Sweden 2016

Securing Chaos
An Ultra Low-Latency Wireless Network Protocol for Mission Critical Applications
ROBIN KARLSSON

© ROBIN KARLSSON, 2016.

Supervisor: Olaf Landsiedel, Department of Computer Science & Engineering
Examiner: Elad Schiller, Department of Computer Science & Engineering

Master’s Thesis 2016
Department of Computer Science & Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2016

iv

Securing Chaos
An Ultra Low-Latency Wireless Network Protocol for Mission Critical Applications
ROBIN KARLSSON
Department of Computer Science & Technology
Chalmers University of Technology

Abstract
Wireless Sensor Network (WSN) is a field on the rise with the advent of Internet
of Things (IoT), where small and cheap computers are distributed to collect in-
formation about their local environment. To ensure resistance against malevolent
adversaries, and ultimately correct functionality, security is commonly used. Chaos
[23] is a novel network primitive with built-in high performance all-to-all data shar-
ing that is designed for use in WSNs. This thesis investigates how to secure Chaos
from the ground up. As part of this thesis, we add a link layer security layer to
the existing network, and design and implement a protocol based on Elliptic Curve
Diffie-Hellman Ephemeral (ECDHE) for securely enabling new motes to join. This
Elliptic Curve Cryptography (ECC) based approach enables flexible extensions in
future iterations. We show that our dynamic join protocol performs sufficiently well
for Chaos, such as being able to build a complete network of 32 motes from a single
mote in less than 18 minutes on the TelosB platform, and that the approach is viable
despite the high limitations of the Chaos protocol and the TelosB motes.

Keywords: Chaos, IoT, Wireless Sensor Network Security, TelosB, OpenMote, Cryp-
tography

v

Acknowledgements
I would like to thank my supervisor, Olaf Landsiedel, for giving me the opportunity
to work on this thesis, and for providing good guidance. I also thank Beshr Al
Nahas for his generous advice and help in dire times, and Elad Schiller for being a
good examiner.

Robin Karlsson, Gothenburg, October 2016

viii

Contents

1 Introduction 1
1.1 Motivation and Context . 1
1.2 Problem statement . 2
1.3 Contributions . 2
1.4 Thesis outline . 3

2 Background 5
2.1 Wireless Sensor Network Communication 5

2.1.1 Chaos Overview . 5
2.2 Hardware nodes . 7

2.2.1 TelosB . 8
2.2.2 OpenMote 2538 . 8

2.3 IEEE 802.15.4 . 8
2.4 Contiki . 8
2.5 Cooja . 9
2.6 Security . 9

2.6.1 Symmetric key cryptography 10
2.6.2 Public Key Cryptography . 12

3 Related Work 17
3.1 Background . 17
3.2 Symmetric Key Based Establishment Schemes 17

3.2.1 Probabilistic Key Establishment 18
3.3 Public Key Based Establishment Schemes 19

3.3.1 Discussion . 20

4 Design 21
4.1 Chaos Security Requirements . 21
4.2 Delimitations . 21
4.3 Link Layer Security . 22

4.3.1 Network-Wide Link Layer Key 22
4.3.2 Problems With Joining Nodes 23

4.4 Elliptic Curve Join - EC-Join . 24
4.4.1 Application Requirements . 24
4.4.2 Mutual Authentication and Key Exchange Application 25

ix

Contents

4.4.3 Pre-Join Network Synchronization and Friendly Neighbour
Finder . 27

4.5 Discussion . 28
4.5.1 Trust Infrastructure . 28
4.5.2 Key Revocation . 28
4.5.3 Leaked Network Key . 28

5 Implementation 29
5.1 Link Layer Security . 29

5.1.1 Chaos Frame Counters . 29
5.1.2 AES Functionalities . 30

5.2 Chaos Application and Scheduler Background 32
5.3 Symmetric Key Update Application 32

5.3.1 Chaos Frame Counter Reset 33
5.3.2 Symmetric Key Update Application Scheduling 33

5.4 Elliptic Curve Cryptography Library 33
5.4.1 Certificate Structure . 34

5.5 Chaos Pre-Join Synchronization Application 34
5.6 Chaos ECDHE Application . 35

5.6.1 Contiki Process . 36
5.6.2 Networking Library . 36

5.7 Scheduling Overview . 38

6 Evaluation 39
6.1 Cost of Link Layer Security Operations 39

6.1.1 Cost of AES Operations . 39
6.2 Symmetric Key Update Application 41
6.3 ECDHE Applications Related Operations Costs 42

6.3.1 TelosB . 42
6.3.2 OpenMote Hardware . 43
6.3.3 ECDHE Total Cost Comparison 43

6.4 Evaluating ECDHE Application Scenarios 45
6.4.1 Testing Configurations . 45
6.4.2 Cost of a Single Join Session 46
6.4.3 Cost of Building a New Network 47

6.5 Security Analysis . 48
6.5.1 Design Limitations . 48
6.5.2 Implementation Limitations 50

7 Conclusion 53
7.1 Conclusion . 53
7.2 Future Work . 53

Bibliography 55

x

1
Introduction

This thesis investigates ways to secure the communication in the Chaos [23] all-to-
all network primitive. We explain how this can be done and show our approach to
it.

In this chapter, we give a short introduction to the field of WSN, their use cases,
and properties. Later on, we explain our contributions and then an outline of how
the thesis is structured.

1.1 Motivation and Context
In recent years, there has been great progress in computer technology. Transistor
sizes have been decreasing steadily for decades, and with it, chip size, price and power
consumption. Small, cheap, disposable, and low powered computers (henceforth
called nodes) can be distributed over an area, and then use attached sensors to
collect information about their surroundings, which they communicate with the
network wirelessly. Such a network is called a WSN. Noteworthy applications of
WSNs are as monitors of geological activities, such as volcano eruption detection [43]
and landslide detection [34], and in military environments, such as sniper detection
and localization systems, and submarine detection [11].

A WSN is also one of the fundamentals of the IoT. IoT is the concept that, ulti-
mately, all of our everyday items and everything we want to interact with will be
connected to the Internet. To accomplish such a task, one must rely on small and
cheap computers. There already exist protocols for connecting cheap nodes to the
Internet, such as the IPv6 port 6LowPAN, which aims to apply the Internet Protocol
to even the smallest devices [28].

The sensor data collected by all the sensor nodes need to be collected and aggre-
gated somehow. One common network principle is to let all sensor nodes send their
collected data to a central collector node. An operator can then connect to this
central node and view the aggregated data of all the nodes on the network. It does
have weaknesses, however, such as a lack of redundancy and scalability issues.

It is beneficial to let all nodes share their sensor data over the whole network. This
requires a form of all-to-all network communication. The well established way to do
this has been to let all nodes send their data to a central node, which aggregates
the data, and then sends it back to all sensor nodes. Chaos improves upon this

1

1. Introduction

by utilizing in-network processing of data, and thereby lowering the latency for full
network consensus [23]. Chaos also relies on synchronous transmission combined
with capture effect to allow multiple nodes to successfully transceive simultaneously
[23].

1.2 Problem statement
Up until now, Chaos has not offered any protection of network data against malicious
adversaries. Data protection is a core requirement for applications, such as for
monitoring patients’ sensitive medical data [39]. Chaos needs to support it if it is
going to be used as a building block for a varied range of applications. Unfortunately,
most nodes in a sensor network are low powered and have severe constraints on
CPU, power, memory, and network packet size. A highly streamlined solution which
provides for the security must be adapted in order for Chaos to be moved outside
of lab environments, while continuing to perform well.

This is related to the thesis’s first research question:
• RQ1: Find an efficient solution that secures Chaos’s link layer traffic, without

severely affecting Chaos’s high performance by adding too much overhead.

One of the largest problems for security in WSNs is how to handle cryptographic keys
correctly, and particularly, how to secure communication between new nodes that
do not yet share a common secret. General purpose computers commonly use Public
Key Cryptography (PKC) for mutual authentication and key establishment. Histor-
ically, WSN researchers have considered PKC based schemes too computationally
demanding for sensor nodes [8][13][7], and have therefore focused their attention on
key establishment schemes solely based on symmetric key cryptography. However,
recent research shows that PKC schemes in fact are viable even on low powered
sensor nodes [15][26].

This leads into the second research question:
• RQ2: Combine a PKC based solution with the Chaos protocol to enable com-

plex, dynamic security functionalities, such as a secure join.

1.3 Contributions

As a way of answering the research questions, the thesis accomplishes the follow-
ing:

• We add a layer of security features on top of all regular network traffic in
Chaos. We then confirm that the current implementation of Chaos on the
TelosB platform still performs well with the added overhead.

• We develop an application through which a Chaos network operator can es-
tablish new symmetric keys with a low cost and high reliability.

• We adapt a PKC framework that allows for new, dynamic, functionalities to
be added. We then design and implement a functionality based on this that

2

1. Introduction

enables new nodes to join an existing network without any pre-shared secret.

1.4 Thesis outline
The thesis is structured as follows: after this Introduction chapter, Chapter 2 is
background where we name and explain the technologies that are used as a foun-
dation for our design and implementation. In Chapter 3, we discuss work that is
related to this thesis, but does not align well enough with our goals to be used as
standalone solutions. In the following Chapter 4, we discuss the requirements of a
solution to the problem statement, and how we chose our design to fulfil these re-
quirements. In Chapter 5, we describe how these design choices manifest concretely,
and we also show our algorithms in greater detail. Chapter 6 describes how we test
the performance of our implementation on different topologies and set ups. Lastly,
Chapter 7 uses the results of the evaluation as a foundation for revisiting the contri-
butions and problem statements in this Introduction Chapter, and decide whether
they are actually fulfilled, and what needs to be done in future work.

3

1. Introduction

4

2
Background

In this chapter, we give the required background for the thesis. First off, we explain
the context of Chaos, how it works and its advantages. Then we present the under-
lying technologies we work with, and finally, we give a theoretical explanation for
the different security mechanisms that are relevant for this thesis. This information
is the foundation for the rest of the thesis, and in particular, the design choices we
make in Section 4.

2.1 Wireless Sensor Network Communication
A WSN can consist of a large number of nodes spread out in a varied manner that is
not always known before. The nodes are sometimes deployed by airplanes, and there-
fore, the topology can be hard to predict. The topology is also prone to change as
a consequence of nodes eventually losing power, varying radio reception conditions,
and mobile nodes moving around. One of the most basic forms of communication in
WSNs lets all nodes flood the network with messages without routing. This has the
advantages of being simple and redundant, and downsides of being power hungry
and having large message overheads.

The standard approach for achieving all-to-all communication has historically been
to take a centralized solution and then modify it through a few extra steps, like the
following:

1. All nodes send their respective “data to be processed” to a central node.
2. The central node processes and aggregates all data.
3. The central node disseminates the processed data back to the network.

Chaos, in contrast, incorporates all these steps into a distributed and concurrent
in-network processing of the data. This leads to short, intense bursts of radio traffic
that Chaos thrives upon and makes use of through simple, yet clever, principles. This
seemingly chaotic nature of Chaos is what allows it to perform with low latency and
power consumption compared to its competitors [23].

2.1.1 Chaos Overview
Chaos is a tightly synchronized, highly distributed, flooding based network primitive.
Chaos lets all nodes start communication periodically in rounds. In each Chaos
round, all nodes should reach consensus for the payload. Every Chaos round is
composed of a limited amount of time slots, each lasting a few milliseconds. Through

5

2. Background

a set of rules, all nodes individually decide actions for each time slot, such as whether
to transmit or receive on the radio the following time slot.

2.1.1.1 Chaos Scheduling

For this to work, all Chaos nodes need to be well synchronized. This is done by a
dedicated node called the initiator, which starts the first round by sending a few
packets on the radio. All other nodes associate to these round messages, after which
they all share time slot length and the Chaos round interval, and so they can all
calculate the time offset of when to start the following round, as well as turn the
radio on and off for energy conservation reasons. The nodes can also adjust for clock
drift by comparing the expected time of incoming packets to the actual time.

The well timed transmissions allow the capture effect [24] to take place [14]. Capture
effect is the physical phenomenon where if two or more signals reach a receiver,
that receiver receives only the strongest signal despite there being multiple colliding
signals. Capture effect is central to Chaos’s design, as it allows multiple nodes
to transmit simultaneously, and work despite the increased interference. Another
physical effect that strengthens Chaos is constructive baseband interference [23].
Constructive baseband interference takes place when two or more nodes transmit
identical packets with small delay in between (within 0.5 µs on IEEE 802.15.4 [14]),
which makes receivers interpret it as one single stronger signal.

2.1.1.2 Chaos Data Aggregation

Chaos has built-in mechanisms for utilizing in-network processing of messages. Chaos
manages this by letting all nodes in the network have a flag in each packet (usually
1 bit) in a fixed location. These flags represent nodes’ acknowledgements that the
data in the packet is the aggregated value of all nodes with their respective flags set.
When a node receives a packet, it has the option to merge the incoming data with
its own data and then merge the flags and transmit the merged packet the following
slot. Nodes receiving this packet know that the incoming packet is the aggregated
data of all the nodes whose flags are set.

The merge operator is programmable by the Chaos network operator and is applied
each time an incoming packet has flags set that are not set in the already received
packets. A simple example of such a merge operator is to calculate the maximum
value on the network, as seen in figure 2.1.

