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Abstract

Detecting the exact location of objects enables more sophisticated assistance systems
and robots to excel in a multitude of scenarios and industries. At the manufactur-
ing plants of Volvo, there is ongoing research looking into integrating collaborative
robotic systems for collaborative assembly, stand-alone bin picking, and quality in-
spection. Object recognition, instance segmentation, and pose estimation have been
identified as crucial parts for solving these problems. The aim is to implement flex-
ible end-to-end solutions, where new assembly parts can be integrated with ease.
Because of this, the implementation is limited to the use of synthetic data and RGB
images.

In this thesis, two different networks are trained solely on rendered data, and
their suitability for different applications is evaluated. We show that for instance
segmentation, MaskRCNN generalizes well to real images, but its performance wors-
ens when the scene is subjected to direct light or when the objects are obscured.
Furthermore, the performance with different types of data augmentations is eval-
uated and the problems that arise when optimizing a model for real images using
synthetic data are illuminated.

A graphics rendering tool, The Blender Python API, was used to generate datasets
for the two different networks. Compared to previous work, on which this thesis is
built on, the class list was extended, and randomizing parameters were removed.
The rendered objects were then composed with the SUN2012 Pascal collection as
backgrounds. Both networks were trained on this data and then evaluated using the
metrics: intersection over union (IoU) for semantic labeling and Average Distance
(ADD) on both captured and rendered images for pose estimation.

PVNet uses a more shallow network for object segmentation that obtains good
results on synthetic validation data but more varying results when validating on real
images. On synthetic validation, we obtained similar pose estimation results with
assembly parts as we did using a LineMod object with the LineMod settings. This
means we can expect similar results as PVNet’s author received with "fully" trained
models at 200 epochs. On real images, the method starts to perform worse after
50 epochs. The degree of accuracy could be good enough for bin picking, but more
accuracy is needed in order to implement it into a quality inspection toolbox.

Keywords: Convolutional Neural Networks, Deep learning, Instance Segmentation,
Pose Estimation, Semantic labeling, Synthetic data.
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1
Introduction

In this chapter, the general background to the problem, as well as the purpose and
scope is explained. A number of questions to be answered throughout this master
thesis has been formulated and finally some crude limitations and contributions are
stated.

1.1 Background
Throughout the final steps in the production line at Volvo’s manufacturing plants,
there are lots of detailed instructions regarding assembly that the operator needs to
execute in order to ensure the best possible final product. This part of the factory
could, therefore possibly be improved with the use of collaborative robots where the
production can benefit from the agility of the humans and the repeatability of the
robots. In order to enable robots to work in an environment tightly coupled with hu-
mans, they would need systems for detecting where the humans are positioned at all
times, effectively avoiding collisions and optimizing the resource allocation of shared
tools. Incorrect assembly of the engine can become both costly and time-consuming
for all parts involved. Therefore the manufacturer, as well as the customer, could
benefit from a computer vision system that continuously checks if assembled parts
are mounted, and done so correctly.

Quality inspection in manufacturing can be in the form of detecting anomalies and
defects, but also verifying if objects are assembled correctly. It can be achieved by
estimating the pose of the assembled components and checking if this is any different
from a stored ground-truth. To perform this well, a robust pose estimation method
with high accuracy is necessary. The pose estimation problem is well known within
academia and previous attempts to solve this are mostly either based on template
matching [25], keypoint-based methods [26] or dense methods [27]. However, the
biggest challenges for template matching methods are truncations, which makes
these methods not applicable to this industrial setting. Also, when using keypoint-
methods that produce heatmaps, they perform poorly when those are not found,
due to object occlusion or truncation. Dense methods are more computationally
expensive, but are also more robust. It is most common to find that these use
images with depth information (RGB-D) for more straight forward point-to-point
matching.

When training a supervised convolutional neural network (CNN), a large anno-
tated dataset for training and verification is needed. Manually annotated datasets
require extensive human effort to create, thus making this approach undesirable.

1



1. Introduction

Therefore, it would be beneficial if datasets could be created by utilizing a graphics
rendering engine. Although synthetic data has different characteristics than images
captured through a real camera. In computer vision, the real world is non-uniform
and perceived through a lens with some distortion that might also be covered with
some particles of dust or equivalent. The network might, therefore, put too much
emphasis on the rendered properties unless precautions are taken to increase gener-
alization.

Figure 1.1 illustrates the part of the assembly line where the possibility of im-
provements is being investigated. At this specific station, a ladder frame, three
filters, two oil pipes, and an air intake are mounted on the engine block with M10
bolts.

Figure 1.1: Part assembly location that is being investigated.

1.1.1 Objects
For the investigated section of the assembly line, there are 8 kinds of objects mounted
on the engine. In Figure 1.2 is a visual representation of them at different scales.
Each of the objects has more or less unique visual properties.

Figure 1.2: From left to right; Renault bypass filter, Volvo bypass filter,
ladderframe, oil suction intake, U-shaped coolant pipe, S-shaped coolant
pipe, pipe fixture, bolt m10.

2



1. Introduction

• Bypass filters: These filters are either gray with the Renault decal or white
with the Volvo decal and have a dimension of 27× 10 cm. The rigid body of
these filters is the same, making the texture the only distinguishable feature
between them. The filters are threaded downwards into the engine block during
assembly, and will usually be seen in an upright position.

• Ladder frame: The ladder frame has a dimension of 97× 25 cm, making it
the largest object to be mounted in this part of the assembly line. There are
12 equidistantly spaced large holes, three smaller ones for the different pipes
and 24 small holes for the bolts. The texture of the ladder frame is matte
metallic. During the assembly, all of the other objects, except the filters, are
mounted on top of it.

• U-shaped coolant pipe: This pipe is 27 × 10 cm in size with a matte
metallic-gray texture. Each of the ends has a purple rubber ring, although if
the pipe is mounted correctly, these seals are not visible. Since this pipe is
symmetric, it can be installed in two different ways.

• S-shaped coolant pipe: Compared to the U-shaped coolant pipe, the S-
shaped pipe is slightly larger with a size of 33× 10 cm. Furthermore, it is not
symmetric, making it only possible to mount it on the engine in one way. As
the U-shaped counterpart, it has a matte metallic-gray texture with the same
kind of purple seals on each end.

• Oil suction intake: This part is 33 × 27 cm and is made of black plastic.
On the tip of the object, there is a coarse grid metallic filter. There is also a
printed bar code on the side of it.

• Pipe fixture: The fixtures for the U- and the S-shaped coolant pipes are
10 × 4 cm in size and has a dark matte metallic texture. They have two
smaller holes for the bolts and a larger one for the coolant pipe.

• Bolt m10: The bolts are flanged, 30 mm long, with an m10 threading thereby
the smallest part in this step of the assembly line. The texture is black and
metallic, and they are all mounted along the edges of the ladder frame.

1.2 Instance segmentation
Instance segmentation is the act of predicting which pixels correspond to a specific
object given an image. What separates it from semantic labeling is that it will also
be able to detect different instances of the same object.

1.3 Pose estimation
Pose estimation is the act of estimating the orientation and translation of an object in
a coordinate frame. Pose estimation can be done from RGB images, RGB-D images,
and point clouds. More rich information usually yields better results, although, in
this thesis, the focus is on using solely RGB images.
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1.4 Purpose

The purpose of this thesis is to evaluate the performance, applicability, and feasibil-
ity of implementation of state-of-the-art instance segmentation and pose estimation
with neural networks in the production line, when these methods only have access to
synthetically generated data. It would be beneficial for Volvo if the proposed meth-
ods could be incorporated into a quality inspection toolbox and bin picking robots
that can be implemented in their manufacturing plants. This is one stepping stone
toward a more automated factory where humans and robots work jointly together
in an open environment.

1.5 Research Questions

This master thesis attempts to evaluate the generalization achieved by training two
different neural networks on synthetic data using inference on captured images.
Mask R-CNN and PVNet are both methods that execute semantic labeling, while
PVNet is also attempting to solve the pose estimation problem.

The question to be answered with respect to instance segmentation is:

• Do we get a better result with Mask R-CNN after using a different data gen-
eration approach and using data augmentation?

• What can we expect in accuracy, when running inference on real images?

The evaluation criteria used to determine the accuracy is: precision, recall and
Intersection over Union (IoU).

• How does PVNet, trained on synthetic data, perform on synthetic and real
validation sets?

The evaluation of this part will be done by analyzing results from IoU and the ADD
method.

1.6 Limitations

The main focus is to implement working algorithms for instance segmentation and
pose estimation. In order to do this, designing a synthetic data generator for each
method is also of high focus. The end goal is to see how well each method performs
on synthetic data and real data respectively. Then, combined with a relative pose
algorithm, it will be evaluated if it is viable to verify the quality of the assembly
based on these methods. The speed of the algorithms developed will not be the
primary objective of this work, but rather, the focus is to investigate how feasible
this approach is for solving the problem accurately enough with the set limitations.
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1.7 Contribution
Throughout the duration of this thesis, an extensive literature study on theory
related to different types of machine learning, as well as state-of-the-art algorithms
for instance segmentation and pose estimation has been performed. Mask R-CNN
has been modified to fit our purpose, then trained and evaluated. Mask R-CNN has
also been implemented to run live inference on an Nvidia Tegra Xavier. The previous
work related to instance segmentation has been extended, and a comparison of the
previous and current results has been performed. PVNET has been implemented,
modified, and evaluated. The dataset generation pipeline has been designed in order
to be compatible with the training scheme of Mask R-CNN and PVNET, where Mask
R-CNN is trained over six different classes, whereas PVNET is trained on four. All
classes are present in the relevant section of the engine assembly pipeline at Volvo’s
factory. The data is constructed from rendered model files and is therefore purely
synthesized. Scripts for camera calibration, pose projection and plotting scripts
were created with the use of libraries from OpenCV, transforms3d, numpy and
Matplotlib. Pre-processing of data involved the use of pythons pickle library, PIL,
and OpenCV. Visual debugging tools were created with the Matplotlib, PIL, and
OpenCV library. The neural network frameworks PyTorch, Tensorflow, and Keras,
were used for modifying the neural networks. The Blender Python API was used
to generate datasets for the two different networks. Object key points were selected
with the FPS algorithm proposed from PVNet’s library.

1.8 Ethical & Sustainability Aspects
Viewpoints regarding ethics and sustainability are needed to be taken into con-
sideration. In this section, two aspects have been identified. The first is directly
connected to this project, and the second one is more linked to the long-term goal,
which this thesis is a part of.

1.8.1 Personal data privacy
When deploying a quality control system using cameras, workers at the factory will
find themselves being recorded, which might compromise their privacy. The data
is, however, not stored at this instance of the project, but merely evaluated by the
developed algorithms. To evaluate algorithms during the development, the data
saved might not be GDPR compliant without individually issued contracts.

One solution to this problem is to have representatives from the workers union at
the negotiation table while developing the necessary precautions for setting up the
system in the factory. This is done by an assigned team at Volvo and falls outside
the scope of this master thesis.

1.8.2 Meaningful workdays
A substantial amount of time in people’s life is dedicated to their workdays. For
people to cope with their work, in the long run, they need to find meaningfulness
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in what they do. According to UN Committee on Economic, Social and Cultural
Rights, (CESCR) [28], this extends to a part of one of the Sustainable Development
Goals set by the UN where it reads as follows:

"rights also include respect for the physical and mental integrity of the
worker in the exercise of his/her employment."

This master thesis is a small piece in the process of further automating tasks through-
out the assembly line. This automation might, in the long run, simplify the factory
workers’ task to an extent where they do not feel enough cognitive satisfaction. De-
pending on the person, the workers might also feel intrigued by being able to work
with robots. Another aspect of this is that collaboration with robots might be a
more complex task than it currently is, where humans and robots work separately.
This might increase the level of cognitive abilities a worker needs in order to be able
to perform the task in a sufficient manner. People who are unable to attain this
level of skill would then fall outside the category of employable workers. On the
other hand, such a system could also enable people with physical disabilities to be
included in the workforce, thus making society more inclusive for them. Since this
is not a direct consequence of this master thesis, a solution to this matter will not
be taken into consideration in this project.
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Introduction to machine learning

Since the methods used throughout the thesis utilizes neural networks, theory re-
lated to machine learning and neural networks is explained in this chapter. Further,
some common frameworks are also introduced.

2.1 Supervised and unsupervised machine learn-
ing

Two common categories of learning styles in machine learning are supervised learning
and unsupervised learning. In supervised learning, both the target output, i.e., the
labeled data, and the input is fed into the network at the training stage. The model
is fitted to the relationship between the input and target output in an iterative
manner. A validation set is used in order to determine the error on new data, as
is an indication on how well the network generalizes. Depending on the type of the
target variable, the network is either facing a classification or a regression problem
as illustrated in Figure 2.1. All machine learning algorithms in this master thesis
belong to the supervised learning class.

In unsupervised learning, there are no labels or ground truth data, as shown in
Figure 2.2. The key idea is to learn patterns and similarities on some data set, which
then are grouped depending on their different similarities. Depending on which aim
the network should achieve, the problem class can be separated into clustering or
association problems. Clustering is grouping a set of data in such a manner that
all of the objects in the same group are more similar than to those belonging in a
different group. The association deals with finding consecutive links between data
that does not necessarily make them similar.
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Figure 2.1: In supervised
learning, the training is
done with ground truth la-
bels.

Figure 2.2: In unsuper-
vised learning, the net-
work does not have access
to any ground truth.

2.2 Neural networks
Neural networks are comprised of algorithms that recognize trends and patterns
in data. They are loosely modeled after the human brain and performs well in
generalization tasks. Neural networks are already being used today in an increasing
number of applications. An example of a simple neural network is shown in Figure
2.3. The input layer is fitted to the set from which to extract data. The hidden-layers
in the middle are the means of extracting the most useful features and trends that
exist in the input data. The output layers are the extracted information, typically
in the form of a vector with probability values.

