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Evaluating the Use of Proxy Geometry for RTX-based Ray Traced Diffuse Global
Illumination

Simon Moos
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract
Diffuse global illumination is vital for photorealistic rendering, but accurately eval-
uating it is computationally expensive and usually involves ray tracing. Ray tracing
has often been considered prohibitively expensive for real-time rendering, but with
the new RTX technology it can be done many times faster than what was previously
possible. While ray tracing is now faster, ray traced diffuse global illumination is
still relatively slow on GPUs, and we see the potential of improving performance on
the application-level.

We examine how well proxy geometry can work for RTX-based, ray traced diffuse
global illumination, in terms of rendering time and visual error. Three different
types of proxy geometry are tested—simplified triangle meshes, sphere sets, and
voxel planes—to evaluate whether it is possible to get faster rendering without
introducing significant visual error. We also identify a few requirements that such
proxy geometry should fulfill.

We find that it is possible to achieve faster rendering times with relatively small er-
rors using proxy geometry. While all proxy types demonstrate different performance
and error characteristics, for all evaluated scenes we find that there is a simplified
triangle mesh proxy with lower errors than all other types, which is also faster to
render than the reference. This cannot be said for any of the other proxy types.

Keywords: computer graphics, rendering, real-time ray tracing, global illumination,
diffuse global illumination, proxy geometry, rtx.

v





Acknowledgements
First of all I would like to thank my supervisor Erik Sintorn, who has been a very
valuable part of this thesis. I would also like to thank Ulf Assarsson, who has been
the examiner of this thesis.

I would like to thank RapidImages for giving me access to their office and resources,
and everyone there who have helped me with everything from IT support to answer-
ing my questions.

Finally I would also like to thank my friends and family who have supported me
through this journey. In a project of this size you will experience many highs and
many lows, and I’m very thankful for people who have been around for both.

Simon Moos, Gothenburg, July 2020

vii





Contents

List of Figures xi

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Real-time rendering . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Proxy geometry . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Diffuse global illumination . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.2 Note on real-time ray tracing hardware & generality of the

problem statement . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Previous work 5
2.1 Ray tracing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Performance of GPU ray tracing and the RTX APIs . . . . . . . . . . 5
2.3 Proxy geometry & generation algorithms . . . . . . . . . . . . . . . . 6

3 Rendering theory 9
3.1 Measuring light . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 The rendering equation & global illumination . . . . . . . . . . . . . 10
3.3 Ray tracing & path tracing . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 The RTX APIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

4 Generating & rendering proxy geometry 15
4.1 Requirements for proxy geometry . . . . . . . . . . . . . . . . . . . . 15
4.2 Proxy geometry generation algorithms . . . . . . . . . . . . . . . . . 16

4.2.1 Simplified triangle meshes . . . . . . . . . . . . . . . . . . . . 17
4.2.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.1.2 Encoding color . . . . . . . . . . . . . . . . . . . . . 18

4.2.2 Sphere set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.2.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2.2.2 Encoding color . . . . . . . . . . . . . . . . . . . . . 21
4.2.2.3 Testing for intersection . . . . . . . . . . . . . . . . . 21

4.2.3 Voxel planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 23
4.2.3.2 Testing for intersection . . . . . . . . . . . . . . . . . 24

ix



Contents

5 Results 27
5.1 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.2 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 Diffuse GI performance in the RTX APIs . . . . . . . . . . . . . . . . 29
5.4 Evaluation of proxy geometry . . . . . . . . . . . . . . . . . . . . . . 30

5.4.1 Simplified triangle meshes . . . . . . . . . . . . . . . . . . . . 32
5.4.2 Sphere set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.4.3 Voxel planes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5.4.4 More complex scenes . . . . . . . . . . . . . . . . . . . . . . . 36
5.4.5 Compensating with ambient occlusion . . . . . . . . . . . . . 38

6 Conclusion 41
6.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

6.2.1 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

Bibliography 45

x



List of Figures

1.1 Impact of diffuse global illumination. Left: no global illumination.
Middle: the ambient approximation, which applies a uniform and
constant light across the whole scene. Right: path traced diffuse
global illumination (with one light bounce). . . . . . . . . . . . . . . 2

3.1 A single iteration (path) of path tracing with a maximum depth of 2,
using the notation of (3.4). . . . . . . . . . . . . . . . . . . . . . . . . 12

4.1 Artifacts from not fulfilling the bounding requirement. Left: Ren-
dering using a non-bounding proxy (contrast increased so artifacts
become more visible). Right: 2D schematic illustrating the source of
the artifacts. The red curve represents the surface of the original ge-
ometry and the blue represents the proxy geometry. The gray arrows
are examples of rays which, after diffusely scattering, would inter-
act with the bad proxy geometry and cause pixels with the artifacts
shown on left. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4.2 Visualization of the directional coefficients of spherical harmonics, up
to degree `-2. Blue represents positive function values and yellow
negative function values. Image courtesy of Inigo Quilez [Qui13]. . . . 22

4.3 2D example of a voxel plane proxy generated from a triangle mesh
(assuming triangles are small). Note that sharp convex features, such
as the outer corners, become less sharp, and that gaps appear between
voxel planes at concave regions. . . . . . . . . . . . . . . . . . . . . . 23

5.1 The color gradient used for all error maps presented in this paper. . . 27
5.2 Rendering time of a single triangle mesh with increasing subdivision

for varying values of α (5.2) at 1 SPP. It is clear that O(log n) be-
haviour can be observed in all cases due to the acceleration structures,
but with different characteristics. . . . . . . . . . . . . . . . . . . . . 30

5.3 Reference render of BunnyCorner without the use of proxy geom-
etry (144 046 triangles, excluding the geometry of the room, at 2.30
GRays/s). Top: with global illumination, bottom left: indirect light
only, bottom right: visualization of the geometry. . . . . . . . . . . . 31

5.4 Visual quality and rendering time for simplified triangle mesh proxies,
for a varying number of triangle primitives. The number of triangles
does not include the geometry of the enclosing room. . . . . . . . . . 32

xi



List of Figures

5.5 Visual quality and rendering time for simplified sphere set proxies,
for a varying number of sphere primitives. . . . . . . . . . . . . . . . 33

5.6 Visual quality and rendering time for simplified voxel plane proxies,
for a varying number of voxel plane primitives. . . . . . . . . . . . . . 35

5.7 Sample of results rendering the SmallRoom scene for each of the
proxy geometry types and reference. . . . . . . . . . . . . . . . . . . . 37

5.8 Sample of results rendering the RockyLandscape scene for each of
the proxy geometry types and reference. . . . . . . . . . . . . . . . . 37

5.9 Renders of SmallRoom with and without added ambient occlusion
(AO). Proxy geometry used is the same as in Figure 5.7. . . . . . . . 38

xii



1
Introduction

1.1 Background
Computer graphics is the branch of computer science that deals with the generation
and processing of digital images. It is today a vital part of many large industries,
such as the film and games industries, but it is also used in less obvious areas such
as medicine and commerce. All in all computer graphics has a large impact on many
aspects of modern society.

Often, the goal is to generate photorealistic images, that is, images with accurately
simulated real-world physics of electromagnetic radiation, or as we usually think
of it: light. An 8 Watt light source—a common modern light bulb—emits around
the order of 1019 photons per second1, which illustrates the sheer complexity of this
simulation. In practice, like with most simulations, an ensemble of algorithms is
employed to solve approximations of the original problem.

1.1.1 Real-time rendering
Rendering is the branch of computer graphics that is concerned with the very last
step of image generation: assigning colors to pixels. A common goal within render-
ing is to generate photorealistic images, and to do it in as short time as possible. In
many situations, speed is not strictly critical but more of a convenience; for example
when rendering images that will later be composited into video (offline rendering).
However, in real-time rendering—where sequences of generated images should reflect
user interaction as soon as possible—rendering speed is critical. There is no stan-
dardized time frame, but real-time usually implies that the generation of a single
image should take no more than 1000/30 = 33.33 milliseconds, so that a frame rate
of at least 30 frames per seconds (FPS) can be achieved.

The typical way of achieving real-time rendering is to use rasterization, which is a
technique where images are drawn triangle-by-triangle and assigns color values to
pixels that lie inside the triangle. Rasterization has many limitations when it comes
to accurately simulating light, but is significantly faster than the alternative: ray
tracing. Ray tracing more closely resembles how physical rays of light bounce around

1Assuming perfect efficiency (no heat generation) at a wavelength of 550 nanometers.
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1. Introduction

in real life, and adopts both the realism of accurate simulation and computational
complexity that comes with that.

Global illumination (GI) is a phenomenon that is important to accurately capture
for photorealistic rendering [Ake+18a, p. 438]. Global illumination is simply a name
for light that reaches a camera or eye after bouncing/interacting with surfaces more
than once. As can be seen in Figure 1.1, global illumination realistically lights
up surfaces not directly hit by light and is clearly visually important. A cheap
approximation such as ambient lighting can recreate some parts of the effect, but
clearly fails to capture some of the intricacies of GI.

Accurate global illumination is difficult to achieve using rasterization, and for these
situations other techniques have historically been employed (see [Ake+18a, chap.
11.5]). While these techniques work well in some cases they usually produce biased
results, or require preprocessing or expensive update operations which limit how
geometry, lights, and materials in a scene may change. Conversely, with ray tracing
global illumination can be achieved quite easily, and ray tracing does not depend
on precalculated light paths or visibility and therefore does not impose any strong
limitations on scene changes. The ability to perform changes and observe their
effects in real-time is a highly sought-after in games and visualization software.

