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Abstract

Fraud against online advertisements, most notably click fraud, is a problem
that in recent years has gained attention as a serious threat to the advertising
industry. In 2007, Google Inc. estimated[3] that 10 percent of clicks on ad-
vertisements in their AdWords program were not legitimate user clicks, which
translates into a one billion USD yearly revenue loss after �ltering out these
clicks. Click fraud detection is not an unaddressed problem, but could largely
be considered a �secret art� as little open research exists on the topic.

In this thesis, the application of general outlier detection and classi�cation
methods to the problem of detecting fraudulent behavior in an online adver-
tisement metrics platform will be explored. Furthermore, the development of a
fraud detection system based on such methods will be described. In the process,
several di�erent data mining algorithms will be evaluated based on prediction
accuracy and performance.

We empirically show that satisfactory detection accuracy can be achieved by
introducing supervised machine learning into the detection process - given that
an appropriate set of training data can be constructed. Such a solution would
also be able to bene�t from the extraction of training data across a large cus-
tomer base. We design and implement a system based on a three-step feedback
process and �nd that it scales well in a distributed setting.

Keywords: data mining, machine learning, classi�cation, click fraud, impres-
sion fraud, outlier detection, scalability, MapReduce, Hadoop, cloud computing

Sammanfattning

Bedrägeri mot Internetreklam, i synnerhet klickbedrägeri (eng. click fraud),
är ett problem som på senare år har uppmärksammats som ett allvarligt hot
mot reklamindustrin. Under 2007 uppskattade[3] Google Inc. att klicktra�ken
mot annonser i deras AdWords-program innehöll ungefärligen 10 procent falska
klick, motsvarande en årlig intäktsförlust på en miljard USD efter att dessa
klick �ltrerats bort. Detektering av klickbedrägeri är ej ett obehandlat problem,
men kan på många sätt ses som en "hemlig konst" då det existerar lite öppen
forskning inom området.

I detta examensarbete utforskas hur generella metoder för avvikelsedetek-
tering och klassi�cering kan användas för att detektera bedrägeri mot reklam
i en plattform för mätning av nätbaserade reklamkampanjer. Examensarbetet
beskriver även utvecklingen av ett system för detektering av bedrägligt beteende
baserat på dessa metoder. Under arbetets gång har ett �ertal data mining-
algoritmer utvärderats utifrån deras precision och prestanda.

Vi visar empiriskt att fullgod detektionsnoggrannhet kan åstadkommas genom
att introducera övervakad maskininlärning i detekteringsprocessen - givet att
lämplig träningsdata kan konstrueras. En sådan lösning skulle även kunna dra
nytta av att träningsdata kan extraheras över en stor kundbas. Vi designar och
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implementerar ett system i form av en trestegsprocess med återkoppling och
�nner att det skalar väl i en distribuerad miljö.

Nyckelord: data mining, maskininlärning, klassi�cering, klickbedrägeri, im-
pression fraud, avvikelsedetektering, skalbarhet, MapReduce, Hadoop, cloud
computing
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1 Introduction

1.1 Background

Burt AB develops tools for creating better online advertisement. Their current
product, Rich, is an advertising campaign measurement application that col-
lects data about banner ads (visibility, click-throughs etc.) and calculates the
campaign's impact. Advertisement agencies use Rich to analyze the relative
successes of their campaigns. To provide even more accurate and reliable data,
and to be able to certify this to their customers, Burt sees the need for Rich
to detect and �lter out fraudulent behavior in their data, e.g. fraudulent clicks.
Such clicks could originate from web bots or even humans imitating legitimate
users with a genuine interest in the ad content, with the purpose of generating
revenue from pay per click advertising (so called �click fraud� behavior).

1.2 Purpose

The purpose of the project is to develop an adaptive and scalable fraud detection
component for Rich. This component shall be able to handle the large amount
of data that �ows through the system and provide output that can be used to
improve the accuracy of produced reports.

1.3 Paper organization

The paper is organized as follows. In Section 2 we describe the project work�ow.
In Section 3 we present a rigorous survey of the areas of outlier detection and
classi�cation, and also introduce concepts central to the thesis. In Section 4
we present the system requirements and a model for partitioning user behavior.
In Section 5 we describe the design of the developed system. In Section 6 we
carry out an evaluation of a number of classi�cation algorithms with respect
to accuracy and performance, and discuss the results. Finally, in Section 7 we
discuss future work.



2 Method

This section describes the structure of the project work. The project follows
an agile approach, and is divided into �ve di�erent phases which are performed
iteratively and with a degree of overlap between them (with testing completely
integrated into the implementation phase).

Phase 1: Literature survey

The initial project phase is concerned with studying research in the areas rel-
evant to the thesis topic to determine the current de�nition of �best practice�.
This includes looking at existing frameworks and tools that could be used in
the construction of the system.

Phase 2: Requirements speci�cation

The second project phase is concerned with formalizing the problem statement
into a set of requirements which will guide the design, implementation and
evaluation of the system.

Phase 3: Design

The third project phase is concerned with suggesting a suitable design based on
the requirements and the �ndings of the literature survey.

Phase 4: Implementation

The fourth project phase is concerned with implementing the suggested design
as a component within Rich.

Phase 5: Evaluation

In the �fth project phase, the implementation will be tested and the results will
be evaluated with respect to theory and the requirement speci�cation.
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3 Survey of theory

This section describes topics of existing research that are relevant to the thesis.
In subsequent chapters of the report, we will discuss their applicability for our
implementation. Although there exists some open research in the area of fraud
detection, most of the knowledge is not openly available. Companies rarely
disclose their fraud detection strategies and for this reason the bulk of this
survey covers general approaches which are well-known in public research.

In our application, it is of utmost importance to employ an algorithm that
scales well in a distributed setting. This requires that the algorithm can process
individual fractions of the entire data set independently, without the need for a
global state. We will take this into account when discussing various approaches
in the following sections.

3.1 Terms and concepts

This section describes the various terms and concepts that are central to the
project and that will be used throughout the report. Note that the terms
instance, row and data point will be used interchangeably throughout the report.
Similarly, the terms label and class are both used to describe di�erent categories
of data. We also use the terms impression and exposure interchangeably when
describing a single event of a user being exposed to an ad.

3.1.1 Click-through and click-through rate

A click-through is the event of a user clicking on an advertisement and being
taken through to the advertiser's site. The click-through rate (CTR) of an online
advertisement is de�ned as the ratio of the number of times the ad was clicked
to the number of exposures. Thus, a click-through rate of 100% means that each
exposure yielded a click-through. Typically, a high click-through rate signi�es
a successful advertisement, but might also indicate that the advertisement has
been subject to fraud.

3.1.2 Conversion and conversion rate

An advertisement typically has the intention of making a viewer perform a
certain action, e.g. purchasing something on the advertiser's site. Such an
action is called a conversion. From this we can de�ne the conversion rate of an
advertisement as the ratio of the number of conversions that occurred to the
total number of times the ad was viewed.

3.1.3 Pay-per-click

Pay-per-click (PPC) advertising is a cost model where an advertiser, having one
or more ads published on di�erent websites, pays each ad publisher a certain
amount of money every time a click is performed on its ads (known as the
cost-per-click, or CPC for short). Advertisers place bids on how much they are
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willing to pay for each click, and publishers select the highest bidder. PPC is
a commonly used cost model for online advertising, and the primary revenue
source for a number of large search engines. For instance, Google Inc. employs
PPC in its AdWords program, where advertisements are presented along with
the search results based on keywords in users' search queries. In AdWords,
the CPC for an ad is dependent on the set of keywords the advertiser chooses
to associate with the ad. This is because keywords are priced according to
attributes such as their historical click-through rate and search volume. The
AdWords CPC also factors in the targeted language and geographical area [2].

3.1.4 Pay-per-impression

Analogous to pay-per-click, the pay-per-impression (PPM) cost model charges
an advertiser for every exposure of an advertisement.

