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Quantum state tomography of 1D resonance fluorescence
INGRID STRANDBERG
Department of Microtechnology and Nanoscience
Chalmers University of Technology

Abstract

Tomography is the name under which all state reconstruction techniques are de-
noted, one of the most recognized examples being medical tomography. Quantum
state tomography is a procedure to determine the quantum state of a physical sys-
tem. By performing homodyne measurements on resonance fluorescence from an
artificial atom coupled to a one-dimensional transmission line, its quantum state
can be reconstructed. Resonance fluorescence is one of the simplest setups that
results in non-classical states of light. If these states are non-classical in the sense
that they have a negative Wigner function, they can be used as a computational
resource for quantum computing.

There are many different approaches to quantum computing. Some, like gate
based quantum computing using discrete variables like qubits, have been exten-
sively researched, both theoretically and experimentally. There exists and alterna-
tive approach: continuous variable quantum computing. The continuous variables
we will be concerned with are the components of the electromagnetic field that
constitute the resonance fluorescence.

There are different parameters that affect the nature of the resonance fluores-
cence, for example, the number of transmission lines the atom is coupled to, or
the strength of the driving field. In this work, we develop the tools necessary to
numerically simulate homodyne detection of resonance fluorescence for different
sets of parameters, and reconstruct the quantum state as well as calculating the
Wigner negativity.

Keywords: quantum computing, light-matter interaction, artificial atoms, quan-
tum measurements, stochastic master equations, quantum state reconstruction,
Wigner function
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1
Introduction

The main theme of this thesis is quantum state tomography — the reconstruction
of a quantum state from measurements. In the interest of developing a quantum
computer, we wish to generate non-classical states of light. We numerically simu-
late measurements of resonance fluorescence to find what parameters produce the
most suitable states.

In this chapter we will briefly review our approach to quantum computing.
Then we list the motivation and aim of this work and give an overview of the
structure of the thesis.

1.1 Quantum computation

In 1994, Shor’s algorithm for factoring integers [1] jump-started the interest in
quantum computing, proving theoretically that quantum computers are able to
outperform classical ones. It is substantially faster than the most efficient classical
factoring algorithm we know of, and could break many of the cryptosystems in use
today. Its invention sparked a tremendous interest in quantum computers.

Continuous variables

In a conventional computer information is stored as binary digits, bits. These can
be in one of two states, 0 or 1. To represent a bit, one can use any physical system
provided it allows two distinct states. A quantum bit, qubit, has the additional
property that it can be in a superposition of the two quantum states |0〉 and |1〉.

Information stored in bits can be manipulated using logic gates. Correspond-
ingly, qubits can be manipulated using quantum gates. This gate-based approach
to quantum computing has been extensively researched, both theoretically and ex-
perimentally. Physical realizations include varied setups such as ion traps, optical
lattices, quantum dots as well as superconducting circuits.

However, quantum computation is not restricted to discrete variable setups,
such as qubits. By the end of the last century, the idea of performing quantum
computation using continuous variables was presented [2]. In this approach infor-
mation is encoded in observables characterized by a continuous spectrum, such as
the components of an electromagnetic field. This is illustrated in Fig. 1.1
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1. Introduction

Continuous variable quantum computation has largely been studied in optical
setups. In the field of quantum optics, preparation as well as individual manip-
ulation of quantum states of light can be efficiently implemented [3]. This made
continuous variable systems a very promising platform for the implementation of
quantum computation. Nevertheless, progress in this field has been hindered by
the difficulty of implementing interactions between photons.

However, strong photon-photon interactions have been demonstrated for prop-
agating microwave photons in superconducting circuits. The potential of mi-
crowaves for continuous variable quantum computing has not yet been explored.

|0〉

|1〉

0

1

Classical bit Qubit Electromagnetic field components

|0〉+|1〉√
2

Discrete variables Continuous variables

~B

~E

Figure 1.1

1.2 Motivation and goal

Negative Wigner functions as a resource for quantum com-

putation

The Wigner function is a quantum phase-space distribution, containing full infor-
mation of its associated quantum state. The Wigner function can take on negative
values, which is identified with non-classicality. This has been identified as a com-
putational resource. More precisely, it has been shown that quantum circuits where
the initial state and all the subsequent quantum operations can be represented by
positive Wigner functions can be efficiently simulated with classical resources [4].
Thus negative Wigner functions are needed to achieve a quantum advantage.

We wish to explore the generation states of light suitable for quantum informa-
tion processing, that is, negative Wigner function states.

One of the simplest setups to produce non-classical states of light is to scatter

2



1. Introduction

coherent light off a two-level system. Using superconducting circuits, this two-level
system can be a so-called artificial atom, also known as a qubit.

Before trying to realize this experimentally, it is a good idea to investigate
how to best generate negative Wigner state theoretically. That is what is done
in this thesis. The work in this thesis describes how to numerically simulate the
scattering of light of a two-level artificial atom and calculate the Wigner function
of the resulting resonance fluorescence emitted by the atom.

We will investigate what parameters influence the negativity of the Wigner
function and what settings give the most negativity.

1.3 Overview of thesis

Since resonance fluorescence is the result of photons interacting with an atom,
we begin in Chapter 2 by deriving the Hamiltonian for light-matter interaction
of a two-level system. The important quadrature operators are defined. Then we
treat the dynamics of open quantum systems. More exactly, the two-level atom
interacting with an environment of electromagnetic field modes. After this, we have
a discussion about quantum measurement theory, most importantly homodyne
measurement of the quadratures. This leads to a stochastic master equation for
the time-evolution of the system. We then review two methods for numerically
solving stochastic equations.

In Chapter 3 we reflect over what it means for a state to be non-classical. We
explain in more detail what the Wigner function is, what it is used for, and how
Wigner negativity can be obtained.

After this, Chapter 4 reviews resonance fluorescence. Also, circuit-QED is
introduced. It is discussed how resonance fluorescence can be generated in super-
conducting circuits, and why this is beneficial.

In Chapter 5, we consider how to calculate the Wigner function of a state of
light from resonance fluorescence using measurement data. Finally, we show results
of the reconstruction of the Wigner function for different sets of parameters.

Lastly, we do a quick summary and discuss the results in Chapter 6.

3



2
Theory: light-matter interaction,

open systems, quantum

measurements and numerical

methods

2.1 Light-matter interaction

The subject of this thesis is tomography of resonance fluorescence. Resonance
fluorescence is photons being emitted from an atom, as it de-excites after being
excited by an external driving field. In this Section we will begin with a deriva-
tion of the simplest model of fully quantum-mechanical light-matter interaction:
the Jaynes-Cummings model. This describes a two-level atom interacting with a
quantized electromagnetic field mode. This lays the foundation for moving into
the subject of quantum system interaction with environments in Section 2.2.

2.1.1 Hamiltonian of a charged particle in an electromag-

netic field

The Hamiltonian of a particle with charge e, mass m and momentum ~p in an
electromagnetic field is given by

H =
(~p− e ~A)2

2m
+ eφ, (2.1)

where ~A is the vector potential of the magnetic field and φ is the scalar potential
of the electric field [5]. This Hamiltonian is obtained by adding eφ and letting
~p → ~p− e ~A in the Hamiltonian H = p2/2m for a free particle. This is the minimal
coupling prescription.

It is interesting to note that the underlying reason for the minimal coupling
is the gauge invariance of quantum electrodynamics. The electric and magnetic
fields are invariant under the usual gauge transformations of electrodynamics:

φ′ = φ− ∂χ

∂t
,

~A′ = ~A+ ∇χ,
(2.2)

4



2.1. Theory: Light-matter interaction

where χ is an arbitrary scalar function [6]. This means that the equations of mo-
tion for the fields, the Maxwell equations, must be gauge invariant. The minimal
coupling Hamiltonian (2.1), from which equations of motion can be derived by use
of the Euler-Lagrange equations, ensures this is the case. This is also the cor-
rect quantum mechanical Hamiltonian, as the minimal coupling Hamiltonian also
ensures that the Schrödinger equation is form-invariant under the gauge transfor-
mations (2.2).

2.1.2 Interaction terms: ~r · ~A or ~d · ~E
When we evaluate the square (~p− e ~A)2 we find a cross term ~p · ~A. This describes
a coupling between a charged particle at position ~r and an electromagnetic field
represented by the vector potential ~A(~r, t). It is very common to instead express
the interaction Hamiltonian as ~d · ~E, where ~d is the dipole operator of the atom,
as this can simplify calculations. These two forms of the interaction are in fact
equal, under certain circumstances. The ~r · ~A-representation can be transformed
into the ~d · ~E-representation by a unitary transformation. This procedure is named
after Göppert-Mayer, who first discussed it in 1931 [7]. The circumstances that
need to be fulfilled in order for the equivalence to hold is the dipole approximation,
sometimes called the long-wavelength approximation. Details on the Göppert-
Mayer transformation and dipole approximation can be found in Appendix A.

2.1.3 Quantization

The Hamiltonian (2.1) is the classical Hamiltonian. We now derive the fully quan-
tized Hamiltonian, the Jaynes-Cummings Hamiltonian. First, we quantize the
electromagnetic field. During this process, we define the quadrature operators,
which are imperative for later chapters in this work. Then we quantize the two-
level atom, and lastly the interaction term.

2.1.3.1 Field quantization

To quantize the electromagnetic field, we consider a radiation field inside a cavity
of volume V . We will use an expansion of the vector potential ~A in terms of cavity
modes. The problem then reduces to the quantization of the harmonic oscillator
corresponding to each mode.

We do a Fourier expansion of the vector potential [8]

~A(~r, t) =
∑

k

~ekAk(~r, t), (2.3)

where

Ak(~r, t) =
1√

2ε0V ωk
[Akexp

(

−iωkt+ i~k · ~r
)

+ A∗
kexp

(

iωkt− i~k · ~r
)

]. (2.4)

5



2.1. Theory: Light-matter interaction

From Maxwell’s equation

Ek = − ∂Ak
∂t

, (2.5)

we get the electric field strength. Only looking at a single mode k, we drop the
k-index. A single-mode electric field is then written as

E(~r, t) = i

√

ω

2ε0V
[A exp

(

−iωt+ i~k · ~r
)

− A∗exp
(

iωt− i~k · ~r
)

]. (2.6)

At this point we will follow the canonical quantization prescription. This corre-
sponds to promoting the complex amplitudes A,A∗ to operators a, a† which obey
the bosonic commutation relation [a, a†] = 1. These operators are the creation
and annihilation operators of the electromagnetic field. Transforming (2.6) to its
quantum mechanical counterpart, we have

E(~r, t) = i

√

ω

2ε0V
[a exp

(

−iωt+ i~k · ~r
)

− a†exp
(

iωt− i~k · ~r
)

]. (2.7)

We now define the quadrature operators

X =
1√
2

(a† + a),

Y =
i√
2

(a† − a),
(2.8)

obeying the commutation relation

[X, Y ] = i. (2.9)

These operators will play a very important role in this work. Using these, we
rewrite (2.7):

E(~r, t) =

√

ω

ε0V
[X sin(ωt− ~k · ~r) − Y cos(ωt− ~k · ~r)]. (2.10)

Looking at Eq. (2.10), we can identify the quadratures with the sine and co-
sine components of the electric field, respectively. If we imagine a reference field
cos(ωt− ~k · ~r), the quadratures are also known as the in-phase and out-of-phase
components.

Now assume the cavity has perfectly conducting walls. The electric field must
vanish at the boundaries. Imposing this boundary condition on the field gives us
a standing wave solution

E(r, t) =

√

ω

ε0V
(a† + a) sin(~k · ~r). (2.11)

6



2.1. Theory: Light-matter interaction

We also want the quantized Hamiltonian. For the free electromagnetic field, a
single-mode field is formally equivalent to a quantum harmonic oscillator of unit
mass, having the Hamiltonian

H =
ω

2
(a†a+ aa†) = ω(a†a+

1
2

). (2.12)

The 1/2 is just a constant zero-point energy which does not influence the dy-
namics, so we can drop it.

Note that this Hamiltonian represents a single mode field. In the cavity, we will
have field operators ak, a

†
k corresponding to each mode satisfying the boundary

condition. In the next chapter we will have an atom interacting with the electric
field in free space. To achieve this, the sum over all wave vectors ~k will turn into
an integral. For later convenience we define the integral in terms of the angular
frequency ω instead, so for V → ∞ we have the Hamiltonian

H =
∫

dω a†(ω)a(ω). (2.13)

2.1.3.2 Free Atomic Hamiltonian Hatom

To simplify the treatment, we assume that the system interacting with the elec-
tromagnetic field only has two energy levels. A two-level atom is of course an
approximation, as a real atom has many energy levels. This approximation is
however well-justified in cases where the system has a highly non-linear spectrum,
so that the energy levels are unevenly spaced. If the system interacts with a nar-
row band of radiation that is only resonant with a transition between two specific
energies, the probability amplitudes for transitions to other levels are negligible
and you have an effective two-level system [9].

We denote the lower level of energy Eg = ~ωg by |g〉, where the g stands for
ground state. Denote the upper level of energy Ee = ~ωe by |e〉, where e stands for
excited state. These states are the eigenstates of the atomic Hamiltonian Hatom.
The Hamiltonian reads in matrix form as

Hatom =

(

Ee 0
0 Eg

)

=
1
2

(

(Ee + Eg) + (Ee − Eg) 0
0 (Ee + Eg) − (Ee − Eg),

)

,

or

Hatom = E1 +
1
2
~ωA

(

1 0
0 −1

)

, (2.14)

where E = 1
2
(Ee+Eg) and ωA ≡ ωe−ωg denotes the transition frequency. We can

remove the first term on the right hand side, which is a constant energy, by shifting
the origin of energy to half-way between Eg and Ee. Then, we can rewrite (2.14)
as

Hatom =
1
2
~ωAσz, (2.15)

with

σz =

(

1 0
0 −1

)

7



2.1. Theory: Light-matter interaction

being the Pauli Z matrix.
Finally, we have the free atom and field Hamiltonian

H0 = ~ωa†a+
1
2
~ωAσz. (2.16)

2.1.3.3 Interaction Hamiltonian ~d · ~E
Because the dipole operator is odd under parity, its diagonal matrix elements
vanish (see Appendix A.3). Defining d ≡ 〈e|~d|g〉, we can then write the dipole
operator as

~d = d |e〉 〈g| + d∗ |g〉 〈e| , (2.17)

with

|e〉 =

(

1
0

)

, 〈e| = (1 0),

|g〉 =

(

0
1

)

, 〈g| = (0 1).

(2.18)

The operator

|e〉 〈g| =

(

1
0

)

(0 1) =

(

0 1
0 0

)

= σ+, (2.19)

is the atomic raising operator, i.e., it raises the atom from the ground state to the
excited state. The operator

|g〉 〈e| =

(

0
1

)

(0 1) =

(

0 0
1 0

)

= σ−, (2.20)

lowers the atom from the excited state to the ground state and is therefore the
atomic lowering operator. By appropriate choice of the phases in the atomic
eigenstates {|g〉 , |e〉} we can always arrange so that d is real. The dipole operator
is then written as

~d = d(σ+ + σ−). (2.21)

Pseudo-Spin Operators

The Hilbert space spanned by the two states, the excited state |e〉 and the ground
state |g〉, is equivalent to the Hilbert space of a spin-1

2
system [10]. The atomic

raising and lowering operators σ+ and σ− are linear combinations of the Pauli
matrices, which constitute spin operators. Since our system does not describe spin
states, our atomic raising and lowering operators are called pseudo-spin operators.

In fact, the radiation field interacts with the electron in the atom. This means
we should quantize the electron wave field (this is done in [11]), and thus end up
with Fermi creation and annihilation operators for the electron. Nevertheless, a
two-level atomic system described by the Fermi operators may be described by

8



2.1. Theory: Light-matter interaction

pseudo-spin operators since the pseudo-spin operators obey same commutation
relations as Fermi operators.

