
Machine Learning for Brain Activity Analysis
Deep Learning Methods for Improving Essential Hypertension Prediction
Based on Magnetoencephalography Data

Master’s thesis in Data science and AI and Complex adaptive systems

David Hall
Elias Sundqvist

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Machine Learning for Brain Activity Analysis

Deep Learning Methods for Improving Essential Hypertension
Prediction Based on Magnetoencephalography Data

David Hall
Elias Sundqvist

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2022

Machine Learning for Brain Activity Analysis
Deep Learning Methods for Improving Essential Hypertension Prediction Based on
Magnetoencephalography Data
David Hall
Elias Sundqvist

© David Hall, Elias Sundqvist 2022.

Supervisor: Affiliated Scientist Justin Schneiderman, Microtechnology and
Nanoscience, Quantum Device Physics Laboratory
Supervisor: Kevin Andersson, Syntronic Research and Development AB
Examiner: Professor Paolo Monti, Electrical Engineering

Master’s Thesis 2022
Department of Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The brain icon is modified and attribution-free, the rest is original work.

Typeset in LATEX
Gothenburg, Sweden 2022

iii

Abstract
Cardiovascular disease is a wide-spread problem which is strongly linked to essential
hypertension (high blood pressure). Previous research has demonstrated a correla-
tion between arousal-induced elevated blood pressure and invasive measurements of
muscle-sympathetic nerve activity (MSNA). Such blood pressure responses are likely
to integrate over a lifetime into essential hypertension. Research has also shown that
there is a correlation between MSNA and magnetoencephalography (MEG) brain ac-
tivity during stressful situations. MEG is a non-invasive method for measuring brain
activity. Two previous Master’s thesis projects have tried to make a classifier from
this data with limited success. This Master’s thesis project aims to improve classi-
fication results by resolving issues in previous theses and by trying new approaches
to the problem. The main hypotheses investigated for explaining low classification
accuracies in previous attempts are: 1) Inappropriate data split, 2) Lack of data
preprocessing/augmentation, 3) Inappropriate model choice. A fourth hypothesis,
insufficient data, was considered as potentially being the biggest issue. It was, how-
ever, out of the scope of this thesis because of it being infeasible to collect enough
data in the given time-frame and because medical professionals would have to be in-
cluded to perform the measurements. To test the three relevant hypotheses, a more
principled data split was used, in combination with cross-validation to decrease the
variance. Furthermore, several augmentation methods and deep learning architec-
tures have been implemented and optimized using Bayesian hyperparameter tuning.
Beyond the continued use of univariate deep learning models, this thesis introduces
the use of multivariate ones. This resulted in test accuracies higher than those re-
ported in previous projects, but with strong indications that the performance is still
largely explained by random chance. In conclusion, it seems that the small dataset
size is the major reason for the limited success and that future work in this direction
should strongly consider incorporating additional data sources for the analysis.

Keywords: Essential Hypertension, Muscle Sympathetic Nerve Activity, Magnetoen-
cephalography, Time Series Classification, Artificial Neural Networks, Long Short-
Term Memory, Multilayer Perceptron, Convolutional Neural Network, Transformer,
Data Preprocessing, Data Augmentation

iv

Acknowledgements

We would like to express our thanks to Christofer Åkerström at Syntronic Research
and Development AB and MedTech West for providing us with this Master’s the-
sis opportunity. We would also like to thank Kevin Andersson from Syntronic and
Justin Schneiderman from MedTech West for supervising our work, as well as Pro-
fessor Paolo Monti at Chalmers University of Technology for being our examiner.
Furthermore, we would like to thank Bushra Syeda from Sahlgrenska Academy for
giving us important biological data and insight, publishing the initial results that
enabled this thesis, and giving us permission to use a figure of hers. We would also
like to thank Alma Lund and Felix Ericsson, who worked on a parallel Master’s
thesis at Syntronic, for interesting discussions. Finally, we want to thank everyone
at the Syntronic R&D Gothenburg office for the fierce dart games during our lunch
breaks.

David Hall & Elias Sundqvist, Gothenburg, June 2022

vi

Contents

List of Acronyms xiii

Nomenclature xv

List of Figures xx

List of Tables xxii

1 Introduction 1
1.1 Background . 1

1.1.1 Muscle Sympathetic Nerve Activity (MSNA) 1
1.1.2 Magnetoencephalography (MEG) 2

1.2 Previous Work . 4
1.2.1 Previous Master’s Theses . 4
1.2.2 Traditional Statistical Approaches 5

1.3 Aim . 5
1.4 Delimitations . 5

2 Theory 7
2.1 Preprocessing of Time Series Data . 7

2.1.1 Removing Noise With Autoencoders 7
2.1.2 Feature Extraction With Wavelet Transforms 9

2.2 Augmentation of Time Series Data 12
2.2.1 Random Window Slicing (RWS) 12
2.2.2 Permutation . 13
2.2.3 Time Warping and Window Warping 13
2.2.4 Jittering . 15
2.2.5 Stochastic Scaling . 16
2.2.6 Magnitude Warping . 16
2.2.7 Contrasted Linear Combination (CLC) 18

2.3 Artificial Neural Networks For Time Series Classification 21
2.3.1 Multilayer Perceptron (MLP) 21
2.3.2 Long-Short Term Memory (LSTM) 22
2.3.3 Transformer . 24
2.3.4 Convolutional Neural Network (CNN) 25

2.4 Bayesian Hyperparameter Optimization 27

viii

Contents

3 Methods 28
3.1 Provided Data . 28

3.1.1 Data Collection and Storage 28
3.1.2 Preprocessing . 29

3.2 Data Split . 30
3.2.1 Old and New Data Split . 30
3.2.2 Cross-Validation . 31

3.3 Used Artificial Neural Networks . 32
3.3.1 Long Short-Term Memory (LSTM) 32
3.3.2 Multilayer Perceptron (MLP) 33
3.3.3 Convolutional Neural Network (CNN) 34
3.3.4 Transformer . 35
3.3.5 Autoencoder . 36

3.4 Training Artificial Neural Network Models 37
3.4.1 Pipeline . 37
3.4.2 Training, Validation, And Testing 38
3.4.3 Hyperparameter Tuning . 38
3.4.4 Motivations Behind Collected Results 39

3.5 Implementation . 39

4 Results 40
4.1 Incorrect Long Short Term Memory (ILSTM) 40

4.1.1 Reproduction From Previous Thesis 40
4.1.2 Different ILSTM Architectures 42
4.1.3 Best ILSTM With Autoencoder Preprocessing 43
4.1.4 Best ILSTM With Wavelet Preprocessing 45
4.1.5 Best ILSTM With Transform Combinations 47

4.2 Multilayer Perceptron (MLP) . 50
4.2.1 Different MLP Architectures 50
4.2.2 Best MLP With Autoencoder Preprocessing 51
4.2.3 Best MLP With Wavelet Preprocessing 53
4.2.4 Best MLP With Transform Combinations 55

4.3 Convolutional Neural Network (CNN) 58
4.3.1 Different CNN Architectures 58
4.3.2 Best CNN With Autoencoder Preprocessing 59
4.3.3 Best CNN With Wavelet Preprocessing 61
4.3.4 Best CNN With Transform Combinations 63

4.4 Transformer . 67
4.4.1 Different Transformer Architectures 67
4.4.2 Best Transformer With Autoencoder Preprocessing 68
4.4.3 Best Transformer With Wavelet Preprocessing 70
4.4.4 Best Transformer With Transform Combinations 72

4.5 Summary . 75

5 Discussion 76
5.1 Comparing Results . 76

5.1.1 Univariate vs. Multivariate Models 76

ix

Contents

5.1.2 Confidence, Variance, and Words of Caution 76
5.1.3 Model Architecture . 77
5.1.4 Preprocessing and Augmentation Methods 77

5.2 Limitations . 78
5.3 Future Work . 79
5.4 Ethical and Societal Aspects . 80

5.4.1 Privacy . 80
5.4.2 Confidence and Interpretability 80
5.4.3 Sustainability . 80

6 Conclusion 82

Bibliography 83

A Theory On Artificial Neural Networks I
A.1 Neurons . I
A.2 Activation Functions . II
A.3 Loss Functions . IV
A.4 Stochastic Gradient Descent . V
A.5 Generative and Discriminative Models VIII

A.5.1 Generative Models . VIII
A.5.2 Discriminative Models . VIII

A.6 Hypothesis Space and Generalization IX

x

List of Acronyms

ANN Artificial Neural Network. 21, 32, 38, 40, 82, II, IV–VI, IX

BCE Binary Cross-Entropy. IV

CLC Contrasted Linear Combination. 18–20, 48, 49, 56, 57, 64, 65, 73, 82
CNN Convolutional Neural Network. 7–9, 21, 25, 32, 34–36, 58–66, 75–78, 82
Conv1D One-dimensional convolutional layer. 34, 35
CVD Cardiovascular Disease. 1

ECG Electrocardiogram. 28, 29
EEG Electroencephalography. 9, 29, 79
EI Expected improvement. 27
EOG Electrooculogram. 28, 29
ESN Echo State Networks. VIII

FCNN Fully Convolutional Neural Network. 21
FNN Feed Forward Neural Network.

GP Gaussian process. 27
GRU Gated Recurrent Unit. 21

IC Independent Component. 29
ICA Independent Component Analysis. 29
iEEG Intracranial Electroencephalography. 29
ILSTM Incorrect LSTM. 32–34, 36, 40–49, 75–77

LOOCV Leave One Out Cross-Validation. 31, 40, 75
LSTM Long-Short Term Memory. 4, 21–23, 25, 31–33, 40–42

MEG Magnetoencephalography. 1–7, 9–12, 28, 29, 32, 35, 76, 79, 82

xi

List of Acronyms

Mexh Mexican Hat wavelet. 46, 54, 62, 71
MLP Multilayer Perceptron. 4, 21, 23, 25, 32–34, 36, 50–57, 75–77, VI, VII
Morl Morlet wavelet. 46, 54, 62, 71
MSE Mean Squared Error. 7, IV, VII
MSNA Muscle Sympathetic Nerve Activity. 1, 2, 4–7, 28, 30, 32, 34, 36, 37, 39,

76, 79, 80, 82, IV

PLU Piecewise Linear Unit. III

ReLU Rectified Linear Unit. 32–34, 36, III
RNN Recurrent Neural Network. 21, 22, VIII
RWS Random Window Slicing. 12, 48, 56, 64, 65, 73, 74, 82

S4 Structured State Spaces for Sequence Modeling. 21
SDG Sustainable Development Goal. 80
SGD Stochastic Gradient Descent. V, VI

tSSS Temporal Signal Space Separation. 29

WandB Weights & Biases. 39

xii

Nomenclature

Indices

µ Index of column data vector in X(µ) or X
ν Index of mini batch matrix
t Time step index
l The index of a layer in an ANN.

Matrices

X The full matrix of column data vectors.
Y The full matrix of column target vectors.
X(ν) Data matrix of mini batch number ν.
Y(ν) Target matrix of mini batch number ν.
W(l) The weight matrix of layer l in an FNN
Θ The network parameter matrix of an ANN.

Vectors

x⃗(µ) Column data vector µ
X(µ) Column data vector µ in data matrix X
Y(µ) Column target vector µ in target matrix Y
X(µ)

(ν) Column data vector µ in mini batch data matrix X(ν)

Y(µ)
(ν) Column target vector µ in mini batch target matrix Y(ν)

V⃗ (l,µ) Neuron state vector of layer l in an FNN for data vector µ
θ⃗(l) The threshold vector of layer l in an FNN for data vector µ
b⃗(l,µ) Local field vector of layer l in an FNN for data vector µ

xiv

Functions

f̂Θ The function approximated with an ANN with parameters Θ
L Loss function
J Expected loss function
g Activation function

Variables

xt MEG data point at time step t

x̃t Approximated MEG data point at time step t

y Actual MSNA inhibition/non-inhibition label
ŷ Predicted MSNA inhibition/non-inhibition label
l(µ) Actual label of data vector µ
δa,b Kronecker delta, δa,b = 1 if a = b. Otherwise, δa,b = 0

Distributions

p̂data Data distribution

Constants

p Total number of data points in the data set
M Number of classes. In this thesis equal to 2 (MSNA inhibitor and

non-inhibitor)
L Number of layers in an FNN

xv

List of Figures

1.1 Current clinical process for measuring MSNA inhibition. Source: [3]
(with permission). 2

1.2 Example of a MEG scanner and the placement of sensors. 3
1.3 Example time series from one MEG sensor during the process carried

out in Figure 1.1. The x-axis corresponds to milliseconds relative to
the electric stimulus. 3

1.4 Lateral View Of The Brain. Source: Adapted from [13]. 4

2.1 A schematic of an autoencoder of depth 2 with univariate input. M
denotes the length of the input/output, N denotes the number of
neurons in the hidden layers, and K denotes the number of neurons
in the encoded layer. Note that: K < N < M 8

2.2 A schematic of a CNN autoencoder of depth D with multivariate
input (306 channels) and kernel size 1. M denotes the length of the
input/output, K denotes the length of the encoded data. Note that:
K < M . 8

2.3 A time series and its counterpart after being filtered with an autoen-
coder of depth 1 and encoding dimension 100. 9

2.4 A real-valued Morlet wavelet with n = 5 and σ = 1 (see Equation 2.4). 10
2.5 A time series and its counterpart at 15 Hz which was extracted with

the Morlet wavelet transform. 11
2.6 A time series and a stochastically extracted slice of length 400. 12
2.7 A time series and a permutation of it. 13
2.8 Red dots denote the time warp points. Purple squares denote the

original time steps corresponding to the time warp points. Orange
diamonds represent the warped time steps. Dashed arrows denote the
time step mappings, resulting in the orange time series when applied
on the purple one. 14

2.9 A time series and its time-warped counterpart. 15
2.10 A time series and its counterpart jittered with Gaussian noise. 15
2.11 A time series and its stochastically scaled counterpart. 16
2.12 An extreme example of a cubic spline. Purple dots are start and end

points. Orange dots are knots and their scaling values are distributed
to mimic N (1, 1.5). 17

2.13 A time series and its magnitude warped counterpart. 18
2.14 Batch B and its CLC augmented counterpart Bnew 19

xvi

2.15 Illustration of a multilayer perceptron with one hidden layer. 22
2.16 Illustration of a LSTM cell. 22
2.17 Illustration of a Transformer Encoder layer. 24
2.18 Illustration of a one-dimensional CNN. 25

3.1 Subject data breakdown. The available data comes from 19 subjects.
There were 72 stimulus trials per subject, consisting of 3 electrical
shocks each. For each shock, time series data was collected by 306
sensors, which after some preprocessing covered the range [-100ms,
1500ms] relative to the electric stimulus. 29

3.2 Data split used in previous iterations of the project. The numbers
in bold are the anonymized patient identification numbers and the
numbers below them are the respective MSNA activity reduction per-
centages. 30

3.3 Data split used in this project. The numbers in bold are the anonymized
patient identification numbers and the numbers below them are the
respective MSNA activity reduction percentages. 30

3.4 The seemingly intended LSTM architecture from the previous theses. 33
3.5 The incorrect LSTM (ILSTM) architecture from the previous theses. 33
3.6 The MLP architecture designed to mimic the ILSTM model from the

previous theses. 34
3.7 The generic CNN model architecture used in this thesis. The time

series length is 1600 and there are 306 sensors. Nf denotes the number
of convolutional filters. Lf denotes the length of the filters. 35

3.8 An example of the transformer model architecture. The time series
length is 1600 and there are 306 sensors. Nf denotes the number of
convolutional filters. Lf denotes the length of the filters. NH denotes
the number of attention heads in the self attention layer. 36

3.9 Illustration of the model-data pipeline. The cross and check marks de-
note the model’s predictions for MSNA inhibition and non-inhibition.
The numbers in bold are the anonymized patient identification num-
bers and the numbers below them are the respective MSNA activity
reduction percentages. 37

4.1 Parallel coordinates plot showing the LSTM reproduction sweep re-
sults. The thick line corresponds to the best identified configuration. 41

4.2 Parallel coordinates plot showing the sweep results of ILSTM archi-
tectures. The thick line corresponds to the best identified architecture
and data combination. 42

4.3 Training and validation accuracy for the best identified ILSTM model
identified in Figure 4.2 with a 95% confidence interval computed from
the cross validation folds. 42

4.4 Parallel coordinates plot showing sweep results using the best ILSTM
model identified in Figure 4.2 with different autoencoder architec-
tures. The thick line corresponds to the best identified autoencoder
hyperparameters and data combination. 44

xvii

4.5 Training and validation accuracy for the best configuration identified
in Figure 4.4 with a 95% confidence interval computed from the cross
validation folds. 44

4.6 Parallel coordinates plot showing sweep results of the best ILSTM
model identified in Figure 4.2 and (optionally) the best autoencoder
identified in Figure 4.4 with different wavelet preprocessing trans-
forms. The thick line corresponds to the best identified configuration. 46

4.7 Training and validation accuracy for the best wavelet configuration
identified in Figure 4.6 with a 95% confidence interval computed from
the cross validation folds. 46

4.8 Parallel coordinates plot showing sweep results of the best ILSTM
model identified in Figure 4.2 with random data transform combi-
nations. The thick line corresponds to the best identified transform
combination. “T” and “F” denote “True” and “False” respectively. . . 48

4.9 Training and validation accuracy for the best transform combination
identified in Figure 4.8 with a 95% confidence interval computed from
the cross validation folds. 48

4.10 Parallel coordinates plot showing the sweep results of MLP architec-
tures. The thick line corresponds to the best identified architecture
and data combination. 50

4.11 Training and validation accuracy for the best identified MLP identi-
fied in Figure 4.10 with a 95% confidence interval computed from the
cross validation folds. 51

4.12 Parallel coordinates plot showing sweep results using the best MLP
identified in Figure 4.10 with different autoencoder architectures. The
thick line corresponds to the best identified Autoencoder hyperparam-
eters and data combination. 52

4.13 Training and validation accuracy for the best configuration identified
in Figure 4.12 with a 95% confidence interval computed from the cross
validation folds. 52

4.14 Parallel coordinates plot showing sweep results of the best MLP iden-
tified in Figure 4.10 and (optionally) the best autoencoder identified
in Figure 4.12 with different wavelet preprocessing transforms. The
thick line corresponds to the best identified configuration. 54

4.15 Training and validation accuracy for the best wavelet configuration
identified in Figure 4.14 with a 95% confidence interval computed
from the cross validation folds. 54

4.16 Parallel coordinates plot showing sweep results of the best MLP iden-
tified in Figure 4.10 with random data transform combinations. The
thick line corresponds to the best identified transform combination.
“T” and “F” denote “True” and “False” respectively. 56

4.17 Training and validation accuracy for the best transform combination
identified in Figure 4.16 with a 95% confidence interval computed
from the cross validation folds. 56

xviii

4.18 Parallel coordinates plot showing the sweep results of CNN architec-
tures. The thick line corresponds to the best identified architecture
and data combination. 58

4.19 Training and validation accuracy for the best identified CNN model
identified in Figure 4.18 with a 95% confidence interval computed
from the cross validation folds. 59

4.20 Parallel coordinates plot showing sweep results using the best CNN
model identified in Figure 4.18 with different autoencoder architec-
tures. The thick line corresponds to the best identified autoencoder
hyperparameters and data combination. 60

4.21 Training and validation accuracy for the best configuration identified
in Figure 4.20 with a 95% confidence interval computed from the cross
validation folds. 60

4.22 Parallel coordinates plot showing sweep results of the best CNN model
identified in Figure 4.18 and (optionally) the best autoencoder iden-
tified in Figure 4.20 with different wavelet preprocessing transforms.
The thick line corresponds to the best identified configuration. 62

4.23 Training and validation accuracy for the best wavelet configuration
identified in Figure 4.22 with a 95% confidence interval computed
from the cross validation folds. 62

4.24 Parallel coordinates plot showing sweep results of the best CNN model
identified in Figure 4.18 with random data transform combinations.
The thick line corresponds to the best identified transform combina-
tion. “T” and “F” denote “True” and “False” respectively. 64

4.25 Training and validation accuracy for the best transform combination
identified in Figure 4.24 with a 95% confidence interval computed
from the cross validation folds. 64

4.26 Violin plot showing training, validation, and test accuracy distribu-
tions over all four cross-validation folds in all 132 repetition runs of
the best CNN and the best transform combination seen in Figure 4.24. 66

4.27 Parallel coordinates plot showing the sweep results of transformer
architectures. The thick line corresponds to the best identified archi-
tecture and data combination. 67

4.28 Training and validation accuracy for the best identified transformer
model identified in Figure 4.27 with a 95% confidence interval com-
puted from the cross validation folds. 68

4.29 Parallel coordinates plot showing sweep results using the best trans-
former model identified in Figure 4.27 with different autoencoder ar-
chitectures. The thick line corresponds to the best identified autoen-
coder hyperparameters and data combination. 69

