
A Decentralized Application for
Verifying a Matching Algorithm
Programming and Testing a Smart Contract on the Ethereum
Blockchain

Master’s thesis in Computer Science -Algorithms, Languages and Logic

LINNEA FRITZ

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018

Master’s thesis 2018

A Decentralized Application for Verifying a
Matching Algorithm

Programming and Testing a Smart Contract on the Ethereum
Blockchain

LINNEA FRITZ

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018

A Decentralized Application for Verifying a Matching Algorithm
Programming and Testing a Smart Contract on the Ethereum Blockchain
LINNEA FRITZ

© LINNEA FRITZ, 2018. Supervisor: Elad Schiller, Department of Computer
Science and Engineering, Chalmers
Advisor: Henrik Fagrell, Diadrom
Examiner: Magnus Almgren, Department of Computer Science and Engineering,
Chalmers

Master’s Thesis 2018
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

iv

A Decentralized Application for Verifying a Matching Algorithm
Programming and Testing a Smart Contract on the Ethereum Blockchain
LINNEA FRITZ
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This thesis uses blockchain technology to construct a decentralized application (often
called a ‘Ðapp’) for the sake of verifying results of a matching algorithm used on
data in the automotive industry. Its main intent is to explore whether the framework
Ethereum can be utilized to aid in ensuring the correctness of client responses to a
query sent by a peer in the network. The application was programmed in Solidity
and JavaScript, and run on a local test network consisting of five clients. Testing the
finished application showed that the throughput of data was slow, approximately
35 bytes/s, and that taking over the network to send corrupted information was
relatively simple. These findings, along with a general study of the areas where
blockchain technology is most advantageous, led to the conclusion that though it
has potential as a constituent in the car industry, it is not suitable for verification
of matchings at the time of writing.

Keywords: blockchain, Ethereum, Bitcoin, Ðapp, Truffle, P2P, matching algorithm.

v

Acknowledgements
I would like to thank my company advisor, Henrik Fagrell at Diadrom, my supervisor
Elad Schiller, and my examiner, Magnus Almgren.

Linnea Fritz, Gothenburg, December 2017

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Context . 1
1.2 The issue with centralization . 1
1.3 Problem statement . 2
1.4 Purpose . 3
1.5 Thesis contribution . 4

1.5.1 Test results . 4
1.6 Scope . 5

1.6.1 No Ethereum release . 5
1.6.2 No cost assessment . 5
1.6.3 No diagnostic tool interface 5

1.7 Method . 6
1.8 Thesis outline . 6

2 Background 7
2.1 Blockchain technology today . 7
2.2 Blockchain basics . 8

2.2.1 Bitcoin . 8
2.2.2 The protocol explained . 8

2.3 Double-spending, a common pitfall 9
2.4 Ethereum . 10

3 Method of accomplishment 11
3.1 Decentralized application design . 11
3.2 Programming . 11
3.3 Test design . 12
3.4 Mock data generation . 12
3.5 Evaluation . 12

4 System 15
4.1 Running the blockchain . 15
4.2 Geth . 15

4.2.1 Nodejs and web3 . 16

ix

Contents

4.2.2 The private network . 16
4.3 Writing a program . 17

4.3.1 Truffle - a framework . 18
4.3.2 The code deconstructed . 18
4.3.3 System architecture . 19

4.4 Definitions . 19
4.5 Tests . 20

4.5.1 Reference test . 20
4.5.2 Stress test 1: valid queries . 20
4.5.3 Stress test 2: invalid queries 21

5 Results 23
5.1 Latency in blockchains . 23
5.2 Throughput in blockchains . 24
5.3 Result of sending valid queries . 25

5.3.1 Queries 1-200 . 25
5.3.2 Queries 201-400 . 25
5.3.3 Queries 401 and up . 25

5.4 Result of sending invalid queries . 26
5.4.1 Queries 1-200 . 26
5.4.2 Queries 201-400 . 26
5.4.3 Queries 401 and up . 26

5.5 Knowledge gained from the tests . 26
5.6 Calculations . 27

6 Discussion 31
6.1 Deciding when a Ðapp is the optimal solution 31
6.2 A Ðapp for matching algorithms . 32

6.2.1 The Ðapp’s advantages . 32
6.2.2 The Ðapp’s drawbacks . 32

6.2.2.1 Throughput . 33
6.2.2.2 Rebuilding the existing system 33
6.2.2.3 Computational resource 33
6.2.2.4 Redundancy . 33

6.2.3 Alternative decentralized approaches 33
6.2.3.1 IPFS as an alternative solution 34
6.2.3.2 A customized blockchain 34

6.3 Summary . 34

7 Conclusion 35

Bibliography I

A Detailed problem definition I

B Code III
B.1 Javascript code . III

x

Contents

B.2 The Solidity smart contract code . VII
B.3 The genesis file . VIII

C Blockchain resources IX
C.1 Bitcoin block header . IX
C.2 Ethereum block header . IX

xi

Contents

xii

List of Figures

4.1 Illustration of the data flow when a query is entered in the web ap-
plication. 22

5.1 Plot depicting number of seconds required to mine one block in the
reference test. Average time to mine one block in reference test: 11.88 s. 28

5.2 Plot depicting number of seconds required to mine one block in the
first stress test. Average time to mine one block in stress test 1: 17.35
s. The outlier is explained in section 5.3. 29

5.3 Plot depicting number of seconds required to mine one block in the
second stress test. Average time to mine one block in stress test 2:
19.95 s. 29

xiii

List of Figures

xiv

List of Tables

5.1 Variables used for computing the calculations in section 5.6. 27
5.2 Overview of the three different tests run on the finished application. . 30

xv

List of Tables

xvi

1
Introduction

1.1 Context
Since the advent of computerized functions in cars, matching algorithms have also
found a place in the automotive industry. Today, many of a car’s features are real-
ized by around 100 electronic control units (ECUs) communicating with each other
via a network [7]. The term for such a computer is ‘node’, and each node has its
own, unique identification number.

In order for a node to operate, it requires the correct combination of hardware and
software. One node can be in production for many years, and accordingly, there will
be many software and a number of hardware versions for it. For all nodes, there is
at least one working software/hardware combination, and such a combination may
apply to more than one node. Furthermore, there is a many-to-many relationship
between hardware and software modules.

The fact that there are so many different available sets necessitates the use of
databases to track and maintain the relations. That way, when a car comes to
a repair shop, the mechanic is able to look up the node in question in a database
and get an answer detailing which hardware fits at the node, and also which software
module needs to be downloaded to run on this hardware.

To facilitate availability of this data to repair shops scattered across countries, each
car manufacturer sets up their own servers, so that mechanics can send compatibility
queries from different locations and at different times of day.

1.2 The issue with centralization
Though a common solution, centralized data repositories are prone to vulnerabilities
such as distributed denial of service attacks [4] and compromised integrity. This en-
tails, that the answers a client gets back may have been manipulated, compromised
or gone altogether because of the nature of a client-server environment.

As a direct alternative to the centralized approach is the blockchain technology,
which is inherently a decentralized and distributed solution. As such, its promoters
testify that its traits of accountability and non-repudiation make it suitable for a
wide range of applications such as storing documents, tracing provenience of prop-

1

1. Introduction

erty and signing contracts [18]. The data is encrypted and can only be read by the
holder of the private key.

We present a new solution for the problem of verifying hardware-software compat-
ibility. To validate a hardware-software set found by a matching algorithm, we use
the emerging blockchain technology, implemented on the Ethereum platform. This
approach aims at providing increased scalability as well as improve service availabil-
ity and user accessibility.

1.3 Problem statement

For a node to know which hardware/software composition it needs to run, an al-
gorithm for database searches is required. Today, this setup is centralized, and all
clients rely on a few central SQL servers to always be kept up to date, up and run-
ning, and ready to answer requests.

Reliance on central database servers leads to the dangers of single point of failure,
where DDoS attacks, SQL injections and man-in-the-middle attacks are a constant
threat to data integrity and availability. These vulnerabilities have prompted stake-
holders to explore alternative solutions, and this is where blockchain technology
comes in.

Compatibility checking in cars is best described as a matching problem, and in the
sensitive environment of a car, verification of the combination’s correctness is advis-
able. The problem for this thesis, then, is to design and implement a decentralized
solution for clients to get verified answers to requests for finding compatible hard-
ware/software sets.

The integrated development environment (IDE) proposed for this project, Truffle1,
is a framework specifically designed to facilitate development of decentralized appli-
cations. It uses Ethereum’s blockchain implementation, and among other features,
it allows “built-in smart contract compilation, linking, deployment and binary man-
agement, automated contract testing” and “network management for deploying to
many public and private networks”2.

As an Ethereum blockchain solution is commonly referred to as a Ðapp, that is the
term henceforth used in this thesis. The word is not just a contraction of “decentral-
ized application”; the letter Ðis pronounced “eth”, which also refers to Ethereum’s
currency, ETH [20].

However, as Truffle is even more recent than Ethereum (its first version, 0.0.11, was
released on GitHub in July of 20153), it is still in its early stages, and there are

1http://truffleframework.com/
2http://truffleframework.com/docs/
3https://github.com/ethereum/solidity/releases?after=v0.4.3

2

http://truffleframework.com/
http://truffleframework.com/docs/
https://github.com/ethereum/solidity/releases?after=v0.4.3

1. Introduction

multiple issues and bugs pending4. Though the ambition to make Truffle accessible
for new users is clear in the documentation and tutorials5, the limited amount of
examples available online and the novelty of Ðapps will make using the framework
a challenge.

Not only are there bugs in Truffle, but its underlying structure, the Ethereum
blockchain, has also faced a number of problems. These are described in recent
error reports from Ethereum’s official blog, and include a bug in the Geth client6,
storage corruption in the Solidity language7 and a DDoS attack to the network8.
Solidity has undergone 8 versions since the start of writing this thesis, and while
most of the releases comprise of bugfixes, some come with new features as well9.
This illustrates the fast evolution of the tools used when creating a Ðapp, a fact
that must be taken into consideration when planning a project using new technology.

Challenge: Designing and evaluating a decentralized blockchain application
that validates the feasibility of an implementation of our matching algorithm
(section 2.1). This challenge is advanced because using the studied platform and
framework requires dealing with a number of code maturity issues, and poses
difficulties in terms of adopting the available developmental tools.