Note that the pseudo-spin operators σ± are eigenoperators of the atomic Hamil-
tonian:

[Hatom, σ−] = −~ωAσ−, [Hatom, σ+] = ~ωAσ+. (2.22)

Hence, σ± changes the atomic energy by the amount ±~ωA, corresponding to the
absorption and emission process, respectively [10].

2.1.4 Jaynes-Cummings Hamiltonian

In the interaction Hamiltonian Hint = −~d · ~E, we insert (2.21) and (2.11):

Hint = −~d · ~E = ~g(σ+ + σ−)(a+ a†), (2.23)

where g = −d
√

ω/ε0V sin(kr).
So we have the full Hamiltonian

H = H0 +Hint = ~ωa†a+
1
2
~ωAσz + ~g(σ+ + σ−)(a+ a†). (2.24)

This is known as the Rabi model. To arrive at the more easily solvable Jaynes-
Cummings Hamiltonian, one must apply the rotating wave approximation (RWA)
(see Appendix A.4).

When this is done, we get the Jaynes-Cummings Hamiltonian

H = H0 +Hint = ~ωa†a+
1
2
~ωAσz + ~g(aσ+ + a†σ−). (2.25)

This is the simplest model of fully quantized light-matter interaction. The atomic
transition frequency is ωA, and the frequency associated to the field mode is ω,
while the coupling constant g quantifies the strength of the interaction between
the atom and the electromagnetic field.

Further information on the subject can be found in any textbook on quantum
optics, for example [12, 13, 14].

9



2.2. Theory: Open quantum systems

2.2 Open quantum systems

An open quantum system is a system S which interacts with another quantum
system E, the environment. The latter is typically much larger or contains many
more degrees of freedom than the system S. The environment is typically modelled
as a collection of uncoupled harmonic oscillators. For a thorough survey of the
theory of open quantum systems, see e.g. [10].

The system and environment together constitute a closed system, i.e., they
obey the quantum Liouville equation (also known as the von Neumann equation),
which is generalization of the Schrödinger equation for mixed states. However, we
are interested in the reduced dynamics of the system S.

The Hilbert space of the total system (S + E) is the tensor product space
H = HS ⊗ HE, and the full Hamiltonian governing its evolution can be written as

H = HS ⊗ 1E + 1S ⊗HE +Hint, (2.26)

where HS is the free Hamiltonian of the system, HE is the free Hamiltonian of
the environment, and Hint describes the interaction between them. An operator Â
acting in HS is extended to HS ⊗ HE by the convention that it acts as the identity
on HE: Â = Â ⊗ 1E. For notational simplicity, the identity will not be indicated
from now on.

A quantum state that can be described by a state vector |ψ〉 is said to be pure.
There are states that cannot be described by a single state vector, those are called
mixed states. Mixed states are described by a density operator

ρ =
∑

i

pi |ψi〉〈ψi| , (2.27)

where the sum is over an ensemble of pure states {|ψi〉}, and pi is the probability
of the system being in the ith state. The density operator for a pure state is simply
ρ = |ψ〉〈ψ|. The trace of a density operator is always equal to 1,

Tr[ρ] = 1, (2.28)

since the diagonal elements correspond to the occupation probabilities of the dif-
ferent ensemble states.

We suppose that we are able to prepare the state of the total system S +E (at
the initial time t = 0) as an uncorrelated product state ρ(0) = ρs(0) ⊗ ρE(0). Due
to the interaction Hint, in general, initial product states will evolve into entangled
states:

ρ(t) = U †(t)ρ(0)U(t) = U †(t)
(

ρs(0) ⊗ ρE(0)
)

U(t), (2.29)

where U(t) = exp (−iHt) is the time-evolution operator led by (2.26). The reduced
density matrix ρs(t) describing the system is then obtained by taking the partial
trace of the joint state over the environment degrees of freedom. This is commonly
called “tracing out the environment”.

10



2.2. Theory: Open quantum systems

Definition 1. Partial trace:

ρs(t) = TrB

[

ρ(t)
]

=
∑

i
E〈ψi|ρ(t)|ψi〉E, (2.30)

where {|ψi〉E} is an orthonormal basis in HE. The equation describing the time
evolution of the reduced state ρs is known as the master equation. This will be
derived in Section 2.2.4.

The density operator is very useful for calculating operator averages. The av-
erage of a system operator Â is given by

〈Â〉 = trS[ρsA], (2.31)

where the trace is over the system.

2.2.1 Input-Output Formalism

Quantum optics experiments are essentially scattering experiments, and input-
output theory is essentially a scattering-theory description. The scattering poten-
tial is replaced by the system S, and the environment carries the incoming and
outgoing fields [15]. Gardiner and Collett [16] first developed the input-output
formalism for open quantum systems. We will follow a general derivation [16, 17]
which does not specify the system Hamiltonian or the system operators and their
commutation relations. We will however restrict to a two-level atom interacting
with a reservoir of harmonic oscillators, modelling the electromagnetic field.

We are interested in studying how the interaction with the two-level system
affects the field, so we will derive a boundary condition for the field before and
after interacting with the atom.

The Hamiltonian of the total system, the atom interacting with the reservoir
of harmonic oscillators, is

H = Hatom +HE +Hint, (2.32)

Hatom =
1
2
~ωAσz,

HE = ~

∫ ∞

−∞
dω ωb†(ω)b(ω),

Hint = i~
∫ ∞

−∞
dω κ(ω)[b†(ω)σ− − σ+b(ω)],

where b(ω) are boson annihilation operators for the reservoir, thus satisfying

[b(ω), b†(ω′)] = δ(ω − ω′), (2.33)

and σ−, σ+ are the lowering and raising operators for the atom.
We note that the rotating wave approximation has been made; the range of the

ω integration being (−∞,∞) rather than [0,∞). These two things are connected.
The RWA argues that only terms which are almost resonant are important. Thus

11



2.2. Theory: Open quantum systems

we can extend the lower integration limit, since the added terms are non-resonant
and thus contribute very little.

The Heisenberg equation of motion for b(ω) is

ḃ(ω) = − i
~

[b(ω), H] = −iωb(ω) + κ(ω)σ−. (2.34)

Note that b(ω) is a Heisenberg operator, b(ω) = b(ω, t) with b(ω, t) = eiHtb(ω)e−iHt.
For notational convenience we omit the time argument of operators. The solution
to (2.34) can be written in two ways, in terms of a boundary condition at time
t0 (before the interaction takes place) or at t1 (after the interaction). The two
solutions are [11]

b(ω) = eiω(t−t0)b0(ω) + κ(ω)
∫ t

t0
e−iω(t−t′)σ−(t′) dt′, (2.35)

and

b(ω) = e−iω(t−t1)b1(ω) − κ(ω)
∫ t1

t
e−iω(t−t′)σ−(t′) dt′, (2.36)

where b0(ω) is b(ω) at time t = t0, and b1(ω) is the value of b(ω) at t = t1.
The equations so far are exact. Now we apply the first Markov approximation:

κ(ω) =
√

γ/2π, (2.37)

where γ is a real number, which will later be interpreted as the radiative decay
rate of the two-level atom.

The first Markov approximation is named as such because it ensures that the
equations of motion are simple first-order differential equations. This also means
that the future time development of any operator is determined simply by the
knowledge of all the system operators in the present [17].

We now define an input field

bin(t) =
1√
2π

∫

dω e−iω(t−t0)b0(ω), (2.38)

which satisfies the bosonic commutation relation

[bin(t), b†
in(t′)] = δ(t− t′). (2.39)

Note that bin(t) actually means the time at which the incoming field interacts with
the system, rather than specifying that bin(t) is a time-dependent operator at time
t.

Now, we integrate (2.35) over ω to get

1√
2π

∫

dω b(ω) = bin(t) +
√
γ

2
σ−(t), (2.40)

where we have made use of the properties
∫ ∞

−∞
dω eiω(t−t′) = 2πδ(t− t′), (2.41)

12



2.2. Theory: Open quantum systems

and ∫ t

t0
σ−(t′)δ(t− t′) dt′ =

1
2
σ−(t). (2.42)

The factor 1/2 in (2.42) is because the peak of the delta function is at the end of
the integration interval.

If we consider t1 > t, we can similarly to (2.38) define the output field

bout(t) =
1√
2π

∫

dω e−iω(t−t′)b1(ω). (2.43)

The output fields can be shown to satisfy exactly the same commutation relations
as the input fields:

[bout(t), b
†
out(t

′)] = δ(t− t′). (2.44)

Furthermore,
1√
2π

∫

dω b(ω) = bout(t) −
√
γ

2
σ−(t), (2.45)

is derived similarly to (2.40). From (2.40) and (2.45) follows

bout(t) = bin(t) +
√
γσ−(t). (2.46)

This is the most important result of this section. The quantities bin and bout are
interpreted as inputs and outputs to the system. The output field is the sum of
the input field and the field radiated by the source. The condition (2.46) can be
viewed as a boundary condition, relating the input field, output field, and the field
radiated by the system.

2.2.2 Stochastic Calculus

The commutation relation (2.39) acquired the δ-function form as a result of the
Markovian approximation. Because δ(t− t′) is a very singular function, one must
be very careful when integrating the equations of motion. This requires us to
define quantum stochastic calculus, just as one must define regular stochastic cal-
culus when dealing with delta-correlated classical noise. [18]. Quantum stochastic
differential equations can be defined rigorously and guarantee that the singular
limit for the commutators is well defined [19].

For a more rigorous and extensive treatment of stochastic calculus, see e.g. [20]
or [21]. Here we introduce the very basics of stochastic calculus, which is used to
derive quantum stochastic equations.

The input field bin(t) for vacuum has some peculiar properties due to its commu-
tation relation. For example, it has infinite variance. This is a property it shares
with classical white noise, usually denoted ξ(t) [22]. So, under certain circum-
stances bin(t) can be interpreted as a noise term [16]. We will use this similarity
to white noise in Section 2.3.4.2.

13



2.2. Theory: Open quantum systems

The Wiener process is a stochastic process. More precisely, it is a mathematical
idealization of Brownian motion. Despite the unusual nature of bin(t), we can make
sense out of its integral. Namely, we define the quantum Wiener process B(t):

B(t) −B(t0) =
∫ t

t0
dt′ bin(t′) =

∫ t

t0
dB(t′) = B(t, t0), (2.47)

with the infinitesimal increment

dB(t) = bin(t) dt. (2.48)

This is called the Wiener increment. The point of defining the infinitesimal op-
erator dB = bin dt is that although it appears to be of order dt, because of the
singularity of the commutation relation (2.39) it is actually of order

√
dt.

To be able to evaluate the integral (2.47), we interpret it as an Ito stochastic
integral. One notable thing distinguishing Ito stochastic calculus from ordinary
calculus is that the chain rule of ordinary calculus

d(x1x2) = x1 dx2 + x2 dx1, (2.49)

becomes
d(x1x2) = x1 dx2 + x2 dx1 + dx1 dx2. (2.50)

For more details about the Ito formulation of stochastic calculus, see Appendix B.
When the environment is in the vacuum state, we define the Ito table [17]

[dB(t)]2 = [dB†(t)]2 = 0,

dB(t) dB†(t) = dt,

dB†(t) dB(t) = 0.

(2.51)

These properties of the stochastic process will be used to derive the quantum
Langevin equation for the time-evolution of a system operator.

2.2.3 Quantum Langevin equation

To obtain the Heisenberg-picture dynamics of the system, one might just aim to
write down the usual Heisenberg equations of motion. However, because of the
singularity of the commutation relation (2.39) the situation is not so simple. There
are several approaches to find the correct Heisenberg equations. Here we proceed
as Wiseman and Milburn [23]. For an arbitrary system operator a, which here can
be σ− or σ+, we define a Heisenberg operator

a(t+ dt) = U †(t+ dt)a(t)U(t+ dt), (2.52)

which obeys the Ito differential equation

da = a(t+ dt) − a(t) = U †(t+ dt)a(t)U(t+ dt) − a(t). (2.53)
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2.2. Theory: Open quantum systems

The coupled system-bath evolves unitarily according to

U(t, t0) = e−iH(t−t0)/~. (2.54)

with H given by Eq. (2.32).
In order to simplify the calculations, we move to a frame rotating with the

reservoir Hamiltonian HE. The quantum states are then redefined as

|ψ′〉 = e−iHEt/~ |ψ〉 . (2.55)

Using (A.6) with T = exp
(−iHEt/~

)

, the Hamiltonian in this frame is

H ′ = eiHEt/~He−iHEt/~ −HE. (2.56)

The system Hamiltonian Hatom is unaffected by the transformation, since its op-
erators commute with the environment operators. We write the time-evolution
operator (2.54) as

U(t, t0) = exp



− i
~

∫ t

t0
dt′

[

Hatom + i
√
γ

2π

∫ ∞

−∞
dω

(

b†(ω)σ−e
−iωt′ − b(ω)σ+e

iωt′
)
]

 ,

or

U(t, t0) = exp

(

− i
~

∫ t

t0
dt′

[

Hatom + i
√
γ(b†

in(t′)σ− − bin(t′)σ+)
]
)

. (2.57)

Using definition (2.47), we can rewrite U(t, t0) as

U(t, t0) = exp

(

− i
~
Hatom(t− t0) +

√
γ
(

B†(t, t0)σ− −B(t, t0)σ+

)
)

. (2.58)

where we made use of (2.48). If we were to expand the exponential in U(t+ dt, t)
to first order in dt, we would simply reproduce the naive Heisenberg equation.
Because dB and dB†are of order

√
dt, it is necessary to expand U(t + dt, t) to

second order:

U(t+ dt, t) = 1 − i
~
Hatom dt+

√
γ
(

dB†σ− − dBσ+

)

+

+
1
2

(

− i
~
Hatom dt+

√
γ
(

dB†σ− − dBσ+

) )2

=

= 1 − i
~
Hatom dt+

√
γ dB†σ− − √

γ dBσ+ − γ

2
σ+σ− dt− γ

2
{σ+, σ−} dB† dB,

(2.59)

where we have used the Ito table (2.51). From here, the infinitesimal evolu-
tion (2.52) is given by

U †(t+ dt)a(t)U(t+ dt) =
(

1 +
i
~
Hatom dt+

√
γ dBσ+ − √

γ dB†σ− − γ

2
σ+σ− dt−

− γ

2
{σ+, σ−} dB† dB

)

a
(

1 − i
~
Hatom dt+

√
γ dB†σ− − √

γ dBσ+ − γ

2
σ+σ− dt−

− γ

2
{σ+, σ−} dB† dB

)

.

(2.60)
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2.2. Theory: Open quantum systems

Only keeping terms to first order in dt i.e., second order in dB or dB†, and again
using the Ito table, we finally get the quantum Langevin equation

da = − i
~

[a,Hatom] dt+
γ

2
(2σ+aσ− − aσ+σ− − σ+σ−a) dt−

− √
γ[a, σ+] dB(t) +

√
γ[a, σ−] dB†(t).

(2.61)

This is an equation for a system operator, but it can be used to derive the master
equation which determines the time evolution of the entire system state.

2.2.4 Master equation

A master equation is a generalization of the Schrödinger equation for open systems
interacting with a bath [24]. In deriving a master equation, it is necessary to make
a Markovian assumption. This implies that the influence of the system on the
bath is dissipated so quickly that the change in the system depends only on its
present state. This was done in the derivation of the quantum Langevin equation,
and we will use Eq. (2.61) to derive the master equation, following [17].

Using the relation (2.31), the mean of any operator a(t) is given by

〈a(t)〉 = trStrB[a(t)ρs(t0) ⊗ ρE(t0)]) = trStrB[U(t, t0)a(t0)U
†(t, t0)ρs(t0) ⊗ ρE(t0)],

(2.62)
with U(t, t0) given by (2.54). Using the cyclic property of the trace, and defining
the time-dependent reduced density matrix

ρ(t) = trB[a(t0)U
†(t, t0)ρs(t0) ⊗ ρE(t0)U(t, t0)], (2.63)

we can write
〈a(t)〉 = trS[a(t0)ρ(t)]. (2.64)

We now note that we can write (2.61) in the form

da(t) = A[a(t)] dt+G†[a(t)] dB(t) +G[a(t)] dB†(t), (2.65)

where we have superoperators of the form

A[a] = − i
~

[a,Hatom] +
γ

2
(2σ+aσ− − aσ+σ− − σ+σ−a), (2.66)

G†[a] = −√
γ[a, σ+], G[a] =

√
γ[a, c].