6

2. Background

Figure 2.1: Chaos maximum aggregate scenario. In slot 1, A sends its value to
B and C, who merge A’s flag with their own and set the new max value. In slot
2, both B and C transmit their aggregated maximum value, but only B succeeds.
Then in slot 3, node A has the maximum value of A and B and the corresponding
flags set, which it transmits. In slot 4, node C transmits the aggregate with all flags
set, after which all nodes have received the aggregated value of the whole network
[23].

Chaos network operators can implement their own merge operators, but since the
time slots should be short for low latency communication reasons, there are restric-
tions on a merge operator’s complexity.

When a node receives a packet with all flags set, it aggregates the data from all nodes
and goes into the completion phase and aggressively shares it, so that its neighbours
likely receive the fully aggregated data as well. After a few time slots when this
state is completed, the node locally ends the round. A Chaos round is successful
if all nodes reach the identical conclusion by receiving the final aggregated value.
According to measurements, this occurs with a high reliability in varying topologies
[23].

There are cases when nodes reach the final state, whereas others do not, and the
nodes do in fact not reach consensus. Although this occurs rarely, there are cases
when the reliability needs to be increased even further. The probability of reaching
consensus is increased by running Chaos multiple times and adding yet another
flag for each node for each extra round, and then letting these extra flags signify
an acknowledgement of finalizing the last round. This is how Two-Phase commit
(2PC)[37] and Three-Phase commit (3PC)[37] are implemented in Chaos.

2.2 Hardware nodes

In the previous sections, we gave an overview of the Chaos protocol. Chaos can
be implemented on any wireless system. However, Chaos was designed for use
on low powered cheap computers. In the current version that this thesis is based
on, Chaos is implemented on the lightweight operating system Contiki [9] to work
with the TelosB [40] platform. Work is also in progress to port Chaos to the next
generation OpenMote [30] platform. In this section, we describe these platforms’
capabilities.

7

2. Background

2.2.1 TelosB
The TelosB platform is a small, low powered sensor node with a basic radio and
CPU. It has historically been a popular choice in academia for building WSNs, and
its capabilities are well researched. This made it a good choice for an implementation
of the Chaos protocol.

The TelosB [40] platform specification:
• 16-bit MSP430 from Texas Instruments, running at ~4 MHz CPU.
• 48 kB ROM, 10 kB RAM.
• Sensors for temperature, relative humidity, and light.
• A IEEE 802.15.4 compliant cc2420 radio unit [17]. This radio unit also has

hardware accelerated AES (128 bit key length) computations in a number of
modes, such as AES-CTR, AES-CBC and AES-CCM*.

• Power supply through 2xAA batteries or USB.

2.2.2 OpenMote 2538
The OpenMote 2538 [30] platform is the next generation of nodes to run Chaos.
Chaos is currently not fully supported on this node, but it is relevant since it will
be ported in the future. Compared to the TelosB platform, the OpenMote 2538
has much stronger computational resources, and in particular, has ECC hardware
acceleration:

• 32-bit ARM M3 CPU, running at up to 32 MHz.
• 32 kB RAM, up to 512 kB flash.
• A IEEE 802.15.4 compliant CC2520-like radio unit.
• Hardware support for Advanced Encryption Standard (AES) (128/256 bit

key lengths), ECC (128/256 bit key lengths), and Secure Hash Algorithm
2 (SHA2).

2.3 IEEE 802.15.4
The IEEE 802.15.4 radio standard [16] is designed to work well with low powered
nodes and can be seen as the de-facto standard for WSNs. It includes rules for
both the physical layer, such as packet size and modulation scheme, as well as the
MAC layer. The standard describes security features that operate on the MAC
layer, such as how to encrypt data and how to communicate security settings in
the MAC header. Both the OpenMote and the TelosB have hardware support for
these security mechanisms. The current version of Chaos on Contiki implements
this standard to a large extent.

2.4 Contiki
Contiki [9] is a lightweight, open source operating system that is developed for use
on hardware with restricted resources. This makes it suitable for an implementa-
tion of the Chaos protocol and for the TelosB and OpenMote platforms. Contiki

8

2. Background

has support for simple, low memory overhead threading of applications through
protothreads [10].

Contiki also has support for basic real time scheduling, as well as regular sequential
non-preemptive process scheduling. In Contiki, threads run in two different modes:
cooperative mode and preemptive mode.

Figure 2.2: Process A, B, and C run in cooperative mode, and run in a sequence
with respect to one another. A calls B which calls C. Preemptive code interrupts
process B, which runs in cooperative mode, at time t2. Control returns to process
B when the interrupt routine is complete [3].

The main Chaos process runs in a preemptive mode and is called in a regular time
interval for all nodes. Any computations that were done in cooperative mode are
temporarily put on hold, until this timing critical Chaos thread completes. This is
what allows nodes to wake up synchronously and turn on the radio and transceive
simultaneously, while still doing useful computations in between rounds.

2.5 Cooja
Cooja is a network simulator well adapted for WSNs. It has support for the TelosB
platform, which makes it relevant for this thesis. We have used Cooja to promptly
test applications on top of the Chaos protocol, such as the key exchanges. The
strength of Cooja is that it can simulate a large number of different topologies and
node setups. Often, it is easier to set up a simulated environment than to set up
actual nodes on a physical test bed. Cooja has support for different network models,
and can simulate the diminishing signal strength as distance grows. However, Cooja
lacks support for the hardware accelerated cryptographic operations that are vital
for the functioning of the OpenMote and TelosB platforms.

2.6 Security
This section explains general computer security mechanisms, what they accomplish,
and how they work. We then present specific security technologies that are central
to this thesis.

9

2. Background

A WSN is often an open and vulnerable system. Inherently, the radio is an open
medium on which all parties in the vicinity can both transmit and receive, and
the nodes themselves are potentially physically accessible, and consequently, vul-
nerable to manipulation. This opens up attack vectors for a malicious adversary
that needs to be remedied for the WSNs functionality to be secure, and ultimately,
correct.

One common way to achieve security in computer networks is to rely on cryptog-
raphy. Through cryptography, developers can establish a multitude of important
features, such as data confidentiality, data authenticity, and replay protection. In
this section, we describe two different approaches to cryptography that facilitate this:
asymmetric key cryptography and symmetric key cryptography, and their respective
strengths and weaknesses, and how they generally complement each other.

We also describe in each category the basic building blocks that are available and
suitable for the current implementation of Chaos on TelosB and OpenMote running
Contiki.

2.6.1 Symmetric key cryptography
The core idea behind cryptography can be understood from studying its etymology.
Cryptography comes from the Greek words kryptos - “secret”, and -graphy - “writ-
ing”. In other words, cryptography is the art of making a text unreadable to an
unwanted third party. Symmetric key cryptography uses the same secret for both
encryption and decryption.

Encrypt(Key,Message) → Ciphertext (2.1)

Decrypt(Key,Ciphertext) → Message (2.2)

2.1 and 2.2 showcase an abstract view of symmetric key cryptography. The encryp-
tion algorithm needs two parameters: the Key, and the “Message to encrypt”. The
encryption algorithm manipulates the Message together with the Key in a way that
is hard to predict without prior knowledge of the correct Key. Consequently, the
inverse/corresponding decryption algorithm is not possible without either knowing
the Key or guessing it.

By sharing this secret between a number of parties, who consequently can correctly
decrypt the message, one can establish a secure communication channel. These
nodes can then confidentially send ciphertexts to each other, even over an open
medium, without revealing the secret Message.

Relying solely on this encryption mechanism only enforces confidentiality of data.
Like stated in the beginning of the section, there are other important security prop-
erties that must be enforced for a truly secure communication channel, such as
data integrity. This can, however, be solved in a similar fashion of encryption, as
exemplified in the next section.

10

2. Background

The main weakness of symmetric key cryptography is that, ultimately, the shared
secret has to be established over a secure communication channel. WIFI in PSK
mode solves this by simply letting users input an administrated password into the
supplicant device. Alternatively, one of strengths of asymmetric key cryptography is
that it complements this weakness of symmetric key cryptography: an asymmetric
key cryptography based scheme can establish a shared secret and secure channel,
even over an open medium.

2.6.1.1 Advanced Encryption Standard

AES[4] is a popular and strong symmetric key algorithm. Both the TelosB and
OpenMote have hardware support for AES, which makes it a good alternative for
these nodes, especially for securing the link layer traffic.

AES encryption works by dividing the message into blocks of 128 bits. It then
performs a set of permutations and substitutions together with the key on each
block. AES does these operations in multiple rounds, and finally, each block is
individually transformed into a ciphertext.

Using solely this approach has one severe weakness. Since the algorithm is deter-
ministic, encrypting identical blocks found in different parts of the message results
in identical encrypted ciphertext blocks. This causes an information leak which an
adversary might be able to abuse. To combat this, AES is often run in a mode of
operation that causes identical blocks to transform into differing cipher blocks. The
relevant modes for this thesis are AES in Counter mode (AES-CTR), AES in Cipher
Block Chaining (AES-CBC), and AES Counter with CBC-MAC (AES-CCM), since
they are supported and configurable on the TelosB and OpenMote radio chips.

AES-CTR
AES-CTR solves the problem of recurring cleartext blocks by encrypting each block
differently, depending on its position in the message.

E

ctr

K

M1

E

ctr + 1

K

M2

E

ctr

K

C1

E

ctr + 1

K

C2

Encryption process

Decryption process

E

ctr + n� 1

K

Mn

E

ctr + n � 2

K

M
n�1

EK

Cn

E

ctr + n � 2

K

C
n�1

C
n�1C2C1 Cn

MnM
n�1M2M1

ctr + n� 1

[0::2 64�1℄

+ i K

C i Cj

Ci C i+1

E C 1; C2; : : :

30 : : : 100

M M

M M

i Ci

i i� 1

Figure 2.3: Showcases AES encryption and decryption in CTR mode. Ctr repre-
sents a unique counter [25].

AES-CBC

11

2. Background

Similarly to AES-CTR, AES-CBC also solves the problem of recurring cleartext
blocks, but AES-CBC does this by chaining all blocks together.

Figure 2.4: Showcases AES encryption and decryption in CBC mode [12]. M
represents message to be encrypted, C represents the encrypted ciphertext, and IV
represents the initialization vector.

AES-CBC-MAC
AES in Cipher Block Chaining Message Authentication Code (AES-CBC-MAC) is a
special case of AES-CBC. AES-CBC-MAC does the same computations that AES-
CBC does, but the difference is that it only saves the last block. This block is then
a form of a cryptographic message digest that is appended to the message to ensure
its integrity. Since a modification of any block ripples down to the last block, any
change to the ciphertext is discovered by the decrypting node when doing the AES-
CBC-MAC computation on the whole message and comparing it with the appended
message digest in the message. If there is a difference, the receiver notices this and
concludes that the message has been tampered with.

AES-CCM
AES-CCM is a combination of AES-CBC-MAC and AES-CTR. When encrypting
with AES-CCM, it first runs AES-CBC-MAC and appends the digest to the end of
the message. It then runs AES-CTR using the same key. By using AES-CCM, one
enforces both data confidentiality and data integrity. This type of mode is called
authenticated encryption.

2.6.2 Public Key Cryptography
PKC, also known as asymmetric key cryptography, differs from symmetric key cryp-
tography in the sense that it utilizes two distinct, but mathematically related, cryp-
tographic keys. One of the keys is made public and the other must be held pri-
vate.

12

2. Background

The revolutionary use cases of PKC when Whitfield Diffie and Martin Hellman
introduced it in 1976 [5], was that it allowed for confidentially establishing secrets
over an insecure channel, and that a message can be signed by one party’s private
key, and the message’s validity and sender identity can be verified by any party that
has the signer’s public key.

These simple facts are used as building blocks for advanced and scalable infrastruc-
tures, such as the Public Key Infrastructure (PKI) found on the Internet. For one, a
holder of both keys does not need a secure channel to establish a secure connection
with other parties, but can rely on a scheme such as Elliptic Curve Diffie-Hellman
(ECDH) to establish new keys.

The general disadvantages of PKC compared to symmetric key cryptography, is
that it is computationally expensive to encrypt and decrypt messages, and that the
cryptographic keys need to be longer for a comparable level of security. To get
around this, developers of security functionalities often rely on PKC solely to verify
identities and establish symmetric keys so that the rest of the communication is
secured by a cheaper symmetric key cryptography algorithm, such as AES.

2.6.2.1 Elliptic Curve Cryptography

ECC[27][19] is a PKC approach that has gained popularity in recent years. ECC
requires shorter key lengths than alternatives, such as RSA, for a comparable se-
curity level [26]. This property makes it suitable for the memory restricted nodes
commonly found in WSNs.

The core idea behind ECC is to use elliptical curves and rely on the trapdoor function
principle. An elliptic curve is a mathematical function of the form:

y2 = x3 + ax+ b (2.3)

The curve parameters in equation 2.3, a and b, are publicly known for all nodes that
need to do ECC operations, as well as the starting point G on the curve.

13

2. Background

Figure 2.5: Addition of two points, P and Q, on an elliptic curve to get a third
point, R [18].

When a point is added to itself, like in figure 2.5, one uses its derivative to find
the next intersection. Multiplying a point with a number n is done by adding a
point to itself and then adding that point with itself, and repeating like this log2(n)
times.