Figure 2.3: Example of the infrastructure of neural networks. [1]

2.2.1 Backpropagation
Backpropagation is used in order to update the weights in a neural networks. Look-
ing at Figure 2.3. Each connection between different nodes inherently holds a weight.
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At each node, all values from each connection are summed and an external bias is
also added. These sets of weights and biases make up a function that predicts an
output based on the input. If the network is well-trained it can handle new cases it
has not seen before with a very good accuracy.

C0 =
nL−1∑
j=0

(a(L)
j − yj)2 (2.1)

aLj = f(
n∑
k=0

ωLjka
L−1
k + bLj ) = f(z(L)

j ) (2.2)

The activation, denoted aLj , at the j-th neuron in the L-th layer are described with
equation (2.2). The function wrapping the whole expression represents a type of
activation function that normalizes the number between zero and one. The sigmoid,
or hyperbolic tangents and rectifiers shown in Figure 2.4 are commonly used in the
activation layers.

Figure 2.4: Activation functions: sigmoid and rectified linear unit.

Using the chain rule the sensitivity of the cost function with respect to the weight
at the last layer is calculated by identifying the respective derivatives.

∂C0

∂ω
(L)
jk

=
∂z

(L)
j

∂ω
(L)
jk

∂a
(L)
j

∂z
(L)
j

∂C
(L)
0

∂a
(L)
j

(2.3)

Equation (2.3) describes how the chain rule can be used to describe the change in
the cost function for a fully connected node in layer "L", with respect to the change
in the weights between a single node "k" in layer "L-1" to another single node "j" in
layer "L". Each term is the results calculated in equations (2.4), (2.5) and (2.6).

∂C0

∂ω
(L)
jk

= 2(a(L)
j − y) (2.4)

∂a
(L)
j

∂z
(L)
j

= f ′(z(L)
j ) (2.5)
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∂z
(L)
j

∂ω
(L)
jk

= a
(L−1)
k (2.6)

L is the number of layers in the network, y is the desired output, b is the bias,
j represents the number of the node in that layer. In in a classification setting, y
in equation (2.2.1), would always either be a 1.0 or a 0.0, depending on what the
ground truth actually is during training.

∂C0

∂ω
(L−1)
k

=
nL−1∑
j=0

∂z
(L)
j

∂a
(L−1)
k

∂a
(L)
j

∂z
(L)
j

∂C
(L)
0

∂a
(L)
j

(2.7)

Average over all the batches in one training set is calculated as such:

∂C

∂ω(L) = 1
n

n−1∑
k=0

∂Ck

∂ω
(L)
jk

(2.8)

As shown in equation (2.9), each term represents the cost functions sensitivity with
respect to weights or biases. Each term will be calculated with respect to the weights
between the last node and the second-to-last node, which again is affected by the
nodes wired with that one.

∇C =



∂C

∂ω(1)
∂C

∂b(1)
...
∂C

∂ω
(L)
jk

∂C

∂b(L)


(2.9)

2.2.2 Tensors

Tensors are the primary data structure used in neural networks. A tensor can
be formulated as a mathematical generalization of other more specific instances of
other datatypes. A scalar, vector, matrix, and an N-dimensional array can all be
generalized as a tensor with 0, 1, 2 and N-dimensions respectively. There are three
dimensions present in an RGB image, height, width, and a color channel. This
information is then stored as a tensor and passed into the network. In order for the
neural networks to work with images of different resolution and aspect ratios, it is
practical to generalize the functions handling the input tensors. One way to do this
is to flatten the tensor. This is done by reshaping it to a one-dimensional array and
then squeezing it, so it is considered as a tensor with only one element inside.
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Figure 2.5: Illustration of different tensors. [2]

2.2.3 Deep neural networks
Deep neural networks differ from more shallow ones in the sense that they consist
of more hidden layers. Hyperbolic tangents or sigmoids may result to vanishing
gradients. In particular, these activation functions cluster the weights around zero
and one, and thus the gradients will be almost zero in many cases.

The other extreme is exploding gradients, which happens when the solution sur-
face is rapidly changing. A remedy to this problem is to implement a gradient
checker that reduces the length of the vector if it is above a certain threshold. This
method is called clipping and is a simple way of not overextending in search for the
minimum.

2.2.4 Convolutional neural networks
Convolutional neural networks are biologically inspired models that work in a similar
fashion to the mammalian visual cortex. The mathematical architecture has distinct
local connections, layers and utilizes spatial invariance of visual information. Each
layer is a mathematical kernel operation applied to the previous state of the image.

Figure 2.6: Illustration of a convolutional neural network. [3]

For object recognition networks, the first step is to load an image as the input.
Then the size of a receptive field is chosen, and a convolution operation is performed
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in a sliding window manner. The result of this operation is the dot products of the
kernel and the respective receptive field of the original image. The kernel size can
vary in the first and second dimension, but will always need to match the depth of
the input images. Secondly, a suitable activation function, like a rectified linear unit
(ReLU), is used on the inputs to each node. Thirdly, a pooling operation is applied
in order to extract essential features, while reducing the number of dimensions.
These three operations are then repeated in the same sequence throughout the
feature learning part of the network. The feature learning part will usually consist
of more than three layers in CNN’s, which corresponds to at least three rounds of
convolution, activation and pooling. After the feature learning phase, comes the
classification phase. The last layer is flattened and connected to a fully connected
layer, which corresponds to the same number of classes that are to be detected.
After the fully connected layer, the feature findings are converted to a probability
distribution, softmax or similar, over all the classes. This enables the network to
propose the class with the highest probability to the user of the CNN.

This architecture can further be altered to output the bounding box and mask of
an object. The main difference is that gradual bilinear upsampling of the features
is performed until the image has reached its original dimension. As illustrated in
Figure 2.7, an image of a dog is classified and masked through a deconvolutional
network.

Figure 2.7: Convolution and deconvolution of a dog image. [4]

While a majority of all the parameters in a network consists of weights and
constants, there are also some hyper-parameters needed to be determined before
the training is initiated. Some of them are described in the list below.

Number of Classes is a measure of how many classes that the network is supposed
to classify.

Kernel Size determines the size of the convolutional kernel / filter.

Padding is done by adding values, usually of zero, outside the borders and is done
in order to retain the information that exists at the edges as well as hinder
shrinking of the convolutional output. The size of the padding needed depends
on the size of the convolutional kernel.

Stride describes the step size of the kernel operations.

Pooling is a way to reduce the complexity of the model while retaining most of
the most important info after the convolution and activation operations are
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performed. Max pooling is popular because it creates sharp and relevant
features. Average pooling and sum pooling are other methods. In addition
to the pooling method, the size of the pooling is also important to define.
Adapting the pooling size to match the input dimensions is also possible.

Figure 2.8: Convolution with a 3 × 3 kernel, stride of 1 and padding
around the border. [5]

2.3 Training Neural networks
In order to train the network the data, optimizers, network architecture, batch size,
learning rate and tensor handling framework etc. needs to be specified.

2.3.1 Optimizers
Optimizers are algorithms used for minimizing the loss function. The solution mani-
fold is non-convex for all neural networks in supervised learning, because the activa-
tion functions are non-linear. This is why the complexity and shape of the solution
manifold changes with each layer in the neural network. For deeper networks, the
optimization has a higher global minimum convergence rate. In the sections below,
some of the most popular optimizers are described.

Stochastic Gradient Decent and batch gradient descent are the most common
and straight-forward optimizers. Stochastic gradient descent is an iterative
optimizer which calculates the steepest gradient direction and then steps in
that direction in order to find the global minimum.

Adagrad is an optimizer that adapts different learning rates for individual features.
This is especially good in scenarios where many input examples are missing,
such as sparse datasets.

Adam stands for adaptive moment estimation, and is utilizing knowledge of past
gradients to calculate the current ones. It adds a fraction of the previous
gradients to the current update vector, effectively creating momentum.
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L-BFGS is a limited memory modification of the well known Quasi-Newton method
Broyden-Fletcher-Goldfarb-Shanno algorithm (BFGS), which works by ap-
proximating the differences of past gradients. The BFGS’ Hessian approxi-
mation is calculated over the whole history of gradients, whereas the L-BFGS
is calculated over a limited history of past iterations. The latter method is
used in the context of neural networks because the number of parameters in
the problem is often in the millions. The method is preferably implemented
with trust regions or online search for ensuring some convergence.

2.3.2 Batch size
Combining all the gradient suggestions from the optimizer into a batch enables
less frequent update of the weights as the vectors are combined into one over the
entire batch. Although small batch size gradient descent gives empirically better
generalization, a higher minibatch trains the network faster and allows for batch
normalization. According to Masters and Luschi [29], Wilson and Martinez [30] a
batch size should not exceed 32 when using batch normalization and without batch
normalization, there are performance gains even at a size as small as two.

If there is high cooperation between the local and global gradient, online training
is faster. The previous steps do then cancels out with respect to progressing towards
the global minimum since they are all pointing towards the same direction. If the
cooperation is low or unknown, however, the solution manifold is not very smooth,
and the solver will be more robust and have a higher chance of convergence if batches
are used.

2.3.3 Training set size
A general rule of thumb is to have at least ten times as many data points as degrees
of freedom in the model. This is, however, heavily dependent on the complexity of
the model and if regularization is used. With the use of data augmentation, such
as re-sizing, flipping, rotating of other pixel-wise operations, the size of the data
set can be increased. This is also a strategy that can be used in order to make the
neural network more confident and robust in its generalization.

2.3.4 Regularization
Memorization is not the same as learning, so considerations need to be made with
regards to training a model. In the sections below, there are two ways of regular-
ization, which will ensure that one will end up with a model that should be aptly
fit for the task at hand.

Early stoppage can facilitate the process of ensuring that the network is not over-
fitting, a portion of the data set can be excluded from the training as a valida-
tion set. This data will not be trained on, but rather fed forward through the
network within fixed intervals while training. If the validation error diverges,
it is a sign that the model has crossed the optimum between generalization
and specification.
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Dropout is a method proposed by [31] that enables and disables nodes in a layer.
This is done in order to force the network to discover new paths of logical
flow, thus increases generalization and prevents over-fitting. The probability of
dropout is generally below 50 percent, and most newer deep learning networks
are utilizing one dropout layer.

2.3.5 Normalization

Normalization is a technique often applied as part of data preparation at the input
level of the model. The goal is to change the values of numeric columns in the
dataset to a common scale, while keeping the differences in the ranges of values.
Two types of normalization techniques commonly used are listed below.

• Batch Normalization is based on the mean and standard deviation of the
datapoints in the batch.

• Batch Renormalization tries to find a global normalization based on both
the training data and the inference data. This is achieved by keeping a moving
average asymptotically approaching a global normalization.

2.3.6 Transfer learning

Transfer learning is the act of using a network that has been trained to perform a
similar task and adapt and retrain the last layers for the new problem. Successfully
doing this reduces the computational effort of training the network for the new task,
but it also has the potential to yield better performance when, for instance, the
amount of training data is limited or restricted.

The model used as the starting point for transfer training is called a backbone
network. When choosing a backbone network, the main tradeoff is usually the
computational complexity of the network during inference, the size of the last layers
when retraining and how well the network performs on a similar task. In Figure 2.9
different models with their respective accuracy on the image classification task can be
observed. The size of the circle is the number of parameters in the form of weights
and biases. This number is directly linked to the computational complexity of
retraining it, and, as can be seen in the figure, increasing the numbers of parameters
does not necessarily mean that the network has better performance on a specific
task.
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Figure 2.9: Overview of existing models for image classification. [6]

2.3.7 Loss functions
It is essential to use appropriate loss functions in order to evaluate how well the
network performs, and that it is learning from the training set. Commonly through
stochastic gradient descent, the network uses this function for optimization when
searching for a local minimum. The most widely used loss functions in machine
learning can be categorized as either a classification loss or a regression loss. Both
of these categories contain a broad set of widely used functions. Illustrated in Figure
2.10 are some of the most common classification loss functions. Likewise, in Figure
2.11 are some of the most common regression loss functions. Each of them is further
explained in the sections below.
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Figure 2.10: Some of the
most common classifica-
tion loss functions.

Figure 2.11: Some of the
most common regression
loss functions.

Classification loss functions are usually applied to machine learning problems
where the predictor is applied to classification problems. A classification prob-
lem is a problem where the input is mapped to a discrete set of categorical
output variables. A simple example would be: given an image as input, is
the image of a cat or a dog? Here the categories is a vector of length two
containing the classes "cat" and "dog", but the categorical vector can be of any
size.

Log/Cross-Entropy loss is a logarithmic loss function that measures the perfor-
mance of a particular classification. It is defined in equation (2.10), where yo,c
is the ground-truth of a given class i.e. a one-hot vector, and ypo,c is a prediction
given this class. Given a prediction and some ground truth, the cross-entropy
loss heavily penalizes false but certain predictions, which is further illustrated
in Figure 2.12 below.

L =
M∑
c=1

yo,c log(ypo,c) (2.10)
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Figure 2.12: The Log loss function heavily penalizes the network if it
predicts the class with a low probability. [7]

Focal loss was derived by Facebook AI Research in order to improve the perfor-
mance of the Cross-Entropy loss [32]. In contrast to the Cross-Entropy loss,
the Focal loss penalizes the network depending on how hard the example is
to classify. Given a binary classifier for simplicity, the Focal loss is defined in
equation (2.11). As before in the Cross-Entropy, the yo,c is the ground-truth
of a given class and ypo,c is a prediction given this class. The γ is a tuning
parameter, obtained through experiments. Typically, the classification of the
foreground is harder than the classification of background. For applications
like instance segmentation, the γ is usually set to a value below one.