For vacuum, 〈dB〉 = 〈dB†〉 = 0 so

〈da(t)〉 = 〈A[a(t)]〉 dt. (2.67)

Using (2.64) we can evaluate the right hand side to get

〈da(t)〉 = trS[A[a(t0)]ρ(t)] dt. (2.68)
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2.2. Theory: Open quantum systems

For simplicity and notational clarity, we now denote a = a(t0) for the opera-
tors, which are the Schrödinger picture operators. Using (2.66) in (2.68), and the
cyclicity of the trace, we get

d 〈a(t)〉
dt

= trS

[

a
( i
~

[ρ,Hatom] +
γ

2
(2cρc† − c†cρ− ρc†c)

)]

. (2.69)

On the other hand, from (2.64) we get

d 〈a(t)〉
dt

= trS

[

a
dρ(t)

dt

]

. (2.70)

Both equation (2.69) and (2.70) are valid for any system operator a, hence we
derive the master equation

dρ
dt

=
i
~

[ρ,Hatom] +
γ

2
(2cρc† − c†cρ− ρc†c) ≡ Lρ. (2.71)

This is the quantum optical master equation. It is considered to define the super-
operator L, called the Liouvillian. This equation describes the time-evolution
of the system. The second term on the right hand side describes spontaneous
radiative decay transitions |e〉 → |g〉. The coupling strength between the atom
and the environment is given by γ, which can also be interpreted as the radiative
decay rate.

We can also introduce the Lindblad superoperator

D[Â]ρ ≡ AρA† − 1
2

(A†Aρ+ ρA†A). (2.72)

This operator is also called the dissipator. In this case it represents the radiative
decay, giving the non-unitary evolution. The master equation (2.71) then looks
like

dρ
dt

=
i
~

[ρ,Hatom] + γD[σ−]ρ. (2.73)

The total system S + E evolves unitarily with the Hamiltonian H. The open
system S has a unitary evolution part governed by the Hamiltonian Hatom and a
non-unitary evolution described by the dissipator D, due to the coupling to the
reservoir.

2.2.5 Multiple decay channels

We have the master equation (2.73) for a two-level atom interacting with a reservoir
of harmonic oscillators, representing the electromagnetic field. This reservoir serves
as a decay channel, as the atom dissipates energy into the environment.

We now generalize this into a situation with multiple environments. The master
equation then becomes

dρ
dt

=
i
~

[ρ,Hatom] +
∑

i

γiD[σ−]ρ, (2.74)
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2.2. Theory: Open quantum systems

In this work we will consider the case of an atom coupled to two non-interacting
electromagnetic fields, modelling two transmission lines. The master equation for
this system is

dρ
dt

=
i
~

[ρ,Hatom] + γ1D[σ−]ρ+ γ2D[σ−]ρ. (2.75)

where the different γi describe the coupling strength to each transmission line. In
this particular case of two identical decay channels, the master equation looks iden-
tical to the one-channel equation (2.73) as the dissipator terms add up: γ1 + γ2 = γ.

With two environments to couple to, we can also have two different sets of input
and output relations.

2.2.6 Driving the system

The derivation of the quantum Langevin equation and the master equation in
the previous sections assumed that the environment was in the vacuum state:
dB |0〉 = 0 =⇒ 〈dB〉 = 0. There are still vacuum fluctuations, but their mean is
zero.

When the input field bin is a coherent drive, we have 〈dB(t)〉 = β dt [23].
Redoing the derivation of the master equation using this, we get

ρ̇ = − i
~

[Hatom, ρ] + γD[σ−]ρ− √
γ[σ+, ρ] 〈dB〉 +

√
γ[σ−, ρ] 〈dB†〉 =

= − i
~

[Hatom, ρ] − i
√
γ[−iσ+β − σ−β

∗, ρ] + γD[σ−]ρ =

= − i
~

[H ′, ρ] + γD[σ−]ρ,

(2.76)

where the new Hamiltonian H ′

H ′ = Hatom − i
√
γ(σ+β − σ−β

∗), (2.77)

has a driving term −i
√
γ(σ+β − σ−β

∗). We can choose β to be real. To conform
with the notational standard in literature, we replace β with Ω and write the
driving Hamiltonian as

Hdrive = −i
√
γΩ(σ+ − σ−). (2.78)
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2.3. Theory: Quantum measurement theory

2.3 Quantum measurement theory

In quantum mechanics, measurement theory and open-system theory are inti-
mately connected, as an observed system is certainly open with respect to the
measuring apparatus. We have reviewed open system dynamics in Section 2.2,
where we also introduced stochastic calculus. This will also be used in this sec-
tion; as the outcomes of quantum measurements are probabilistic in nature, it is
natural that a quantum theory of continuous measurements gives rise to stochastic
processes. [25].

We begin with defining quantum measurement operators, and then describe
different measuring schemes. For more information about quantum measurement
theory, see for example the books [23] or [10]. Or for a more brief survey, see [26].

2.3.1 Projective Measurements

The traditional description of measurement in quantum mechanics is in terms of
projective measurements, sometimes called von Neumann measurements. Consider
an observable A. We can label its eigenstates as |a〉 where a is the eigenvalue of
A: A |a〉 = a |a〉. These states fulfill the completeness relation

1 =
∑

a

|a〉〈a| . (2.79)

Acting from the left with A, we get its spectral decomposition:

A =
∑

a

A |a〉〈a| =
∑

a

a |a〉〈a| =
∑

a

aΠa, (2.80)

where Πa = |a〉〈a| is a projection operator. The projectors are idempotent, Π2
a =

Πa, and mutually orthogonal, ΠaΠ′
a = Πaδaa′ .

The projective measurement postulate states that if the system is originally in
the state ρ, the normalized state after a measurement with result a is

ρa =
ΠaρΠa

pa
= |a〉〈a| , (2.81)

and this result is found with probability pa = Tr[Πaρ]. This probability rule need
not be postulated, it can actually be derived from assuming that the measurements
are described by a complete set of projectors. This is Gleason’s theorem [23].

Due to the idempotency of the projection operators, it is easily seen that sub-
sequent measurements of A will yield the same result a as the first measurement,
that is, projective measurements are repeatable.

However, many important measurements in quantum mechanics are not re-
peatable, and thus not projective. One simple example of such a measurement is
counting the number of photons in a cavity. This inevitably involves detecting the
photons by absorbing them, leaving the system in a different state than before the
measurement.
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2.3. Theory: Quantum measurement theory

Another reason why we need to consider a larger class of measurements is so
we can describe measurements that extract only partial information about an ob-
servable. Projective measurement provides complete information: after the mea-
surement is performed we know exactly what the value of the observable is, since
the system is projected into an eigenstate. However, there exist many measure-
ments which, while reducing on average our uncertainty regarding the observable
of interest, do not remove it completely.

2.3.2 General Quantum Measurements

A more general measurement postulate is able to describe a wider range of mea-
surements than the projection postulate. The idea is to model a measurement by
a set of measurement operators Ωm where the subscript m represents the different
possible results of the measurement. The measurements we will be interested in
involve continuous monitoring of a quantum system.

After a measurement yielding the result m, the state conditioned on the result
is

ρm =
ΩmρΩ†

m

pr(m)
=

Omρ

pr(m)
, (2.82)

where O is a completely positive superoperator

Omρ = ΩmρΩ
†
m, (2.83)

called an operation, which maps positive operators into positive operators.
The result m occurs with probability

pr(m) = Tr[ΩmρΩ
†
m] = Tr[Ω†

mΩmρ] = Tr[Emρ]. (2.84)

Here we have introduced a positive operator

Em = Ω†
mΩm, (2.85)

called the effect, which satisfies the normalization condition
∑

m

Em = 1, (2.86)

so that the sum of all probabilities is one. The set of all effects {Em} constitutes an
effect-valued measure (EVM) more commonly known as positive operator valued
measure (POVM). This description in terms of operations and effects gives the
most general form of quantum measurements.

Note that the von Neumann projection postulate corresponds to the special
case where the Em are orthogonal projection operators.

The most general measuring process is not represented by a complete set of or-
thogonal projection operators, but by a non-orthogonal, positive, operator-valued
measure.

20



2.3. Theory: Quantum measurement theory

The non-selective evolution is obtained by averaging over all possible measure-
ment results [24]:

ρ =
∑

a

pr(a)ρa. (2.87)

This is the unconditional state, with time-evolution determined by the master
equation (2.73). The time-evolution of the conditioned state, on the other hand, is
governed by a stochastic master equation. This will be described in Section 2.3.4.2.
But before this, we identify some crucial properties of the operation Om.

2.3.2.1 Completely positive maps

The class of operations Om can be identified with the class of superoperators that
map density operators to density operators. This important class of operators
is known as completely positive maps. The Kraus representation theorem [27]
now states that a completely positive map Om can be be written in the Kraus
representation

S(ρ) =
∑

m

ΩmρΩ†
m, (2.88)

while the effects satisfy
Em =

∑

m

Ω†
mΩm ≤ 1. (2.89)

These are the most general forms of operations and effects for a Markovian system.

It can be interesting to note that a POVM measurement can be realized by a
projective measurement in an extended Hilbert space — this is Neumark’s theo-
rem [28].

2.3.3 Direct photodetection

As a first example of a quantum measurement, we will discuss photon detection,
where a detector “clicks” every time it registered a single photon. We have mea-
surement operators Ωm, where m = 0, 1, representing the two outcomes of a single
measurement — either we register a photon, or we do not register it. The operator
Ω1 is associated with the detection of one photon, and Ω0 is associated with the
absence of a detection, i.e. the detection of zero photons. With the environment
in the vacuum state |0〉, the measurement operators are [29]

Ω0(dt) = 〈0|U(t+ dt)|0〉 = 1 − i
~
Hatom dt− γ

2
σ+σ− dt,

Ω1(dt) = 〈1|U(t+ dt)|0〉 =
√
γσ−

√
dt.

(2.90)

After an infinitesimal detection time dt, the conditional state of the density oper-
ator depending on the measurement result m is

ρm(t+ dt) =
Ωm(dt)ρ(t)Ω†

m(dt)
pm(dt)

, (2.91)
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from which a stochastic equation for dρc = ρc(t+ dt) − ρc(t) can be calculated:

dρc =
(

− i
~

[Hatom, ρc]+γTr[σ+σ−ρc]ρc−
γ

2
{σ+σ−, ρc}

)

dt+
( σ−ρcσ+

Tr[σ−ρcσ+]
−ρc

)

dN.

(2.92)
The subscript c emphasizes that this density operator is conditioned on the mea-
surement result.

The second term in the stochastic master equation (2.92) gives the stochastic
contribution. The stochastic increment dN can be either 1 or 0. In any given time
interval dt, the probability to detect a photon is γ/2 〈σ+σ−〉 dt, so dN is unity
with the same probability, and zero otherwise.

2.3.4 Balanced homodyne detection

Homodyne detection is the textbook example of a scheme for measuring field
quadratures, and is experimentally realized in quantum optics setups. In homo-
dyne detection, the incoming signal is mixed with the signal of a local oscillator.

Here we will derive the stochastic master equation, which gives the evolution
of the system state conditioned on the measurement outcome. This equation has
the form of a stochastic differential equation. The stochasticity arises due to the
randomness of the measurement outcomes [30].

2.3.4.1 Photocurrent and quadratures

We introduced the quadrature operators in Eq. (2.8). We can define the generalized
quadrature operators [31]

Xθ =
1√
2

(a†eiθ + a e−iθ),

Yθ =
i√
2

(a†eiθ − a e−iθ).
(2.93)

Similar to (2.8), these operators correspond to the in- and out-of-phase components
of the electric field with respect to a source dephased by θ from the original one.
We may express Xθ and Pθ through the original quadrature components X = X0

and Y = Y0:

Xθ = X cos θ + Y sin θ,

Yθ = −X sin θ + Y cos θ.
(2.94)

This transformation describes a rotation by an angle θ in the phase-space (X, Y -
plane). It follows from (2.94) that Yθ = Xθ+π/2. Hence Xθ comprises the whole
manifold of quadrature components if we have θ ∈ [0, π].

Since X and Y are Hermitian, Xθ is Hermitian as well, which guarantees that
it is an observable. Homodyne detection corresponds to a measurement of this
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2.3. Theory: Quantum measurement theory

operator. A schematic sketch of a homodyne measurement experiment is shown
in Fig. 2.1. In homodyne detection, the input field a is mixed with a signal b from
a local oscillator (LO). These fields impinge on a 50:50 beam splitter, which is the
reason for the name balanced homodyne detection. With an added phase shift of

Figure 2.1: The setup for balanced homodyne detection. The resonance fluores-
cence is the incoming field a, and the signal of a local oscillator (LO) is the second
incoming field b. These two fields impinge on a 50:50 beam splitter. The output
fields c and d are detected separately. The measured quantity I is the photocurrent
from one detector subtracted from the other.

π/2 for reflection, the output fields from the beam splitter are

c =
1√
2

(ia+ b), d =
1√
2

(a+ ib). (2.95)

The detected current consists of subtracting the photocurrent of one detector from
the photocurrent of the other. If we assume the photocurrent to be proportional
to the number of photons reaching the detector, we can calculate the detector
response using the field number operators:

I = 〈c†c− d†d〉 . (2.96)

With

c†c =
1
2

(−ia† + b†)(ia+ b) =
1
2

(a†a− ia†b+ ib†a+ b†b),

d†d =
1
2

(a†a− ib†a+ ia†b+ b†b),
(2.97)

we get
I = i 〈b†a− a†b〉 . (2.98)
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2.3. Theory: Quantum measurement theory

Now b represents the coherent drive from the local oscillator, so we can set b =
|β|eiα. We are free to set the phase, so we use α = θ + π/2, where θ will be the
phase of the local oscillator. This gives i|β|eiθ. Inserting this in (2.98) gives

I = |β| 〈a e−iθ + a†eiθ〉 = |β|
√

2 〈Xθ〉 . (2.99)

Here we have explicitly shown how optical homodyne detection measures the gen-
eralized quadrature operator Xθ.

It can be worth mentioning that homodyne detection is a weak measurement.
Most of the measurement signal comes from the LO, meaning that only a small
amount of information about the quantum system is gained. Therefore, the mea-
surement disturbs the system very little. Observing a two-level system via direct
photodetection gives a very sharp jump of the state when a photon is observed. But
during homodyne detection, the state evolution shows a more diffusive behaviour,
as seen in Figures 2.2.

By using the input-output relation we can derive the stochastic differential
equation for the photocurrent dj(t) = j(t) dt. We can associate a stochastic process
dX with the quadrature X, defined as

dX =
1√
2

(dBout + dB†
out) =

1√
2

(bout dt+ b†
out dt). (2.100)

For simplicity, we exclude the phase angle θ. Using the input-output relation (2.46)
in (2.100), we get

〈dX〉 =
1√
2

(√
γ 〈σ− + σ+〉 dt+ 〈bin + b†

in〉 dt
)

. (2.101)

Recalling from Section 2.2.2 that the input field has the statistics of vacuum white
noise, we can rewrite (2.101) as

〈dX〉 =
1√
2

(√
γ 〈σ− + σ+〉 dt+ ξ(t) dt

)

. (2.102)

We relate this to the photocurrent by

dj(t) = 〈dX〉 =
1√
2

(√
γ 〈σ− + σ+〉 dt+ dW (t)

)

. (2.103)

Here we identified ξ dt with dW , where the latter is a Wiener increment. The
Wiener increment is a Gaussian random variable, with mean zero, E[W ] = 0, and
variance 1.

The signal from the local oscillator is a coherent state, which has Poissonian
photon counting statistics. But in the limit of a large number of photon detections,
the Poissonian distribution approaches a Gaussian. And as homodyne detection
can be seen as the limit of infinite amplitude of the local oscillator, |β| → ∞, we
certainly have a large number of photons. This is the reason for using a Gaussian
random variable.