In the context of ECC, a private key d is a random number, whereas the public key
Q is a point on the elliptic curve. The public key is, more specifically, a shared point
G on the curve multiplied by the private key, as can be seen in equation 2.4.

Q = d ∗G (2.4)

Equation 2.4 showcases the elliptic curve operation required to build a public key
from the private key. From this equation, one can also understand the trapdoor
principle central to ECCs success. Given knowledge of the private key d and the
point G, one can calculate the public key Q through “multiply and add”, which has
worst case complexity O(k), where k are the number of bits in the key. An attacker
wanting to compute d based on Q and G faces the elliptic curve discrete logarithm
problem, for which there is no known efficient algorithm. Given that the curve is
secure, reversing a public key to find the private key is impractical.

Users can establish private and public keys through these ECC operations, but need
dedicated algorithms for more advanced purposes than that, such as ECDH for es-
tablishing shared secrets, and Elliptic Curve Digital Signature Algorithm (ECDSA)
for authentication and building trust.

2.6.2.2 Elliptic Curve Diffie Hellman Key Exchange

ECDH is a way to establish a shared secret between two parties through their
respective public and private keys. In principle, it is similar to the first published
version of Diffie Hellman [5], but ECDH works in the context of elliptic curves. The

14

2. Background

core principles behind ECDH are exemplified by the following scenario where two
parties, A and B, establish a shared secret:

• A: generate da, derive Qa = da ∗G
• A → B: Qa

• B: generate db, derive Qb = db ∗G, and calculate shared secret = db ∗Qa

• B → A: Qb

• A: calculate shared secret = da ∗Qb

A′s Secret = da ∗Qb = da ∗ db ∗G = db ∗ da ∗G = db ∗Qa = B′s Secret (2.5)

Equation 2.5 clarifies how the two parties agree on the same secret, while not allowing
a third party to decipher the secret.

15

2. Background

16

3
Related Work

In this section, we discuss research that works on solving similar problems as ours.
We show the most relevant solutions and explain why we have not opted to use
them.

3.1 Background
A good security solution depends on the application, as well as the underlying com-
munication protocol, and security schemes often have tradeoffs between complexity,
overhead, and adaptability. Consequently, there is much research in the area.

Padmavathi et al.[31], Wang et al.[42], and Pathan et al.[32] give a broad secu-
rity overview for WSNs. Padmavathi et al.[31] also present an extensive model for
possible attack types.

Similar to security, fault tolerance aspects, such as byzantine fault tolerance[22],
are related to a system’s correctness. A byzantine fault is when a node transmit
differing data depending on the receiving node, causing uncertainty of what it said.
This kind of problem is, however, not solved through cryptography, but instead
through overhead in communication.

Because of the limited resources in wireless sensor networks, traditional approaches
typically rely on pre-shared symmetric keys at the expense of flexibility. PKC,
however, is flexible, dynamic, and scalable, but also computationally heavy, and
time consuming [26].

It is likely that as the number of nodes become prevalent in the future, combined
with the increase in memory size and computational power of each node, scalable
solutions, such as those provided by PKC schemes, will be increasingly relevant,
juxtaposed to pure symmetric key based schemes.

3.2 Symmetric Key Based Establishment Schemes

A simple solution for establishing shared trust in between nodes is to rely on a
single network-wide shared key for all cryptographic operations. Such a solution
has low overhead and is simple to implement, but has no resiliency against node
capture, which could compromise the security of the whole network. Therefore,

17

3. Related Work

researchers have proposed schemes with increased resiliency, such as a pair wise pre-
distributed key scheme where each node shares a key with all other nodes in the
network (n-1 keys are stored on each node, where n is the number of nodes in the
network). However, this naive scheme requires much memory for key storage and is
not scalable as node count increases. Not all nodes are necessarily neighbours, and
links between them may not be directly possible, which makes the storage space
for these keys wasted. Blom[2] discusses an improvement to the naive scheme, by
storing keying material on each node, so that nodes themselves can establish secret
keys with their respective neighbours.

Du et al.[8] also improve upon the naive pair wise pre-distributed scheme by explic-
itly defining the resiliency as a security parameter, λ, which denotes the number
of nodes that can be compromised while the rest of the network is still secure.
Increasing λ increases the overhead, while improving the security.

However, a scheme that relies on pair wise keys has disadvantages when applied to
Chaos. Chaos is meant to function with low latency coupled with high reliability, but
pair wise schemes lower this since they work on a point-to-point basis, whereas Chaos
thrives upon broadcasts. Establishing pair wise keys would also be troublesome,
since Chaos inherently relies on all-to-all communication.

3.2.1 Probabilistic Key Establishment
Eschenauer et al.[13] describe a novel approach for establishing keys among a set of
nodes. They build a large pool of keys from which all nodes draw a subset of keys.
When deployed, these nodes try to form a network by connecting to neighbouring
nodes with shared keys, and then use this to establish secure communication links
between their neighbours. The size of the key pool can be adapted according to the
network so that neighbouring nodes likely share a key, and a fully connected graph
is likely to occur.

Du et al.[7] show improvements to the previous scheme, based on deployment topol-
ogy knowledge, and by selecting keys with a higher probability to match between
neighbours. This provides resiliency against node capture, since each node only has
a subset of all keys, and this subset of keys can be deleted from all other nodes. The
secure nodes can then establish new session keys with the non-compromised keys,
which means the compromised node will be excluded from the network.

These schemes can work with group keys. New nodes can join the network if there
is an overlap in sets of keys between the network and the joining node. If there is,
they can establish a secure connection and transmit the group key. This scheme
might be good for Chaos as it is fast and adaptable, as well as potentially resilient
to node capture, but if there is no overlap of key subsets, a joining node can not
join the network.

Adaptable Pairwise Key Establishment Scheme (APKES)[21] is a symmetric key
scheme that is used for establishing session keys between neighbouring nodes, and

18

3. Related Work

relies on a pre-shared master key. When the master key is drawn from a random
subset of pre-distributed keys, the scheme can provide good resiliency against node
capture. The scheme may be used for establishing unique session keys between each
node-to-node link, and it can also be used to establish group keys.

Adaptable Key Establishment Scheme (AKES)[20] improves upon APKES and solves
the problems of handling anti-replay data on rebooted nodes, as well as node mo-
bility. Additionally, AKES handles reboots without storing data in non-volatile
memory. This also solves the problem that arises when nodes have been commu-
nicating with the same key for a long time, and the replay mechanism (the frame
counter) starts repeating.

These schemes can work with group keys, which is preferable for Chaos, by letting a
joining node establish a secure connection with an already existing Chaos network if
it shares the joining node’s subset of keys overlaps with the subset of keys found on
the network. This approach could be good for Chaos as it is fast and adaptable, as
well as potentially resilient to node capture, but if there is no overlap of key subsets,
a joining node can not join the network.

3.3 Public Key Based Establishment Schemes

Historically, researchers have considered asymmetric cryptographic schemes as too
computationally heavy for practical use in WSNs. Gura et al.[15] and Liu et al.[26]
show that PKC schemes are in fact viable, even on nodes with moderate compu-
tational resources, such as the TelosB platform. It is also reasonable to assume
that sensor nodes will only become more powerful in the future, and therefore, an
adaptable PKC scheme Chaos is both usable today, as well as prove scalable in the
future.

There exists PKC schemes, such as RSA, that easily handles encryption and de-
cryption through the public and private keys themselves. ECC works in a different
manner, and encryption with the public key itself is not directly possible in the same
manner. In ECC, a shared secret should be established through a key establishment
protocol, such as ECDH.

Yow et al.[44] introduce a lightweight mutual authentication and key exchange pro-
tocol, based on ECC, but with lower run time than comparable schemes. However,
it relies on node power inequalities and puts the majority of heavy computations on
a powerful server, which is not necessarily found on a Chaos network.

There have been research on porting security protocols commonly found on the
internet to work with IoT, such as Lithe [36], which integrates Datagram Transport
Layer Security (DTLS) and Constrained Application Protocol (CoAP). Research like
these are important for providing end-to-end security between nodes in the network,
as well as for remote hosts. To accomplish this, Lithe compresses the headers, and
has support for common cipher suits including ECDHE. Similarly, Raza et al.[35]

19

3. Related Work

have published a lightweight Internet Key Exchange version 2 (IKEv2) port for use
on sensor nodes, through which it is possible to establish end-to-end communication
between nodes.

Porambage et al.[33] introduce a PKC scheme that relies on ECC to authenticate
joining nodes and establish session keys between these and neighbours. This ap-
proach is similar to ours, but they utilize a Cluster Head (CH), which is a more
powerful node that functions as a CA, and the underlying communication protocol
is not necessarily an all-to-all primitive.

3.3.1 Discussion

One big disadvantage of PKC schemes is their large cost in terms of time and
energy consumption. For instance, ECDSA signature verification takes a long time
[26]. However, in a WSN, joining nodes might be rare, and when mainly used
for joining nodes, the overhead is hopefully small when averaged over time. The
heavy join computation also opens up for Denial of Service (DoS) attacks against
the verifier, in the case of a fake node sending fake messages that the verifier has to
compute. Research has shown that there are mechanisms available to mitigate this
type of attack. Arazi et al.[1] exemplify this by instead of using ECDSA, which has
a long verification computational requirement, it relies on RSA whose verification
algorithm is much faster. Dong et al.[6] also mitigate the DoS attack, but instead
rely on pre-shared group keys to act as a first hand filter against the non-valid
signatures.

20

4
Design

In this chapter, we specify the security requirements and functionalities that Chaos
should provide. We also describe and discuss our design choices, and our methodol-
ogy for accomplishing these.

Our design approach is split into two parts:
• The first part deals solely with symmetric key cryptography and our approach

to securing regular link layer network traffic, as well as a simple way to establish
and handle symmetric keys.

• The second part deals with designing and implementing a PKC scheme that
solves the disadvantages and weaknesses of the symmetric key cryptographic
scheme. Our main focus here is to enable new nodes to join an existing Chaos
network without an “a priori” shared secret, as well as solving the problem of
a leaked network key.

4.1 Chaos Security Requirements

Chaos needs the option to secure all radio packets. First and foremost, all data
sent on the network must fulfil data confidentiality, data authenticity, and replay
protection, which the IEEE 802.15.4 standard ensures [16]. However, the IEEE
802.15.4 standard states no built-in way of sharing cryptographic keys, as this must
be taken care of on an upper abstraction layer.

One important principle in Chaos is that all nodes should be able to read every in-
coming packet in order to successfully apply a relevant merge operation. Otherwise,
Chaos’s performance deteriorates heavily, which we must avoid. Therefore all Chaos
nodes need to at least share keys with their respective neighbors.

4.2 Delimitations

Chaos nodes are potentially physically accessible, which opens up for a multitude of
side-channel attacks, such as tampering of sensors, power consumption inspection,
computational delay measurement, radio jamming, or simply reading the key when
it is set on the radio. If a node is captured, more attack vectors are available for
an attacker, and the current key may leak. Dealing with side-channel attacks and

21

4. Design

physical attacks are outside the scope of this thesis, however, we try to make our
solution adaptable enough for future research to solve issues such as these.

4.3 Link Layer Security

The link layer security corresponds to all security related mechanisms that are ap-
plied on a frame to frame basis. It encompasses and ensures the correct transmissions
on each individual Chaos time slot.

4.3.1 Network-Wide Link Layer Key
In this section, we describe our approach to sharing link layer keys among Chaos
nodes. We first discuss how we bootstrap the security, and then shortly describe
our application for updating the link layer key on the network. This corresponds to
the first part mentioned in this chapter’s introduction.

Due to the all-to-all communication properties of Chaos, it is suitable to use a
network-wide shared cryptographic key. This means that all nodes in the network
use the same symmetrical key for encryption, decryption, and message authentica-
tion. The key is distributed on the network by hardcoding it into each node during
compilation.

Using a shared key like this means lower overhead than other symmetric key schemes,
such as the pairwise key scheme mentioned in Chapter 3, and it is also easy to
implement. A key known to all nodes in the network also aligns well with Chaos’s
all-to-all communication, and works with a dynamic network topology, such as new
nodes joining, radio signal strength changes, and mobile nodes.

However, it provides no resiliency if the key leaks, after which all network commu-
nication based on it is compromised. Despite this, using a network-wide security
key is an acceptable approach, due to its low memory overhead and high perfor-
mance, and since we take further precautions to mitigate the consequences of node
compromise.

4.3.1.1 Establishing New Symmetric Keys

This network key is used by all Chaos nodes for securing regular radio traffic. The
IEEE 802.15.4 standard specifies that a 16 octet nonce should be used for the AES
operations.

Figure 4.1: The structure of the nonce used in the IEEE 802.15.4 AES operations.

22

4. Design

A unique key and nonce combination for each AES operation is a requirement for
replay protection. As we show in Chapter 5, these nonces may start repeating within
a network’s operation time, and we must therefore confront this to ensure the full
link layer that we mentioned in our requirements. Our solution is to build a key
exchange application, through which all Chaos nodes agree on a new key to use
before all nonce values for the current key are consumed and start repeating.

When establishing a new network key, all nodes should agree on using the identical
key simultaneously. Otherwise, they will not be able to encrypt, decrypt and au-
thenticate packets correctly, and will practically be excluded from the network. For
establishing new keys, we require that the nodes reach consensus with a high relia-
bility. We let the Chaos initiator create a new network key, and then utilize a 2PC
consensus protocol through which it disseminates the new key to all the nodes in
the network. The existing link layer security ensures that the new key is exchanged
securely. The solution provides a good tradeoff between messages sent and a high
reliability that all nodes reach the same decision of either changing keys, or not
changing keys.