Figure 1.1: Impact of diffuse global illumination. Left: no global illumination.
Middle: the ambient approximation, which applies a uniform and constant light
across the whole scene. Right: path traced diffuse global illumination (with one
light bounce).

The graphics processing unit (GPU) is a good candidate for performing real-time
ray tracing in today’s computers [Ake+18a, chap. 11.7], and recent technological ad-

2



1. Introduction

vancements have made real-time ray tracing plausible on GPUs [Ake+18b; Maj+19;
Sch+17], allowing for real-time ray traced global illumination. One of the most
notable advancements is Nvidia’s RTX technology [NVI18]. Nvidia claim that it
is possible to get more than 10 · 109 rays per second (10 GRays/s) with the RTX
technology [NVI18, p. 32]. Assuming a resolution of 1920 × 1080 (1080p) at 30
FPS with a single light bounce and a shadow ray per hit, 10 · 109 rays per second
allows for approximately 40 samples per pixel (SPP)2. 40 SPP is far from enough
for rendering noise-free images in general [Ake+18b, p. 8], and 10 · 109 rays per sec-
ond is not achievable under more realistic cases; for example, see Figure 5.2. While
promising, these techniques are clearly still very expensive and there are still limi-
tations in what type of scene complexity can be captured. If real-time ray tracing
could be made faster it would make ray traced global illumination suitable for more
applications.

1.1.2 Proxy geometry
When rendering an object it is sometimes advantageous to use some geometry rep-
resentation other than the original. For example, if the object is far away from the
camera and barely visible it might be possible to use a lower fidelity geometry in
its place without compromising the rendering quality significantly. Since this al-
ternative geometry acts in place of some original it is often referred to as a proxy
geometry. Rendering with this proxy, when applicable, can result in faster render-
ing since resources are not wasted on non-important (e.g., non-visible) details. In
real-time rendering doing this can be critical in maintaining a good frame rate.

Depending on application, different types of geometry proxies might be more or less
applicable. For example, if it is only relevant to know whether an object is visible
or not (e.g., in occlusion culling [PT02]) a bounding box could suffice. On the
other hand, when rendering shadows a bounding box would be a poor fit since the
silhouette of the object is important; in such cases other types of proxy geometries
have shown to be useful [Sil+14]. The most important property of a geometry proxy
is that it captures the essential features of the geometry. As demonstrated with the
above examples, however, what is essential is not universal, and proxies must be
tailored for specific purposes.

1.1.3 Diffuse global illumination
This thesis will not focus on global illumination as a whole, but rather the subset
often referred to as diffuse global illumination. From a physical perspective there is
no distinction, since they describe the same phenomenon, but from the perspective
of computer graphics it can be advantageous to keep the concepts separate due to
their different performance characteristics and the fact that techniques for solving
them often differ.

Diffuse global illumination effects emerge when light interacts with diffuse surfaces,
such as a Lambertian surface. This type of surface is characterized by low coherency,

210 · 109/(4 · 30 · 1920 · 1080) ≈ 40.2
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1. Introduction

where light scatters uniformly in all directions in the normal oriented hemisphere
of the hit point. For the purpose of this thesis diffuse global illumination can be
further split into two categories: large-scale and small-scale effects. Large scale
effects includes color bleeding and ambient lighting, while on the small-scale we
have what is often referred to as ambient occlusion (AO). The large-scale effects
are particularly interesting in conjunction with proxy geometry, since it is a low-
frequency effect, meaning that its value changes slowly across space, and that most
high-frequency details of the geometry are lost.

1.2 Problem statement
The GPU is a good candidate for performing real-time ray tracing in today’s com-
puters, and with the advent of the RTX technology it is increasingly easy to accom-
plish. Proxy geometry is often used to speed up rendering, but there is not much
research studying the potential performance benefits of using proxies with the RTX
technology, nor what types of proxies are suitable.

This thesis will study existing and novel proxy geometry solutions to see if they can
be used to speed up RTX-based ray traced diffuse global illumination. Formally, we
wish to find proxy geometry that:

1. is compatible with the RTX APIs,

2. is faster to render ray traced diffuse global illumination with (using the RTX
APIs and hardware), and

3. does not significantly decrease the quality of the rendered diffuse global illu-
mination.

The latter two points are in comparison to the original/input geometry.

1.2.1 Limitations
There exist multiple material models which are diffuse in appearance and behaviour.
For this thesis we will limit experiments to the Lambertian diffuse surface model.

1.2.2 Note on real-time ray tracing hardware &
generality of the problem statement

At the time of writing this thesis real-time ray tracing is beginning to open up to non-
vendor-specific APIs with Vulkan extensions such as VK_KHR_ray_tracing. With
that said, only Nvidia are selling GPUs with ray-tracing hardware to consumers, so
any attempt at non-vendor-specific discussion would inevitably be about Nvidia’s
proprietary technology. Therefore this thesis will be limited to the RTX APIs.

4



2
Previous work

This thesis is at its core about ray tracing, RTX ray tracing performance, and proxy
geometry solutions. In this chapter we will highlight some previous research into
these three subjects.

2.1 Ray tracing
A primitive version of ray tracing for image generation was first introduced by Arthur
Appel in 1968. In 1980 Whitted introduced a version of ray tracing—today often
referred to as Whitted ray tracing—which allows for effects such as reflections and
refraction, and coined the term global illumination [Whi80].

Kajiya formulated the rendering equation in 1986 [Kaj86], which is a universal equa-
tion for describing the equilibrium between incoming, emitted, and outgoing light
from a point on a surface. The equation is a variant of physically derived radiative
heat transfer equations but in a form more suited for computer graphics. Compared
to other contemporary models of light for computer graphics, such as the model
used for Whitted ray tracing, the rendering equation is general and makes very few
assumptions. Besides the equation an algorithm for solving it was also presented,
which today is referred to as path tracing. Path tracing is an unbiased solution to
the rendering equation, but is also very expensive in terms of rendering time.

Many different rendering algorithms based on ray tracing now exist, such as bidi-
rectional path tracing and photon mapping, and it is a large and ongoing field of
research. Since only path tracing will be used for this thesis we will not go into
further details about other algorithms, and instead refer to the Physically Based
Rendering book [PJH18].

2.2 Performance of GPU ray tracing and the RTX
APIs

The performance characteristics of GPUs are well understood. Ray tracing on GPUs,
however, is a newer concept and not as much research exists on the topic. Aila and
Laine [AL09] try to discern performance bottlenecks in GPU ray tracing, specifically

5



2. Previous work

on Nvidia GPUs. In the paper they identify problems with hardware work distribu-
tion which slow down ray tracing and suggest an algorithmic improvement that can
be used to mitigate this problem. Additionally they note that the memory is not
the bottleneck in most cases, but rather the previously mentioned work distribution.
The only case they find where memory is the bottleneck is with diffuse rays.

In a more recent paper Lousada, Costa, and Pereira found that in general all GPU
based ray tracing “benefits from a reduction in memory footprint and bandwidth”
[LCP17]. As this work is also tested strictly on Nvidia GPUs, it suggests that im-
provements may have been made to Nvidia GPUs in accordance to the previous
findings [AL09]. Similarly Ylitie, Karras, and Laine find that reducing the mem-
ory footprint of ray tracing data structures can significantly increase ray tracing
performance on GPUs [YKL17].

The previously mentioned papers deal with software implementations of ray tracing
written in general purpose programmable GPU hardware. The use of dedicated ray
tracing hardware has been studied for a long time, for both partial solutions, e.g.
dealing only with data structure construction [DFM13; Vii+18], and more complete
solutions [Woo04; Spj+09; Nah+11; Nah+14]. Since this thesis will focus on the
RTX-hardware we refer to Deng, Ni, Li, et al.’s survey on ray tracing hardware for
more information [Den+17].

Nvidia first introduced their RTX-technology in a whitepaper [NVI18] about the
capabilities of the new Turing GPU architecture. The whitepaper describes the
RT Cores, which is the hardware that supports RTX ray tracing. Not much about
the technology is revealed, but they acknowledge that a bounding volume hierarchy
(BVH) is used internally in conjunction with hardware for intersecting rays with
axis-aligned bounding boxes to speed up the BVH traversal [NVI18, pp. 30-31].
Also ray–triangle intersection testing is implemented in hardware [NVI18, p. 31].

Sanzharov, Gorbonosov, Frolov, et al. [San+19] perform black-box analysis on RTX-
based ray tracing by rendering different scenes with different types of rays (glossy
and diffuse) and recording rendering times. They note that RT cores seem to provide
an improvement in incoherent memory access speeds, such as the workload of diffuse
rays. While the relative speed of coherent to incoherent rays is lower with RT cores
than previous GPU based implementations, diffuse is still significantly slower than
more coherent rays.

2.3 Proxy geometry & generation algorithms
A triangle is the most basic polygon which spans an area in three dimensions (3D)—
it is the 3D simplex—so all other polygons in 3D can be composed by a set of
triangles. For this reason the triangle is the primitive used in most rasterizers, such
as the one provided in GPUs, and triangles are often used in off-line and real-time
rendering. While triangles are required when using the GPU rasterizer, a ray tracer
is not as tied to using triangles as the input primitive.

For this thesis we will consider proxy geometry of not just triangles but all 3D

6
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primitives. However, we will limit the search to algorithms that take triangle meshes
as inputs, since it is the format that most assets are authored in.