White noise ξ is called the derivative of the Wiener process. You might wonder
how this is possible, seeing as W is not differentiable. The resolution to this co-
nundrum is simply to remember that this expression in terms of a derivative is just
symbolic, the corresponding integral equation can be interpreted consistently [22].
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2.3. Theory: Quantum measurement theory

2.3.4.2 Stochastic master equation

A derivation of the stochastic homodyne master equation starting from the equa-
tion for direct photodetection (2.92) is done in [23], and another version can be
found in [32]. Here we instead follow [26].

We utilize that, as we have learned in Section 2.3.2.1, the most general form of
a completely positive map is

X →
∑

n

AnXA
†
n. (2.104)

Now, consider a stochastic operator A of the form

A = 1 − i
~
H dt+ b dt+ c dW (2.105)

where b and c are operators, and dW is a Wiener increment. Since any operator
can be decomposed into a Hermitian and anti-Hermitian part, we may assume b
to be Hermitian since we can absorb any anti-Hermitian part into −iH. Inserting
this A into the transformation (2.104) we find

dρ = − i
~

[H, ρ] dt+ {b, ρ} dt+ cρc† dt+ (cρ+ ρc†) dW. (2.106)

We define ρ̃ = E[ρ], and take the average of Eq. (2.106):

dρ̃ = − i
~

[H, ρ̃] dt+ {b, ρ̃} dt+ cρ̃c† dt. (2.107)

Since the operator ρ̃ is an average over valid density operators, it is also a valid
density operator and must satisfy Tr[ρ̃] = 1 Hence we must have dTr[ρ̃] = Tr[dρ̃] =
0. Using the cyclic property of the trace, this gives

Tr[ρ̃(2b+ cc†)] = 0. (2.108)

This holds for an arbitrary density operator only if

b = −c†c

2
. (2.109)

Thus we obtain the Lindblad form of the master equation

dρ̃ = − i
~

[H, ρ̃] dt+ D[c]ρ̃ dt. (2.110)

This is the most general (Markovian) form of the unconditioned master equation
for a single dissipation process. The full transformation from Eq. (2.106) then
becomes

dρc = − i
~

[H, ρc] dt+ D[c]ρc dt+ (c†cρc + ρcc
†c) dW, (2.111)

where we with the subscript c emphasize that this density operator is conditioned
on the measurement result.
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2.3. Theory: Quantum measurement theory

This form of the master equation does not preserve the trace, since the condition
Tr[dρ] = 0 implies

Tr[ρc(c+ c†) dW ] = 0. (2.112)

We could interpret this relation as a constraint on c, but instead we keep c an
arbitrary operator and explicitly normalize ρc at each time step by adding a term
to cancel out the left hand side of (2.112). The result is a stochastic master
equation of the form

dρc = − i
~

[H, ρc] dt+ D[c]ρc dt+ H[c]ρc dW, (2.113)

where the measurement superoperator is

H[c]ρ = cρ+ ρc† − 〈c+ c†〉 ρ. (2.114)

This superoperator represents the measurement process.
Using our system operator and coupling constants, the equation we will use is

dρc = − i
~

[Hdrive, ρc] dt+ γD[σ−]ρc dt+
√

γ′H[e−iθσ−]ρc dW. (2.115)

By transforming to a frame rotating with the system, we can omit the system
Hamiltonian and only use the drive Hamiltonian defined in Eq. (2.78).

If we have one decay channel, then γ′ = γ. If we have two channels, γ′ = γ1 or
γ′ = γ2 from Eq. (2.75). This is because we will only observe one channel. Also,
the σ− in the measurement operator H is exchanged for e−iθσ− because we want
to measure the generalized quadratures.

The stochastic master equation is solved numerically to simulate individual
measurement records.
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2.3. Theory: Quantum measurement theory

2.3.5 Quantum Trajectories

A quantum trajectory is the path followed by the state of the system in time. If
you formulate an equation tracking the evolution of the state of the system then
the solution is a quantum trajectory. Note that this solution is not a solution to
the master equation, but a solution to the stochastic master equation.

Stochastic master equations arise when a system interacts with an environment
which is subsequently measured. A single measurement provides only a single data
point. Quantum mechanics is a statistical theory and therefore cannot predict the
outcome of this single measurement. This gives rise to stochasticity. The solution
of a trajectory equation gives the evolution of the density operator conditioned on
the measurement results, as the density operator ρc is randomly replaced by

ρc → ΩmρcΩ†
m

Tr[ΩmρcΩ
†
m]
, (2.116)

when the measurement result m is recorded. In essence, quantum trajectories are
a consequence of continuous measurement of a quantum system [24].

Averaging over a large number of trajectories one should recover the determin-
istic solution of the master equation

ρ(t) = E[ρc(t)], (2.117)

where ρc is the conditioned density operator and E denotes the ensemble average.
We can see that our stochastic equation (2.115) reduces to (2.71) when taking the
average.

This is illustrated in Fig. 2.2. The plots show the probability of being in the
excited state, 〈σ−σ+〉 = Tr[σ−σ+ρc] = Tr[|e〉〈e| ρc], over time. In the top row we
show simulated trajectories for an un-driven atom initially starting in the excited
state. We see that as we average over more and more trajectories, we approach
the solution of the master equation, which is the familiar exponential decay. An
atom starting in the ground state driven with driving strength Ω = 1 is displayed
in the bottom row. Here we see that when the atom is driven, more trajectories
are needed to reach the correct solution of the master equation.

Different measurement schemes give rise to different stochastic master equa-
tions, as we can see from the direct detection equation (2.92) and the homodyne
equation (2.115). Despite being different. they describe the same quantum system,
so their averages E[ρc] = ρ will obey the same master equation (2.71). Different
stochastic equations are called different unravellings of the master equation [33].

We will solve the stochastic equation instead of the master equation because we
want to simulate homodyne measurements. One trajectory simulation represents
one measurement.

27



2.3. Theory: Quantum measurement theory

0 1 2 3 4 5

t

0.0

0.2

0.4

0.6

0.8

1.0

〈σ
+
σ
−
〉

(a) One single trajec-
tory.

0 1 2 3 4 5

t

0.0

0.2

0.4

0.6

0.8

1.0

〈σ
+
σ
−
〉

(b) 10 trajectories.
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(c) 500 trajectories.
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(d) One single trajec-
tory.
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(f) 5000 trajectories.

Figure 2.2: Probability of the atom being in the excited state as a function of
time. The dashed line is the solution of the master equation. The filled line shows
trajectories. As more and more trajectories are averaged over, the solution of the
master equation is approached.

In Figures (a), (b) and (c) the atom starts in the excited state |e〉〈e| and no
driving is applied, Ω = 0.

In Figures (d), (e), (f) the atom starts in the ground state |g〉〈g| and is driven
with strength Ω = 1. Comparing with (a), (b) and (c) above, we note that more
trajectories are needed to reach the master equation solution than when the atom
is not driven.
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2.4. Theory: Numerical Methods

2.4 Numerical Methods

Several investigations have shown that one cannot in general take a numerical
method for solving ordinary differential equations and apply it to stochastic dif-
ferential equations (SDEs) [34]. Not all discrete-time approximations of SDEs
converge to the correct stochastic process solution, and SDEs with well-behaved
and bounded analytical solutions can render numerical simulations unstable, and
produce unbounded solutions [35].

Ways to handle SDEs numerically have been developed. The simplest discrete-
time method for SDEs is a generalization of the simple Euler method, called the
Euler-Maruyama method [36]. For a higher order of convergence, the Milstein
method can be used. For a more in-depth review on these two methods, see [37].

2.4.1 Euler-Maruyama

The Euler-Maruyama (EM) scheme is the simplest recursive algorithm to get an
approximation for the density matrix. Although we are studying a quantum sys-
tem, we can use an ordinary, classical method like EM to solve the stochastic
master equation. This is because the Wiener increment, which is the stochastic
part of the master equation (2.115), is classical — i.e. not an operator.

We simply use
ρi+1 = ρi + ∆ρ. (2.118)

For a general SDE
dX = h dt+ g dW, (2.119)

the discretized Ito integration gives the Euler-Maruyama approximation

Xi+1 = Xi + h∆t+ g∆W. (2.120)

For a stochastic master equation of the form (2.113), we have

ρi+1 = ρi +
(−i[H, ρi]∆t+ D[c]ρi∆t+ H[c]ρi∆W

)

. (2.121)

The Wiener increments ∆W are independent Gaussian random variables with
zero mean and variance ∆t. We can write ∆W =

√
∆tξ, where ξ is a Gaussian

distributed random variable with zero mean and unit variance, produced by a
random number generation algorithm.

This method has a strong convergence of 0.5, whereas the underlying determin-
istic Euler method converges with order 1. It is possible to raise the strong order
of EM to 1 by adding a correction to the stochastic increment, giving Milstein’s
method. The correction arises because the traditional Taylor expansion must be
modified in the case of Ito calculus. For information about convergence orders for
stochastic equation solvers, see e.g. [34].
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2.4.2 Milstein

A stochastic Taylor expansion up to order dt is derived in Appendix B.1.3. There
we arrive at the Milstein algorithm:

Xi+1 = Xi + h(Xi)∆t+ g(Xi)∆W +
1
2
g(Xi)g

′(Xi)
(

(∆W )2 − ∆t
)

. (2.122)

Comparing with Eq. (2.120), we see that the Milstein method amounts to adding
a correction

1
2
g(Xi)g

′(Xi)
(

(∆W )2 − ∆t
)

, (2.123)

to the Euler-Maruyama algorithm.
The main difficulty for implementing this algorithm is to calculate the derivative

g′ in the correction term. In our case, the function g(X) is the measurement
superoperator term, as defined in Eq. (2.114). In order not to get confused by
the notation, we here write it as H(ρ) to emphasize that it is a function of our
stochastic variable X = ρ. Our correction term gg′/2 is given by

1
2

∑

mn

H(ρ)mn
∂H(ρ)pq
∂ρmn

. (2.124)

With
H(ρ)pq =

∑

k

(

cpkρkq + ρpkc
†
kq

)

− Tr[cρ+ ρc†]ρpq, (2.125)

the derivative is

∂H(ρ)pq
∂ρmn

= cpmδqn + δmpc
†
nq − (cnm + c†

nm)ρpq − Tr[cρ+ ρc†]δmpδnq. (2.126)

Inserting this in (2.124) gives

1
2

∑

mn

(
∑

ℓ

(

cmℓρℓn + ρmℓc
†
ℓn

)

− Tr[cρ+ ρc†]ρmn
)(

cpmδqn + δmpc
†
nq − (cnm + c†

nm)ρpq−

− Tr[cρ+ ρc†]δmpδnq
)

.

(2.127)

Now we go term by term. The first two terms from both factors gives
∑

mnℓ

(

cmℓρℓn + ρmℓc
†
ℓn

) (

cpmδqn + δmpc
†
nq

)

= ccρ+ 2cρc† + ρc†c†. (2.128)

The last term in the first factor, and two first terms in the second factor gives

−
∑

mn

Tr[cρ+ ρc†]ρmn
(

cpmδqn + δmpc
†
nq

)

= −Tr[cρ+ ρc†](cρ+ ρc†). (2.129)
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The first two terms from he first factor and the two last terms from the second
factor gives

−
∑

mnℓ

(

cmℓρℓn + ρmℓc
†
ℓn

) (

(cnm + c†
nm)ρpq + Tr[cρ+ ρc†]δmpδnq

)

=

= −Tr[ccρ+ 2cρc† + ρc†c†]ρ− Tr[cρ+ ρc†](cρ+ ρc†).
(2.130)

Finally, the last term in the first factor and the two last terms from the second
factor:

Tr[cρ+ ρc†]
∑

mn

ρmn
(

(cnm + c†
nm)ρpq + Tr[cρ+ ρc†]δmpδnq

)

= 2Tr[cρ+ ρc†]2ρ.

(2.131)
Adding up all of these terms, and reinserting the 1/2 and the increments, gives
the correction (2.123)

1
2

(

ccρi + 2cρic
† + ρic

†c† − Tr[ccρi + 2cρic
† + ρic

†c†]−

− 2Tr[cρi + ρic
†](cρi + ρic

†) + 2Tr[cρi + ρic
†]2ρi

)(

(∆W )2 − ∆t
)

.
(2.132)

Note that we moved away from matrix index notation; above i is a time-step index.
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3
Wigner function

A quantum state is said to be non-classical if it cannot be described using meth-
ods of classical physics. There are several ways to characterize non-classicality.
Typically this will depend on the problem at hand. One of such measures are
photon correlations, which we will review later in Chapter 4. Another measure
that will turn out to be more useful for us, however, is the negativity of the Wigner
function.

3.1 Quantum phase-space distribution

The Wigner function is a quantum phase-space distribution function, introduced
in 1932 by Wigner [38]. Phase-space is spanned by the canonically conjugate
variables x and p. In general, we identify them with position and momentum,
however, they could also refer to the quadratures X and Y of the electromagnetic
field.

The Wigner function belongs to a family of so-called quasi-probability distribu-
tions [17]. Unlike genuine probability distributions, such quasi-distributions can
take on negative values. This property turns out to be essential for our purposes,
because the negativity of the Wigner function is an indicator of non-classicality.

The uncertainty principle makes the formulation of a phase-space probability
distribution in quantum mechanics problematic. Because position and momentum
correspond to non-commuting operators, a particle cannot simultaneously have a
well defined position and momentum. This means one cannot define the probability
that a particle has a position x and a momentum p, i.e. one cannot define a
phase-space probability distribution in the classical sense for a quantum mechanical
particle.

Quantum phase-space distributions have proven to be of great use in the study
of quantum mechanical systems [39]. They are useful as calculational tools, since
they allow the use of classical phase-space methods. They also provide insights
into the connections between classical and quantum mechanics.

The Wigner phase-space distribution associates a real functionW (x, p) in phase-
space with a density operator ρ in Hilbert space:

W (x, p) =
1

2π

∫ ∞

−∞
dy e−ipy/~ 〈x+

y

2
|ρ|x− y

2
〉 . (3.1)
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3. Wigner function

Note that the arguments x and p in the Wigner function are c-numbers, not op-
erators. The relation (3.1) can be inverted; there is a one-to-one correspondence
between the Wigner function and the density operator, which means the Wigner
function contains complete information about the quantum system. Mathemat-
ically, this corresponds to the Weyl transform of ρ. Weyl quantization in the
phase-space formulation is one of three equivalent paths of quantization, besides
the standard canonical quantization using operators in Hilbert space, and the path
integral formalism of quantum mechanics. It is based on the Wigner function, and
Weyl’s correspondence between ordinary c-number functions in phase-space and
quantum mechanical operators in Hilbert space [40]. As a result of this, quan-
tum mechanical expectation values can be written in a classical-looking form as
phase-space integrals.

3.1.1 Probability distributions from the Wigner function

Integrating the Wigner function over the momentum variable yields the probability
distribution for the position variable. To see this, integrate both sides of (3.1) over
p and interchange the integrations over y and p:

∫ ∞

−∞
dpW (x, p) =

∫ ∞

−∞
dy 〈x+

y

2
|ρ|x− y

2
〉 1

2π~
exp

(−ipy/~
)

. (3.2)

The relation ∫ ∞

−∞
dp exp

(−ipy/~
)

= δ(y), (3.3)

allows to reduce (3.2) to
∫ ∞

−∞
dpW (x, p) =

∫ ∞

−∞
dy 〈x+

y

2
|ρ|x− y

2
〉 δ(y) = 〈x|ρ|x〉 = W (x). (3.4)

Analogously, we get the momentum distribution by integrating over the position
x. This shows that even though the Wigner function itself can be negative, its
phase-space integrals correspond to well-behaved probability distributions. In fact,
you can integrate over any angle θ in phase-space, see Fig. 3.1, and get a true
probability distribution for the conjugate quadrature Xθ+π/2.