L = −(1− pt)γ log(pt) where pt =

ypo,c if y = c

1− ypo,c otherwise
(2.11)

KL Divergence or Kullback–Leibler Divergence KL Divergence is an estimate of
how well samples drawn from one distribution matches a query distribution or
a model. The exact definition is defined in equation (2.12), where p(x) is the
sampled distribution and q(x) is the model. If the distribution of the model
matches one of the sampled distribution, then the KL Divergence becomes
zero. Analogous to this is that, if the mismatch between the distributions is
large, the KL divergence will approach one.

L = 1
N

N∑
i=1

yi log( yi
ypi

) (2.12)

Hinge loss mainly penalizes incorrectly but certain classified outputs. It is defined
as equation (2.13), where the α term is the boundary for where the loss should
become zero. This means that if the output is correctly classified with a
probability over the threshold alpha the loss is zero, otherwise it is linear. An
illustration of the hinge loss can be seen in Figure 2.13.
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L = 1
N

N∑
i=1

max(0, α− yiypi ) (2.13)

Figure 2.13: The hinge loss increases linearly when the classifier is incor-
rectly certain about a predicted output. [8]

Regression loss is different from the classification loss in the sense that yields a
prediction distribution, whereas the regression losses are quantitative. Since
most of them are continuous rather than discrete and are differentiable, their
derivative can usually be used for backpropagation. Some of the more common
ones are explained further in the sections below.

Mean Square Error (MSE) is one of the most commonly used regression loss
functions, not only in machine learning but it is also widely used in System
Identification other areas where you want to fit some mathematical model to
a situation. It is defined as (2.14), where yi is the ground truth and ypi is what
the model predicts.

Lmse = 1
N

N∑
i=1

(yi − ypi )2 (2.14)

A visual toy example of this is illustrated in Figure 2.14. A model is fitted, in this
case, a straight line in blue to a set of points in green. The straight red dashed
lines between the points and the model are the errors which are to be minimized.
Squaring the errors negates the possibility of cancellation from a difference in signs in
the summation. The Mean Absolute Error MAE achieves this by using the modulus
of the errors. One feature with the MSE that can be somewhat problematic is that
if just some of the points are relatively far away, this metric gets heavily penalized.
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Figure 2.14: An illustration of the MSE.

Least Square Regression and Least Absolute Deviation differs fromMSE, the
Least Square Regression LS and Least Absolute Deviation LAD because they
are not divided with the number of errors in the sum, but in other aspects,
the idea is the same. Three of the most commonly used loss functions in ma-
chine learning are the L1-norm, the Smooth L1-norm, and the L2-norm. The
L1-norm is defined in equation (2.15) and the Smooth L1-norm is defined in
(2.16). Compared to the L2-loss function, defined in (2.17), the loss is, for the
most part, linear and thus the L1-loss functions do not penalize large errors
significantly more than smaller ones. The difference between the L1-norm and
the Smooth L1-norm is that as the errors approach zero, the Smooth loss be-
comes similar to the L2-norm. Doing this removes the discontinuous part, thus
enabling the gradient to be calculated in the entire domain of the function.
Since stochastic gradient descent is so commonly used for backpropagation in
the training of a neural network, the Smooth L1-norm is preferred over the
L1-norm.

L =
N∑
i=0
| yi − ypi | (2.15)

L =
N∑
i=0

Li where Li =

|yi − y
p
i |, if x > α

1
|α|(yi − y

p
i )2, if x ≤ α

(2.16)

L =
N∑
i=0

(yi − ypi )2 (2.17)

In Figure 2.15, the differences between the LS L2-norm and the two L1-norms are
illustrated further. As can be seen, outside the bounds of α, the two L1-norms are
the same while inside the bounds of α the general trajectory of the Smooth L1-norm,
and the L2-norm are equivalent.
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Figure 2.15: The L1-norm in blue, the smooth-L1-norm in red and L2-
norm in green. [9]

Quantile loss. The regression loss functions mentioned above assume that the
residuals have a constant variance, but that is not always the case. The Quan-
tile loss function is defined in (2.18) and can adjust how the model should
handle positive respectively negative errors with a scaling factor γ, thus adjust
the effect of non-normally distributed errors. In Figure 2.16, an experiment
using a small and a large γ with a linear regressor are illustrated. In the fig-
ure, the error covariance is not normally distributed, and thus the slope of the
regressor is adjusted by tuning the γ term in equation (2.18).

L =
∑

i=yi<y
p
i

(γ − 1) | yi − ypi | +
∑

i=yi≥yp
i

γ | yi − ypi | (2.18)

Figure 2.16: Example of a linear model fitted to a distribution where the
error covariance is not normally distributed.
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2.3.8 Overfitting and cross-validation

Since a neural network essentially is a multivariate function with many thousands,
if not millions, of degrees of freedom that tries to fit a mathematical model to
data, there is a significant risk of overfitting. Illustrated below in Figure 2.17 is an
example where one can see how increasing the degrees of freedom does not necessarily
mean that the model fits the true trajectory better. As can be seen, a 4’th degree
polynomial fits the true trajectory, whereas a 15’th degree polynomial does not.
If the validation loss acts as a stochastic random variable, then there are some
erroneous parts, either the network itself or the training data.

Figure 2.17: Example of the overfitting problem where a blue line is fitted
to an orange line through some measurements. [10]

When training a network, there is a substantial risk of overfitting, even when
precautionary efforts are made to prevent it. The loss of the training set might
show a good trend, but the validation set is showing the opposite trend. In Figure
2.18, an example of overfitting is illustrated. Even though the accuracy over the
training set increases i.e., the loss decreases and the network performs worse on the
test set. The best performance is achieved after about 800 epochs in this case, as
the test set accuracy decreases (the loss increases) from that point.
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Figure 2.18: Example of divergence of the validation loss. [11]

2.4 Frameworks
There are many frameworks in machine learning, some of which are described in the
followin chapters.

2.4.1 TensorFlow
TensorFlow is a machine learning application program interface (API ) developed by
Google Inc. As the name implies, the framework revolves around computations with
vector and matrix generalization, i.e., tensors. It was built with scalability in mind
and is, since 2017, both free and open source under the Apache License 2.0. Using a
language with low abstraction capabilities, namely C++, the developers have been
able to make the API optimized to a variety of different hardware architectures.
The API also has support for many other languages, where one of the most used is
Python. The factors above make TensorFlow extremely popular for solving many
tasks related to machine learning using neural networks. Since neural networks use
linear algebra extensively, there are significant speedup gains to be made by making
the computations on one or multiple graphics processing units (GPU ). By default,
TensorFlow prioritizes the resource allocation of the GPU given that the operation
has support to be executed both on the GPU and the central processing unit (CPU ).

There are two key components of the TensorFlow API. The first one being a
library that is used to build functions as computational graphs, whereas the sec-
ond one executes said graph. A computational graph is simply an abstract way of
describing a directed graph where each node represents a function. In TensorFlow
such graphs are called data flow graphs.

2.4.2 TensorBoard
TensorFlow also comes with a toolkit for visualization of data, namely TensorBoard,
and is automatically included when installing TensorFlow. Once a network is set up,
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essential variables can be tracked either offline or online and be visualized through
a web-browser. Commonly the training loss and validation loss is the data of most
interest, but since any data can be tracked with minor coding effort, it is also a pow-
erful tool for troubleshooting. TensorBoard also has the capabilities of visualizing
the entire execution as a connected graph, where the nodes are the computations,
and the edges are the data, similar to how the execution carried out in TensorFlow.
This feature is also a useful tool for troubleshooting why a network might behave
unexpectedly.

2.4.3 Keras
Using TensorFlow at its core, the high-level application programming interface (API)
Keras was developed in Python. Initially, Keras was developed as a part of the
research effort of project ONEIROS, which stands for open-ended Neuro-Electronic
Intelligent Robot Operating System. The framework focuses on being modular,
easy to use, and free; thus, it has become widely popular both within research and
non-professional users. The downside, however, is that the Keras library is not as
customizable as the libraries on which it is built.

2.4.4 PyTorch
PyTorch is a machine learning library for Python based on the Torch library. It was
developed by FAIR in 2016 and is both free and open-source under the Berkeley
Software Distribution (BSD) license. In PyTorch, the programming paradigm is im-
perative rather than sequential and thus not as intuitive. Imperative programming
describes how the state of a program should change, and no variables exist unless a
function calls them. This is beneficial during back-propagation since this utilizes a
dynamically built graph; hence, the model can edit itself on the fly with the aim to
improve accuracy.
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In this chapter, additional theory used, that isn’t explicitly related to machine learn-
ing is presented.

3.1 The camera model

A camera provides a projective mapping of the world and is an essential tool in
computer vision. To be able to dissect an image and extract useful information
about how pixels on the image relates to points in the 3D space, a model needs to
be made. The most common model to use it the Camera Obscura- or the Pinhole
Camera Model, which provides a one to one mapping of the rays on to an image
plane. The conceptual illustration of this model is shown in Figure 3.1. The more
formal representation is illustrated in Figure 3.2. Here, the point P is projected to
the point P’ located on the image plane Π. For this simple model all projections are
linear mappings through the pinhole, or center of the camera O. The image plane
is located with its center C’ aligned with the k-axis of the pinhole at a distance f.
This distance is also known as the focal length of the camera. The mathematical
relation to this is explained further in Section 3.2 below.

Figure 3.1: The pinhole camera model, the tree in the real world are
vertically flipped in the image plane. [12]
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Figure 3.2: The point P in the 3D world is projected on to the image
plane Π through the pinhole O. [13]

3.2 The camera matrix
The camera matrix gives a mathematical relation to how a pixel in the image relates
to the world. It can be decomposed into two separate categories, the intrinsic
matrix, and the extrinsic matrix. All parameters contained within the camera are
the intrinsic parameters and are usually different for different cameras, whereas the
extrinsic matrix is independent of the camera model. One way to think about it
is to imagine that all of the information to the right-hand side of the center of the
camera center in Figure 3.2 is contained within the intrinsic matrix, whereas the
extrinsic matrix captures where O is and how it is oriented. Formally, the camera
matrix is defined in equation (3.1), and as can be seen, it is composed of the product
of the intrinsic multiplied with the extrinsic matrix.

P =
[
K

]
︸︷︷︸

Intrinsic Matrix

×
[
R t

]
︸ ︷︷ ︸

Extrinsic Matrix

(3.1)

The intrinsic matrix captures the properties of the camera; that is how the properties
of each pixel relate to the real world. There are three properties related to this,
shearing, scaling, and translation.

• 2D Shear: This is usually zero, but if the pixels in the sensor are not perfectly
squared due to some filter or manufacturing error, this value will be something
else than zero.

• 2D Scaling: The scaling tells how each of the individual pixels scales to the
real world via the focal plane.

• 2D Translation: The translation of the axis in the camera frame perpen-
dicular to the image plane. This axis is usually set to be centered in the
image.

The mathematical representation of these properties is shown in equation (3.2) below
where the composition of the intrinsic K matrix is shown in its entirety.

K =

1 0 x0
0 1 y0
0 0 1


︸ ︷︷ ︸
2D Translation

×

fx 0 0
0 fy 0
0 0 1


︸ ︷︷ ︸

2D Scaling

×

1 s
fx

0
0 1 0
0 0 1


︸ ︷︷ ︸

2D Shear

=

fx s x0
0 fy y0
0 0 1

 (3.2)
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The extrinsic matrix, on the other hand, captures the location and orientation of
the camera in the world frame. It is defined as a rotation matrix in the world frame
made 4 × 4 by adding a row and a column multiplied with a translation matrix in
the world frame made 4× 4 as illustrated in equation (3.3).

[
R t

]
=

[
I t
0 1

]
︸ ︷︷ ︸

3D translation

×
[
R 0
0 1

]
︸ ︷︷ ︸
3D Rotation

=


R11 R12 R13 tx
R21 R22 R23 ty
R31 R32 R33 tz
0 0 0 1

 (3.3)

When combining all of the matrices explained above, the final camera matrix P is
composed. To further demonstrate how the intrinsic and extrinsic parameters relate
to each other, the image and the world, an illustrative figure is shown in Figure 3.3.
As the image shows, the coordinate frames are not the same, and it is the camera
matrix that provides the information of how they are related.

Figure 3.3: A visual representation of how the intrinsic and extrinsic
parameters related to the worlds frame coordinate system. [14]

3.3 PnP
Given a set of 3D points and their corresponding location in an image, the PnP
algorithm tries to solve the relative 6D pose between the calibrated camera and
that object. This algorithm is utilizing the perspective projection matrix shown
already in equation (3.1) to project the 3D points into 2D or vice versa, as shown
in equation (3.4).

s

uv
1


︸︷︷︸
pc

=

fx γ cw
0 fy ch
0 0 1


︸ ︷︷ ︸

K

r11 r12 r13 t1
r21 r22 r23 t2
r31 r32 r33 r3


︸ ︷︷ ︸

[R|t]


X
Y
Z
1


︸ ︷︷ ︸
pw

(3.4)

Where pc is the image coordinate of homogeneous image point, K is the matrix
of intrinsic parameters, [R|t] is the matrix of external parameters and pw represents
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the homogeneous world or object point. The majority of the solvers assume that
the camera is already calibrated, the points correspondences can not be colinear and
that the results might yield ambiguities which might need post-processing. Due to
it’s many use-cases for computer vision, XR and robotics, this is a field that has
been extensively studied and therefore many variations of the solver have emerged.
The implementations range from the most minimal form of P3P to EPnP and
PnP using RANSAC.

3.4 Hough Voting
The Hough transform is a feature extraction technique commonly used in image
analysis and computer vision. The purpose of the technique is to find imperfect
instances of objects within a specific class of shapes by a voting procedure. The
object candidates are obtained as local maxima in the space of the Hough transform,
and the goal of doing this is to capture as much information as possible with the
minimum descriptive effort.