A common algorithm for generating proxy geometry is mesh simplification. Mesh
simplification is useful for level-of-detail (LOD) rendering, where an appropriate low-
fidelity mesh is used depending on its distance from the camera. Since all the low-
fidelity meshes must render similarly, it is important that some of their properties
are kept (such as topology), and most mesh simplification algorithms provide some
guarantees in this regard. Mesh simplification typically takes a triangle mesh as
input and generates a similar triangle mesh with a smaller amount of triangles.
These types of algorithms are thoroughly researched and there exist many variants
with different advantages and constraints [Ake+18a, sec. 16.5][III04].

A mesh simplification algorithm typically defines an error metric which it tries to
minimize while reducing triangles. Some mesh simplification algorithms have error
metrics that encode geometrical constraints. Simplification envelopes and permis-
sion grids allow a user to define how the simplified mesh should be generated [III04].
Gaschler, Fischer, and Knoll describe a mesh simplification algorithm, the bounding
mesh algorithm [GFK15], which guarantees that the simplified mesh bounds the
input mesh.

Silvennoinen, Saransaari, Laine, et al. describe an algorithm for converting a triangle
mesh to a triangle soup, i.e., a set of unorganized triangles without connectivity
information [Sil+14]. The algorithm can generate triangle soups of very few triangles
intended for use in occlusion tasks, such as shadows. However, it is not possible to
retain color information and its triangles do not represent the surface of the input
mesh. For these reasons it is not very suitable for shading or global illumination.

A voxel is a 3D primitive that can be used in rendering, often as part of a struc-
ture of many voxels, such as a grid. Gobbetti and Marton showed that voxels can
be used as proxies for far-away triangles and through that decrease the total num-
ber of primitives considerably [GM05]. Representations that exclusively use voxels
have also proven useful in several rendering tasks. Laine and Karras describe meth-
ods for generating and rendering voxels that represent large and complex geometry
[LK10a]. Additionally they describe a method of carving cubic voxels by intersecting
them with half-planes to more accurately approximate the silhouette of the input
geometry (voxel contours) [LK10a; LK10b]. Voxels have also been proven useful as
proxy geometry for global illumination rendering, for example in voxel cone tracing
[Cra+11]. For all of the previously mentioned voxel-based techniques the data is
stored in hierarchical data structures and the algorithms are tied into the traversal
of the data structures. In RTX-based ray tracing the API does not allow for custom
traversal logic, so none of these are directly applicable for this thesis.

A triangle mesh can be approximated by a set of arbitrary geometrical primitives,
such as bounding boxes (e.g., see [PT02]). One useful primitive is the sphere, and
there exist algorithms that approximate a triangle mesh as a set of spheres [BO02;
Wan+06]. Bradshaw and O’Sullivan describe how to generate a set of spheres (op-
tionally in a tree structure) and how the representation can been used for approxi-

7
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mate collision detection and distance queries [BO02]. Ren, Wang, Snyder, et al. use
another algorithm [Wan+06] to generate the same representation for use as proxy
geometry for analytical occlusion calculations for soft shadows [Ren+06].

The ray marching algorithm [HSK89] is a variation on ray tracing, where instead
of performing explicit ray–primitive intersection tests, discrete steps along a ray
are evaluated. Exactly what is evaluated is not fixed, but it is common to use a
signed distance field (SDF) geometry representation. An SDF represents an encoded
surface, and in 3D is a function D : R3 → R, which returns the signed distance from
the surface it encodes to the given point. Surfaces can be encoded using formulas
[HSK89], but any arbitrary surface, such as the one defined explicitly by a triangle
mesh, can also be encoded. For these cases a lookup table can be used in place of
D.

8



3
Rendering theory

3.1 Measuring light

To reason about light, it is important to have a theoretical framework for it. As visi-
ble light is electromagnetic radiation within a range of wavelengths—approximately
380–780 nanometers [PJH18, ch. 5]—we often use the fields of physics knows as
radiometry and photometry. Both fields are concerned with electromagnetic radia-
tion and are mostly analogous to each other; the difference is that radiometry deals
with absolute units, while photometry deals with the radiation as perceived by the
human eye [Ake+18a, sec. 8.1]. For rendering it is common to use perceived color,
e.g. defined in RGB, instead of a spectrum of light. This simplification allows us
to ignore the photometric aspects of light in calculations, as it is already encoded
into the concept of color [Ake+18a, sec. 8.1.4]. For that reason the units and theory
presented in this section all come from radiometry.

Power is a measurement of the amount of light flowing through a point over a fixed
amount of time, and is often measured in watt (W, joules per second) [McG19a].
For example, a light bulb of 100 W has a total of 100 joules of light energy leaving
the bulb every second (assuming perfect efficiency).

For rendering, it is of interest to understand how light interacts with surfaces. To
measure the amount of light arriving on a patch of surface, from all possible direc-
tions, irradiance is used. Irradiance is defined as watt per area (W/m2) [McG19a].

Finally, it is useful to consider light along a ray—analogous to a physical beam of
light—within the context of light–surface interactions. To measure the amount of
light arriving or leaving a patch of surface in a single direction radiance is used.
Radiance is defined as Watt per area per solid angle (W/(m2 · sr)) [McG19a]. The
directionality is encoded using the unit steradian (sr) which is the three-dimensional
sphere equivalent of a radian.

This is a very brief introduction to radiometric units, but should be sufficient for
understanding this thesis. For more information we refer to The Graphics Codex
[McG19b].

9



3. Rendering theory

3.2 The rendering equation &
global illumination

The rendering equation [Kaj86] describes how outgoing radiance (Lo) in direction
ωo from point x on a surface relates to emitted (Le) and incoming (Li) radiance:

Lo(x, ωo) = Le(x, ωo) +
∫

Ω
fr(x, ωi, ωo)Li(x, ωi)(ωi · n) dωi (3.1)

where
∫

Ω dωi is the integral over all directions ωi in the normal-oriented hemisphere
Ω, fr is the BRDF which encodes how light scatters and is absorbed at x, and
(ωi · n) is the dot product of the incoming light direction and the surface normal
n. The BRDF is dependent on material, but some properties must hold, namely:∫∞
−∞ fr = 1 and fr ≥ 0 so the laws of energy preservation hold. Li(x, ωi) is identical
to Lo(x′, ω′o) for some other surface point x′ visible from x and ω′o = x−x′

‖x−x′‖ ; the
rendering equation is therefore infinitely recursive. For an arbitrary scene it is not
possible to analytically solve the equation [PJH18, ch. 1.2], so it must be solved
through other means, such as simulation.

What the equation describes, in simplified terms, is that light leaving a surface
is either emitted (the surface is a source of visible light) or scattered from other
surfaces. The phenomenon that is referred to as global illumination is effectively
the integral-part of the equation, where light is scattered resulting in inter-surface
light interactions.

For Lambertian diffuse materials the BRDF is cx
π
, where cx is the reflectivity of the

surface at point x [McG19c]. If all materials are assumed to have this BRDF the
equation can be simplified to

Lo(x, ωo) = Le(x, ωo) + cx

π

∫
Ω
Li(x, ωi)(ωi · n) dωi (3.2)

For the purpose of the Lambertian diffuse GI that this thesis deals with exclusively,
this form is sufficient.

3.3 Ray tracing & path tracing
There exists no closed form solution to (3.1) but it is possible to iteratively solve
it using Monte Carlo simulation. One unbiased solution to the equation is path
tracing, which was presented together with the rendering equation as a reference
solution [Kaj86]. To render a single pixel of an image using path tracing, a ray is
first traced from the camera center through the pixel on the image plane to find x
in the scene (see Figure 3.1). Calculating Lo(x, ωo) (3.3), where ωo is the direction
from x to the pixel, will then resolve a single iteration—or path—of path tracing:

Lo(x, ωo) = Le(x, ωo) + fr(x,XΩ, ωo)Li(x,XΩ)(XΩ · n) (3.3)

10
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where XΩ is a uniformly sampled direction in the normal oriented hemisphere (Ω).
The average of n iterations of this will be equivalent to (3.1) as n −→∞. Since the
equation is still infinitely recursive it is not possible to evaluate this either; however,
there is a diminishing return for increasingly recursive depths1, so in practice the
recursion can be aborted at a fixed depth or when returns are insignificantly small.

Convergence speed (in terms of number of iterations) of (3.3) can be significantly
improved by counting contribution from light sources separately with a shadow
ray per hit. The use of a shadow ray is effectively just importance sampling the
rendering equation with respect to the light sources, so there is no loss of accuracy
or generality. However, the details on doing this for any number of arbitrary light
sources is complex and beyond the scope of this thesis; instead we will describe the
process for a single punctual light source, which is enough to reproduce the results
of this work.

L∗o(x, ωo) is the updated version of (3.3) which explicitly evaluates the light contri-
bution from a punctual light source at position x∗:

L∗o(x, ωo) = Le(x, ωo) + fr(x,XΩ, ωo)L∗i (x,XΩ)(XΩ · n)

+ fr(x, ω∗, ωo)V (x,x∗)Le(x∗,−ω∗)(ω∗ · n)
‖x∗ − x‖2

(3.4)

where ω∗ = x∗−x
‖x∗−x‖ , and V (x,x∗) = 1 if there is visibility (i.e., no other occluding

surface) between x∗ and x, and V (x,x∗) = 0 otherwise. The same relation be-
tween L∗i and L∗o holds as for Li and Lo, as discussed above. Figure 3.1 contains a
visualization of a single evaluation of (3.4), with a maximum depth of 2.