3.1.2 Wigner negativity as a resource for quantum com-

putation

We mentioned already in Section 1.2 that a negative Wigner function is a neces-
sary condition for quantum computing displaying a so-called quantum advantage
over classical computers. This is based on a theorem due to Eisert and Mari [4],
which helps discern the boundary between systems that can be efficiently simu-
lated classically, and those that cannot. The role of the negativity of the Wigner
function is identified as a quantum computational resource: if the basic elements of
a circuit exhibit a positive Wigner function, the circuit can be efficiently simulated
classically.
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Figure 3.1: Phase-space. The axes x and p correspond to generalized quadratures
with θ = 0 (X) and θ = π/2 (Y ). It is possible to integrate the Wigner function
for a generalized quadrature with any angle θ and get its probability distribution.

A schematic sketch of a quantum circuit is displayed in Fig. 3.2. It shows
an input block, a processing block and a measuring block. Either one of these

Figure 3.2: Quantum circuit. At least one of these blocks must produce a
negative Wigner function, otherwise the circuit can be efficiently simulated on a
conventional computer.

blocks can introduce negativity. If none of them do, the circuit can be efficiently
simulated on a classical computer, with efficiently meaning that the running time
is polynomial in the number of input states and processing operations.

At least for pure states, Wigner negativity is restricted to non-Gaussian states [41].
Starting from a Gaussian state, like a coherent state, a non-linear interaction dur-
ing either the processing or the measurement is required to generate a negative
Wigner state.

Homodyne measurement does not contribute to negativity, so in our case, it is
the two-level atom that provides the non-linearity to produce the negative Wigner
function states, as incoming coherent light is scattered by the atom. The atom
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3. Wigner function

represents for the coherent field a Kerr-like medium (non-linear), in that the re-
flection and transmission of light from the atom depend on the intensity of the
incoming field.

Finally, as an example of how the Wigner function can look, we show in Fig-
ures 3.3a and 3.3b surface plots of the Wigner functions for vacuum (0-photon
state) and a one-photon state, respectively. We note that the vacuum Wigner
function is positive all over phase-space, while the one-photon Wigner function
displays some negativity.
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(a) Wigner function for vac-
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photon. It is negative near the
phase-space origin. The nega-
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Figure 3.3

In Fig. 3.4 the Wigner state for a coherent state is displayed. Like the vacuum
Wigner function, it is positive everywhere.
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Figure 3.4: Surface plot of the Wigner function for a coherent state. The Wigner
function is positive all over phase-space. It is shaped like the vacuum state (Gaus-
sian), but is displaced from the origin so that its average is non-zero.

35



4
Resonance fluorescence

Resonance fluorescence, the emission from a two-level atom driven by a resonant
coherent drive field, is a basic process in light-matter interactions, and has thus
been investigated extensively. See e.g. [42] for a review of the experimental stud-
ies, and [43] for detailed theory. Also [11] has an excellent chapter on resonance
fluorescence.

Resonance fluorescence exhibits quantum properties, and it could possibly be
used as a resource for quantum computation. This has been investigated in quan-
tum optics, with ordinary atoms. But there are issues that make this an exper-
imentally difficult task. These problems could potentially be overcome by using
microwave frequencies and artificial atoms in superconducting circuits instead.

In this Chapter, we will give an overview of circuit-QED. Then we discuss
resonance fluorescence, and present the models we will study in this thesis.

4.1 Circuit QED

The field known as circuit quantum electrodynamics, or circuit QED for short,
deals with on-chip implementations of quantum electrodynamics [44]. In order
to minimize losses due to electrical resistance, the circuits are designed with su-
perconducting materials — for this reason it is common to refer to this field as
superconducting circuits as well.

Here, excitations confined to coplanar waveguides, or propagating through open
transmission lines, will play the role of photons, their frequencies being in the
microwave regime. Artificial atoms correspond to non-linear resonators, the non-
linearity due to a Josephson junction. The non-linearity makes it possible to isolate
two or more energy levels from the rest of the spectrum. Two-level artificial atoms,
also known as qubits, play a major role in quantum computing implementations.
Fig. 4.1 displays a transmon artificial atom.

Superconducting circuits provide not only the possibility to reproduce QED
scenarios for visible light and real atoms, but it also enables us to engineer config-
urations way beyond any possibility in optical setups. This is mainly because of
low-dimensionality, tunability and the flexibility in circuit design.

Confining the field to lower dimensions has proven to enhance the light-matter
interaction achieving the so-called strong-coupling regime [46]. This in turn can
be used to engineer effective strong photon-photon interactions. The tunability of
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4. Resonance fluorescence

Figure 4.1: Top: Micrograph of an artificial atom, a superconducting transmon
qubit embedded in a 1D open transmission line. Magnified section: Scanning-
electron micrograph of the superconducting quantum interference device (SQUID)
loop of the transmon. Bottom: the corresponding circuit model. Figure adapted
from [45].

system parameters not only allows to tailor the energy levels of an artificial atom,
but also to modify the boundary condition of a field very fast in order to observe
relativistic effects such as the dynamical Casimir effect [47], or to probe the effects
of vacuum fluctuations on an artificial atom [48].

Resonant coherent excitation of a two-level system has been broadly studied
in superconducting circuits [45]. Here, interference effects such as extinction of
propagation in the transmitted component were observed due to confinement of
the microwave field to a single spatial dimension.

Quadrature measurement schemes, such as the one required for the protocol
presented in this thesis, are also possible. In the microwave regime, this relies
on parametric amplification of the quadrature field Xθ (2.93). Amplification is
performed via a Josephson parametric amplifier (JPA). The phase θ defining the
probed quadrature is selected by means of a pump tone injected on the JPA.

Tomography of a continuous variable field has already been reported [49].
Therefore, the physics studied in this work is within current experimental pos-
sibilities and, as we consider, relevant for the future implementation of quantum
computation with continuous variables.
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4. Resonance fluorescence

4.2 Resonance fluorescence in circuit-QED

In a three-dimensional configuration, the atom non-linearity is lost due to the fact
that the atom couples to modes in a 4π solid angle. In order to enhance this
non-linearity it is desirable to confine the electromagnetic field to a single spatial
dimension — a common scenario in superconducting circuits where fields propagate
through (quasi) one-dimensional transmission lines. This enhanced non-linearity
was observed experimentally in [50] and [45].

We will look at resonance fluorescence for two different configurations, shown in
Fig. 4.2. A setup with two decay channels is shown in 4.2a, and with a single decay
channel in 4.2b. With two channels, we have the option to look at the reflected
field bout,R or the transmitted field bout,T. We will restrict ourselves to look at the
reflected radiation.

(a) Two-level atom coupled to two decay channels via a waveg-
uide. The atom is being driven from the left. The emitted radia-
tion is either reflected or transmitted. These fields are character-
ized by the output operators bout,R and bout,T.

(b) Two-level atom in front of a mirror (single decay channel). he
atom is being driven from the left, and the only available output
is the reflected field bout,R.

Figure 4.2: Display of the two different setups we will investigate.

We will drive the atom from one channel with coherent light, which could come
from a laser. This will be the bin. The input field from the other channel is just
vacuum. The two different bout for the channels will represent the reflected and
the transmitted field, resulting from the driving field. This is illustrated later in
Fig. 4.2.
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This rather simple setup exhibits very interesting quantum properties such as
anti-bunching and squeezing. In this thesis we will not concern ourselves with
squeezing, because while squeezing is a quantum phenomenon, it does not affect
the Wigner negativity of a state [51]. In addition, the atom behaves as a non-
linear medium for the incident coherent field, the reflectance and transmittance
(the fraction of the incident field being reflected and transmitted, respectively)
being dependent on the driving strength. It is this non-linearity we wish to exploit
in order to generate negative Wigner states of the electromagnetic field — recall
from Section 3.1.2 that starting from a Gaussian state, such as a coherent state,
a non-linear interaction is required to generate a non-classical state in the Wigner
sense.

4.2.1 The Mollow triplet

Following our introduction to light-matter interactions, the Hamiltonian govern-
ing the resonance fluorescence is the Jaynes-Cummings Hamiltonian (2.25). The
electromagnetic field acts as an environment to the two-level system. Therefore,
the atom follows a non-unitary evolution described by the quantum master equa-
tion (2.71).

Exhaustive mathematical treatments of this problem can be found in the liter-
ature, so instead, we would like to comment on some properties of the solutions
which may be relevant later in this work. One of this is the shape of the resonance
fluorescence spectrum, called the Mollow triplet, after Mollow who first described
the phenomenon in 1969 [52].

For low light intensities the interaction is linear and the scattering is elastic. If
the excitation field is monochromatic and on resonance with the atom, the atom
absorbs a photon at the excitation frequency, and energy conservation demands
that the emitted photon has the same frequency. The emitted fluorescence has the
same spectral profile, and in particular the same narrow width, as the excitation.

In a strong resonant field, non-linear scattering occurs. In the ideal case of
scattering from an isolated atom at rest the theory predicts a three peak spectrum.
The spectrum of resonance fluorescence is derived rigorously in [43, 11].

4.2.2 Anti-bunching

A striking feature of resonance fluorescence is anti-bunching, that is, the tendency
of a source to emit photons one by one. This is a purely quantum-mechanical effect.
The opposite effect of anti-bunching is bunching — the tendency of photons to be
emitted in correlated pairs. It turns out that bunching is a property of thermal
light, and can be explained classically [53]. Anti-bunching, on the other hand, is
an exclusively quantum phenomenon with no classical explanation.

Bunching or anti-bunching can be characterized via two-time intensity correla-
tions. Experimentally, this amounts to measuring the joint probability of detecting
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4. Resonance fluorescence

two photons with a time delay τ between the detections. Typically, this is quan-
tified by the Glauber g(2) function defined as [54]

g(2)(τ) =
〈b†(0)b†(τ)b(τ)b(0)〉

〈b†(0)b(0)〉2 , (4.1)

where the two-time correlation is normalized over the number of photons. For
the resonance fluorescence case, the field b corresponds to either the reflected or
transmitted bout. These fields relate to the state of the atom by the input-output
relation (2.46).

In Fig. 4.3 the g(2) function for the reflected field of steady-state resonance
fluorescence from an atom coupled to two decay channels is displayed. We see that
starting from g(2)(0) = 0, the probability of detecting a second correlated photon
build up with time: g(2)(τ) > g(2)(0). This inequality is a defining property of anti-
bunching. During a short time interval following the first detection, the probability
of detecting another photon remains small — this is photon anti-bunching. This
effect is rapidly lost as we increase the driving strength.

The effect of anti-bunching from resonance fluorescence was predicted by [55],
and observed first by [56]. Physically, anti-bunching in the field scattered of a
two-level atom occurs because in order to be able to emit a second photon, the
atom must be re-excited by the laser light which requires a certain amount of
time [12, 11, 13].
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Figure 4.3: Intensity correlation function g(2) for resonance fluorescence from
an atom coupled to two decay channels, for two different driving strengths. Note
that when a photon has been detected at time τ = 0, the probability of detecting
a second photon is zero. This is perfect anti-bunching. A value of g(2) below 1
indicates non-classicality.
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4.2.3 Steady-state generation

Steady-state generation of negative Wigner function states is sought after. In the
field of quantum optics, current available methods for producing them are highly
probabilistic [57]. Therefore, we will look at resonance fluorescence in the steady
state. From Fig. 4.4 we can estimate when steady-state is reached after starting
to drive an atom in the ground state.

The strong driving regime is when Ω ≫ γ/4, and the weak driving regime is
when Ω ≪ γ/4, according to [11]. Here γ is, as in Section 2.2, the decay rate of the
system, and Ω is the driving strength in the driving Hamiltonian (2.78). We will
consistently use γ = 1. For Ω = 5, which is strong driving in our case, we are in
steady-state after t = 10. Thus, waiting this amount of time before commencing
measurements should be sufficient in the parameter regime we will investigate later
in Chapter 5.
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Figure 4.4: Probability of the atom to be in the excited state. Even for fairly
strong driving, here Ω = 5, the system is certainly in steady state after t = 10.
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Classical tomography is an experimental method for examining the density distri-
bution inside an object. An example everyone is familiar with is from medicine;
the interior of the human body can be reconstructed using the method of CT
(Computed Tomography) scans.

In quantum tomography, the subject of interest is not the density distribution
inside a physical object, but rather the state of a quantum system. If we know the
quantum state, we can calculate the probability distribution for any observable.

Any scheme making measurements on a quantum system can only provide prob-
ability distributions — could it be possible to use a set of measured probability
distributions to reconstruct the quantum state? This is an old problem in quantum
mechanics. In 1933, Pauli wondered if it was possible to find the wave function
amplitude and phase from the probability distributions in position and momen-
tum. It turns out that it is not possible in general to reconstruct the quantum
state knowing only these two distributions [58].

Fortunately, through homodyne detection it becomes possible to measure not
only two canonically conjugate field quadratures, but any linear combination of
them, corresponding to a rotation by an angle θ [31] in phase-space. That is, we
can measure all generalized quadratures (2.93) by setting the local oscillator phase
θ. Knowing all the distributions corresponding to a range of θ, it is possible to
reconstruct the state of the field [59].

A generalized quadrature is a linear combination of the Hermitian position and
momentum operators, and is thus Hermitian itself. Let’s denote its eigenstates
|θ, x〉 and the corresponding eigenvalues xθ, such that

Xθ |θ, x〉 = xθ |θ, x〉 . (5.1)

Note that the eigenvalues xθ are real numbers, as opposed to an n-level system
where the spectrum is discrete. Hence the quadrature eigenvalues are functioning
as our continuous variables, potentially to be used for continuous variable quantum
computing.

For a system in the state ρ, the probability that a measurement of the general-
ized quadrature Xθ yields the eigenvalue xθ is

pr(θ, x) = Tr[Π(θ, x)ρ] = 〈θ, x|ρ|θ, x〉 , (5.2)

where Π(θ, x) = |θ, x〉〈θ, x| is the projector onto this quadrature eigenstate.
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Originally, this was done by Wigner tomography, as the probability distribution
of a given quadrature can be expressed directly in terms of the Wigner function [60]

pr(θ, x) =
∫ ∞

−∞
W (xθ cos θ − yθ sin θ, xθ sin θ + yθ cos θ) dyθ. (5.3)

From this expression, one can perform the inverse Radon transformation to ob-
tain the Wigner function. This method, which is the same as used for medical
tomography, was proposed by Vogel and Risken [60], and successfully realized by
Faridani et al. [61].

5.1 Maximum Likelihood Estimation

Quantum state reconstruction can never be perfect, due to uncertainties in the es-
timation of the measured statistical distributions. The inverse transform method
only works well when these uncertainties are negligible. Otherwise, errors can
lead to inaccurate, and even unphysical, features in the reconstructed density ma-
trix. For example, the diagonal elements of the density matrix, which represent
occupation probabilities, may be found to be negative, and its trace is not guaran-
teed to equal 1 [62]. Although errors cannot be eliminated completely, we would
like a reconstruction method that guarantees a physically plausible density matrix
and minimizes artifacts. This led to the development of a reconstruction method
based on a maximum likelihood estimation [63]. This seems sensible, as when con-
sidering the probabilistic nature of quantum mechanics and the uncertainties of
measurement, instead of asking “Which quantum state is determined by that set
of measurements?”, it is more appropriate to ask “What quantum state seems to
be most likely for that measurement?” .

An interval of the real axis is discretized into equally sized bins, the photocur-
rent measurement data is sorted into the bins, and the number of events f(θ, x)
belonging to each bin is counted.

We remember from Section 2.3.4.1 that measuring the photocurrent corresponds
to measuring the quadrature. The probability pr(θ, j) of observing the quadrature
variable xθ within the jth bin (xj, xj+1) is

pr(θ, j) =
∫ xj+1

xj

pr(θ, x) dx =
∫ xj+1

xj

Tr[|θ, x〉〈θ, x| ρ] dx = Tr[Π(θ, j)ρ], (5.4)

where
Π(θ, j) =

∫ xj+1

xj

|θ, x〉〈θ, x| dx, (5.5)

is the projection operator for the jth bin.
In the Fock (photon number state) basis, the matrix representation of the pro-

jection operator is

Πmn(θ, j) = 〈m|Π(θ, j)|n〉 =
∫ xj+1

xj

〈m|θ, x〉 〈θ, x|n〉 dx, (5.6)
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where the overlap between the number and quadrature eigenstates is given by the
harmonic oscillator eigenfunctions in the position basis [64]

〈x|n〉 = ψn(x) =
1√
2nn!