Establishing new keys has other advantages. For instance, if the key is leaked at
one point in time, only traffic based on this key is compromised, whereas old traffic
encrypted with an older key will not necessarily be decipherable by an attacker.

4.3.2 Problems With Joining Nodes

The strengths of our approach for establishing new symmetric keys are that it is
simple to implement, and it has fast and cost efficient performance. Its main weak-
ness, though, is that it relies on the link layer security secured through a pre-shared
network key, and if this network key is not known, there is no way to decipher the
new key. By itself, it can not expand the secured network, but at best preserve the
existing one. Nodes may fail in a round while others succeed, after which a subset
of nodes update the key whereas others do not, and they are thereafter unable to
communicate.

It also breaks down if the current network key leaks, since then the link layer security
is broken, and all future exchanges are compromised.

We want to solve the aforementioned symmetric key scheme’s problems and add the
following features:

• Enabling a new node to join an existing Chaos network without prior knowl-
edge of the current network key.

• Securely establishing new network keys after network key compromise.
• Excluding compromised network nodes from the network and all subsequent

network communication.

23

4. Design

4.4 Elliptic Curve Join - EC-Join

In this section, we describe our application that enables new nodes to join the
network without prior knowledge of the network key. PKC has ways of establishing
new keys, revoking nodes’ rights to the network, and enabling new nodes to join the
network. Our goal here is to create a system that serves as a foundation for how
PKC can successfully be used in conjunction with the Chaos protocol.

Our focus in this section is to present a way for new nodes to join an existing Chaos
network. Currently, there is already a join application that manages network nodes
and their flags. However, the join application assumes that the communication is
secured on the link layer, which joining nodes lack the ability to do due to not
having the network key. Our approach is therefore to build a PKC scheme that
allows network nodes to securely share the network key with a new node. When
the new node has received the Chaos network key, it can finally join the network
through the existing join application.

We expect that the PKC scheme will not be used often, which loosens the time
constraints. We also consider that optimizations and more powerful nodes solve the
current computational time problems in the future. However, we do require that
it manages to solve the problems within a reasonable amount of time, even on the
TelosB platform.

4.4.1 Application Requirements
A new node should be able to securely join a Chaos network without knowing the
current network key. To facilitate this, we break down the problem into the following
required parts:

• Mutual authentication:
– The joining node should prove its identity to a holder of the network key.
– The network key holder should prove that the network is the joining

node’s desired network.
• Secure exchange of network key:

– A node in the network should send the network key to the new node
without a third party being able to decipher it.

– The exchanged network key should be authenticated, and a third party
can not manipulate it without the joining node detecting it.

The ECC based secure join application is designed to run on all Chaos node, includ-
ing the TelosB platform, which Liu et al.[26] demonstrated requires multiple seconds
for common ECC operations. Chaos time slots are in the order of a few milliseconds
[23], which means the ECC operations are too computationally heavy to be used on
individual Chaos time slots for the TelosB. In fact, operations can potentially span
over multiple Chaos round periods, as we show in Chapter 6. Consequently, we build
our secure join on the application layer. This means nodes exchange information

24

4. Design

required for the Secure Join using Chaos simply as a network primitive for Elliptic
Curve Join (EC-Join).

4.4.2 Mutual Authentication and Key Exchange Applica-
tion

We base our key exchange on ECDH, and add features compared to the basic version
in Chapter 2. One core difference is that we rely on lightweight certificates to build a
trust chain and achieve mutual authentication. All nodes that can establish a secure
connection must share the public key of a trusted third party, which we hardcode
into all Chaos nodes.

4.4.2.1 Application Overview and Protocol Message Flow

Figure 4.2 shows an overview of the messages sent in the key exchange application.
This represents the core of the protocol that occurs when a joining supplicant and
a network authenticator has coupled. Currently, we assume that the supplicant
already has the authenticator’s anti-replay counter, and Chapter 5 shows how this
is done.

Figure 4.2: Visualizes the application’s message flow. CertA and certB refer to
A and B’s public certificate. QA and QB represent A and B’s public ephemeral
keys. Ctr is a counter that is used to protect against replayed messages. SigA and
SigB represent the nodes’ respective ECDSA signature over the whole message. The
authenticator sends the AES nonce together with M, the encrypted network key.

Mutual Authentication

25

4. Design

At the end of the exchange, both nodes share each other’s public certificate. These
public certificates are signed by the trusted third party’s ECDSA signature. The
trusted third party’s public key is hard coded into both nodes, and they both have
the means to verify the identity of each respective certificate.

Both nodes must also verify that their session partner is the holder of the verified
certificate, in order for the session to be authenticated. They accomplish this by
ECDSA signing their respective message’s hash digest with their certificate’s corre-
sponding private key. The receiver then verifies the message’s appended signature.
This means the signature in this case both serves for message integrity, and for au-
thenticating that the trusted party has verified the other party’s identity, and should
therefore be trusted.

Secret Sharing
Both nodes share a common secret through the exchanged messages, just like ECDH
as explained in Chapter 2. The authenticator uses this shared secret to derive an
AES key, which it uses to encrypt the payload and then signing the message and
sending it to the supplicant. In this case, the payload is the network key. When the
supplicant receives message 2, it derives the same shared secret, and can decrypt the
network key. An outsider can not decipher this payload, due to the ECDH protocols
nature, as explained in Chapter 2.

Ephemeral Elliptic Curve Keys
We want to allow the network to handle compromised nodes. If a node is captured,
that node’s private key is possibly leaked. A leaked private key means that all
corresponding ECDH sessions based on this private key are decipherable by the
new holder, since the attacker who has saved the network traffic can perform that
node’s computations, including shared secret derivation used for encryption and
decryption of payload. Consequently, if a captured node has ever used ECDH for
EC-Join, then that agreed shared secret is compromised, as well as the network key
that was encrypted based on the shared secret. This means all future link layer
security is compromised starting from the first moment that node used ECDH to
encrypt and send the network key.

A solution to this problem is to use ephemeral public and private keys for one key
exchange and then discard them. This makes each individual key exchange session
protected and indecipherable in the future. This property is called forward secrecy.
There is also a performance tradeoff involved, since using ephemeral keys is heavier
than each node’s long term keys due to new keys having to be generated each
session.

Anti-Replay Mechanism
One attack against the protocol is that an attacker resends valid messages from
a valid ECDHE session. This type of attack would not allow the attacker to join
the network, however, it would consume time and energy from the authenticator.
We add an anti-replay mechanism to the ECDHE session that mitigates the conse-
quences of fake messages.

26

4. Design

counter = (ecdhe_session_counter || authenticator_id || supplicant_id)

The ecdhe_session_counter is a 32 bit value that is incremented after each use
and stored on each node in the network. Each potential authenticator transmits
it to pending supplicants in the pre-join rounds. Supplicant candidates save the
anti-replay counter corresponding to the authenticator it couples with. The au-
thenticator then only accepts incoming messages with the expected counter. The
ecdhe_session_counter prevents messages from old sessions from being replayed,
whereas the authenticator_id prevents valid messages from parallel sessions from
being replayed to another authenticator.

4.4.3 Pre-Join Network Synchronization and Friendly Neigh-
bour Finder

In Chapter 2, we describe how Chaos nodes synchronize to the network, both in
terms of time and correct application scheduling the following rounds. New Chaos
nodes must synchronize accordingly before joining the network. However, the net-
work traffic is link layer encrypted, which means new nodes can not access the
data, and therefore synchronize with the network. For this reason, we utilize a set
of unencrypted, periodic, pre-join synchronization rounds, which allow new nodes
to synchronize with the network before attempting the EC-Join. The pre-join is
implemented as a Chaos application that is scheduled periodically.

Pre-join also serves for the new nodes to notify the Chaos network that they wish
to join, which enables the network to schedule the secure key exchange and authen-
tication application the following rounds. If no joining node is able to notify the
network of its presence, the network schedules another pending application, such as
the max-app example in Chapter 2, instead of the key exchange application.

The application’s scheduling is configurable through the Chaos scheduler. A long
delay between the application’s rounds leads to a low overhead, but also means that
joining nodes can not join as often, whereas a short delay means more nodes can
join sooner, but at a higher cost for the network.

4.4.3.1 Coupling

Since ECDH secret sharing is point-to-point based, new nodes need to couple with
one of the network nodes. There are different approaches to this, one of them is
to let the network denote an authenticator node, with which all supplicants couple
with. This works well due to Chaos’s all-to-all communication, but it limits the
number of simultaneous joining nodes to 1.

Another approach is to consider that all network nodes share the same network
key, and have the same privilege and ability to share it. Supplicants can then
couple with their closest neighbour, which minimizes latency and network load. It
also means that all network nodes can, in theory, simultaneously authenticate one
supplicant each. The tradeoff is that if all network nodes authenticate, there is likely

27

4. Design

much interference between neighbouring links, which lowers the link reliability. We
discuss solutions to this problem in Chapter 7.

4.5 Discussion
Although node compromise detection and its removal from the network are outside
the scope of this thesis, we design our applications to be adaptable enough to solve
these issues in future work.

4.5.1 Trust Infrastructure

One of our design choices is to remove the core trust element from being stored
on the network, to avoid its compromise. In this case, the trusted third party’s
private key should not be stored on the network, but instead on a secured remote
location.

There should, however, to be a link between this secure location and the Chaos
network in order to facilitate dissemination of key revocation messages. The link
ought to be either direct, through a permanent radio link to a few dedicated network
nodes, or indirect through a mobile node which carries the trusted third party’s
signed message and connects to the network for a dissemination of the message.

4.5.2 Key Revocation
Revocation of nodes’ rights can be accomplished by sending a revocation message
containing the revoked nodes’ public keys, signed by the trusted third party. The
nodes on the network then verify the message, and add the keys in the message
to their list of revoked public keys. If a node tries to connect to a network with
a blacklisted key, the corresponding network node will detect this and abort the
session.

This revocation message must be disseminated to the whole network, since all nodes
in the network can establish a key exchange session with an incoming node. The
revocation message must also be shared with all future joining nodes, since otherwise
they run the risk of being fooled into joining a Chaos network run by one of the
compromised nodes.

4.5.3 Leaked Network Key

A leaked network key means that all future network communication based on that
key is compromised. For this reason, a new network key must be established. This
can not be solved by our symmetric key exchange scheme presented earlier. A
solution is to discard the current symmetric network key, and then let all network
nodes perform an ECDHE session with an uncompromised node.

28

5
Implementation

This chapter describes our working solution for security functionalities. We start off
by describing our methodology for implementing the common security operations
used on each Chaos slot. We then show our symmetric key exchange implementation.
Later on, we show the implementation of everything PKC related, and explain the
ECC library’s available building blocks.

5.1 Link Layer Security
The link layer security has large timing constraints, and to maximize Chaos’s per-
formance, we utilize hardware acceleration when available. The cc2420 radio unit
found on the TelosB platform has hardware support for AES, as mentioned in Sec-
tion 2. We implement the security features according to the IEEE 802.15.4 standard
by extending the cc2420 Contiki driver.

5.1.1 Chaos Frame Counters

Since Chaos relies on all-to-all sharing, keeping track of individual frame counters
from all neighbour nodes is not practical. Additionally, Chaos relies on a single
shared network key, and consequently, the frame counter must be shared, because
it is the combination of key - frame counter that must not be repeated.

Link layer frame counters in Chaos are set in the Chaos header. We make sure
that the frame counter does not repeat randomly, through it being encoded as
a combination of Chaos time slot and Chaos round number, as shown by listing
5.1.

Listing 5.1: Chaos Frame Counter
typedef union {

uint32_t secur ity_frame_counter ;
struct {

uint8_t slot_number_frame_counter ;
uint8_t seq_number ;
uint16_t round_number ;

} ;
} security_frame_counter_t ;

29

5. Implementation

The seq_number variable is currently unused, and is available to be used to increase
the maximum number of Chaos slots, or the number of Chaos rounds. If the extra
byte is used to extend chaos_round when it overflows, then the Chaos frame counter
practically supports 224 Chaos rounds. If Chaos runs once every second, the frame
counter will start repeating after approximately 6 months (224

60∗60∗24 ≈ 194 days).
This may not be enough for all applications, which is why we need to update the
symmetric key before this occurs through the key update application.

5.1.2 AES Functionalities

The cc2420 radio unit has 3 types of AES interfaces: stand alone encryption, on-
the-fly encryption on the TX buffer, and decryption on the RX buffer. We utilize
the two latter types for our link layer security, as these natively handle the AES
modes of operations discussed in Section 2.

To encrypt transmitted messages, we issue an STX_ON strobe on the radio, in
conjunction with flags that represent which encryption configuration to use. To
signal that the frame is security enabled, we utilize a flag in the Chaos header that
is set when any link layer security setting is active.

Receiving nodes detect that the security flag is set in the Chaos header, and act
according to this. They update the current AES nonce with the frame counter
used for encrypting the packet, and issue an SRXDEC decryption strobe. This
turns the decryption engine on to operate on the RX buffer, asynchronously. To
avoid reading parts of the RX buffer before decryption is done, we only read if
CC2420_FIFO_IS_1 pin is 1, which signals that there is at least one readily read-
able byte in the buffer.