3.1.5 Pay-per-action

Another cost model follows a pay-per-action scheme, where advertisers are billed
according to the number of conversions that an advertisement has generated.

3.1.6 Click fraud

Click fraud is a fraudulent activity against the PPC cost model where fake
clicks are placed on advertisements to increase their total cost. These clicks
are fake because they do not represent a genuine interest in the ad content and
thus have a zero-probability of conversion. Fake clicks can either be generated
automatically by a computer system (so called �click bots�) or input manually
by hiring cheap labor for clicking ads (so called �click farms�).

There are two general scenarios of click fraud:

• A dishonorable ad publisher generating fake clicks on the ads it hosts to
boost its own revenue

• A malicious competitor or other party generating fake clicks to deplete
the advertiser's budget

By de�nition, click fraud in�ates the CTR. This has a negative impact for PPC
advertisers, as the CPC increases proportionally with the CTR.

3.1.7 Impression fraud

Impression fraud is a similar concept to click fraud, but instead concerns gen-
erating fake impressions. In the case that the advertiser is billed according to
the pay-per-impression cost model, impression fraud has the same intentions
and e�ects as click fraud has for the PPC model. However, in the more com-
mon PPC cost model (where advertisers are not charged per impression, but
per click), the incentives for direct monetary gain is not present. Instead, the
main intent of the perpetrator is to lower the CTR of an advertisement and
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subsequently lower its ranking in PPC search engine results. In the event that
the CTR declines below a certain threshold, some advertising networks (most
notably Google AdWords) will automatically disable the advertisement. Since
the CPC is proportional to the CTR, another bene�cial outcome for the perpe-
trator is that impression fraud enables him/her to buy the a�ected keywords at
a lower price.

3.1.8 Click bots

A click bot is a piece of code designed to launch a click attack against PPC
advertisements. There are two general classes of click bot. The �rst is an actual,
standalone bot that can be bought and set to run on one or more servers. A
click bot can also be distributed as a piece of malware that infects individual
computers and participates in distributed click attacks under the coordination of
some central entity (the �bot master�). Such an attack achieves high IP diversity,
which (especially when performed slowly over time) makes it signi�cantly harder
to detect. For instance, Clickbot.A[9] operates in this manner.

3.1.9 MapReduce

MapReduce [10] is a model for performing scalable computation on large amounts
of data. As the name suggests, the model is built around computation using
two operations: map and reduce, commonly found in functional programming
languages. Each map operation applies computation to a key-value pair, and
the result is one or more key-value pairs that are fed as input to the reduce step.
Each reduce operation receives a list of key-value pairs which share the same
key, and aggregates (reduces) these pairs into one or more values for this key.
The type signatures of both computation steps are shown in (1) and (2) [10].

Take for instance a MapReduce application that counts the occurrence of
words in a piece of text. Given a line of text, each map operation would emit
the pair (w, 1) for each occurrence of the word w on that line. Each reduce
operation i receives results from the map step that share the same key wi - that
is, (wi, {1, 1, ...1}) - and sums the list of 1:s to yield the total number of occur-
rences of the word wi in the text. Furthermore, since map and reduce operations
amongst themselves are independent of one another, MapReduce allows for a
highly distributed system where individual map and reduce operations run on
di�erent nodes in a potentially very large cluster of commodity hardware.

map(k1, v1) → list(k2, v2) (1)

reduce(k2, list(v2)) → list(v2) (2)

As a performance optimizer, MapReduce also introduces the concept of com-
biners. A combiner is essentially an intermediate reducer that performs a local
reduction of key-value pairs that would eventually get transferred to the same
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Figure 1: MapReduce overview (taken from [10])

reducer. In case the supplied reduce function is both associative and commuta-
tive, it can be used as a combiner. By performing this reduction locally, we can
lower the amount of data that need be transferred over the network.

3.2 Classi�cation approaches

If data describing fraudulent behavior can be found by manual search, then this
data can be used to identify similar data points that should also be seen as
fraudulent. A classi�er builds a model from a set of training data, in which
individual data points have been correctly identi�ed as belonging to a certain
class. This model is subsequently used to classify new data points [6].

One advantage with a classi�cation approach is that once a model for clas-
si�cation has been built, the classi�cation of instances is usually quite fast.
Instance classi�cation can also be easily distributed, as classi�er instances on
separate nodes in a cluster can work on copies of the model and subsets of the
data set. A more detailed description of this process will be given in Section 5.

3.2.1 Unsupervised or supervised classi�cation?

Classi�cation algorithms can be categorized according to what they expect the
training data to look like, and subsequently how they build classi�cation mod-
els and classify instances. Unsupervised classi�cation algorithms work without
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any training data at all, and thus are especially useful in applications where
prelabelled data is hard to produce. One can view any clustering algorithm as
an unsupervised classi�cation algorithm.

Supervised classi�cation algorithms rely on being supplied with a set of prela-
belled data from which a model can be derived. One-class classi�ers is a special
case of supervised classi�cation algorithms, where training data for a single la-
bel is used to partition the input into two sets: data that aligns with the label
and data that doesn't (thus, a one-class classi�er performs outlier detection).
The training data for one-class classi�ers often describes �normal� behavior pat-
terns, as data for such patterns per de�nition constitutes a signi�cantly greater
portion of a real world data set than outliers and is thus easier to produce.

In Section 6, we will evaluate algorithms from each of these three categories.

3.2.2 Neural networks

Neural networks simulate the activities of neurons within a nervous system. A
neural network consists of several layers of arti�cial neurons, with the �rst and
last layers being referred to as the input and output layers, respectively. The
layers between the input and the output layers are often referred to as hidden
layers [27].

Each neuron has an activation function, which in its basic form is a weighted
sum of the neuron's inputs. The activation function determines whether that
neuron should emit a value or not. A common way to train neural networks
is to adjust the weights of the activation function through the use of a back
propagation process. This process compares the output of the network to the
output that was expected and calculates an error for each of the output neurons.
The weights of the entire network are subsequently updated to minimize the
error.

Classi�ers based on rudimentary neural networks (consisting of one or two
layers and a linear activation function) cannot handle data that is not linearly
separable. For this, classi�ers based on multilayer perceptrons can be used
instead. A multilayer perceptron is a form of neural network that encompasses
more than two layers of neurons and a non-linear activation function, which
allows this type of neural network to work on data that is not linearly separable
[27].

3.2.3 Classi�cation trees

A classi�cation tree [22] is a specialization of a decision tree, where each leaf de-
notes a class which data instances can belong to and each inner node represents
an attribute of the data. The number of children of a given node is equal to
the number of values that the attribute for this node can take on (in the case of
continuous attributes, this depends on the discretization of the attribute). The
data instances belonging to a certain class can be described by the path from the
corresponding leaf to the root node (see Figure 2). Conversely, after building
a classi�cation tree from a set of training data, further data instances can be
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Figure 2: A classi�cation tree

classi�ed by following edges based on the attribute values of each instance until
eventually ending up in a leaf node.

3.2.4 Association rule classi�cation

Association rule classi�cation [23] applies association rule learning to the prob-
lem of classifying data. Association rule learning is concerned with �nding rules
that de�ne correlations between features in a data set D. Note that a feature is
not equivalent to an attribute; rather, it is a single Boolean statement concern-
ing a particular attribute (e.g. outlook is an attribute, while outlook = sunny is
a feature). By producing rules that de�ne correlations between a set of features
and a set of classes, we can subsequently use these rules to classify unseen data.

Given a set of features F = {f1, f2, . . . , fn} in our data set, we can generate
a set of rules R = {r1, r2, . . . , rm} where ri = (Ai ⇒ Ci) for two mutually
exclusive sets of features Ai and Ci (|Ci| = 1), referred to as the antecedent and
the consequent, respectively. To explain how this is done, we �rst need to make
two important de�nitions.