The technique for resolving visibility and next recursive hit point x′ for Li and V in
path tracing is ray tracing. A single ray can be geometrically defined as an origin and
distance along a direction from origin, in what we will refer to as the ray equation:

r(t) = ro + t · rd (3.5)

For solving Li(x, ωi), as part of path tracing, the ray r(t) := x + t ·ωi is used to find
next hit point x′. Specifically, x′ can be calculated as the closest intersection point
of r(t) and geometric primitives p (e.g., triangles) in a scene S. A naive method of
achieving this is to linearly iterate each p ∈ S and test against r(t), but it can be
significantly sped up with the use of an spatial acceleration structure. There exist
many different types of spatial acceleration structures, but since for this work we
will rely on built-in acceleration structures (see Section 3.4) we will not discuss this
further. For more information on spatial acceleration structures we instead refer to
the Physically Based Rendering book [PJH18].

1Remember
∫∞
−∞ fr = 1 and (XΩ · n) ≤ 1, and defining a := fr · (XΩ · n) ≤ 1 we can roughly

express the equation as ad · dLi, where d is the recursive depth, and ignoring the emittance term.
Unless a = 1 for all evaluations (unlikely), ad = 0 as d −→∞.
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x∗

x

V = 1

x′

V = 0

XΩ

Figure 3.1: A single iteration (path) of path tracing with a maximum depth of 2,
using the notation of (3.4).

3.4 The RTX APIs
In 2018 Nvidia released their proprietary RTX technology. RTX uses custom hard-
ware, known as RT cores [NVI18], to speed up ray tracing. The technology is acces-
sible through a set of APIs, hereinafter referred to as the RTX APIs. These include
OptiX, DirectX Raytracing (DXR), and Vulkan through the VK_NV_ray_tracing
extension.

The RTX APIs take control of acceleration structure building and traversal. Since
implementations exist in proprietary driver code it is not known exactly what tech-
niques are being used for these tasks, but from Nvidia’s whitepaper [NVI18] it is
known that some type of Bounding Volume Hierarchy (BVH) is used as a spatial
acceleration structure. The hardware supporting the RTX ray tracing on compatible
GPUs, the RT core, includes ray–box and ray–triangle intersection testing [NVI18].
The ray–box test supports the BVH traversal, while the ray–triangle test is available
for speeding up triangle-based geometry.

The APIs provide a few core concepts for setting up ray tracing with arbitrary geom-
etry. While the concepts are common to all RTX APIs we will use VK_NV_ray_tracing
[Khrb] and GLSL_NV_ray_tracing [Khra] terminology here to be able to provide
concrete examples and names.

Intersection geometry is constructed using VkGeometryNV instances, which contain
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buffers for either triangles or axis-aligned bounding boxes (AABBs) and associated
metadata. Shading is performed using a closest-hit shader, and optionally also
an any-hit shader. Together these form what is known as a hit-group. When using
triangle data the built-in ray-triangle intersection test is used, but when using AABB
data a custom intersection shader is also supplied, as part of the hit-group. The
intersection shader is responsible for reporting ray–geometry intersections for the
custom geometry bounded by the AABB. Since custom intersection shaders run on
the programmable parts of the GPU, some performance overhead is to be expected,
compared to the ray–triangle intersection which is fully fixed.

The previously mentioned BVH acceleration structure is composed of two levels of
separate BVHs: the top-level acceleration structure (TLAS) and the bottom-level ac-
celeration structure (BLAS). A BLAS is constructed from one or more VkGeometryNV
objects. A TLAS composes one or more BLAS, by associating a BLAS with an ar-
bitrary transformation. The same BLAS can be referred to many times within the
same TLAS with different transformations.
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4
Generating & rendering

proxy geometry

Previous chapters have discussed GPU performance and the theoretical reasons why
using proxy geometry could be beneficial for different rendering tasks. In this chapter
we will describe the three proxy geometry types that have been evaluated for this
thesis. Both the generation and rendering of them will be discussed, together with
motivations for why they were chosen.

4.1 Requirements for proxy geometry
There exist many different types of proxy geometry, as highlighted in Section 2.3,
and not all of them are suitable for all use cases. To help evaluate whether a proxy
may be suitable for use in ray traced diffuse global illumination, we have developed
a set of requirements that should optimally be fulfilled. A suitable proxy should:

1. provide sufficient surface normals n for shading and recursive rays,

2. provide sufficient color information cx for shading, and

3. be fully bounded by the source geometry.

The importance of Item 1 and Item 2 comes from the fact that cx and n both occur
in the diffuse rendering equation (3.2), so their inclusion is vital for the diffuse global
illumination calculations.

The importance of Item 3 is not as obvious, but rendering with proxy geometry not
fulfilling the requirement results in artifacts, as can be seen in Figure 4.1. While it
manifests as two different types of artifacts (on the surfaces of the model itself, and
on other surfaces) the reason is the same for both: rays hitting the proxy geometry
where it is not expected.

If Item 3 is fulfilled for a proxy, its silhouette will cover a smaller or equal area
to that of the original geometry, from all angles. This means that light leakage
artifacts are possible. This type of artifact is of the same nature as the artifacts
the requirement tries to resolve, except inversely so: a lack of darkening (ambient
occlusion) where it should be dark. However, we argue that this artifact is less visible
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Figure 4.1: Artifacts from not fulfilling the bounding requirement. Left: Rendering
using a non-bounding proxy (contrast increased so artifacts become more visible).
Right: 2D schematic illustrating the source of the artifacts. The red curve represents
the surface of the original geometry and the blue represents the proxy geometry. The
gray arrows are examples of rays which, after diffusely scattering, would interact with
the bad proxy geometry and cause pixels with the artifacts shown on left.

to the eye, comparing Figure 4.1 with the similar figures in Chapter 5 (results), which
uses strictly conforming proxies. Additionally, a lack of darkening can in theory be
mitigated by complementing the indirect light with a separate ambient occlusion
(AO) system. How well a mitigation like this could work in practice is evaluated in
Section 5.4.5.

4.2 Proxy geometry generation algorithms

To evaluate the question of this thesis, a few different types of geometry proxy will
need to be evaluated. Three types of proxies have been chosen for this work and
they will be discussed in detail in the remainder of this chapter.

For simplicity it is assumed that a triangle mesh input is watertight, meaning there
are no gaps or openings in the mesh. This is important for some proxy geometry
generation algorithms, where the distinction between the inside and outside of a
mesh is required.
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4.2.1 Simplified triangle meshes
As the RTX hardware has dedicated circuitry for ray–triangle intersection, triangle
based proxies should in theory have an advantage over other types of proxies. Many
triangle based proxies exist, but only a few could be considered feasible in accordance
with the requirements established in Section 4.1. For example, the planar occluder
sections proxy [Sil+14] will generate planes with normals that do not resemble those
of the original geometry. Traditional mesh simplification—for example often used
for level-of-depth (LOD)—is interesting since it attempts to maintain most of the
properties of the original mesh geometry, just at a lower resolution. A mesh simpli-
fied in such ways will have normals similar to the normals of the original mesh, and
color can be encoded the same way, for example using texture mapping. However,
special care is needed to guarantee the bounding requirement (Item 3 Section 4.1).

Mesh simplification is a widely researched topic, so for the sake of scope we will not
make any attempt at creating a novel algorithm; instead we rely on existing algo-
rithms and implementations. Of the many existing mesh simplification algorithms,
only a few could be identified that have mechanisms for controlling the bounds of
the simplified mesh. Simplification envelopes and permission grids (as discussed in
[III04]) are interesting, but no publicly available implementation of either can be
found. The more recent bounding mesh algorithm [GFK15], however, has an open-
source implementation1 which was used for all mesh simplification in this work. As
its name implies, the main goal of the bounding mesh algorithm is to create a mesh
bounding some other mesh. However, the algorithm (and implementation) supports
inverting a constraint to give the opposite result—what they refer to as an inner
bounding mesh. In this text we are only interested in inner bounding meshes, or
bounded meshes, so all further description of this algorithm will use the inverted
constraint.

The bounding mesh algorithm simplifies a mesh by iteratively performing edge con-
tractions, one by one, until some break condition occurs, e.g., the number of triangles
is below a predefined limit. An edge contraction takes an edge e = (v1,v2) and a
new position v, and merges the two vertices v1 and v2 into a new vertex at posi-
tion v. Any neighbouring triangle that has become degenerate (zero area) is also
removed.

Since an edge contraction is a destructive operation, the order of execution matters.
For each edge e in the mesh, an optimal v∗ is calculated by minimizing an error E,
and the edge is placed into a priority queue sorted by error. This allows the edge
contraction with the smallest errors to be performed first. The optimal position v∗

and the error E are calculated as:

min
v∗

E ((v1,v2) ,v∗) s.t. ∀p ∈ P (v1) ∪ P (v2) : pTv∗ ≤ 0 (4.1)

E(e,v) =
∑

p∈P (e)
d(p,v)2, (4.2)

1The implementation can be found at https://github.com/gaschler/bounding-mesh.
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where P denotes the neighboring planes of the vertex or edge, and d(p,v) is the
Hausdorff distance—the maximum distance—between the two arguments. Mini-
mizing the Hausdorff distances ensures that the simplified mesh is as similar to the
original mesh as possible, while the pTv∗ ≤ 0 constraint ensures that the simplified
mesh is bounded within the original mesh [GFK15].