1.4 Purpose

The main goal is to write a decentralized application for running compatibility
checks for car nodes. Using blockchain technology, a network of computers will
work together to process and answer calls from clients requesting information on
which software versions can run on respective available hardware. The application
will also include an error-reporting method, where users can log combinations that
do not work, despite having gotten a positive response from the system. This may
happen if there is a bug in the software module, or a software is wrongfully added
to the database as backwards-compatible, when in reality, it is not.

As the existing solution is dependent on central servers, this thesis aims to ex-
plore the possibilities that decentralizing compatibility checks may hold. The pros
and cons will be discovered through testing of the finished application, to disclose
whether blockchain technology is a viable option for verifying the answer to a match-
ing problem.

4https://github.com/consensys/truffle/issues
5http://truffleframework.com/tutorials/
6https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-

geth-v1-4-19-v1-5-2/
7https://blog.ethereum.org/2016/11/01/security-alert-solidity-variables-can-

overwritten-storage/
8https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-

dos-attack/
9https://github.com/ethereum/solidity/releases

3

https://github.com/consensys/truffle/issues
http://truffleframework.com/tutorials/
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/
https://blog.ethereum.org/2016/11/25/security-alert-11242016-consensus-bug-geth-v1-4-19-v1-5-2/
https://blog.ethereum.org/2016/11/01/security-alert-solidity-variables-can-overwritten-storage/
https://blog.ethereum.org/2016/11/01/security-alert-solidity-variables-can-overwritten-storage/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://blog.ethereum.org/2016/09/22/ethereum-network-currently-undergoing-dos-attack/
https://github.com/ethereum/solidity/releases

1. Introduction

1.5 Thesis contribution

This dissertation provides crucial knowledge to the stakeholders (here, the auto-
motive industry) interested in introducing a Blockchain application to distribute
answers from a matching algorithm. In particular, we study whether a network of
clients can work on a Blockchain to inform each other on which vehicular hardware
and software modules are compatible, i.e., matching hardware and software compo-
nents. Decentralizing this procedure has the potential of removing key vulnerabili-
ties associated with central servers, such as man-in-the-middle and denial-of-service
attacks. In order to be a viable option, the decentralized solution must be able to
respond to matching queries quickly, do so on a large scale, and preferably perform
at a low monetary cost.

We propose an implementation (based on Blockchain technology) of the matching
algorithm by Edmonds [3] that is tailored to our industrial motivation for matching
between hardware and software components. We use Blockchain technology as an
enabler for providing a decentralized implementation. This thesis focuses on validat-
ing our implementation and checking whether it can meet all relevant requirements,
such as the desired speed, throughput, and cost effectiveness.

Our test environment consists of five clients simultaneously running on one host,
connected on a private Ethereum network. Each client runs its own instance of the
decentralized application, which includes simulation of a local database. The tests
are designed to measure the latency and throughput of the blockchain application,
to see if it can compete with the centralized setup currently used. This is done using
three different configurations (see chapter 4.5), where one client sends out over 2000
requests and each final answer received from the other clients is recorded to the
blockchain.

The results obtained from the experiments show that the approximate data through-
put is 36 bytes per second (see chapter 5.6), which leads us to draw the conclusion
that Blockchain technology is too slow to compete with the current, centralized so-
lution at this time, even taking into account security benefits that might come with
decentralization. The tests also revealed that the Blockchain application has some
issues when it comes to responding; at least twice during the test runs, it failed to
reply to the calling client (see chapter 5.4). In one of these instances, the applica-
tion, and all participating clients, needed to be restarted.

We offer to use this thesis for future reference as an example of a Blockchain ap-
plication that is unsuitable for its intended purpose, underlining the importance of
understanding when, how, and where a decentralized application is useful.

1.5.1 Test results
The result from testing the application is the main contribution of the project.
Firstly, the results point to difficulties in designing and performing tests on the

4

1. Introduction

blockchain. The time it takes to run a test in order to collect a minimum amount of
data, coupled with flaws in the blockchain protocol, reveal the difficulty of testing
the Ethereum blockchain on a desktop computer.

Secondly, the actual data from the tests validate the collusion theory; the blockchain
will return incorrect answers if the network consists of a majority of selfish miners.

Combined, these findings sum up the core of the thesis. It is possible to design, pro-
gram and test a decentralized application to use in the automotive industry. This
thesis shows, however, that in this particular instance, there are few, if any, gains
to migrating the matching procedure from a central to a distributed solution.

1.6 Scope

1.6.1 No Ethereum release

Though the real Ethereum blockchain is of interest to the subject, especially in
terms of scalability and authentication (not everyone should be able to write data
to this contract) the goal is not to deploy it officially. The reason for this limitation
is partially a monetary question, it costs Ether (or, rather real money) to have
a contract run on the blockchain. Another reason for not officially deploying the
contract is that it greatly enhances risks of data leakage, and that, for this thesis,
configuring a private testnet, and then running it on the official testnet, will suffice.

1.6.2 No cost assessment

As the contract will run only on the test networks, the “money” spent on it will not
be real, and only Ether that is self-supplied (private testnet and RPC testnet) or
easily mined, or worthless (mined and spent on Morden, the official testnet). The
thesis is not specifically dealing with the currency aspect of blockchain technology,
though in many cases, it is a vital part of it. Here, however, the main focus is
assessing the usefulness of different clients reaching consensus on the answer to a
matching function, and not the actual cost of the calculations.

1.6.3 No diagnostic tool interface

If there was a will to test the application in a more real setting, it would have been
beneficial to integrate the Ðapp with the diagnostic tool that is used today in the
repair shops. However, in doing so, the focus of the thesis would move away from
the blockchain and compatibility issues, toward a simpler programming task, which
is best left to the future, should the need arise.

5

1. Introduction

1.7 Method
The main method for researching and completing this thesis is a systematic review
of literature on implementations of the blockchain protocol, studying existing decen-
tralized applications and then investigating blockchain properties by programming
on the Ethereum platform.

1.8 Thesis outline
In this first chapter, we outline the motivation and premises for conducting a study in
blockchain technology, as well as offer some insight into the results and contribution
of said study. Chapter two details the blockchain protocol, its strengths, weaknesses
and applicability as a verifier of the matching algorithm. In chapter three, the
thesis methodology is defined, and chapter four includes a description of the system
and program code. Chapters five and six present detailed results from the tests
performed on the code and system, and a discussion thereof, respectively. Lastly,
chapter seven is a conclusion of the thesis findings.

6

2
Background

This chapter aims to give the reader a general introduction to the concept of
blockchain technology. Firstly, section 2.1 offers a look at the current status of
blockchains and recent usage of the technology that holds relevance to our thesis. In
section 2.2, we outline the background of blockchain technology, its close relation to
Bitcoin and a brief explanation of the protocol. Section 2.3 describes one of the most
common challenges in cryptocurrency development: the double-spending problem,
as well as one popular way of dealing with that issue. In section 2.4 we introduce
Ethereum, the platform used to program and perform the tests of this project.

2.1 Blockchain technology today
Previously mostly known in general terms as the backbone of the cryptocurrency
Bitcoin, the blockchain protocol has recently been acknowledged as a versatile tech-
nology. Under the title “IT trends”, the journal IT Professional [13] states that the
“potential range of blockchain utility” spans from the protection of intellectual prop-
erty, to various applications on the Internet of Anything. The conviction is shared
by Melanie Swan, author of the book “Blockchain –Blueprint for a New Economy”
[18]. The book lists a decentralized domain name system, digital identity verifica-
tion and decentralized governance services as future applications of the technology.

As this thesis is looking into the usage of blockchain technology in an automotive
environment, Lee and Lee’s [15] article on firmware updates is of particular interest.
Instead of running their program on top of an existing blockchain implementation,
they chose to write their own protocol. This alternative is outside of the scope of
this thesis, but nevertheless an extension to keep in mind.

One representative decentralized application that has been implemented on a public
blockchain is Betfunding [14]. It lets participants bet money on which crowdsourced
projects will become reality. This can be seen as a typical use for blockchain, because
it allows user participation, monetary transactions and a form of auction/voting pro-
cess.

However, some researchers encourage careful consideration before jumping on the
blockchain bandwagon. For example, Limieux’s study on using Factom’s1 imple-
mentation of blockchain technology for “creating and preserving trustworthy digital

1https://www.factom.com/

7

https://www.factom.com/

2. Background

records” [16] is not wholly optimistic. It concludes that, as it is designed now,
blockchain may not be the way to go, much due to the fact that Factom does not
offer data reliability.

Another downside to blockchain technology is the case of collusion between miners.
Since a block is only accepted if a majority of miners agree on the solution to the
problem (that is, they get a correct answer when using the same nonce as the miner
who made the discovery first) it is fair to assume, that in order for a pool to gain con-
trol of Bitcoin’s blockchain network, it needs to consist of > 50% of the participants.

However, Eyal and Sirer show that, if a minority of miners chose to follow a “selfish
mining strategy”, members of the honest majority will join them [10]. This process,
modelled in a spatial Poisson process by Göbel et al [11], continues until the colluding
miners sum up to more than half of participants, essentially centralizing the formerly
decentralized currency. Such uses of the protocol can pose real dangers to uses of
the blockchain, as it can break it by yielding incorrect computations.

2.2 Blockchain basics

2.2.1 Bitcoin
The most famous use of blockchain technology is Bitcoin [17], which was devised to
allow trustless transactions between any participating members. The inventor(s),
known only by the pen name Satoshi Nakamoto, wanted to introduce a payment
method without the involvement of a third party, such as a bank or minter. With
the tokens based on digital signatures (as is common), the new idea was to allow all
nodes in the network to continuously calculate hash functions, to submit as proof of
work. Recent figures suggest that Nakamoto was not alone in his pursuit of trustless
monetary transactions, as the “total value of all existing Bitcoin currency equates
roughly USD 7 billion” [1].

2.2.2 The protocol explained
Another term for blockchain is a “public ledger”, a notion that literally describes
the basic function of the technology. In a fully decentralized P2P network, all par-
ticipants reposit the same copy of the blockchain, which is a structure storing all
transactional data that has been sent between users since the very first block.

Each block consists of a block header, which, in turn, consists of a reference to
the unique hash of the header of the block before it (32 bytes), a nonce (4 bytes),
the difficulty target (4 bytes), the version (4 bytes), a timestamp (4 bytes) and the
Merkle root of the transactions in the block [2]. For a look at the complete block
headers for Bitcoin and Ethereum, please see appendices C.1 and C.2. The rest of
the block is made up of the actual transactions that will be processed once the block
has been mined.