De�nition. Given a data set D with k data points and a set of features F , we
de�ne the support S(X) of X ⊆ F as the proportion of data points in D that
exhibit the features in X. More formally,

S(X) =
|{di ∈ D : X ⊆ f(di)}|

k

where f(di) is de�ned as the set of features exhibited by data point di. Subse-
quently, we can de�ne the support of a rule r = (A ⇒ C) as the proportion of
data points that satisfy both the antecedent and consequent feature sets, that
is,

S(r) = S(A ∪ C)
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The �rst step in constructing association rules entails selecting the feature
sets whose support is above a given minimum smin. Let us denote this set of
frequent feature sets by F∗. Note that we need not consider all 2|F |−1 possible
non-empty subsets of F in this step since it holds that X ⊂ Y ⇒ S(Y ) ≤ S(X),
that is, if Y has an above-minimum support, so does all subsets of Y [23]. This
observation allows us to reduce the size of the search space considerably. We
start by building subsets Xi containing a single feature from F (thus, initially
1 ≤ i ≤ |F |). We then discard all sets Xi for which S(Xi) < smin, and
combine the remaining sets into feature sets of size 2. This process is repeated
for increasing set sizes until no new feature sets with support greater than smin

are found (that is, we discard all Xi).

De�nition. Given a rule r = (A ⇒ C) with support S(r) = S(A ∪ C), we
de�ne the con�dence C(r) as a measure of how well r re�ects the entire data
set.

C(r) =
S(r)
S(A)

For instance, if C(r) = 0.75, three out of four data points that exhibit all
the features in A will also exhibit all the features in C.

The con�dence measure allows us to select a set of rules that best re�ect the
entire data, given by a minimum con�dence level cmin. Speci�cally, for each
feature set X ∈ F∗ and every subset A of X that contains all except one of the
features in X, we construct a rule r = (A⇒ X \A) if and only if C(r) ≥ cmin.

Once a rule set is generated, we can apply it to unclassi�ed instances. The
application of the rule set can be done in a number of di�erent ways. For
instance, we can consider all rules and classify instances by popular vote. We
can also consider the rules in some order of relevancy and apply the �rst rule
for which the antecedent is satis�ed.

3.2.5 Support vector machines

The model of a support vector machine consists of an n− 1-dimensional plane
separating two sets of data points (each set corresponding to a class label) in
an n-dimensional attribute space. This n−1-dimensional plane is referred to as
a hyperplane. The separating hyperplane is constructed in such a way that the
distance to the closest adjacent data points is maximized. Figure 3 depicts two
hyperplanes, H1 and H2, that both separate the sets of white and black points.
However, H2 also maximizes the distance to adjacent data points.

After constructing a model based on training data, classi�cation of further
data points is performed by determining which side of the hyperplane each point
is located on and assigning it the class label that corresponds to that side.
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Figure 3: Two hyperplanes, H1 and H2 separating data instances in a two-
dimensional attribute space

In the event that the training set is not linearly separable due to a few oddly
placed data points (for instance, a black point somewhere within the set of
white points in Figure 3), the placement of the hyperplane becomes a trade-o�
between maximizing the distance to adjacent points and minimizing the distance
to the oddly placed points. In the case that the entire training set is laid out
in such a manner that linear separation does not produce a meaningful model
for classifying further data points (e.g. if one set of points completely encircles
another, as depicted in Figure 4), we can instead employ a kernel function to
map the data into higher dimensions [12]. The Radial Basis kernel function used
in Figure 4 introduces an additional dimension (the distance from the origin)
to produce a three-dimensional, linearly separable data set.
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Figure 4: Mapping data to higher dimensions using a Radial Basis kernel func-
tion (taken from [17])

3.2.6 Bayesian classi�cation

Bayesian classi�ers apply Bayes' Theorem [21, 25] to the problem of classifying
data instances. To introduce Bayes' Theorem to the unfamiliar reader, a short
example follows.

Example. Assume that we have a data set from which we can derive a fre-
quency distribution for the occurrence of a certain feature (and hence a proba-
bility distribution for said feature by normalizing the frequency curve). As an
example, let this feature be the color of cars as we observe them on the highway
from a distance. We can expect that some colors (such as red and black) are
more frequent than others (such as purple); speci�cally, we know that two out
of ten cars are yellow. From previous experience we also know that one out of
twenty cars are taxis (assuming that the reader is not based in New York, NY).
This is also known as the prior probability. We also know that half of the taxis
(belonging to a certain cab company) are yellow. This is also referred to as the
likelihood function.

Let Y denote the event that a given car is yellow, and T that a given car is
a taxi. From the data given above we have:

P (Y ) = 0.2
P (T ) = 0.05

P (Y |T ) = 0.5

Since we are observing the cars from a distance, we are only able to make out
their color. Thus, we now want to calculate the probability that a car is a taxi,
given that it is yellow. That is, we wish to calculate P (T |Y ) (also known as
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the posterior probability) and to do this we can apply Bayes' Theorem directly:

P (T |Y ) =
P (Y |T ) · P (T )

P (Y )
=

0.5 · 0.05
0.2

= 0.125

Thus, the probability that a yellow car also is a taxi is 12.5%.

Thus, given an instance exhibiting the features f1, f2, . . . , fn, a Bayesian
classi�er can predict its class membership by �nding the class Ci for which the
posterior probability P (Ci|f1, f2, . . . , fn) is maximized.

In real world applications, we practically always work with multi-dimensional
data. Thus, we have more than one feature to take into account in our clas-
si�cation algorithm. But this situation grows rather complex, as the features
have interdependencies. If we can assume that all features are independent, we
can calculate P (C|f1, f2, . . . , fn) by simply applying the multiplication rule for
probabilities [21]:

P (C|f1, f2, . . . , fn) = P (C|f1) · P (C|f2) · . . . · P (C|fn) =
n∏

i=1

P (C|fi)

This is the assumption made by the naïve class of Bayesian classi�ers, that
the presence of feature A has no e�ect on the probability of the feature B also
being present. In other words, the probability of occurrence of each feature X
is assumed to be independent of the presence of every other feature Y 6= X.
This assumption is generally false; if we encounter the word �Chalmers� in a
piece of text, we can expect it to be more probable that the words �university�
and �Gothenburg� are also present in the text than words like �pigeon� and
�xylophone� occurring. Still, naïve Bayes classi�ers have been proven to perform
very well in practice [24].

3.2.7 Cluster-based

Cluster-based algorithms work according to a simple concept: similar data
points can be grouped together in clusters and data points that do not belong
to a cluster are identi�ed as outliers.

A simple clustering algorithm is k-Means, which works as follows. First, k
centers are chosen either randomly or (in more elaborate variants) using some
heuristic. Thereafter, each data point is assigned to the nearest center (thus,
forming a cluster of points around each center). When all data points have been
assigned to a center, each center is relocated to the centroid of the corresponding
cluster. This process is repeated iteratively for a predetermined number of
iterations, or until the location of each center remains unchanged between two
iterations. Often, outlier identi�cation will be performed in a �nal iteration
marking all data points farther than a maximum distance d from its designated
center.

At �rst glance, it would seem that k-Means is not suitable for distributed
implementation due to the distance calculations performed. However, distances
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between points are never calculated, as it is only necessary to calculate the
distance from each point to a relatively few number of centers. [4] describes
how a distributed version of k-Means was implemented for the Apache Mahout
machine learning framework.

k-Means can also be used as a supervised classi�cation algorithm, where a
training set is used to determine the location of the cluster centers (each cluster
represents a single class). Classi�cation is subsequently performed by assigning
a point to the nearest cluster center.

3.3 Outlier detection

Outlier detection is concerned with �nding data points that have some have
some discerning quality that make them deviate signi�cantly from a given norm.
Given that fraudulent behavior can be seen as deviating data points in a set of
recorded activities, it should be possible to apply outlier detection to identify
such behavior. There are a number of di�erent approaches to outlier detection,
which will be described in this section.