4.30 Training and validation accuracy for the best configuration identified
in Figure 4.29 with a 95% confidence interval computed from the cross
validation folds. 69

xix

4.31 Parallel coordinates plot showing sweep results of the best transformer
model identified in Figure 4.27 and (optionally) the best autoencoder
identified in Figure 4.29 with different wavelet preprocessing trans-
forms. The thick line corresponds to the best identified configuration. 71

4.32 Training and validation accuracy for the best wavelet configuration
identified in Figure 4.31 with a 95% confidence interval computed
from the cross validation folds. 71

4.33 Parallel coordinates plot showing sweep results of the best transformer
model identified in Figure 4.27 with random data transform combi-
nations. The thick line corresponds to the best identified transform
combination. “T” and “F” denote “True” and “False” respectively. . . 73

4.34 Training and validation accuracy for the best transform combination
identified in Figure 4.33 with a 95% confidence interval computed
from the cross validation folds. 73

A.1 A McCulloch-Pitts neuron schematic. I
A.2 A general neuron schematic. The activation function is denoted as g. II
A.3 A non-linear, continuous activation function: Tangens hyperbolicus

(g(b) = tanh(b)). III
A.4 A piecewise linear activation function: ReLU (g(b) = max(0, b)). . . . III
A.5 The blue circles represent the hypothesis space of the “good” model,

the purple ones represent the hypothesis space of the “bad” model,
and the red area represents the set of functions that describe the data
distribution well. IX

xx

List of Tables

4.1 The model hyperparameters of the autoencoder and ILSTM from the
2020 thesis [15]. 41

4.2 Accuracies obtained with the hyperparameters in Table 4.1. 41
4.3 The best data and ILSTM hyperparameters. 43
4.4 Accuracies obtained with the hyperparameters in Table 4.3. 43
4.5 The best data and autoencoder hyperparameters when used together

with the best ILSTM. 45
4.6 Accuracies obtained with the hyperparameters in Table 4.5. 45
4.7 The best data and wavelet transform hyperparameters when used

together with the best ILSTM. 47
4.8 Accuracies obtained with the hyperparameters in Table 4.7. 47
4.9 The best data and transform combination hyperparameters when

used together with the best ILSTM. The transforms are listed in
the order as they were applied during training/validation/testing. . . 49

4.10 Accuracies obtained with the hyperparameters in Table 4.9. 49
4.11 The best data and MLP hyperparameters. 51
4.12 Accuracies obtained with the hyperparameters in Table 4.11. 51
4.13 The best data and autoencoder hyperparameters when used together

with the best MLP. 53
4.14 Accuracies obtained with the hyperparameters in Table 4.13. 53
4.15 The best data and wavelet transform hyperparameters when used

together with the best MLP. 55
4.16 Accuracies obtained with the hyperparameters in Table 4.15. 55
4.17 The best data and transform combination hyperparameters when

used together with the best MLP. The transforms are listed in the
order as they were applied during training/validation/testing. 57

4.18 Accuracies obtained with the hyperparameters in Table 4.17. 57
4.19 The best data and CNN hyperparameters. 59
4.20 Accuracies obtained with the hyperparameters in Table 4.19. 59
4.21 The best data and autoencoder hyperparameters when used together

with the best CNN. 61
4.22 Accuracies obtained with the hyperparameters in Table 4.21. 61
4.23 The best data and wavelet transform hyperparameters when used

together with the best CNN. 63
4.24 Accuracies obtained with the hyperparameters in Table 4.23. 63

xxi

4.25 The best data and transform combination hyperparameters when
used together with the best CNN. The transforms are listed in the
order as they were applied during training/validation/testing. 65

4.26 Accuracies obtained with the hyperparameters in Table 4.25, averaged
over four cross-validation folds. 65

4.27 The best data and transformer hyperparameters. 68
4.28 Accuracies obtained with the hyperparameters in Table 4.27. 68
4.29 The best data and autoencoder hyperparameters when used together

with the best transformer. 70
4.30 Accuracies obtained with the hyperparameters in Table 4.29. 70
4.31 The best data and wavelet transform hyperparameters when used

together with the best transformer. 72
4.32 Accuracies obtained with the hyperparameters in Table 4.31. 72
4.33 The best data and transform combination hyperparameters when

used together with the best transformer. The transforms are listed in
the order as they were applied during training/validation/testing. . . 74

4.34 Accuracies obtained with the hyperparameters in Table 4.33. 74
4.35 Summary of the highest obtained prediction accuracies in each per-

formed sweep. The highest accuracies are written in bold. 75

xxii

1
Introduction

This chapter introduces the issue under investigation in this Master’s thesis project,
namely how to accurately classify muscle sympathetic nerve activity (MSNA) inhi-
bition from magnetoencephalography (MEG) brain activity. The background of the
problem at hand, previous work, the aim of this thesis, its delimitations, and its
specifications are all covered in the following.

1.1 Background
According to the World Health Organization [1], around a third of all deaths world-
wide occur due to cardiovascular disease (CVD).
One of the biggest factors for CVD is essential hypertension (high blood pressure)
[2], [3]. Hypertension, from the greek hyper, meaning “beyond”, and tension, which
means stretching or straining, refers to the excessive strain on your blood vessels
from abnormally high blood pressure [4]. Essential/primary hypertension is a kind
of hypertension that originates from genetic or environmental factors, as opposed to
secondary hypertension which has identifiable causes such as diseased organs [5].
One likely cause for essential hypertension is a lifetime of arousal-induced elevated
blood pressure responses. The nerve activity responsible for regulating blood pres-
sure is the muscle sympathetic nerve activity (MSNA).

1.1.1 Muscle Sympathetic Nerve Activity (MSNA)
The sympathetic nervous system is responsible for your body’s fight-or-flight re-
sponse [6]. It can control the behavior of various organs in your body in response to
scary or stressful situations. One functionality of the sympathetic nervous system is
the ability to constrict or dilate vasculature [3]. This is also known as vasoconstric-
tion/vasodilation [7]. Constricted vasculature forces blood to flow through a smaller
volume, which increases blood pressure.
The sympathetic nervous system regulates vasculature size through electrical activ-
ity. This activity is called muscle sympathetic nerve activity (MSNA) [7]. There
is always a baseline level of MSNA activity [8]. Going higher than this baseline
induces constriction, while going lower induces dilation [3].
For parts of the population, stressful situations induce an increased MSNA response.

1

1. Introduction

If they are exposed to stress often, this can lead to long-term negative health im-
plications. The rest of the population exhibit an inhibition of MSNA activity when
stressed, which dilates the vasculature. These individuals are not exposed to the
same risk [3]. The knowledge of which of these categories an individual belongs to
can enable medical professionals to prescribe appropriate preventative measures to
their patients.
The current standard approach for determining whether an individual is an MSNA
inhibitor is through an invasive method. MSNA can be measured with microneu-
rography, for example through the electrical activity in the peroneal nerve in the leg
(see Figure 1.1). By recording this activity and providing some stressful stimulus,
such as an electrical shock in the finger, it is possible to determine whether the
MSNA activity is inhibited during stress. The standard procedure is to label those
with a MSNA activity reduction by 30% or more after the stimulus as “inhibitors”
and the rest as “non-inhibitors” [3]. This procedure works, but is slow and invasive.
As with most invasive procedures, it is rarely done unless absolutely necessary. It is
therefore worth investigating other approaches for getting this data.

Integrated neurogram

Reference

Probe

Volume-clamp

Arterial pressure

Sphygmomanometer

Baroreflex latency

Non-inhibitors

-100

0

30

100

104

102

100

98

-5 0 5 10 15 20

Inhibitors
STIM

STIM

30%

a b

c d

M
ea

n
ar

te
ria

l B
P

(%
)

M
SN

A
in

hi
bi

to
n

(%
)

Cardiac cycle

~~1.4s

Peroneal
nerve

Figure 1.1: Current clinical process for measuring MSNA inhibition. Source: [3]
(with permission).

Classifying a patient as an inhibitor or non-inhibitor of MSNA can be done by
analyzing brain activity data obtained with magnetoencephalography.

1.1.2 Magnetoencephalography (MEG)
Magnetoencephalography (MEG) is a method for measuring brain activity based
on fluctuations in the magnetic field [9]. This is achieved by placing very sensitive
magnetic sensors close to the skull, as illustrated in Figure 1.2b. To avoid the
interference of background noise, subjects must also be inside a magnetically shielded
room when the measurements are performed. Figure 1.2a shows an example of an
MEG scanner in such a room. An example of the MEG data recorded from one
sensor during the process illustrated in Figure 1.1 can be seen in Figure 1.3.

2

1. Introduction

(a) MEG scanner at the University of
Oxford. Source: [10].

(b) Placement of MEG sensors.
Source: Adapted from [11].

Figure 1.2: Example of a MEG scanner and the placement of sensors.

0 200 400 600 800 1000 1200 1400
Time [ms]

3

2

1

0

1

2

M
ag

ne
tic

 Fi
el

d
[fT

]

MEG Time Series

Figure 1.3: Example time series from one MEG sensor during the process carried
out in Figure 1.1. The x-axis corresponds to milliseconds relative to the electric

stimulus.

3

1. Introduction

In 2018, it was found that there is a correlation between MSNA and MEG activity.
In particular, a correlation was found in the Rolandic area of the brain (surrounding
the central sulcus [12], see Figure 1.4) around the beta frequency band (13–25 Hz)
[3].

Precentral gyrus
Central sulcus

Postcentral gyrus

Figure 1.4: Lateral View Of The Brain. Source: Adapted from [13].

1.2 Previous Work
This section describes the previous work on the subject at hand that this thesis
builds upon.

1.2.1 Previous Master’s Theses
In collaboration with Syntronic and MedTech West, two previous Master’s thesis
projects have already investigated the use of neural networks for predicting hyper-
tension development from MEG data to an extent. None of the made attempts
resulted in classification accuracies of MSNA inhibition sufficiently high enough for
clinical use (for example a threshold of 90% on the test set, as suggested by Park,
et al.) [14]–[16].
In the first thesis from 2020 [15], the authors investigated whether long short-term
memory networks (LSTM), and multilayer perceptron networks (MLP) could classify
MSNA inhibition with high accuracy. They also examined whether an autoencoder
could be used to increase the accuracy by acting as a high-frequency filter. Neither
method resulted in high classification accuracies on the used test set, the highest
being 64.5% [15], which means that their models did not generalize well. This is
however not surprising given the small data set used. It is also worth noting that
cross-validation was not used, which means that the previous results should be taken
with a grain of salt.
The second thesis project from 2021 [16] attempted to increase the accuracy of the

4

1. Introduction

models from the previous thesis by filtering out MEG frequencies not in the beta-
frequency band since it is correlated to MSNA (See Section 1.1.2). The hypothesis
was that individuality could be discarded from the data this way and therefore
lead to greater generalization. They however found that this led to a decrease in
classification accuracy and concluded that it is not only the beta-band that carries
important information regarding MSNA inhibition.

1.2.2 Traditional Statistical Approaches
Besides the two aforementioned Master’s theses, there have also been attempts to
analyze the MEG data using traditional statistical methods [17]. These approaches
have been relatively successful in finding regions where activity in the beta band
correlates strongly with MSNA activity.
Two downsides of traditional statistical approaches are that, 1) Currently, according
to the research of this thesis, no attempt has been made to make a classifier based
on this signal. Despite a high correlation, it is possible that there is a large over-
lap between the classes, and it may therefore be difficult to make a good decision
boundary. 2) The approach requires an averaging over many MEG measurements,
requiring around 1 hour per patient to get a result [3].

1.3 Aim
As discussed in [16], a potential reason for the poor MSNA inhibition classification
accuracies in the previous attempts is that the dataset only contains data from
19 individuals. It was and still is therefore very difficult to train a model that
generalizes well across the larger population. The aim of this project is to explore
different ways of preprocessing and augmenting the data, as well as trying new deep
learning architectures to hopefully increase generalization performance.

1.4 Delimitations
One limitation of this Master’s thesis project is that no more data will be collected.
The only data that will be used when training models is what has been given:
a dataset with a mere 19 subjects, but with a lot of MEG time series data per
individual. In total, the dataset is 31 GB. Having just 19 subjects will, as stated
before, make the task of classifying whether an individual is an MSNA inhibitor
or not difficult. This is however what is available and there is currently no option
available for obtaining more data at this time.
Another limitation is that the analysis will be restricted to the time domain, similar
to previous projects, as another Master’s thesis project at Syntronic running in
parallel will investigate classification in the time-frequency domain.
A third limitation is that architectures developed during this project need to be
sufficiently resource-efficient to be able to run on the computers accessible at the
office of Syntronic in Gothenburg. For example, neural networks cannot have too

5

1. Introduction

many parameters. The computer that will be used for training has approximately
12 GB of VRAM and about 30 GB of RAM, which limits the number of parameters,
especially since another thesis project will use it simultaneously.
A fourth limitation is that the prediction models developed here will not be designed
to be user-friendly so that they can be used in clinical settings. The focus of this
project is solely to find ways of accurately classifying MSNA inhibitors and non-
inhibitors based on time series MEG data.
A final limitation is that the focus of this project will be restricted to analyzing
sensor-level data.

6

2
Theory

This chapter introduces the relevant technical theory underlying the work done in
this Master’s thesis project.

2.1 Preprocessing of Time Series Data
Preprocessing involves performing different computational operations on a dataset
before feeding it to a machine learning model. The purpose of doing this is typically
to get the data into a form that the model can work with or to simplify the task. The
most common operations are scaling and resampling (down/up-sampling). These
operations are provided by many libraries such as tslearn [18]. Other common
operations are feature extraction (provided by libraries such as TSFEL [19]), and
frequency filtering [20, Section 7.2].
The rest of this section describes two preprocessing methods used in this thesis:
Noise-removal with autoencoders and feature extraction with wavelets. The former
could be of value because of potential external disturbances in the magnetic field
measured with MEG. The latter could be of value because of certain MEG signal
frequencies having stronger correlations with MSNA, as mentioned in Section 1.1.2.

2.1.1 Removing Noise With Autoencoders
Autoencoders are generative artificial neural networks [21] (see Appendix A.5) and
can be used for preprocessing as tools for filtering out noise in data. The autoencoder
first encodes the data into a smaller format which only consists of its most crucial
characteristics (see the red, middle layers in Figure 2.1 and Figure 2.2). It then
decodes the encoded data to the same dimension as the input.
By minimizing for example the mean squared error (MSE, a loss function, see Ap-
pendix A.3) between the network output and the input, the autoencoder learns to
replicate the input quite well but not perfect. Noise is thus discarded [22].
An autoencoder with linear layers for univariate data (see Figure 2.1) was used to
remove noise in the 2020 thesis [15]. However, autoencoders can also be imple-
mented as convolutional neural networks (CNNs) to be used on multivariate data
by moving a kernel over its channels (see Figure 2.2). If the kernel size is 1, the
CNN autoencoder is equivalent to applying an autoencoder with linear layers on
each channel.

7

2. Theory

Encoded Layer

Encoder Decoder

Input Output

Figure 2.1: A schematic of an autoencoder of depth 2 with univariate input. M
denotes the length of the input/output, N denotes the number of neurons in the
hidden layers, and K denotes the number of neurons in the encoded layer. Note

that: K < N < M .

Encoder DecoderEncoded

Layer

Repeated D TimesRepeated D Times

Figure 2.2: A schematic of a CNN autoencoder of depth D with multivariate
input (306 channels) and kernel size 1. M denotes the length of the input/output,

K denotes the length of the encoded data. Note that: K < M .

8

2. Theory

The size of the encoded layer and the kernel size are not the only hyperparameters
that autoencoders can have. Their depths can also be varied. Figure 2.1 shows an
autoencoder with linear layers of depth 2, Figure 2.2 shows a CNN autoencoder with
an arbitrary depth D ∈ Z+.
A plot showing the effect of an autoencoder on a time series from the provided data
set for this thesis can be seen in Figure 2.3 below.

0 200 400 600 800 1000 1200 1400
Time [ms]

3

2

1

0

1

2

M
ag

ne
tic

 Fi
el

d
[fT

]

Autoencoder (Depth: 1, Encoding Size: 100)
Original
Transformed

Figure 2.3: A time series and its counterpart after being filtered with an
autoencoder of depth 1 and encoding dimension 100.

2.1.2 Feature Extraction With Wavelet Transforms
Wavelets can be used for feature extraction in time series. It has for example been
used for this purpose on EEG data [23], which is similar to the MEG data used in
this thesis. A wavelet is a wave that only fluctuates for a short amount of time,
compared to a big wave such as the sine function, which oscillates infinitely over
time [24]. When used for feature extraction, the wavelet in question is convolved
over the signal in the time dimension, resulting in a new signal (sequence of wavelet
coefficients) [25].
A wavelet ψab(t) has two parameters: dilation (a, also called scale [26]) and trans-
lation (b). The dilation a determines which frequency will be extracted from the
convolution and the translation only results in the wavelet coefficients being shifted
one way or another. The so-called mother function of the wavelet is simply the
wavelet without the dilation and translation constraints, meaning: ψ(t). Two prop-
erties of ψ(t) are that its integral is equal to 0 and that the integral of its square is
equal to 1. In the formulas down below, the function f is the target of the wavelet
transform and Wf (a, b) is the result of the convolution or, in other words, the wavelet

9

2. Theory

coefficients [25]. In the context of this thesis, f represents a time series in the MEG
data.

ψab(t) = 1√
a
ψ
(t− b

a

)
, Wf (a, b) =

∫ ∞

−∞
ψab(t)f(t)dt (2.1)

One example of a wavelet family is complex Morlet wavelets. They are defined as in
Equation 2.2. The first factor in Equation 2.2 is a complex sine wave and h denotes
its frequency. The second factor is a Gaussian window with a width of σ and n
number of cycles [27]. This window essentially turns the otherwise endless sine wave
into a short wave, or in other words a wavelet.

ψ(t) = e2iπhte
−t2
2σ2 , σ = n

2πh (2.2)

The pywt [26] library defines the complex Morlet wavelets slightly differently (see
Equation 2.3) with two other parameters B (bandwidth) and C (center frequency,
same as h).

ψ(t) = 1√
πB

e
−t2

B e2iπCt (2.3)

There are also real-valued Morlet wavelets. The one defined in the pywt library has
a number of cycles n = 5 and the Gaussian window width σ = 1 (see Equation 2.4)
[26]. The plot of the wavelet can be seen in Figure 2.4.

ψ(t) = e
−t2

2 cos(5t) (2.4)

4 3 2 1 0 1 2 3 4
t [a.u.]

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

(t)

Morlet Wavelet (Real-valued, n = 5, = 1)

Figure 2.4: A real-valued Morlet wavelet with n = 5 and σ = 1 (see Equation
2.4).

10

2. Theory

The plot below shows an example of how a time series of MEG data looks after
having been transformed with the real-valued Morlet wavelet from Equation 2.4 at
15 Hz.

0 200 400 600 800 1000 1200 1400
Time [ms]

6

4

2

0

2

4

6

8

M
ag

ne
tic

 Fi
el

d
[fT

]

Morlet Wavelet (Real-valued, n = 5, = 1, Frequency: 15 Hz)
Original
Transformed

Figure 2.5: A time series and its counterpart at 15 Hz which was extracted with
the Morlet wavelet transform.

There is an infinite amount of wavelet types and variations of them. Two examples
beyond Morlet are the Haar and Mexican Hat wavelets [24]. Each wavelet is better
suited for different problems. It is thus necessary to choose wavelets carefully [28],
[29]. The described Morlet wavelet is for example often used on neuroelectrical
signals [27], which are similar to the MEG data at hand in this thesis (see Section
1.1.2 and Section 3.1).

11

2. Theory

2.2 Augmentation of Time Series Data
Data augmentation involves generating synthetic data in order to increase the size
of data sets [30]. The available data set is, as mentioned before, quite small. Data
augmentation could therefore be beneficial as it would expand the data set. This
could enable the deep learning models to generalize better. This section covers some
existing augmentation techniques related to time series data that could be used when
augmenting the data at hand.
As the dataset expands with variants of the original data, neural networks will learn
not to pay attention to the properties that the augmentation techniques give the
data. For example, if the data is permuted randomly as explained in Section 2.2.2,
they will learn that the order of things does not matter. It is not always clear which
properties can be ignored, which is why many data augmentation techniques have
been considered and tested in this thesis (see Chapter 4 and Section 5.1.4 for more
on the subject).
It is important to note that augmenting data can result in labels changing, which
would be detrimental to classification accuracies. Mislabeling data results in so-
called “class noise” [31]. In the context of MEG time series, domain knowledge is
needed to determine which augmentation techniques presented in this section could
result in such noise.

2.2.1 Random Window Slicing (RWS)
A common way of augmenting time series data is to slice it into segments. Each
slice keeps the label of the time series it was extracted from, and a network can
then be trained on them rather than on the whole time series. This augmentation
method is called window slicing [32], [33]. In the deterministic case, this is more
of a preprocessing technique but the window location can be decided randomly as
well. See Figure 2.6 for an example of what this augmentation technique does.