8

2. Background

The Merkle root is the hash of all transactions that are included in the block. If
someone tries to make a change to a transaction, the hash of this transaction will
no longer match the block’s Merkle root, and by extension the hash of that block’s
header would change. This discrepancy alerts miners to an anomaly and they would
not include that block in the chain.

The difficulty target is what a miner must reach when completing the proof-of-work,
and in order to do this, she changes the value of the nonce in every iteration. The
timestamp tells when the block was created, and the version number tracks upgrades
to the software/protocol [2].

2.3 Double-spending, a common pitfall
However, the elimination of escrow services is not completely waterproof. A well-
known problem when it comes to digital currency is the issue of double spending.
When someone has paid for something with a token, what’s there to prevent the
same person spending the same token again? The common solution is the third
party involvement, where, in the digital context, a minter will act as an intermedi-
ary.

Instead of paying the merchant directly, the customer gives his token to the minter,
which issues another token of the same value and administers it to the receiver.
Then all transactions must go via the minter. But in Bitcoin, there is no third party
involvement, as it inherently is completely trustless, thus opening up for double-
spending.

There are a number of double-spend attacks described in literature, such as the
eclipse attack [5] and collusive mining [10]. In short, a double-spend attack on the
blockchain will involve an attacker (A) (who may or may not be a participant on the
blockchain), a receiving merchant (R) and the coin (C) that (A) supposedly pays
with. (A) will send (C) as payment for goods to (R), and as soon as that transaction
has been included in the latest block on the chain, (A) publishes two new blocks. In
the first of these two blocks, she has included the same coin (C), but transfers it to
another address she is in charge of. That way, the attacker now has both the goods
she “purchased” from (R), as well as the money she originally spent [5].

Blockchain prevents double-spending through the proof of work consensus algorithm.
In order for a participant to find a block (“mine”) she must complete a very large
number of calculations. She has succeeded when a calculation has yielded a “SHA-
256 hash of the block’s header that is lower than or equal to the current target”2.
When a solution to the problem has been found, the finder broadcasts the solution
to its peers, who in turn propagate the answer to all other nodes in the network.
They all run the answer to verify its correctness, and when they find it to be true,
they add that block to the chain. In so doing, the miner who found the node has

2https://en.bitcoin.it/wiki/Target

9

https://en.bitcoin.it/wiki/Target

2. Background

submitted proof of work - because the only way to find a hash is by working.

The attack described in above relies on the adversary being able to release two blocks
at the same time, in order to provide a longer blockchain than the one that already
exists (when the chain reaches a fork, the longest spoke always prevails). In Bitcoin,
the recommended time to wait before actually considering a payment finalized, is six
blocks. This reduces the attacker’s chances of double spending, because mining six
correct, consecutive blocks requires massive computational power; in October, 2017,
the number of calculations in the Bitcoin network was between 6∗1018 and 13∗1018

hashes per second3. In his white paper , Nakamoto calculates the probability of an
adversary mining six blocks before the rest of the honest network as P = 0.0002428.
The probability becomes exponentially smaller with respect to number of blocks (z)
generated after the transaction [17].

2.4 Ethereum
After Bitcoin, Ethereum is the second most popular blockchain based cryptocur-
rency [1]. Launched in July, 20154, it encompasses much more than just the ETH
currency. It is a platform for developers to program so called smart contracts to
be deployed to the blockchain. These smart contracts are written in the Turing
complete language incorporated in the Ethereum blockchain protocols, and are,
essentially, programs to be executed. That is, the transactions processed on the
blockchain are not only monetary, but they can also be any type of data transfer
between different applications, or between users.

For the code of a smart contract to be executed, the owner needs to pay a fee
(called ether) that is accrued to the participant who mines the block with the code
transaction in it. This ‘gas’ is proportional to the number and complexity of the
calculations of the code execution.

3https://blockchain.info/sv/charts/hash-rate
4http://ethdocs.org/en/latest/introduction/history-of-ethereum.html

10

https://blockchain.info/sv/charts/hash-rate
http://ethdocs.org/en/latest/introduction/history-of-ethereum.html

3
Method of accomplishment

Most documentation on Ethereum is written by members of the community, and
can be found on sites such as stackexchange1, reddit subforums2 and Ethereum’s
own discussion boards3. Written material quickly becomes obsolete, as bug reports
come in, are tended to and projects are abandoned or go through major changes.

Therefore, to find academic material, it is necessary to look to studies on blockchain
technology, and Bitcoin papers. As Bitcoin has been around for a number of years
and is a well-known cryptocurrency, it has attracted a lot of attention from scholars
and programmers.

In addition to scouring the Internet and various journals for up-to-date information,
the thesis relies on practical experiments. How these are prepared and implemented
is described in sections 3.1 through 3.4. Finally, section 3.5 gives information on
how the results of the experiments are to be evaluated.

3.1 Decentralized application design
In order to design the Ðapp, it is important to understand what industry needs look
like. To limit the scope of this thesis, the project will only consist of two methods
to implement, but these have to present some sort of solution to a current problem,
and need to be designed to fit what the users need and be somewhat integrated into
the current system. This process will be done together with industry representatives
who are familiar with the setup today. Even though there already is a solution in
place, using central servers, this thesis will test a completely different approach.

Finding out the requirements for the Ðapp means also finding out how it must
perform and scale. These are also important parameters for the design process and
making choices.

3.2 Programming
The Ðapp will be programmed in Ethereum’s programming language Solidity, which
is reminiscent of JavaScript. For such a small application, with a limited number

1https://ethereum.stackexchange.com/
2https://www.reddit.com/r/ethereum/
3https://forum.ethereum.org/

11

https://ethereum.stackexchange.com/
https://www.reddit.com/r/ethereum/
https://forum.ethereum.org/

3. Method of accomplishment

of methods (two or three), no particular framework or IDE is needed. The Ðapp
is compiled by Solc which is the Solidity compiler that is built into Geth, which is
Ethereum’s client programmed in the Google language Go. This is necessary for
bug fixing in the programming process.

3.3 Test design
Setting up a network to test the program in, means having to model a somewhat
realistic situation, by using a constructed environment. Ethereum offers developers
to design their own private testnets, where they configure a number of mock nodes
(running on one, or more, machines), and these nodes need to know how to commu-
nicate with each other, which they do via ports.

To construct a suitable test environment for our experiments, a few alterations to
Ethereum’s default testnet need to be made. This includes deciding on the number
of nodes in the network and setting them up with the passwords and addresses
required even for faux transactions. Additionally, we have to program the Genesis
block (see appendix B.3) to set the difficulty of the hashes to mine and the maximum
size of a transaction, etc.

3.4 Mock data generation
In order to test database calls, and reproduce test results, a Java program to generate
mock data into a spreadsheet could be an alternative to using an authentic SQL
database. For the sake of simplicity, the data will be stored locally on each client
that runs a blockchain node. Though there are P2P based databases available,
learning how to use and implement them is not part of the scope. Future work can
include trying a P2P solution, such as IPFS4, STORJ5 or Swarm6. This would still
require a program to generate mock data, but it would be stored differently and
require another type of integration solution for the blockchain.

3.5 Evaluation
The compatibility method will be evaluated in the testnet for two or three different
traits, such as latency and block propagation. This will of course require the testnet
to be configured for performing and measuring these evaluations.

Configuration of a private testnet in the Geth client allows the developer to choose
how many nodes the network shall have (in this thesis, the private testnet will only
include nodes that are running locally), and if this is successful, perhaps an extension
to the tests would be to allow nodes running on other clients in the office to connect

4https://ipfs.io/
5https://storj.io/
6http://swarm-gateways.net/bzz:/swarm/

12

https://ipfs.io/
https://storj.io/
http://swarm-gateways.net/bzz:/swarm/

3. Method of accomplishment

to this private network, to get a more realistic simulation, with more nodes involved.

The nodes will need to have access to the (in this case) mock database, and be able
to communicate with each other. This is done by giving each node its own ports for
listening and sending data.

13

3. Method of accomplishment

14

4
System

In this chapter, we portray how the project’s experiments are performed. We begin
by detailing the technical specifics of our test environment in sections 4.1 and 4.2,
and describe the process of creating and running our decentralized application in
section 4.3.

We then move on to the evaluation part of our project. To highlight what parameters
we look at in the test results, we define these key elements, delay and throughput, in
section 4.4. In the following, and last, part of chapter four, we detail the structures
of the reference test and two stress tests that the finished application undergoes.

4.1 Running the blockchain
For a user to participate on the blockchain, a client is required. As of February,
2017, users are offered seven different clients to use for Ethereum, among them
Geth, written in Go, Parity in Rust, and Pyethapp in Python1. This thesis uses
only one of the clients, Geth, because according to the Ethereum documentation, it
is currently one of the leading implementations [9].

4.2 Geth
A client (called a node in the Ethereum community) can have none, one, or sev-
eral accounts associated with it. This is similar to one person owning more than
one bank account, perhaps one for savings, one for business, and another for pri-
vate transactions. The client’s purpose is communication with the blockchain; every
time the client is started, it begins by synchronizing to the blockchain. This is in
turn done by fetching information from the peers the node connects to upon startup.

The first time a node is instantiated, it needs to download the whole blockchain,
at least if the purpose of running the node is to participate on the blockchain. De-
pending on the speed of its CPU/GPU and Internet connection, this may take from
a couple of hours to days.

When the synchronization is complete, the node can start mining on the blockchain.
In order to do this, it needs to be associated with an account in which to place the

1http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html

15

http://ethdocs.org/en/latest/ethereum-clients/choosing-a-client.html

4. System

earned ether.

4.2.1 Nodejs and web3
Though an application can be run in the Geth client by using a JavaScript console
and loading the Ðapp’s script, the functionalities of a client are restricted. Instead,
in order to get full functionalities (such as imported nodejs modules) for the appli-
cation, the Ðapp’s JavaScript code must contain an instantiation of web3, which
is the JavaScript API used to integrate JSON RPC specifications with Ethereum
applications. That way, the Geth client communicates with the Ðapp via a web3
connection over RPC.

4.2.2 The private network
The Geth client runs the Ethereum protocol, which is then applied to the network
that the user has specified. This can be the public, live Ethereum network (where
ether is “real” money) the public live testnet Ropsten that allows users to mine ether
quickly, so as to allow fueling tests, or a private network set up by the developer.