3.3.1 The distance-based and density-based approaches

The distance-based approach uses the distance between data points to de�ne
outliers according to one of three similar de�nitions [6]:

• An outlier is located further than a distance d away from at least a fraction
p of the other data points.

• An outlier belongs to the n data points with the furthest distance to its
k:th nearest neighbor.

• An outlier belongs to the n data points with the furthest average distance
to its k nearest neighbors.

Density-based algorithms work according to the same principles, but use the
relative density of the objects (i.e. how many objects are within a range r)
rather than pure distance. Note that both approaches only work on data where
the interpretation of distance is meaningful, i.e. for numerical data. Also, this
approach scales poorly in a distributed setting. The reason for this is that
to calculate the distance from a data point to every other data point, each
distributed node needs to keep a local copy of the entire data set.

3.3.2 The greedy approach

The greedy approach [15] works towards minimizing the entropy of the data set,
iteratively removing data points that provide the most signi�cant contribution
to the overall data entropy. Thus, such data points are identi�ed as outliers.
However, since calculating the entropy change requires complete knowledge of
the entire data set, the greedy approach is not suitable for a distributed setting.
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3.3.3 Attribute Value Frequency

Attribute Value Frequency (AVF) [20, 13] is a simple approach to outlier de-
tection which ranks each data point by the frequency of its attributes. That is,
AVF computes for each data point Xi a score which is the averaged sum of the
number of times the value of each attribute Xil occurs in the data set. If Xi

has m attributes, the score calculation formula can be described as:

s(Xi) =
1
m

m∑
l=1

c(Xil)

where c(Xil) is the number of times the value of the l-th attribute of Xi

occurs in the data set. Data points with low AVF scores are subsequently
identi�ed as outliers.

AVF works well in a distributed setting, as the score of each data point
Xi can be calculated independently of all other data points. Koufakou et al.
[20] demonstrate an AVF implementation using two MapReduce iterations - the
�rst iteration calculates c(Xil) for each data point attribute and the second
iteration calculates s(Xi) as given above (we observe that the authors omit the
1
m normalization step, since m is constant). The reduce operation of the second
operation simply sorts the scores ascendingly.

3.4 Related work

This thesis is concerned with means of handling online advertising fraud by
identi�cation of fraudulent behavior through data mining. This section describes
a number of other, proactive approaches to deal with fraud.

3.4.1 �Premium� clicks

Juels et al. [19] presents an alternative to detection and �ltering in which only
legitimate clicks are accepted by requiring that each client authenticates its
clicks by providing an attestation of legitimacy, which the authors refer to as a
�coupon�. The user is awarded with such a coupon whenever he or she performs
a conversion action (e.g. a purchase), and the coupon is subsequently stored
in a browser cookie. Such an approach has its drawbacks. For instance, the
coupon is lost once the user clears its browser cookies, and the coupon does not
transfer between di�erent browsers on the same machine.

3.4.2 Client-side validation of advertisement embedding code

Gandhi et al. [14] describes the concept of validating that the code used for
embedding advertisements does not contain malicious code that generates spu-
rious clicks. Ads are commonly embedded dynamically using JavaScript code,
which also provides additional functionality such as tracking. However, such
implementations are also susceptible to script injection attacks. There are a few
useful techniques for combating this. Commonly, ad delivery systems can avoid
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putting their JavaScript code in global namespace where it can be called by ma-
licious code, and instead declare and call functions anonymously. Furthermore,
by embedding ads in <iframe> elements, browser security policies will prevent
external code from accessing their content.

3.4.3 Alternative cost models

There has been development of alternative cost models that are more resis-
tant to click fraud than the pay-per-click model. As previously mentioned, the
pay-per-action (PPA) cost model only charges advertisers for every conversion
that occurs. Thus, in a PPA advertising platform the publisher needs to be
able to track conversions in order to correctly charge the advertiser. Since the
conversion process is much more complicated than a simple click-through, the
perpetration becomes signi�cantly harder to automate. Furthermore, if the only
conversion action is to make a potentially costly purchase, the incentive of mon-
etary gain disappears. However, the PPA model does not entirely eliminate click
fraud [8]. For instance, if a conversion action entails e.g. signing up for a free
trial or newsletter, a perpetrator would simply perform false signups in order to
generate conversions. Employing captchas (a type of challenge-response control
�eld) in the signup process will eliminate tra�c from bots, but if the monetary
incentives are large enough a perpetrator might be motivated to hire people to
perform signups manually.
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4 Problem analysis

This section begins by listing the requirements on the system and describing the
pre-existing fraud detection within Rich. We continue by describing a partition-
ing of user behavior and conclude this section by describing potential limitations
of the way user identi�cation is currently being performed within the system.

4.1 Requirements

Since Burt processes large amounts of data on a daily basis, the fundamental
requirement on the system is scalability. Burt estimates that the system will
be handling up to 30 million ad exposures per day on large campaigns. Thus,
this restricts us from performing computationally expensive operations within
the system.

Furthermore, Burt strives towards following the guidelines of the Interactive
Advertising Bureau (IAB) for all their products and has mandated that the click
fraud detection system should adhere to IAB's click measurement guidelines [18].

These were the only two mandatory requirements given by Burt. A num-
ber of additional requirements were subsequently identi�ed. The complete set
of functional and non-functional requirements is given in Table 1 and 2, re-
spectively. Since the project was carried out according to an agile approach, a
complete set of requirements was not elicited up front but rather emerged as
the project progressed.

ID Requirement Class

F1 The system shall detect fraudulent user behavior Mandatory
F2 The system shall be able to use previously acquired

data to accurately detect fraudulent behavior
Desired

F3 The system shall provide an administration interface
that provides performance measures

Desired

F3.1 The provided administration interface shall provide the
ability to add data that de�nes patterns of fraudulent

behavior

Desired

F3.2 The provided administration interface shall allow for
modi�cation of previously added behavioral data

Optional

F3.3 The provided administration interface shall present
additional data, such as frequency of hits from IP

ranges

Optional

Table 1: Functional requirements
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ID Requirement Class

NF1 The system shall be able to process large amounts of
data in a scalable manner

Mandatory

NF2 The system shall accept input in a format provided by
preceding Rich components and output data in a
format that consecutive Rich components accept

Mandatory

NF3 The system shall comply with IAB's click
measurement guidelines

Mandatory

Table 2: Non-functional requirements

4.2 Existing fraud detection within Rich

Rich provides a rudimentary fraud detection mechanism built into the log parser
that works according to a gray-list approach similar to rate-limiting techniques
implemented on SMTP servers. If the parser detects several sessions in rapid
succession originating from the same user, it will keep this user gray-listed until
a prede�ned amount of time has passed before the next session from this user is
seen. All sessions that originate from gray-listed users are marked as spurious
in the output from the parser to the analysis step (see Section 5.2 for further
description of the Rich system architecture). Thus, it is not detecting click fraud
but impression fraud.

4.3 Partitioning user behavior

The core of the problem analysis is choosing a de�nition by which user behavior
will be partitioned into �good� and �bad� according to their traits, e.g. �frequent
clicker� or �initiates sessions on an irregular basis�. In this section, the de�nition
chosen for this thesis will be described and motivated. Note that such a de�-
nition is not constant, but will change over time with alterative user behavior.
For this reason, we opted for a very dynamic system design as will be described
in Sections 5.3 and 5.

Tuzhilin [26] covers a number of di�erent de�nitions of click behavior, and
the de�nition used for the purpose of this thesis is similar to the de�nition that
Tuzhilin indicates as being used by Google at that time. As the existing data
set contained insu�cient data about user click-throughs, we opted for a broader
view of fraud by including impression fraud as well as �test tra�c� generated
by advertisement agencies themselves. The lack of click-through data is caused
by the fact that click-through tracking in Rich must be manually enabled by
agencies and that not all ads have a click-through action. This broader view of
fraud allows our system to also cover fraud on ads that are billed according to
the PPM cost model.