0 200 400 600 800 1000 1200 1400
Time [ms]

-3

-2

-1

0

1

2

M
ag

n
et

ic
 F

ie
ld

 [
fT

]

MEG Time Series

0 50 100 150 200 250 300 350 400
Time [ms]

-2.0

-1.5

-1.0

-0.5

0.0

0.5

1.0

1.5
Window Length: 400

Figure 2.6: A time series and a stochastically extracted slice of length 400.

12

2. Theory

2.2.2 Permutation
The window slicing data augmentation technique mentioned in the previous sub-
section leads directly to another method called permutation. It involves slicing the
time series into pieces and randomly putting them together again, thus forming a
new time series [34], [35]. See Figure 2.7 for an example of what this augmentation
technique does.

0 200 400 600 800 1000 1200 1400
Time [ms]

3

2

1

0

1

2

M
a
g
n
e
ti

c
Fi

e
ld

 [
fT

]

Permutation (Slice Count: 3)

Original

Transformed

Figure 2.7: A time series and a permutation of it.

2.2.3 Time Warping and Window Warping
Another method is called time-warping [34] or simply warping and involves speeding
up or slowing down segments in the time series. This however results in new time
series that are of different lengths. To combat this, this augmentation method can
be combined with window slicing in order to make all data the same length. This
combination is called window warping [32].
Instead of having to slice away data after performing a time-warp as in window
warping, a similar method was developed for this thesis. From here on out, this
is what is meant by “time warping”. First, a sequence of two-dimensional points
with coordinates x and y are randomly generated. Both coordinates are within the
integer range of the time series in question, meaning [−100, 1500] in the context of
this thesis (see Section 3.1.1). The first coordinate, x, defines the start/end of a
section in the original time series that will be warped. The second coordinate, y,
defines the corresponding start/end of a section in time in the warped time series.
Thus, if this time warping procedure is denoted as a function f , this means that
f(x) = y. The second step clamps the end points of the generated sequence to

13

2. Theory

the minimum and maximum of the time range. This forces the augmented time
series to have the same dimension as the original. After that, a spline is created by
interpolating between the generated time warp points (Figure 2.8 shows the spline
as a red line). The original time series is then finally warped by mapping the time
values of its data points to the y values of the interpolated spline.
The effect of the time-warp on the data can be tweaked with a hyperparameter
ω, which will be called warp factor (ω ∈ [0, 1]). The final augmented data X̃
is computed as in Equation 2.5, where W is the time-warped data and X is the
original data.

X̃ = ωW + (1− ω)X (2.5)

Figure 2.9 shows an actual time series from the provided data set and its time
warped counterpart.

-100 1500300 700 1100

300

700

1100

-100

1500

Ti
m

e
[m

s]

-100 1500

Time [ms]

300 700 1100

Mapping Time Steps
y

x

-100 1500300 700 1100
-3

-2

-1

0

1

2

M
ag

ne
tic

 F
ie

ld
 [f

T]

-100 1500300 700 1100

Time [ms]

-3

-2

-1

0

1

2

M
ag

ne
tic

 F
ie

ld
 [f

T]
Before and After Time Warping

Figure 2.8: Red dots denote the time warp points. Purple squares denote the
original time steps corresponding to the time warp points. Orange diamonds

represent the warped time steps. Dashed arrows denote the time step mappings,
resulting in the orange time series when applied on the purple one.

14

2. Theory

0 200 400 600 800 1000 1200 1400
Time [ms]

3

2

1

0

1

2
M

a
g
n
e
ti

c
Fi

e
ld

 [
fT

]

Time Warp (Steps Per Warp: 480, Warp Factor: 1.5)

Original

Transformed

Figure 2.9: A time series and its time-warped counterpart.

2.2.4 Jittering
Time series data can also be augmented by adding noise to it [36]. This method is
called jittering and can for example be done by adding noise following a Gaussian
distribution to each time step of the data [35]. See Figure 2.10 for an example of
what this augmentation technique does.

0 200 400 600 800 1000 1200 1400
Time [ms]

4

3

2

1

0

1

2

3

M
ag

ne
tic

 Fi
el

d
[fT

]

Gaussian Jitter (: 0.5)
Original
Transformed

Figure 2.10: A time series and its counterpart jittered with Gaussian noise.

15

2. Theory

2.2.5 Stochastic Scaling
Scaling is another data augmentation method and involves scaling the value the
same at every time step in the time series. The scaling factor can for example be
sampled from a Gaussian distribution. This does not affect length of the time series
[35]. See Figure 2.11 for an example of what this augmentation technique does.

0 200 400 600 800 1000 1200 1400
Time [ms]

4

2

0

2

4

M
ag

ne
tic

 Fi
el

d
[fT

]

Scaling (: 1.5)
Original
Transformed

Figure 2.11: A time series and its stochastically scaled counterpart.

2.2.6 Magnitude Warping
An augmentation technique similar to scaling is magnitude warping which also in-
volves scaling the magnitude. Here, it is however done according to a cubic spline
which is a smooth curve.
First, the number of spline knots is chosen. In the paper by Iwana and Uchida
four knots are suggested [37]. The knots are then randomly generated. This can
be done in any way, but one example is to randomize their y-values according to
a Gaussian distribution (N (1, 0.2) is suggested in the mentioned paper [37]) and
evenly distributing them on the x-axis within the time range of the time series in
question.
A cubic spline is then created through interpolation between these knots [37]. It
being cubic means that each section between two knots can be described as a cubic
function. In order for the spline to be smooth at the knots as well, the derivative
of each such function needs to be the same as the neighboring function at the
surrounding knots.

16

2. Theory

An example of a cubic spline generated in this manner is shown in Figure 2.12. This
plot is just a sketch but shows how a spline could look. Note that the end points
of the spline are not counted as knots. This is because the knots do not have to be
evenly distributed on the time axis as in the figure. The end points always have to
be fixed to the start and end of the time range in order to make the spline usable
in the next step of the procedure. Note that the end points are randomized in the
scaling value dimension, just like the knots. The knots are however randomized in
the time dimension as well.

Time [ms]
-100 1500860 1180

-1

0

1

2

3

Sc
al

in
g

Va
lu

e

Cubic Spline (4 Knots)

540220

Figure 2.12: An extreme example of a cubic spline. Purple dots are start and
end points. Orange dots are knots and their scaling values are distributed to

mimic N (1, 1.5).

Once the smooth spline has been created, it is multiplied with the time series in
question to yield an augmented time series [37]. Had the scaling values been gen-
erated totally at random at each time step, the result would have essentially been
jitter (see Section 2.2.4). Magnitude warping allows for non-uniform scaling in dif-
ferent parts of the time series, without resulting in jitter. See Figure 2.13 for an
example of what this augmentation technique does.

17

2. Theory

0 200 400 600 800 1000 1200 1400
Time [ms]

3

2

1

0

1

2
M

ag
ne

tic
 Fi

el
d

[fT
]

Magnitude Warp (: 0.5, Knots: 4)
Original
Transformed

Figure 2.13: A time series and its magnitude warped counterpart.

2.2.7 Contrasted Linear Combination (CLC)
Another novel data augmentation technique (as far as the research for this thesis
has shown) will be called “Contrasted Linear Combination” (“CLC” for short). The
idea is to augment each time series in a batch based on a randomly weighted linear
combination of all time series of the same label in the batch.
The randomly generated weights can be tweaked so that the greater of the original
ones stand out more than the smaller ones. This is done by taking the power of the
original weight matrix and using it instead. The exponent of this power, c, is here
called “contrast”, hence the name of this augmentation technique.
Before multiplying the computed weight matrix with the original time series batch
B to yield an augmented version, it is first normalized row-wise so that each row
becomes a probability vector. This normalized weight matrix will be denoted with
W. The augmented time series batch is thus: Bnew = WB (see Figure 2.14 for a
visualization).

18

2. Theory

Output MEG Time Series

= W ×

Bnew B

Input MEG Time Series

Figure 2.14: Batch B and its CLC augmented counterpart Bnew

The rest of this section derives the mathematics in more detail. First, here is a list
of definitions:

c := Weight contrast, c ∈ R
T := Number of time steps in the time series
B := Original batch of time series, B ∈ RNB×T

NB := Number of time series in the batch B
l⃗ := Vector of labels li, one per time series in B (li ∈ {0, 1}, ∀i ∈ [1, NB])

d (X) :=

∥X(1)∥ 0 · · · 0

0 ∥X(2)∥ · · · 0
...
0 0 · · · ∥X(NX)∥

 ,
{

X ∈ RNX×S

NX, S ∈ Z+

The first step of CLC is the random generation of the weight matrix A ∈ RNB×NB

so that each of its elements ai,j ∼ Uniform([0, 1)), ∀i, j ∈ [1, NB]. This matrix will
be used to produce the final weight matrix W in later steps.
The second step is to create a label matrix L which elements are either 0 or 1. An
element is always 0 if the label of the time series corresponding to the row is not
equal to the label of the time series corresponding to the column. Moreover, an
element is always 1 if the labels match. The properties of this matrix force each
linear combination of time series in the last step of the procedure to only consist of
time series of the same label. It would not make sense to mix labels in the linear
combinations since the label of the augmented data would then be ambiguous. The
label matrix is computed as follows:

L = l⃗ l⃗⊺ + (⃗1− l⃗)(⃗1− l⃗)⊺ (2.6)

In the third step, the randomly generated weights A are given the same label prop-
erties as L through matrix multiplication. Let the product be called U:

U = LA (2.7)

19

2. Theory

The fourth step introduces the use of the contrast scalar c when taking the power
of U, resulting in the contrasted weight matrix Uc. If c = 1, it will of course not
have an effect on the weight matrix.
The penultimate step of the procedure is to normalize the weight matrix Uc to
obtain the final weight matrix W. This is done by multiplying it with the inverse
of the diagonal matrix d (Uc) (see the general definition of the function d in the list
above). This is the case since the diagonal of d (Uc) are the norms of the rows in
Uc:

W = d (Uc)−1 Uc (2.8)

This normalization of course results in each row in W being a probability vector. A
row thus defines how much of each time series in B of the same label to include in
the linear combination. W consists of elements wi,j, ∀i, j ∈ [1, NB]:

NB∑
j=1

wi,j = 1, ∀i ∈ [1, NB] (2.9)

The final step of CLC is the augmentation of the time series batch B itself, yielding
the new time series batch Bnew which after computation is ready for use. The
computation is done as explained earlier by multiplying W with B:

Bnew = WB = d (Uc)−1 UcB = d ((LA)c)−1 (LA)cB (2.10)

20

2. Theory

2.3 Artificial Neural Networks For Time Series
Classification

Artificial Neural Networks (ANNs) are function approximators [22]. The unique
feature of ANNs is their ability to learn compositional features of the data. They
are typically (but not necessarily) characterized by being differentiable and operating
on high-dimensional data.
There are certain types of ANNs that might be better suited for time series classifica-
tion than others. These are for example some discriminative models (see Appendix
A.5) that could be relevant: Multi-Layer Perceptrons (MLP), One-dimensional Con-
volutional Networks (CNN), Fully CNN (FCNN), Encoder, Multi-Scale CNN, Time
Le-Net, Multichannel Deep CNN, Residual Networks, Long Short-Term Memory
(LSTM), Gated Recurrent Neural Network (RNN), Gated Recurrent Neural Net-
works (GRU), S4, and Transformer [21], [22], [38]–[40].
The remainder of this section describes architectures that actually have been used
in this project in more detail in order to clarify how the results in Chapter 4 were
obtained. For theory on ANNs in general, see Appendix A.

2.3.1 Multilayer Perceptron (MLP)
The canonical ANN architecture is a Multilayer Perceptron (MLP for short, see
Figure 2.15). It has an input layer, an arbitrary number of hidden layers, and an
output layer. Note that all layers are linear and that non-linearity can be added
with non-linear activation functions (see Appendix A.2). There can be an arbitrary
amount of so-called neurons (see Appendix A.1) in each hidden layer and output
layer [22]. An MLP can be defined mathematically as follows:

h⃗0 ← x⃗ (2.11)
h⃗n ← g(Wnh⃗n−1 + θ⃗n) (2.12)
y⃗ ← h⃗N (2.13)

x⃗ := The input vector that is fed to the network.
N := The number of layers in the network (N ∈ Z+)
n := n ∈ [0, N])
h⃗n := The vector of neuron state values in network layer n

Wn := The weight matrix of network layer n
θ⃗n := The threshold vector of the network layer n
y⃗ := The output vector of the network
g := Activation function (see Appendix A.2)

21

2. Theory

Multi Layer Perceptron

Input Output

Hidden Layer

Figure 2.15: Illustration of a multilayer perceptron with one hidden layer.

2.3.2 Long-Short Term Memory (LSTM)
Long-Short Term Memory (LSTM) [41], are recurrent neural networks (RNN), aug-
mented with the ability to selectively store and forget information. The basic LSTM
architecture is illustrated in Figure 2.16.

Input

Concatenate

Hidden State

Cell State

Multiplication

Multiplication

Addition

Cell State

Multiplication

Hidden State

Forget Gate Output GateInput GateInput Gate

Figure 2.16: Illustration of a LSTM cell.

22

2. Theory

The basic formula for the forward pass of an LSTM cell is.

h⃗0 ← 0⃗ (2.14)
c⃗0 ← 0⃗ (2.15)
f⃗t ← σs(Wf x⃗t + Uf h⃗t−1 + b⃗f) (2.16)
i⃗t ← σs(Wix⃗t + Uih⃗t−1 + b⃗i) (2.17)
o⃗t ← σs(Wox⃗t + Uoh⃗t−1 + b⃗o) (2.18)
⃗̃ct ← σt(Wcx⃗t + Uch⃗t−1 + b⃗c) (2.19)
c⃗t ← f⃗t ⊙ c⃗t−1 + i⃗t ⊙ ⃗̃ct (2.20)
h⃗t ← o⃗t ⊙ σh(c⃗t) (2.21)

x⃗t := The input vector
f⃗t := Forget gate activity ∈ (0, 1)h

i⃗t := Input gate activity ∈ (0, 1)h

o⃗t := Output gate activity ∈ (0, 1)h

h⃗t := Hidden state (output vector) ∈ (−1, 1)h

⃗̃ct := Cell input activation vector ∈ (−1, 1)h

c⃗t := Cell state vector ∈ Rh

W := Input Weights ∈ Rh×d

U := Recurrent Weights ∈ Rh×h

b⃗ := Bias ∈ Rh

σ⃗s := Sigmoid function
σ⃗t := Hyperbolic tangent function

LSTMs are appropriate when working with sequential data, such as time series,
because of their recurrent nature. Because the same operation is applied at each time
step, time-shift equivariant properties of the data can relatively easily be discovered
by such networks. A downside of LSTMs is that they can be quite slow due to the
fact that they process the data sequentially.
LSTM layers take a sequence as input and output a sequence, h⃗0, . . . , h⃗T . To get
a single vector as output, a common solution is to only look at the final hidden
vector h⃗T . For binary classification, this vector can be fed through a MLP with a
single-neuron output and sigmoid activation function. This output is interpreted as
the probability for class 1.

23

2. Theory

2.3.3 Transformer
Transformers, introduced by Vaswani et al. in 2017 [40], have quickly grown to be
the dominant deep learning models for sequential data.
A transformer consists of an encoder and a decoder, but for classification tasks, an
encoder is typically sufficient. An encoder consists of multiple encoder layers, as
illustrated in Figure 2.17.

Keys Queries

Input Tokens

Attention Heads

Self Attention

Output Tokens

Feed Forward

(Per Token)

concat

Figure 2.17: Illustration of a Transformer Encoder layer.

The basic formula for the forward pass of a transformer encoder layer is shown in
Equation 2.22.

MultiHeadSelfAttention(X) = MultiHead(X,X,X) (2.22)
where MultiHead(Q,K,V) = Concat(head1, . . . , headh)WO (2.23)
where headi = Attention(QWQ

i ,KWK
i ,VWV

i) (2.24)

where Attention(Q,K,V) = softmax
(

QK⊤
√
dk

)
V (2.25)

h := Number of attention heads
dk := Dimensionality of the key vectors

WO := Output matrix
WQ := Query matrix
WK := Key matrix
WV := Value matrix

Transformers do not inherently treat the order of input tokens differently — it is
permutation equivariant. If positionality is a desired feature, a position embedding
is typically added to the tokens before feeding them into the transformer [40].

24

2. Theory

Similar to LSTM layers, transformers take a sequence of vectors as input and output
another sequence of vectors. There are various ways of getting a single vector output
from a transformer, but a simple solution is to average over the output tokens. For
binary classification, this vector can be fed through an MLP with a single-neuron
output and sigmoid activation function. This output is interpreted as the probability
for class 1.

2.3.4 Convolutional Neural Network (CNN)
Convolutional neural networks are among the most popular neural network architec-
tures for classification, since their success on ImageNet in 2012 [42]. They are most
commonly known in their two-dimensional form, for classification of images, but
they are also relatively common for sequence classification in their one-dimensional
form. A one-dimensional CNN layer is illustrated in Figure 2.18.
As Figure 2.18 shows, the CNN layer moves a filter (kernel) along the input and
computes a new value at each stride. If multiple filters are used, the layer will have
multichannel output, one vector per filter. The CNN layer can be followed by a
linear (dense) layer for classification purposes.

Input

Filters

Channels

1D CNN

Output

Slide and apply

for all positions

Figure 2.18: Illustration of a one-dimensional CNN.

25

2. Theory

The forward pass of a one-dimensional convolutional layer l can be defined as in
Equation 2.26 [22].

Vi,c = g

 Lf∑
j=1

Nf∑
n=1

wj,n,cxs(i−1)+j,n − θc

 (2.26)

Lf := Length of the filters, Lf ∈ Z+

Nf := Number of filters, Nf ∈ Z+

Vi,c := Output i in channel c
xm,n := Value m in channel k input vector x⃗k

wj,n,c := Weight j of filter n in channel c
s := Stride, s ∈ Z+

θc := The threshold (bias) for channel c
g := Activation function (see Appendix A.2)

26

2. Theory

2.4 Bayesian Hyperparameter Optimization
Bayesian optimization is an algorithm that can be used to find hyperparameters that
maximize or minimize different metrics [43]. Say that the objective is to maximize
the classification accuracy when searching through combinations of hyperparame-
ters. The objective function f : X → R then maps hyperparameter sets X ∈ X to
classification accuracies c ∈ R. This function is, however, unknown and needs to
be approximated. This is done based on Bayes’ rule and using so-called surrogate
models that map hyperparameter sets X to probability distributions over accuracies.
Bayesian hyperparameter optimization works by iterating over two basic steps: 1)
sampling new hyperparameters X informed by the surrogate model and 2) updating
the surrogate model with the information from the new sample. This can be repeated
until the global optimum is found.
The sampling is done by selecting the hyperparameter set X which maximizes a
function u(X), referred to as a utility, or acquisition function [43]. The choice
of which acquisition function to use determines the trade-off between exploration
(improving the surrogate model) and exploitation (finding hyperparameters X that
optimize f). Exploration is important for avoiding getting stuck in local optima.
The set of observed pairs of hyperparameter sets X and their corresponding clas-
sification accuracies c can be denoted as D. The surrogate models are updated by
computing a posterior distribution from D.
One example of a surrogate model is a Gaussian process (GP). The prior of the
objective f can in this case be defined as in Equation 2.27, where µ denotes the
mean and K denotes the variance. Moreover, the posterior of the objective can be
defined as in Equation 2.28 [43].

P (f) = GP(f ;µ,K) (2.27)
P (f | D) = GP(f ;µf |D, Kf |D) (2.28)

An example of an acquisition function is expected improvement (EI), which is defined
as in Equation 2.29 [43]. Here, I is the improvement function, ft+1(X) denotes
the accuracy for hyperparameter set X at iteration t + 1, and f(X∗) denotes the
currently highest observed accuracy, obtained with hyperparameters X∗. Using EI
can be thought of as rewarding hyperparameters that improve on the best seen
metric value so far, while ignoring the magnitude of any lack of improvement.

E[I(X)] = E[max(0, ft+1(X)− f(X∗))] (2.29)

The hyperparameter set that maximizes the expected improvement (see Equation
2.30) is then chosen for the next iteration [43].

X = arg maxE[I(X)] (2.30)

The last step before the next iteration of the algorithm is to update D with the
observed pair in the current iteration, meaning: D ← {D, (Xt, ct)} [43].

27

3
Methods

This chapter describes how the work in this Master’s thesis project has been carried
out in different aspects. The preceding data collection and preprocessing is also
explained.

3.1 Provided Data
This section describes the provided data; how it was collected, preprocessed and
structured before making it available for this thesis.