If the radio security configuration includes MIC, the encryption engine automatically
outputs the appropriate number of AES-CBC-MAC message digest bytes to the
end of the packet before transmission. The in-line decryption also automatically
computes the AES-CBC-MAC, and compares the locally computed digest with the
appended MIC from the purported sender, and outputs either 0x00 if they match,
or 0xFF if they differ. This is all done below the surface, and we only need to verify
the MIC by comparing each frame’s last byte, and discard it if when non-zero.

To prevent replayed packets, all Chaos nodes have a shared frame counter. Receiving
nodes must decrypt with the frame’s frame counter that was used in conjunction
with encryption. After decryption, the receiving nodes then verify that the frame
counter that was used to encrypt and decrypt the packet is valid and has not been
used before with this key. If its invalid, they discard the packet.

5.1.2.1 Configurable Security Settings

In our implementation of the common security operations, we rely heavily on the
TelosB platform’s radio unit. As described in the Chapter 2, there are three available

30

5. Implementation

AES modes of operation for the cc2420 radio, each with different properties.

Currently, security configurations are implicitly shared when nodes are compiled.
Through the function cc2420_set_security() found in the cc2420 driver, Chaos net-
work operators can decide appropriate security levels, based on their applications’
needs and tradeoffs.

Security Level Mode of operation Meaning
0x00 No security Data encryption OFF. Data authentication OFF.
0x01 AES-CBC-MAC-32 Data encryption OFF. Data authentication ON.
0x02 AES-CBC-MAC-64 Data encryption OFF. Data authentication ON.
0x03 AES-CBC-MAC-128 Data encryption OFF. Data authentication ON.
0x04 AES-CTR Data encryption ON. Data authentication OFF.
0x05 AES-CCM-32 Data encryption ON. Data authentication ON.
0x06 AES-CCM-64 Data encryption ON. Data authentication ON.
0x07 AES-CCM-128 Data encryption ON. Data authentication ON.

Table 5.1: Our different security levels and their corresponding meaning, according
to the 802.15.4 standard [16]. The number following the mode of operation in the
second column describes the number of bits in the CBC-MAC digest. One simple
way of interpreting the table, is that the higher security level, the higher the security
is, which means AES-CCM-128 is the most secure mode due to it both utilizing
encryption and having the largest possible cryptographic message digest.

There is a tradeoff associated with the security level. As we show in Chapter 6, each
of these modes require differing amounts of time, both for encryption and decryption
of packets, as well as packet size. A large message digest also correlates to a smaller
maximum payload size on the radio.

When deciding which mode to use, an operator should know what he wants to
accomplish with his application and what security level is absolutely required. Con-
fidentiality is not always absolutely necessary, in which case AES-CBC-MAC might
suffice.

It is also possible to solely use AES-CTR, that is, encryption with no authenticity.
There is already a CRC check done automatically on the radio, so that these AES
authenticity checks are not necessary if one only needs to check for corrupt mes-
sages due to radio interference. However, CRC is not sufficient protection against a
malicious adversary, since the checksum operation can be calculated without a key.
It is also common practice not to use an encryption scheme without cryptographic
authenticity, since it does not actually protect against an adversary manipulating
the packet. In such a case, the receivers can be certain that no unallowed third
party has read the packet, but they can not know if the packet received is in fact
the packet sent.

It is also possible to utilize dynamic security levels that varies depending on the ap-
plication, but then further steps may be needed in order to avoid security downgrade
attacks, and we implement no such feature.

31

5. Implementation

5.2 Chaos Application and Scheduler Background
Chaos supports multiple running Chaos applications through the Chaos scheduler.
We give a short background to understanding the Chaos scheduler here. Chaos
applications are implemented as structs according to the C code:

typedef struct chaos_app{
char∗ name ;
uint16_t s l o t_ length ;
uint8_t max_slots ;
uint8_t requires_node_index ;
int (∗ i s_pending) (const uint16_t round_count) ;
void (∗ round_begin) (const uint16_t round_count , const

uint8_t id) ;
void (∗ round_begin_sni f f e r) (chaos_header_t∗ header) ;
void (∗ round_end_sni f fer) (const chaos_header_t∗ header) ;

} chaos_app_t ;

A Contiki protothread preempts all nodes’ current execution every Chaos period.
The protothread runs the Chaos scheduler in which all nodes determine the current
application to schedule, and the Chaos initiator reads all applications’ correspond-
ing round_begin() function to determine the application to schedule the following
round, before calling the current application’s round_begin() which starts Chaos
radio communication.

Each round, the Chaos initiator sends out the current application ID, as well as the
ID of the application to be scheduled the following round. The rest of the network
adapts according to this, and all synchronized nodes therefore always run the same
application.

5.3 Symmetric Key Update Application
We implement the symmetric key update mentioned in Chapter 4 using a consensus
protocol for increased reliability. We utilize a 2PC library to increase the applica-
tion’s reliability. If an even higher reliability is required in the future, the library
can be exchanged for another protocol, such as a 3PC.

The communication is already secured on the link layer, we can simply send the new
key on the network. We do this by letting the Chaos leader generate a new network
key through a random function, and then disseminate it to the network through
two_pc_round_begin().

When all nodes agree to commit the new network key, they update the current
Chaos key through the chaos_update_key(*key) function and set the new key on
the radio through cc2420_set_key(*key). This erases the old network key. Since
all nodes discard the network key after a key update, the old network traffic is not

32

5. Implementation

readable anymore.

5.3.1 Chaos Frame Counter Reset

One important goal of our symmetric key exchange is that it should solve the prob-
lem of repeated frame counters per key. Since it is the unique combination of a frame
counter and key that must not be repeated, changing to a new key re-validates the
old frame counters. For this reason, we have two anti replay frame counters stored on
each node, one representing the first used frame counter for this key, and the other
the last frame counter used with this key. This handles frame counter wrapping
around the maximum value. Incoming frames are invalidated if they fall between
these. After a key update, we re-validate used frame counters by setting the first
used frame counter equal to the last used frame counter.

5.3.2 Symmetric Key Update Application Scheduling

The Chaos network operator can configure key update application’s periodicity to
fit his requirements. It is possible that he may want to change the network key often
for an increased network overhead, but also mitigate the risk of leaked key since old
traffic is no longer decipherable.

We also add a mechanism that schedules the key update application automatically
when required. We do this through the is_key_pending() function, which returns 1
if the difference between the last used frame counter and the first used frame counter
is below a configurable threshold. The threshold provides a margin to successfully
do the key update and works as a safeguard against key - frame counter reuse.

5.4 Elliptic Curve Cryptography Library

For ECC operations on the TelosB, we utilize a library developed by NIST. The
library is a slightly modified version of ContikiECC, which is a port of TinyECC [26]
[29]. The library is designed for use on embedded devices, and implements common
ECC operations, such as generating private and public keys, ECDSA signing and
verification, and ECDH operations for establishing a shared key between two parties.
It also has lightweight certificates, which we use for authentication and establishing
trust among nodes.

There are multiple curve configurations in the library, such as 128-bit, 160-bit, and
192 bit length ones. According to Stebila[38] it is advisable to use curves of at
least 160-180 bits. This is configurable in the NIST library, and we use 160-bit
curves.

33

5. Implementation

5.4.1 Certificate Structure
The following code represents the public and private versions of a certificate as
found in the NIST library [29]. The public certificate is sent on the network and
contains the public key, issuer ID, and the issuer’s signature, whereas the private
certificate also holds the private key corresponding to the public key found in the
public certificate. These certificates are condensed and lack fields commonly found
in other types of certificates like x.509, such as time stamp. That means they are
valid until an explicit revocation message is sent from the trusted third party, as
discussed in Chapter 4.

/∗∗ A pub l i c c e r t i f i c a t e
∗ f o r in−memory r ep r e s en t a t i on
∗ note : base po in t i s not necessary here ,
as i t i s shared by a l l o ther nodes ∗/

typedef struct
{

/∗∗ ECC pubkey ∗/
point_t pub ;
/∗∗ hash o f the ECC pubkey o f s i gn in g par ty ∗/
uint8_t i s s u e r [SHA256_DIGEST_LENGTH] ;
/∗∗ s i gna tu r e o f the s i gn in g par ty (ECDSA s i gna tu r e)

(1/2) ∗/
NN_DIGIT s ignature_r [NUMWORDS] ;
/∗∗ s i gna tu r e o f the s i gn in g par ty (ECDSA s i gna tu r e)

(2/2) ∗/
NN_DIGIT s ignature_s [NUMWORDS] ;
/∗∗ @} ∗/

} s_pub_cer t i f i ca t e ;

/∗∗ A pr i v a t e c e r t i f i c a t e
∗ f o r in−memory r ep r e s en t a t i on ∗/

typedef struct
{

/∗∗ pu b l i c par t o f the c e r t i f i c a t e ∗/
s_pub_cer t i f i ca t e pub_cert ;
/∗∗ p r i v a t e key ∗/
NN_DIGIT s e c r e t [NUMWORDS] ;

} s_ c e r t i f i c a t e ;

5.5 Chaos Pre-Join Synchronization Application
The pre-join synchronization application serves multiple purposes. It is crucial for
letting non-network nodes synchronize to the network, which all non-initiator nodes
already do automatically when they do not have an initiator. It also lets the non-
network nodes notify the network that they wish to join, which they do by setting

34

5. Implementation

the node_wants_to_join flag in the communicated payload, as seen in the struct
below.

Since the non-network nodes’ packets are invalid according to the network nodes,
link layer encryption must be turned off. Nodes disable the link layer security
before these rounds by setting a different security configuration through the function
cc2420_set_security(), and by setting the security flag in the Chaos header to 0 in
all transmitted packets.

typedef struct __attribute__ ((packed)) pre jo in_t_struct {
uint8_t dummy[APP_DUMMY_LEN] ;
uint8_t node_wants_to_join : 1 ;
uint8_t has_network : 1 ;
uint8_t wants_to_couple : 1 ;
uint8_t id ;
uint32_t ecdhe_anti_replay_counter ;
uint8_t f l a g s [] ;

} pre jo in_t ;

Through the pre-join application, all nodes can also find a set of their respective
neighbours by saving the transmitter’s ID of all received packets. Although this is
not required for our pairwise key exchange application, it is a logical choice since it
allows nodes to establish a connection with a single-hop neighbour. This approach
taxes the network less than routing all traffic through the network, and enables us
take a distributed, scalable approach with our ECDHE application.

Our neighbour discovery mechanism is simple and has room for improvements. For
instance, it currently only reports the last visible neighbour, which might not be the
neighbour with the best connection. Moreover, multiple other nodes might select
the same neighbour as their couple, while other neighbours open for connection are
left alone. However, due to time constraints, we do not improve this and instead
focus on other areas.

5.6 Chaos ECDHE Application

Like other Chaos applications, the key exchange is divided into a Contiki thread,
and a round_begin() function that is called by the Chaos scheduler. The logical
distinction between them that we have made, is that round_begin() does the net-
work communication such as calling the Chaos round and buffering arbitrarily large
payloads, whereas the main process acts on the complete key exchange messages.
Similarly to the pre-join synchronization application, we disable the link layer secu-
rity before these rounds through cc2420_set_security(), and by setting the security
flag in the Chaos header to 0 in all transmitted packets. After the application is
completed, these are set to the previous configuration.

35

5. Implementation

5.6.1 Contiki Process
The heavy ECC computations in the key exchange are done in a Contiki PRO-
CESS_THREAD(). This thread is polled regularly by the ecdhe_round_begin()
function when new network data arrives. The process is largely composed of three
parts:

• The supplicant’s first message creation.
• The authenticator’s verification and processing of its supplicant’s message, as

well as the creation of the succeeding response message.
• The supplicant’s verification and processing of the authenticator’s message.

Both nodes in a session know their corresponding role, as well as the current se-
quence. We utilize two state variables for this purpose. One keeps track of the local
computations it has done, whereas the other variable keeps track of the last agreed
sequence. It is therefore simple for all nodes to decide the appropriate processing
step.

We also utilize a time out mechanism after which a node quits the protocol, in order
to prevent faulty states from remaining for too long.

5.6.2 Networking Library

The ECC public certificates’ sizes in this library range from 112 bytes to 144 bytes,
depending on key length. The maximum Chaos payload depends on the security
level, however, the maximum physical packet size in IEEE 802.15.4 is 127 bytes,
excluding the length field. That means not all certificates fit into a single frame.
Therefore, we run multiple Chaos rounds for a single application message.