We partition behavior into three categories: legitimate, benign and fraudu-
lent. Legitimate behavior is generated by a human being with a genuine inter-
est in the content of the advertisement. A legitimate click-through may thus
eventually lead to a conversion. Benign behavior occurs �by accident� (e.g. a
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Legitimate Benign Fraudulent

• Lasting sessions
which occur infre-
quently

• Click-throughs
occur even less
frequently

• Notable variance in
observed behavior

• A couple of click-
throughs in rapid
succession within a
single session (un-
usual, but highly
repetitive)

• Multiple click-
throughs within
a single session
(unsual and non-
repetitive)

• Short sessions

• Low variance in ob-
served behavior, e.g.
time between ses-
sions

• High click-through
rate, or. . .

• . . . very high session
count but almost no
click-throughs (in a
short period of time)

Table 3: Expected user behavioral traits, grouped by category

user habitually double-clicking on an advert), while fraudulent behavior occurs
through deliberate means of causing harm. The partitioning into these three
categories is not clear-cut. Suppose a genuinely interested user clicks on an
advertisement several times during the same browsing session to review the
content on the advertisement's landing page, perhaps to compare it to other
o�erings (in more extreme cases, this is referred to as �compulsive comparison
shopping�). If we reduce ourselves to partitioning only into either legitimate or
fraudulent behavior, in which partition does this user belong? Clearly, the user
has exhibited a genuine interest in the contents of the advertisement, but has
also cost the advertiser a larger amount of the advertisement budget with no
higher probability of conversion. For the system described in Section 5, we have
opted for a two-partition solution which attempts to classify benign behavior as
legitimate.

Table 3 attempts to group observable user behavioral traits into the three
categories described above. We can expect sessions from non-fraudulent users
to occur at most a handful times a day (and that mostly last at least a few
minutes) and that click-throughs seldomly occur. Furthermore, notable vari-
ance in observed behavior (such as duration of sessions and interactions with
advertisements) are more likely to be exhibited by non-fraudulent users than
those whose intent is to repeatedly click an ad or refresh a web page.

Contrarily, we expect fraudulent users to have short sessions occurring fre-
quently and often if not always generating a click-through (thus perpetrating
click fraud), or an extremely large number of sessions in rapid succession with-
out any click-throughs at all (thus perpetrating impression fraud). In either
case, we expect these sessions to be regular in their nature - e.g. have similar
durations and temporal spacing.
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However, the gray area in between these two extremes is more complicated.
We have previously discussed two kinds of benign users: �the double-clicker�
and �the compulsive comparison shopper�. The duplicate clicks of the former
can easily be �ltered out in real-time without any further consideration, but the
behavior of the latter obviously borders on being fraudulent. However, benign
users usually do not exhibit the excessively repetitive behavior of fraudulent
users.

4.3.1 Attributes of interest

Based on Table 3, we enumerate a set of attributes of interest for fraud detection,
which are aggregations of output from the Rich log parser. A number of these
attributes were not originally in the parser output, and thus had to be introduced
by extending the parser's functionality. Finally, a few of the attributes given
below are simply not possible to extract from the data collected by Rich at the
moment.

The data rows outputted from the Rich log parser describe individual ses-
sions. However, building distributions for various attributes of sessions initiated
by individual users allows us to identify repeating fraudulent behavioral pat-
terns.

What follows is a full list of elicited attributes.

Total number of sessions: Allows us to detect high-volume users.

Total number of click-throughs: Allows us to detect peaks in click-through
rate. This is one of the most important attributes due to its direct link to click-
fraud. However, the main issue with this attribute is the lack of click-through
data on many Rich campaigns, since (i) click-through tracking needs to be en-
abled by advertisers on a per-campaign basis, and (ii) some advertisements lack
a click-through action.

Distribution of time between sessions: Allows us to detect how often
sessions are initiated and if they appear regularly or irregularly.

Number of sessions marked as spurious: The Rich parser �ags sessions
that occur in a rapid succession as spurious, which is an indicator of impression
fraud.

User IP address(es): Since NAT con�gurations, proxies and dynamic IP
assignment using DHCP are commonplace practices, IP-addresses cannot cur-
rently be trusted as computer identi�ers on the Internet and as such has little
direct value for our application. However, we can cross-reference recently logged
user IP addresses against various IP blacklists as a heuristic for detecting bot-
net membership and �ag them. The motivation is that a common source of
fraudulent clicks (and also one of the hardest to detect) are so called collusions,
where clicks are generated by bot nets consisting of malware-infected personal
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computers. As previously mentioned, this is how Clickbot.A operates - it �rst
compromises individual computers and gives the attacker control over them to
carry out a distributed attack. Daswani and Stoppelman [9] suggest that such
computers might also be used for other malicious activities (such as sending
spam) and hence that there exists a strong correlation between IP addresses
involved in performing click fraud and those that have previously been reported
as spammers. Therefore, as a part of the analysis we cross-reference user IP ad-
dresses with spam blacklists, but also lists of public proxies which perpetrators
frequently use to achieve IP diversity and to mask their own identity.

Distribution of session, engagement and visibility times: We produce
distributions of session time, engagement time (that is, the amount of time that
a user spends interacting with advertisements) and visibility time (the duration
during which the advertisement was visible). Out of these three distributions,
session time is the most interesting as it allows us to detect sessions of uniform
length (which is an indicator of scripted access). Engagement time is useful for
detecting possible user interaction in the case that click-throughs aren't being
registered, and both engagement time and visibility time can be used in com-
bination with click-throughs to detect whether the ad was visible or engaged
upon before it was clicked.

Distribution of time to �rst click-through and mouse-over: Allows us
to detect whether a user frequently and consistently begins interaction with an
advertisement at a certain point in time during the sessions (in the case of po-
tential click fraud, most likely at an early point in time).

Number of invalid sessions: An invalid session could e.g. contain a click-
through event was sent before an exposure was made or a malformed request.
This could indicate fraud perpetrated through direct HTTP requests to the log
server.

4.3.2 Attributes omitted due to unavailability of data

In addition to the ones given above, we elicited two more attributes for which
data from Rich is unavailable.

Conversion rate: Since click fraud generates clicks but no conversions, a de-
clining conversion rate (that is, the ratio of the number of conversions to the
number of click-throughs) can be used to indicate possible click fraud. How-
ever, tracking conversion rate requires that individual advertisers report back
the number of conversions as a result of the ad campaign - data which is cur-
rently not available.

Premium clicks: The concept of premium clicks was introduced in Section
3.4.1. Instead of only registering clicks from authenticated users, we can use the
availability of a �premium clicker�-token as a describing attribute for legitimate
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users. However, this attribute was omitted due to lack of feedback data from
advertisers about user conversions.

4.3.3 Attributes omitted for other reasons

User mouse movement patterns: If click fraud is performed by scripting
mouse movement, we can assume that the movement will follow some pattern.
This requires a bit of extra client-side JavaScript logic for logging mouse move-
ments and pushing them as a sequence of x- and y-coordinates to the server once
an advertisement has been clicked, and some backend code for comparing the
similarity of the sequences (a simple O(n) algorithm would be to calculate the
average distance between pairs of points in both sequences). However, within
the time span of the project it was deemed infeasible to be able to develop,
deploy and gather enough mouse movement data from a live production system
to be able to analyze whether this approach would provide a useful indicator of
fraudulent behavior. Hence, this attribute was omitted.

Distribution of activity hours (user's local time): A normal usage pattern
would likely imply higher degrees of activity during daytime. We can compare
the distribution of users within a timezone with the expected temporal behavior
to identify activity peaks during o�-hours. However, this attribute was omitted
partly due to lack of theoretical justi�cation of its usefulness, and partly due to
the lack of the needed data within Rich.

Geographic origin: Detect if a large amount of users are originating from
a country outside the geographic area targeted by the campaign. This attribute
was omitted since it did not �t in to the model used for detection of fraudulent
behavior, as it would require aggregation of data on at least an campaign-per-
campaign basis.