(

1
π

)1/4

exp
(

−x2/2
)

Hn(x), (5.7)

multiplied by a phase [65]:

〈θ, x|n〉 = ψn(θ, x) = exp (−inθ)
1√
2nn!

(

1
π

)1/4

exp
(

−x2/2
)

Hn(x). (5.8)

Here Hn denotes the nth Hermite polynomial. So we have

Πmn(θ, j) =
∫ xj+1

xj

ψm(θ, x)∗ψn(θ, x) dx. (5.9)

Note that here the integration over x is an integration over photocurrents.
With f(θ, j) observations in bin j, the likelihood function is defined as [66]

L(ρ) =
∏

θ,j

Tr[Π(θ, j)ρ]f(θ,j). (5.10)

The likelihood is the joint probability of obtaining a particular set of measure-
ments. Note that this is a function of the state ρ which we aim to determine. The
central idea behind this method is that the state we observe experimentally is the
one which maximizes this quantity. This optimization procedure can be performed
iteratively as it is described below.

In order to reconstruct the quantum state, we define the operator

R(ρ) =
∑

θ,j

Nθ

N

f(θ, j)
pr(θ, j)

Πθ,j, (5.11)

where Nθ is the number of measurements per angle θ, and N is the total number
of measurements. It can be shown that the state ρ∗ that maximizes the likeli-
hood (5.10) obeys [67]

R(ρ∗)ρ∗R(ρ∗) = ρ∗. (5.12)

Choosing some initial density matrix ρ0, we can apply repetitive iterations

ρk+1 = N [R(ρk)ρkR(ρk)], (5.13)

where N denotes normalization to unity trace. Each iteration will increase the
likelihood, L(ρk+1) > L(ρk), and the density matrix estimate asymptotically ap-
proaches the maximum-likelihood state ρ∗ [62].

We determine when to stop the iterative process by specifying that the recon-
struction is finished when

∆ρ = ‖ρk+1 − ρk‖ ≤ ε, (5.14)

44



5. Quantum state tomography

where ε is a small number. We will use ε = 10−3. As the matrix norm we use the
Frobenius norm, sometimes called the Hilbert-Schmidt norm, defined as

‖A‖ ≡
√

Tr[A†A]. (5.15)

We will work in the Fock basis, and the dimension of the projector Πmn, and
the reconstructed density matrix ρmn = 〈m|ρ|n〉, is set by the dimension of the
Fock space. To perform numerical calculations we must truncate the Fock space.
The dimension we choose for the Fock space is dependent on the driving strength.
For stronger driving, we expect to observe more photons, and the Fock space must
be large enough to accommodate all photons.

5.2 Calculating the Wigner function

Knowing the density matrix, we can calculate the Wigner function of the state
by [66]

W (x, p) =
∑

m,n

ρmnWmn(x, p), (5.16)

with

Wmn(x, p) =
1

2π

∫ ∞

−∞
dy e−ipy/~ 〈x+

y

2
|m〉〈n|x− y

2
〉 . (5.17)

Sometimes the function (5.17) is called the diagonal or generalized Wigner
function, as in the literature the Wigner function often only refers to the diagonal
elements Wnn [68], which is the ordinary Wigner function for a Fock state ρ =
|n〉〈n|. This can be seen by inserting this density matrix into the definition (3.1)
of the Wigner function and comparing it with Wnn from Eq. (5.17).

The off-diagonal form was introduced by Moyal [69], and it is therefore also
known as the Moyal function. In the Fock basis, the Moyal function is






Wmn = 1
π
e−(x2+p2)(−1)m

√
m!
n!

(2x2 + 2p2)
n−m

2 ei(n−m)φLn−m
m (2x2 + 2p2), n ≥ m,

Wmn = 1
π
e−(x2+p2)(−1)nz

√
n!
m!

(2x2 + 2p2)
m−n

2 ei(m−n)φLm−n
n (2x2 + 2p2), n < m.

(5.18)
For a detailed derivation of these expressions, see Appendix C.

5.3 Filter function

The Wigner function is defined for a set of observables such as (2.8), that fulfill
the commutation relation (2.9). For this to hold, the creation and annihilation
operators must fulfill [a, a†] = 1. This relation implies that the operators a, a† are
dimensionless.

Looking back at section 2.3.4, more specifically Eq. (2.100) and (2.103), we see
that the relation between the photocurrent and detected output field is

dj(t) =
1√
2

〈bout dt+ b†
out dt〉 . (5.19)
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But as we learned in Section 2.2.1, the output field is time-dependent, and has
the commutation relation (2.44). This means that bout has the dimension of 1/

√
t.

We can define a dimensionless mode A from bout by filtering the latter with an
appropriate function f , also having dimension 1/

√
t:

A =
∫ T

0
f(t)bout(t) dt. (5.20)

The condition that f is normalized such that

∫ T

0
dt |f(t)|2 = 1, (5.21)

guarantees that A is a dimensionless bosonic mode with commutation relation
[A,A†] = 1.

Meaning of the filter function

The filter function also has a physical meaning. The one-photon state

|1f〉 = A† |0〉 =
∫

dtf(t)b†
out(t) |0〉 , (5.22)

corresponds to a single photon in a well defined envelope f(t). In other words,
f(t) is the probability amplitude to detect a photon at time t.

Importance of mode-matching

Whenever the filter function does not match the envelope of the detected photon,
vacuum noise is added to the signal. This can be understood in the following way:
consider the vector space of square integrable functions, with a scalar product

(ψ, φ) =
∫ T

0
dt ψ∗(t)φ(t). (5.23)

Select fk as an orthonormal basis: fkf
′
k = δk′k. Then, any square integrable

function f can be decomposed as

f(t) =
∑

k

(fk, f)fk. (5.24)

Normalization of f implies
∑

k

|(fk, f)|2 = 1. (5.25)

The creation operator a†
f of a mode f is

a†
f =

∫

dtf(t)a†(t) =
∫

dt
∑

k

(fk, f)fka
†(t) =

∑

k

(fk, f)a†
fk
, (5.26)

which is a multi-mode state.
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Consider again the single photon |1f〉. In density matrix formulation, this
single-mode state is

ρ = |1f〉〈1f | =
∑

kℓ

(fk, f)(fℓ, f)∗a†
fk

|Ω〉〈Ω| afℓ
, (5.27)

where |Ω〉 = ⊗k |0〉k. A single photon in a given envelope can be seen as a super-
position of photons in the basis functions fk.

The density operator corresponding to a mode f1 6= f is obtained by tracing
out the other modes:

ρ1 = Trk≤2ρ =
∑

m≥2

〈Ω| afm




∑

k

|(fk, f)|2a†
fk

|Ω〉〈Ω| afk



 a†
fm

|Ω〉 . (5.28)

• if k = 1, the sum yields |(f1, f)|2 |1f1〉〈1f1 |,
• if k 6= 1, we have

∑

m≥2 |(fm, f)|2 |0〉〈0|
so

ρ1 = |(f1, f)|2 |1f1〉〈1f1| +
∑

m≥2

|(fm, f)|2 |0〉〈0| . (5.29)

Imposing the normalization condition (5.25) gives

ρ = |(f1, f)|2 |1f1〉〈1f1 | +
(

1 − |(f1, f)|2
)

|0〉〈0| . (5.30)

We immediately see that only for f1 = f do we recover ρ = |1f〉〈1f |. Otherwise,
the state ρ will contain a factor of |0〉〈0|, i.e. vacuum.

For an alternative derivation of this property of the filter function for homodyne
detection, see [70].

Filtered photocurrent

In general, the filter function f is complex valued. Nevertheless, for the rest of the
discussion we will restrict ourselves to real-valued functions.

The time-independent generalized quadrature

Xθ =
∫

dtf(t)Xθ(t), (5.31)

corresponds to the measurement of quadrature Xθ(t) in the temporal mode defined
by f . Thus, it suffices to filter the photocurrent (2.103) in order to determine the
quadratures of the mode A. The integrated, filtered photocurrent

∫

dj(t)f(t) =
∫ f(t)√

2

(√
γ 〈σ+e

iθ + σ−e
−iθ〉 dt+ dW

)

. (5.32)

is recorded for each simulated trajectory.
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5.4 Calibration test

Before we begin to reconstruct states of resonance fluorescence, we try to recon-
struct already well-known states: vacuum (zero photons) and a single photon.
Since we know that the maximum amount of photons that could possibly be ob-
served is one, a two-dimensional Fock space is sufficient.

To begin with, we use only one decay channel. We use γ = 1, matching the
decay parameter γ in the master equation (2.115). Also, there is no external
driving applied — we set Ω = 0 in the driving Hamiltonian (2.78), making it
vanish. The stochastic master equation we will solve then looks like

dρ = γD[σ−]ρ dt+
√
γH[e−iθσ−]ρ dW. (5.33)

We solve Eq. (5.33) using Milstein’s method, described in Section 2.4.2. As can
be seen in the top row of Fig. 2.2, even only 500 trajectories seems adequate for
an undriven system, but we use 1000 trajectories just to have a safe margin.

5.4.1 Reconstructing vacuum

With the two-level system initially in the ground state, and in the absence of a
driving field, the photocurrent consists only of vacuum fluctuations. The vacuum
state is defined as A |0〉 = 0, independent of the mode A — therefore, an arbitrary
filter function should be able to reconstruct the vacuum state.

For the calibration tests 20 angles θ in the range [0, π] were used. A photocur-
rent histogram for θ = 0 is shown in Fig. 5.1, along with the theoretical prediction
indicated by the dashed line. The prediction is given by Eq. (5.2), being |〈θ, x|0〉|2
for the vacuum state |0〉. Looking at Equations (5.7) and (5.8) we see that this is
the same as |〈x|0〉|2, so the shape of the distribution is expected to follow the mod-
ulus square of the harmonic oscillator ground state wave function. The measured
histogram is in excellent agreement.

The probability distribution |〈x|0〉|2 is independent of θ, and we did indeed
observe that the current histograms had the same shape for every angle.

The vacuum fluctuations come solely from the Wiener increment in Eq. (2.103),
giving the stochastic photocurrent dj = dW/

√
2. The photocurrents in Fig. 5.1

form a Gaussian distribution with a fitted standard deviation of approximately
1/

√
2, which stems from the factor 1/

√
2 in the expression for the photocurrent.

The fact that the results match the theory validates that the random number
generation works correctly.

The reconstructed density matrix is shown in Eq. (5.34), besides the exact
density matrix, for comparison.

ρreconstructed =

(

0.9960 0.0073
0.0073 0.0040

)

, ρexact =

(

1 0
0 0

)

. (5.34)

The Wigner function for the reconstructed density matrix is shown in Fig. 5.2.
We can see that it is positive everywhere. Due to the independence of θ, it is also
completely symmetric around the origin.
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Figure 5.1: Photocurrents from 1000 trajectories of the vacuum state, with inte-
gration time T = 20. The dashed line is the modulus square of the vacuum wave
function.

The Wigner function of the reconstructed state is very nearly identical to the
Wigner function of the exact state. To show this, a cut of both functions at p = 0
is displayed in Fig. 5.3. The result is similar for all other values of p.

−2 0 2

x

−3

−2

−1

0

1

2

3

p

0.000

0.032

0.064

0.096

0.128

0.160

0.192

0.224

0.256

0.288

(a) Contour plot of the re-
constructed density matrix for
vacuum. It is symmetric
around the origin, illustrating
the phase independence.

x
−2

0
2

p
−2

0
2

0.1

0.2

0.3

0.05

0.10

0.15

0.20

0.25

0.30

(b) Surface plot of the recon-
structed density matrix for vac-
uum.

Figure 5.2

49



5. Quantum state tomography

−2 0 2

x

0.0

0.1

0.2

0.3
W

(x
)

Reconstruction

Exact

Figure 5.3: Cut of the Wigner function for vacuum at p = 0. The solid line is
the cut of the exact Wigner function, and the dashed line is the Wigner function
for the reconstructed density matrix. The lines overlap everywhere except at the
top.

5.4.2 Reconstructing one photon

We set the two-level atom density matrix to be in the excited state at t = 0. Fol-
lowing our light-matter interaction discussion, in the rotating wave approximation
a qubit and a light field can exchange a single excitation. If coupled to the many
degrees of freedom of the electromagnetic field, which is the environment, and in
the absence of excitations (zero temperature), the initially excited atom will decay
to the ground state by emitting a photon. This is the photon we are aiming to
see.

If there are multiple decay channels, then the photon can leak through all of
them with different probabilities. To be assured that we will observe the whole
photon when it is emitted, we use a single decay channel.

The normalized filter function used for reconstructing the one-photon state is

f1(t) =

√

γ

1 − e−γT
exp

(−γt/2) . (5.35)

This is the filter in the time domain. In the frequency domain, the filter is the
Fourier transform of f(t), which is a Lorentzian, matching the spectrum of spon-
taneous decay of an excited atom. To match the decay parameter γ in the master
equation, we use (5.35) with γ = 1.

The integration time is set to T = 6. The integration time is chosen long enough
that the excited atom will have decayed and released a photon by the end of that
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time. As can be verified by looking at Fig. 2.2, T = 6 is sufficiently lengthy. If a
too short integration time is chosen, the atom may not decay and some vacuum
will be observed, which will degrade the negativity of the state. In general, if
T is on the other hand too long, the atom will have decayed at an earlier time
and vacuum is again observed. However, the filter function (5.35) matches the
one-photon decay perfectly — it decays sufficiently fast in time so that no extra
negativity is observed.

When using the correct filter function for the single-photon state, the observed
photocurrents from the decaying atom look like Fig. 5.4a. The shape of the distri-
bution is |〈x|1〉|2, the modulus squared of the single-photon wave function. While
the reconstruction is made using data for 20 angles, the histogram only shows the
result for one angle. But just like the vacuum state, the one-photon state is phase
independent.
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(a) Photocurrents from 1000
trajectories. The dashed line is
the modulus square of the one-
photon wave function.
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(b) Photocurrent from observ-
ing the excited atom, with the
wrong filter function, γ = 5, in-
stead of γ = 1. The current
distribution is in the shape of a
mix between vacuum (Fig. 5.1)
and one photon (Fig. 5.4a).
The dashed line is the modulus
square of the one-photon wave
function.

Figure 5.4: Photocurrent distributions from simulations of a one-photon decay,
using different filter functions.

The reconstructed density matrix is shown in Eq. (5.36), besides the exact
density matrix for comparison.

ρreconstructed =

(

0.0010 −0.0006
−0.0006 0.9990

)

, ρexact =

(

0 0
0 1

)

. (5.36)

The Wigner function calculated from the reconstructed density matrix can be
seen in Fig. 5.5. The relative error between the matrix elements of the exact and
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reconstructed states is of the order of 10−4. This yields no significant differences
between the corresponding Wigner functions as can be seen in Fig. 5.6. There we
plot a section (p = 0) of both the theoretical Wigner function and the reconstructed
one for a single photon. We can see that the agreement is perfect.
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one photon. It is symmetric
around the origin, illustrating
the phase independence.
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Figure 5.5

Effect of filtering

Using a filter function f 6= f1 by setting γ 6= 1 in (5.35), more precisely γ = 5 in this
example, we get a photocurrent distribution that does not look like the theoretical
prediction, shown in Fig. 5.4b. This means we observe currents from vacuum
fluctuations, as can be understood from the discussion about mode-matching in
Section 5.3.

The reconstructed density matrix looks like

ρreconstructed =

(

0.4845 −0.0026
−0.0026 0.5155

)

. (5.37)

This can actually be calculated, by evaluating the scalar product (f1, f) as defined
in Eq. (5.23) and inserting the result into (5.30). With f being (5.35) with γ = 1,
and f1 the same except with γ = 5 gives |(f1, f)|2 = 0.555, in reasonable agreement
with the matrix element ρ22 in (5.37).