For simplicity, we do this on the application layer, i.e., we run multiple Chaos rounds
to disseminate the current payload. The following C struct exemplifies the messages
that are sent. The current round’s disseminator copies the message into a temporary
buffer of maximum length of ECJOIN_VALUE_LENGTH, which it sends on the
network. After the Chaos round, the agreed network data is appropriately handled
in the ecdhe_round_begin() function and copied into a temporary buffer, if both
the authenticator and supplicant nodes have set their corresponding flags. This
continues until the whole message is successfully disseminated.

typedef struct __attribute__ ((packed)) ec jo in_t_st ruct {
uint8_t p r i o r i t y ; // t h i s round ’ s sender
uint8_t ecdhe_pre_join : 1 ;
uint8_t sequence_number : 5 ;
uint16_t o f f s e t ;
uint16_t t o t a l_ s i z e ;
uint8_t d i s s_ s i z e ;
uint8_t authent i cator_id ;
uint8_t suppl i cant_id ;
uint8_t d i s s [ECJOIN_VALUE_LENGTH] ; // d i s seminated va lue

36

5. Implementation

uint8_t f l a g s [] ;
} ec jo in_t ;

typedef struct __attribute__ ((packed)) ec jo in_t_loca l_s t ruc t
{

ec jo in_t e c j o i n ;
uint8_t f l a g s [FLAGS_ESTIMATE] ;

} ec j o in_t_loca l ;

Earlier, we stated that the supplicant does not yet have a Chaos flag. We have
circumvented this fact by hardcoding the supplicant’s flag into one position and the
authenticator’s flag into another. Since both nodes know each other’s ID, and we
have this ID in the message, they know this message is exclusively for them to set
the flags. Other, neighbouring nodes ignore these flags, since they see that they are
not part of the session. This solution is appropriate for pre-join ECDHE sessions,
and when we apply the ECDHE application on the existing network in case of a
compromised network key, the Chaos nodes can use their regular flags.

5.6.2.1 Enabling Multiple Parallel Sessions

We also implement support for multiple parallel ECDHE sessions in this library.
All supplicants instigate an ECDHE session with one of their neighbouring network
authenticators by setting these two nodes’ IDs in the ecjoin_t struct, and then send-
ing the first ECDHE message as described earlier. All non-partaking neighbouring
nodes abstain from retransmitting incoming frames belonging to sessions which they
are not part of, which makes the traffic local and reduces interference.

Multiple supplicants may try to couple with the same authenticator, even though
each node should only partake in one ECDHE session at a time. We solve this
problem by letting the authenticator couple with the supplicant of the first received
frame. The authenticator then combines the flags with the supplicant’s flags, sets
the authenticator_id and supplicant_id, and sends out this modified frame. When
the other supplicants receive the frame from their proposed authenticator, they infer
that the authenticator has already coupled with another supplicant, and therefore
quit the session and stop transmitting data, in order to mitigate radio interference.
The supplicants who backed off can try to couple with another neighbouring au-
thenticator, however, we do not implement this optimization. Instead they back off
and wait until after the next pre-join.

This is also how we prevent multiple ECDHE sessions per node: each authenticator
and supplicant have their session state and coupling, and ignore frames from other
sessions.

37

5. Implementation

5.7 Scheduling Overview
We schedule the pre-join application periodically through its corresponding is_pending()
function. If a new node wants to join, it notifies a neighbour, which spreads this on
the network. The Chaos leader then schedules the ECDHE application where new
nodes couple with neighbouring Chaos network nodes for the session, and send their
corresponding first ECDHE message.

The key exchange application is scheduled until the next pre-join synchronization
round, where current supplicants and authenticators, as well as new nodes can notify
the network of their need to schedule more key exchange rounds, in order to complete
an exchange. This continues until no more node notifies the network to schedule the
key exchange application. When this occurs, another application is scheduled, such
as the max application example mentioned in Chapter 2.

This scenario functions as a proof of concept and needs improvements before use in
real life scenarios, such as limiting the number of scheduled key exchange rounds
between pre-join rounds, and using a more robust way for nodes that has the net-
work key, but have not yet joined, to notify the network to schedule a join round
immediately.

38

6
Evaluation

In this chapter we measure the cost of our implementations. First, we evaluate the
link layer related security in order to answer our RQ1 in Chapter 1: Can we use link
layer security without detrimentally affecting Chaos’s low latency?

Afterwards, we measure the cost of the key update and the ECDHE based key
exchange and mutual authentication application. We answer our second RQ of
whether this approach is good for Chaos on the TelosB and OpenMote platforms.
Here we consider the major relevant constraints that operators face in the field of
WSNs. This will show how usable our implementations are, as well as pinpointing
the most urgent room for improvements.

Finally, we analyse the security aspects of our solutions and discuss their potential
vulnerabilities, both with regards to our approach and design, as well as the current
implementation.

6.1 Cost of Link Layer Security Operations
In this section, we evaluate and present the overhead cost of link layer related
security configurations, such as running Chaos with encryption or not, and varying
authentication message lengths, as described in Chapter 5. Although the cc2420
radio sheet presents example costs for encrypting and decrypting packets, this is
incomplete and does not show the total cost for transmitting and receiving packets.
Since Chaos network operators may have differing requirements with regards to
security and performance, we chose to present costs for all security levels.

6.1.1 Cost of AES Operations
To encrypt packets, we issue a STXON strobe on the cc2420 radio, after which
the radio automatically encrypts and authenticates all packets to-be-transmitted on
the fly. For this reason, we opt to measure the total time it takes for transmission
function to complete. We measure this by first measuring the time it takes for
the NETSTACK_RADIO_fast_send() function to complete with different security
settings, through the DCO_NOW() C preprocessor macro, which calls the high
precision timer on the TelosB platform.

We also measure the required time for decryption on different security settings, how-
ever, decryption is issued manually before reading each packet through a SRXDEC

39

6. Evaluation

strobe. When the SRXDEC decrypt command strobe is sent, the radio sets FIFO
and FIFOP pins to 0 to signal that no byte should be read. When a byte is ready
to be read, the radio sets FIFO to 1 to signal this, which means that we poll the
pin before reading each byte.

Security Level Mode of operation Packet Size (static payload size) Time to Decrypt and Read Time to Transmit
0x00 No security 108 Bytes 3001µs 4051.5µs
0x01 AES-CBC-MAC-32 115 Bytes 2988.75µs 4277.5µs
0x02 AES-CBC-MAC-64 119 Bytes 3103.75µs 4414.75µs
0x03 AES-CBC-MAC-128 127 Bytes 3333.75µs 4675.5µs
0x04 AES-CTR 111 Bytes 2873.75µs 4143.5µs
0x05 AES-CCM-32 115 Bytes 3340µs 4274.25µs
0x06 AES-CCM-64 119 Bytes 3450.5µs 4423.75µs
0x07 AES-CCM-128 127 Bytes 3682.75µs 4686.5µs

Table 6.1: Timings for transmitting and receiving packets with different security
configurations

The results show that the security level does affect the required time on the radio,
but when packet size is normalized, it is clear that the time to transmit is greater
compared to the security operations’ required time. The overhead in terms of packet
size is 16 bytes Message Integrity Code (MIC) and 3 bytes in the frame counter.
With a radio transmission of 250 kb/s, this corresponds to a transmission delay of:

1
250000 ∗ 19 ∗ 8 = 608µs (6.1)

Due to the cc2420 radio’s on fly encryption, there is little actual time delay involved
as a consequence of turning on different security levels. A little over 600µs between
no security and maximum security, whereas the average slot length is usually less
than 10 ms. This means a reasonable overhead, and is doable unless heavy merge
operations already push the limits.

We see that generally, it takes longer time to transmit than to decrypt/read a
packet. Decrypting also shows unexpected results in that reading a packet without
decryption takes longer time than to decrypt the packet and read. It may seem
strange that it is faster to read a packet when first decrypting, however, these minor
differences are likely due to differences in polling the radio for when the frame is
ready to be read. We do this either by checking the FIFO pin is 1, which signals
that first byte is ready to be read, or FIFOP pin is 1, signals that whole frame is
done.

These measurements show that the link layer security has time overhead, although
small. This leads to operators having to adapt the Chaos slot length per application,
and increase it by at most 1 ms.

40

6. Evaluation

6.2 Symmetric Key Update Application
To measure the cost of the symmetric key update application, we use real hardware,
since Cooja does not support TelosB’s hardware accelerated security features. Our
evaluation scenario consists of 4 TelosB motes connected to a USB hub for power
supply. We then measure the time the application spends in the CPU and radio
through the energest energy estimation module. The energest module is a pure
software construction which measures the time between two measurements. It is
therefore to be considered as an approximation. Figure 6.1 shows the average energy
consumption for one round.

An energy estimate is computed from the measured time, and an estimated voltage
and current according to the TelosB datasheet:
Energy [mJ] = time[s] ∗ I[mA] ∗ V oltage[V]

Figure 6.1: Energy cost average and standard deviation for a single key update

Compared to the ECDHE based key exchange in later sections, the symmetric key
update application is light in terms of Chaos rounds and power consumption. Es-
pecially when considering that the key update application needs to run at most a
few times every 224 Chaos rounds. We also ran the scenario for a long while, and
in our measurements, the motes succeeded in most rounds, and take thousands of
rounds before a node gets excluded (round 5677 in one run and 38205 in another).
When this occurs, that node is excluded from the network, and as long as it occurs
rarely, it is fine, since it can go through the ECDHE based key exchange to rejoin
the network.

We also measure the application’s approximate memory overhead at compile time.
We do this by measuring the compiled image of multiple Chaos applications, and
then compare this with another compiled image without the key update application.

41

6. Evaluation

Metric Total
ROM 1336B
RAM 106B

Table 6.2: ROM and RAM requirements of the symmetric key update application.

Given that the TelosB has 48kB of flash memory and 10kB of RAM, the symmetric
key update application is cheap, even by WSN standards.

6.3 ECDHE Applications Related Operations Costs
Here we measure the cost of the operations required for our ECDHE application,
determined on the TelosB platform. These values are later aggregated to deter-
mine the total cost of the ECDHE application for the TelosB. We then evaluate
the corresponding operations on the OpenMote hardware accelerated engine to ap-
proximate the application’s cost when Chaos is finally ported to it. We then have
an approximation for its performance, and how well it likely will perform in the
future.

We also include the approximate memory overhead of the dynamic join. It was
measured similarly to how we measured the memory overhead of the key update ap-
plication. This measurement also includes the pre-join synchronization application,
since it is part of the same suite.

Metric Total
ROM 18018B
RAM 2924B

Table 6.3: ROM and RAM requirements of the secure join applications.

These applications take up a large portion of the TelosB’s memory. A Chaos net-
work operator may need to prioritize away other important applications to fit into
the TelosB. OpenMote’s larger memory of 512kB makes these applications more
viable.

6.3.1 TelosB
The NIST library we utilize supports the following curves: secp128r1, secp160k1, and
secp192k1. We evaluate our the application according to the 160 bit secp160k1 curve,
since it strikes a good balance of being secure [41] and having good performance.
This is a compilation configuration and is changeable if a higher level of security is
required in the future. Low level cryptographic operations optimizations are outside
the scope of this thesis.

42

6. Evaluation

Metric ECDSA Init Cert Sign Cert Verify Host Ephemeral Key Gen Network Ephemeral Key Gen SHA256 (KDF)
Time 4.13 s 9.65 s 15.66 s 3.1 s 3.83 s 0.068 s

Table 6.4: Timings of different ECC operations for the TelosB platform.

Table 6.4 shows the time the most relevant ECC operations in the NIST library
take.

6.3.2 OpenMote Hardware
Here we measure the operations found in our ECC based protocol on the OpenMote
platform. The OpenMote supports multiple curves and curve sizes up to 256 bit.
Due to implementation details, we evaluate the 256 bit curves. ECC operations
with curves of lower order ought to be at least as fast as the 256 bit variant, and
therefore, these values can be seen as the worst case.
Evaluation of ECC operations.

Metric ECDSA Sign ECDSA Verify Host Ephemeral Keys Gen Network Ephemeral Key Gen SHA256 (KDF)
Time 612 ms 967 ms 343 ms 359 ms <1 ms

Table 6.5: Timings of different ECC operations on the OpenMote platform.

Table 6.5 and 6.4 show the time the relevant ECC related operations take. We will
later on use these to evaluate how well our protocol performs today, and estimate
how well the OpenMote will perform in the future.

6.3.3 ECDHE Total Cost Comparison
In this section, we ascertain supplicant’s and authenticator’s total computational
cost for the secure join applications. For the TelosB, for which our implementation
already works, we measure this through the aforementioned energest module (we
both use the individually measured operations and the total time measured here).
Since the ECC operations are heavy, this measured total is close to adding up the
individual costs in previous section as the measurement shows. For this reason, we
can add up the evaluated ECC primitives for our ECDHE application to get an
approximated total cost for the authenticator’s and supplicant’s computations even
for the OpenMote.

The key exchange and mutual authentication protocol is largely split into the fol-
lowing steps:

• Stage 0: Both supplicant and authenticator generate ephemeral ECC keys.
• Stage 1: The supplicant builds its message and ECDSA signs it.
• Stage 2: The authenticator ECDSA verifies the supplicant’s certificate and

message ECDSA signature, derives a shared secret and symmetric key, AES
encrypts payload, ECDSA signs the message and sends it.

• Stage 3: The supplicant verifies the authenticator’s certificate and message
signature, derives shared secret and symmetric key, and AES decrypts payload.

43

6. Evaluation

We utilize this knowledge for comparing the evaluated numbers for the TelosB plat-
form with the approximated values for the OpenMote.

Stage 0 Stage 1 Stage 2 Stage 3 Total Suppl.Total Auth.