3.1.1 Data Collection and Storage
MedTech West collected the data from 20 healthy men at the Karolinska Institute in
Solna, Sweden, with MEG (see Section 1.1.2). One subject proved to be an outlier
since its MSNA activity reduction from the baseline was -132%, which is far from
the values of the other patients. The data of one of the patients was corrupt and
was therefore discarded from the data set. In total, 102 magnetometers and 204
gradiometers were placed on each subject’s head, summing up to 306 sensors [17].
An electrooculogram (EOG) and an electrocardiogram (ECG) were also recorded
for preprocessing purposes later on [3].
When collecting the data from a subject, electric stimulations were made on their
left finger. There were 72 stimulus trials per subject, consisting of three electrical
shocks each. Each shock where induced every other heartbeat (approximately every
1.5–2 seconds). There was a resting period of 30, 45, or 60 seconds in between
each trial. Each subject received the same rest sequence [17]. These shocks will
henceforth be referred to as pulse 1, 2, and 3.
The recorded MEG data from the 306 sensors each cover a range of [-2000ms,
2000ms] relative to the electric pulse. This has been cropped to [-100ms,1500ms]
in order to contain only the most relevant information, as well as ensuring that all
data can fit in memory on the available hardware. A breakdown of the available
data is illustrated in Figure 3.1.

28

3. Methods

Non-Inhibitor Inhibitor Borderline

19 × 72 3 306 × 1600× ×

P1 P2 P3

1
-1.23

2
75.57

3
42.69

4
11.78

5
1.5

6
85

7
11.37

8
44.51

9
48.2

10
16.45

11
30.01

12
9.37

13
-21.32

14
83.74

15
-132.47

16
13.83

17
53.87

18
7.9

19
58.64

-100
306

0

1500300 700 1100

Repetitions Successive Pulses Data Per PulsePatients

N N N N N N N N N NI I I II I I IB

Figure 3.1: Subject data breakdown. The available data comes from 19 subjects.
There were 72 stimulus trials per subject, consisting of 3 electrical shocks each.
For each shock, time series data was collected by 306 sensors, which after some

preprocessing covered the range [-100ms, 1500ms] relative to the electric stimulus.

In the previous theses [15], [16], two versions of the data set were created — one
called A which does not contain the borderline subject and one called B which does.
The borderline subject is visualized as the purple avatar in Figure 3.1. Both of
these data sets have been used during this project like before to see if they result in
different prediction accuracies.
The MEG data is stored in a set of .fiff files, one for each patient. These are
read using mne [44], which is a Python package for interfacing with the fieldtrip
[45] MATLAB toolbox for MEG, EEG, and iEEG analysis. These files contain the
preprocessed MEG data in a tabular form, with columns for Epoch, Pulse Number,
milliseconds before/after the pulse, as well as the data for each MEG sensor.

3.1.2 Preprocessing
After collecting the MEG data, it was preprocessed in a number of ways: temporal
signal space separation (tSSS), head movement compensation, 0.5–40 Hz filtering,
Independent Component Analysis (ICA), and manual removal of epochs with resid-
ual ocular artifacts based on visual inspection [3], [17].
ICA was performed to remove irrelevant data artifacts such as signals corresponding
to eye blinks that were prone to happen at stimulus [17]. ICA was first performed
on the raw MEG data in order to split it into statistically independent components
(ICs). The MEG ICs that corresponded to artifacts in the EOG and the ECG
were filtered away from the MEG data by analyzing the correlations between the
respective signals [3]. This process however left some epochs with artifact residuals
which were discarded based on visual inspection [17].

29

3. Methods

3.2 Data Split
This section describes how the data was split in previous years, and what was done
differently in this thesis, including the use of cross-validation.

3.2.1 Old and New Data Split
In the previous projects, they used a split where they had a held-out test set of two
patients, and used the remaining patients for training and validation. This data
was randomly split on a per-time-series basis. This resulted in a data split where
the training and validation sets were unique, but where the same patient could
contribute with data to both sets. The fact that the same patient could contribute
with data to both the training and validation could explain the large discrepancy
between validation and test accuracies in the previous theses. The old data split is
visualized in Figure 3.2.

1
-1.23

2
75.57

3
42.69

4
11.78

5
1.5

6
85

7
11.37

8
44.51

9
48.2

10
16.45

11
30.01

12
9.37

13
-21.32

14
83.74

15
-132.47

16
13.83

17
53.87

18
7.9

19
58.64

Training And Validation
(Random Split) Test

Non-Inhibitor Inhibitor Borderline

N N N N N N N N N NI I I II I I IB

Figure 3.2: Data split used in previous iterations of the project. The numbers in
bold are the anonymized patient identification numbers and the numbers below

them are the respective MSNA activity reduction percentages.

To circumvent this issue in this project, the split was instead done as illustrated
in Figure 3.3. The split between validation and training subjects was however not
constant during training since cross-validation was always performed (see Section
3.2.2).

1
-1.23

2
75.57

3
42.69

4
11.78

5
1.5

6
85

7
11.37

8
44.51

9
48.2

10
16.45

11
30.01

12
9.37

13
-21.32

14
83.74

15
-132.47

16
13.83

17
53.87

18
7.9

19
58.64

Non-Inhibitor Inhibitor Borderline

Training TestValidation

N N N N N N N N N NI I I II I I IB

Figure 3.3: Data split used in this project. The numbers in bold are the
anonymized patient identification numbers and the numbers below them are the

respective MSNA activity reduction percentages.

30

3. Methods

Lastly, the results presented in Chapter 4 of this thesis cannot be directly compared
with the ones in the previous theses since the data split is different here.

3.2.2 Cross-Validation
Although using a split like in Figure 3.3 reduces the bias in estimating how well
the model generalizes to unseen patients, it increases the variance of the validation
accuracy since the training and validation sets do not include data from the same
people. A higher variance leads to less reliable estimates. To combat this issue, cross-
validation was introduced. This means that, instead of having a fixed set of patients
assigned to the validation set – models were trained multiple times with different
patient subsets used for validation in so-called cross-validation folds. The extreme
case of leave one out cross-validation (LOOCV) was only used for the reproduction of
the 2020 LSTM model because of the low number of hyperparameter combinations.
In other cases, it was not feasible to use LOOCV due to time constraints. Because
of this, four cross-validation folds were used in general.

31

3. Methods

3.3 Used Artificial Neural Networks
This thesis project has mainly focused on four ANN model types: LSTM, MLP,
CNN, and Transformer. Autoencoders were also used in some instances to remove
noisy data. See Section 2.3 and Section 2.1.1 for model specific theory. This section
will motivate the use of each model and describe the chosen architectures.
Note that the LSTM and MLP models only work on univariate data, which means
that they can only take input from one MEG sensor at a time in this context. The
CNN and Transformer models can however handle multivariate data, meaning that
they can be fed data from all sensors in one step.
The univariate models are trained on the data available from all sensors and are
therefore tasked with treating all sensors the same way. The benefit of this is that
many more data points are available for training, while a potential downside is that
the model may be forced to classify time series which contain no information about
MSNA inhibition. Another downside is that the time series of different sensors could
have opposing distributions in terms of which signal corresponds to which class.
The multivariate models have the opposite problem. They always have access to all
signals relevant for MSNA inhibition, and (depending on architecture) there is no
risk of confusing distributions between sensors. On the other hand, they have 306
times fewer data points to train on.

3.3.1 Long Short-Term Memory (LSTM)
The existing LSTM model from previous years [15], [16] was first recreated in order
to be able to compare new methods to the old ones. This had to be done since the
results between this thesis and the others are not directly comparable, as explained
in Section 3.2.
When recreating the LSTM and analyzing the code from 2020, it was found that
the model had been implemented incorrectly. This conclusion was based on that the
description of the model did not seem to match the actual implementation. Instead
of correctly feeding the LSTM the time series one time step at a time (see Figure
3.4), it was fed the whole time series as one vector and thus only performed one
iteration (see Figure 3.5). This LSTM model type was hence not used properly
and will therefore be called the “incorrect LSTM” (“ILSTM” for short) from here
on out. Despite this, it was decided that the ILSTM would be used in this thesis
as well since the correct one was unfeasibly slow given the time-frame. It was also
worth investigating whether the model type could benefit from other types of data
preprocessing and augmentation methods than the ones presented in the previous
theses.
The ReLU activation function was used between the LSTM layers and the sigmoid
activation function was used for the output neuron.
Sweeps were performed over the number of sub-layers in the LSTM layers, the hidden
state sizes, and the drop out probabilities to hopefully find better versions of the
previous ILSTM architecture. For more in-depth theory on LSTMs, see Section

32

3. Methods

2.3.2.

Input All Hidden States

LSTM 1 LSTM 2

Last Hidden State Output

Drop Out 0.2

LSTM Cell

LSTM Cell

LSTM Cell LSTM Cell

LSTM Cell

LSTM Cell

Drop Out 0.2

Drop Out 0.2

Drop Out 0.2

Figure 3.4: The seemingly intended LSTM architecture from the previous theses.

Input
Hidden

State

LSTM 1 LSTM 2

Drop Out 0.2

Hidden

State

Output

LSTM Cell LSTM CellDrop Out 0.2

Figure 3.5: The incorrect LSTM (ILSTM) architecture from the previous theses.

3.3.2 Multilayer Perceptron (MLP)
Because of the incorrect properties of the ILSTM model from previous years (see
Section 3.3.1), it was thought that the ILSTM layers would work similarly to linear,
or dense, layers. Therefore, a model using linear layers instead of LSTM layers
was implemented to potentially simplify the architecture and perhaps get the same
results. This model thus became a multilayer perceptron (MLP, see Section 2.3.1
for theory). ReLU was used in all layers except for the output neuron which used
the sigmoid activation function, similar to the ILSTM model. An example of this

33

3. Methods

architecture with corresponding hyperparameters to the one in Figure 3.5 is shown
in Figure 3.6.
Sweeps were performed over the drop out probabilities and the number of neurons
in the hidden layers in order to find relatively good versions of the architecture.

OutputInput

Drop Out 0.2 Drop Out 0.2

Hidden Layer 1 Hidden Layer 2

Figure 3.6: The MLP architecture designed to mimic the ILSTM model from the
previous theses.

3.3.3 Convolutional Neural Network (CNN)
One motivation for using a one-dimensional convolutional neural network for the
classification problem at hand was that it can learn to find local features in a time
series by applying its filters (kernels) along it during training. Another motivation
was that CNNs are well studied.
Figure 3.7 illustrates the CNN architecture designed in this project. Each convo-
lutional layer (Conv1D) has outputs with different receptive fields that each only
cover part of the input. The first convolutional layer in the illustration is followed by
drop out and a one-dimensional max pooling layer that extracts the most important
information from the convolutional layer’s receptive fields. These two layers were
made repeatable so that different depths of the architecture could be tested during
sweeps.
The max pooling layer is followed by another convolutional layer that looks for
features in its output. By then applying global average pooling, the average over
the receptive fields is computed for each input channel. Each filter thus essentially
votes for class features. These averages are then linearly combined to form an output
ŷ. Each average value ac represents the found features in its corresponding input
time series.
Each convolutional layer uses a ReLU activation function to add non-linearity (see
Appendix A.2 for theory). The last layer utilizes the sigmoid activation function to
output a probability for MSNA inhibition. Binary cross-entropy is then used as the
loss function (see Appendix A.3 for theory).
Sweeps were performed over the depth of the network, the length of the filters Lf ,

34

3. Methods

the number of filters Nf (and thus the number of channels in hidden layers), and
the drop out probability.

Conv1DInput MaxPool1D Conv1D
Global Average

Pooling
Output

306

Repeated N Times

max

avg

Drop Out

Figure 3.7: The generic CNN model architecture used in this thesis. The time
series length is 1600 and there are 306 sensors. Nf denotes the number of

convolutional filters. Lf denotes the length of the filters.

3.3.4 Transformer
As an alternative to the CNN, a transformer was also implemented. This decision
was primarily informed by two factors. Firstly, when working with the multivariate
representation of the dataset there is a substantial risk of overfitting. This is because
treating the time series from all the sensors as a single data point effectively reduces
the dataset size by a factor of 306. The issue is then further exacerbated by the
fact that more information is made available in which spurious correlations could
potentially be found. Secondly, according to MedTech West, the MEG sensors in the
helmet are not lined up to the exact same brain regions for all patients since their
heads and brains are different from each other. The same sensor does therefore not
always correspond to activity in the same brain region between patients. Instead of
having the model learn to ignore the sensor index, it was reasoned that a transformer,
which inherently has this property, could be used.
Figure 3.8 illustrates the transformer architecture used in this project. In this case,
the sensor index is the sequence dimension, while time is the channel dimension. The
reason for this is to keep the sensor index equivariance property described previously.
First, a Conv1D layer is used to project each sensor sequence into tokens of a smaller
embedding space. These tokens are then fed through N transformer encoder layers,
as explained in Section 2.3.3.
Finally, the tokens are globally averaged and linearly combined with a dense layer.
Similar to the global average pooling in the CNN architecture (see Section 3.3.3), the
tokens essentially vote for class features. The final layer then utilizes the sigmoid

35

3. Methods

activation function to output a probability for MSNA inhibition. Binary cross-
entropy is then used as the loss function (see Appendix A.3 for theory).
When the kernel (filter) size in the initial convolution layer is 1, all layers are equiv-
ariant with respect to the sensor ordering. The final global averaging then ensures
that the output is completely invariant with respect to this ordering, meaning that
the same prediction will be made regardless of how the sensors are ordered.
With other kernel sizes, this property is lost, but it could be argued that extracting
information directly based on position will be less trivial. This means that the
architecture might still encourage gradient descent to focus on other information in
the data than the positionality.

1600

Repeated N Times

avg

Conv1DInput Self Attention
Truncate Concat

Per Token

Global Average

Pooling
Output

Figure 3.8: An example of the transformer model architecture. The time series
length is 1600 and there are 306 sensors. Nf denotes the number of convolutional
filters. Lf denotes the length of the filters. NH denotes the number of attention

heads in the self attention layer.

3.3.5 Autoencoder
In order to draw stronger conclusions about the usage of autoencoders in the context
of this thesis, different variations were tested than the one used in the 2020 thesis.
This was done for each model type described in this chapter to see whether it would
be beneficial or not in different cases. The depth of the autoencoder as well as the
size of the encoded layer were varied. Such hyperparameter sweeps were performed
once per the best found variation of each classification model used in this thesis
(ILSTM, MLP, CNN, and transformer). The motivation for this being that different
autoencoder architectures might perform better in different contexts.
Autoencoders with linear layers were used in univariate data settings and CNN
autoencoders were used in multivariate settings. In both cases and for all depths,
the ReLU activation function was used in the encoder part of the autoencoder, just
like in the 2020 model. See Section 2.1.1 for theory on autoencoders.

36

3. Methods

3.4 Training Artificial Neural Network Models
This section describes the process by which artificial neural network models were
trained and evaluated in this project.

3.4.1 Pipeline
The model-data pipeline used for every cross-validation fold (see Section 3.2.2) and
model is illustrated in Figure 3.9.

Split

1
-1.23

2
75.57

3
42.69

4
11.78

5
1.5

6
85

7
11.37

8
44.51

9
48.2

10
16.45

11
30.01

12
9.37

13
-21.32

14
83.74

15
-132.47

16
13.83

17
53.87

18
7.9

19
58.64

Training
Data

Validation
Data

Test
Data

Preprocessing

Augmentation

Model

N N N N N N N N N NI I I II I I IB

Figure 3.9: Illustration of the model-data pipeline. The cross and check marks
denote the model’s predictions for MSNA inhibition and non-inhibition. The
numbers in bold are the anonymized patient identification numbers and the

numbers below them are the respective MSNA activity reduction percentages.

First, the data from all patients was collected and split into three datasets: training,
validation, and testing (see Section 3.2). Note that the test set was constant and
held-out, as described in Section 3.4.2, for all cross-validation folds. Secondly, if
preprocessing was used, it was applied to all dataset splits. Augmentation was then
only applied on the training data when used.

37

3. Methods

The resulting data, whether modified or not, could then be fed for training into the
ANN model which is illustrated as a black box in Figure 3.9. The trained model
could then be used to make predictions.
Note that this black box could represent other types of machine learning models
than ANNs. That is, however, not the focus of this thesis, as mentioned before.

3.4.2 Training, Validation, And Testing
The standard machine learning procedures for training, validation, and testing were
followed in this project. The model parameters were optimized based on the training
set and the hyperparameters based on the validation set. The test set was held-out
and only used to evaluate the models at the end of the project. This in order to
avoid manually optimizing based on it, which would result in overfitted models that
do not generalize well on new data. It was also done in order to be able to estimate
the generalization ability of models. The data was also normalized before use to
increase the numerical stability of the models.
To get more reliable statistics about validation accuracy, cross-validation was used,
as mentioned in Section 3.2.2. Hyperparameters were tuned to maximize the average
validation accuracy over all cross-validation folds.
Testing was done only after being content with the trained model by evaluating the
accuracy of it on the previously held-out test set.

3.4.3 Hyperparameter Tuning
Weights & Biases [46] was used for experiment tracking and hyperparameter tuning.
In particular, it has a built-in feature for doing Bayesian hyperparameter optimiza-
tion (see Section 2.4), which was useful for determining optimal architectures and
augmentation operations. In the cases where the number of hyperparameters com-
binations was relatively low, grid search was performed instead in order to use each
combination and see how it performed.
To further accelerate the search for good models, early stopping was used. Early
stopping ensures that models stop training when they stop improving. This in
contrast to stopping after a fixed number of training iterations. The most commonly
used stopping criterion is when the validation loss/accuracy has not improved for a
set number of epochs. Because of the small dataset size, in this project the criterion
that was minimized is the minimum of validation and loss accuracy. This ensured
that runs did not stop early just because they happened to be initialized in such a
way that they performed ok on the validation set.

38

3. Methods

3.4.4 Motivations Behind Collected Results
For all models mentioned in Section 3.3, sweeps over their hyperparameter combi-
nations were performed in order to find relatively good architectures (see Section
3.4.3). The variations with the highest validation accuracy averages were selected
for subsequent data preprocessing and augmentation sweeps. Only using the best
found architecture per model saved a lot of time.
As mentioned before, an autoencoder sweep per model was done to find a relatively
good autoencoder architecture with respect to each model. One reason for this
was to see if the autoencoder would help on its own to yield higher prediction
accuracies. Another reason was to save time in subsequent sweeps by only training
each autoencoder once per data pulse and category as well as making the sweep
focus on hyperparameters of other types of transforms.
The motivation for presenting results with wavelet preprocessing transforms sepa-
rately (see Section 2.1.2) was that MedTech West proposed that the transform could
be beneficial to the problem at hand. This is because certain brain activity frequen-
cies have stronger correlations with MSNA inhibition. It was therefore decided that
it was relevant to show those results without other transforms. The use of the best
found autoencoder in the context was the only exception, since it did not hurt to
gather results with the addition of an autoencoder as well.
Lastly, sweeps over different transforms were done with the motivation that Bayesian
hyperparameter optimization (see Section 2.4) would find relatively good combina-
tions and that it would save time compared to running one sweep per transform.
All transforms described in Chapter 2 were included in each transform combination
sweep.

3.5 Implementation
Throughout the project, a Python code base was developed to easily carry out and
log different types of experiments. This code base is flexible and could be used for
other experiments in the future. It can therefore be seen as having intrinsic value
beyond the results produced in this particular project.
The primary frameworks used in the implementation have been Numpy [47], Pandas
[48], [49], PyTorch [50], PyTorch Lightning [51], Jax [52], and the WandB API [46].

39

4
Results

This chapter presents the results of this thesis. The results have been obtained as
explained in Chapter 3 with the ANN architectures described in Section 3.3. Only
the new data split explained in Section 3.2 has been used. Moreover, all presented
prediction accuracies are averages over the last epoch accuracy for all cross-validation
folds (see Section 3.2.2).
The “best” model or hyperparameter combination will refer to the one that resulted
in the highest validation accuracy average. The test accuracies were computed in
later stages, as explained in Section 3.4.2.
Each parallel coordinate plot in this chapter visualizes a hyperparameter sweep and
emphasizes the best hyperparameter combination and the training, validation, and
test accuracies it led to.
Note that when an autoencoder was used for preprocessing, it was used before any
other transform.
For a summary of all obtained training, validation, and test accuracies for all model
and transform sweeps, see Section 4.5.

4.1 Incorrect Long Short Term Memory (ILSTM)
This section presents results obtained with the incorrect LSTM (ILSTM). The mo-
tivation for using this model even though it is incorrectly implemented is found in
Section 3.3.1. Specifically, results here were obtained with different architectures,
autoencoders, wavelet transforms, and data transform combinations.

4.1.1 Reproduction From Previous Thesis
The prediction accuracies from the reproduction of the 2020 thesis’ ILSTM and
autoencoder is illustrated with a parallel coordinates plot in Figure 4.1. LOOCV was
used to obtain these results. The best combination of hyperparameters is emphasized
with a thicker, orange curve. The hyperparameters of the models in question here
are shown in Table 4.1. The accuracies of the best hyperparameters is shown in
Table 4.2.