The Wigner distribution for this erroneous reconstruction is shown in Fig. 5.7.
The negativity is markedly reduced in comparison with the true one-photon state.
This can be understood in the following way: from definition (3.1) the Wigner
function of (5.30) will be

W = |(f1, f |)2W1 +
(

1 − |(f1, f)|2
)

W0, (5.38)
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Figure 5.6: Cut of the Wigner function for a one-photon state at p = 0. The
solid line is the cut of the exact Wigner function, and the dashed line is the Wigner
function for the reconstructed density matrix. The lines overlap completely. The
result is similar for all other values of p.

where W0 and W1 are the Wigner functions for vacuum and a one-photon state,
respectively. Recalling that the Wigner function of vacuum is positive everywhere,
we realize that by choosing a wrong filter function, the negativity of the single
photon state is reduced. We can conclude that it is important to use the right
filter function to retain Wigner negativity.
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Figure 5.7: Reconstructed Wigner function for a one-photon state using the
wrong filter function, with γ = 5 instead of γ = 1 in Eq. (5.35). Compare with
Fig. 5.5 which is the correct result. With the wrong filter function, the Wigner
negativity is reduced.
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If we add an additional decay channel, we can never obtain a one-photon state.
If the atom is coupled to both decay channels with equal strengths, as it is in
our case, the atom has equal probability of emitting the photon to the left or
to the right. So on average we will observe half a photon when observing only
one channel. This is reflected in the reconstructed density matrix, which shows
approximately 50/50 vacuum and one-photon.

(

0.4888 0.0022
0.0022 0.5112

)

. (5.39)

Maximum likelihood convergence

We also look at the convergence of the maximum likelihood algorithm (5.13). The
plots in Fig. 5.8 show up to 2000 iteration steps, but for the presented reconstruc-
tions we terminate the iteration process when the matrix difference (5.14) becomes
smaller than 10−3. We note that convergence is slower for a larger Fock space.
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(a) Fock space dimension
N = 2. It took 227 seconds for
2000 iterations.
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(b) Fock space dimension
N = 8. It took 1622 seconds for
2000 iterations.

Figure 5.8: Graphs of the Frobenius matrix difference (5.14) during iterations of
the maximum likelihood algorithm while reconstructing a single-photon state.
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5.5 Results

Here we look at reconstructed states from steady-state resonance fluorescence with
different parameters. We present results for a few different combinations of inte-
gration time T and driving strength Ω.

As discussed in Chapter 4, we will study two configurations. Namely, the atom
in 1D open space (two decay channels) and the atom in front of a mirror (one
decay channel).

In all instances 20 angles evenly spaced between 0 and π were used — this
range of angles covers phase-space, as we learned in Section 2.3.4.1. We run
1000 trajectories per angle. Since we want steady-state generation, we wait until
t = 10 before we start integrating. As can be seen in Fig. 4.4, even for very
strong driving the state has stabilized by that time. Note that this time is suitable
for the parameter regime explored here, but if even stronger driving were to be
applied, or different decay rates selected, a different stabilization time may need
to be selected.

For weaker driving one does not expect to observe that many photons, especially
for a short integration time. This suggests that we can use a rather small Fock
space, which is beneficial for computational reasons. To obtain the optimal Fock
space dimension, one can start with a small space, say N = 2. Then, increase N
and run the simulation again. If the results differ, progressively increase N until
the results are the same. Then you can conclude that a higher dimension is not
necessary. For the results presented below a Fock space dimension N = 8 was
used.

We want to produce negative Wigner function states in steady-state. Nothing
dictates which filter function is the best for our problem, we have complete freedom
to choose. As we have time-independent emission, it makes sense to choose a time-
independent filter function. We use the constant, but normalized, filter function
f(t) = 1/

√
T . Note that while this function is constant, i.e. independent of t, we

can select different modes by varying the integration time T .
The results are shown as contour plots of the Wigner function.
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5.5.1 Two decay channels

First, we look at the Wigner functions in the case to two identical decay channels.
This corresponds to γ′ = γ1 = γ2 = 0.5γ = 0.5 in the stochastic master equa-
tion (2.115). In Fig. 5.9 we show the numerically reconstructed states for three
different integration times T = 1, T = 5 and T = 10. The atom is driven with
Ω = 0.5, which is in the regime of weak driving.
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(c) Integration time T = 10.

Figure 5.9: Driving strength Ω = 0.5. Two decay channels. No negativity is
observed for any integration time.
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In Fig. 5.10 below, we show the results for the same integration times as in
Fig. 5.9, but in the strong driving regime with Ω = 2. Still with two decay
channels.
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(a) Integration time T = 1.
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(c) Integration time T = 10.

Figure 5.10: Driving strength Ω = 2. Two decay channels. No negativity is
observed for any integration time.

We note that no negativity whatsoever is observed when having two decay
channels. This can be understood by the following reasoning. As explained in
conjunction with the density matrix (5.39), if there are two equal decay channels
and only one is observed, there is a 50 % chance of observing only vacuum. Denote
the vacuum and single photon density matrices ρ0 and ρ1, respectively. We know
from Section 5.4.1 that W (ρ0) > 0, meaning that the the Wigner function corre-
sponding to ρ0 is positive. We also know from Section 5.4.2 that the single-photon
state takes on negative values: W (ρ1) < 0. With a 50/50 incoherent mix of these,
we have W (ρ0/2 + ρ1/2) > 0 everywhere in phase space.

The drive Ω is inducing Rabi oscillations in the system, i.e. the state of the
two-level atom oscillates between the ground and excited state [12]. Therefore,
driving the two-level atom is actually enhancing the vacuum contribution, adding
to the vacuum contribution from the unobserved channel. In other words, we are
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not going to get more negativity than from W (ρ0/2 + ρ1/2), which is already a
positive-Wigner state.
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5.5.2 Atom in front of a mirror

We now look at the Wigner functions in the case of a single decay channel, i.e., an
atom in front of a mirror. This corresponds to γ′ = γ = 1 in the stochastic master
equation (2.115). In Fig. 5.11 we show the reconstructed Wigner functions for the
same integration times as in Section 5.5.1 above. The driving strength is Ω = 0.5.
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Negativity is observed!
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Figure 5.11: Driving strength Ω = 0.5. One decay channel. Negativity in the
Wigner function is observed for integration time T = 5.
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Results for driving strength Ω = 2 are displayed in Fig. 5.12.
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Figure 5.12: Driving strength Ω = 2. One decay channel. No negativity is
observed for any integration time.

As can be seen in Fig. 5.11b, it is possible to observe a Wigner-negative state,
i.e., a state whose corresponding Wigner function takes on negative values in some
region of phase space, in the weak driving regime Ω = 0.5 and for an integration
time T = 5. This can be understood qualitatively. For a short integration time,
the atom has not had enough time to decay, so vacuum is observed. On the other
hand, for long integration times, observation is continued well after the atom has
already decayed, again resulting in observation of vacuum.

Also, the fact that it is possible to observe Wigner-negative states in the con-
figuration with an atom in front of a mirror can be understood by an argument
similar to the one for the opposite case with two decay channels. For a single
decay channel, in the absence of driving and for the atom initially in the excited
state, it is possible to observe a single photon, as shown in Section 5.4.2. In the
presence of a driving field, as already discussed at the end of Section 5.10, we will
have a contribution from the vacuum state due to the atom periodically being in
the ground state due to Rabi oscillations. Nevertheless, we can expect that in a
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certain parameter regime the contribution from the single photon will be larger,
and therefore, expect the observed state to be Wigner-negative. We verified nu-
merically that in the strong driving regime no negativity was observed.
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6
Conclusion

Quantum computers could solve problems that are intractable on conventional
classical computers. The allure of this so-called quantum advantage has garnered
a substantial interest in quantum computing. Several approaches to quantum com-
puting have been investigated, but one avenue that has not been explored as of yet
is continuous variable quantum computing using microwave photons in supercon-
ducting circuits. Superconducting qubits is one of the most extensively researched
methods of quantum computing, but this set-up can also be used to create contin-
uous variable quantum states. Since the experimental possibility is available, we
want to investigate how to set up an experiment to produce continuous variable
states, namely quadrature states, that can be used as computational resources.

The necessary condition for these states to have the “quantumness” which allows
them to be used for calculations a classical computer cannot perform, is that they
should have a negative Wigner function.

Before doing experiments in a laboratory, we can do numerical simulations of
homodyne measurements of resonance fluorescence, and using the technique of
quantum state tomography we can calculate the Wigner function of the state that
was measured.

The aim of this work was to characterize what parameters provide negative
Wigner functions. We tested different integration times, driving strengths and
number of decay channels. We studied two configurations of resonance fluores-
cence, namely placing the atom in front of mirror and in a one-dimensional con-
tinuum. We found that for the latter configuration, only positive Wigner functions
were obtained. We also found that negativity only occurred for rather weak driv-
ing strengths with the atom in front of a mirror. The next step in continuing this
work would be to explore a larger parameter space of different driving strengths
and integration times. There are more effects that could be studied —for exam-
ple, the role of dephasing. Dephasing, and decoherence in general, is a more or
less unavoidable phenomena that occurs in open quantum systems. It would be
interesting to see how this affects the negativity of the Wigner function. Also, in
this thesis we assumed 100 % efficient detectors. Since this is an idealization, it
would be very relevant to see how the Wigner function is affected by more realistic
detector efficiencies.

We aim to explore the possibility of generating suitable states for continu-
ous variable quantum computing by continually driving a two-level atom. Our
rather simple setup provides the non-linearity required to generate negative Wigner
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states, which according to the Eisert-Mari theorem is a requirement to outperform
a classical computer.

The idea is that a theoretical investigation, continuing the work in this thesis,
will provide parameters to be used in a future experimental implementation of
the setup. In this work a quantum state was reconstructed using simulated data,
but a reconstruction from experimental results can just as well be done with the
methods covered in this thesis.
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Light-matter interaction

A.1 Göppert-Mayer transformation

The Göppert-Mayer transformation allows one to go from the point of view where
the interaction Hamiltonian between the system of charges and the field is propor-
tional to A·p, to the electric dipole point of view where the interaction Hamiltonian
is proportional to r · E. These points of view are equal, and can be derived from
one another using a unitary transformation T :

T = e− i
~
e~r· ~A(r,t) = e− i

~
~d· ~A(r,t), (A.1)

where d = er · E is the dipole operator. This transformation is equivalent to
choosing χ = ~r · ~A(r, t) in the gauge transformations (2.2) [71].

We now show how the A · p Hamiltonian can be transformed into the r · E
Hamiltonian. The original Schrödinger equation is

i~
∂ψ

∂t
= Hψ. (A.2)

The transformed wave function satisfies the Schrödinger equation

i~
∂ψ̃

∂t
= H ′ψ̃. (A.3)

Inserting the transformed wave function ψ̃ = Tψ we get

i~
∂Tψ

∂t
= i~T

∂ψ

∂t
+ i~

∂T

∂t
ψ = H ′Tψ. (A.4)

Noting that T is a unitary operator, so that T †T = 1, we multiply with T † from
the left:

i~
∂ψ

∂t
︸ ︷︷ ︸

=Hψ

+i~T † ∂T

∂t
ψ = T †H ′Tψ. (A.5)

This is valid for every ψ, so

H + i~T † ∂T

∂t
= T †H ′T

=⇒ H ′ = THT † + i~
∂T

∂t
T †. (A.6)
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Now we manipulate the expression T †pT :

T †pT = T †pT − T †Tp+ p = T †[p, T ] + p (A.7)

using the following commutator identity for any position dependent function F (x) [64]

[p, F (x)] = −i~∇F

we get
T †pT = −i~T †∇T + p = −e∇

(

~r · ~A(r, t)
)

+ p (A.8)

We will use the vector identity

∇
(

~r · ~A
)

= (~r · ∇) ~A+ ( ~A · ∇)~r + ~r × (∇ × ~A) + ~A× (∇ × ~r). (A.9)

In our case the last term is zero and the second term is ~A. So far everything is
exact. Now we need to use the dipole approximation.

A.2 Dipole approximation

This is also known as the long wavelength approximation, which is relevant when
the wavelength of the electromagnetic field is much larger than the atomic dimen-
sion. In that case, the spatial variation of the electromagnetic field over the size of
the atom is very small and can thus be neglected. This approximation simplifies
the calculations significantly.

We can neglect the spatial variation of ~A(r, t) in the Hamiltonian. Replace
~A(r, t) with ~A(R, t), where we choose R to be the origin at the center of mass.
This amounts to ignoring any displacements of the atom. This means the spatial
derivatives of ~A are zero, and thus the first and third terms in Eq. (A.9) are also
zero, and we are left with only ∇

(

~r · ~A
)

= ~A, which gives

T †pT = p− e ~A (A.10)

from Eq. (A.8).
This transformation translates p by an amount eA. With H = (p− eA)2/2m+

V (r), where V (r) is the Coulomb potential We have

THT † =
p2

2m
+ V (r) (A.11)

and since in the Coulomb gauge, we have from Maxwell’s equations

~E = − ∂ ~A

∂t
. (A.12)

we get

i~
dT
dt

T † = ~d · ~̇A = −~d · ~E. (A.13)
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The transformed Hamiltonian of the atom in the electromagnetic field in the
dipole approximation is

H ′ =
p2

2m
− ~d · ~E + V (r). (A.14)

We have found that in the long-wavelength approximation, the interaction with
the external field is simply described by a coupling term between the dipole mo-
ment d of the atom and the external electric field evaluated at the position of the
atom center of mass.

Validity of formula

The validity of the dipole approximation is crucial for the equivalence of the p · ~A
and r · E interactions. The equivalence of the two interaction Hamiltonians is
based on the gauge transformation (A.1) in which, by the dipole approximation,
the relative position r of the electron does not enter in the vector potential ~A,
and that the center-of-mass R is not time-dependent. If center-of-mass motion is
taken into account, additional terms appear in the Hamiltonian [68]. Fortunately
artificial atoms in superconducting circuits are fixed in position.

A.3 Dipole operator

For the electric dipole transition between the states |i〉 and |k〉, the states must
be of opposite parity since the dipole operator ~d is proportional to ~r, which is an
odd operator with respect to parity transformations, Π~rΠ−1 = −~r, and parity is
conserved in electromagnetic interactions.

We follow [64]. Parity is conserved, thus parity commutes with the Hamiltonian
and the energy eigenstates are parity eigenstates. Suppose |α〉 and |β〉 are parity
eigenstates:

Π |α〉 = εα |α〉 ,
Π |β〉 = εβ |β〉 , (A.15)

where εα, εβ are the parity eigenvalues (±1). Calculating the matrix element,

〈β|~r|α〉 = 〈β|Π−1Π~rΠ−1Π|α〉 = −εαεβ 〈β|~r|α〉 (A.16)

shows that the matrix element can only be non-zero if |α〉 and |β〉 have opposite
parity, i.e. εα = −εβ. In other words, the parity-odd operator ~d connects states of
opposite parity. This is known as Laporte’s rule. This means we have the diagonal
matrix elements 〈g|~d|g〉 = 〈e|~d|e〉 = 0.
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A.4 Rotating wave approximation

The rotating wave approximation (RWA) is based on the fact that some operators
evolve in different time-scales. For this reason, we need to look at the time-
evolution of field and atomic operators.

A.4.1 Time evolution of field operators

The Heisenberg equation for the annihilation operator a reads

da
dt

=
i
~

[H, a]. (A.17)

This equation has the solution

a(t) = a(0)e−iωt. (A.18)

Taking the adjoint yields
a†(t) = a†(0)eiωt. (A.19)

A.4.2 Time evolution of atomic operators

The time dependence of the operators σ+ and σ− is most easily appreciated in the
interaction picture. We define operators in the interaction picture as

ÔI ≡ eiH0t/~ÔSe
−iH0t/~. (A.20)

The difference to the connection between the Schrödinger and the Heisenberg
pictures

ÔH ≡ eiHt/~ÔSe
−iHt/~, (A.21)

is that now only H0 rather than H appears in the exponential; in the interac-
tion picture the system evolution is governed by the non-interacting part of the
Hamiltonian.