0

5

10

15

20

25

30

35

40

45

50

3.1

10.16

45.04

35.42

48.69 48.15

3.1

9.65

44.8

35.15

47.9 47.9

0.34 0.61
2.91 2.29 3.25 3.25

#
se
co
nd

s

Computation time comparison

Sim. TelosB Approx. TelosB Approx. OpenMote

Figure 6.2: Computational time of OpenMote and TelosB

Figure 6.2 shows the time that the application spends in the different process stages
for a successful key exchange. We approximate this by utilizing the measurements in
Table 6.4 and 6.5. We also evaluate this by running the application and measuring
the actual time it spends in the application in total, to see whether it differs much
from the approximated values. For the OpenMote, we only relied on our earlier mea-
surements for each individual ECDHE related heavy operation, and summed these
according to the different stages, as mentioned in the stages bullet list. The Open-
Mote timings are approximations since Chaos does not currently run on it.

The platforms’ energy consumption varies over time. The TelosB datasheet expects
the CPU to draw 3V and 1.8 mA during computation. The OpenMote CPU draws
an estimated 3.3V and 13 mA. For the TelosB radio, we assume a 18.8 mA and 3V
according to the datasheet. Figure 6.3 then shows the corresponding energy cost for
the time measurements we did in Figure 6.2, which allows us to compare OpenMote
and TelosB in yet one aspect: energy efficiency.

As Figure 6.2 shows, both authenticators and supplicants have the approximate same
total costs, although distributed differently in different stages. The OpenMote also
proves to be much faster than the TelosB at performing these kinds of operations,
and if the TelosB now has shown to be useful for this use case, the OpenMote is
indeed a good improvement. The OpenMote is much faster than the TelosB. It also
draws much more power. Figure 6.3 shows that this tradeoff favors the OpenMote
well, since it is approximately twice as power efficient as the TelosB.

44

6. Evaluation

Stage 0 Stage 1 Stage 2 Stage 3 Total Suppl.Total Auth.

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

16.74

54.86

243.22

191.27

262.93 260.01

16.74

52.11

241.92

189.81

258.66 258.66

14.71
26.25

124.62

98.37

139.34 139.34

#
m
J

Power consumption comparison

Sim. TelosB Approx. TelosB Approx. OpenMote

Figure 6.3: Describes the power consumption for OpenMote and TelosB.

6.4 Evaluating ECDHE Application Scenarios
In this section, we analyse and discuss the approach’s cost on the network, both
when no joining node is nearby, and also as the number of joining nodes increases.
During these evaluations, we utilize a Chaos period of 1.5 seconds, since this strikes
a good balance between fast completion of message transmission, and long enough
time for computations to take place between the rounds. We also use a pre-join
period of 26 Chaos rounds. These numbers affect the number of Chaos rounds that
are run, and the corresponding radio traffic. These scheduling configurations are
easily changed at compile time.

We make no claim that the configuration is optimal, and to get a good idea of the
real future cost, we divide the cost into three different categories: radio, CPU energy
spent in the ECDHE process, and CPU energy spent on network communication for
the applications. The ECDHE process CPU ought to represent future iterations
well, but the application CPU and radio traffic are likely to change based on the
scheduling of the applications.

6.4.1 Testing Configurations
For evaluating energy, we utilize the energest module for measuring the time the
nodes spend in different parts of the code. There is a bug in Chaos that makes the
interrupt for scheduling applications preempt a long computation only once, but
not again. This means nodes that perform the ECDHE application computations,
which can take over half a minute, will not communicate on the network until the
heavy ECC computations are done. When the Chaos initiator authenticates, the
rest of the network therefore goes into association mode, and does busy wait and

45

6. Evaluation

listens on the radio for the initiator’s synchronization messages.

To bypass this, we have made a workaround solution where the Chaos initiator only
authenticates once and after that, not again. This makes the Chaos initiator node
able to communicate regularly on the radio so that the rest of the network does not
become desynchronized and go into association mode.

In our evaluations henceforth, we solely rely on Cooja simulations. This allows us to
easily set up our testing environment and different network configurations. Although
we relied on 2 network topologies. One containing 6 motes in total, and the other
32 motes.

Due to implementation problems with the scheduling, when measuring the cost of
a joining session, we do not present the cost of an actual join, but instead we refer
to the time and cost that it takes for a new node to successfully finish the ECDHE
based mutual authentication and key exchange, and thereafter receive the correct
network key. Our plan to solve this scheduling issue in the future is to let a node
inform the network that it has joined by modifying the Chaos header and signing
this with the agreed network key.

During the evaluation, we hardcode the trusted third party’s private certificate into
all nodes, and let each node generate their private and public certificates locally.
This is a shortcut that will not be done on real deployment, due to severe security
issues, and for this reason we do not include this part in our measurements. In
the future, all nodes will receive their signed certificates from a trusted third party
directly.

Additionally, we remove the anti-replay checks in our evaluation, as these fail due
to synchronization problems that we have not fixed yet.

6.4.2 Cost of a Single Join Session
To start, we measure the energy required for the whole network when a single
join session takes place. We measure this by making a single node join the net-
work through a single authenticator, while the rest of the network idles in wait for
connections. To bypass the association problems that occurs when the initiator au-
thenticates, we do not let the Chaos initiator couple, but instead, the rest of the
network motes are available for the ECDHE new node.

Figure 6.4 represents both the energy in terms of radio traffic for the three different
types of motes in the exchange, as well as CPU cost in the process and applications.
We choose to present the CPU cost of the process and the applications separately,
since the application and radio costs will change based on scheduling optimizations
(which will be needed in the future), whereas the process cost is unlikely to change.
Non-partaking nodes’ CPUs consume little energy compared to the session nodes.
However, their radio is expensive, compared to the session motes. The radio cost is
misleading at the moment, due to a temporary flaw in the implementation, which

46

6. Evaluation

causes motes to not to be preempted by the Chaos thread responsible for radio
communication. This means session motes trade off expensive radio communication
for a less expensive CPU calculations.

We note that in this measurement, we see almost the expected energy drawn in the
process, although within a small margin of error.

Figure 6.4: Energy cost average and standard deviation for a single join for differ-
ent motes.

6.4.3 Cost of Building a New Network
One aspect of our secure join is the cost required to build a network from only the
Chaos initiator node. Here, we run different scenarios to evaluate how much our
application costs when used for building a new network from only a single Chaos
initiator node. We do this by running a simulation for a single join, and another
scenario is made up of 6 motes, and the last of 32 motes. This also shows how well
our application scales with Chaos.

Figure 6.5 represents the total energy required to build a network from only a single
initiator node. In both cases, the Chaos initiator only authenticates one node and
not more, in order to not desynchronize the network. In future iterations, when our
preemption works correctly, this circumvention should not be needed.

As Figure 6.5 shows, the largest energy consumption comes from the radio, and
the applications’ parts responsible for communication. The process where ECDHE
operations are done is not as heavy. The average cost for building a network of 32
motes is greater than for building a network of 6 motes. For the radio and applica-
tion, this seems to scale with the increased time of approximately 2.5 times that it
takes to create the full network, but the process only increases by 1.5 times.

47

6. Evaluation

Figure 6.5: Total energy cost for building a network for each node on average.

Figure 6.6 represents a standard run for building a network of 32 motes. The
simulation starts from only the Chaos initiator, and like our earlier evaluations,
we only let the initiator authenticate once and then only communicate over radio
to keep motes synchronized. This causes a slower start than we would otherwise
expect.

This curve resembles an s-curve in that it takes off slowly due to the lack of authen-
ticators, accelerates in the middle when most supplicants can quickly couple with
a free authenticator fast, and at the end it slows down again due to few remaining
supplicants. As we can observe, building a network of 6 motes takes an average of
7 minutes, whereas in double that time, a network of 25 motes can form, and in
less that 18 minutes a full 32 mote network can form. This means our dynamic join
seems to scale according to our expectations, and should work fine when building a
network from scratch in a WSN environment.

6.5 Security Analysis

In this section, we analyse our solution’s security strengths and weaknesses. We
start by evaluating its design and inherent limitations, and later move on to our
current unresolved implementation issues.

6.5.1 Design Limitations
• One inherent limitation of our design, is the choice of using a single shared

network key, which provides no resiliency. This choice was done in order to
preserve Chaos’s low consensus latency, as described in Chapter 4. We have
mitigated the consequences of a compromised network key through PKC, but

48

6. Evaluation

Figure 6.6: Time to create a network of 32 motes from 1 starting mote.

these countermeasures are only reasonable as long as a compromise is detected
early on.

• The certificates are lightweight and lack commonly sought after fields, such as
date fields, which means that they are valid until the trusted third party sends
a revoke message. The choice to omit fields like this improves the performance
and is acceptable due to the tight restrictions.

• The pre-join key exchange has no link layer security. This means an attacker
can modify packets and send new ones at his discretion. The attacker can set
the Chaos slot in the header to the maximum value so that all present nodes
finish the round prematurely, or abuse our key exchange abortion after a faulty
supplicant-authenticator coupling and send fake key exchange messages that
cause an existing supplicant to decouple with its authenticator. The same is
also true for the pre-join synchronization rounds, where an attacker can cause
suppliants to couple with wrong neighbours.

• An adversary can cause the network to schedule unnecessary pre-join key ex-
change rounds. This means other rounds will not run, and instead the network
nodes will waste energy on useless rounds where no real node wishes to join.
A mitigation strategy to this is to let the network only schedule rarely, either
by increasing the pre-join period, or dynamically changing the pre-join based
on successful and failed joins.

• All authenticators listen for incoming supplicant connections during ECDHE

49

6. Evaluation

rounds, and have no limit to the number of faulty connections. This means
an attacker can keep sending messages with correct replay counters but faulty
ECDSA signatures, and since ECDSA verification consumes much power, it
can cause the battery of network nodes to run out prematurely. In Chapter 3,
we discuss mitigation strategies for this problem.

In Chapter 4, we discuss our applications’ security requirements. We state that
we wish for data confidentiality, data authenticity, and replay protection to be en-
sured. The last three of the above limitations are solely related to Chaos’s degraded
performance and does not touch our requirements. The first issue is a serious limi-
tation that may compromise the security of the whole network. Although utilizing a
network-wide key has serious security implications, it was a conscious choice in the
design stages of this thesis and came forth as a consequence of the limited resources
that we are dealing with. There are ways to mitigate its severity, such as early
detection and exclusion through PKC.

We also consider that the issue of a leaked network key is not easily solved by
relying even on scheme other than network-wide key, such as the pair based link
key scheme we discuss in Chapter 3, since even one compromised key is detrimental,
due to the nature of Chaos’s all-to-all communication, and the security fix relies on
detecting compromise and revoking the corresponding key. Then the issue is the
same and solution is the same for our network-wide key scheme. This might be
better solved with more powerful computers that rely more heavily on asymmetric
key cryptography.

6.5.2 Implementation Limitations

List of known implementation vulnerabilities:
• We do not take into account that nodes may reboot, and what this does to

a node. For instance, the ECDHE based key exchange anti-replay-counter is
only stored in volatile memory, and is consequently deleted after a reboot.
After reboot and the node has once again joined the network, an attacker
can send old join messages to the rebooted node which will accept them as
correct. This attack will not enable the attacker to join the network, but
consumes more power and energy from the authenticator than scrambled fake
data would. Storing the anti-replay counters in non-volatile memory would
solve this issue, and since the TelosB has flash memory this should be easy.

• Currently, all nodes receive the trusted third party’s private certificate for
creating a per node private certificate, and then the trusted third party’s
private key is discarded, while the public part of it is kept. Although we delete
the private part, a tenacious attacker might be able to obtain it nonetheless.
This goes against our design goal of keeping the core trust element off the
network, and must be fixed by hard coding each node’s private and public
certificates into the motes directly.

• Currently, we deactivate frame counters due to unresolved synchronization
problems.

50

6. Evaluation

• We have not yet implemented any checks for buffer overflows in our mutual
authentication and key exchange.

• Chaos does not currently discern between link layer authenticated and unau-
thenticated messages. This means network nodes synchronize to unsecured
link layer messages coming from an unknown source, such as is the case in the
pre-join rounds. The solution to this is to handle these messages differently
than verified network messages, and not adjust variables such as slot number
and round number if the packet containing these is not network authenticated.
ECDSA signing each link layer frame is a viable solution due to Chaos’s real
time requirements and the high cost of ECC operations.

• Lastly, there is always the risk of security bugs.

These issues represent the current state of the applications. They have severe secu-
rity implications if remained unsolved. Luckily, all but the last are straight forward
to fix. As for the last issue, security bugs are always an uncertainty, and especially
so in this case, since the code has not yet been properly peer-reviewed, or ran in
any automated test frame work.

51

6. Evaluation

52

7
Conclusion

In this chapter, we conclude the thesis work and finish with a discussion regarding
how well it fits into the current state in the area of WSNs, as well as theorize
regarding future improvements.

7.1 Conclusion
In this thesis, we present a set of solutions for securing the communication of the
Chaos network primitive. Although the solutions rely on pre-existing hardware sup-
port for link-layer security, the thesis’s main contribution is how to make dynamic
join work in conjunction with the low latency, high performance, all-to-all commu-
nications characteristics of the Chaos protocol.

7.2 Future Work
Our solution with PKC does not provide all security features mentioned in Chapter
4, but our solution is in our opinion adaptable enough and enables the possibility of
developing further security features. Some areas of interest are:

• In this thesis, we were only able to rely on approximations for the OpenMote,
since Chaos is not ported to it. Porting Chaos to the OpenMote would be of
most interest.

• Key establishment between joining nodes and the existing network can be
optimized. Our design and implementation serve as a proof of concept, and
functionalities such as the splitting of large messages can be moved down from
the application layer into a Chaos library so that it only takes one Chaos round
to disseminate a large payload, instead of multiple.