40

4. Results

A

B

False

True

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Train Accuracy Validation Accuracy Test Accuracy

p1

p2

p3

2020 ILSTM Reproduction

Figure 4.1: Parallel coordinates plot showing the LSTM reproduction sweep
results. The thick line corresponds to the best identified configuration.

Table 4.1: The model hyperparameters of the autoencoder and ILSTM
from the 2020 thesis [15].

Autoencoder Hyperparameter Value
Encoding dimension 30
Input size 1600

ILSTM Hyperparameter Value
Drop out 0.2
Hidden size 600
Input size 1600
Layer count 1

Table 4.2: Accuracies obtained with the hyperparameters in Table 4.1.

Stage Accuracy
Training 84.30%
Validation 55.40%
Testing 36.65%

41

4. Results

4.1.2 Different ILSTM Architectures
The prediction accuracies from a sweep over ILSTM hyperparameters is illustrated
in Figure 4.2. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.3 shows the training and validation accuracies over time. Table 4.3 presents the
hyperparameters of the best ILSTM found in this thesis. The accuracies of the best
hyperparameters is shown in Table 4.4.

A

B

0.2

0.5

300

400

600

800

1

2

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category LSTM Drop Out
LSTM Hidden

Size LSTM Layers Train Accuracy
Validation
Accuracy Test Accuracy

p1

p2

p3

ILSTM Architecture

Figure 4.2: Parallel coordinates plot showing the sweep results of ILSTM
architectures. The thick line corresponds to the best identified architecture and

data combination.

1000 1500 2000 2500 3000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

1000 1500 2000 2500 3000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.3: Training and validation accuracy for the best identified ILSTM
model identified in Figure 4.2 with a 95% confidence interval computed from the

cross validation folds.

42

4. Results

Table 4.3: The best data and ILSTM hyperparameters.

Data Hyperparameter Value
Category B
Pulse 3

ILSTM Hyperparameter Value
Drop out 0.5
Hidden size 600
Input size 1600
Layer count 1

Table 4.4: Accuracies obtained with the hyperparameters in Table 4.3.

Stage Accuracy
Training 78.29%
Validation 58.01%
Testing 38.56%

4.1.3 Best ILSTM With Autoencoder Preprocessing
The prediction accuracies from a sweep with the best ILSTM (see Section 4.1.2) and
different autoencoder architectures is illustrated in Figure 4.4. Four cross-validation
folds were used to obtain these results. The best combination of hyperparameters
is emphasized with a thicker, orange curve. Figure 4.5 shows the training and val-
idation accuracies over time. Table 4.5 presents the hyperparameters of the best
autoencoder in combination with the best ILSTM. The accuracies of the best hy-
perparameters is shown in Table 4.6.

43

4. Results

A

B

1

2

3

4

20

30

60

100

200

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Depth

Autoencoder
Encoding
Dimension Train Accuracy

Validation
Accuracy Test Accuracy

p1

p2

p3

Best ILSTM With Autoencoder Preprocessing

Figure 4.4: Parallel coordinates plot showing sweep results using the best ILSTM
model identified in Figure 4.2 with different autoencoder architectures. The thick

line corresponds to the best identified autoencoder hyperparameters and data
combination.

1000 2000 3000 4000 5000 6000 7000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

1000 2000 3000 4000 5000 6000 7000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.5: Training and validation accuracy for the best configuration identified
in Figure 4.4 with a 95% confidence interval computed from the cross validation

folds.

44

4. Results

Table 4.5: The best data and autoencoder hyperparameters when used
together with the best ILSTM.

Data Hyperparameter Value
Category A
Pulse 2

Autoencoder Hyperparameter Value
Depth 3
Encoding dimension 100
Input size 1600

Table 4.6: Accuracies obtained with the hyperparameters in Table 4.5.

Stage Accuracy
Training 76.36%
Validation 60.15%
Testing 38.12%

4.1.4 Best ILSTM With Wavelet Preprocessing
The prediction accuracies from a sweep with the best ILSTM and autoencoder (see
Section 4.1.2 and Section 4.1.3) as well as different wavelet transforms is illustrated
in Figure 4.6. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.7 shows the training and validation accuracies over time. Table 4.7 presents the
best wavelet transform in combination with the best ILSTM. The accuracies of the
best hyperparameters is shown in Table 4.8.

45

4. Results

A

B

False

True

12

13

14

15

16

17

haar

Mexh

Morl

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Wavelet Hertz Wavelet Type Train Accuracy
Validation
Accuracy Test Accuracy

p1

p2

p3

Best ILSTM With Wavelet Preprocessing

Figure 4.6: Parallel coordinates plot showing sweep results of the best ILSTM
model identified in Figure 4.2 and (optionally) the best autoencoder identified in

Figure 4.4 with different wavelet preprocessing transforms. The thick line
corresponds to the best identified configuration.

2000 4000 6000 8000 10000 12000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

2000 4000 6000 8000 10000 12000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.7: Training and validation accuracy for the best wavelet configuration
identified in Figure 4.6 with a 95% confidence interval computed from the cross

validation folds.

46

4. Results

Table 4.7: The best data and wavelet transform hyperparameters when
used together with the best ILSTM.

Data Hyperparameter Value
Category A
Pulse 3

Wavelet Transform Value
Frequency [Hz] 12
Wavelet Mexican Hat

Table 4.8: Accuracies obtained with the hyperparameters in Table 4.7.

Stage Accuracy
Training 72.01%
Validation 59.74%
Testing 36.35%

4.1.5 Best ILSTM With Transform Combinations
The prediction accuracies from a sweep with the best ILSTM and autoencoder (see
Section 4.1.2 and Section 4.1.3) as well as different data transforms is illustrated in
Figure 4.8. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.9 shows the training and validation accuracies over time. Table 4.9 presents the
best transform combination together with the best ILSTM. The accuracies of the
best hyperparameters is shown in Table 4.10.

47

4. Results

A

B

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Puls
e

Cate
go

ry

Auto
en

co
de

r

CLC Gau
ss

ian

Jit
ter Mag

nit
ud

e

W
ar

p

Per
muta

tio
n

RW
S

Sca
lin

g
Tim

e

W
ar

p
W

av
ele

t

W
av

ele
t

Con
ca

t
Tra

in

Acc
ur

ac
y

Vali
da

tio
n

Acc
ur

ac
y

Te
st

Acc
ur

ac
y

p1

p2

p3

Best ILSTM With Different Transforms

Figure 4.8: Parallel coordinates plot showing sweep results of the best ILSTM
model identified in Figure 4.2 with random data transform combinations. The

thick line corresponds to the best identified transform combination. “T” and “F”
denote “True” and “False” respectively.

20000 40000 60000 80000 100000 120000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

20000 40000 60000 80000 100000 120000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.9: Training and validation accuracy for the best transform combination
identified in Figure 4.8 with a 95% confidence interval computed from the cross

validation folds.

48

4. Results

Table 4.9: The best data and transform combination hyperparameters
when used together with the best ILSTM. The transforms are listed in
the order as they were applied during training/validation/testing.

Data Hyperparameter Value
Category B
Pulse 3

Autoencoder Value
Depth 3
Encoding dimension 100
Input size 1600

Permutation Value
Slice count 3

Magnitude Warp Value
Knots 6
Standard deviation 0.1468

Time Warp Value
Steps per warp 100
Warp factor 0.7911

Contrasted Linear Combination (CLC) Value
Contrast 2.9930

Table 4.10: Accuracies obtained with the hyperparameters in Table 4.9.

Stage Accuracy
Training 84.88%
Validation 82.29%
Testing 49.67%

49

4. Results

4.2 Multilayer Perceptron (MLP)
This section presents results obtained with MLP models. Specifically, results here
were obtained with different architectures, autoencoders, wavelet transforms, and
data transform combinations.

4.2.1 Different MLP Architectures
The prediction accuracies from a sweep over MLP hyperparameters is illustrated in
Figure 4.10. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.11 shows the training and validation accuracies over time. Table 4.11 presents the
hyperparameters of the best MLP found in this thesis. The accuracies of the best
hyperparameters is shown in Table 4.12.

A

B

0.1

0.2

0.3

0.5

100

200

300

400

600

800

1000

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category MLP Drop Out
MLP Hidden

Size Train Accuracy
Validation
Accuracy Test Accuracy

p1

p2

p3

MLP Architecture

Figure 4.10: Parallel coordinates plot showing the sweep results of MLP
architectures. The thick line corresponds to the best identified architecture and

data combination.

50

4. Results

1000 2000 3000 4000 5000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

(a) Training Accuracy

1000 2000 3000 4000 5000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.11: Training and validation accuracy for the best identified MLP
identified in Figure 4.10 with a 95% confidence interval computed from the cross

validation folds.

Table 4.11: The best data and MLP hyperparameters.

Data Hyperparameter Value
Category A
Pulse 3

MLP Hyperparameter Value
Drop out 0.3
Hidden size 600
Input size 1600

Table 4.12: Accuracies obtained with the hyperparameters in Table
4.11.

Stage Accuracy
Training 76.53%
Validation 58.71%
Testing 41.44%

4.2.2 Best MLP With Autoencoder Preprocessing
The prediction accuracies from a sweep with the best MLP (see Section 4.2.1)
and different autoencoder architectures is illustrated in Figure 4.12. Four cross-
validation folds were used to obtain these results. The best combination of hyperpa-
rameters is emphasized with a thicker, orange curve. Figure 4.13 shows the training
and validation accuracies over time. Table 4.13 presents the hyperparameters of the

51

4. Results

best autoencoder in combination with the best MLP. The accuracies of the best
hyperparameters is shown in Table 4.14.

A

B

1

2

3

4

20

30

60

100

200

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Depth

Autoencoder
Encoding
Dimension Train Accuracy

Validation
Accuracy Test Accuracy

p1

p2

p3

Best MLP With Autoencoder Preprocessing

Figure 4.12: Parallel coordinates plot showing sweep results using the best MLP
identified in Figure 4.10 with different autoencoder architectures. The thick line

corresponds to the best identified Autoencoder hyperparameters and data
combination.

1000 2000 3000 4000 5000 6000 7000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

1000 2000 3000 4000 5000 6000 7000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.13: Training and validation accuracy for the best configuration
identified in Figure 4.12 with a 95% confidence interval computed from the cross

validation folds.

52

4. Results

Table 4.13: The best data and autoencoder hyperparameters when used
together with the best MLP.

Data Hyperparameter Value
Category A
Pulse 2

Autoencoder Hyperparameter Value
Depth 1
Encoding dimension 200
Input size 1600

Table 4.14: Accuracies obtained with the hyperparameters in Table
4.13.

Stage Accuracy
Training 77.68%
Validation 56.02%
Testing 39.36%

4.2.3 Best MLP With Wavelet Preprocessing
The prediction accuracies from a sweep with the best MLP and autoencoder (see
Section 4.2.1 and Section 4.2.2) as well as different wavelet transforms is illustrated
in Figure 4.14. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.15 shows the training and validation accuracies over time. Table 4.15 presents the
best wavelet transform in combination with the best MLP. The accuracies of the
best hyperparameters is shown in Table 4.16.

53

4. Results

A

B

False

True

12

13

14

15

16

17

haar

Mexh

Morl

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Wavelet Hertz Wavelet Type Train Accuracy
Validation
Accuracy Test Accuracy

p1

p2

p3

Best MLP With Wavelet Preprocessing

Figure 4.14: Parallel coordinates plot showing sweep results of the best MLP
identified in Figure 4.10 and (optionally) the best autoencoder identified in Figure
4.12 with different wavelet preprocessing transforms. The thick line corresponds to

the best identified configuration.

2000 4000 6000 8000 10000 12000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

2000 4000 6000 8000 10000 12000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.15: Training and validation accuracy for the best wavelet configuration
identified in Figure 4.14 with a 95% confidence interval computed from the cross

validation folds.

54

4. Results

Table 4.15: The best data and wavelet transform hyperparameters when
used together with the best MLP.

Data Hyperparameter Value
Category B
Pulse 3
Wavelet Transform Value
Frequency [Hz] 16
Wavelet Morlet

Table 4.16: Accuracies obtained with the hyperparameters in Table
4.15.

Stage Accuracy
Training 64.81%
Validation 58.76%
Testing 45.56%

4.2.4 Best MLP With Transform Combinations
The prediction accuracies from a sweep with the best MLP and autoencoder (see
Section 4.2.1 and Section 4.2.2) as well as different data transforms is illustrated in
Figure 4.16. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.17 shows the training and validation accuracies over time. Table 4.17 presents the
best transform combination together with the best MLP. The accuracies of the best
hyperparameters is shown in Table 4.18.

55

4. Results

A

B

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Puls
e

Cate
go

ry

Auto
en

co
de

r

CLC Gau
ss

ian

Jit
ter Mag

nit
ud

e

W
ar

p

Per
muta

tio
n

RW
S

Sca
lin

g
Tim

e

W
ar

p
W

av
ele

t

W
av

ele
t

Con
ca

t
Tra

in

Acc
ur

ac
y

Vali
da

tio
n

Acc
ur

ac
y

Te
st

Acc
ur

ac
y

p1

p2

p3

Best MLP With Different Transforms

Figure 4.16: Parallel coordinates plot showing sweep results of the best MLP
identified in Figure 4.10 with random data transform combinations. The thick line

corresponds to the best identified transform combination. “T” and “F” denote
“True” and “False” respectively.

10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

10000 20000 30000 40000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.17: Training and validation accuracy for the best transform
combination identified in Figure 4.16 with a 95% confidence interval computed

from the cross validation folds.

56

4. Results

Table 4.17: The best data and transform combination hyperparameters
when used together with the best MLP. The transforms are listed in the
order as they were applied during training/validation/testing.

Data Hyperparameter Value
Category B
Pulse 1

Autoencoder Value
Depth 1
Encoding dimension 200
Input size 1600

Wavelet Concatenation Value
Wavelet Haar
Frequencies [Hz] 14, 15

Gaussian Jitter Value
Standard deviation 0.0585

Scaling Value
Standard deviation 0.0890

Magnitude Warp Value
Knots 8
Standard deviation 0.2019

Contrasted Linear Combination (CLC) Value
Contrast 2.4521

Table 4.18: Accuracies obtained with the hyperparameters in Table
4.17.

Stage Accuracy
Training 74.74%
Validation 69.00%
Testing 43.75%

57

4. Results

4.3 Convolutional Neural Network (CNN)
This section presents results obtained with CNNs. Specifically, results here were
obtained with different architectures, autoencoders, wavelet transforms, and data
transform combinations.

4.3.1 Different CNN Architectures
The prediction accuracies from a sweep over CNN hyperparameters is illustrated in
Figure 4.18. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.19 shows the training and validation accuracies over time. Table 4.19 presents the
hyperparameters of the best CNN found in this thesis. The accuracies of the best
hyperparameters is shown in Table 4.20.

A

B

0.1

0.2

0.3

2

4

8

16

32

64

128

2

3

5

1

2

3

4

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category CNN Drop Out
CNN Hidden

Channels
CNN Kernel

Size CNN Modules
Train

Accuracy
Validation
Accuracy Test Accuracy

p1

p2

p3

CNN Architecture

Figure 4.18: Parallel coordinates plot showing the sweep results of CNN
architectures. The thick line corresponds to the best identified architecture and

data combination.

58

4. Results

20 40 60 80
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

(a) Training Accuracy

20 40 60 80
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.19: Training and validation accuracy for the best identified CNN model
identified in Figure 4.18 with a 95% confidence interval computed from the cross

validation folds.

Table 4.19: The best data and CNN hyperparameters.

Data Hyperparameter Value
Category B
Pulse 1

CNN Hyperparameter Value
Drop out 0.1
Hidden channels 2
In channels 306
Kernel size 3
Module count 1

Table 4.20: Accuracies obtained with the hyperparameters in Table
4.19.

Stage Accuracy
Training 67.39%
Validation 71.42%
Testing 63.81%

4.3.2 Best CNN With Autoencoder Preprocessing
The prediction accuracies from a sweep with the best CNN (see Section 4.3.1)
and different autoencoder architectures is illustrated in Figure 4.20. Four cross-
validation folds were used to obtain these results. The best combination of hyperpa-
rameters is emphasized with a thicker, orange curve. Figure 4.21 shows the training

59

4. Results

and validation accuracies over time. Table 4.21 presents the hyperparameters of the
best autoencoder in combination with the best CNN. The accuracies of the best
hyperparameters is shown in Table 4.22.

A

B

1

2

3

4

20

30

60

100

200

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Depth

Autoencoder
Encoding
Dimension Train Accuracy

Validation
Accuracy Test Accuracy

p1

p2

p3

Best CNN With Autoencoder Preprocessing

Figure 4.20: Parallel coordinates plot showing sweep results using the best CNN
model identified in Figure 4.18 with different autoencoder architectures. The thick

line corresponds to the best identified autoencoder hyperparameters and data
combination.

20 40 60 80
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

20 40 60 80
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.21: Training and validation accuracy for the best configuration
identified in Figure 4.20 with a 95% confidence interval computed from the cross

validation folds.

60

4. Results

Table 4.21: The best data and autoencoder hyperparameters when used
together with the best CNN.

Data Hyperparameter Value
Category B
Pulse 2

Autoencoder Hyperparameter Value
Depth 2
Encoding dimension 200
Input size 1600

Table 4.22: Accuracies obtained with the hyperparameters in Table
4.21.

Stage Accuracy
Training 53.95%
Validation 73.70%
Testing 55.81%

4.3.3 Best CNN With Wavelet Preprocessing
The prediction accuracies from a sweep with the best CNN and autoencoder (see
Section 4.3.1 and Section 4.3.2) as well as different wavelet transforms is illustrated
in Figure 4.22. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.23 shows the training and validation accuracies over time. Table 4.23 presents the
best wavelet transform in combination with the best CNN. The accuracies of the
best hyperparameters is shown in Table 4.24.

61

4. Results

A

B

False

True

12

13

14

15

16

17

haar

Mexh

Morl

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Wavelet Hertz Wavelet Type Train Accuracy
Validation
Accuracy Test Accuracy

p1

p2

p3

Best CNN With Wavelet Preprocessing

Figure 4.22: Parallel coordinates plot showing sweep results of the best CNN
model identified in Figure 4.18 and (optionally) the best autoencoder identified in

Figure 4.20 with different wavelet preprocessing transforms. The thick line
corresponds to the best identified configuration.

200 400 600 800 1000 1200
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

200 400 600 800 1000 1200
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.23: Training and validation accuracy for the best wavelet configuration
identified in Figure 4.22 with a 95% confidence interval computed from the cross

validation folds.

62

4. Results

Table 4.23: The best data and wavelet transform hyperparameters when
used together with the best CNN.

Data Hyperparameter Value
Category B
Pulse 3

Wavelet Transform Value
Frequency [Hz] 13
Wavelet Morlet

Table 4.24: Accuracies obtained with the hyperparameters in Table
4.23.

Stage Accuracy
Training 79.01%
Validation 73.61%
Testing 65.21%

4.3.4 Best CNN With Transform Combinations
The prediction accuracies from a sweep with the best CNN and autoencoder (see
Section 4.3.1 and Section 4.3.2) as well as different data transforms is illustrated in
Figure 4.24. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.25 shows the training and validation accuracies over time. Table 4.25 presents the
best transform combination together with the best CNN. The accuracies of the best
hyperparameters is shown in Table 4.26.

63

4. Results

A

B

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Puls
e

Cate
go

ry

Auto
en

co
de

r

CLC Gau
ss

ian

Jit
ter Mag

nit
ud

e

W
ar

p

Per
muta

tio
n

RW
S

Sca
lin

g
Tim

e

W
ar

p
W

av
ele

t

W
av

ele
t

Con
ca

t
W

av
ele

t

Stac
k Tra

in

Acc
ur

ac
y

Vali
da

tio
n

Acc
ur

ac
y

Te
st

Acc
ur

ac
y

p1

p2

p3

Best CNN With Different Transforms

Figure 4.24: Parallel coordinates plot showing sweep results of the best CNN
model identified in Figure 4.18 with random data transform combinations. The

thick line corresponds to the best identified transform combination. “T” and “F”
denote “True” and “False” respectively.

200 400 600 800 1000 1200
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

200 400 600 800 1000 1200
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.25: Training and validation accuracy for the best transform
combination identified in Figure 4.24 with a 95% confidence interval computed

from the cross validation folds.

64

4. Results

Table 4.25: The best data and transform combination hyperparameters
when used together with the best CNN. The transforms are listed in the
order as they were applied during training/validation/testing.

Data Hyperparameter Value
Category A
Pulse 3

Gaussian Jitter Value
Standard deviation 0.4697

Permutation Value
Slice Count 6

Magnitude Warp Value
Knots 4
Standard deviation 0.6937

Contrasted Linear Combination (CLC) Value
Contrast 0.9401

Random Window Slicing (RWS) Value
Window length 800

Table 4.26: Accuracies obtained with the hyperparameters in Table
4.25, averaged over four cross-validation folds.