4.2.1.1 Algorithm

The bounding mesh algorithm can now be described:

1. for every edge e, find v∗ and add E(e,v∗) to a priority queue

2. while no break conditions are active, repeat:

(a) pop the smallest E(e,v∗) from the priority queue

(b) perform the edge contraction e −→ v∗

(c) for every edge e′ now connected to v∗, find a new optimal edge contraction
point v′∗ and update the error in the priority queue for e′ to E(e′,v′∗)

4.2.1.2 Encoding color

Triangles allow for many ways of encoding color information. Two common ap-
proaches are vertex colors and texture mapping. While vertex colors have a smaller
memory-footprint in most realistic cases, texture mapping has a few advantages:

• assuming identical parameterization, textures can be swapped to change ma-
terials,

• the resolution of textures can be adjusted to balance the accuracy–memory-
footprint trade-off,

• texture mapping is commonly used for triangle meshes, and all input triangle
mesh geometry uses texture mapping.

For these reasons texture mapping was used for all simplified triangle meshes. How-
ever, note that the publicly available implementation of the bounding mesh algo-
rithm does not support texture mapping, which means that some additional mesh
processing is required for this (see Section 5.2 for more information).

4.2.2 Sphere set
The sphere is an interesting primitive to test for this thesis since it inherently encodes
a significant amount of information with very few parameters. A single sphere can
be parameterized as a center point and a radius, and describes a volume visible from
all possible directions and an infinite amount of surface normals. Compare this to
a triangle which requires three points, encodes a single normal, and does not have
a volume2.

2For this purpose a triangle could also be considered an infinitely thin volume, if both possible
normals are accepted as valid.
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It has been shown that a triangle mesh can be approximated by a set of spheres
[BO02; Wan+06; Ren+06]. However, due to the bounding requirement (Item 3
Section 4.1) none of those techniques can be applied directly; in fact, they all have
the inverse requirement of bounding the original mesh. As Wang, Zhou, Snyder, et
al. [Wan+06] claim to achieve better results than previous techniques (i.e., [BO02]),
we will base our problem formulation on the former.

The optimization problem of “Variational Sphere set Approximation for Solid Ob-
jects” [Wan+06] is formulated as:

min
ns∑
i=1

V (T, Si)

s.t. V (T, Si) ≥ 0,∀Si,
(4.3)

where T is the triangle mesh, Si is sphere i in a set of ns spheres, and V (T, Si)
computes the signed volume inside the sphere Si but outside the triangle mesh T .
Solving this will give an optimally tight, but bounding, fit of the triangle mesh. The
inverse problem can be formulated as:

max V
(
ns⋃
i=1

Si

)
s.t. V (T, Si) ≤ 0,∀Si,

(4.4)

where the objective function is the volume of the union of all spheres. A solution to
this problem for a given ns will give a set of spheres that is bounded by the triangle
mesh while optimally filling the interior of the mesh volume. This solution fulfills
the requirement while maximizing the total volume union, and hopefully also retains
as much of the object silhouette as possible.

While a closed form solution of the objective function—i.e., the volume of the union
of a set of spheres—does exist [ABI88], it is a complex calculation to perform, and
it can be rewritten as follows:

V

(
ns⋃
i=1

Si

)
=

ns∑
i=1

V (Si)− V
(
ns⋂
i=1

Si

)

=
ns∑
i=1

V (Si)− α
ns∑
i=1

ns∑
j=i+1

V (Si ∩ Sj) , (4.5)

for 0 < α ≤ 1. No closed form of the volume of the intersection of a set of n spheres
is known to exist [CS15], but it is simple for n = 2 (4.6). Adding all pairwise
intersection volumes will overestimate the total intersection volume for all cases
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where more than two spheres intersect; however, this can be mitigated by choosing
a good α (on a case-by-case basis). The intersection volume of two spheres can be
calculated as:

V (Si ∩ Sj) = V (ri, rj, d) =
= 4πr3

i

3 , d < rj − ri
= 4πr3

j

3 , d < ri − rj
= π(ri+rj−d)2((ri+rj+d)2−4(r2

i−rirj+r2
j ))

12d |ri − rj| ≤ d ≤ ri + rj
= 0 d > ri + rj,

(4.6)

where ri and rj are the radii of the spheres Si and Sj, respectively, and d is the
distance between the sphere centers [CS15].

The optimization problem used to generate a bounded sphere set solution is thus:

max
ns∑
i=1

V (Si)− α
ns∑
i=1

ns∑
j=i+1

V (Si ∩ Sj)

s.t. V (T, Si) ≤ 0,∀Si.
(4.7)

4.2.2.1 Algorithm

To solve (4.7) an algorithm similar to the presented algorithm for (4.3) [Wan+06] is
employed:

1. uniformly select ns random sphere centers from inside T

2. maximally increase the radius of each sphere while making sure the sphere
does not intersect any triangle t ∈ T

3. for each sphere, perform local optimization on center and radius

(a) if the optimization did increase the objective function, repeat

(b) if the optimization failed to increase the objective function, first perform
sphere teleportation then try optimizing again. If teleportation & opti-
mization repeatedly failed to increase the objective function, assume an
optimal solution has been found and abort.

To uniformly sample points inside the mesh a voxel representation of the mesh was
utilized. Each triangle was voxelized to create a voxel-“shell” of the mesh, which
would then be filled. To sample a random position inside the mesh a random inside-
voxel (i.e., not part of the shell) was sampled and its center point was used as the
sphere center location.

The local optimization step uses constrained black-box optimization, specifically
Powell’s BOBYQA algorithm [Pow09], to optimize the objective function. To dis-
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courage spheres from intersecting T , a large penalty is applied to the objective func-
tion for that case. To guarantee that spheres are bounded by T , the optimization is
constrained to never move a sphere center further than its current radius.

Sphere teleportation as a concept is borrowed from “Variational Sphere set Approx-
imation for Solid Objects” [Wan+06] and is used to escape local minima. All spheres
in the set are sorted relative to their volumes, and the sn/k smallest are relocated and
expanded according to step 1 and 2. k can be adjusted to weigh toward more aggres-
sive (small k) or potentially less potent (large k). In practice a value of k = 8 works
in most cases. The teleportation is admittedly noisy and heuristic, but multiple
other teleportation strategies were tested and no better one could be found.

4.2.2.2 Encoding color

There are multiple viable color encodings for a sphere set. Considering a cube with
a unique color per face with a sphere set proxy of a single sphere, it is clear that
having a single color is not a viable encoding. A sphere must be able to encode
different colors for different surface points.

We opted for a spherical harmonic (SH) color encoding, since it offers a smooth
encoding and an adjustable level of precision, or degree, `. As ` increases, so does
the precision of the encoding, but also the memory-footprint of it, so the trade-off
is easily controlled. Spherical harmonics is a way of mapping arbitrary functions
to a sphere, by adding one or more scaled basis functions [Gre03]. The degree
indirectly specifies the number of basis functions, which in turn decides the precision
of the mapping. Spherical harmonics of small degrees are good at mapping low-
frequency functions, such as diffuse colors, since a SH is smooth and does not incur
aliasing. Conversely, spherical harmonics are not good at capturing high-frequency
functions, unless the degree is high. For all results presented in this work an `-2
spherical harmonic color encoding was used. Figure 4.2 contains a visualization of
the directional coefficients of spherical harmonics, up to degree `-2.

Another viable option is texture mapping. A spherical mapping can be used to
convert sphere points in R3 to texture coordinates in R2, and the precision–memory-
footprint trade-off can be adjusted with texture resolution.

4.2.2.3 Testing for intersection

A point x is on a sphere with center point c and radius r iff ‖c − x‖ − r = 0. To
find an intersection between this sphere and a ray we can insert the ray equation
(3.5) in place of x. Additionally the equation can be simplified by assuming c = 0
and redefining the ray origin as r′o := ro − c. We then have to solve the equation:
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Figure 4.2: Visualization of the directional coefficients of spherical harmonics, up
to degree `-2. Blue represents positive function values and yellow negative function
values. Image courtesy of Inigo Quilez [Qui13].

‖r′o + trd‖ − r = 0
‖r′o + trd‖2 − r2 = 0

(r′o + trd)T(r′o + trd)− r2 = 0
t2 + t(2 · rT

d r′o) + ‖r′o‖2 − r2 = 0,

which is a quadratic function where all real solutions correspond to geometrical
intersection points. Given an intersection point x, a surface normal can be calculated
as:

n = x− c
‖x− c‖

.

4.2.3 Voxel planes
Voxels are interesting primitives to test for this thesis for multiple reasons. Foremost
they are a very common geometrical representation in computer graphics and are
also used in some global illumination algorithms (see Section 2.3). Additionally,
voxels are easy to generate and the resolution—that is, the number of primitives
to render—is trivially adjustable. Finally, they align closely with the geometry
definition of the RTX APIs, as the APIs take axis-aligned bounding boxes for non-
triangle intersection geometry.

However, voxels are not directly applicable for use with ray traced diffuse global
illumination. A voxel only has six geometric normals, which is hard to fit arbitrary
geometry to. Using voxel contours [LK10b] it is possible to achieve a better geo-
metrical fit, by carving voxels with half-spaces while hierarchically traversing a tree

22



4. Generating & rendering proxy geometry

of voxels. In the RTX APIs there is no mechanism to interact with geometry at
traversal, but carving voxels is still possible at the leaf-level. Since it is advanta-
geous to keep the memory footprint low, we limited the number of half-spaces to
one, effectively defining a plane inside the volume of a voxel: a voxel plane.

When using a single plane per voxel there is no guarantee that a grid of voxel planes
can represent the full surface of the original geometry. For example, all concave
meshes will produce voxel planes with gaps between them, as can be observed in
Figure 4.3. In practice, strictly convex triangle mesh objects are exceptional, so
these gaps will appear in voxel plane proxies for most input geometry.