The interaction picture interaction Hamiltonian is

HI(t) = eiH0t/~Hinte
−iH0t/~. (A.22)

Noting that the atomic and the field operators commute, we arrive at

HI = eiωa†a(a+ a†)e−iωa†aeiωAσz/2(σ+ + σ−)e−iωAσz/2. (A.23)

From (A.18) and (A.19) we already know the time evolution of the field operators:

eiωa†a(a+ a†)e−iωa†a = ae−iωt + a†eiωt. (A.24)
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A. Light-matter interaction

The atomic part: Since σzis diagonal, we get:

eiωAσz/2σ+e
−iωAσz/2 =

(

eiωA/2 0
0 e−iωA/2

)(

0 1
0 0

)(

e−iωA/2 0
0 eiωA/2

)

=

=

(

0 eiωA

0 0

)

= σ+e
iωAt.

(A.25)

Similarly, we get σ−(t) = σ−e
−iωAt. The interaction Hamiltonian in the interaction

picture is then

HI = ~g
(

aσ+e
−i(ω−ωA)t + aσ−e

−i(ωA+ω)t + a†σ+e
i(ωA+ω)t + a†σ−e

i(ω−ωA)t
)

. (A.26)

A.4.3 The approximation

The four terms in Eq. (A.26) have the following interpretation:

aσ+: one photon is absorbed and the atom is excited: |g, n〉 → |e, n− 1〉.
a†σ−: emission of a photon and de-excitation of the atom: |e, n〉 → |g, n+ 1〉.

Note that these terms oscillate slowly when near resonance, with the frequency of
the detuning ∆ = ω − ωA.

The other two terms:

a†σ+: one photon is emitted and the atom is excited: |g, n〉 → |e, n+ 1〉.
aσ−: one photon is absorbed and the atom gets de-excited: |e, n〉 → |g, n− 1〉.

These terms oscillate much faster than the other two terms. Near resonance,
ω ≈ ωA, they oscillate with roughly twice the optical frequency ω. In the rotating
wave approximation we neglect the rapidly oscillating terms. The fast rotating
terms typically have frequencies of order ∼ 1015 s−1, and will average to zero over
the time-scale of radiative decay, that is ∼ 10−8 s. This approximation leads to
significant simplifications [23].

The RWA implies that just near-resonant terms are effective in describing the
interaction between radiation and matter.

In the literature it is commonly stated that the fast-rotating/anti-resonant
terms do not conserve energy. This is not true. The Schrödinger picture Hamil-
tonian is time-independent, this means that energy is conserved. The miscon-
ception is based on considering the energy of transitions between states of the
form |e, n〉 , |g, n+ 1〉. While these are eigenstates of the free Hamiltonian, they
are not energy eigenstates of the Jaynes-Cummings Hamiltonian which includes
interactions between the atom and field [72].
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Stochastic calculus

B.1 Stochastic Integrals

The general form of a stochastic differential equation is [22]

dXt = h(Xt, t) dt+ g(Xt, t) dBt. (B.1)

This is in fact only a formal expression — its meaning is given by the corresponding
stochastic integral equation

Xt = X0 +
∫ t

t0
h(Xs, s) ds+

∫ t

t0
g(Xs, s) dBs, (B.2)

as only the integral equation can be interpreted consistently. The second integral
is the stochastic integral.

In this notation, Xt ≡ X(t). If the Wiener process B(t) was differentiable,
we could define this integral in the ordinary Riemann-Stieltjes sense. But B(t)
is nowhere differentiable (although it is continuous), and the integral can not be
defined in the ordinary way [20]. Instead, we proceed as follows.

B.1.1 Mathematical Definition of the Stochastic integral

Suppose g(t) is an arbitrary function of time and B(t) is the Wiener process. We
define the stochastic integral

∫ t
t0
g(t′) dB(t′) as a kind of Riemann-Stieltjes integral.

Namely, we divide the interval [t0, t] into n sub-intervals by means of partitioning
points as in Fig. B.1.

t0 ≤ t1 ≤ t2 ≤ . . . ≤ tn−1 ≤ tn

and define intermediate points τi such that

ti−1 ≤ τi ≤ ti.

The stochastic integral
∫ t
t0
g(t′) dB(t′) is defined as a limit of the partial sums

Sn =
n∑

i=1

g(τi)[B(ti) −B(ti−1)]. (B.3)

Unlike the ordinary Riemann-Stieltjes integral, in general the integral defined as
the limit of Sn depends on the particular choice of intermediate point τi. The
choice τi = ti−1 defines the Ito stochastic integral [22].
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τ1 τ2
τ3

t0 t2 t3 tnt1
τn

Figure B.1: Partitioning of the time interval used in the definition of stochastic
integration.

B.1.1.1 Ito stochastic Integral

If g(t) is any system operator, we define the (quantum) Ito integral by

I
∫ t

t0
g(t′) dB(t′) = lim

n→∞

∑

i

g(ti)[B(ti+1, t0) −B(ti, t0)], (B.4)

where the I stands for Ito, and t0 < t1 < t2 < . . . < tn = t.

B.1.2 Ito’s formula

In the previous section we defined the Ito stochastic integral. Just as for ordinary
integrals, we do not use the basic definition but rather the fundamental theorem
of calculus plus the chain rule in the explicit calculations. It turns out that it is
possible to establish an Ito integral version of the chain rule, called the Ito formula.
This formula differs from the one of classical calculus.

Consider an arbitrary function of X(t) : f(X), where we omit the t argument
for notational clarity. The function f has the Taylor expansion

f(X + dX) = f(X) + f ′(X) dX +
1
2
f ′′(X)(dX)2 + . . .

=⇒ f(X + dX) − f(X) = df(X) = f ′(X) dX +
1
2
f ′′(X)(dX)2 + . . .

(B.5)

Now insert (B.1):

df(X) = f ′(X)[h(X) dt+ g(X) dB] +
1
2
f ′′(X)[h(X) dt+ g(X) dB]2. (B.6)
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Higher order terms are discarded. Using the Ito results dB dt = 0, [dt]2 = 0 and
[dB]2 = dt, we get

df(X) =
(

h(X)f ′(X) +
1
2
g(X)2f ′′(X)

)

dt+ g(X)f ′(X) dB. (B.7)

We see that because dB is only of order
√

dt, we get an extra term that would not
be present otherwise.

Solving df(X) dt = df − g(X) dB from (B.1) and inserting that in the first
term in (B.7), as well as using that [dX]2 = g2[dB]2 = g2 dt in the second term
(neglecting terms of order higher that dt) we can rewrite the Ito formula as

df(X) = f ′(X) dX +
1
2
f ′′(X) dX2. (B.8)

Considering a multivariate function f(X1, X2) = X1X2, and inserting this
in (B.8), we get

d(X1X2) = X1 dX2 +X2 dX1 + dX1 dX2. (B.9)

Here we clearly see the difference between the Ito rule and the ordinary chain rule,
where we would get only d(X1X2) = X1 dX2 +X2 dX1.

B.1.3 Stochastic Taylor Expansions

Consider the Ito stochastic differential equation (B.1) and its solution in integral
form (B.2). To obtain the stochastic Ito-Taylor expansion, we iteratively apply
the Ito formula. For any twice differentiable function f , starting with the Ito
formula (B.8), inserting (B.1), and integrating, gives us

f(Xt) = f(Xt0) +
∫ t

t0

(

h(Xs)
∂

∂x
f(Xs) +

1
2
g2(Xs)

∂2

∂X2
f(Xs)

)

ds+

+
∫ t

t0
g(Xs)

∂

∂X
f(Xs) dWs.

(B.10)

Using (B.10) for the functions h and g in (B.2), with t0 < s < t, gives

Xt = Xt0 +
∫ t

t0

[

h(Xt0) +
∫ s

t0

(

h(Xu)
∂

∂x
h(Xu) +

1
2
g2(Xu)

∂2

∂X2
h(Xu)

)

du+

+
∫ s

t0
g(Xu)

∂

∂X
h(Xu) dWu

]

ds+

+
∫ t

t0

[

g(Xt0) +
∫ s

t0

(

h(Xu)
∂

∂x
g(Xu) +

1
2
g2(Xu)

∂2

∂X2
g(Xu)

)

du+

+
∫ s

t0
g(Xu)

∂

∂X
g(Xu) dWu

]

dWs.

(B.11)
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Neglecting terms of higher order than dt leaves us with

Xt = Xt0 + h(Xt0)
∫ t

t0
ds+ g(Xt0)

∫ t

t0
dWu +

∫ t

t0

∫ s

t0
g(Xu)

∂

∂X
g(Xu) dWu dWs.

(B.12)

Now, using (B.10) for the function g(Xu)
∂

∂X
g(Xu), and again neglecting higher

order terms gives [73]

Xt = Xt0 + h(Xt0)
∫ t

t0
ds+ g(Xt0)

∫ t

t0
dWu + g(Xt0)

∂

∂X
g(Xt0)

∫ t

t0

∫ s

t0
dWu dWs.

(B.13)

The final integral evaluates to [73]

∫ t

t0

∫ s

t0
dWu dWs =

1
2

[

(Wt −Wt0)2 − (t− t0)
]

. (B.14)

We now have

Xt = Xt0 + h(Xt0)(t− t0) + g(Xt0)
(

Wt −Wt0

)

+

+g(Xt0)
∂

∂X
g(Xt0)

1
2

[

(Wt −Wt0)2 − (t− t0)
]

.
(B.15)

After discretizing, we thus arrive at

Xi+1 = Xi + h(Xi)∆t+ g(Xi)∆W +
1
2
g(Xi)

∂

∂X
g(Xi)

(

(∆W )2 − ∆t
)

. (B.16)

This is the Milstein algorithm for solving stochastic differential equations.
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C
Moyal function in the Fock basis

The Moyal function is a generalization of the Wigner function, introduced by
Moyal [69]. It is also called the generalized or off-diagonal Wigner function. We
begin the derivation following [74]. For another approach, see [75].

In the Fock basis, the Moyal function is

Wmn(x, p) =
1

2π

∫ ∞

−∞
dy e−ipy/~ 〈x− y

2
|m〉 〈n|x− y

2
〉 =

=
1

2π

∫

dy eiypψ∗
m(x+ y/2)ψn(x− y/2)

(C.1)

Inserting the wave functions ψm, ψn defined in (5.7), we have

Wmn(x, p) =
1

2π
1√

2n+mn!m!π

∫

dy eiype−
(x+y/2)2

2 e−
(x−y/2)2

2 Hm(x+y/2)Hn(x−y/2).

(C.2)
Now we utilize the generating function for Hermite polynomials:

e−ξ2+2ξy =
∞∑

n=0

1
n!
ξnHn(y). (C.3)

We complete the square in the exponential, and get

e−(ξ−y)2+y2

=
∞∑

n=0

1
n!
ξnHn(y). (C.4)

Multiplying Eq. (C.2) with
∑∞
n,m=0

1
n!m!

ηmξn we can rewrite it as

2π
∑

m,n

√

2n+m

n!m!
ξmηnWmn =

=
1√
π

∫

dy eiype−
(x+y/2)2

2 e−
(x−y/2)2

2 e−(ξ−(x+y/2))2+(x+y/2)2

e−(η−(x−y/2))2+(x−y/2)2

=

=
1√
π

∫

dy eiype
(x+y/2)2

2 e
(x−y/2)2

2 e−(ξ−x−y/2)2

e−(η−x+y/2)2

.

(C.5)

Evaluating the integral and rearranging some terms, we get

2π
∑

m,n

√

2n+m

n!m!
ξmηnWmn = 2e−(x2+p2)e2η(x−ip)+2ξ(x+ip)−2ηξ. (C.6)
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Taylor expanding the last exponential, we have

2π
∑

m,n

√

2n+m

n!m!
ξmηnWmn = 2e−(x2+p2)

∑

jkℓ

1
j!k!ℓ!

[

2η(x− ip)
]j [2ξ(x+ ip)

]k [−2ηξ]ℓ =

= 2e−(x2+p2)
∑

jkℓ

1
j!k!ℓ!

(−1)ℓ2ℓ
[

2(x− ip)
]j [2(x+ ip)

]k ηj+ℓξk+ℓ.

(C.7)

For fixed m and n, we see that we must set j + ℓ → n =⇒ j → n − ℓ and
k + ℓ → m =⇒ k → m− ℓ to solve for Wmn. We are then left with

π

√

2n+m

n!m!
Wmn = e−(x2+p2)

min(m,n)
∑

ℓ

1
(n− ℓ)!(m− ℓ)!ℓ!

(−1)ℓ2ℓ
[

2(x− ip)
]n−ℓ [2(x+ ip)

]m−ℓ .

(C.8)
Now set z =

√
2(x+ ip), and the right hand side becomes

e− zz∗

2

∑

ℓ

1
(n− ℓ)!(m− ℓ)!ℓ!

(−1)ℓ2ℓ2(n−ℓ)/22(m−ℓ)/2z∗n−ℓzm−ℓ =

= e− zz∗

2

∑

ℓ

1
(n− ℓ)!(m− ℓ)!ℓ!

(−1)ℓ2
m+n

2 z∗n−ℓzm−ℓ.
(C.9)

So we have

π

√

2n+m

n!m!
Wmn = e− zz∗

2

∑

ℓ

1
(n− ℓ)!(m− ℓ)!ℓ!

(−1)ℓ
√

2m+nz∗n−ℓzm−ℓ

=⇒ πWmn = e− zz∗

2

∑

ℓ

√
n!m!

(n− ℓ)!(m− ℓ)!ℓ!
(−1)ℓz∗n−ℓzm−ℓ

(C.10)

We now use an identity for associated Laguerre polynomials Lβα [76]:

max(m,n)
∑

j

√
n!m!

(n− j)!(m− ℓ)!ℓ!
(−1)jz∗n−jzm−j = (−1)n

√

n!
m!
zm−nLm−n

n (zz∗) =

= (−1)m
√

m!
n!
z∗n−mLn−m

m (zz∗),

(C.11)

This finally gives us an expression for the Wigner function for a Fock state:






Wmn = 1
π
e− zz∗

2 (−1)m
√

m!
n!
z∗n−mLn−m

m (zz∗), n ≥ m

Wmn = 1
π
e− zz∗

2 (−1)n,
√

n!
m!
zm−nLm−n

n (zz∗), n < m.
(C.12)

We can also replace z with
√

2(x+ ip):






Wmn = 1
π
e−(x2+p2)(−1)m

√

2n−mm!
n!

(x− ip)n−mLn−m
m (2x2 + 2p2)), n ≥ m,

Wmn = 1
π
e−(x2+p2)(−1)n

√

2m−n n!
m!

(x+ ip)m−nLm−n
n (2x2 + 2p2), n < m.

(C.13)
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Another common form of representing this particular function is using

α =
1√
2

(x+ ip). Replace z in Eq. (C.12) with z = 2α:







Wmn = 1
π
e−2|α|2(−1)m

√
m!
n!

(2α∗)n−mLn−m
m (4|α|2), n ≥ m,

Wmn = 1
π
e−2|α|2(−1)n

√
n!
m!

(2α)m−nLm−n
n (4|α|2), n < m.

(C.14)

We can also define a radial and an angular variable

w = 2(x2 + p2), tanφ =
p

x
, (C.15)

giving

z =
√

2(x+ ip) =
√

2|x+ ip|eiφ =
√

2
√

x2 + p2eiφ = w1/2eiφ. (C.16)

Inserting this in (C.12) gives another common representation:






Wmn = 1
π
e− w

2 (−1)m
√

m!
n!
w

n−m
2 ei(n−m)φLn−m

m (w), n ≥ m,

Wmn = 1
π
e− w

2 (−1)n
√

n!
m!
w

m−n
2 ei(m−n)φLm−n

n (w), n < m.
(C.17)
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