Stage Accuracy
Training 99.13%
Validation 79.82%
Testing 85.21%

Because of the relatively high accuracies showed in Table 4.26, obtained with the
hyperparameters in Table 4.25, the corresponding model and transforms were trained
and tested 132 more times. There is high variance in the accuracies between those
runs and this visualized in the violin plots in Figure 4.26.

65

4. Results

Training Validation Test
0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

Best CNN Model With Best Transforms

Figure 4.26: Violin plot showing training, validation, and test accuracy
distributions over all four cross-validation folds in all 132 repetition runs of the

best CNN and the best transform combination seen in Figure 4.24.

66

4. Results

4.4 Transformer
This section presents results obtained with transformers. Specifically, results here
were obtained with different architectures, autoencoders, wavelet transforms, and
data transform combinations.

4.4.1 Different Transformer Architectures
The prediction accuracies from a sweep over transformer hyperparameters is illus-
trated in Figure 4.27. Four cross-validation folds were used to obtain these results.
The best combination of hyperparameters is emphasized with a thicker, orange
curve. Figure 4.28 shows the training and validation accuracies over time. Ta-
ble 4.27 presents the hyperparameters of the best transformer found in this thesis.
The accuracies of the best hyperparameters is shown in Table 4.28.

A

B

0

0.2

0.5

16

32

64

128

256

1

2

1

2

4

8

16

2

4

6

8

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category
Transformer
Drop Out

Transformer
Embed Size

Transformer
Kernel Size

Transformer
Heads

Transformer
Modules

Train
Accuracy

Validation
Accuracy

Test
Accuracy

p1

p2

p3

Transformer Architecture

Figure 4.27: Parallel coordinates plot showing the sweep results of transformer
architectures. The thick line corresponds to the best identified architecture and

data combination.

67

4. Results

100 200 300 400 500 600 700
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0
A

cc
ur

ac
y

(a) Training Accuracy

100 200 300 400 500 600 700
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.28: Training and validation accuracy for the best identified transformer
model identified in Figure 4.27 with a 95% confidence interval computed from the

cross validation folds.

Table 4.27: The best data and transformer hyperparameters.

Data Hyperparameter Value
Category B
Pulse 2

Transformer Hyperparameter Value
Attention head count 8
Drop out 0
Embed size 64
In channels 1600
Kernel size 2
Module count 6

Table 4.28: Accuracies obtained with the hyperparameters in Table
4.27.

Stage Accuracy
Training 77.50%
Validation 64.76%
Testing 78.68%

4.4.2 Best Transformer With Autoencoder Preprocessing
The prediction accuracies from a sweep with the best transformer (see Section 4.4.1)
and different autoencoder architectures is illustrated in Figure 4.29. Four cross-

68

4. Results

validation folds were used to obtain these results. The best combination of hyperpa-
rameters is emphasized with a thicker, orange curve. Figure 4.30 shows the training
and validation accuracies over time. Table 4.29 presents the hyperparameters of the
best autoencoder in combination with the best transformer. The accuracies of the
best hyperparameters is shown in Table 4.30.

A

B

1

2

3

4

20

30

60

100

200

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Depth

Autoencoder
Encoding
Dimension Train Accuracy

Validation
Accuracy Test Accuracy

p1

p2

p3

Best Transformer With Autoencoder Preprocessing

Figure 4.29: Parallel coordinates plot showing sweep results using the best
transformer model identified in Figure 4.27 with different autoencoder

architectures. The thick line corresponds to the best identified autoencoder
hyperparameters and data combination.

50 100 150 200 250 300 350
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

50 100 150 200 250 300 350
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.30: Training and validation accuracy for the best configuration
identified in Figure 4.29 with a 95% confidence interval computed from the cross

validation folds.

69

4. Results

Table 4.29: The best data and autoencoder hyperparameters when used
together with the best transformer.

Data Hyperparameter Value
Category A
Pulse 2

Autoencoder Hyperparameter Value
Depth 2
Encoding size 30
Input size 1600

Table 4.30: Accuracies obtained with the hyperparameters in Table
4.29.

Stage Accuracy
Training 69.54%
Validation 58.42%
Testing 65.45%

4.4.3 Best Transformer With Wavelet Preprocessing
The prediction accuracies from a sweep with the best transformer and autoencoder
(see Section 4.4.1 and Section 4.4.2) as well as different wavelet transforms is il-
lustrated in Figure 4.31. Four cross-validation folds were used to obtain these re-
sults. The best combination of hyperparameters is emphasized with a thicker, orange
curve. Figure 4.32 shows the training and validation accuracies over time. Table
4.31 presents the best wavelet transform in combination with the best transformer.
The accuracies of the best hyperparameters is shown in Table 4.32.

70

4. Results

A

B

False

True

12

13

14

15

16

17

haar

Mexh

Morl

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Pulse Category Autoencoder Wavelet Hertz Wavelet Type Train Accuracy
Validation
Accuracy Test Accuracy

p1

p2

p3

Best Transformer With Wavelet Preprocessing

Figure 4.31: Parallel coordinates plot showing sweep results of the best
transformer model identified in Figure 4.27 and (optionally) the best autoencoder
identified in Figure 4.29 with different wavelet preprocessing transforms. The thick

line corresponds to the best identified configuration.

100 200 300 400 500 600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

100 200 300 400 500 600
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.32: Training and validation accuracy for the best wavelet configuration
identified in Figure 4.31 with a 95% confidence interval computed from the cross

validation folds.

71

4. Results

Table 4.31: The best data and wavelet transform hyperparameters when
used together with the best transformer.

Data Hyperparameter Value
Category B
Pulse 2

Wavelet Transform Value
Frequency [Hz] 16
Wavelet Mexican Hat

Table 4.32: Accuracies obtained with the hyperparameters in Table
4.31.

Stage Accuracy
Training 84.17%
Validation 66.41%
Testing 60.27%

4.4.4 Best Transformer With Transform Combinations
The prediction accuracies from a sweep with the best transformer and autoencoder
(see Section 4.4.1 and Section 4.4.2) as well as different data transforms is illustrated
in Figure 4.33. Four cross-validation folds were used to obtain these results. The best
combination of hyperparameters is emphasized with a thicker, orange curve. Figure
4.34 shows the training and validation accuracies over time. Table 4.33 presents the
best transform combination together with the best transformer. The accuracies of
the best hyperparameters is shown in Table 4.34.

72

4. Results

A

B

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

F

T

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Puls
e

Cate
go

ry

Auto
en

co
de

r

CLC Gau
ss

ian

Jit
ter Mag

nit
ud

e

W
ar

p

Per
muta

tio
n

RW
S

Sca
lin

g
Tim

e

W
ar

p
W

av
ele

t

W
av

ele
t

Con
ca

t
W

av
ele

t

Stac
k Tra

in

Acc
ur

ac
y

Vali
da

tio
n

Acc
ur

ac
y

Te
st

Acc
ur

ac
y

p1

p2

p3

Best Transformer With Different Transforms

Figure 4.33: Parallel coordinates plot showing sweep results of the best
transformer model identified in Figure 4.27 with random data transform
combinations. The thick line corresponds to the best identified transform

combination. “T” and “F” denote “True” and “False” respectively.

100 200 300 400
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(a) Training Accuracy

100 200 300 400
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y

(b) Validation Accuracy

Figure 4.34: Training and validation accuracy for the best transform
combination identified in Figure 4.33 with a 95% confidence interval computed

from the cross validation folds.

73

4. Results

Table 4.33: The best data and transform combination hyperparameters
when used together with the best transformer. The transforms are listed
in the order as they were applied during training/validation/testing.

Data Hyperparameter Value
Category B
Pulse 3

Wavelet Transform Value
Frequency [Hz] 15
Wavelet Mexican Hat

Random Window Slicing (RWS) Value
Window length 800

Table 4.34: Accuracies obtained with the hyperparameters in Table
4.33.

Stage Accuracy
Training 69.23%
Validation 59.82%
Testing 64.06%

74

4. Results

4.5 Summary
Table 4.35 shows a summary of all obtained prediction accuracies in the different
hyperparameter sweeps from the previous sections of this chapter.

Table 4.35: Summary of the highest obtained prediction accuracies in
each performed sweep. The highest accuracies are written in bold.

ILSTM Sweep Training Validation Test
2020 Reproduction (LOOCV) 84.30% 55.40% 36.65%
Architecture 78.29% 58.01% 38.56%
Best With Autoencoder Preprocessing 76.36% 60.15% 38.12%
Best With Wavelet Preprocessing 72.01% 59.74% 36.35%
Best With Different Transforms 84.88% 82.29% 49.67%

MLP Sweep Training Validation Test
Architecture 76.53% 58.71% 41.44%
Best With Autoencoder Preprocessing 77.68% 56.02% 39.36%
Best With Wavelet Preprocessing 64.81% 58.76% 45.56%
Best With Different Transforms 74.74% 69.00% 43.75%

CNN Sweep Training Validation Test
Architecture 67.39% 71.42% 63.81%
Best With Autoencoder Preprocessing 53.95% 73.70% 55.81%
Best With Wavelet Preprocessing 79.01% 73.61% 65.21%
Best With Different Transforms 99.13% 79.82% 85.21%

Transformer Sweep Training Validation Test
Architecture 77.50% 64.76% 78.68%
Best With Autoencoder Preprocessing 69.54% 58.42% 65.45%
Best With Wavelet Preprocessing 84.17% 66.41% 60.27%
Best With Different Transforms 69.23% 59.82% 64.06%

75

5
Discussion

This chapter discusses and compares the results presented in Chapter 4 as well as
the limitations that this project faced, future work, and ethical and societal aspects
related to the subject.

5.1 Comparing Results
This section discusses the results presented in the previous chapter, possible inter-
pretations and inferences.

5.1.1 Univariate vs. Multivariate Models
Very broadly speaking, there is a high-level distinction between the ILSTM/MLP
runs versus the CNN/Transformer runs, in that the former used univariate data
while the latter used multivariate data. In other words, the former models were
tasked with classifying MSNA inhibition based on the readings from single MEG
sensors, while the latter models could classify the patient based on all the sensor
readings for a given pulse.
Intuitively, one would expect the multivariate models to perform better, because
they always get access to the relevant information (assuming at least one sensor
can pick up information about MSNA inhibition). The univariate models, on the
other hand, may have to classify signals from regions where no MSNA information
is present, which forces it to overfit to noise or resort to random guessing.
Notably, in the univariate case, the test accuracy was consistently below the perfor-
mance of random guessing, while most multivariate models at least made predictions
that correlated positively with the true labels in the test set.

5.1.2 Confidence, Variance, and Words of Caution
Most of the accuracies reported in Chapter 4 come from an averaging of four cross-
validation folds. This is better than just single runs, but does not remove all variance
from the results. Furthermore, in the multivariate case the dataset is effectively
reduced by a factor of 306, which means that the variance of the accuracy estimates
should be 306 times larger.
A rough upper-bound for how spread-out the accuracy distribution is can be seen by

76

5. Discussion

looking at the accuracies of all the runs in the parallel coordinate plots and thinking
of them as being samples from a single distribution. In the multivariate case this
distribution is very wide.
In practice, the hyperparameters do likely have some effect, and the conditional
distribution of accuracies for a given hyperparameter selection should have a some-
what lower variance, but exactly how much is difficult to tell without running many
additional runs.
Another source for variance in this thesis is that the weights of the models are
initialized differently in each cross-validation fold and run. The hyperparameters
are thus not the only things that vary.

5.1.3 Model Architecture
The performance was comparable for both univariate models. Neither of them
learned anything useful. The training accuracy is a bit higher, while the test accu-
racy is a bit lower for the ILSTM compared to the MLP. But since the test accuracy
is below random chance, not much can be concluded from this.
Between the multivariate Transformer and CNN, the CNN generally got better
performance across all metrics. A possible explanation for this could be that sensor
index is important, and an architecture that prevents the model from distinguishing
between these indices is detrimental to performance.
In general, it is difficult to draw any conclusions about which architecture hyperpa-
rameters are the most beneficial due to the high accuracy variance.

5.1.4 Preprocessing and Augmentation Methods
The best models identified typically included some augmentation methods. However,
it is not clear whether the performance difference is due to the augmentation, or
random factors such as weight initialization and choice of validation patients in the
cross-validation folds.
In order to draw stronger conclusions about the effect of a specific hyperparameter
or transform, the same architecture could be trained several times, where each run
has a different random seed. This would make the weight initialization constant for
each cross-validation fold in any given run but make it different in other runs. The
average accuracy over all such runs would better represent the general effect of the
hyperparameter or transform in question. Doing this was however not feasible in
this project because of the given time-frame.
With the mentioned sources for high variance in mind, the rest of this section will
discuss the differences in results with regard to different preprocessing and augmen-
tation methods.
Using autoencoders for preprocessing generally decreased accuracies for all models,
with some exceptions where there only was a slight increase. It therefore does not
seem that beneficial to use an autoencoder in this context.

77

5. Discussion

Wavelet transforms were also used with the different models and their effect on the
accuracies varied quite a lot. Any increase in accuracy was not large, making it
seem like wavelets are not that useful either.
Random transform combinations, including both preprocessing and augmentation
techniques, were also used with the different models. The results from these sweeps
are what generally stand out since the difference in accuracy between models on
their own and together with transforms are found here. Notably, the best CNNs
together with certain transforms got 99.13% in training accuracy, 79.82% in valida-
tion accuracy, and 85.21% in test accuracy (see Section 4.3.4). This is a huge change
from using the model in question on its own. It is however worth mentioning the
high variance again, which is visualized in Figure 4.26.

5.2 Limitations
Even though there are a lot of results in this thesis, there could have been even
more. The computer used for training models was a limiting factor in how many
results could be obtained, especially since it was shared with another Master’s thesis
project. The computer stopped working several times and the competition for its
resources caused sweeps to sometimes crash. A training schedule for the projects
was set up but only after some time had been lost.
The available computing resources was not the only time limiting factor however.
The framework developed for running sweeps worked very well towards the end
but left relatively little time to actually run sweeps. All results in this thesis were
obtained in the last month of the project. Although it took long to develop, the
framework did make it easy to run new things however. It made it worth the effort
since it made it possible to quickly run new things that were thought of. Due to the
human factor however, some mistakes regarding for example sweep configurations
and simple bugs in the framework resulted in some sweeps having to be restarted. It
is much to ask to implement everything perfectly the first time but had there been
fewer bugs in the beginning of gathering results, there would have been more to go
on.
Due to privacy concerns since the dataset contains medical data, the dataset could
not be transferred onto more high-performance data solutions. The data was there-
fore always kept on a slow hard drive which was connected directly to the computer
used for training. Allocating space for the data in RAM memory allowed for rela-
tively fast computations but the allocation itself was very slow. This was especially
noticed during cross-validation when the whole dataset had to be rotated and real-
located.

78

5. Discussion

5.3 Future Work
Given the results in this project, there is clearly more work remaining to be done
before a system like this can be deployed in a medical setting.
Achieving good accuracy on the validation and test sets would be a necessary, but
not sufficient, requirement. This was not achieved in this project. Despite various
attempts at augmenting the data and exploring different methods of utilizing do-
main knowledge, getting around the small dataset size proved to be too difficult.
Especially when applying deep learning techniques, which are known to be data
hungry.
It would be advisable for continuations of this work to either focus on getting more
real data, or on minimizing the use of deep learning in the classification pipeline,
and relying more on the statistical methods as described in [3].
An ideal scenario would be if MedTech West, perhaps in combination with other
organizations across the globe, made a concerted effort to gather significantly more
data. With a data set on the order of 1000 people, it is much more likely that a
practically useful and generally applicable model could be developed.
Barring this possibility, it could be worth investigating other general large MEG
datasets. Even if they do not come from the same type of experiment, a large
dataset of MEG data could be useful for semi-supervised learning. A model could
learn the general structure of MEG from large datasets and utilize this knowledge
for downstream tasks such as classifying MSNA inhibition.
Besides this, there is more data available from the experiments on which this project
was based than just the MEG data. For instance, there is EEG data available from
around 30 people, and there is more “idle” MEG data available from where the
patients were not exposed to any stimuli.
Although deep learning is enticing in its powerful ability to extract patterns from
large amounts of data, it is often inappropriate for smaller datasets. Without access
to data from more people, deep learning might not be the right tool for the job.
Processing the data similarly to Bushra et al. [3], computing some statistics from
the regions with known correlations, and running basic classification methods on this
low-dimensional data may prove much more interpretable, robust, and successful.

79

5. Discussion

5.4 Ethical and Societal Aspects
This section discusses different ethical and societal aspects that have been taken into
consideration during this project, as well as some discussion of the broader impact
of this work.

5.4.1 Privacy
This project has involved working with medical data collected from a set of people.
Personal data in general, and in particular medical data should for many reasons be
kept private. This is a widely recognized fact covered by international laws such as
GDPR [53].
To ensure that the privacy of the individuals involved in this project is respected,
the data has been anonymized so that it is not possible to identify them from it.
Additionally, the data has at all times been kept locally at Syntronic and not been
exposed to any external party.

5.4.2 Confidence and Interpretability
If the results of this project were more promising, and time had allowed, it would
have been valuable to investigate methods for interpretability of these classification
models.
In medical settings, black-box classifiers are typically not ideal. The doctor might
want a reasonable explanation for why the answer came out as it did. Good in-
terpretability would give both clinicians and patients more confidence in the model
predictions.
Another avenue that may be valuable to explore is the creation of confidence inter-
vals for individual predictions, which could be a way for the doctor to gauge how
confident the classifier is in its output.

5.4.3 Sustainability
The United Nations has 17 goals for sustainable development (SDGs) [54]. The goals
for Good Health and Well-Being and Gender Equality are of particular relevance to
this project.
Regarding good health and well-being, this project is part of an effort to understand
and prevent essential hypertension and cardiovascular disease, which could lead to
people living longer, healthier lives. With a cynical point of view, this would have
a negative impact on the Climate Action SDG since it would result in a larger
ecological footprint.
Regarding gender equality, or bias in general, it is too early to be concerned about
the biases of the models developed in this project. The reason for this is that the
models are unable to reliably classify MSNA inhibition. With that said, bias will
be important to keep in consideration in future iterations of this work. In medical

80

5. Discussion

situations, it is especially important to be aware of potential biases in the training
dataset. Ideally, the final system should perform equally well for everyone regardless
of age, ethnicity, and gender. It is therefore crucial that future models are trained
on large diverse datasets before being deployed for real-world use.

81

6
Conclusion

The goal of this Master’s thesis was to improve the classification accuracy of MSNA
inhibition from MEG data beyond what was achieved in the two previous theses
on the subject [15], [16]. This was attempted through fixing some methodological
issues of these previous theses, as well as exploring various new ANN architectures,
and data preprocessing and augmentation methods.
The main methodological issue that was fixed is the data split between training
and validation patients. This made the validation accuracy more aligned with the
test accuracy, and hyperparameter optimization based on the validation accuracy
became viable.
The main contribution of this thesis was a broad search of architectures, hyper-
parameters, and data preprocessing and augmentation methods and an analysis of
their relative performance.
The main finding from this search is that multivariate models which consider all
MEG sensors have more potential to achieve high accuracy than models that classify
on the individual sensor level. Even these, however, fail to reliably solve the task
on this dataset. The dataset is small in terms of the number of patients, resulting
in unreliable high-variance results.
The choice of data preprocessing and augmentation methods had a minor impact
on results, but no clear patterns were identified. The best performing model was
a CNN with a collection of augmentation methods applied (CLC, Gaussian Jitter,
Magnitude Warping, Permutation, and RWS). However, this performance seems to
be relatively sensitive to weight initialization, and reproducing the same model does
not guarantee similar results.
The main conclusion from this work is that the size of the dataset remains the
most significant bottleneck for good performance on this task. Without more data,
applying deep learning to the problem is likely to be unsuccessful and the most
promising step forward might be to use more traditional statistical approaches or
semi-supervised learning techniques.
Despite high variances, this thesis lays some groundwork for MedTech West’s future
research on preventative measures for essential hypertension and cardiovascular dis-
ease.

82

Bibliography

[1] World Health Organization. “Cardiovascular diseases.” (2021), [Online]. Avail-
able: https://www.who.int/health-topics/cardiovascular-diseases
(visited on 12/10/2021).

[2] S. E. Kjeldsen, “Hypertension and cardiovascular risk: General aspects,” Phar-
macological research, vol. 129, pp. 95–99, Mar. 2018, issn: 1096-1186. doi: 10
.1016/J.PHRS.2017.11.003. [Online]. Available: https://pubmed.ncbi.nl
m.nih.gov/29127059/.

[3] B. R. Syeda, “Bringing meg towards clinical applications,” 2018. [Online].
Available: http://hdl.handle.net/2077/56334.

[4] J. Gordon Betts, P. Desaix, E. Johnson, et al., Anatomy & physiology. Rice
University, 2013, isbn: 9781938168130.