Figure 4.3: 2D example of a voxel plane proxy generated from a triangle mesh
(assuming triangles are small). Note that sharp convex features, such as the outer
corners, become less sharp, and that gaps appear between voxel planes at concave
regions.

Since a voxel plane is one-sided and presumably quite small in relation to the size
of the object it represents, it is reasonable to use a single uniform color per voxel
plane.

4.2.3.1 Algorithm

A custom algorithm was developed to generate a set of voxel planes for a mesh. For
a given grid dimension D ∈ N3 and nc, the number of quantized colors to use:

1. create a grid of resolution D,

2. voxelize each triangle t ∈ T and store the color of the intersecting triangle,
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3. quantize the colors to nc colors,

4. for each voxel, define a single plane of the same color as the voxel.

Each voxel plane is assigned the color of the intersecting triangle by projecting the
voxel center point onto the triangle and sampling its texture at the interpolated
texture coordinates for the projected point. If multiple triangles intersect a single
voxel the color of the last triangle is used. The average color of all intersecting
triangles could also be used for this.

The color quantization is done to decrease the memory footprint of colors. By ap-
proximating colors we go from a resolution-dependent number of colors to a constant
nc colors. The quantization is performed using k-means clustering with k = nc.

Generating a plane for a voxel is done by finding a consensus normal ñ which is used
for the plane, and adjusting the distance so the plane is fully behind all intersecting
triangles. For a voxel with n intersecting triangles ti with normals ni, i = 1, 2, . . . , n:

ñ = 1
n

n∑
i=1

ni. (4.8)

For n = 1 we have ñ = n1 and for n > 1 it is the average normal. The intention
is that ñ and the voxel plane represents the distribution of normals of the input
geometry. For cases where there is much curvature within a single voxel, however,
a single-plane representation can be poor. For example, consider a voxel with two
intersecting triangles of almost perpendicular surface normals. The average of these
normals will not necessarily represent the true distribution of normals. Increasing
the resolution D can mitigate this problem, but at the cost of using more voxel
planes.

To satisfy the bounding requirement (Item 3 Section 4.1) the plane with normal ñ
must lie behind all intersecting triangles. To find the distance d of the plane along
the normal from the origin we clip all intersecting triangles to the voxel bounds and
find the smallest projected distance:

d = min
ti

min
p∈C(ti)

ñ · p− ε, (4.9)

where C(ti) is the set of triangle vertices clipped to the voxel bounds, and ε > 0 and
close to zero, to assure that the bounding requirement is fulfilled.

4.2.3.2 Testing for intersection

A voxel plane is defined by an axis-aligned bounding box (AABB) and plane. To
test for intersection we first find the point x where the ray intersects the plane, and
then test if x is inside the AABB.

A plane is defined by a normal and a distance, in this case ñ and d; a point x lies
on the plane iff ñ · x + d = 0. We insert the ray equation (3.5) and solve for t:
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ñ · (ro + t · rd) + d = 0
ñ · ro + tñ · rd + d = 0

tñ · rd = −(d+ ñ · ro)
Assuming ñ · rd 6= 0

t = −d+ ñ · ro
ñ · rd

.

Finally, an AABB can be fully defined by two points, bmin ≺ bmax, and a point x is
contained inside the AABB iff bmin 4 x 4 bmax (where ≺ and 4 are component-wise
vector comparisons).

25



4. Generating & rendering proxy geometry

26



5
Results

5.1 Evaluation methodology
Evaluating the thesis of this work necessitates implementing both a set of proxy ge-
ometry generation algorithms and a renderer that can render the original meshes and
their proxies. Using these implementations the proxy geometries will be evaluated
according to the criteria established in Section 1.2. In practice this means

1. measuring rendering times with and without proxies for direct comparisons,
and

2. capturing images with and without proxies for visual comparisons.

To compare two images X and Y of identical dimensions w × h pixels we apply a
per-pixel error metric for each pixel i:

Ei(X, Y ) = luminance
(
|X(R)

i − Y (R)
i |, |X

(G)
i − Y (G)

i |, |X
(B)
i − Y (B)

i |
)
, (5.1)

where luminance is a function that returns the sRGB grayscale luminance [Ake+18a,
p. 278] for a given sRGB color.

For most result images below, an error map will be presented alongside, where
per-pixel values of Ei(X, Y ) are mapped to a color gradient (Figure 5.1). These
images are meant to help visualize error across regions of the rendered images, for
the benefit of the reader. Unless otherwise noted, all error maps calculate error in
indirect-light-only images, which ignore all color except for bounce lighting. This
means that features that absorb much light (e.g., dark and black colors) do not
nullify the error in those regions.

Figure 5.1: The color gradient used for all error maps presented in this paper.

By default the renderer traces a shadow ray from each hit point of an indirect ray.
This is often done in path tracing to speed up the convergence of the image and is
described in Section 3.3. All images presented in this text are therefore rendered with
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shadow rays. However, in all instances where rendering performance is presented
in rays per second (specifically GRays/s for ·109 rays per second), shadow rays are
explicitly disabled when measuring. The purpose of this is to allow the ray per
second metric to be strictly about diffuse rays, as it is the most relevant type of ray
for this work. We believe this will give a more fair assessment of rendering times for
different types of proxy geometries.

5.2 Implementation details
The renderer1 was written using Vulkan and the VK_NV_ray_tracing extension was
used to access the RTX ray tracing capabilities. The renderer is a hybrid renderer,
meaning that is does both rasterization and ray tracing. The rasterizer renders first-
hit visibility and direct light, and writes albedo, normals, and non-linear depth to
a G-buffer. Deferred ray tracing [Ake+18b, p. 9] is used for indirect rays, meaning
that secondary rays are generated from the G-buffer as described by Barré-Brisebois,
Halén, Wihlidal, et al. [Bar+19]. Original triangle meshes are always used for the
rasterization, while proxy geometry is strictly used for the indirect rays, including
indirect shadow rays. The renderer uses a maximum depth of 1 (i.e., only a single
bounce) for path tracing, meaning that the secondary diffuse rays do not spawn
more rays. This means that we effectively get the same results as would be achieved
in Figure 3.1 with maximum depth of 2, since the rasterization handles the first-hit
and light contribution.

Sphere set proxies and voxel plane proxies were all generated using the algorithms
described under Sections 4.2.2.1 and 4.2.3.1, respectively. Open-source reference
implementations are available2. Simplified triangle meshes were generated using the
open-source implementation3 of the bounding mesh algorithm. Since the bounding
mesh algorithm implementation does not respect texture coordinates, we create a
new parameterization for the simplified mesh by projecting the original mesh onto
it using Blender4.

For each of the non-triangle proxy types, a custom hit-group was added to the ren-
derer, consisting of an intersection shader and a closest-hit shader. The intersection
algorithms were implemented as described in Sections 4.2.2.3 and 4.2.3.2. To keep
the required memory throughput low, two strategies were employed: 16-bit floats
were used in place of all uploaded floating point data (through the VK_KHR_shader-
_float16_int8 extension), and as much memory access as possible was deferred to
the closest-hit shader (instead of occurring in the intersection-shader).

To produce noise-free images for comparison purposes we render to 1024 SPP for all
results, unless otherwise stated, by averaging 1024 frames of 1 SPP. To get consistent
timing and test under dynamic scenarios, even though we do accumulate and don’t
actually have dynamic scenes, we rebuild the top-level acceleration structures every

1https://github.com/Shimmen/ArkoseRendererThesis
2https://github.com/Shimmen/ProxyGen
3https://github.com/gaschler/bounding-mesh
4https://www.blender.org/
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frame. For all results below, the number of instances in the top-level acceleration
structure is very low, so the rebuild time is insignificant (< 0.1 ms).

All timing tests are run on a Nvidia GeForce RTX 2080 Super at 1920× 1080 pixels
resolution, unless otherwise stated.

5.3 Diffuse GI performance in the RTX APIs
To understand the performance implications of rendering with diffuse rays compared
to more coherent rays, an experiment was conducted whose results can be seen in
Figure 5.2. To strictly evaluate the impact of ray coherency, great care was taken
to eliminate other potential factors. To make sure the same number of rays hit the
triangle mesh of interest (i.e., no miss-shader invocations), the mesh is closed and
the camera is placed within the mesh. The mesh is also assigned a single uniform
color value, so aspects such as texture sampling and texture memory fetching can
be disregarded. Finally, each ray is traced from the G-buffer hit point and in the
direction rd, constructed as:

rd = n + α2X
‖n + α2X‖

, (5.2)

where n is the smooth surface normal at the G-buffer hit point, and X is a uniformly
random point on the unit sphere. α acts as a type of roughness parameter allowing
us to vary the ray coherency for the purpose of testing. The reason α is squared is
to give a more perceptibly linear roughness scale for the graphs where 0 < α < 1.
The same remapping is performed in some common material models, such as the
Disney BRDF [Bur12, p. 15].

The main reason (5.2) was chosen for this experiment is a combination of the fact
that it trivially maps a single parameter (α) to ray coherency, and the fact that
α = 1.0 gives a distribution of rays equivalent to the photon distribution of a
Lambertian diffuse surface [McG19c]. A consequence of this is that values of α < 1.0
do not have meaningful interpretations. For example, α = 0 (resulting in rd = n)
is not similar to any physically plausible scattering profile. However, while it is not
plausible it is similarly coherent to the scattering profile of a perfectly glossy/mirror
surface. Substituting actual mirror scattering for the α = 0 case does result in very
similar performance.