4.3.4 Subsequent analysis

Given data for the attributes described in Section 4.3.1, we can also ask a
number of follow-up questions:

• Does a lot of fraudulent activity originate from a narrow range of IP
addresses and/or from a certain geographical region?

• Is a certain user agent frequently occurring in connection with the fraud-
ulent activity?

The answers to these questions could possibly help us to further improve the
quality of our detection system.

4.4 User identi�cation limitations

Each user is identi�ed in Rich using a 12-character uppercase alphanumerical
string (in practice, it is encoded in a base-36 integer to for reasons of space e�-
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ciency). Thus, the user identi�er can take on 3612 ≈ 4.7 · 1018 di�erent values.
The identi�er is generated using the pseudo-random number generator provided
by the ActionScript run-time in combination with a platform-dependent method
for adding some extra randomness to the resulting value. As previously men-
tioned in Section 3.4.1, the user identi�ers are subsequently stored in Flash
Local Shared Objects (LSOs). LSOs (like HTTP cookies) are created on a per
domain basis and thus cannot be accessed by Flash applications served from
other domains. Typically, this entails that a new user ID will be generated per
advertising network that serves Rich-enabled ads. As a consequence, this pre-
vents us from tracking users across di�erent advertising networks. Furthermore,
although LSOs are more persistent than HTTP cookies, they are unlikely to be
persistent over longer periods of time. This leads to the same user appearing
under multiple user IDs, which fragments the user attribute aggregation if per-
formed over longer periods of time (we also need to consider the possibility of
user ID clashes in this case). Thus, while aggregating over long periods of time
is preferable, these limitations restrict us to aggregating over shorter periods of
time.
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5 System design and implementation

The following section describes the design of the fraud detection system in a top-
down fashion, starting with the architecture of Rich and how it interfaces with
the fraud detection system. We then describe the overall system architecture
of the fraud detection system and continue by describing each of the system's
components in greater detail. Finally, we describe how a training data set was
constructed from the existing Rich data.

5.1 Technologies

This section describes the set of technologies that were used in the system.

5.1.1 Hadoop

Hadoop is an open source Java framework for large-scale distributed computa-
tions, including an implementation of MapReduce as well as a distributed �le
system, HDFS. The architecture of Hadoop MapReduce is depicted in Figure 5.
Hadoop MapReduce computations take the form of jobs, which consist of:

• an XML con�guration �le specifying e.g. the path to the input �le on
HDFS

• a job split �le, which speci�es the size of the chunks which the input data
should be split into and passed to individual map workers

• implementations of the map and reduce functions

In control of execution is the job tracker, which receives job submissions from
clients and assigns tasks to a number of task trackers, each performing a number
of map and/or reduce tasks. The output from the map step is serialized, and
a partitioner takes care of assigning the key-value pairs to reduce tasks. The
default implementation uses the hashCode() de�nition of the key to partition
the pairs, and the key's implementation of the Comparable interface to perform
intermediary sort.

Hadoop provides three modes of operation: stand-alone, pseudo-distributed
and fully distributed. The �rst two modes are only applicable for single-node
setups. In stand-alone mode, Hadoop jobs run within a single process. In
pseudo-distributed mode, each Hadoop daemon runs as a separate Java process
on a single machine - thus e�ectively simulating a multi-machine cluster on a
single computer. This multi-process setup allows Hadoop to take advantage of
multi-core CPUs. However, the intended mode of operation for Hadoop is the
fully distributed mode where daemons run on di�erent nodes in a cluster.

5.1.2 Dumbo

Dumbo is a Python interface to Hadoop, allowing developers to write Hadoop
jobs using Python rather than Java. Dumbo was developed at Last.fm and is
currently used for data analysis within Rich.
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Figure 5: Hadoop MapReduce (taken from [16])
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5.1.3 Sinatra

Sinatra is a minimal Ruby web framework with which a simple web application
can be de�ned by writing handlers for di�erent HTTP request verbs (GET,
POST, PUT and DELETE) on di�erent routes (the path component of URLs).

5.1.4 jQuery

jQuery is a general purpose JavaScript framework that, among other things,
provides a simple and cross-browser compliant API for DOM and AJAX oper-
ations.

5.1.5 Highcharts

Highcharts is a JavaScript graph rendering framework that is built on top of
jQuery.

5.1.6 Weka

Weka is a machine learning framework developed at the University of Waikato,
New Zealand. It features a large variety of machine learning algorithm imple-
mentations. Weka also provides a graphical workbench for data analysis and
algorithm evaluation.

5.1.7 Implementation languages

Both Hadoop and Weka provide Java APIs for client programs, and therefore
Java was chosen as the implementation language for the system's classi�cation
component. In addition to its Java API, Hadoop can also interface to almost
any executable using the Hadoop Streaming API. For the data transformation
tasks that take place during the system's preprocessing phase, it was decided
that Python was more suitable than Java due to its compactness and rapid
prototyping abilities.

The server-side implementation of the web-based administration application
is written in Ruby, due to ease of use and good availability of web frameworks
for the language.

5.2 Integration with Rich

Rich closely resembles a narrowing pipeline (depicted in Figure 6), where each in-
termediate step performs aggregate computation on the data. Thus, the amount
of data that need be processed decreases further down the pipeline. Each Rich-
enabled advertisement banner contains a Flash component (henceforth referred
to as the Flash agent) that emits HTTP requests to indicate the status of the ad
(e.g. whether it was clicked or the mouse cursor was hovering the ad) and other
environment variables (such as client time). These HTTP requests are sent to
a server which produces log �les. These log �les are then processed by a parser
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that extracts interesting information about each session (that is, a unique ad
impression) and sends it along the pipeline. Thereafter, the session information
is further processed on Hadoop to yield relevant metrics about the advertising
campaign. These metrics are subsequently stored in a database and presented
to the end-user through a web application.

Figure 6: System integration

The fraud detection system runs alongside the analysis step on Hadoop and
takes as input the session information outputted by the parser, as this data is
presented at a suitable level of granularity. Introducing the system at an earlier
stage leaves us with the task of extracting data from raw web server logs (which
is the parser's duty) on top of performing analysis on this data, all within the
high throughput requirements that are put on this part of the pipeline. This is
simply infeasible. Likewise, placing the click fraud detection system after the
analysis step would make little sense, as too much of the necessary attributes
described in Section 4.3 have been lost in aggregation at this point.

5.3 Choosing classi�cation as detection approach

Section 3 describes a number of approaches that could be used for detecting click
fraud. Of these possible approaches, it was determined that classi�cation would
�t our system best. The main reasons for this were that (i) it's possible to scale
by performing classi�cation of each user in a distributed setting and (ii) since
the de�nition of fraud might change over time it's important that the system
can adapt to �nding new behaviors. This is something for which classi�cation
algorithms are better suited than outlier detection algorithms. Thus, we opted
for the classi�cation approach when designing the system. In order to determine
which classi�cation algorithm was most suitable for our application, we chose
to evaluate a number of algorithms on real application data. The results of the
evaluation are presented in Section 6.
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Figure 7: Overall fraud detection system architecture

5.4 System architecture

The fraud detection system works as a three-step process: preprocessing, clas-
si�cation and re�nement. The preprocessing step aggregates user data and the
classi�cation step performs classi�cation of this data. The last two steps form a
feedback loop where the re�nement step provides the ability to make improve-
ments to the model used for classi�cation. The overall system architecture is
depicted in Figure 7.

5.4.1 Preprocessing

The preprocessing step takes the output from the parser and aggregates a num-
ber of useful attributes describing individual users, as given in Section 4.3.1.
The preprocessing is implemented as a MapReduce job using Dumbo. Given
tab-separated session data, each map task emits the user ID as key and a list
of session attributes as value. Because of how MapReduce works, the session
attributes belonging to a certain user ID will be passed to the same reduce task
where they are aggregated.