[5] R. Kivi. “Just the essentials of essential hypertension.” (Sep. 17, 2018), [On-
line]. Available: https://www.healthline.com/health/high-blood-press
ure-hypertension/how-reduce-high-blood-pressure#causes (visited on
05/25/2022).

[6] M. N. Alshak and J. M Das, Neuroanatomy, Sympathetic Nervous System.
StatPearls Publishing, Treasure Island (FL), 2021. [Online]. Available: http:
//europepmc.org/books/NBK542195.

[7] T. Mano, “Muscle sympathetic nerve activity in blood pressure control against
gravitational stress,” Journal of Cardiovascular Pharmacology, vol. 38, S7–S11,
Oct. 2001, issn: 0160-2446. doi: 10.1097/00005344-200110001-00003.

[8] M. J. Joyner, N. Charkoudian, and B. G. Wallin, “Sympathetic nervous system
and blood pressure in humans,” Hypertension, vol. 56, pp. 10–16, 1 Jul. 2010,
issn: 0194-911X. doi: 10.1161/HYPERTENSIONAHA.109.140186.

[9] S. Supek and C. J. Aine, Magnetoencephalography. Springer, 2016.
[10] Meg Scanner Unit, Univeristy of Oxford, Nightingale Associates. Photograph.

Britannica ImageQuest, Encyclopædia Britannica, 25 May 2016. [Online]. Avail-
able: https://quest-eb-com.eu1.proxy.openathens.net/search/104_32
4042/1/104_324042/cite (visited on 04/21/2022).

[11] "Transformation. The positions of the head, skull, brain, and helmet sensors af-
ter the transformation." Andersen LM (2018) Group Analysis in MNE-Python
of Evoked Responses from a Tactile Stimulation Paradigm: A Pipeline for Re-
producibility at Every Step of Processing, Going from Individual Sensor Space
Representations to an across-Group Source Space Representation. Front. Neu-
rosci. 12:6. Distributed under the terms of the Creative Commons Attribution

83

https://www.who.int/health-topics/cardiovascular-diseases
https://doi.org/10.1016/J.PHRS.2017.11.003
https://doi.org/10.1016/J.PHRS.2017.11.003
https://pubmed.ncbi.nlm.nih.gov/29127059/
https://pubmed.ncbi.nlm.nih.gov/29127059/
http://hdl.handle.net/2077/56334
https://www.healthline.com/health/high-blood-pressure-hypertension/how-reduce-high-blood-pressure#causes
https://www.healthline.com/health/high-blood-pressure-hypertension/how-reduce-high-blood-pressure#causes
http://europepmc.org/books/NBK542195
http://europepmc.org/books/NBK542195
https://doi.org/10.1097/00005344-200110001-00003
https://doi.org/10.1161/HYPERTENSIONAHA.109.140186
https://quest-eb-com.eu1.proxy.openathens.net/search/104_324042/1/104_324042/cite
https://quest-eb-com.eu1.proxy.openathens.net/search/104_324042/1/104_324042/cite

Bibliography

License (CC BY)., Jan. 22, 2018. doi: 10.3389/fnins.2018.00006. (visited
on 04/21/2022).

[12] C. Amrutkar and R. M. Riel-Romero, “Rolandic epilepsy seizure,” StatPearls,
Aug. 2021. [Online]. Available: https://www.ncbi.nlm.nih.gov/books
/NBK534845/.

[13] ”Brain Lateral View" by Chiara Mazzasette, licensed by CC BY 4.0), May 18,
2021. [Online]. Available: https://med.libretexts.org/Bookshelves/An
atomy _ and _ Physiology / Human _ Anatomy _ (OERI) /12 % 3A _ Central _ and
_Peripheral_Nervous_System/12.03%3A_Brain- _Cerebrum (visited on
04/21/2022).

[14] S. H. Park, J. Choi, and J.-S. Byeon, “Key principles of clinical validation,
device approval, and insurance coverage decisions of artificial intelligence,”
Korean Journal of Radiology, vol. 22, p. 442, 3 2021, issn: 1229-6929. doi:
10.3348/kjr.2021.0048.

[15] A. Bakidou and J. N. Odhner, “Deep learning for brain activity analysis,”
2020. [Online]. Available: https://hdl.handle.net/20.500.12380/301297.

[16] C. Chau and E. Nordanger, “Guiding AI-based classification: Can conventional
functional neuroimaging analysis improve deep learning methods for identify-
ing risk for essential hypertension?,” 2021. [Online]. Available: https://hdl
.handle.net/20.500.12380/304228.

[17] B. Riaz, J. J. Eskelin, L. C. Lundblad, et al., “Brain structural and functional
correlates to defense-related inhibition of muscle sympathetic nerve activity
in man,” Scientific Reports 2022 12:1, vol. 12, pp. 1–13, 1 Feb. 2022, issn:
2045-2322. doi: 10.1038/s41598-022-05910-8. [Online]. Available: https:
//www.nature.com/articles/s41598-022-05910-8.

[18] R. Tavenard, J. Faouzi, G. Vandewiele, et al., “Tslearn, a machine learning
toolkit for time series data,” Journal of Machine Learning Research, vol. 21,
no. 118, pp. 1–6, 2020. [Online]. Available: http://jmlr.org/papers/v21/2
0-091.html.

[19] M. Barandas, D. Folgado, L. Fernandes, et al., “Tsfel: Time series feature
extraction library,” SoftwareX, vol. 11, p. 100 456, 2020, issn: 2352-7110. doi:
https://doi.org/10.1016/j.softx.2020.100456. [Online]. Available: http
s://www.sciencedirect.com/science/article/pii/S2352711020300017.

[20] M. X. Cohen, Analyzing Neural Time Series Data: Theory and Practice, illus-
trated. MIT Press, 2014, 0-600, isbn: 026231956X, 9780262319560.

[21] H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep
learning for time series classification: A review,” Data Mining and Knowledge
Discovery, vol. 33, pp. 917–963, 4 Jul. 2019, issn: 1384-5810. doi: 10.1007/s
10618-019-00619-1. [Online]. Available: http://link.springer.com/10.1
007/s10618-019-00619-1.

[22] B. Mehlig, “Machine learning with neural networks,” Machine Learning with
Neural Networks, Jan. 2019. doi: 10.1017/9781108860604. [Online]. Avail-
able: http://arxiv.org/abs/1901.05639%20http://dx.doi.org/10.1017
/9781108860604.

84

https://doi.org/10.3389/fnins.2018.00006
https://www.ncbi.nlm.nih.gov/books/NBK534845/
https://www.ncbi.nlm.nih.gov/books/NBK534845/
https://creativecommons.org/licenses/by/4.0/
https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology/Human_Anatomy_(OERI)/12%3A_Central_and_Peripheral_Nervous_System/12.03%3A_Brain-_Cerebrum
https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology/Human_Anatomy_(OERI)/12%3A_Central_and_Peripheral_Nervous_System/12.03%3A_Brain-_Cerebrum
https://med.libretexts.org/Bookshelves/Anatomy_and_Physiology/Human_Anatomy_(OERI)/12%3A_Central_and_Peripheral_Nervous_System/12.03%3A_Brain-_Cerebrum
https://doi.org/10.3348/kjr.2021.0048
https://hdl.handle.net/20.500.12380/301297
https://hdl.handle.net/20.500.12380/304228
https://hdl.handle.net/20.500.12380/304228
https://doi.org/10.1038/s41598-022-05910-8
https://www.nature.com/articles/s41598-022-05910-8
https://www.nature.com/articles/s41598-022-05910-8
http://jmlr.org/papers/v21/20-091.html
http://jmlr.org/papers/v21/20-091.html
https://doi.org/https://doi.org/10.1016/j.softx.2020.100456
https://www.sciencedirect.com/science/article/pii/S2352711020300017
https://www.sciencedirect.com/science/article/pii/S2352711020300017
https://doi.org/10.1007/s10618-019-00619-1
https://doi.org/10.1007/s10618-019-00619-1
http://link.springer.com/10.1007/s10618-019-00619-1
http://link.springer.com/10.1007/s10618-019-00619-1
https://doi.org/10.1017/9781108860604
http://arxiv.org/abs/1901.05639%20http://dx.doi.org/10.1017/9781108860604
http://arxiv.org/abs/1901.05639%20http://dx.doi.org/10.1017/9781108860604

Bibliography

[23] A. Subasi, “Eeg signal classification using wavelet feature extraction and a
mixture of expert model,” Expert Systems with Applications, vol. 32, pp. 1084–
1093, 4 May 2007, issn: 0957-4174. doi: 10.1016/J.ESWA.2006.02.005.

[24] D. B. Percival and A. T. Walden, Wavelet methods for time series analysis.
Cambridge university press, 2000, vol. 4.

[25] A. N. Akansu and R. A. Haddad, Multiresolution Signal Decomposition: Trans-
forms, Subbands, and Wavelets. 2001, p. 499, isbn: 9780120471416. [Online].
Available: http://www.sciencedirect.com/science/article/pii/B97801
20471416500070.

[26] T. P. Developers. “Continuous wavelet transform (cwt).” (Mar. 11, 2022),
[Online]. Available: https://pywavelets.readthedocs.io/en/latest/ref
/cwt.html (visited on 04/11/2022).

[27] M. X. Cohen, “A better way to define and describe morlet wavelets for time-
frequency analysis,” Aug. 21, 2018. doi: 10.1101/397182. [Online]. Available:
https://doi.org/10.1101/397182.

[28] W. K. Ngui, M. S. Leong, L. M. Hee, and A. M. Abdelrhman, “Wavelet anal-
ysis: Mother wavelet selection methods,” Applied Mechanics and Materials,
vol. 393, pp. 953–958, 2013, issn: 16609336. doi: 10.4028/WWW.SCIENTIFIC.
NET/AMM.393.953.

[29] J. K. Sunkara, “Selection of wavelet basis function for image compression – a
review,” ELCVIA Electronic Letters on Computer Vision and Image Analysis,
vol. 18, pp. 1–20, 1 Sep. 2019, issn: 1577-5097. doi: 10.5565/rev/elcvia.10
94. [Online]. Available: https://elcvia.cvc.uab.cat/article/view/1094.

[30] G. Forestier, F. Petitjean, H. A. Dau, G. I. Webb, and E. Keogh, “Generating
synthetic time series to augment sparse datasets,” vol. 2017-November, IEEE,
Nov. 2017, pp. 865–870, isbn: 978-1-5386-3835-4. doi: 10.1109/ICDM.2017
.106. [Online]. Available: https://ieeexplore.ieee.org/document/82155
69/.

[31] S. Gupta and A. Gupta, “Dealing with noise problem in machine learning data-
sets: A systematic review,” Procedia Computer Science, vol. 161, pp. 466–474,
Jan. 2019, issn: 18770509. doi: 10.1016/j.procs.2019.11.146. [Online].
Available: https://linkinghub.elsevier.com/retrieve/pii/S187705091
9318575.

[32] A. L. Guennec, S. Malinowski, and R. Tavenard, “Data augmentation for time
series classification using convolutional neural networks,” Sep. 2016. [Online].
Available: https://halshs.archives-ouvertes.fr/halshs-01357973%20h
ttps://halshs.archives-ouvertes.fr/halshs-01357973/document.

[33] C. Oh, S. Han, and J. Jeong, “Time-series data augmentation based on interpo-
lation,” Procedia Computer Science, vol. 175, pp. 64–71, 2020, issn: 18770509.
doi: 10.1016/j.procs.2020.07.012.

[34] T. T. Um, F. M. J. Pfister, D. Pichler, et al., “Data augmentation of wearable
sensor data for parkinson’s disease monitoring using convolutional neural net-
works *,” vol. 17, 2017. doi: 10.1145/3136755.3136817. [Online]. Available:
https://doi.org/10.1145/3136755.3136817.

85

https://doi.org/10.1016/J.ESWA.2006.02.005
http://www.sciencedirect.com/science/article/pii/B9780120471416500070
http://www.sciencedirect.com/science/article/pii/B9780120471416500070
https://pywavelets.readthedocs.io/en/latest/ref/cwt.html
https://pywavelets.readthedocs.io/en/latest/ref/cwt.html
https://doi.org/10.1101/397182
https://doi.org/10.1101/397182
https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.393.953
https://doi.org/10.4028/WWW.SCIENTIFIC.NET/AMM.393.953
https://doi.org/10.5565/rev/elcvia.1094
https://doi.org/10.5565/rev/elcvia.1094
https://elcvia.cvc.uab.cat/article/view/1094
https://doi.org/10.1109/ICDM.2017.106
https://doi.org/10.1109/ICDM.2017.106
https://ieeexplore.ieee.org/document/8215569/
https://ieeexplore.ieee.org/document/8215569/
https://doi.org/10.1016/j.procs.2019.11.146
https://linkinghub.elsevier.com/retrieve/pii/S1877050919318575
https://linkinghub.elsevier.com/retrieve/pii/S1877050919318575
https://halshs.archives-ouvertes.fr/halshs-01357973%20https://halshs.archives-ouvertes.fr/halshs-01357973/document
https://halshs.archives-ouvertes.fr/halshs-01357973%20https://halshs.archives-ouvertes.fr/halshs-01357973/document
https://doi.org/10.1016/j.procs.2020.07.012
https://doi.org/10.1145/3136755.3136817
https://doi.org/10.1145/3136755.3136817

Bibliography

[35] B. K. Iwana and S. Uchida, “An empirical survey of data augmentation for
time series classification with neural networks,” PLOS ONE, vol. 16, e0254841,
7 Jul. 2021, issn: 1932-6203. doi: 10.1371/journal.pone.0254841.

[36] T. Fields, G. Hsieh, and J. Chenou, “Mitigating drift in time series data with
noise augmentation,” Proceedings - 6th Annual Conference on Computational
Science and Computational Intelligence, CSCI 2019, pp. 227–230, Dec. 2019.
doi: 10.1109/CSCI49370.2019.00046.

[37] B. K. Iwana and S. Uchida, “Time series data augmentation for neural net-
works by time warping with a discriminative teacher,” [Online]. Available:
https://github.com/uchidalab/time.

[38] J. Chung, C. Gulcehre, K. Cho, and Y. Bengio, “Empirical evaluation of gated
recurrent neural networks on sequence modeling,” Dec. 2014. [Online]. Avail-
able: https://arxiv.org/abs/1412.3555v1.

[39] A. Gu, K. Goel, and C. Ré, “Efficiently modeling long sequences with struc-
tured state spaces,” Oct. 2021. [Online]. Available: https://arxiv.org/abs
/2111.00396v1.

[40] A. Vaswani, N. Shazeer, N. Parmar, et al., “Attention is all you need,” CoRR,
vol. abs/1706.03762, 2017. arXiv: 1706.03762. [Online]. Available: http://a
rxiv.org/abs/1706.03762.

[41] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural com-
putation, vol. 9, pp. 1735–80, Dec. 1997. doi: 10.1162/neco.1997.9.8.1735.

[42] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with
deep convolutional neural networks,” Advances in neural information process-
ing systems, vol. 25, 2012.

[43] J. Wu, X. Y. Chen, H. Zhang, L. D. Xiong, H. Lei, and S. H. Deng, “Hyper-
parameter optimization for machine learning models based on bayesian opti-
mization,” Journal of Electronic Science and Technology, vol. 17, pp. 26–40, 1
Mar. 2019, issn: 1674-862X. doi: 10.11989/JEST.1674-862X.80904120.

[44] E. Larson, A. Gramfort, D. A. Engemann, et al., Mne-tools/mne-python:
V0.24.1, 2021. doi: 10.5281/ZENODO.5748364. [Online]. Available: https
://zenodo.org/record/5748364.

[45] R. Oostenveld, P. Fries, E. Maris, and J.-M. Schoffelen, “Fieldtrip: Open source
software for advanced analysis of meg, eeg, and invasive electrophysiological
data,” Computational intelligence and neuroscience, vol. 2011, 2011.

[46] L. Biewald, Experiment tracking with weights and biases, Software available
from wandb.com, 2020. [Online]. Available: https://www.wandb.com/.

[47] C. R. Harris, K. J. Millman, S. J. van der Walt, et al., “Array programming
with NumPy,” Nature, vol. 585, no. 7825, pp. 357–362, Sep. 2020. doi: 10.10
38/s41586-020-2649-2. [Online]. Available: https://doi.org/10.1038/s4
1586-020-2649-2.

[48] W. McKinney, “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference, S. van der Walt and J.
Millman, Eds., 2010, pp. 56–61. doi: 10.25080/Majora-92bf1922-00a.

[49] T. pandas development team, Pandas-dev/pandas: Pandas, version latest, Feb.
2020. doi: 10.5281/zenodo.3509134. [Online]. Available: https://doi.org
/10.5281/zenodo.3509134.

86

https://doi.org/10.1371/journal.pone.0254841
https://doi.org/10.1109/CSCI49370.2019.00046
https://github.com/uchidalab/time
https://arxiv.org/abs/1412.3555v1
https://arxiv.org/abs/2111.00396v1
https://arxiv.org/abs/2111.00396v1
https://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.11989/JEST.1674-862X.80904120
https://doi.org/10.5281/ZENODO.5748364
https://zenodo.org/record/5748364
https://zenodo.org/record/5748364
https://www.wandb.com/
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134

Bibliography

[50] A. Paszke, S. Gross, F. Massa, et al., “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Information Pro-
cessing Systems 32, Curran Associates, Inc., 2019, pp. 8024–8035. [Online].
Available: http://papers.neurips.cc/paper/9015-pytorch-an-imperati
ve-style-high-performance-deep-learning-library.pdf.

[51] W. Falcon and The PyTorch Lightning team, PyTorch Lightning, version 1.4,
Mar. 2019. doi: 10.5281/zenodo.3828935. [Online]. Available: https://git
hub.com/PyTorchLightning/pytorch-lightning.

[52] J. Bradbury, R. Frostig, P. Hawkins, et al., JAX: Composable transformations
of Python+NumPy programs, version 0.2.5, 2018. [Online]. Available: http:
//github.com/google/jax.

[53] European Union. “General data protection regulation.” (2016), [Online]. Avail-
able: https://gdpr.eu/ (visited on 06/27/2022).

[54] United Nations Development Programme. “THE SDGS IN ACTION.” (2022),
[Online]. Available: https://www.undp.org/sustainable-development-go
als (visited on 06/27/2022).

[55] W. S. Mcculloch and W. Pitts, “A logical calculus of the ideas immanent in
nervous activity,” 1943.

[56] A. Nicolae, “Plu: The piecewise linear unit activation function,” Sep. 2018.
doi: 10.48550/arxiv.1809.09534. [Online]. Available: http://arxiv.org
/abs/1809.09534.

[57] Y. Zhou, Z. Zhu, and Z. Zhong, “Learning specialized activation functions
with the piecewise linear unit,” Apr. 2021. [Online]. Available: http://arxiv
.org/abs/2104.03693.

[58] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016,
http://www.deeplearningbook.org.

[59] J. Li, “Regression and classification in supervised learning,” ACM Press, 2019,
pp. 99–104, isbn: 9781450372909. doi: 10.1145/3366650.3366675. [Online].
Available: http://dl.acm.org/citation.cfm?doid=3366650.3366675.

[60] Y. Ho and S. Wookey, “The real-world-weight cross-entropy loss function:
Modeling the costs of mislabeling,” IEEE Access, vol. 8, pp. 4806–4813, 2020,
issn: 21693536. doi: 10.1109/ACCESS.2019.2962617.

[61] S. Ruder, “An overview of gradient descent optimization algorithms,” Sep.
2016. [Online]. Available: http://arxiv.org/abs/1609.04747.

[62] D. Foster, “Generative deep learning,” vol. 6, p. 308, November 2019. [Online].
Available: https://www.oreilly.com/library/view/generative-deep-le
arning/9781492041931/.

[63] M. M. Bronstein, J. Bruna, T. Cohen, and P. Velickovic, “Geometric deep
learning: Grids, groups, graphs, geodesics, and gauges,” CoRR, vol. abs/2104.13478,
2021. arXiv: 2104.13478. [Online]. Available: https://arxiv.org/abs/2104
.13478.

[64] P. Domingos, “A few useful things to know about machine learning,” Commu-
nications of the ACM, vol. 55, pp. 78–87, 10 Oct. 2012, issn: 0001-0782. doi:
10.1145/2347736.2347755. [Online]. Available: https://dl.acm.org/doi
/10.1145/2347736.2347755.