The private test network for this thesis consists of five clients all running on the same
computer. To initiate a blockchain client, a script with the following commands2

are run:

geth –unlock 0 –datadir="/path/to/ethereum/blockchain/node1"
–networkid 2017 –nodiscover –rpc –rpcport 8545 –rpcaddr 0.0.0.0
–verbosity 0 –rpccorsdomain "*" –port 30303 –rpcapi "net,personal,
eth,web3,admin" –ipcpath /.ethereum/geth.ipc console

where each of the five clients modifies the parameters, such as the path to its direc-
tory.

Explanation:

geth: starts the client.

unlock <value>: as a client may have several accounts belonging to it, this
command specifies the ID of the account to unlock for this session.

datadir </path/to/nodedata>: this is where information regarding the node
in question is stored. The actual path is changed depending on node ID.

networkid <value>: the value of the network the user wants the client to
connect to. Here, 2017 is a private network. For example, networkid 1 means
connection to the main, public Ethereum network.

nodiscover: disallows peers to find and connect to nodes on this private
network (for security reasons).

2https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options

16

https://github.com/ethereum/go-ethereum/wiki/Command-Line-Options

4. System

rpc: enables RPC for this node.

rpcport: which port this node will be listening for RPC calls on.

rpcaddr <value>: HTTP-RPC server listening interface (default value is:
localhost)

verbosity <value>: how much information Geth will include in the log of
the output file. 0 is nothing, while 6 is detailed.

rpccorsdomain <value>: this command takes a list of domains from which
the client shall accept cross origin requests. In this command, the value “*”
represents a wildcard, meaning that our browser will accept all requests to use
the web page’s resources, no matter the origin of the requesting domain.

port <value>: which port the network 2017 is listening on.

rpcapi <value>: APIs offered over the HTTP-RPC interface (default: “eth,
net,web3”).

ipcpath <value>: filename for IPC socket/pipe within the data directory
(explicit paths escape it).

Then, in order for all nodes on the network to do correct work (that is, reach con-
sensus about the digits and protocol of the blockchain), they all need to be initiated
to have the same seed block, known as the genesis block. Two nodes initiated from
different genesis blocks cannot possibly work on the same blockchain; this is guar-
anteed by Ethereum’s consensus algorithm.3. On the public blockchain, this file is
pre-programmed (hard-coded), but to get more control over a private instance of it,
the developer can write a bespoke genesis file. For an example, please see B.3.

4.3 Writing a program

As previously mentioned, the code needs to contain a web3 object, so that nodejs
can communicate with the application. It also requires the setting of the http port
for RPC, which is a parameter that needs to be passed for each node, because each
node is running their instance of the Ðapp, and as all nodes (in this thesis) are on
the same computer, they need to listen to their own respective port. That means
that the first node, which has RPC port 8545 will get that set as the in parameter
for its app, the second node will listen to port 8546 and that is the parameter passed
to the Ðapp, and so on. That is the only parameter passed when starting the actual
JavaScript part of the code.

3http://ethdocs.org/en/latest/network/test-networks.html

17

http://ethdocs.org/en/latest/network/test-networks.html

4. System

4.3.1 Truffle - a framework

The integrated development environment (IDE) proposed for this project, Truffle4,
is a framework specifically designed to facilitate development of decentralized appli-
cations. It uses Ethereum’s blockchain implementation, and among other features, it
allows the developer to compile, deploy and automatically test her smart contracts,
as well as manage public and private network deployment5.

However, as the Truffle framework is even more recent than Ethereum (its first
version, 0.0.11 was released on GitHub in July of 20156), it is still in its early stages,
and there are multiple issues and bugs pending7. Though the ambition to make
Truffle accessible for new users is clear in the documentation and tutorials8, the
limited amount of examples available online and the novelty of Ðapps will make
using the framework a challenge.

4.3.2 The code deconstructed
Now, let us consider the code running on a node. This code can be described, step
by step, as follows:

1. A client sends out a request for a node identification number. What hard-
ware/software set is compatible at this node?

2. On the private network 2017, all nodes are peers (know about and are con-
nected to one another). This means that the call for information (data trans-
action) is broadcast to all clients on the network.

3. In order to prompt the other clients to also check the database, which consists
of XLS tables (see table1 and table2 in figure 4.1), for an answer. When an
original request is sent, the contract code fires an event that in turn triggers
the JavaScript that the remaining clients are running.

4. So, the trigger calls the other clients to begin their search in the tables for the
same node identifier and return an answer.

5. Every participating client contributes, by sending the match it got from the
database to the Solidity contract.

6. The contract bubble sorts the answers (there are at most four answers at a
time, which motivates the use of such a naive sorting algorithm) to make
finding the most common answer easier.

7. When the sorting is done, the contract sends an event to a listener in the
JavaScript code.

8. The JavaScript program does a “most popular” search on the returned array,
which will then be the answer.

4http://truffleframework.com/
5http://truffleframework.com/docs/
6https://github.com/ethereum/solidity/releases?after=v0.4.3
7https://github.com/consensys/truffle/issues
8http://truffleframework.com/tutorials/

18

http://truffleframework.com/
http://truffleframework.com/docs/
https://github.com/ethereum/solidity/releases?after=v0.4.3
https://github.com/consensys/truffle/issues
http://truffleframework.com/tutorials/

4. System

In the actual JavaScript application, a matching algorithm is run on the XLS files
containing hardware and software data.

4.3.3 System architecture
In this section, we take a closer look at the inner workings of the system behind a
single call for information on a nodeId. The illustration in 4.1 depicts the system
constituents the call passes through.

1. Script.sh contains code to start the private network, compile the application,
and serve it locally. It also generates a pseudo-random number to use for a
compatibility check. The script opens the address of the web application and
enters the node id [0123] in the query box.

2. The value [0123] is now saved in the web application’s code as nodeId, and
the query has triggered the startCall method in App.js.

3. App.js, in turn, calls the startCall method in the Solidity contract App.sol
with nodeId as a parameter (still value [0123]).

4. The startCall method in App.sol will end only when all participating clients
have completed a match search and the blockchain has reached consensus
regarding the final answer.

5. To create a match to send to the blockchain, App.js calls its local database.
It starts by looking up the node id, [0123] in table1.

6. The program then gets [4567] in return. This is the id of the hardware module
that is compatible with node [0123], and App.js saves it in the hardware
variable.

7. App.js then calls table2 with the hardware number as the parameter.
8. Finally, table2 returns the id of a matching software module.

4.4 Definitions

In order to determine what the results from our experiments entail, we need to an-
alyze two main outcomes of the tests:

• Delay. The time it takes to complete one transaction (here, a query). The
start of the query is the moment a car node identifier is entered in the web
application, and it finishes when the application returns an answer on the
web page. Measurements have to be done in JavaScript, as there is not yet a
feature for this in the Ethereum Geth client.

• Throughput. The number of transactions the Ðapp can process per second.
This measurement can be done by providing the web3 command
getBlockTransactionCount with the identification of the latest completed
block. The output will be the amount of transactions within that block. This
answer, divided by the time the block took to complete (calculated with times-
tamp) will provide the program’s throughput.

19

4. System

4.5 Tests
The private test network consists of five Ethereum clients [client1, client2, ..., client5]
communicating via RPC. A request for an existing car node identifier is sent, the
clients complete their calculations and the smart contract (Ðapp) outputs the an-
swer that most clients have returned. This follows the blockchain philosophy of
‘what the majority answers, is deemed correct’.

Each node in the network takes on one of the following roles:

c: caller. The client who sends out a transaction (query) on the blockchain.
t: truthful clients responding to valid queries with correct data. For all t,
where t= 0-100%, the first t clients always respond correctly to every query.
If the query is invalid, that is, it regards a non-existent node, a truthful client
will not answer anything.
f : faulty clients, 100%-t. When active, they always return false data.

The tests do not utilize the matching algorithm, which, in either case, is implemented
on the JavaScript side and not in the smart contract itself.

4.5.1 Reference test
A reference test is required in order to see that all parts of the application, the
JavaScript program, the Solidity contract, the spreadsheet databases and the net-
work are working as intended in a setting free from disturbances. The resulting
data is then used for comparisons to the two other experiments, to discern what, if
any, effects the introduction of faulty clients and invalid queries have on the outcome.

1. The script selects an existing node identifier for which to send a query. This
may be done iteratively, beginning with node at row 0, and then incrementing
until the last node in the database has been queried. It may also be done in
a randomized fashion.

2. The JavaScript program is hard coded to always let c = client1.
3. In the reference test, t = 50%+1, i.e., the majority. All t clients answer with a

hard-coded {0, 0} tuple (combination), where the first value is the hardware,
and the second is the software.

4. As the query regards an existing node with associated, correct data, all t clients
will find a correct answer, and send this data to the blockchain.

5. There exist no f clients in this test, all clients respond with a correct answer.
6. On the blockchain, the smart contract finds that it has gotten 4 answers (from

different clients), and triggers an event that the querying client, client1 is
listening for.

4.5.2 Stress test 1: valid queries
The first stress test we put our application through, is one where the querying
client always sends out calls for an existent nodeId, but where some of the respond-

20

4. System

ing clients do not reply truthfully. The experiment is meant to mimic a common
blockchain problem, where an adversary controls a number of participating clients
and tries to gain advantage by falsifying transaction data.

Steps 1 and 2 are the same as in 4.5.1.
3. The first t clients behave predictably, as in the reference test. That is, they

answer the calls with correct data.
4. The f clients, however, also respond in this test, but with falsified data. This

means returning an answer that does not correlate to the node’s database
entry. Here, hard-coded to the value 1.

5. Every n tests, f is increased until the faulty clients reach a majority and can
manipulate what the blockchain returns to the user. The plan is to increment
f and decrement t by 1 (20%) every 200 queries, beginning at t=3 and f=1,
until f > t.

6. The hypothesis is, that by getting f clients to collude and agree on sending
the wrong answer, the Ðapp will ultimately return an incorrect result to the
user. In so doing, the test suite will showcase the Ðapp’s vulnerability, namely
colluding clients.

4.5.3 Stress test 2: invalid queries
The motivation for this second stress test is to see what responses the blockchain
return when the calling client requests data for a node id that does not exist in the
database. In a blockchain with no adversaries, such a request poses no problem;
if all participating clients are following the protocol, the caller will get a correct
answer. However, we introduce faulty clients in this test in order to find out if their
erroneous responses will be added to the blockchain as correct, if the percentage of
faulty clients exceeds 50.