5.4.2 Classi�cation and Model

The classi�cation is based on algorithms from the Weka framework, which have
been applied in a MapReduce context. In order to determine the most suitable
algorithm, several of them were evaluated on data sets of varying sizes. The
results of this evaluation are provided in Section 6.

The classi�cation step takes as input the aggregate user information from
the preprocessing step and classi�es individual users as either fraudulent or le-
gitimate based on a preconstructed model. The model is constructed from a set
of training data, which was prepared according in a manner described in Section
5.5. The training data is given in the Attribute-Relation File Format (ARFF, see
Listing 1), which is the default data format accepted by Weka. Each data row
consists of comma-separated columns corresponding to an attribute described in
Section 4.3.1, accompanied by an additional label l ∈ {fraudulent, legitimate}
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which indicates whether this data row describes fraudulent or legitimate behav-
ior.

The model is built centrally at the initiating job tracker, and is subsequently
serialized and distributed to each map task in the cluster through Hadoop's
distributed cache mechanism. Each of the map tasks subsequently deserializes
the model and uses it to classify the data instances that have been allocated to
that map task. An individual map task outputs the data instance and a class
prediction, and the following reduce phase partitions data instances of di�erent
class prediction to di�erent output �les. In the �nal system, the reduce phase
is completely omitted for e�ciency reasons. This will be further described in
Section 6.

@RELATION user

@ATTRIBUTE session_count NUMERIC

@ATTRIBUTE tot_session_time NUMERIC

@ATTRIBUTE avg_session_time NUMERIC

@ATTRIBUTE session_dev NUMERIC

@ATTRIBUTE tot_visibility_time NUMERIC

@ATTRIBUTE avg_visibility_time NUMERIC

@ATTRIBUTE visibility_dev NUMERIC

@ATTRIBUTE avg_time_to_first_mouseover NUMERIC

@ATTRIBUTE first_mouseover_dev NUMERIC

@ATTRIBUTE tot_engagement_time NUMERIC

@ATTRIBUTE avg_engagement_time NUMERIC

@ATTRIBUTE engagement_dev NUMERIC

@ATTRIBUTE spurious_count NUMERIC

@ATTRIBUTE click_thru_count NUMERIC

@ATTRIBUTE invalid_count NUMERIC

@ATTRIBUTE avg_time_between_sessions NUMERIC

@ATTRIBUTE time_between_sessions_dev NUMERIC

@ATTRIBUTE avg_time_to_first_click_thru NUMERIC

@ATTRIBUTE time_to_first_click_thru_dev NUMERIC

@ATTRIBUTE click_count NUMERIC

@ATTRIBUTE class {legitimate,fraudulent}

@DATA

444,8021,18.06,6.22,...,35.39,19.05,0,0,0,fraudulent

8,224,28.0,23.22,...,3021.14,7205.19,0,0,0,legitimate

Listing 1: Rich user data in ARFF format (a few columns in the middle left out
for space reasons)
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Figure 8: Administration and metrics interface

5.4.3 Re�nement

The system provides a web interface with system performance metrics, giving
system administrators an overview of the results of the classi�cation and the
ability to conveniently manipulate the data set used for training. For reasons
of lucidity as well as browser rendering limitations, the data presented is based
on a sample of the classi�er output containing instances for which the degree of
con�dence lies below a prede�ned threshold. The degree of con�dence describes
the probability with which instances were predicted to belong to a certain class.
Thus, the administration interface exposes data points which the classi�er was
unable to con�dently classify due to inadequacies in the training set, and conse-
quently the areas of the training set that need improvement. The administrator
can thereafter investigate individual data points of interest, and select a set of
points to include in the training data as either fraudulent or legitimate behavior.

The administration interface is a Sinatra-based web application. Commu-
nication between the client and server is implemented asynchronously using
jQuery's AJAX API. The client �rst queries the server for classi�cation results.
Upon receiving this request, the server fetches a sample of the classi�er output
from an HDFS instance, adds meta-data (e.g. attribute names) and transforms
the result into JSON, which is the data format preferred by the graph render-
ing component. The graph rendering component uses Highcharts to render an
interactive scatter plot in which a user can select and review individual data
points and request that these be added to the training set as either fraudulent
or legitimate. Upon receiving this request, the client pushes JSON data to the
server, which appends it to the training set stored on HDFS. The entire data
�ow is depicted in Figure 8.
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5.5 Constructing initial training data

Based on the partitioning of click behavior described in Section 4.3, the next
major problem was the initial construction of a set of behavioral data (corre-
sponding to this description) to be used as a training set for the classi�er. The
construction of training data by generating raw HTTP logs was investigated,
but was rejected since it was judged that generated training data inherently
lacks the ability to completely re�ect the nature of the real data set. Con-
versely, extracting training data from a data set requires extensive analysis and
manual inspection. Rich has collected a large amount of data - in total approx-
imately 150.2 million sessions from 49.8 million users going back to March 2009
(depicted in Figure 9). Thus, manual review of the entire data set is unfeasible.
Instead, having the ability to ask arbitrary questions about the data and its
aggregations in a quick and straightforward fashion would allow us to extract a
signi�cantly smaller subset of the data for manual review. For this, Hive proved
to be a useful utility. Hive provides an SQL layer on top of Hadoop MapRe-
duce. Listing 2 shows two Hive queries. The �rst query maps a Hive table to a
location on HDFS containing columnar data on tab-separated form, while the
second lists the 150 users with highest CTR.

Figure 9: Total session and user count per month
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CREATE EXTERNAL TABLE users(user_id STRING,

session_count INT,

total_session_time INT,

average_session_time INT,

session_time_deviation INT,

total_visibility_time INT,

average_visibility_time INT,

average_time_to_first_mouseover INT,

total_engagement_time INT,

average_engagement_time INT,

spurious_sessions INT,

click_throughs INT,

invalid_sessions INT,

average_time_between_sessions INT,

average_time_to_first_clickthrough INT)

ROW FORMAT DELIMITED FIELDS TERMINATED BY '\t'

STORED AS TEXTFILE

LOCATION '/output/userdata' ;

-- users with highest ctr

SELECT user_id, SUM(click_throughs), SUM(session_count),

SUM(click_throughs)/SUM(session_count) AS ctr FROM users

GROUP BY user_id

ORDER BY ctr DESC

LIMIT 150;

Listing 2: Hive SQL

Once a small initial training set was constructed, a larger training set could
be built iteratively by using the current training set to classify a set of unclas-
si�ed data and extract new training data from the results of the classi�cation.
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6 Evaluation of classi�cation algorithms

In order to judge the suitability of the di�erent classi�cation approaches for
our use case, we decided to perform a three-phase evaluation of the classi�er
implementations provided by Weka. This was also done to overcome the lack
of openly available studies of classi�cation in the domain of our problem. The
results of the evaluation are presented in this section.

In the �rst evaluation phase (Section 6.1), we evaluate one candidate al-
gorithm from each approach described in Section 3.2 on a small set of prela-
belled data to determine their accuracy (i.e. percentage of correctly classi�ed
instances). The candidates were chosen by brie�y running the majority of classi-
�ers available in Weka and weeding out those that provided too poor of a result
(note that not all classi�ers were applicable to the type of data we are working
with, e.g. those that require strictly nominal input). The following algorithms
were chosen:

• Bayesian: NaiveBayes

• Decision trees: RandomForest

• Rule-based: RIDOR (RIpple-DOwn Rule learner)

• Support vector machines: LibSVM (provided by an interface to the libsvm
[7] library)

• Neural networks: MultilayerPerceptron

• Clustering: k-Means

Furthermore, in addition to the more common multi-class supervised classi�-
cation, we also test both unsupervised and single-class supervised classi�cation
for the algorithms that support it (k-Means and LibSVM, respectively).

In the second phase (Section 6.2), we test the performance on data sets
of varying sizes for the algorithms that yielded the best results in the �rst
evaluation phase. Thus, we eliminate yet more algorithms simply because their
accuracy was unsatisfactory.