Since the RTX-hardware uses BVHs internally, the rendering time should have a
roughly logarithmic growth function, f(n) = k · log(n), for the number of primitives
n. As expected this can be observed in all graphs of Figure 5.2. However, very
different values of k can also be observed, which result in quite significant differences
in rendering time for large number of triangles. Since the number of rays that hit the
mesh is held constant and the same constant color is used for all mesh hit points,
the difference in speed must be attributed to BVH traversal and indexed vertex
data lookup. Profiling further reveals that much of the active GPU time under
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Figure 5.2: Rendering time of a single triangle mesh with increasing subdivision for
varying values of α (5.2) at 1 SPP. It is clear that O(log n) behaviour can be observed
in all cases due to the acceleration structures, but with different characteristics.

vkCmdTraceRaysNV is spent waiting for memory and that it is more significant for
greater α.

These findings are in line with conclusions of previous work regarding memory access
speed (see Section 2.2), and indicate that geometry representations with a smaller
memory footprint may improve rendering performance for ray traced diffuse global
illumination. From this experiment we know this holds for triangle-based geometry
representations, but it is conceivable that a similar relation exist for other types of
geometry. This tells us that it at least should be possible to achieve faster rendering
times (errors aside) by decreasing the geometry memory footprint, as theorized when
considering the choice of proxy types.

5.4 Evaluation of proxy geometry
In this section we will analyze each of the tested proxy geometry types and evaluate
them according to the criteria set up in Section 1.2. The proxy geometries will also
be compared to each other for the benefit of understanding their relative strengths
and weaknesses.

The scene BunnyCorner5 is used for direct comparisons between different proxy
types and number of primitives. Using the original geometry 2.30 GRays/s can be
achieved for diffuse global illumination and will be used as reference for all future
comparisons under this section. Additionally, all error maps under this sub-section
are relative to the indirect-light-only reference (Figure 5.3, bottom left), and use the
same range so they can be directly compared to each other.

5Bunny model (Stanford Bunny) from Computer Graphics Archive [McG17].
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Figure 5.3: Reference render of BunnyCorner without the use of proxy geometry
(144 046 triangles, excluding the geometry of the room, at 2.30 GRays/s). Top: with
global illumination, bottom left: indirect light only, bottom right: visualization of
the geometry.
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5.4.1 Simplified triangle meshes

80 triangles 1 591 triangles 14 404 triangles
3.66 GRays/s 3.45 GRays/s 3.15 GRays/s
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Figure 5.4: Visual quality and rendering time for simplified triangle mesh proxies,
for a varying number of triangle primitives. The number of triangles does not include
the geometry of the enclosing room.

Figure 5.4 shows rendered images and rendering times for the simplified triangle
mesh proxies of the BunnyCorner scene. Disregarding the additional textures
and potential miss-shader invocations, rendering times should be similar to the
ones shown in Figure 5.2 for α = 1.0. While the number of primitive triangles in
the original reference geometry is quite low (144 046 triangles, excluding the room
geometry), there is still a clear increase in rays per second, as number of simplified
triangles decrease, as can be seen in Figure 5.4. More drastic increases would be
expected on more complex scenes with more triangles, and this will be explored in
Section 5.4.4.

The error maps in Figure 5.4 show a clear increase in error as the number of triangle
primitives decrease. While there are some observable large-scale effects, the largest
errors exist on the floor close to where the bunny model sits. Comparing to the
reference it is clear that there is a lack of darkening in more confined spaces, i.e.,
ambient occlusion. As discussed in Section 4.1 this is to be expected, since having
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all proxy geometry be bounded by the original geometry means ambient occlusion
is underestimated.

5.4.2 Sphere set

5 spheres 20 spheres 100 spheres
3.48 GRays/s 2.96 GRays/s 2.66 GRays/s
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Figure 5.5: Visual quality and rendering time for simplified sphere set proxies, for
a varying number of sphere primitives.

Figure 5.5 shows rendered images and rendering times for the sphere set proxies of
the BunnyCorner scene. Using sphere set proxy geometry it is possible to achieve
faster rendering times compared to the original geometry; however, there is a large
amount of error in all maps which does not seem to decrease significantly with
an increasing primitive count. Of course, as the number of primitives approaches
infinity the error will tend to zero, but by extrapolating the observed data points
it is clear that there is a reasonable range of number of primitives that can yield
beneficial performance (i.e., faster than reference).

There are multiple possible reasons as to why the error does not decrease significantly
within the evaluated range from 5 to 100 spheres:

1. the volumetric nature of spheres,
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2. sub-optimal sphere set generation,

3. poor color encoding.

As discussed in Section 4.2.2 the volumetric nature of sphere can in theory be ben-
eficial since a small amount of primitives can effectively fill a mesh. From the proxy
visualization (bottom row Figure 5.5) it is clear that a small amount of spheres can
roughly approximate the shape, however it is also clear that small features are often
left out. For example, the ears are not represented in any of the three versions, and
not until we have 100 spheres are the smaller features near the ground represented.

This also ties into the second point: sub-optimal sphere set generation. The algo-
rithm used to generate sphere set representations (described in Section 4.2.2.1) is
highly approximative and stochastic, and provides no guarantees that an optimal
solution is found. The sphere teleportation step, specifically, is important for avoid-
ing local minimas, but also introduces a lot of noise into the algorithm. It is very
possible that a better algorithm could improve the errors.

Finally, the proxy visualization reveals that the `-2 spherical harmonics color encod-
ing fails to capture much of the relevant color information of the original geometry.
The BunnyCorner scene has much high-frequency color, which is something that
spherical harmonics is not great at capturing. Increasing the degree (`) of the spher-
ical harmonic encoding might improve this, but this will also increase the memory
footprint which could be detrimental to the performance. In scenes with more low-
frequency color the encoding can work better (see Section 5.4.4).

A single sphere occupies 8 bytes in GPU memory, or 80 bytes including SH color.
This means that the geometry and colors of a 5-sphere set occupies no more than 400
bytes. Considering the clear correlation between memory footprint and performance
as shown in Figure 5.2 it is curious that this geometry does not render faster. More
so, 400 bytes should also be able to fit in all relevant GPU caches. Comparing to
the simplified triangle meshes above, the performance is most similar that of the
1 591-triangle mesh, which occupies roughly 57KB for just the vertex position data
(which is all that is required for intersection testing). Profiling reveals that much of
the active GPU time under vkCmdTraceRaysNV is spent waiting for memory. This
is similar to what was observed for triangle geometry as well, however, in this case
it is an even larger fraction of the time.

5.4.3 Voxel planes
Figure 5.6 shows rendered images and rendering times for the voxel plane proxies of
the BunnyCorner scene. As can be seen in the figure voxel plane proxy geometry
is slower to render than the reference triangle geometry for all tested number of
primitives.

Since voxel planes and spheres both require custom intersection shaders it can be
interesting to compare them to each other to understand their relative performance
characteristics. The main difference between them is the amount of data required
to perform the intersection tests. A sphere is encoded as a 3D point and a radius,
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2.20 GRays/s 2.02 GRays/s 1.90 GRays/s
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Figure 5.6: Visual quality and rendering time for simplified voxel plane proxies,
for a varying number of voxel plane primitives.

while a voxel plane is encoded as a 3D surface normal, a distance from origin, a
color index, and an AABB. Ignoring the AABB the representations require a similar
number of bytes to encode. Since the invocation of an intersection shader occurs
after a positive ray–AABB test some information about the AABB must be known
at that point; however, no such information is passed to the intersection shader. If
more information about the AABB was passed to the intersection shader it would
be possible to render voxel planes without passing in a separate but identical set
of AABBs. Assuming memory footprint is the most significant factor to rendering
performance, similar times to those of sphere set proxies might be achievable.

Using voxel planes it is possible to get errors considerably smaller than what is
achievable for sphere sets, for reasonable number of primitives. The rationale for
what is reasonable is similar to what was argued for the sphere set proxies: using
much less than 770 voxel planes results in very broken geometry and therefore also
rendered images with little resemblance to the reference images. Since all tested
number of voxel planes results in slower rendering we also see little reason to test
higher numbers.
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Within the evaluated range, as the number of voxel planes increase the proxy geom-
etry approximates the original geometry increasingly well. However, as the number
of voxel planes decrease the gaps between the individual planes increase. This is
especially noticeable at areas of high curvature, such as the ears or feet of the bunny
model (e.g., see Figure 5.6, bottom left).

5.4.4 More complex scenes

While the previous results in the BunnyCorner scene show how error and ren-
dering times relate to proxy type and number of primitives, the scene does not
accurately represent common rendering scenarios. For example, there is only a
single object with proxy geometry, so no inter-proxy light interactions occur. For
this purpose we created the scene SmallRoom6. Both the BunnyCorner and
SmallRoom scenes also happen to be indoor scenes, with little light contribution
from the environment. The RockyLandscape7 scene was created to show a more
realistic outdoors environment; additionally it has a significantly larger amount of
input primitives than all the previously tested scenes.

Figure 5.7 shows the SmallRoom scene rendered using original geometry and all
proxy types (the number of primitives for each proxy type was chosen arbitrarily,
so direct comparison between the proxy techniques in this figure is not advised).
Compared to BunnyCorner this scene has significantly more uniform colors, and
looking at the sphere proxy it is evident that the SH color encoding performs better
in this scene. However, the ambient occlusion is still problematic for the sphere set,
which results in the sphere set having the most amount of error of the compared
techniques for this scene. The voxel plane proxy achieves smaller errors than the
sphere set proxy, but also at speeds significantly slower than the original geometry.
Finally, the simplified triangle proxy renders with the smallest errors, and at signif-
icantly faster speeds compared to the original geometry: approximately 1.63 times
the speed.