3.5 Mahalanobis distance
The Mahalanobis distance is a measurement of how close a point is with respect
to a probabilistic distribution. Commonly used for detecting outliers it can also be
used for multidimensional probabilistic regression, making them suitable for neural
networks as well as pose regression. The Mahalanobis distance between an obser-
vation ~x = {x0, x1, . . . , xn}T to an existing cluster of data points with mean values
~µ = {µ0, µ1, . . . , µn}T is calculated as shown in (3.5), where C is the covariance
matrix.

DM(~x) =
√

(~x− ~µ)TC−1(~x− ~µ) (3.5)
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Figure 3.4: An example of four points with same euclidean distance to
(0.0 , 0.0), but very different Mahalanobis distance
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4
Recognition, pose estimation and

synthetic data

In this chapter, the recognition problem and the pose estimation problem is stated.
The algorithms Mask R-CNN and PVNet, as well as methods for manipulating
synthetic data, are explained.

4.1 Recognition

There are four important recognition algorithms that are used extensively in this
master thesis. These are classification, localization, semantic- and instance segmen-
tation. In the subsections below they are further explained.

4.1.1 Classification

The classification problem is a central topic in supervised machine learning where
the data is separated through predictions on belonging to a specific predefined class.
The unsupervised version of this problem is called clustering, as explained above. A
classifier is simply an algorithm or a mathematical function that maps some input
data to a category of classes. A toy example of the classification problem is; given
an input image, is this an image of a cat? Here there is only one class, namely "cat"
and the output of the network is binary value. If the classification is extended to
span multiple classes, this problem is a multiclass classification, and the output is
a binary vector. Another important instance of the classification algorithm is the
multilabel classification. This means that the classifier is able to separate different
instances of the same class. The output is then a vector of a number corresponding
to how many instances of a particular class exists in the image rather than a binary
vector.

4.1.2 Localization and classification

In addition to classification, a localization algorithm also localizes where the target
is in an image. It is always bundled with classification, and if the network is able
to detect and localize multiple classes of objects in the same image, this is called
object detection. In Figure 4.1 below, three sheep are both classified and localized.
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Figure 4.1: Example of classification and localization of sheeps in an
image. [15]

4.1.3 Semantic segmentation
In semantic segmentation, each pixel in an image is associated with a distinct class
in a set. Individual objects of the same class are not separated from each other
but instead joined together in the same set of pixels. In Figure 4.2 below, all the
pixels belonging to the sheep class are in the same set of classified pixels. The same
goes for the grass and the road; thus, it is impossible to say if the pixels belong to
different instances of the same class or not.

Figure 4.2: Example of semantic segmentation of sheeps in an image.
[15]

4.1.4 Instance segmentation
In instance segmentation, each pixel is labeled with a specific instance of the different
classes. This algorithm is thus able to make a distinction between two or more
objects of the same class. In Figure 4.3, this is illustrated as the different sheep are
assigned different colors and numbers.
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Figure 4.3: Example of instance segmentation of sheeps in an image. [15]

4.1.5 Related work
Before neural networks became the standard of solving recognition tasks in images,
many computer vision approaches have been tried with varying success. Thresholding-
based segmentation, for instance, partitions the image histogram into two or more
classes based on the characteristics of the histogram [33]. The threshold can ei-
ther be set manually, by running numerous controlled tests or automatically by
histogram clustering. Another method is Conditional Random Fields (CRF), where
a statistical model is used to map each pixel to a class, taking neighboring pixels
into account[34].

The standard computer vision approach, although usually computationally fast,
never yielded a similar level of accuracy as neural networks. Segmentation based
methods yield a segmentation mask before, or without region detection. In [35] the
authors combine two different modules, or subnetworks, namely an initial semantic
segmentation module together with a CRF to perform instance segmentation. This
makes the segmentations compete with each other, so a more common approach
in recent years is to create a mask and then classify it, as done in Mask R-CNN
described below.

4.1.6 Mask R-CNN
In recent years the Facebook AI Research (FAIR) has been contributing a lot to
the field of machine learning, and especially neural networks. One significant con-
tribution is the network architecture Mask R-CNN, which is an extension of the
Faster R-CNN developed in 2016. The Faster R-CNN is relatively fast, but it only
proposes bounding boxes and thus are not made for instance segmentation. Mask
R-CNN solves this issue by first using the Region Proposal Network from Faster
R-CNN and then adding a branch for predicting an object mask in parallel with the
bounding box prediction. The mask is generated for each region of interest and is
not class specific, meaning that the segmentation mask is generated first and then
labeled after the bounding box has been classified. This method speeds up both the
training process and the interference because the pixel-wise mask prediction does
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not compete against other classes. The network can utilize many different backbone
architectures, but the ResNet101 showed promising performance and is the one used
in this thesis.

The Region proposal Convolutional Neural Network (R-CNN) solves the recog-
nition task of localization and classification. It does so by using a process called
selective search, where the network extracts regions of different sizes and from the
image and tries to predict if they contain objects of interest. The regions are then
re-sized into squares and passed forward in the network, where they are classified
using an SVM. The final bounding box is generated through linear regression of the
proposed regions. An illustration of this pipeline is presented in Figure 4.4 below.

Figure 4.4: The pipeline from an input image, through the region pro-
posal step and the classification step of the R-CNN using an SVM. [16]

In the R-CNN network, both the interference and the training are slow and
tedious. For each image, about 2000 proposed regions were fed through an eight-layer
network. It also utilized three different networks for different tasks, thus making
the pipeline challenging to train. To decrease the computational complexity, the
network Fast R-CNN was released in 2015 [17]. This uses a technique called RoI
pooling, where the image is fed through a network that both propose RoIs and a
feature map in one forward pass. Overlapping regions share the same computations,
enabling a reducement in computational complexity by storing the feature map and
extracting features from the saved values. In Figure 4.5 is a visual illustration of
how the RoI and feature map are jointly created through a CNN. Furthermore, the
different networks for feature extraction, classification, and regression were combined
into a single network making training less of a tedious process.
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Figure 4.5: The convolutional layers in Fast R-CNN output both the
region proposals and the feature maps. [17]

Mask R-CNN has two main features in addition to the Faster R-CNN. First of
all, it adds a fully convolutional network that generates binary masks in parallel
to the bounding box and classification from Faster R-CNN, as illustrated in Figure
4.6. Since the mask is not classified in this step, the pixels will not compete over
different classes, thus simplifies the pipeline significantly. Secondly, it introduces
a method called Region of Interest Align (RoIAlign). The RoIPooling layer from
Faster R-CNN induces inaccuracies in the alignment of the features in the feature
map. By removing the quantization of the coordinates connected from striding, the
alignment was made more exact.

Figure 4.6: The Mask R-CNN network simply adds two convolutional
layers in addition to the Faster R-CNN architecture. [18]

Loss functions

Mask R-CNN comes with five distinctive loss functions, with some of them inherited
from the network architecture it is built. Depending on the application at hand,
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all of these are not equally important, and it is up to the designer to weight them
appropriately when retraining the network. In this thesis, however, they have the
same weights. All of these functions are explained further below.

Smooth-L1 loss Mask R-CNN, RPN, and Fast R-CNN all use the Huber loss,
which is a special version of the smooth-L1 loss function explained in 2.3.7.
In the case of these networks, they are defined as equation 4.1. Here x is the
residuals of taking yi − ypi .

Lsmooth =


1
2x

2, if |x| > 1
|x| − 1

2 , otherwise
(4.1)

Classifier loss The classifier loss classifies a set of defined regions as either back-
ground or foreground. Each of these regions is called anchors, and each anchor
is compared to the ground truth bounding boxes in the data set. An anchor
is classified as foreground, thus positive, if the intersection over union (IOU)
of an object and the anchor point is above 70%. If the IOU is below 30%, it is
deemed to be a negative anchor point, and if the IOU is anything in between
it is considered to be a neutral anchor point and are discarded in the metric.
The anchor point sizes and ratios are defined prior to training, where the usual
aspect ratios are 0.5, 1, and 2.

L({pi}, {ti}) = 1
Ncls

∑
i

Lcls(pi, p∗i ) + λ
1

Nreg

∑
i

p∗iLcls(ti, t∗i ) (4.2)

RPN bounding box loss The RPN bounding box loss uses the smooth-L1 loss
function over predicted anchor point boxes together with the ground truth
bounding box for a class. The class is specified as positive foreground, negative
background, and neutral. Only the positive anchors contribute to the loss. It
is defined as in (4.3) where y is the midpoint of the bounding box, together
with the logarithmic size of the bounding box.

LRPNbbox = Lsmooth−L1(yi − ypi ), where y =
[
dx dy log(height) log(width)

]T
(4.3)

Mask R-CNN bounding box loss

The Mask R-CNN bounding box loss is the loss after the bounding box refinement
step and is defined as in (4.4). In this case, y is a vector containing the same
parameters as in the RPN bounding box loss explained above. The total loss is
then the mean of the smooth-L1 loss over the ground truth subtracted with the
prediction.

Lmrcnnbbox = mean(Lsmooth−L1(yi − ypi )), where y =
[
x y log(h) log(w)

]T
(4.4)
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Mask loss The multitask loss is a binary cross-entropy loss, thus the level of uncer-
tainty given a distribution yij. It is defined according to equation (4.5) where
yij is the label of the cell in the true mask for the region of size m × m, ŷkij
is the predicted value given the ground truth class k. The mask loss Lmask is
defined only on positive RoIs.

Lmask = − 1
m2

∑
1≤i,j≤m

(yijlog(ŷkij) + (1− yij)log(1− ŷkij)) (4.5)

Multitask loss The multitask loss of Mask R-CNN is the combined loss of the
classification, localization, and segmentation mask on each sampled RoI. The
respective loss is summed together as in equation (4.6).

L = Lclass + Lmrcnnbbox + Lmask (4.6)

4.2 Pose Estimation
Pose estimation through computer vision methods is possible because it is feasible
to extract features from the data in numerous ways. The pose estimation problem
generally gets easier if one has an asymmetric object with distinct features, distinct
shapes, and unique texture, which are not the case in most industrial settings.

4.2.1 Related work
Given only an RGB image, some methods [36] aim for single shot instance segmen-
tation which later leads to 6D pose estimation whereas more traditional methods are
often based on template matching techniques [25]. The downfall of these methods is
that they perform poorly when the object is subjected to occlusions. In this section,
related pose estimation techniques are being addressed.

PoseNet [37] was one of the earliest holistic methods in pose estimation, using a
CNN for direct pose regression without graph optimization. This is still very difficult
due to a large search space and a lack of depth information, using RGB-images. As
a way to limit the search area, PoseCNN [38] and similar methods [26] starts with
segmenting the scene and later predicting the depth of the object in order to estimate
the pose in the remaining three dimensions. 3D pose estimation still inherits non-
linearities, which does not make it out-of-the-box compliant to the natural scheme of
how classification works in CNN’s. Recent end-to-end deep learning methods [39] are
still not thoroughly tested with regards to sufficient generalization. Other articles
have tackled this by discretizing the rotation space and tackling the 3D rotation as
a classification task from there. However, the pose prediction will then only be as
good as the resolution of the discretization. Some interpolation in post-refinement
is, therefore, necessary to truly achieve the correct pose.

A keypoint-based method would entail detecting some key points of the object
and after that utilizing a PnP algorithm or other geometrical constraints for figur-
ing out the 2D-3D correspondences and then predicting the pose. For objects with
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distinct textures, existing methods perform well under normal conditions. The chal-
lenge then lies in detecting texture-less objects, which are primarily defined by their
silhouette and depth. Newer methods using only RGB-images [40] have obtained a
result of 54% passing rate of all inferences run with respect to the "Pose 6D criterion"
on sequences from the T-LESS dataset [41]. Using RGB-D data will give the most
significant increase in performance when dealing with texture-less objects because
the shape of the object is more descriptive than the texture. Furthermore, methods
creating heat maps are highly susceptible to failure when these are occluded.

Figure 4.7: Illustration of how the dense representation of the SMPL-
model is mapped to the human. [19]

Dense methods are methods that make use of dense, structured information for
deterministic purposes. These methods usually require more computing power as
the amount of data in the solution space will be higher than most other methods.
Hough voting could further be used for pixel-wise or patch-wise prediction of the
desired output. Random forest algorithms can be used for pixel-wise 3D object
prediction and then use geometrical constraints on top of that to get a more robust
pose estimation. Although dense methods might be more difficult to converge, they
are also more robust with respect to occlusions.

Point pair features and local histograms are two other ways of determining the
pose. Point pair features(PPF’s) and extensions of this technique have shown great
promise in terms of accuracy according to [42]. PPF’s are antisymmetric 4D de-
scriptors of a pair of oriented 3D points m1 and m2, constructed as:

F (m1,m2) = (||d||2,∠(n1, d),∠(n2, d),∠(n1, n2)) (4.7)

where d is the difference vector, n1 and n2 are the normals atm1 andm2 respectively
and || · || represents the Euclidean distance. Local histograms are reliant on color
information, but have also yielded good results and has been used for monocular
tracking [43].

4.2.2 PVNet
PVNet [20] is an abbreviation for pixel-wise voting network and is has been able to
obtain state-of-the-art results, especially on truncated and occluded RGB images.
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Figure 4.8: Architecture of PVNet. [20]

PVNet is comprised of three main parts. The first one is the semantic labeling,
where one uses a ResNet architecture pre-trained at ImageNet as the initialization
of weights and as the general backbone in the new network. The network outputs
both semantic labeling, as well as a vector field prediction of where the object is.
Then a hough voting is performed in order to predict a hypothesis for where the key
points are located. After that, an uncertainty-driven PnP algorithm is performed to
match the best inliers with the same points in 3D and hence receive the relative pose
[R, t] relative to the camera. The output of the voting-based methods is a spatial
probability distribution for each of the key points.

In the case of PVNet, the keypoints are the pixels with the highest number of
votes after every pixel vote in which general direction each keypoint is to be located
based on nine degrees of information it already has knowledge about.