• There is much room for improvements with regards to how nodes couple.
At this moment, supplicants choose to couple with a random neighbouring
authenticator, which means it is sometimes sub-optimal. There is room for
research in letting authenticators select an optimal coupling configuration for
the network, based on signal strength, number of present motes, etc, and then
reach consensus regarding this in a low-latency manner.

• Currently, the scheduling has problems and can be improved much as well. For
instance, the proper way to schedule a join after a new node has attained the
network key from the network, is perhaps for it to modify a field in the Chaos
header that signals this, and so that the Chaos initiator can then schedule the
join application at an optimal time.

53

7. Conclusion

• The ECC library can also be improved upon either by optimizing reoccurring
functions for the platform, or through hardware acceleration such as how it is
done on the OpenMote.

• The nodes’ certificates are unique per node. In the case of a detected node
capture or similar case, it is possible to revoke this node’s certificate and
establishing new keys through PKC so that the node gets ostracized from the
network. Future work in this area would be interesting.

• Further research in detecting corrupted/overtaken/compromised nodes/key
leakage/tampering of nodes is interesting and detection of compromised secu-
rity is needed for the countermeasures we discuss in this thesis to take place.

• Since our secure join and authentication network library works with multi-
ple parallel sessions, there may be multiple neighbouring ECDHE sessions
interfering with each other on the radio. Utilizing different radio communica-
tion channels, either static or dynamic, can mitigate the interference on each
neighbouring session and improve link layer reliability and overall performance
significantly in densely populated networks.

This list presents just a portion of the possibilities related to Chaos. Although the
majority of the points above are only related to Chaos, areas such as compromise
detection is interesting for all WSNs. Furthermore, solving and mitigating the im-
plementation and design limitations mentioned in Chapter 6 is an important task
that is well suited for future master’s thesis students.

54

Bibliography

[1] Ortal Arazi, Hairong Qi, and Derek Rose. “A public key cryptographic method
for denial of service mitigation in wireless sensor networks”. In: Sensor, Mesh
and Ad Hoc Communications and Networks, 2007. SECON’07. 4th Annual
IEEE Communications Society Conference on. IEEE. 2007, pp. 51–59.

[2] Rolf Blom. “An optimal class of symmetric key generation systems”. In: Ad-
vances in cryptology. Springer. 1984, pp. 335–338.

[3] Contiki. Contiki Scheduling. url: https : / / github . com / contiki - os /
contiki/wiki/Processes.

[4] Joan Daemen and Vincent Rijmen. AES Proposal: Rijndael. 1999.
[5] Whitfield Diffie and Martin E Hellman. “New directions in cryptography”. In:

Information Theory, IEEE Transactions on 22.6 (1976), pp. 644–654.
[6] Qi Dong, Donggang Liu, and Peng Ning. “Providing DoS resistance for signature-

based broadcast authentication in sensor networks”. In: ACM Transactions on
Embedded Computing Systems (TECS) 12.3 (2013), p. 73.

[7] Wenliang Du et al. “A key management scheme for wireless sensor networks
using deployment knowledge”. In: INFOCOM 2004. Twenty-third AnnualJoint
conference of the IEEE computer and communications societies. Vol. 1. IEEE.
2004.

[8] Wenliang Du et al. “A pairwise key predistribution scheme for wireless sen-
sor networks”. In: ACM Transactions on Information and System Security
(TISSEC) 8.2 (2005), pp. 228–258.

[9] Adam Dunkels, Björn Grönvall, and Thiemo Voigt. “Contiki-a lightweight and
flexible operating system for tiny networked sensors”. In: Local Computer Net-
works, 2004. 29th Annual IEEE International Conference on. IEEE. 2004,
pp. 455–462.

[10] Adam Dunkels et al. “Protothreads: simplifying event-driven programming of
memory-constrained embedded systems”. In: Proceedings of the 4th interna-
tional conference on Embedded networked sensor systems. Acm. 2006, pp. 29–
42.

[11] Milica Pejanović Ðurišić et al. “A survey of military applications of wire-
less sensor networks”. In: Embedded Computing (MECO), 2012 Mediterranean
Conference on. IEEE. 2012, pp. 196–199.

55

https://github.com/contiki-os/contiki/wiki/Processes
https://github.com/contiki-os/contiki/wiki/Processes

Bibliography

[12] Morris Dworkin. Recommendation for block cipher modes of operation. meth-
ods and techniques. Tech. rep. DTIC Document, 2001.

[13] Laurent Eschenauer and Virgil D Gligor. “A key-management scheme for dis-
tributed sensor networks”. In: Proceedings of the 9th ACM conference on Com-
puter and communications security. ACM. 2002, pp. 41–47.

[14] Federico Ferrari et al. “Efficient network flooding and time synchronization
with Glossy”. In: Information Processing in Sensor Networks (IPSN), 2011
10th International Conference on. IEEE. 2011, pp. 73–84.

[15] Nils Gura et al. “Comparing elliptic curve cryptography and RSA on 8-bit
CPUs”. In: Cryptographic hardware and embedded systems-CHES 2004. Springer,
2004, pp. 119–132.

[16] IEEE. IEEE 802.15.4. url: https://standards.ieee.org/getieee802/
download/802.15.4-2011.pdf.

[17] Texas Instruments. CC2420 Radio Datasheet. url: https://inst.eecs.
berkeley.edu/~cs150/Documents/CC2420.pdf.

[18] Vivek Kapoor, Vivek Sonny Abraham, and Ramesh Singh. “Elliptic curve
cryptography”. In: Ubiquity 2008.May (2008), p. 7.

[19] Neal Koblitz. “Elliptic curve cryptosystems”. In: Mathematics of computation
48.177 (1987), pp. 203–209.

[20] Konrad-Felix Krentz and Christoph Meinel. “Handling Reboots and Mobility
in 802.15. 4 Security”. In: Proceedings of the 31st Annual Computer Security
Applications Conference. ACM. 2015, pp. 121–130.

[21] Konrad-Felix Krentz, Hosnieh Rafiee, and Christoph Meinel. “6LoWPAN se-
curity: adding compromise resilience to the 802.15. 4 security sublayer”. In:
Proceedings of the International Workshop on Adaptive Security. ACM. 2013,
p. 1.

[22] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine generals
problem”. In: ACM Transactions on Programming Languages and Systems
(TOPLAS) 4.3 (1982), pp. 382–401.

[23] Olaf Landsiedel, Federico Ferrari, and Marco Zimmerling. “Chaos: Versatile
and efficient all-to-all data sharing and in-network processing at scale”. In:
Proceedings of the 11th ACM Conference on Embedded Networked Sensor Sys-
tems. ACM. 2013, p. 1.

[24] Krijn Leentvaar and Jan H Flint. “The capture effect in FM receivers”. In:
Communications, IEEE Transactions on 24.5 (1976), pp. 531–539.

[25] Helger Lipmaa, Phillip Rogaway, and David Wagner. “Comments to NIST
concerning AES Modes of Operations: CTR-Mode Encryption”. In: National
Institute of Standards and Technologies. Citeseer, 2000.

[26] An Liu and Peng Ning. “TinyECC: A configurable library for elliptic curve
cryptography in wireless sensor networks”. In: Information Processing in Sen-
sor Networks, 2008. IPSN’08. International Conference on. IEEE. 2008, pp. 245–
256.

56

https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
https://standards.ieee.org/getieee802/download/802.15.4-2011.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/CC2420.pdf
https://inst.eecs.berkeley.edu/~cs150/Documents/CC2420.pdf

Bibliography

[27] Victor S Miller. “Use of elliptic curves in cryptography”. In: Advances in Cryp-
tology—CRYPTO’85 Proceedings. Springer. 1985, pp. 417–426.

[28] Geoff Mulligan. “The 6LoWPAN architecture”. In: Proceedings of the 4th work-
shop on Embedded networked sensors. ACM. 2007, pp. 78–82.

[29] NIST. ECC Light Certificate. url: https://github.com/nist-emntg/ecc-
light-certificate.

[30] OpenMote. OpenMote 2538. url: http://www.ti.com/lit/ds/symlink/
cc2538.pdf.

[31] Dr G Padmavathi, Mrs Shanmugapriya, et al. “A survey of attacks, security
mechanisms and challenges in wireless sensor networks”. In: arXiv preprint
arXiv:0909.0576 (2009).

[32] Al-Sakib Khan Pathan, Hyung-Woo Lee, and Choong Seon Hong. “Security in
wireless sensor networks: issues and challenges”. In: Advanced Communication
Technology, 2006. ICACT 2006. The 8th International Conference. Vol. 2.
IEEE. 2006, 6–pp.

[33] Pawani Porambage et al. “Certificate-based pairwise key establishment proto-
col for wireless sensor networks”. In: Computational Science and Engineering
(CSE), 2013 IEEE 16th International Conference on. IEEE. 2013, pp. 667–
674.

[34] Maneesha V Ramesh, Sangeeth Kumar, and P Venkat Rangan. “Wireless Sen-
sor Network for Landslide Detection.” In: ICWN. Citeseer. 2009, pp. 89–95.

[35] Shahid Raza, Thiemo Voigt, and Vilhelm Jutvik. “Lightweight ikev2: A key
management solution for both the compressed ipsec and the ieee 802.15. 4 secu-
rity”. In: Proceedings of the IETF workshop on smart object security. Citeseer.
2012.

[36] Shahid Raza et al. “Lithe: Lightweight secure CoAP for the internet of things”.
In: Sensors Journal, IEEE 13.10 (2013), pp. 3711–3720.

[37] Dale Skeen and Michael Stonebraker. “A formal model of crash recovery in a
distributed system”. In: Software Engineering, IEEE Transactions on 3 (1983),
pp. 219–228.

[38] Group D. Stebila. “Elliptic curve algorithm integration in the secure shell
transport layer”. In: RFC 5656 (2009).

[39] Ellen Stuart, Melody Moh, and Teng-Sheng Moh. “Privacy and security in
biomedical applications of wireless sensor networks”. In: Applied Sciences on
Biomedical and Communication Technologies, 2008. ISABEL’08. First Inter-
national Symposium on. IEEE. 2008, pp. 1–5.

[40] TelosB. TelosB Datasheet. url: http://www.memsic.com/userfiles/files/
Datasheets/WSN/telosb_datasheet.pdf.

[41] Deepika Verma, Rekha Jain, and Anurag Shrivastava. “Performance Analysis
of Cryptographic Algorithms RSA and ECC in Wireless Sensor Networks”. In:
IUP Journal of Telecommunications 7.3 (2015), p. 51.

57

https://github.com/nist-emntg/ecc-light-certificate
https://github.com/nist-emntg/ecc-light-certificate
http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://www.ti.com/lit/ds/symlink/cc2538.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/telosb_datasheet.pdf

Bibliography

[42] Yong Wang, Garhan Attebury, and Byrav Ramamurthy. “A survey of security
issues in wireless sensor networks”. In: IEEE Communications Surveys and
Tutorials 8 (2006), pp. 2–23.

[43] Geoffrey Werner-Allen et al. “Deploying a wireless sensor network on an active
volcano”. In: Internet Computing, IEEE 10.2 (2006), pp. 18–25.

[44] Kin Choong Yow and Amol Dabholkar. “A light-weight mutual authentication
and key-exchange protocol based On elliptical curve cryptogaphy for energy-
constrained devices”. In: International Journal of Network Security & Its Ap-
plications (IJNSA) 2.2 (2010).

58

	Introduction
	Motivation and Context
	Problem statement
	Contributions
	Thesis outline

	Background
	Wireless Sensor Network Communication
	Chaos Overview

	Hardware nodes
	TelosB
	OpenMote 2538

	IEEE 802.15.4
	Contiki
	Cooja
	Security
	Symmetric key cryptography
	Public Key Cryptography

	Related Work
	Background
	Symmetric Key Based Establishment Schemes
	Probabilistic Key Establishment

	Public Key Based Establishment Schemes
	Discussion

	Design
	Chaos Security Requirements
	Delimitations
	Link Layer Security
	Network-Wide Link Layer Key
	Problems With Joining Nodes

	Elliptic Curve Join - EC-Join
	Application Requirements
	Mutual Authentication and Key Exchange Application
	Pre-Join Network Synchronization and Friendly Neighbour Finder

	Discussion
	Trust Infrastructure
	Key Revocation
	Leaked Network Key

	Implementation
	Link Layer Security
	Chaos Frame Counters
	AES Functionalities

	Chaos Application and Scheduler Background
	Symmetric Key Update Application
	Chaos Frame Counter Reset
	Symmetric Key Update Application Scheduling

	Elliptic Curve Cryptography Library
	Certificate Structure

	Chaos Pre-Join Synchronization Application
	Chaos ECDHE Application
	Contiki Process
	Networking Library

	Scheduling Overview

	Evaluation
	Cost of Link Layer Security Operations
	Cost of AES Operations

	Symmetric Key Update Application
	ECDHE Applications Related Operations Costs
	TelosB
	OpenMote Hardware
	ECDHE Total Cost Comparison

	Evaluating ECDHE Application Scenarios
	Testing Configurations
	Cost of a Single Join Session
	Cost of Building a New Network

	Security Analysis
	Design Limitations
	Implementation Limitations

	Conclusion
	Conclusion
	Future Work

	Bibliography