1. The script generates a non-existent node identifier for which to send a query.
2. The JavaScript program is hard coded to always let c = client1.
3. The first t clients behave as predicted and return the value (-1), as the query

is regarding a node that does not exist.
4. The faulty clients, however, generate a nonsense answer (value 1) and input it

to the smart contract.
5. Every 200 tests, f is increased until the faulty clients reach a majority and can

manipulate what the blockchain returns to the user. The plan is to increment
f and decrement t by 1 (20%) every 200 tests, beginning at t=3 and f=1, until
f > t.

6. When there are enough colluding f clients on the network, the Ðapp will start
returning faulty combinations to nodes that do not exist.

7. The hypothesis is the same as for 4.5.2.

21

4. System

Figure 4.1: Illustration of the data flow when a query is entered in the web appli-
cation.

22

5
Results

This chapter presents the findings of the three blockchain experiments run in the
project. In section 5.1 and 5.2, scalability and throughput are discussed in terms
of the reference test, which was performed with the intent of observing the general
mechanisms of our distributed application. The data from the two stress tests are
then discussed in one section each, 5.3 and 5.4, in relation to the reference test
and this thesis’ problem statement. Section 5.5 relates lessons learned from running
the experiments, while the last part of this chapter is a summary of calculations
performed on the test data, as well as tables depicting block generation on the
blockchain.

In short, the results unambiguously point to inadequacies in a blockchain solu-
tion when it comes to efficiently replacing the existing, centralized systems. Using
Ethereum’s official protocol, the calculations take too long and require an untenable
amount of CPU usage of the participating clients.

5.1 Latency in blockchains
There are two major components in a blockchain implementation that control the
latency of transactions. One is the block size, and the other is the block frequency.
Block frequency is how often a new block is mined (and this is dynamically estab-
lished by changing the difficulty based on how long previous blocks took to process),
for Bitcoin for example, this is approximately 12 minutes. Ethereum’s goal time per
block is 12 seconds1, where in reality, it is closer to 19 seconds as of July, 2017 2.
If previous blocks have taken less time to be added to the chain, this indicates that
the difficulty is too low, and therefore, the next hash to crack becomes a little bit
harder (a lower hash with more zeroes in the beginning) and the block frequency
will slow down.

The other factor that influences the blockchain’s latency is the block size, which
determines how many transactions fit in a block. A large block means high through-
put, because many transactions are processed in one go. However, increasing the
throughput by increasing the block size would, by default, increase the total size
of the whole chain (provided that there are many users sending transactions and
taking advantage of the increased bandwidth) to enormous proportions [12]. That

1https://blog.ethereum.org/2014/07/11/toward-a-12-second-block-time/
2https://etherscan.io/chart/blocktime

23

5. Results

would in turn result in many fewer full nodes (which have the whole transaction
ledger downloaded as well as relays and verifies transactions).

Moreover, computing thousands of transactions per second requires a powerful pro-
cessor. A full node is not needed in order to mine (only the header is required to do
that, not the whole ledger), but it is needed for storing the entire ledger. Fewer full
nodes in the network would essentially centralize the blockchain, because it would
mean a small number of users are the only ones to verify transactions, and that
would mean risk of collusion (they can work together to verify erroneous transac-
tions) and in essence remove the whole point of blockchain, which is decentralization.

Ethereum uses a middle road, so to speak, by not having the size of the block mea-
sured in data, but in ether - the sum of the cost for each transaction must not exceed
the maximum, which is currently set to 4.7 million ether. This means, that if one
very expensive transaction needs to be processed, it could entail the inclusion of
only this single transaction in a block.

Figure 5.1 displays the result of our reference test, whose objective is to verify that
our application behaves according to the blockchain protocol. The latency from our
experiments closely follows the theoretical Ethereum blockchain protocol, with an
average block time of 11.88 s. For a short summary of each test, see table 5.2.

5.2 Throughput in blockchains
As mentioned above, the throughput in Ethereum depends on the cost of the trans-
actions to be included in a block. In our experiments, this results in a fairly stable
throughput, as there are only two types of transactions, and they are performed
at regular intervals. The two types of transactions are queries and responses, and
each query costs 44,360 gas (ether), and each response costs 245,532 gas. In the
real world Ethereum network, however, there are many types of transactions per-
formed in each block, which means that the throughput constantly varies in terms
of number of transactions per block, but not much in the maximum gas usage. The
latter can, however, be adjusted up- or downwards by 1/1,024 per block by the miner.

In our experiments, as previously mentioned, a query costs 44,360 ether to run,
and the cost limit for a block is 4,712,388 in the genesis file, which we configured
(see appendix B.3) for the sake of performing the experiments. This means that,
as 4, 712, 388/44, 360 equals 106, the theoretical amount of our particular queries
could be 106 per block, which means 106/12 seconds ≈ 8, 8 transactions per second.
However, as previously stated, our implementation does not allow for more than one
query per block, and our test environment, as well as the application code, are con-
figured to only accept 4 responses (or, rather, wait until the 4 responding accounts
have all sent their result).

This means, that even though the calculation for the responses can be made in the
same way as the calculation for the queries above, they cost 245532 to run, and with

24

5. Results

total limit 4,712,388, we get a theoretical throughput of 4, 712, 388/245, 532/12 ≈
1, 6 transaction (of 4 responses) per second. Thus, we are still limited by our test
setup.

The limitations are set by the fact that the querying client, client1, sends one request,
and then waits until it has gotten the 4 responses before it sends a new request. And
since the event for the request is not triggered in the responding clients until after the
block has been mined, there is always the waiting time between sending a request,
getting it included in a block that is then mined, and the clients getting triggered
by the event firing.

5.3 Result of sending valid queries

Stress test 1, described in section 4.5.2 comprises of client1 sending requests for an
existing node. For the sake of experiments, the whole process is hard-coded; it is
not the matching algorithm that is tested, but what responses are sent back to the
request. As stated in the test description, the main objective was to “break” the
blockchain, by getting it to start reporting incorrect responses as the answer to node
requests. During the approximately 16 hour test run, the chain got stuck once, at
block 11, and took 3,335 seconds to generate a new block. This can be observed in
figure 5.2.

5.3.1 Queries 1-200

When sending out the first 200 queries, there is only one client, client5, programmed
to reply with an incorrect answer. The remaining 3 clients all answer correctly, and
the querying client, client1, gathers the answers and picks out the most popular
answer (by way of the function findBestCombination). The data from these tests
show 100% correct answers.

5.3.2 Queries 201-400

The output from the previously mentioned function findBestCombination will de-
pend on the order of the input. If there is no “most popular combination”, but
rather a number of equally popular answers, the last input will be returned. At this
stage in the test procedure, 50% of the returned answers were correct.

5.3.3 Queries 401 and up

As the majority of the responding clients have gone from t to f , the most common
answer to all requests is 1, and that is the final response of the Ðapp 100% of the
time.

25

5. Results

5.4 Result of sending invalid queries
Stress test 2 was performed in the same way as both the reference test and first stress
test, with the difference being that client1’s queries were regarding non-existent
nodes. In theory, this means that the respondents would go through their respective
database in search for the node in question, come up empty, and respond with the
tuple {-1,-1}. A valid node matching must consist of a tuple of non-negative values,
so -1 corresponds to “no answer”, indicating a faulty query.

For unknown reasons, this test also froze, but for much longer than stress test 1,
12,425 seconds (3 hours, 27 minutes) at block number 88. Finally, we had to restart
the test to get the chain working again (the error may have been caused by a block
being mined so quickly that it was missed by the JavaScript listener), but this block
skews the data. A plot including block 88 would not convey much information to the
reader, so figure 5.3 depicts block 89 through 4824, omitting the erroneous block.
In calculating the average block time, however, all blocks mined for stress test 2 are
included.

5.4.1 Queries 1-200
Here, with only client5 responding with incorrect data, the program returned the
right answer, {-1,-1} every time.

5.4.2 Queries 201-400
Just as with the first stress test, when the number of corrupt clients rises to 20% of
the total, half of the responses are correct.

5.4.3 Queries 401 and up
As soon as the number of colluding clients outnumber the genuine, the Ðapp starts
reporting incorrect answers 100% of the time.

5.5 Knowledge gained from the tests
As has been previously pointed out, one of blockchain technology’s major weak-
nesses is the risk of colluding miners. The test result presented here are a variation
of that - the blocks they return are correct, so they are not influencing the chain
itself; however, the data they include in the blocks is incorrect. By way of synchro-
nizing these incorrect answers, the f clients end up controlling not the chain, but
the program residing on the chain.

On the plus side, as every transaction is inherently stored and timestamped, once
a discrepancy is observed, tracing it is relatively easy. In stress test 2, for example,
when the Ðapp begins returning {1,1} combinations to non-existing nodes, the user
will notice that something is wrong as soon as she applies that combination to the

26

5. Results

Variable Unit Value
eq Cost for sending one query about one

node.
Ether 44, 360

er Cost for sending the four required re-
sponses to one query.

Ether 245, 532

sq The size of a query. byte 681
sr The size of the four required responses

to one query.
byte 1, 238

gl Maximum amount of gas a block may
cost. A block exceeding this amount
will not be mined.

Ether 4,712,388

start Starting time (in Unix time) of refer-
ence test.

second 1, 499, 444, 984

fin Finishing time (in Unix time) of refer-
ence test.

second 1, 499, 506, 639

cq Number of queries sent in reference
test.

- 1, 181

cr Number of complete responses (four in
each call) sent in reference test.

- 1, 079

b Time it takes to mine one block on
Ethereum.

second 12

Table 5.1: Variables used for computing the calculations in section 5.6.

node. Using the address of her client and the approximate time her request was sent,
one can filter out her call, see which addresses responded with a faux combination,
and take appropriate action (such as ban these addresses from the blockchain).

5.6 Calculations
To better understand the proportions of data our Ðapp is able to handle, we present
calculations made to reach a number on both the theoretical and actual throughput
of our blockchain application.

Disregarding the mechanisms of request/response messages, where a new request
cannot be sent without having received a reply to the previous one, the potential
number of requests in one block is:

gl/eq = 4712388/44360 = 106

And the potential number of complete responses (four for each request) in one block
is then:

gl/er = 4712388/245532 = 19

As the protocol is geared to add one block every 12 seconds, this gives a theoretical

27

5. Results

Figure 5.1: Plot depicting number of seconds required to mine one block in the
reference test. Average time to mine one block in reference test: 11.88 s.

throughput of

((gl/eq) ∗ sq)/b = ((4712388/44360) ∗ 681/12 = 6, 015 B/s

Whereas the throughput in our reference test is much smaller:

cq∗sq+cr∗sr/(fin−start) = 1181∗681+1079∗1238/(1499506639−1499444984) = 35, 85 B/s

28

5. Results

Figure 5.2: Plot depicting number of seconds required to mine one block in the
first stress test. Average time to mine one block in stress test 1: 17.35 s. The outlier
is explained in section 5.3.