4.3 Synthetic data
There are many advantages to using synthetic data. In an industrial setting, virtual
models of the different parts already exist from the design phase of the product.
From that, a dataset can be created by applying photo-realistic textures and using
advanced rendering engines.

Recent reports have presented promising progress using either texture-less[40]
data or using domain randomization where a random texture from a set of different
textures are applied. This forces the neural network to learn structural features of
the object, rather than colors and surface properties. Doing this makes the network
more robust to changes in the environment, such as occlusions and varying light
conditions.
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4.3.1 Frameworks

The main frameworks used before training the networks are blender and ImgAug.
Blender is used for dataset generation, while ImgAug is used by the data loader of
the neural network in the training process.

Blender

Blender is a free and open source 3D creation suite licensed under GNU General
Public License v2. It is written in C, C++, and Python and supports a wide
variety of features, such as modeling, simulation, animation, and rendering. It
comes with a flexible Python controlled interface, which opens the possibilities for
a fully automated rendering pipeline through Python scripts. The Cycles render
engine is Blender’s built-in path-tracer engine. Compared to ray-tracing, the path-
tracer gives a more visually realistic rendered image. In Blender, the Cycles render
also has support for CUDA, which speeds up the rendering process by a significant
amount when an Nvidia graphics card is available. For AMD graphics cards the
equivalent rendering mode is through OpenCL.

ImgAug

The act of cropping, flipping, scaling, rotating, translating, and applying noise to
the original training data set both increases the data set and also helps the neural
networks to generalize. A commonly used library in the machine learning community
is ImgAug, which is a part of the Python Package Index, and that allows for data
augmentation of images. It has support for many kinds of augmentations which
can be used in the data loader when training. They can be categorized as either
geometric or arithmetic augmentations. The geometric ones are changes where pixels
are moved around spatially, thus changes the structure of the body in the image.
Below is a list of geometric augmentations used in this thesis and their respective
effects on an example image are further illustrated in Figure 4.9.

• Crop: Crops the image around a specified or random location.

• Flip: Flips the image over the x- or y axis respectively.

• Scale: Changes the scale of the image using bi-linear interpolation.

• Translate: Translation of the image over the x- and/or y axis.

• Rotate: Clockwise rotation around the center point of the image

• Shear: Linear mapping of the pixels in fixed direction by an amount propor-
tional to its signed distance from the line parallel to that direction and goes
through the origin.
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Figure 4.9: Each of the geometric augmentations with different input
parameters used in the training set illustrated on an image. [21]

The arithmetic augmentations are pixel-wise modifications done to the image where
the body structure of the object remains the same, but where each channels respec-
tive pixel’s value necessarily does not. Below is a list of such augmentations used
to augment the training data set, and in Figure 4.10 their respective effect on an
example image.

• Gaussian blur: Filters the entire image with a Gaussian filter.

• Coarse dropout: Sets random square areas of the image to zero, using a
miniature pixel map that is then up sampled.

• Edge detect: Highlights the edges and makes the rest of the image darker

• Emboss: Each pixel is replaced by either a highlight or a shadow, depending
of its gradient with respect to the neighboring pixels. The filtered image will
represent the rate of color change at each location.

• Sharpen: A combination of blurring, edge enhancement and contrast incre-
ment to increase how sharp the image appears to the human eye.
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Figure 4.10: Each of the arithmetic augmentations with different input
parameters used in the training set illustrated on an image. [21]

In order to keep a correct mapping of the segmentation map, they need to be
augmented with the same parameters as its corresponding image for the geometric
augmentations. The segmentation maps should not, however, be affected by the
arithmetic augmentations. The augmentations needed for a project depends on the
application at hand, and there are more different kinds of augmentations available
in the library than listed here.

4.3.2 Equidistantly spaced points on a sphere

When sampling poses of an object, precautions to prevent the samples from cluster-
ing around a particular view should be made. A common problem in both computer
graphics and other STEM fields is to generate equidistantly spaced points on a
sphere. There is no mathematical formula that does this correctly except in some
special cases. When solving this problem, it is a matter of how approximate the
solution is allowed to be.

The naive approach is to generate the points on the sphere using equal longitu-
dinal and latitudinal angles, but as can be seen in the upper parts of Figure 4.11,
the points will get clustered around one of the axles.

A more suitable approach, in the sense of correctness, is viewing the points as
magnets and let them repel each other until an equilibrium has been reached. This
is however computationally heavy, so another way is to use a Fibonacci lattice, also
known as the Golden Spiral method. This way of generating equidistantly spaced
points on a sphere has a computational complexity of O(N), but it is also less exact
than the recursive solution. The MSE of the distances are dependent on how many
points that are generated, but to the human eye, the points will look equidistantly
spaced, and for this project, it is accurate enough. The Golden Spiral method is
implemented as follows:
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xi, yi and zi are a sample point in Cartesian coordinates and N is the number of
sample points to be generated.

Figure 4.11: In the top sphere, points are separated by equal longitudinal
and latitudinal angles. In the bottom sphere, the points are separated
using the Fibonacci lattice. [22]

4.3.3 Point clouds and mesh sampling

PVNet uses a point cloud of the different objects in order to extract suitable key
points to be trained in the network. Experiments have shown that using an opti-
mization technique to extract the key points from the actual surface rather than
using the bounding box yields better results. Thus, for this purpose, the point
cloud needs to be generated out of the different model files. There are several ways
to do this, and the first attempts were to use a free software called MeshLab and
export each respective model using their built-in export function. The point cloud
generated is, however, not uniformly distributed, as can be seen in Figure 4.12 but
instead sampled at the vertex of each polygon in Figure 4.13.
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Figure 4.12: The mesh
grid of the object,
where the surface con-
sists of polygons

Figure 4.13: A point
cloud representation
of the intake. The
points are sampled
in the vertexes of the
polygon representa-
tion.

The key point extraction algorithm should extract points as far as possible from
each other, and to do so, the points in the point cloud must represent the entire
surface of the object. One strategy is to sample from each of the triangles randomly.
Because of the different areas of the triangles, this sampling technique will result in
a non-uniformly distributed point cloud, as illustrated in Figure 4.14. The upper
circles show a uniformly sampled mesh, whereas the lower circles illustrate how the
distribution will be if sampled according to the technique described above.

Figure 4.14: Uniformly and non uniformly sampled mesh of a dome. [23]

To remedy this phenomenon, the probability of taking a random sample inside
a triangle should be proportional to how large area that triangle has in relation to
the surface area of the mesh. Smaller triangles will then be less likely to be sampled
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from, and will therefore not contribute to unevenly distributed clusters. In Figure
4.15, the intake is sampled through this technique. As the figure illustrates, the
samples are evenly distributed over the entire mesh of the intake.

Figure 4.15: Properly sampled mesh of the intake with 20 000 samples.
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5
Methods

In this chapter, the methods, and parameters used as well as some motivation of
them is stated.

5.1 Implementation

The implementation revolves around creating an end-to-end pipeline of generating
synthetic data, training a network on this data, and lastly running inference on real
data. It is assumed that the solution manifold gradient looks quite similar at the
early stages of training, but due to lens distortion, natural light, shadows, it is likely
that the global minimum differs in the later phases of training. This is taken into
consideration while developing the algorithms and determining parameters.

5.1.1 Evaluation methods

In this thesis, there are two methods used for evaluation of the performance. The
first is the intersection over union (IoU) for the instance segmentation, and the
second one is the Average Distance (ADD) for pose estimation.

Intersection over Union

Intersection over Union, also known as the Jaccard index is a metric used to de-
termine the similarities between two sample sets. Mathematically it is defined as
in equation (5.1) and a visual representation is shown in Figure 5.1. The figure
illustrates the respective areas as highlighted, with the overlapping regions in the
nominator and the combined regions in the denominator. In machine learning, it is
an evaluation metric commonly used to measure the accuracy of an object detector.
If there are no overlapping areas, this metric yields a score of zero whereas two fully
overlapping areas yields a score of one.

J(A,B) = |A ∩B|
|A ∪B|

= |A ∩B|
|A|+ |B| − |A ∩B| (5.1)
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Figure 5.1: The IoU metrics for two overlapping sets. [24]

ADD metric

The IoU metric only captures 3 degrees of freedom, so for 6D pose estimation,
another evaluation method is necessary. Average Distance of Model Points is a
method proposed by Hinterstoisser et al. [44] and are defined in equation (5.2). The
error of the estimated pose P̂ with respect to the ground truth pose P̄ of an object
model M is calculated as the average distance to the corresponding model point. If
the error is under 10% of the max diameter of the object the method is considered
as a pass.

eADD(P̂ , P̄ ;M) = avg
x∈M
||P̂ x− P̄ x||2 (5.2)

The evaluation images seen in Figure 5.2 and 5.3, are randomly selected from
an evaluation video sequence. As seen from the histogram values in Figure 5.4,
evaluation image 1 has a more balanced overall color space, but is also affected by
an automatic light balancing feature in the Logitech camera, resulting in some noise
on high intensities. Figure 5.3 has less noise but decent gradients, as seen in Figure
5.5.

Figure 5.2: Evaluation im-
age 1, sunlight from win-
dow, no roof lighting

Figure 5.3: Evaluation im-
age 2, sunlight from win-
dow and roof lighting
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Figure 5.4: Histogram val-
ues of image 1

Figure 5.5: Histogram val-
ues of image 2

5.1.2 Mask R-CNN parameters

Data set generation

Data set for the training and validation sets of Mask R-CNN consisted of objects
rendered with an equal distance from the camera and lights. The light settings were
set to a fixed intensity, and the objects were rotated with fixed intervals around
two of their local Z and Y axis. Two thousand images for each class were rendered.
Each individual image was rotated 15 times yielding a total of 30 000 different poses
for each class. The generated images were then composed into a data set with a
different number of classes in each image. A total of 60 000 images were produced
for the training, and 6 000 of them were used for the validation set.

Training parameters

The training parameters for Mask R-CNN were extracted from the previous work
upon which this thesis is built and initially set as in Table 5.1 below. The network
was trained for 120 epochs, with 80 of them only training the heads and 40 of them
the last four layers. The above parameters were tweaked during the training phase
to the ones presented in Table 5.2 to yield a smoother convergence on the training
and validation loss. In the augmented settings, the network was trained over 150
epochs over the last four layers.

Table 5.1: Untuned training parameters

Parameter Value
Steps per epoch 1000

Initial learning rate 0.001
Learning momentum 0.9

Weight decay 0.0001
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Table 5.2: Tuned training parameters

Parameter Value
Steps per epoch 1000

Initial learning rate 0.0001
Learning momentum 0.8

Weight decay 0.00007

Four models with different amounts of augmentations implemented in the data
loader where made. The first model was made without any augmentation whereas
the last three have their respective parameters are listed in Table 5.3, 5.4, 5.5 and 5.5.
Each augmentation has a specific probability of occurring, and the augmentations
are either applied to each channel with the same parameters or with different ones
for each channel. The channel-wise probability is only applied to the fraction of
the augmentations specified. The ranges in the two rightmost columns are the
bounds within the augmentations applied. For instance, if the augmentation Add
are applied and the bounds are −20 to +20, a pixel value between these bounds are
added to all pixel values in the image.

Table 5.3: Parameters for the first augmentation settings. Augmenta-
tions on rows with the same colors are mutually exclusive.

Probability Probability
Augmentation of occurrence channelwise Range from Range to

Shear 0.2 - -16° +16°
Add 1.0 - -50 +50
Add 0.2 0.5 -20 +20

Multiply 0.2 0.2 0.8 1.2

Table 5.4: Parameters for the second augmentation settings. Augmenta-
tions on rows with the same colors are mutually exclusive.

Probability Probability
Augmentation of occurrence channelwise Range from Range to
Horizontal flip 0.3 - - -

Shear 0.6 - -16° +16°
Add 0.8 - -50 +50
Add 0.07 0.4 -20 +20

Multiply 0.1 0.2 0.8 1.2
Gaussian noise 0.1 0.2 0 5.1
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Table 5.5: Parameters for the third augmentation settings. Augmenta-
tions on rows with the same colors are mutually exclusive.

Probability Probability
Augmentation of occurrence channelwise Range from Range to
Horizontal flip 0.3 - - -

Scale x 0.6 - -20% +20%
Scale y 0.6 - -20% +20%
Shear 0.6 - -16° +16°
Add 0.35 - -70 +70
Add 0.15 0.4 -30 +30

Contrast normalization 0.2 - 0.5 1.5
Gaussian noise 0.1 0.2 0 5.1

Table 5.6: Parameters for the fourth augmentation settings. Augmenta-
tions on rows with the same colors are mutually exclusive.

Probability Probability
Augmentation of occurrence channelwise Range from Range to
Horizontal flip 0.3 - - -
Vertical flip 0.2 - - -
Crop & fad 0.5 - -0.05% 0.1%

Shear 0.6 - -16° +16°
Translate 0.6 - -0.2% +0.2%
Rotate 0.6 - -45° 45°
Sharpen 0.5 - 0.75 1.5
Emboss 0.5 - 0 2.0

Contrast normalization 0.5 0.5 0.5 2.0
Coarse dropout 0.5 - 0 0.1
Edge detect 0.5 - 0 0.1

Directed edge detect 0.5 - 0 0.1

5.1.3 PVNet

Rendering

The rendering setup in PVNet uses textured PLY files as objects and samples the
poses of each object to be rendered in Linemod from a set of annotated real images.
This is done partly in order to render images in poses that are more likely to occur,
but also to make sure that the objects are always rendered within the field of view.
Then the camera is placed on a sphere in a pseudo equidistantly manner, as explained
previously in 4.3.2. Since a similar annotated dataset does not exist for the set of
objects in this thesis, the pose was set to a uniformly random rotation in all axis
with the boundaries [0, 360) for all objects. The source of light in the setup is two
point-light sources placed in the scenery at a uniformly random distance from the
object between [1, 2] with a light intensity of between [0, 5, 2]. This is the standard
light setup that comes with PVNet and was not changed.
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The different classes of objects differ significantly in size from each other and are
therefore rendered with different limits. The idea is that the network should train
on data that contains the entirety of the objects in the beginning and then trained
on a data set containing occlusions. However, the camera is supposed to be static,
and the objects are mounted relatively close to each other. Because of this, in the
context of quality inspection, it is important that all of the object classes have an
overlapping distance interval in the training set. Linear regression with different
scaling factors was made for each of the classes where the regressand is the distance
to the object, and the regressor is the maximum translation distance in x and y from
the center for that distance. The maximum allowed distance from the camera to the
object was set so that the object would be contained within a bounding box with
an area of 2500 pixels. The individual settings for each of the respective classes are
listed in Table 5.7 below.