For the RockyLandscape scene the number of primitives were adjusted by eye
so roughly similar errors could be achieved for the different proxy types. While
not very precise, this allows us to draw clearer conclusions regarding rendering
times for the different proxy types. Rendered images and rendering times can be
seen in Figure 5.8. As before, both the simplified triangle proxies and sphere set
proxies achieve faster rendering times than the reference. However, for this scene
the voxel plane proxies are marginally faster. The reason for this could probably
mostly be attributed to the significant number of input triangles, and relative to
the other two proxy types, voxel planes are still less than half as fast. Also for the
RockyLandscape scene most of the error can be attributed to an underestimated
ambient occlusion.

6Barrel models from https://3dmodelhaven.com/. The room model is Cornell Box from Com-
puter Graphics Archive [McG17].

7All models from Quixel https://quixel.com/.
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Original geometry Simplified triangles Sphere set Voxel planes
149 416 triangles 2 434 triangles 29 spheres 5 575 voxel planes

2.34 GRays/s 3, 81 GRays/s 2.55 GRays/s 1.37 GRays/s
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Figure 5.7: Sample of results rendering the SmallRoom scene for each of the
proxy geometry types and reference.

Original geometry Simplified triangles Sphere set Voxel planes
3 026 424 triangles 5 148 triangles 605 spheres 5 103 voxel planes

0.78 GRays/s 1, 91 GRays/s 1.82 GRays/s 0.83 GRays/s
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Figure 5.8: Sample of results rendering the RockyLandscape scene for each of
the proxy geometry types and reference.
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5.4.5 Compensating with ambient occlusion
Due to the bounding requirement (Item 3 Section 4.1), diffuse global illumination
rendered using conforming proxy geometry will have underestimated ambient occlu-
sion. This was initially theorized and later confirmed, as the effect is clearly visible
in most results. However, approximations of ambient occlusion can be evaluated
separately from diffuse global illumination and later combined to produce a poten-
tially more accurate end result. In this section we will briefly explore the effects of
adding separate ambient occlusion on top of the results already shown above. Since
this type of ambient occlusion already exists in many real-time renderers we will
not consider the additional rendering time imposed by it. The ambient occlusion
for this experiment is implemented using ray tracing, by tracing rays against the
original geometry, but ignoring objects which do not have a proxy representation
(i.e., background walls and floor). Parameters of the ambient occlusion system are
manually adjusted to fit the reference.

Original geometry Simplified triangles Sphere set Voxel planes
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Figure 5.9: Renders of SmallRoom with and without added ambient occlusion
(AO). Proxy geometry used is the same as in Figure 5.7.

Figure 5.9 shows the impact of rendering SmallRoom with and without added
ambient occlusion (AO). For all of the proxy types the addition of ambient occlusion
visibly improves the error. This is very clear from the error maps (row 2 and 4),
but is also visible in the full global illumination with ambient occlusion (row 3) in
comparison to the reference. While this is just an example scene, it clearly highlights
what was previously just theorized: significant amounts of error introduced by using
proxy geometry can be attributed to the underestimated ambient occlusion.

In Section 4.1 we argued that underestimating ambient occlusion, as a consequence
of the bounding requirement, will result in artifacts, but that these artifacts are
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less severe than what is to be expected if we do not ensure the requirement, as
seen in Figure 4.1. One of the arguments was that the underestimation of ambient
occlusion could in theory be complemented by a separate ambient occlusion system.
This experiment shows that this works in practice, and we would therefore argue
that the requirement is both important to ensure, and that it does not cause a
significant problem.
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Conclusion

6.1 Discussion
The results of this thesis show that using proxy geometry for rendering diffuse global
illumination is both possible and can result in faster rendering times. Comparing
the three different proxy geometry types evaluated for this thesis it is evident that
simplified triangle meshes show the most potential. The triangle proxies are faster in
all cases and render with the smallest errors for reasonable amounts of simplification.
Additionally, for all tested scenes there is a simplified triangle mesh representation
that has lower errors than all other proxy types and that is faster than the reference.
This cannot be said for any of the other proxy types.

Regarding performance it is clear that triangle meshes have a unique advantage on
current hardware and APIs. This is likely partially due to the custom hardware for
ray–triangle intersection, but it is hard to evaluate the exact impact of the invoca-
tion compared to other aspects. As previously discussed, one of the most significant
aspects for GPU ray tracing performance is memory latency and bandwidth. Be-
yond previous work, we can see this behaviour for triangles in Figure 5.2, and for
non-triangle geometry by comparing the performance of sphere set and voxel plane
proxies. However, by comparing the performance of 100 spheres in Figure 5.5 with
80 triangles in Figure 5.4 it is clear that the characteristics are vastly different for
the two types, since the triangles are both faster and have a larger memory foot-
print. Furthermore, profiling reveals that stall times while waiting for memory is
lower for triangle geometry despite it having a larger memory footprint. This could
be an indication that some special purpose caching or other mechanism may oc-
cur specifically for triangle geometry, but more evidence is needed before something
more conclusive can be said.

Beyond performance reasons it is also clear that triangles are more versatile for
use as proxy geometry. While spheres have the advantage of being volumetric, it
also gravely restricts the type of objects that can be represented as it with a small
number of primitives. Objects of large volume to surface area ratio, such as the
Stanford Bunny or a barrel, are quite trivially fitted by a few spheres, while objects
with low ratio (i.e., thin objects), such as a curtain or a flat wall, need an infeasibly
large amount of spheres to be represented. The inverse can be said about triangles:
a thin wall can be represented by a few triangles, but a round object needs many
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triangles. Similarly, the way voxel planes are defined means that only a single plane
of a single color can exist within the bounds of a voxel in the grid. This enforces
hard restrictions on the grid resolution, meaning for a thin wall to be captured by a
grid of voxel planes, the grid resolution must be high enough so at least two voxels
cover the thickness of the wall.

As shown, from a performance perspective non-triangle geometry has a disadvan-
tage compared to fully hardware supported triangle geometry. With that said, there
are still valid reasons to use other geometry primitives than triangles, and it is fully
supported by the APIs. While fully supported, there exist API constraints that
potentially limit the performance: voxel planes could, in theory, have similar per-
formance characteristics to that of sphere set but is hindered by the lack of AABB
information in the intersection shaders. Exposing more information to intersection
shaders, such as the AABB definition, could greatly improve voxel plane perfor-
mance. A less intrusive API change could be to adjust the min and max distances
for the current ray to be AABB relative instead of being globally defined. These
values are already exposed in the API as gl_RayTminNV, which represents the t-min
passed to the traceNV invocation, and gl_RayTmaxNV, which represents the distance
to the closest primitive intersected so far. From the perspective of an intersection
shader the values could be set to the current AABB hit min and max values, which
would reveal more information about the AABB without adding more data to the
intersection shader API.

6.2 Conclusion
We have explored three different types of proxy geometry for use in rendering ray
traced diffuse global illumination. Overall we have shown that using proxy geometry
this way is possible, and that higher rendering speeds can be achieved. As accuracy
is sacrificed for greater rendering speed, the visual quality of rendered images will
decrease when using proxy geometry. Since a judgment has to be made in the trade-
off between speed and accuracy—two separate metrics—an objective evaluation is
not possible. With that said, we believe simplified triangle meshes show the most
potential for this purpose.

For all tested scenes there is a simplified triangle mesh representation that has
visibly lower errors than all other proxy types and that is faster than the reference.
This cannot be said for any of the other proxy types, and is the reason we consider
this proxy type favourable. Sphere set proxies could always render faster than the
original geometry, but introduced significant errors. With voxel plane proxies lower
errors could in general be achieved, compared to the sphere set proxies, however,
lower rendering speeds was achieved in most evaluated scenes, relative to the input
geometry. Because of this, they should not be considered usable for the purpose of
this thesis, but future hardware and APIs may improve their performance.

Additionally we have shown that having proxy geometry be fully bounded by the
original geometry introduces an underestimation of ambient occlusion, and that this
error can be mitigated by complementing the proxy ray traced global illumination
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with some type of separate ambient occlusion system. Proxy geometry that is not
bounded, however, introduces irreversible artifacts.

Finally, we note that many more potential proxy geometry types exist, beyond the
three evaluated for this thesis. While nothing specific can be said about untested
proxy types, we believe triangle-based proxies are most promising, due to the evident
advantage in rendering performance.

6.2.1 Future work
As previously mentioned this thesis is written at the advent of non-vendor-specific
APIs for real-time ray tracing, but Nvidia is still the only vendor which sells GPU
with ray tracing hardware to consumers. When more vendors provide GPUs with
such hardware and capabilities it would be very interesting to analyse the potential
differences in performance characteristics between the vendors’ GPUs.

Simplified triangle meshes show much potential for rendering ray traced diffuse
global illumination, as demonstrated in this thesis. However, there are some obsta-
cles when it comes to generating bounded meshes. The bounding mesh algorithm is
one of very few existing algorithms that can generate such meshes, but it has both
missing features (texture coordinate awareness) and uses only edge contractions,
which today is generally considered to be non-optimal. We think more research re-
garding generating bounded meshes is needed. Specifically we believe that incorpo-
rating bounding constraints into state-of-the-art texture aware mesh simplification
algorithms (e.g., [Liu+17]) is a good avenue for research.
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