Figure 5.3: Plot depicting number of seconds required to mine one block in the
second stress test. Average time to mine one block in stress test 2: 19.95 s.

29

5. Results

Te
st

O
bj
ec
tiv

e
In
va
lid

re
qu

es
ts

Q
ue
rie

s
0-
20
0

Q
ue
rie

s
20
1-
40
0

Q
ue
rie

s
>
40
0

c t
c f

c t
c f

c t
c f

R
ef
er
en
ce

Ve
rif
y

th
at

th
e

ap
-

pl
ic
at
io
n

ad
he
re
s

to
sp
ec
ifi
ca
tio

ns
an

d
th
at

th
e
bl
oc
kc
ha

in
on

ou
r

pr
iv
at
e
te
st
ne
t
is

be
-

ha
vi
ng

as
ex
pe

ct
ed
.

N
o

4
0

4
0

4
0

St
re
ss

te
st

1
St
ud

y
th
e

eff
ec
ts

on
th
e

an
sw

er
s

w
he
n

fa
ul
ty

re
sp
on

de
nt
s

ar
e
in
tr
od

uc
ed

on
th
e

bl
oc
kc
ha

in
.

N
o

3
1

2
2

1
3

St
re
ss

te
st

2
St
ud

y
th
e

eff
ec
ts

on
th
e

an
sw

er
s

w
he
n

bo
th

fa
ul
ty

re
sp
on

-
de
nt
s
an

d
in
va
lid

re
-

qu
es
ts

ar
e
in
tr
od

uc
ed

on
th
e
bl
oc
kc
ha

in
.

Ye
s

3
1

2
2

1
3

T
ab

le
5.
2:

O
ve
rv
ie
w

of
th
e
th
re
e
di
ffe

re
nt

te
st
s
ru
n
on

th
e
fin

ish
ed

ap
pl
ic
at
io
n.

30

6
Discussion

This part of the thesis is a reflection on both the theoretical and practical knowl-
edge accumulated throughout the project. It only includes three sections. In the
first portion, we reiterate the usages and premises of blockchain technology. In sec-
tion 6.2, we reason about whether verification of a matching algorithm is a suitable
problem to solve on the Ethereum blockchain, or not. Finally, section 6.3 includes
a short summary of our thesis.

6.1 Deciding when a Ðapp is the optimal solution
As stated in the beginning of this thesis, there are a number of areas where smart
contracts are a very good idea. In their paper “Do You Need a Blockchain?”, Wüst
and Gervais list a number of questions that aid in the decision process. They can
be summarized as follows [21]:

• Do a number of people need to write to the program?
• Can you use a database instead?
• Do you have a trusted third party to do verification instead?
• Do you need to store the state of the program?

In addition, it is important to think about the cost-effectiveness of running a smart
contract on a blockchain. Is the cost of writing a smart contract (and, for usability
also a JavaScript counterpart, as well as a GUI), deploying it, and then having users
continuously accessing it worth the cost, either monetarily or powerwise, through
mining? How does one assess whether it is worth the cost or not?

What type of program one is thinking about running on the blockchain also mat-
ters. The easiest type to transpose from centralized to decentralized is one that
bears characteristics of a ‘regular contract’, where it is of utmost importance to save
the state, i.e. store the signed contract on the blockchain. Even if the program
contains heavy computations and/or database accessing, as long as these can be
performed outside of the blockchain without compromising the program’s integrity,
there may be room for considering using a blockchain.

Then, there is the type of blockchain one needs, if the data has to be publicly
verified (by unknown users on a permissionless blockchain such as Ethereum) or if it
is enough to use a more private chain (permissioned), where trusting the verification

31

6. Discussion

of fewer users, who are all known, suffices. In essence, it is advisable to be aware of
the best features of blockchain, and carefully consider whether they are used in the
program one wants to decentralize.

6.2 A Ðapp for matching algorithms
So, is the subject of this thesis, getting the answer to a matching algorithm through
a blockchain request, a good candidate for a smart contract? Considering the fact
that the “problem” has already been solved, that is, there is already a setup for
sending requests to a central database and getting (mostly) correct responses, the
main objective of the thesis has been to explore whether blockchain would be an
option for sending a request, letting clients look up the request in their respective
databases, answer through the blockchain and then let the caller pick out the “best”
answer.

Information gained from research, the implementation of the Ðapp, and the test
results point in a general direction. But first, let’s summarize the facts below.

6.2.1 The Ðapp’s advantages
A decentralized application avoids one of the main problems with servers - which is
relying on a single point of failure. In so doing, it safeguards against the common
attacks against servers, such as DDos and man-in-the-middle attacks. One of the
biggest advantages with blockchain technology is, of course, the fact that every state
is saved.
In our example, what is stored in the state is:

• the caller’s address and time of the request
• the respondent’s address and response value
• the time of the responses and the time the final (4th) response comes in and

an event is triggered at the caller’s end

This data is useful when tracking whether all clients have the correct, updated
database or not, if a caller gets a number of different answers to a request, even
though they may all work (could be that some of the clients have an older version
of the database) they should all be updated to contain the same information.

6.2.2 The Ðapp’s drawbacks
There are a few main reasons for not using Ethereum for solving our problem. The
core problem, matching, does not require public verification per se. Assuming (which
we do, as long as the opposite has not been proven) that the matching algorithm
used is correct [8], it is the content of the database that needs checking. But the data
cannot be publicly verified in our solution, because outside users on the blockchain
do not have access to the data from the database (they are stored locally at each
client). However, this does not mean that the contract cannot be deployed publicly,
but it just means that one of the main features of blockchain is lost on our program.

32

6. Discussion

6.2.2.1 Throughput

Though speed is not a core issue for the topic of this thesis, the time it takes
from request to response needs to be taken into account. Would the waiting time
constitute a hindrance for the calling party? If setting up a private Ethereum
network, the process can be sped up by configuring low mining difficulty, allowing
higher block frequency.

6.2.2.2 Rebuilding the existing system

The solution proposed in this thesis, with locally stored databases, would require
a new system setup. At the moment, the databases are stored centrally on remote
servers that the clients access. A solution where every client instead has its own
database would entail both distribution and storage challenges. For a small network
of five to ten clients, with a relatively small sized database as in the thesis, it’s
feasible. In the real world, thousands of clients with their own copy of a database
poses maintenance difficulties, regardless of using smart contracts for keeping track
of updates. However, the smart contract can be used, without any modifications,
for clients accessing a central server instead. Then, the blockchain would be used as
a confirmation of the responses’ integrity.

6.2.2.3 Computational resource

One of the drawbacks of using blockchain technology is the sheer number of com-
putations that are performed by each miner to find the right hash. This is neither
cost-effective, nor environmentally sustainable, but as previously mentioned, may
be justifiable if the transactions on the blockchain are deemed “valuable” enough to
store.

6.2.2.4 Redundancy

The test network used for this thesis was permissionless. Even though the clients
are aware of who their peers are, they are not configured to trust them based on
that; their trust is based on the proof of work consensus algorithm.

In our case, getting verification from a much larger network would be unnecessary,
we do not need thousands of responses to sort through and choose every time we send
a query. This means that using a permissionless blockchain is actually redundant
and we could make do with a Byzantine Fault Tolerance protocol which has higher
performance and lower latency [19].

6.2.3 Alternative decentralized approaches
Running and evaluating the tests for this project has raised a number of questions
to consider when considering a blockchain solution. Several articles in the liter-
ature review also presented different solutions and implementations that may be
better suited alternatives, not only for matching software/hardware modules, but

33

6. Discussion

other areas where the automotive industry could benefit from exploring blockchain
technology. Two such examples are presented below.

6.2.3.1 IPFS as an alternative solution

Though the central theme of this thesis has been to investigate a matching algo-
rithm, the major concern has not been whether or not the algorithm itself is correct,
but rather, if the result of the matching is the same across several clients. As long
as they have the same implementation of the algorithm (which they do) the only
difference is the data upon which the algorithm is run. We have worked with locally
stored databases, which means that there is a large risk they will differ, depending
on updates.

There is currently more than one evolving solution utilizing the P2P qualities of
blockchain technology by having clients store and maintain data across a network.
For the purpose of storing medium to large data sets, as in the basis of this thesis,
IPFS1 is a promising alternative.

6.2.3.2 A customized blockchain

Another blockchain oriented way to distribute, update and check software for nodes
in cars, is applying the ideas from Lee and Lee’s study on firmware for embedded
devices [15]. In their article, they design their own blockchain protocol, which allows
for a more flexible implementation. Ethereum is meant to be an all-round platform
for executing essentially any kind of smart contract. The differences between con-
tracts used by a car manufacturer may not be very large, so constructing a bespoke
blockchain protocol (that no one else can access) could be a beneficial approach.

6.3 Summary
This thesis is an investigation of the applicability of blockchain technology in a
limited area of the automotive industry. It researches whether a common matching
algorithm, closely related to bipartite graph search, can be successfully implemented
on the Ethereum platform. By writing a program and putting it through different
tests, our aspiration is to determine if our decentralized implementation would prove
a workable alternative to today’s solution with central servers.

The information these tests supply, coupled with documentation of the Ethereum
platform and articles researching blockchain technology advantages and downsides,
provides the basis for our discussion. Our project reveals that, despite the benefits
of secure transmissions, tracking and saving of data transactions in a network, there
are negative aspects of our implementation that cannot be ignored. This includes
low throughput and ineffective use of computational resources. By reasoning about
the implications of using our Ðapp in a real-world setting, we hope to give a nuanced
picture of the experiences gained in this project on blockchain technology.

1https://ipfs.io

34

https://ipfs.io

7
Conclusion

Blockchain technology is still a new and exciting field, not only for computer scien-
tists, but also from an economic, political and philosophical perspective. Completing
this project has revealed the technology’s theoretical uses and inner logic, as well as
the concrete usability of the largest platform to date, Ethereum.

Through researching current projects and literature, writing code and setting up a
test environment for a Ðapp, we have reached a better understanding, not only of
the practicalities, but also of the fundamental uses of blockchain technology.