Table 5.7: Translational boundries per class

Class Min. distance Max. distance Coefficient x Coefficient y
Intake 1.0 2.0 0.31 0.24

Ladderframe 1.5 3.0 0.15 0.12
Bypass-v 1.0 2.0 0.27 0.20
Pipe2 1.0 2.0 0.26 0.20

The boundaries for each object class, the maximum and minimum dis-
tance are the distance between the camera and the object in meters. The
allowed translational movement of the objects is dependent on the actual
distance with the coefficient factors in x and y.

With the settings described above, 4000 images of each class were rendered over a
planar surface with the Pascal 2012 dataset as texture to the background plane.
The orientation of the objects was saved as a serialized python object in a separate
file. The segmentation mask of the object was saved as an image containing binary
integers. From the different objects, a 9D dense point representation of the ob-
ject was generated through mesh sampling with 70 000 points. This representation
contains the spacial information, the surface normals, and the RGB data of all the
sampled points. By using the point cloud model of the object, the eight points with
the maximum summed distance from each other were extracted. Each pixel in a
prediction mask votes towards one of these key points, and they are needed in order
to regress the pose and bounding box of an object.

Because performing matrix multiplication and repeated tasks are much faster
when using CUDA, it is beneficial to do this as much as possible. This is why it is
needed to convert everything that will go into the networks to tensors. For further
manipulating the data one does therefore need to move the respective variables back
from CUDA memory to CPU memory.
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(a) Pose 1 (b) Pose 2

Figure 5.6: Dense points(gray), keypoints(various colors) and 3D bound-
ing box points(blue-red)

The segmentation loss is calculated as a cross entropy loss between the predic-
tion and the ground truth mask, averaged over the mini-batch. The vertex loss
is calculated with a smooth L1-loss, based on the discrepancy between the vertex-
predictions, ground truth projected vertices and vertex weights. Precision and recall
is calculated as in equation (5.3) and (5.4) respectively.

Precision = true positives

true positives+ false positives
(5.3)

Recall = true positives

true positives+ false negatives
(5.4)

Backbone network, batch size, training rate

ResNet18 was chosen as the backbone in PVNet because of its high performance/size
ratio in accordance with Figure 2.9. The smaller network facilitates the task of
obtaining a faster training process when using transfer learning and retraining the
deeper layers. The weights have been pre-trained on ImageNet and are used as a
starting point when retraining the whole network. Batch normalization was also used
as it has been shown to improve both training convergence and boost performance
significantly [29]. There are some conflicting statements concerning the size of the
mini-batches. One the one hand, progressively larger mini-batches can utilize higher
efficiency processors as well as distributed computing over multiple nodes. Based on
these reasons and the results from articles like [45] this seems reasonable. On the
other hand, small mini-batch sizes take less memory, which increases the possibility
of storing these variables closer to the CPU. Therefore a smaller batch size can
utilize the higher cache speeds in addition to that the gradient updates are more
recent and will have a higher probability of faster convergence.

According to [29], a learning rate of 2−10 and a batch size of 8 with batch nor-
malization obtained the best results. It also always performed a few percents better
when using data augmentation. For the training of PVNet, a normalized batch
approach with mini-batches of 8 was implemented. The base learning rate was set
to 0.001, and the decay rate was 0.5 every 20 epochs, and Adam was used as the
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optimizer. The batch size and learning rate were increased when it seemed like the
weights were stagnating in order to investigate if the optimization was stuck in a
local minimum.

5.2 Camera Calibration
Multiple scripts were written to record sharp images of the calibration checkerboard.
The initialization was done by sampling many frames and storing the Laplacian
values of the first 20 images and then choose the 5th best value as a threshold
for the algorithm. Moving the camera induces motion blur, which decreases the
laplacian value of the picture and effectively culling it from the sample set. When
calibrating the camera, 100 images of a checkerboard in different position across
the receptive field was taken. The provided e-Con cameras had substantial higher
order radial distortion when diverging from the center of the camera sensor. Due to
various software and hardware issues, it was decided to use a Logitech QuickCam
9000 instead throughout the entire project.
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Evaluation of suitability for

industry applications

In this chapter, the results of semantic labeling and pose estimation on synthetic
and real data are presented and observations of importance are formulated.

6.1 Segmentation results

In order to evaluate the suitability for industry applications, Mask R-CNN and
PVNet are evaluated with respect to segmentation results. These results are shown
below.

6.1.1 MaskRCNN

Synthetic data

Training the last layer of MRCNN yielded the loss illustrated in Figure 6.1 and 6.2.
Even though the training loss is high, it is decreasing. What is especially noticeable
is the variance of the validation loss. It seemingly acts like a random variable rather
than a smooth graph with a negative slope, as usually is intended. A possible
reason for this is that the initial learning rate is too high coupled with a decay rate
that is too low, so the stochastic gradient descent overshoots the minimum by a
large margin. Tweaking these parameters, however, did not improve the resulting
validation losses in any significant way. By studying the individual contributions
to the losses, the main contributors to the stochastic behavior came from the RPN
classification loss and the RPN bounding box proposal loss. As can be seen in Figure
6.3, the RPN network falsely proposes and classifies the background as foreground
and vice versa in about 20% of the cases. This implies that there are objects which
are very hard to classify. Furthermore, the behavior of the bounding box proposal
loss, seen in Figure 6.4, suggests that some of the objects in the set are hard to fit
a bounding box around. Given that the bolt and the pipe fixture in the classes are
extremely small from the set distance, they were excluded from the data set.
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Figure 6.1: Total error training with 8 different classes over 80 epochs.

Figure 6.2: Total validation loss behaves as a seemingly stochastic ran-
dom variable.

Figure 6.3: Validation loss
for the RPN classifier and
the main contributor to
the behaviour of the vali-
dation loss

Figure 6.4: Validation loss
for the RPN bounding box
proposals.

56



6. Evaluation of suitability for industry applications

After this change to the data set, the resulting validation loss can be seen in
Figure 6.5. The trend is moving downwards and has a steep decline after about
80 epochs, where the network is trained more deeply for 40 epochs. The sharp
trend downwards can be due to two reasons. Firstly, since the network, when only
training the heads has not yet reached the global minimum, resetting the learning
rate facilitates the process of moving towards it. Secondly, the last four layers might
have a significant impact on the task of object recognition. Given that the decline
flattens out after just five epochs, the first reason is the more probable one, but it
is not possible to say that the last four layers have no impact at all.

Figure 6.5: Bounding box loss training only the heads over 80 epochs and
then training the last 4 layers for 40 epochs with new training parameters.

Four models were trained over 150 epochs on the four last layers with augmen-
tation activated. The idea was to make the model more robust against occlusions,
variations in light settings, and color distortions in the camera sensor. In Figure
6.6, the validation loss for this model throughout the training is illustrated. Even
though the data is intentionally altered, it has a loss comparable to the unaugmented
model. Since the validation data set is not augmented, this implies that the model
is general enough to recognize the objects even if there are more significant changes
to the environment.
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Figure 6.6: Validation loss with augmented training data.

Real data

Even though the loss using synthetic data acts seemingly fine, there is a substantial
risk of overfitting. In Figure 6.7 and Figure 6.8, the behaviour of the loss over
a synthetic and a real hand-annotated data set can be observed. After about 50
epochs, the network starts to overfit to the synthetic data, and as is seen in Figure
6.8 the loss for the real set starts to increase. This means that the pre-trained
generalization of the weights used in the transfer learning starts to lose its meaning.
Because of this, it was decided to evaluate the IoU for the different networks after
45 epochs and 70 epochs.

Figure 6.7: Total training
loss

Figure 6.8: Total valida-
tion loss from validation
on real images

In Table 6.1 and 6.2 are the IoU metrics for a set of two hand annotated images
in different light settings. In Table 6.1 the light settings are uniform with little
directed light as shown in Figure 5.3. The columns are the IoU for the different
objects in the scene, and the rightmost column shows the number of false positives.
The best overall performance was obtained by the model without augmentations,
trained to 120 epochs. The models with augmentations have in general problems
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with false positives and false negatives. In Table 6.2, the light settings are more
directed as shown in Figure 5.2. In this case, the augmentations help with the IoU,
but there are still issues with false positives and false negatives for the models with
augmentation. That means the model sometimes either identifies the background
as an object for false positives, or vice versa for the false negatives.

Table 6.1: Validation on a real image over some of the objects in a
cluttered scene and very little directed illumination. Metrics are in IoU
and number of false positives in the rightmost column. The rows in white
are models trained over 45 epochs, the rows in light-cyan are models
trained over 70 epochs, and the rows in dark-cyan are models trained
over 120 epochs

Model bypass-r bypass-r intake pipe1 bypass-v FP
Previous - - 0.709 0.142 0.837 2

No augmentation 0.869 0.867 0.836 0.410 0.925 2
No augmentation 0.880 0.921 0.837 0.658 0.926 1
Augmentation 1 0.847 0 0.821 0.686 0.897 1
Augmentation 1 0 0.938 0.840 0.587 0.879 0
Augmentation 2 0.801 0.897 0.823 0.548 0.897 1
Augmentation 2 0 0.899 0.868 0 0.897 0
Augmentation 3 0.783 0 0.860 0.543 0.904 1
Augmentation 3 0 0.886 0.836 0.526 0 1
Augmentation 4 0.811 0 0.822 0.665 0.906 1
Augmentation 4 0.631 0 0.830 0.675 0.895 1

Table 6.2: Validation on a real image over some of the objects in a
cluttered scene and more directed illumination. Metrics are in IoU and
number of false positives in the rightmost column. The rows in white are
models trained over 45 epochs, the rows in light-cyan are models trained
over 70 epochs, and the rows in dark-cyan are models trained over 120
epochs

Model bypass-r bypass-r intake pipe1 bypass-v FP
Previous - - 0.793 0.175 0.862 4

No augmentation 0.914 0.848 0.897 0 0.913 1
No augmentation 0.920 0.877 0.894 0.509 0.940 0
Augmentation 1 0.907 0.906 0.892 0.608 0.943 2
Augmentation 1 0.879 0.912 0.922 0.498 0.944 1
Augmentation 2 0.853 0 0.890 0 0.920 2
Augmentation 2 0.898 0.857 0.904 0 0.904 1
Augmentation 3 0.898 0 0.901 0.494 0.931 2
Augmentation 3 0.907 0.865 0.881 0.471 0.915 1
Augmentation 4 0.891 0 0.840 0.548 0.905 2
Augmentation 4 0.878 0 0.886 0.508 0.948 2
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An example of the inference using the settings with the best results is shown in
Figure 6.9. As can be seen, even though the metrics in Table 6.2 yields a poor metric
for pipe1, the bounding box for all of the objects are seemingly correctly sized and
correctly aligned.

Figure 6.9: Inference on a real cluttered scene with the model trained
without augmentations.

Observations

Doing the inference on the full evaluation video sequence some general observations
are made. The model in all cases is good at predicting the different classes but
puts too much emphasis on the color of the different items. Because of this, it
struggles to differentiate the Renault and the Volvo filters in different light settings
or when a shadow is cast upon the Volvo filters. This yields false predictions with
high confidence, which is usually undesirable. Furthermore, the trained models are
highly sensitive to occlusions, even though the model with heavy augmentations has
pixel-wise dropout.

6.1.2 PVNet

Synthetic data

ResNet18 achieves average masking errors on the synthetic validation set of ca 5%,
and recall and precision are usually around 90%, with a model trained to epoch
45. In extremely cluttered scenes it typically also produces some false positives,
which in itself might be okay, but in some cases it is enough to disturb the voting
layer, making the resulting pose quite distorted. Examples of mask predictions on
synthetic data is illustrated in Figures 6.16 and 6.17.
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Real data

Below are examples of mask predictions.

Figure 6.10: Mask predic-
tion - muted light.

Figure 6.11: Mask predic-
tion - direct sunlight.

Table 6.3: Real inference - muted light / direct sunlight. Resnet model
at epoch 95. Hand-annotated ground truth

Metric Muted light Direct Sunlight from the side
LOSS SEG 0.0128 0.0116

PRECISION(IoU) 0.9423 0.9849
RECALL 0.7960 0.8454

Figure 6.12: Mask predic-
tion - muted light.

Figure 6.13: Mask predic-
tion - direct sunlight.
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Table 6.4: Real inference - muted light / direct sunlight. Resnet model
at epoch 139. Hand-annotated ground truth

Metric Muted light Direct Sunlight from the side
LOSS SEG 0.0083 0.0153

PRECISION(IoU) 0.9701 0.978
RECALL 0.8773 0.8607

Figure 6.14: Image 1 for
segmentation comparison,
IoU = 39.43% (epoch 95)

Figure 6.15: Image 2 for
segmentation comparison,
IoU = 45.41% (epoch 95)

Observations

Figure 6.10, shows that the network predicts some false positives due to the darkness
of the scene, while in a scene with more direct sunlight, the object is more clearly
identified. In Figure 6.14 the IoU turns out to be lower than in the brighter picture
as seen in Figure 6.15, although both images are predicting false positives on the
dark textile in the background.