87

http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://doi.org/10.5281/zenodo.3828935
https://github.com/PyTorchLightning/pytorch-lightning
https://github.com/PyTorchLightning/pytorch-lightning
http://github.com/google/jax
http://github.com/google/jax
https://gdpr.eu/
https://www.undp.org/sustainable-development-goals
https://www.undp.org/sustainable-development-goals
https://doi.org/10.48550/arxiv.1809.09534
http://arxiv.org/abs/1809.09534
http://arxiv.org/abs/1809.09534
http://arxiv.org/abs/2104.03693
http://arxiv.org/abs/2104.03693
http://www.deeplearningbook.org
https://doi.org/10.1145/3366650.3366675
http://dl.acm.org/citation.cfm?doid=3366650.3366675
https://doi.org/10.1109/ACCESS.2019.2962617
http://arxiv.org/abs/1609.04747
https://www.oreilly.com/library/view/generative-deep-learning/9781492041931/
https://www.oreilly.com/library/view/generative-deep-learning/9781492041931/
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://arxiv.org/abs/2104.13478
https://doi.org/10.1145/2347736.2347755
https://dl.acm.org/doi/10.1145/2347736.2347755
https://dl.acm.org/doi/10.1145/2347736.2347755

A
Theory On Artificial Neural

Networks

This chapter covers in-depth theory on concepts related to artificial neural networks
such as neurons, activation functions, loss functions, stochastic gradient descent,
backpropagation, generative and discriminative models, hypothesis space, and gen-
eralization.

A.1 Neurons
The neurons used in artificial neural networks are based on the binary threshold
unit neurons (McCulloch-Pitts neurons) originally invented by McCulloch and Pitts
in 1943. The ith neuron in their model is defined as a unit having input states
sj(t), input weights wi,j, a threshold (also called bias) value θi, and an output state
si(t + 1). The model repeats the same computations for a certain amount of time
steps which is the reason for the time step index t. The index j is in the range 1
to the length of the model input. The output of a McCulloch-Pitts neuron is either
-1 or 1 since the output is computed as the signum of the neuron’s local field. The
local field is shown as the argument to the signum function in Figure A.1, which
shows a schematic of a McCulloch-Pitts neuron. The local field is the difference
between the weighted sum of the neuron’s inputs and its threshold. The use of the
signum function explains why the neurons are called binary threshold units here.
An example of a model that utilizes McCulloch-Pitts neurons is the Hopfield model
[22], [55].

. . .

Figure A.1: A McCulloch-Pitts neuron schematic.

I

A. Theory On Artificial Neural Networks

The McCulloch-Pitts neuron uses the signum function as mentioned earlier to com-
pute its output. This is however a special case of the general neuron (see Figure
A.2) that is used in ANNs where the function applied is arbitrary and is called the
activation function.

. . .

Figure A.2: A general neuron schematic. The activation function is denoted as g.

In the McCulloch-Pitts case, the activation function is discontinuous and discrete.
In contrast, in the case of it being continuous, the neurons are allowed to take
on continuous state values [22]. Appendix A.2 covers activation functions in more
detail.

A.2 Activation Functions
Activation functions are used in each neuron to produce an output based on its
local field (see Appendix A.1). There are linear, non-linear, and piecewise linear
activation functions.
Linear activation functions can only solve problems that are linearly separable while
non-linear ones can solve ones that are not. One example of a non-linear activation
function is tangens hyperbolicus (tanh), which is shown in Figure A.3. The sigmoid
and softmax functions are other examples. A problem with using non-linear acti-
vations functions is that they result in the vanishing gradient problem as the ANNs
get deeper (meaning get more layers). If the gradient of the activation function is
smaller than 1 in many layers in the ANN, their product will get very close to 0
and the network will thus not learn anything during backpropagation (see Appendix
A.4) [22], [56].

II

A. Theory On Artificial Neural Networks

00-15-15 -10-10 -5-5 55 1010 1515

-1-1

-0.5-0.5

0.50.5

11

bb

g(b)g(b)

Figure A.3: A non-linear, continuous activation function: Tangens hyperbolicus
(g(b) = tanh(b)).

One way to mitigate the vanishing gradient problem is to use so-called piecewise
linear activation functions instead of non-linear [56], [57]. One example of such an
activation function is ReLU (rectified linear unit, g(b) = max(0, b)), which is shown
in Figure A.4. The derivative of ReLU is constantly 1 for local fields larger than
0. If ReLU is used in every layer, it means that the product of gradients during
backpropagation will not approach 0 along such neuron paths in the network as it
becomes deeper.

00-2.5-2.5 -2-2 -1.5-1.5 -1-1 -0.5-0.5 0.50.5 11 1.51.5 22 2.52.5

0.50.5

11

1.51.5

bb

g(b)g(b)

Figure A.4: A piecewise linear activation function: ReLU (g(b) = max(0, b)).

Piecewise linear activation functions can of course be more complicated and even
mimic non-linear ones. For example, the Piecewise Linear Unit (PLU), suggested
by Nicolae at the University of Washington, mimics tanh. It is said to be superior
to ReLU in certain tasks while not resulting in the vanishing gradient problem that
tanh induces [56].

III

A. Theory On Artificial Neural Networks

A.3 Loss Functions
Artificial neural networks are, as stated before, function approximators. In order
to approximate a function, it needs to learn when it classifies its input incorrectly.
This is where loss functions enter the stage. They are used to compute how far off
the ANN’s predictions are from the ground truth [22], [58]. The loss function has
to be chosen with the problem at hand in mind; is it a linear regression problem,
binary classification problem, or a multi-class classification problem? The difference
between regression problems and classification problems is that the former involves
predicting continuous quantities while the latter involves predicting discrete class
labels [59]. In the case of this thesis, the problem is a binary classification problem
and the labels are MSNA inhibitor and non-inhibitor.
An example of a binary classification loss function is binary cross-entropy (BCE)
which can be defined as in Equation A.1 for a single input data point x⃗(µ). When
training the network on a mini batch X(ν) of data points instead, BCE can be defined
as in Equation A.2. Here, the loss becomes an average loss over the data points in
the batch, resulting in less noisy parameter updates during backpropagation (see
Appendix A.4) [22], [60].

l(x⃗(µ), l(µ),Θ) = −
M∑

i=1

[
δi,l(µ) log

(
f̂Θ(x⃗(µ))i

)
+ (1− δi,l(µ)) log

(
1− f̂Θ(x⃗(µ))i

)]
(A.1)

L(X(ν), l⃗(ν),Θ) = 1
∥X(ν)∥

∥X(ν)∥∑
µ=1

l
(

X(µ)
(ν), l⃗

(µ)
(ν) ,Θ

)
(A.2)

M := 2 (Number of classes)
p := The total number of data points

Θ := The parameter matrix of the network
x⃗(µ) := Data point vector (µ ∈ [1, p])

X(ν) := Mini batch ν matrix
(
∥X(ν)∥∈ [1, p], ν ∈

[
1,
⌈ p

∥X(ν)∥

⌉])
l(µ) := The label of the µth data point (l(µ) ∈ {0, 1}, ∀µ ∈ [1, p])

δa,b :=
{

1, if a = b

0, otherwise
(Kronecker delta)

f̂Θ := The function approximated by the network (f̂Θ 7→ y⃗, y⃗ ∈ RM)

Mean Squared Error (MSE) is an example of a loss function used in regression
problems. In geometric terms, it is the average squared Euclidean distance between
predictions and targets [58]. The MSE loss function can be defined as in Equation
A.3 for a mini batch of data points X(ν) and targets Y(ν). This loss function can for

IV

A. Theory On Artificial Neural Networks

example be used when training autoencoders (see Section 2.1.1).

L(X(ν),Y(ν),Θ) = 1
∥X(ν)∥

∥X(ν)∥∑
µ=1

(
f̂Θ

(
X(µ)

(ν)

)
−Y(µ)

(ν)

)2
(A.3)

The general usage of loss functions will be explained in more detail in the context
of stochastic gradient descent and backpropagation in Appendix A.4.

A.4 Stochastic Gradient Descent
The expected loss J(Θ) of an ANN can be defined as in Equation A.4. By taking
steps downhill its gradient with respect to the network parameters Θ and updating
them along the way to convergence, the parameters are optimized to minimize the
loss. In deterministic gradient descent, it is common to get stuck in local minima
and thus never reach a global one. Stochastic gradient descent (SGD) on the other
hand makes it possible to escape local minima to potentially find a global minimum
later on. By randomly estimating the gradient when taking steps along it, the
estimation error can allow for steps that are not downhill. Taking a step uphill
can obviously result in an escape from a local minima. Whether a global minima
is found during the training process thus depends on stochasticity and the training
time T (T ∈ Z+) [22], [58], [61]. The rest of this section will explain how SGD
makes gradient estimations and how the network parameters Θ are updated during
training.
Here, X denotes the data point matrix, Y denotes the target matrix, p̂data denotes
the data distribution, and L denotes the loss function (see Appendix A.3).

J(Θ) = EX,Y∼p̂data [L(X,Y,Θ)] (A.4)

= 1
∥X∥

∥X∥∑
µ=1

L(X(µ),Y(µ),Θ) (A.5)

The gradient of J(Θ) with respect to the network parameters Θ is defined as in
Equation A.6 [58], [61].

∇ΘJ(Θ) = ∇Θ

(
1
∥X∥

∥X∥∑
µ=1

L(X(µ),Y(µ),Θ)
)

(A.6)

= 1
∥X∥

∥X∥∑
µ=1

∇ΘL(X(µ),Y(µ),Θ) (A.7)

= EX,Y∼p̂data [∇ΘL(X,Y,Θ)] (A.8)

V

A. Theory On Artificial Neural Networks

Notice that the gradient of J(Θ) is an expectation (see Equation A.8). It can thus
be estimated with a subset of the whole dataset. In SGD, a so-called mini batch
X(ν) is uniformly sampled from X (X(ν) ⊂ X). This stochastic estimation of the
gradient makes it possible to escape local minima as mentioned before [22], [58], [61].
The mini batch estimation of the expected loss J(Θ) can be defined as in Equation
A.9.

∇ΘĴ(Θ) = 1
∥X(ν)∥

∥X(ν)∥∑
µ=1

∇ΘL
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
≈ ∇ΘJ(Θ) (A.9)

The network parameters Θ are then updated by taking a step of length η (learning
rate) along the estimated gradient in the direction ∇ΘĴ(Θ) [58], [61]. The gradient
step at time step t (t ≤ T) will here be denoted as δΘ(t), as seen in Equation A.10.
The update of the parameters at time step t is shown in Equation A.11.

δΘ(t) = −η∇ΘĴ(Θ) (A.10)
Θ(t+1) ← Θ(t) + δΘ(t) (A.11)

The learning rate η can be adapted during training to take steps appropriate for
the gradient at the current location. This can for example be done by adding
momentum to the step based on the previous step. A new hyperparameter α,
called the momentum constant is therefore introduced (affects the intertia, α ≥
0). Equation A.12 shows the momentum being added to the step at time step t.
Adding momentum results in larger steps in shallow minima and shorter ones where
the gradient oscillates rapidly [22]. This thus allows for faster and more stable
convergence, hopefully to the global minimum of the loss function in question.

δΘ(t) = −η∇ΘĴ(Θ) + αδΘ(t−1) (A.12)

The backpropagation of the loss through an ANN is done using the chain rule to
compute the parameter updates [22]. To explain this concept in a simple fashion,
consider the multilayer perceptron (MLP, see Section 2.3.1) which is a feed-forward
ANN. Equation A.13 shows the update for the weight matrix W(l) in layer l in the
MLP. Note that this example does not include momentum but that it can be added
easily. Also note that the time step notation has been hidden to make the derivation
less cluttered.

δW(l) = −η∂Ĵ(Θ)
∂W(l) (A.13)

= − η

∥X(ν)∥

∥X(ν)∥∑
µ=1

∂L
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
∂W(l)

VI

A. Theory On Artificial Neural Networks

∝

∥X(ν)∥∑
µ=1

∂L
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
∂V⃗

(L,µ)
(ν)

⊙
∂V⃗

(L,µ)
(ν)

∂W(l)

∝

∥X(ν)∥∑
µ=1

∂L
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
∂V⃗

(L,µ)
(ν)

⊙
∂V⃗

(L,µ)
(ν)

∂V⃗
(L−1,µ)

(ν)

⊙
∂V⃗

(L−1,µ)
(ν)

∂W(l)

∝

∥X(ν)∥∑
µ=1

∂L
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
∂V⃗

(L,µ)
(ν)

⊙
∂g
(⃗
b

(L,µ)
(ν)

)
∂b⃗

(L,µ)
(ν)

⊙

(
∂b⃗

(L,µ)
(ν)

∂V⃗
(L−1,µ)

(ν)

∂V⃗
(L−1,µ)

(ν)

∂W(l)

)

∝

∥X(ν)∥∑
µ=1

∂L
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
∂V⃗

(L,µ)
(ν)

⊙
∂g
(⃗
b

(L,µ)
(ν)

)
∂b⃗

(L,µ)
(ν)

⊙

(
W(L)∂V⃗

(L−1,µ)
(ν)

∂W(l)

)

∝

∥X(ν)∥∑
µ=1

∂L
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
∂V⃗

(L,µ)
(ν)

⊙
∂g
(⃗
b

(L,µ)
(ν)

)
∂b⃗

(L,µ)
(ν)

⊙

(
W(L) . . .

∂V⃗
(l,µ)

(ν)

∂W(l)

)

∝

∥X(ν)∥∑
µ=1

∂L
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
∂V⃗

(L,µ)
(ν)

⊙
∂g
(⃗
b

(L,µ)
(ν)

)
∂b⃗

(L,µ)
(ν)

⊙

(
W(L) · · ·

∂g
(⃗
b

(l,µ)
(ν)

)
∂b⃗

(l,µ)
(ν)

⊙
∂b⃗

(l,µ)
(ν)

∂W(l)

)

∝

∥X(ν)∥∑
µ=1

∂L
(

X(µ)
(ν),Y

(µ)
(ν) ,Θ

)
∂V⃗

(L,µ)
(ν)

⊙
∂g
(⃗
b

(L,µ)
(ν)

)
∂b⃗

(L,µ)
(ν)

⊙

(
W(L) · · ·

∂g
(⃗
b

(l,µ)
(ν)

)
∂b⃗

(l,µ)
(ν)

⊙ V⃗ (l−1,µ)
(ν)

)

L := The number of layers in the MLP (depth)

l ∈ [0, L]

g := Element-wise activation function (see Section A.2)

b⃗
(l,µ)
(ν) := The local field vector in layer l (data point µ, mini batch ν)

b⃗
(l,µ)
(ν) = W(l)V⃗

(l−1,µ)
(ν) − θ⃗(l)

V⃗
(l,µ)

(ν) := The neuron state vector in layer l (data point µ, mini batch ν)

V⃗
(l,µ)

(ν) = g
(⃗
b

(l,µ)
(ν)

)
The general MLP backpropagation formula shown in Equation A.13 can be con-
cretized with for example the mean squared error loss function (MSE, see Appendix
A.3). The gradient of the loss function then looks like Equation A.14.

VII

A. Theory On Artificial Neural Networks

∂L(X(µ)
(ν),Y

(µ)
(ν) ,Θ)

∂V⃗
(L,µ)

(ν)

= ∂

∂V⃗
(L,µ)

(ν)

(
1

∥X(µ)
(ν)∥

(
f̂Θ

(
X(µ)

(ν)

)
−Y(µ)

(ν)

)
·
(
f̂Θ

(
X(µ)

(ν)

)
−Y(µ)

(ν)

))

= ∂

∂V⃗
(L,µ)

(ν)

(
1

∥X(µ)
(ν)∥

(
V⃗

(L,µ)
(ν) −Y(µ)

(ν)

)
·
(
V⃗

(L,µ)
(ν) −Y(µ)

(ν)

))

= 2
∥X(µ)

(ν)∥

(
V⃗

(L,µ)
(ν) −Y(µ)

(ν)

)
(A.14)

The backpropagation derivation in Equation A.13 shows the issue of vanishing gra-
dients, previously mentioned in Appendix A.2. If the network is deep and the
activation function gradients are smaller than 1, the parameter update will be very
small and the network will virtually learn nothing. As mentioned in Appendix A.2,
there are workarounds.

A.5 Generative and Discriminative Models
There are two types of deep learning models: generative and discriminative. The
former involves estimating how probable observations are. The latter involves es-
timating how probable a label is given an observation [62]. Generative models are
thus not classifiers on their own but can be used to learn representations of the raw
data that potentially are easier to classify with discriminative models [21].

A.5.1 Generative Models
There are two families of generative models related to time series classification:
Autoencoders and echo state networks (ESN) [21]. The former was described in
Section 2.1.1. The latter are seemingly the same as what Mehlig refers to as reservoir
computers [22].
Echo state networks are recurrent neural networks (RNN) and can also be used
to create new representations of time series data. The reservoir in an ESN is a
dynamical memory which means that the values of all its neurons at time step
T represent the input time series for all t ≤ T [21], [22]. The reservoir is thus
a representation of the data which can also be fed into discriminative models for
classification.

A.5.2 Discriminative Models
Discriminative models can be divided into two groups: Feature engineering and end-
to-end models. The former involves extracting features, engineered based on domain
knowledge, from the data and then feeding them into a discriminative model. End-
to-end models however learn the features from the data on their own while also
tweaking the parameters of the classifier [21].

VIII

A. Theory On Artificial Neural Networks

Section 2.3 mentions some discriminative models that could be useful for time series
classification and describes ones actually used in this thesis in more detail.

A.6 Hypothesis Space and Generalization
Different ANN models have different prior probabilities for approximating a func-
tion well enough for it to generalize on unseen data [63]. If the true function was
found, it would generalize accurately at all times. The space of possible function
approximations is called the hypothesis space [64]. A model can only generalize if its
hypothesis space intersects with a set of functions that explain the data distribution
relatively well. Even then, the intersection might be so small that it is very unlikely
to reach generalization. This is visualized in Figure A.5 where one model has a
higher probability of generalizing than the other, based on their priors.

All Functions

Prior of
Good Model

Functions that Explain the data
Actual Function

Good Predicted Function

Prior of
Bad Model

Bad Predicted Function

Functions that Generalize

Figure A.5: The blue circles represent the hypothesis space of the “good” model,
the purple ones represent the hypothesis space of the “bad” model, and the red

area represents the set of functions that describe the data distribution well.

It is clear that the amount of data is not the only factor in reaching generalization.
The model architecture plays a role as well since it affects the hypothesis space.
However, if the true function or a good approximation is in the hypothesis space,
the probability of finding a bad approximation decreases as the data set cardinality
increases [64].

IX

DEPARTMENT OF ELECTRICAL ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

https://www.chalmers.se/

	List of Acronyms
	Nomenclature
	List of Figures
	List of Tables
	Introduction
	Background
	Muscle Sympathetic Nerve Activity (msna)
	Magnetoencephalography (meg)

	Previous Work
	Previous Master's Theses
	Traditional Statistical Approaches

	Aim
	Delimitations

	Theory
	Preprocessing of Time Series Data
	Removing Noise With Autoencoders
	Feature Extraction With Wavelet Transforms

	Augmentation of Time Series Data
	Random Window Slicing (rws)
	Permutation
	Time Warping and Window Warping
	Jittering
	Stochastic Scaling
	Magnitude Warping
	Contrasted Linear Combination (clc)

	Artificial Neural Networks For Time Series Classification
	Multilayer Perceptron (mlp)
	Long-Short Term Memory (lstm)
	Transformer
	Convolutional Neural Network (cnn)

	Bayesian Hyperparameter Optimization

	Methods
	Provided Data
	Data Collection and Storage
	Preprocessing

	Data Split
	Old and New Data Split
	Cross-Validation

	Used Artificial Neural Networks
	Long Short-Term Memory (lstm)
	Multilayer Perceptron (mlp)
	Convolutional Neural Network (cnn)
	Transformer
	Autoencoder

	Training Artificial Neural Network Models
	Pipeline
	Training, Validation, And Testing
	Hyperparameter Tuning
	Motivations Behind Collected Results

	Implementation

	Results
	Incorrect Long Short Term Memory (ilstm)
	Reproduction From Previous Thesis
	Different ilstm Architectures
	Best ilstm With Autoencoder Preprocessing
	Best ilstm With Wavelet Preprocessing
	Best ilstm With Transform Combinations

	Multilayer Perceptron (mlp)
	Different mlp Architectures
	Best mlp With Autoencoder Preprocessing
	Best mlp With Wavelet Preprocessing
	Best mlp With Transform Combinations

	Convolutional Neural Network (cnn)
	Different cnn Architectures
	Best cnn With Autoencoder Preprocessing
	Best cnn With Wavelet Preprocessing
	Best cnn With Transform Combinations

	Transformer
	Different Transformer Architectures
	Best Transformer With Autoencoder Preprocessing
	Best Transformer With Wavelet Preprocessing
	Best Transformer With Transform Combinations

	Summary

	Discussion
	Comparing Results
	Univariate vs. Multivariate Models
	Confidence, Variance, and Words of Caution
	Model Architecture
	Preprocessing and Augmentation Methods

	Limitations
	Future Work
	Ethical and Societal Aspects
	Privacy
	Confidence and Interpretability
	Sustainability

	Conclusion
	Bibliography
	Theory On Artificial Neural Networks
	Neurons
	Activation Functions
	Loss Functions
	Stochastic Gradient Descent
	Generative and Discriminative Models
	Generative Models
	Discriminative Models

	Hypothesis Space and Generalization