It is clear, that the less code in the smart contract, the better. It is also evident,
that the more delimited the smart contract, the better. And finally, it became pro-
gressively clear that the fewer calls made to the blockchain, the cheaper. Paired
with the fact that a good Ðapp fulfills its purpose of solving a problem through
decentralization, from the lessons learned in this thesis follows that blockchain tech-
nology is not the ultimate answer to our problem. Using blockchain technology to
automatically verify matchings is simply too inefficient to use on a large scale.

That said, there are several other areas within the automotive industry where
blockchain technology is worth exploring, such as tracking repairs and saving own-
ership contracts.

35

7. Conclusion

36

A
Detailed problem definition

Using common notation to model the problem, for each car, there is a set of nodes
N = n1, ..., ni, a set of hardware modules H = h1, ..., hk and a set of software mod-
ules S = s1, ..., sj. For every n, there is at least one combination (h, [s]) where
hardware maps to a list of software it is compatible with.

Assuming the node id will work as a key in the database hash table, the worst time
complexity is O(n). The value in the hash table will be a list of hardware that can
be used at that node. Here, the algorithm can pick e.g. the last element and use
that as a new key. The next step is to use that key to search another hash table,
to find software that can run on that hardware module. Again, the time complexity
is, at worst, O(m). The actual complexity will depend on the real implementation
of the search, but it will not be greater than O(mn) [8].

The problem of matching hardware and software closely resembles a unweighted bi-
partite graph problem, assuming that no heuristics are introduced. Then, graph G is
equal to (H, S, E), with E being the set of edges, where an edge means that (h, s) are
compatible. Finding the maximum number of matches, where no two edges share an
end-point, can be resolved in O(

√
nm), using Edmonds’ algorithm [3]. As the base

case here is just concerned with finding any matching s to an h, the complexity will
be lower, since no more edges need traversal as soon as a match is found. Thus, the
aim is to find a solution that does not result in complexity worse than polynomial
time.

There are two possible extensions to the problem. One is to introduce heuristics to
the combinations. For example, it is more expensive (but in the long run, perhaps
more beneficial) to replace old, still functioning, hardware with the newest combi-
nation. Or, it could be cheaper to use the newest package because it needs to be
tried in the aftermarket for evaluation.

The second suggested extension is to introduce a voting mechanism for users. This
would enable the application to make use of one of blockchain’s main features,
namely, reaching consensus through participation. In such an extension, a user may
introduce a change to the database, saying that node X can run (Y,Z) but not
(Y,W), as the database states. The user has tried the combination and found it
is erroneous, and therefore should be changed. This proposed change is entered
in the application, sent to the blockchain to prompt users to try the combination
themselves. If others find the combination faulty, too, they can vote yes, otherwise

I

A. Detailed problem definition

no. This extension will require analysis of strategic voting, how to avoid it, as well
as coming to a conclusion on how to decide when a vote is final (some nodes have
higher status/veto? or just a percentage? etc).

II

B
Code

B.1 Javascript code

const Web3 = r equ i r e (" / usr / l i b /node_modules/web3 ") ;
const web3 = new Web3() ;
const f s = r equ i r e (' f s ') ;
const r e ad l i n e = r equ i r e (' r ead l i n e ') ;
const por t s =[" http :// l o c a l h o s t : 8 545 " ,
" http :// l o c a l h o s t : 8 546 " ,
" http :// l o c a l h o s t : 8 547 " ,
" http :// l o c a l h o s t : 8 548 " ,
" http :// l o c a l h o s t : 8 549 " ,
" http :// l o c a l h o s t : 8 550 " ,
" http :// l o c a l h o s t : 8 551 " ,
" http :// l o c a l h o s t : 8 552 " ,
" http :// l o c a l h o s t : 8 553 " ,
" http :// l o c a l h o s t : 8 5 5 4 "] ;

var contractAddress = f s . readFi l eSync ('/home/ l i nn ea / t e s t 1 /
t e s t1_addre s s In fo . txt ' , ' ut f8 ') ;

var contractABI = f s . readFi l eSync ('/home/ l i nn ea / t e s t 1 /
test1_abi . txt ' , ' ut f8 ') ;

var cont rac t = web3 . eth . cont rac t (JSON. parse (contractABI)) ;
var myContract = cont rac t . at (contractAddress) ;
var workbook ;
var sheet_name_list ;
var node_exists = true ;
var counter =0;
var args = proce s s . argv . s l i c e (2) ;
var currentBlock1 =0;
var currentBlock2 =0;

module . export s = func t i on (c a l l ba ck) {} ;
createWorkBook () ;

III

B. Code

setProv (args [0]) ;
// t e s t (web3 . eth . blockNumber) ;
startProgram (args [0]) ;
// pr intEvents () ;
f unc t i on setProv (n) {

web3 . s e tProv ide r (new web3 . p rov ide r s . HttpProvider (por t s [n
−1])) ;

}

func t i on startProgram (cl ientNumber) {
i f (cl ientNumber==1) {

proce s s1 (0) ;
}
e l s e {

proce s s2 () ;
}

}

func t i on proce s s1 (k) {
myContract . query (k , 2000000 , { from : web3 . eth . accounts [0] })

;
var responding = myContract . responding ({} , { fromBlock : '

l a t e s t ' , toBlock : ' l a t e s t ' }) ;
responding . watch ((e r ro r , eventResu l t) => {

i f (e r r o r)
con so l e . l og (' Error : ' + e r r o r) ;
e l s e {

conso l e . l og ('myEvent : ' + JSON. s t r i n g i f y (eventResu l t))
;

k = eventResu l t . a rgs . r ;
var answers = [] ;
c on so l e . l og ("\ n Current block : " + currentBlock1 + "

blocknumber : " + eventResu l t . blockNumber + '\n ') ;
i f (currentBlock1 != eventResu l t . blockNumber) {

currentBlock1=eventResu l t . blockNumber ;
k++;

f o r (var i =0; i <3; i++){
var r e s=myContract . getMatch . c a l l (i , 2000000 ,{ from :

web3 . eth . accounts [0] }) ;
answers [i]= par s e In t (r e s) ;
c on so l e . l og (" answer from c a l l : " + r e s) ;
// conso l e . l og (" i= " +r e s) ;

}

IV

B. Code

f indBestCombination () ;
myContract . query (k , 2000000 , { from : web3 . eth . accounts

[0] }) ;
}
e l s e {

conso l e . l og (" same block number ! ") ;
}
}

}) ;
}

func t i on proce s s2 () {
var ask ing = myContract . ask ing ({} , { fromBlock : ' l a t e s t ' ,

toBlock : ' l a t e s t ' }) ;
ask ing . watch ((e r ro r , eventResu l t) => {

i f (e r r o r)
con so l e . l og (' Error : ' + e r r o r) ;
e l s e {

conso l e . l og ('myEvent : ' + JSON. s t r i n g i f y (eventResu l t)
+ '\n ') ;

k = eventResu l t . a rgs . q ;
c on so l e . l og ("\ n Current block : " + currentBlock2 + "

blocknumber : " + eventResu l t . blockNumber + '\n ') ;
i f (currentBlock2 != eventResu l t . blockNumber) {

currentBlock2=eventResu l t . blockNumber ;
k=Math . f l o o r (Math . random () ∗ (10 − 1 + 1)) + 1 ;

//k++;
myContract . r e sponse (k , 2000000 , { from : web3 . eth .

accounts [0] }) ;
}
e l s e {

conso l e . l og (" same block number ! ") ;
}

}
}) ;

}

func t i on createWorkBook () {
i f (typeo f r e qu i r e !== ' undef ined ') XLSX = requ i r e (' / usr /

l i b /node_modules/ xlsx ') ;
workbook = XLSX. r eadF i l e (' /home/ l i nn ea / ca l l b a ck /out . ods ') ;
sheet_name_list = workbook . SheetNames ;

}

func t i on tab l e (id , sheet_number) {

V

B. Code

var worksheet = workbook . Sheets [sheet_name_list [
sheet_number]] ;

var range = worksheet [' ! r e f '] ;
var myRange = XLSX. u t i l s . decode_range (range) ;
var end = myRange . e . r ;
f o r (var i =1; i<=end ; i++){

var row = 'A'+ i ;
var va lue = worksheet [row] . v ;
i f (va lue == id) {

conso l e . l og (" va lue : " + value) ;
r e turn (worksheet ['B'+ i] . v) ;

}
}
re turn 0 ;

}

func t i on matchingAlgo (number) {
var answer1 = tab l e (number , 0) ;
c on so l e . l og (" answer1 : " + answer1) ;
var answer2=0;

i f (answer1 !=0){
answer2=tab l e (answer1 , 1) ;

}

i f (answer2 !=0){
conso l e . l og (" answer 1 : " + answer1 + " and answer 2 : " +

answer2) ;
node_exists=true ;
var answers = [answer1 , answer2] ;
r e turn answers ;

}
e l s e con so l e . l og (" that node does not e x i s t ! ") ;

} ;

f unc t i on f indBestCombination (answers)
{

var count = 1 ;
var tempCount ;
var bestCombo = answers [0] ;
var tempCombo = 0 ;

f o r (var i = 0 ; i < answers . l ength ; i++)
{

tempCombo = answers [i] ;

VI

B. Code

tempCount = 0 ;
f o r (var j = 1 ; j < answers . l ength ; j++)
{

i f (tempCombo . hardware == answers [j] . hardware)
tempCount++;

}
i f (tempCount > count)
{

bestCombo=tempCombo ;
count = tempCount ;

}
}
conso l e . l og (" bestCombo : " + bestCombo . hardware + " , " +

bestCombo . so f tware + " , " + bestCombo . address + 'n ') ;

}

B.2 The Solidity smart contract code

pragma s o l i d i t y ^ 0 . 4 . 9 ;

cont rac t Match{

func t i on Match () payable {
}

s t r u c t Comp{
in t hardware ;
i n t so f tware ;

}

Comp [] matches ;
event ask ing (address sender , u int q) ;
event responding () ;

f unc t i on query (u int q)
{

d e l e t e matches ;
ask ing (msg . sender , q) ;

}

func t i on re sponse (i n t h , i n t s)
{

matches . push (Comp(h , s)) ;
i f (matches . length >3){

bubbleSort () ;

VII

B. Code

}
}

func t i on bubbleSort ()
{

u int n = matches . l ength ;
whi l e (n>0){

u int v = 0 ;
f o r (u int i =1; i<= (n−1); i++){

i f (matches [i −1] . so f tware>matches [i] . s o f tware)
{

swap (i −1, i) ;
v=i ;