The segmentation results on the cross-method validation images are slightly bet-
ter when the objects are more illuminated, although both scenes in the test image
detect a lot of false positives regarding the cloth.
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6.2 Pose estimation results
In order to evaluate the applicability of industry applications, PVNet is evaluated
with respect to pose estimation results. These results are shown below.

Synthetic data

The first column in Figure 6.16 illustrates the image used as input as well as the
predicted pose in terms of the projected bounding box as well as the ground truth
bounding box. The second column illustrates the mask-prediction on synthetic data
after 86 epochs of training. Column three illustrates the ground truth mask of the
object. The corresponding Table 6.5 shows that the calculated ADD distance at
1.5-2.5 meters is from 5.25 cm to 14.21 cm, and the rotation is from 5.0 degrees to
10.1. The results will improve when training longer, predicting to reach at least a
60% ADD passing score at epoch 200 [20]. For figure 6.17 the layout is the same
as Figure 6.16. As seen in Table 6.6, the ADD distance ranges from 7.1 cm to
19.1 cm and the rotation is from 3.1 to 15.4. An interesting detail to notice when
investigating the masking predictions is in the first row and second column in Figure
6.17. There exists a prediction island patch, north of the actual object. This patch
is also allowed to do pixel voting with seemingly high confidence. This creates a
skewed total hypothesis, and the pose estimation is slightly worse because of it.
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Figure 6.16: Pose estimation results on synthetic validation set, part 1.
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Figure 6.17: Pose estimation results on synthetic validation, part 2.

Table 6.5: Metrics that correspond to each instance in figure 6.16

image seg ver precision recall dist[cm] rot[°]
1 0.0022 0.0209 0.9633 0.09873 5.3 10.1
2 0.002860 0.02590 0.8860 0997 7.2 5.5
3 0.004 0.0299 0.94 0.980 10.9 6.9
4 0.0032 0.0245 0.912 0.983 14.2 5.0
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Table 6.6: Metrics that correspond to each instance in figure 6.17

image seg ver precision recall dist[cm] rot[°]
1 0.00429 0.2619 0.890 0.9036 10.9 11.0
2 0.00239 0.0346 0.9766 0.9854 19.1 15.4
3 0.00365 0.0284 0.962 0.976 7.1 5.4
4 0.0023 0.0611 0.9384 0.9211 9.9 3.1

Real data

(a) Pose prediction on a real image
(1).

(b) Mask prediction on a real image
(1).

Figure 6.18: These images are taken from a verification sequence per-
formed with a model at epoch 109.

(a) Pose prediction inference on a
real image (2).

(b) Mask prediction on a real image
(2).

Figure 6.19: These images illustrate a better pose estimation sequence
performed with a model at epoch 45.
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Occlusion results

Figure 6.20: Graph of successful pose estimation vs percentage of trun-
cation.

Figure 6.21: Images of predicted pose while the object is gradually trun-
cated.

Deducing from graph 6.20 and figure 6.21 we see that the algorithm is interpreting
the truncated mask as an object observed farther away. It is therefore clear that an
occluded dataset is needed to be included in the training data in order to obtain a
more accurate pose estimation on occluded objects.
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Observations

From the verification sequence performed on real video, the images in Figures 6.19
and 6.18 were randomly selected. When running inference on the video with a model
trained to epoch 45 and 109 respectively, the model that is trained shorter performs
better. Occasionally, the algorithm also interprets some of the points as if they
were located only a few centimeters from the camera. However, the object is always
rendered at a distance greater than one meter from the camera. Even though this is
quite a substantial discrepancy, the vertex loss is between 20% and 3%, with a mode
of 5% throughout the verification set. This is because the vertices are regressed in
the two-dimensional image and the RANSAC algorithm decides that this is the most
likely pose, given the spatial probability distribution of 3D points.

It is important to acknowledge that this neural network has not seen a single
real image and has only built its knowledge from synthetic images. The drop in
performance is, therefore expected.

6.3 Evaluation summary
Some general takeaways from the results are:

• Segmentation is mostly sensitive to lighting.

• In early stages of synthetic training, the network often has lower confidence
and is often predicting wrong brand when classifying the oil filters.

• In later stages of synthetic training, the network usually specializes more and
more on smaller domain specific details, which yields worse performance on
real images.

• The pose estimation is very dependent on a good mask.

• The pixel wise voting specialized after epoch 50, best generalization is therefore
achieved in the interval 30-50.

Direct lighting, especially on metallic and shiny objects, creates high gloss patches
due to the reflection of light rays. This creates in the best cases an oversaturated
mask, and in the worst cases a hole in the mask. On the one hand, a type of
mask refinement step [46] could fix this in post-processing. On the other hand, it
is possible to simulate these high brilliance occurrences during training or have the
method run in a muted light environment.

The second observation are derived from extensive empirical testing on real
videos. The problem was solved using uniform light randomization in the aug-
mentations, but the concept could be taken further. However, training the network
for too long, it loses its generalization features and starts to become specialized on
rendered objects.

Since it is beneficial to have a great mask, this could be refined in a post-processing
step before the pixel-wise voting takes place. The pixel voting would benefit from
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being trained in terms of accuracy, but shorter in terms of generalization to real im-
ages. This means that the domain gap between the synthetic data and the real data
needs to be decreased in order to train over more epochs without losing performance.

6.4 Research questions
In the introduction of this thesis, the questions below were raised.

• Do we see a better result with Mask R-CNN after using a bigger dataset and
using data augmentation?

• What can we expect in accuracy, when running inference on real images?

• How does the generalization from synthetic to real images behave during train-
ing?

• How does PVNet, trained on synthetic data, perform on synthetic and real
validation sets?

With regards to the first research question, yes, we do see a better result with
the new dataset. Training the model for more than 40 epochs is crucial to obtain a
lower class loss when running inference on real images. Training the model less than
100 epochs is beneficial to retain good recall of the objects. Regarding the second
research question in the bullet list, using the MaskRCNN method, we can expect
accuracies shown in Tables 6.1 and 6.2. Using the PVNet method, we can expect
an IoU ranging from 39% to 97%, depending on how long the model is trained, how
many similar objects are in the scene and how cluttered the environment is in general.
Regarding the third research question, even at this stage of using photo-realistic
renders with principle shading, randomized lighting, noise components, and more the
approximation the synthetic data optimization still diverges at one stage from real
images. Therefore the models need to be selected at an epoch where the loss is low,
and generalization across domains is still good. Regarding the last research question,
the pose estimation varies in accuracy. It is reliant on a correct mask prediction, and
the masking accuracies vary. As a consequence, the accuracy of the pose estimation
varies as well. This is because the mask is used for generating keypoint predictions.
On synthetic data, it performs slightly worse than the cat from the LineMod dataset
and is therefore predicted to perform slightly under 70% in terms of the ADD passing
rate on synthetic validation data. This means that the class is slightly harder to
estimate based on its appearance and shape. On real images, the estimates are
varying a lot in performance. Shorter trained models perform better overall, as they
retain more of the generalization from the transfer learning. The estimations can
be used as good initial guesses for further pose refinement or used, as is, in systems
with feedback control.
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7
Discussion

In this chapter, we discuss the results presented in the previous chapter and appli-
cation specific advice is given.

7.1 Quality inspection
In order to let a system make decisions on the manufacturing line, very high preci-
sion and repeatability are needed. For this, the current state of the available pose
estimation algorithms is not sufficiently refined with the set limitations. However,
the topic is being heavily researched, and many of the papers investigated prior to
choosing the PVNet algorithm has been published in the last year. Thus, it is likely
that there will be more accurate algorithms for this problem in the near future. The
error of the pose estimation, however, would most likely need to be less than one
centimeter and one degree in order to be reliable. For the investigated part of the as-
sembly line, the cameras are supposedly mounted approximately three meters from
where the parts are assembled. This requires that the cameras have a high resolu-
tion or narrow field of view, which in turn increases the computational complexity
and makes the implementation expensive. As a standalone system, the problem is
currently intractable, but the quality inspection could be assisted by incorporating
information sharing between the other robotic systems working in the same section
of the assembly line.

The oil filter has a decal that is applied each time differently in the production,
making a rotational pose prediction based on features found in the decal ambiguous.
The filters also have threads with multiple entry points and mechanical inaccuracies,
making the pose estimation quite hard, insufficiently accurate, and even maybe
unnecessary. The metric of most interest is the fact that it is mounted and that
the normal direction is orthogonal to some other plane of the motor. It might be
enough to determine this from an accurate mask prediction, but introducing depth
cameras could also assist.

We observed that without augmentation, the Volvo bypass filter was predicted
accurately and with high confidence when it was sufficiently illuminated. However,
it was, with a high confidence, predicted as a Renault filter under other illumination
circumstances. In the training data, the light intensity and direction were constant
in a fashion that is similar to how the lighting is at Volvo’s factories. To make the
model more robust on a broader range of scenarios, we suggest that one or two point
light sources with random location and intensity are introduced in the rendering step
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in addition to additive augmentations.
In terms of occlusions, the network did not perform very well while undergoing

simple tests. A rough estimate is that any more significant occlusion than 20% will
start to affect the recall.

Although the network performed better than the previous work, it was still some-
what prone to false positives, although the confidences were usually under 75%. A
threshold of 85% or similar would block these from being interpreted as predictions.
The occurrence of false positives varied a lot with respect to the level of illumination
in the scene. Some false positives can be justified to a certain degree since they only
inspect the region proposals in the image and are not using causal reasoning. For
example, the metallic circular part of the oil intake sort of looks like a Renault oil
filter seen from above. Similarly, a black textile formed in a certain way might make
a vague resemblance to the oil suction intake.

7.2 Future work
For bin picking, there is usually a lot of occluded and truncated parts lying in
different orientations. If the remaining challenges with the pose estimation in this
thesis are solved, it could be valuable to implement this method in bin picking
systems. Evaluating the method when it also has been trained on an occluded
dataset, is the first step towards this.

For these algorithms to be used in a collaborative setting, it would be crucial to
also know where the human is at all times. These human pose detection networks
[27, 47] could worth investigating more in that case.

Incorporating occlusion and truncations in the dataset for training is deemed
necessary in order to achieve overall better results.

Measures could be taken in order to obtain a more overlapping solution manifold
of synthetic and real images. Training a general adversarial network (GAN) to create
more realistic images from synthetic images could be a feasible way to do this.

For the pose detection scenarios yield inaccurate results, the method could be
extended with a pose refinement approach, by utilizing the loss function proposed
in [48] or similar. Although it is worth noticing that [48] had some problems when
the target objects were partially occluded by other objects that were similar in color
or shape, so in some cases, it might make the pose worse.

For real-time pose estimation in high FPS, resolution or on slower hardware, it
might be beneficial to make use of temporal consistency between frames with regards
to pose estimation and shrinking the search space.

Nvidia has recently released a framework for generating automatically annotated
data sets, with their pose and depth in a artificial 3D environment through Unreal
Engine 4. This framework is also able to utilize domain randomization, which in
turn makes a network more generalized to the objects textures and thus increasingly
focused on the structural properties of the object. Given that the CAD data is avail-
able for the object of interest, there are great opportunities to put up an automatic
pipeline for data set generation and training of new objects.
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Conclusion

In this thesis, instance segmentation and pose estimation have been considered as
problems that need to be solved in order to increase the efficiency of production and
quality of goods produced at manufacturing sites. For the sake of scalability and
feasible implementation, a limitation of only using synthetically generated images
of the assembly parts has been set for these problems.

Instance segmentation, with the use of neural networks, shows real promise for
a multitude of industrial and consumer applications. We approached the instance
segmentation problem by generating new datasets of rendered objects and retrained
the last four layers of Mask R-CNN. We were able to achieve better results on a
set of hand annotated real images by creating a larger dataset as well as testing
different augmentation methods. By manipulating the light intensity, the class loss
decreased, but the recall suffered at a confidence threshold of 60%. The accuracy of
the semantic labeling is dependent on cluttering, occlusions, and light conditions,
but in general, the results obtained were good when considering the limitations.

The pose estimation problem is very challenging, but one can reduce the solution
space by semantically labeling the object first. We approached it similarly as we did
with instance segmentation, but for the ResNet18, we retrained the whole network
from ImageNet weights. This was done in order to reference it with PVNet’s results
more easily. Due to our limitations, we observed that the performance on real images
worsened after training for more extended amounts of time, which supports the
theory that the two domains inherently have different global minima. After running
live inference on real video evaluation sequences, it was clear that the pose estimation
is not very robust, so improvements need to be made before it is applicable in an
industrial environment.

In a quality inspection setting, the instance segmentation results shown are indi-
cating great promise. The methods work best in a well-illuminated scene, although
direct shine can sometimes saturate the mask border or create holes in the mask
predictions, especially for more shallow networks. In dark scenes, PVNet predicts
scattered false positives, and the MaskRCNN classifies the filters wrong without
augmentation of the training set. With intensity augmentation, it classified more
accurately but performed worse in terms of recall.