}
}
n=v ;

}
responding () ;

}

func t i on swap (u int index1 , u int index2)
{

Comp memory temp = matches [index1] ;
matches [index1] = matches [index2] ;
matches [index2] = temp ;

}

func t i on getMatch (i n t m) r e tu rn s (int , i n t)
{

re turn (matches [m] . hardware , matches [m] . so f tware) ;
}

}

B.3 The genesis file

{
" nonce " : "0 x0000000000000042 " ,
" timestamp " : "0 x0 " ,
" parentHash " : "0 x000000000000000000000000000000 " ,
" extraData " : "0 x0 " ,
" gasLimit " : "0 x800000 " ,
" d i f f i c u l t y " : "0 x400 " ,
" mixhash " : "0 x0000000000000000000000000000 " ,
" co inbase " : "0 x33 "
}

VIII

C
Blockchain resources

C.1 Bitcoin block header
The following information is an excerpt from the Bitcoin Developer Reference [6].

version The block version number indicates which set of block validation rules to
follow.

previous block header hash A SHA256 hash in internal byte order of the pre-
vious block’s header. This ensures no previous block can be changed without also
changing this block’s header.

merkle root hash A SHA256 hash in internal byte order. The merkle root is de-
rived from the hashes of all transactions included in this block, ensuring that none
of those transactions can be modified without modifying the header. See the merkle
trees section below.

time The block time is a Unix epoch time when the miner started hashing the
header (according to the miner). Must be strictly greater than the median time of
the previous 11 blocks. Full nodes will not accept blocks with headers more than
two hours in the future according to their clock.

nBits An encoded version of the target threshold this block’s header hash must be
less than or equal to.

nonce An arbitrary number miners change to modify the header hash in order to
produce a hash less than or equal to the target threshold. If all 32-bit values are
tested, the time can be updated or the coinbase transaction can be changed and the
merkle root updated.

C.2 Ethereum block header
The following information is an excerpt from the Ethereum yellow paper [20].

parentHash The Keccak 256-bit hash of the parent block’s header, in its entirety;
formally Hp.

IX

C. Blockchain resources

ommersHash The Keccak 256-bit hash of the ommers list portion of this block;
formally Ho. beneficiary: The 160-bit address to which all fees collected from the
successful mining of this block be transferred; formally Hc.

stateRoot The Keccak 256-bit hash of the root node of the state trie, after all
transactions are executed and finalisations applied; formally Hr.

transactionsRoot The Keccak 256-bit hash of the root node of the trie structure
populated with each transaction in the transactions list portion of the block; for-
mally Ht.

receiptsRoot The Keccak 256-bit hash of the root node of the trie structure pop-
ulated with the receipts of each transaction in the transactions list portion of the
block; formally He.

logsBloom The Bloom filter composed from indexable information (logger address
and log topics) contained in each log entry from the receipt of each transaction in
the transactions list; formally Hb.

difficulty A scalar value corresponding to the difficulty level of this block. This can
be calculated from the previous block’s difficulty level and the timestamp; formally
Hd.

number A scalar value equal to the number of ancestor blocks. The genesis block
has a number of zero; formally Hi.

gasLimit A scalar value equal to the current limit of gas expenditure per block;
formally Hl.

gasUsed A scalar value equal to the total gas used in transactions in this block;
formally Hg.

timestamp A scalar value equal to the reasonable output of Unix’s time() at this
block’s inception; formally Hs.

extraData An arbitrary byte array containing data relevant to this block. This
must be 32 bytes or fewer; formally Hx.

mixHash A 256-bit hash which proves combined with the nonce that a sufficient
amount of computation has been carried out on this block; formally Hm.

nonce A 64-bit hash which proves combined with the mix-hash that a sufficient
amount of computation has been carried out on this block; formally Hn.

X

Bibliography

[1] Luke Anderson, Ralph Holz, Alexander Ponomarev, Paul Rimba, and Ingo
Weber. New Kids on the Block: an Analysis of Modern Blockchains. In: arXiv
preprint arXiv:1606.06530 (2016).

[2] Andreas M Antonopoulos.Mastering Bitcoin: Unlocking Digital Cryptocurren-
cies. O’Reilly Media, Inc., 2014.

[3] Jørgen Bang-Jensen and Gergory Gutin. Digraphs: Theory, Algorithms and
Applications. 1st ed. London: Springer, 2002.

[4] Udi Ben-Porat, Anat Bremler-Barr, and Hanoch Levy. Evaluating the Vulner-
ability of Network Mechanisms to Sophisticated DDoS Attacks. In: INFOCOM
2008. The 27th Conference on Computer Communications. IEEE. IEEE. 2008,
pp. 2297–2305.

[5] George Bissas, Brian Neil Levine, A Pinar Ozisik, Gavin Andresen, and Amir
Houmansadr. An Analysis of Attacks on Blockchain Consensus. In: arXiv
preprint arXiv:1610.07985 (2016).

[6] Bitcoin Developer Reference. Website. [Online; accessed 25-Jul-2017]. url:
https://bitcoin.org/en/developer-reference.

[7] Robert M Charette. This Car Runs on Code. Blog post. [Online; accessed
25-11-2017]. 2009. url: https://spectrum.ieee.org/transportation/
systems/this-car-runs-on-code.

[8] Thomas Cormen, Charles Leiserson, Ronald Rivest, and Clifford Stein. Intro-
duction to Algorithms. 3rd ed. Massachusetts Institute of Technology, 2009.

[9] Ethereum Homestead Documentation. [Online; accessed 2017-11-19]. url: http:
//ethdocs.org/en/latest/.

[10] Ittay Eyal and Emin Gün Sirer. Majority Is Not Enough: Bitcoin Mining Is
Vulnerable. In: International Conference on Financial Cryptography and Data
Security. Springer. 2014, pp. 436–454.

[11] Johannes Göbel, Paul Keeler, Anthony E Krzesinski, and Peter G Taylor.
Bitcoin Blockchain Dynamics: the Selfish-Mine Strategy in the Presence of
Propagation Delay. In: Performance evaluation 104 (2016), pp. 23–41.

[12] Hard Problems of Cryptocurrency. Wiki. [Online; accessed 25-07-2017]. 2016.
url: https://github.com/ethereum/wiki/wiki/Problems/.

[13] George Hurlburt. Might the Blockchain Outlive Bitcoin? In: IT Professional
18.2 (2016), pp. 12–16.

[14] Viktor Jacynycz, Adrian Calvo, Samer Hassan, and Antonio A Sánchez-Ruiz.
Betfunding: A Distributed Bounty-Based Crowdfunding Platform over Ethereum.
In: Distributed Computing and Artificial Intelligence, 13th International Con-
ference. Springer. 2016, pp. 403–411.

XI

https://bitcoin.org/en/developer-reference
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
https://spectrum.ieee.org/transportation/systems/this-car-runs-on-code
http://ethdocs.org/en/latest/
http://ethdocs.org/en/latest/
https://github.com/ethereum/wiki/wiki/Problems/

Bibliography

[15] Boohyung Lee and Jong-Hyouk Lee. Blockchain-based Secure Firmware Update
for Embedded Devices in an Internet of Things environment. In: The Journal
of Supercomputing (2016).

[16] Victoria Louise Lemieux and Elizabeth Lomas. Trusting Records: Is Blockchain
Technology the Answer? In: Records Management Journal 26.2 (2016).

[17] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash System. Tech. rep.
2008. url: https://bitcoin.org/bitcoin.pdf.

[18] Melanie Swan. Blockchain: Blueprint for a New Economy. O’Reilly Media,
Inc., 2015.

[19] Marko Vukolić. The Quest for Scalable Blockchain Fabric: Proof-of-Work vs.
BFT Replication. In: Open Problems in Network Security: IFIP WG 11.4 In-
ternational Workshop, iNetSec 2015, Zurich, Switzerland, October 29, 2015,
Revised Selected Papers. Ed. by Jan Camenisch and Doğan Kesdoğan. Springer
International Publishing, 2016, pp. 112–125. url: https://doi.org/10.
1007/978-3-319-39028-4_9.

[20] GavinWood. Ethereum: A Secure Decentralised Generalised Transaction Ledger.
Tech. rep. 2014. url: http://gavwood.com/paper.pdf.

[21] Karl Wüst and Arthur Gervais. Do You Need a Blockchain? In: IACR Cryp-
tology ePrint Archive 2017 (2017), p. 375. url: https://eprint.iacr.org/
2017/375.pdf.

XII

https://bitcoin.org/bitcoin.pdf
https://doi.org/10.1007/978-3-319-39028-4_9
https://doi.org/10.1007/978-3-319-39028-4_9
http://gavwood.com/paper.pdf
https://eprint.iacr.org/2017/375.pdf
https://eprint.iacr.org/2017/375.pdf

	List of Figures
	List of Tables
	Introduction
	Context
	The issue with centralization
	Problem statement
	Purpose
	Thesis contribution
	Test results

	Scope
	No Ethereum release
	No cost assessment
	No diagnostic tool interface

	Method
	Thesis outline

	Background
	Blockchain technology today
	Blockchain basics
	Bitcoin
	The protocol explained

	Double-spending, a common pitfall
	Ethereum

	Method of accomplishment
	Decentralized application design
	Programming
	Test design
	Mock data generation
	Evaluation

	System
	Running the blockchain
	Geth
	Nodejs and web3
	The private network

	Writing a program
	Truffle - a framework
	The code deconstructed
	System architecture

	Definitions
	Tests
	Reference test
	Stress test 1: valid queries
	Stress test 2: invalid queries

	Results
	Latency in blockchains
	Throughput in blockchains
	Result of sending valid queries
	Queries 1-200
	Queries 201-400
	Queries 401 and up

	Result of sending invalid queries
	Queries 1-200
	Queries 201-400
	Queries 401 and up

	Knowledge gained from the tests
	Calculations

	Discussion
	Deciding when a Ðapp is the optimal solution
	A Ðapp for matching algorithms
	The Ðapp's advantages
	The Ðapp's drawbacks
	Throughput
	Rebuilding the existing system
	Computational resource
	Redundancy

	Alternative decentralized approaches
	IPFS as an alternative solution
	A customized blockchain

	Summary

	Conclusion
	Bibliography
	Detailed problem definition
	Code
	Javascript code
	The Solidity smart contract code
	The genesis file

	Blockchain resources
	Bitcoin block header
	Ethereum block header