We obtained slightly worse results using the ADD metric on our evaluation images
with assembly parts than for LineMod objects. This was mostly due to rendering the
objects further away from the camera. Since the method is very reliant on a good
mask, the instance segmentation produced with our setup would need to perform
better in order to be implemented on the production line. Without training on
a truncated dataset, the pose estimation performs poorly. The method is overall
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better suited for bin picking applications as a slight inaccuracy can be tolerated.
Overall, it seems like this is a promising area to investigate further. At this

stage, what we are left with is a trade-off between high accuracy and the ability
to generalize. Instance segmentation generalizes well, but pose estimation is still
reliant on additionally being trained on real images or more intricate augmentations
in order to achieve higher accuracy on real images.
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A.1 ResNet18s
ResNet(

(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
(layer1): Sequential(

(0): BasicBlock(
(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
(1): BasicBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)
(layer2): Sequential(

(0): BasicBlock(
(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(

(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)
(1): BasicBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)
(layer3): Sequential(

(0): BasicBlock(
(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(

(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)
(1): BasicBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(2, 2), dilation=(2, 2),
bias=False)
(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)
(layer4): Sequential(

(0): BasicBlock(
(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4),
bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
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(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4),
bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(1, 1), bias=False)
(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)
(1): BasicBlock(

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4),
bias=False)
(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(relu): ReLU(inplace)
(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(4, 4), dilation=(4, 4),
bias=False)
(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)
)
(avgpool): AvgPool2d(kernel_size=7, stride=1, padding=3)
(fc): Sequential(

(0): Conv2d(512, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): ReLU(inplace)

)
)
(conv8s): Sequential(

(0): Conv2d(384, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.1, inplace)

)
(up8sto4s): UpsamplingBilinear2d(scale_factor=2, mode=bilinear)
(conv4s): Sequential(

(0): Conv2d(192, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.1, inplace)

)
(up4sto2s): UpsamplingBilinear2d(scale_factor=2, mode=bilinear)
(conv2s): Sequential(

(0): Conv2d(128, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.1, inplace)

)
(up2storaw): UpsamplingBilinear2d(scale_factor=2, mode=bilinear)
(convraw): Sequential(

(0): Conv2d(35, 32, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
(1): BatchNorm2d(32, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
(2): LeakyReLU(negative_slope=0.1, inplace)
(3): Conv2d(32, 20, kernel_size=(1, 1), stride=(1, 1))

)
)

A.1.1 Forward when forward-passing a 640× 480 image
----------------------------------------------------------------

Layer (type) Output Shape Param #
================================================================

Conv2d-1 [-1, 64, 320, 240] 9,408
BatchNorm2d-2 [-1, 64, 320, 240] 128

ReLU-3 [-1, 64, 320, 240] 0
MaxPool2d-4 [-1, 64, 160, 120] 0

Conv2d-5 [-1, 64, 160, 120] 36,864
BatchNorm2d-6 [-1, 64, 160, 120] 128

ReLU-7 [-1, 64, 160, 120] 0
Conv2d-8 [-1, 64, 160, 120] 36,864

BatchNorm2d-9 [-1, 64, 160, 120] 128
ReLU-10 [-1, 64, 160, 120] 0

BasicBlock-11 [-1, 64, 160, 120] 0
Conv2d-12 [-1, 64, 160, 120] 36,864

BatchNorm2d-13 [-1, 64, 160, 120] 128
ReLU-14 [-1, 64, 160, 120] 0

Conv2d-15 [-1, 64, 160, 120] 36,864
BatchNorm2d-16 [-1, 64, 160, 120] 128

ReLU-17 [-1, 64, 160, 120] 0
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BasicBlock-18 [-1, 64, 160, 120] 0
Conv2d-19 [-1, 128, 80, 60] 73,728

BatchNorm2d-20 [-1, 128, 80, 60] 256
ReLU-21 [-1, 128, 80, 60] 0

Conv2d-22 [-1, 128, 80, 60] 147,456
BatchNorm2d-23 [-1, 128, 80, 60] 256

Conv2d-24 [-1, 128, 80, 60] 8,192
BatchNorm2d-25 [-1, 128, 80, 60] 256

ReLU-26 [-1, 128, 80, 60] 0
BasicBlock-27 [-1, 128, 80, 60] 0

Conv2d-28 [-1, 128, 80, 60] 147,456
BatchNorm2d-29 [-1, 128, 80, 60] 256

ReLU-30 [-1, 128, 80, 60] 0
Conv2d-31 [-1, 128, 80, 60] 147,456

BatchNorm2d-32 [-1, 128, 80, 60] 256
ReLU-33 [-1, 128, 80, 60] 0

BasicBlock-34 [-1, 128, 80, 60] 0
Conv2d-35 [-1, 256, 80, 60] 294,912

BatchNorm2d-36 [-1, 256, 80, 60] 512
ReLU-37 [-1, 256, 80, 60] 0

Conv2d-38 [-1, 256, 80, 60] 589,824
BatchNorm2d-39 [-1, 256, 80, 60] 512

Conv2d-40 [-1, 256, 80, 60] 32,768
BatchNorm2d-41 [-1, 256, 80, 60] 512

ReLU-42 [-1, 256, 80, 60] 0
BasicBlock-43 [-1, 256, 80, 60] 0

Conv2d-44 [-1, 256, 80, 60] 589,824
BatchNorm2d-45 [-1, 256, 80, 60] 512

ReLU-46 [-1, 256, 80, 60] 0
Conv2d-47 [-1, 256, 80, 60] 589,824

BatchNorm2d-48 [-1, 256, 80, 60] 512
ReLU-49 [-1, 256, 80, 60] 0

BasicBlock-50 [-1, 256, 80, 60] 0
Conv2d-51 [-1, 512, 80, 60] 1,179,648

BatchNorm2d-52 [-1, 512, 80, 60] 1,024
ReLU-53 [-1, 512, 80, 60] 0

Conv2d-54 [-1, 512, 80, 60] 2,359,296
BatchNorm2d-55 [-1, 512, 80, 60] 1,024

Conv2d-56 [-1, 512, 80, 60] 131,072
BatchNorm2d-57 [-1, 512, 80, 60] 1,024

ReLU-58 [-1, 512, 80, 60] 0
BasicBlock-59 [-1, 512, 80, 60] 0

Conv2d-60 [-1, 512, 80, 60] 2,359,296
BatchNorm2d-61 [-1, 512, 80, 60] 1,024

ReLU-62 [-1, 512, 80, 60] 0
Conv2d-63 [-1, 512, 80, 60] 2,359,296

BatchNorm2d-64 [-1, 512, 80, 60] 1,024
ReLU-65 [-1, 512, 80, 60] 0

BasicBlock-66 [-1, 512, 80, 60] 0
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Conv2d-67 [-1, 256, 80, 60] 1,179,648
BatchNorm2d-68 [-1, 256, 80, 60] 512

ReLU-69 [-1, 256, 80, 60] 0
ResNet-70 [[-1, 64, 320, 240],

[-1, 64, 160, 120],
[-1, 128, 80, 60],
[-1, 256, 80, 60],
[-1, 512, 80, 60],
[-1, 256, 80, 60]] 0

Conv2d-71 [-1, 128, 80, 60] 442,368
BatchNorm2d-72 [-1, 128, 80, 60] 256

LeakyReLU-73 [-1, 128, 80, 60] 0
UpsamplingBilinear2d-74 [-1, 128, 160, 120] 0

Conv2d-75 [-1, 64, 160, 120] 110,592
BatchNorm2d-76 [-1, 64, 160, 120] 128

LeakyReLU-77 [-1, 64, 160, 120] 0
UpsamplingBilinear2d-78 [-1, 64, 320, 240] 0

Conv2d-79 [-1, 32, 320, 240] 36,864
BatchNorm2d-80 [-1, 32, 320, 240] 64

LeakyReLU-81 [-1, 32, 320, 240] 0
UpsamplingBilinear2d-82 [-1, 32, 640, 480] 0

Conv2d-83 [-1, 32, 640, 480] 10,080
BatchNorm2d-84 [-1, 32, 640, 480] 64

LeakyReLU-85 [-1, 32, 640, 480] 0
Conv2d-86 [-1, 20, 640, 480] 660

Resnet18_8s-87 [[-1, 2, 640, 480],
[-1, 18, 640, 480]] 0

================================================================
Total params: 12,957,748
Trainable params: 12,957,748
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 3.52
Forward/backward pass size (MB): 25,918,692.19
Params size (MB): 49.43
Estimated Total Size (MB): 25,918,745.13
----------------------------------------------------------------

A.1.2 Forward when forward-passing a 1280× 960 image
----------------------------------------------------------------

Layer (type) Output Shape Param #
================================================================

Conv2d-1 [-1, 64, 640, 480] 9,408
BatchNorm2d-2 [-1, 64, 640, 480] 128

ReLU-3 [-1, 64, 640, 480] 0
MaxPool2d-4 [-1, 64, 320, 240] 0

Conv2d-5 [-1, 64, 320, 240] 36,864
BatchNorm2d-6 [-1, 64, 320, 240] 128
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ReLU-7 [-1, 64, 320, 240] 0
Conv2d-8 [-1, 64, 320, 240] 36,864

BatchNorm2d-9 [-1, 64, 320, 240] 128
ReLU-10 [-1, 64, 320, 240] 0

BasicBlock-11 [-1, 64, 320, 240] 0
Conv2d-12 [-1, 64, 320, 240] 36,864

BatchNorm2d-13 [-1, 64, 320, 240] 128
ReLU-14 [-1, 64, 320, 240] 0

Conv2d-15 [-1, 64, 320, 240] 36,864
BatchNorm2d-16 [-1, 64, 320, 240] 128

ReLU-17 [-1, 64, 320, 240] 0
BasicBlock-18 [-1, 64, 320, 240] 0

Conv2d-19 [-1, 128, 160, 120] 73,728
BatchNorm2d-20 [-1, 128, 160, 120] 256

ReLU-21 [-1, 128, 160, 120] 0
Conv2d-22 [-1, 128, 160, 120] 147,456

BatchNorm2d-23 [-1, 128, 160, 120] 256
Conv2d-24 [-1, 128, 160, 120] 8,192

BatchNorm2d-25 [-1, 128, 160, 120] 256
ReLU-26 [-1, 128, 160, 120] 0

BasicBlock-27 [-1, 128, 160, 120] 0
Conv2d-28 [-1, 128, 160, 120] 147,456

BatchNorm2d-29 [-1, 128, 160, 120] 256
ReLU-30 [-1, 128, 160, 120] 0

Conv2d-31 [-1, 128, 160, 120] 147,456
BatchNorm2d-32 [-1, 128, 160, 120] 256

ReLU-33 [-1, 128, 160, 120] 0
BasicBlock-34 [-1, 128, 160, 120] 0

Conv2d-35 [-1, 256, 160, 120] 294,912
BatchNorm2d-36 [-1, 256, 160, 120] 512

ReLU-37 [-1, 256, 160, 120] 0
Conv2d-38 [-1, 256, 160, 120] 589,824

BatchNorm2d-39 [-1, 256, 160, 120] 512
Conv2d-40 [-1, 256, 160, 120] 32,768

BatchNorm2d-41 [-1, 256, 160, 120] 512
ReLU-42 [-1, 256, 160, 120] 0

BasicBlock-43 [-1, 256, 160, 120] 0
Conv2d-44 [-1, 256, 160, 120] 589,824

BatchNorm2d-45 [-1, 256, 160, 120] 512
ReLU-46 [-1, 256, 160, 120] 0

Conv2d-47 [-1, 256, 160, 120] 589,824
BatchNorm2d-48 [-1, 256, 160, 120] 512

ReLU-49 [-1, 256, 160, 120] 0
BasicBlock-50 [-1, 256, 160, 120] 0

Conv2d-51 [-1, 512, 160, 120] 1,179,648
BatchNorm2d-52 [-1, 512, 160, 120] 1,024

ReLU-53 [-1, 512, 160, 120] 0
Conv2d-54 [-1, 512, 160, 120] 2,359,296

BatchNorm2d-55 [-1, 512, 160, 120] 1,024
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Conv2d-56 [-1, 512, 160, 120] 131,072
BatchNorm2d-57 [-1, 512, 160, 120] 1,024

ReLU-58 [-1, 512, 160, 120] 0
BasicBlock-59 [-1, 512, 160, 120] 0

Conv2d-60 [-1, 512, 160, 120] 2,359,296
BatchNorm2d-61 [-1, 512, 160, 120] 1,024

ReLU-62 [-1, 512, 160, 120] 0
Conv2d-63 [-1, 512, 160, 120] 2,359,296

BatchNorm2d-64 [-1, 512, 160, 120] 1,024
ReLU-65 [-1, 512, 160, 120] 0

BasicBlock-66 [-1, 512, 160, 120] 0
Conv2d-67 [-1, 256, 160, 120] 1,179,648

BatchNorm2d-68 [-1, 256, 160, 120] 512
ReLU-69 [-1, 256, 160, 120] 0

ResNet-70 [[-1, 64, 640, 480],
[-1, 64, 320, 240],

[-1, 128, 160, 120],
[-1, 256, 160, 120],
[-1, 512, 160, 120],
[-1, 256, 160, 120]] 0

Conv2d-71 [-1, 128, 160, 120] 442,368
BatchNorm2d-72 [-1, 128, 160, 120] 256

LeakyReLU-73 [-1, 128, 160, 120] 0
UpsamplingBilinear2d-74 [-1, 128, 320, 240] 0

Conv2d-75 [-1, 64, 320, 240] 110,592
BatchNorm2d-76 [-1, 64, 320, 240] 128

LeakyReLU-77 [-1, 64, 320, 240] 0
UpsamplingBilinear2d-78 [-1, 64, 640, 480] 0

Conv2d-79 [-1, 32, 640, 480] 36,864
BatchNorm2d-80 [-1, 32, 640, 480] 64

LeakyReLU-81 [-1, 32, 640, 480] 0
UpsamplingBilinear2d-82 [-1, 32, 1280, 960] 0

Conv2d-83 [-1, 32, 1280, 960] 10,080
BatchNorm2d-84 [-1, 32, 1280, 960] 64

LeakyReLU-85 [-1, 32, 1280, 960] 0
Conv2d-86 [-1, 20, 1280, 960] 660

Resnet18_8s-87 [[-1, 2, 1280, 960],
[-1, 18, 1280, 960]] 0

================================================================
Total params: 12,957,748
Trainable params: 12,957,748
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 14.06
Forward/backward pass size (MB): 414,714,768.75
Params size (MB): 49.43
Estimated Total Size (MB): 414,714,832.24
----------------------------------------------------------------
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