In the third phase (Section 6.3), we evaluate one of the best-performing
algorithms overall (that is, taking into account the results from phase one and
two) on varying cluster sizes, given a data set of �xed size.

6.1 Accuracy of classi�cation algorithms

6.1.1 Test setup

As the size of the prelabelled data set is signi�cantly smaller than the data sets
used for performance evaluation, accuracy tests were run on a single machine
running the Weka workbench. This workbench provides access to detailed in-
formation about the classi�er's performance. Each algorithm requires its own
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set of parameters, which have been adjusted in an attempt to maximize the
prediction accuracy for this data set.

The following software versions were used:

• Linux 2.6.32

• Sun Java SE Runtime Environment 1.6.0_17

• Weka 3.7.1

The evaluation was performed by partitioning a set of data, prelabelled as either
fraudulent or legitimate, into two disjoint sets used for training the classi�er and
evaluating the outcome of the classi�cation with respect to the prelabelled data,
respectively. Instead of performing a simple percentage split, a so called n-fold
cross-validation procedure was used to improve the accuracy of the test results.
In n-fold cross-validation, a model is built using n−1 equally sized partitions of
the data set. The model is subsequently evaluated on the remaining partition.
This process is repeated n times, that is, until every partition has been used for
evaluation exactly once. The cross-validation algorithm is outlined in Listing 3.
For the tests presented below, n = 10 was used.

Require: A set D of data points prelabelled with a class
P = {p1, p2, . . . , pn}, a set of equally sized partitions of D
for i = 1 to n do

S = {pi}
T = D \ S
Build a classi�er c using T as the training set
Let ri be the result of evaluating c on test data S

end for
return The average of all results {r1, r2, . . . , rn}

Listing 3: Cross-validation

6.1.2 Test results

Before presenting the results, we give a few de�nitions that will be used in
the presentation. In the following text, a positive is equivalent to an instance
classi�ed as fraudulent, while a negative is equivalent to an instance classi�ed
as non-fraudulent. A true positive is a reported positive that actually is a
positive, while a false positive is a negative that was reported as a positive by
the classi�er. Similarly, a true negative is a reported negative that in fact is a
negative, while a false negative is a positive that was reported as a negative.
The following terminology is also used:

• TPR (True Positive Rate)= true positives
true positives + false negatives

• FPR (False Positive Rate)= false positives
true negatives + false positives

• TNR (True Negative Rate)= true negatives
true negatives+false positives
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• FNR (False Negative Rate)= false negatives
true positives + false negatives

• ACC (Accuracy)= true positives+true negatives
all instances

• AROC (Receiver Operating Characteristic Area): the area under the ROC
curve. An ROC curve describes how well-balanced the classi�er is as a
function of the con�dence threshold t ∈ [0, 1], that is, the minimum prob-
ability (for non-discrete classi�ers) required for an instance to be reported
as a positive. A perfect classi�er would have AROC = 1; that is, TPR = 1
and FPR = 0 for all values of t. The ROC curves for all classi�ers are
presented in Figure 10.

• PAP (Portion of Actual Positives): the portion of actual positives in a
data set.

• PFA (Portion of False Alarms): the portion of all reported positives which
are false alarms.

For our application, we wish to keep the FPR as low as possible (thus maximiz-
ing the TNR while still achieving the best possible TPR). The motivation for
this is simply that an overreported amount of fraudulent behavior has a direct
detrimental e�ect on the credibility of other measures provided by Rich.

TPR FPR TNR FNR ACC AROC

NaiveBayes 95.4% 14.3% 85.7% 4.6% 89.4% 0.959
RandomForest 94.4% 7.6% 92.4% 5.6% 93.2% 0.975

RIDOR 95.4% 9.1% 90.9% 4.6% 92.7% N/A2

LibSVM (one-class �fraudulent�)1 69.0% 69.0% 31.0% 31.0% 45.7% N/A2

LibSVM (one-class �legitimate�)1 2.8% 76.9% 23.1% 97.2% 15.2% N/A2

LibSVM (two-class) 93.5% 8.2% 91.8% 6.5% 92.5% 0.962
MultilayerPerceptron 93.5% 7.6% 92.4% 6.5% 92.8% 0.975
k-Means (supervised) 91.7% 49.4% 50.6% 8.3% 66.5% N/A2

k-Means (unsupervised) 8.3% 0% 100% 91.7% 64.5% N/A2

Data set size: 558 instances (216 �fraudulent�, 342 �legitimate�)

1Since one-class classi�cation only uses training data from one class (e.g. either "fraud-
ulent" or "legitimate"), cross-validation over the entire two-class test set is not possible.
Instead, each one-class test was split into two sub-tests, which used the "fraudulent" and "le-
gitimate" data as test sets, respectively. The results presented here are the combined results
of the two sub-tests.

2The ROC Area has no useful interpretation for this classi�er.

Table 4: Classi�er accuracy

Note that the one-class LibSVM classi�er trained with the �legitimate� data
set (i.e. in which �fraudulent� instances are seen as outliers) performs signif-
icantly worst, surprisingly even worse than unsupervised k-Means! How can
a classi�cation algorithm that possesses prior knowledge about its input yield

44



lower accuracy than an algorithm with no prior knowledge at all? This is most
likely due to high di�usion in the �legitimate� data set, which causes a large
number of false negatives to be reported. Note also that both one-class clas-
si�ers are in fact worse than purely random classi�cation of instances! This
is in accordance with our intuition that two-class classi�cation should give the
most accurate prediction, due to its ability to harvest knowledge from counter-
examples in the training data. The majority of the two-class classi�ers (Ran-
domForest, RIDOR, LibSVM and MultilayerPerceptron) have very similar ac-
curacy with slight skews towards either higher FPR or higher FNR. Based on
these test results, RandomForest seems best suited for our application given its
lower FPR.

A low FPR does not necessarily imply a satisfactory result, since the FPR
has to be considered in relation to the portion of actual positives in the data.
If the portion of actual positives is relatively low compared to the FPR, we
can expect a lot of the reported positives to be false alarms. For instance,
assume that we have a data set of 10 000 users of which 100 have actually
exhibited fraudulent behavior (that is, PAP = 1%) and the remaining 9 900
do not exhibit fraudulence. Using the measures for RandomForest from Table
4, the system will on average correctly report 0.944 · 100 = 94.4 users and
incorrectly report 0.076 · 9900 = 752.4 users as fraudulent. As can be seen, the
number of incorrectly classi�ed positives is signi�cantly greater than the number
of correctly classi�ed ones - simply due to the low portion of actual positives in
the data. From this, we can conclude that 752.4

94.4+752.4 ≈ 88.9% of all reported
positives are false alarms!

More generally, the portion of all reported positives which are false alarms
can be described by the following equation:

PFA =
false alarms

reported positives
=

FPR · (1− PAP )
PAP · TPR + FPR · (1− PAP )

(3)

This describes a general hardship of fraud detection: we are looking for a
very small needle in a very large haystack. However, all is not lost. By rigorous
tweaking of each algorithm's parameters it should be possible to approach more
satisfactory results. We can also expect the accuracy to increase as the training
data becomes more re�ned. Given that the data set used for the tests likely
has a higher density of points within the �gray� area between the two classes,
a lower FPR can be expected when classifying real data. However, the PFA
is still likely to be an issue since real data contains signi�cantly less fraudulent
instances than the data set used for these tests.
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(a) NaiveBayes (b) J48

(c) RandomForest (d) LibSVM (two-class)

(e) MultilayerPerceptron

Figure 10: ROC curves for classi�cation algorithms in Table 4

6.2 Scalability with size of data set

6.2.1 Test setup

All performance tests were run on a cluster of four small Amazon EC2 instances
with 1.7 GB of main memory. The cluster setup follows a common pattern for
smaller Hadoop clusters: one node (the master) acts as both a MapReduce
job tracker and an HDFS name node [5], while each of the remaining nodes
(the slaves) acts as both a MapReduce task tracker and an HDFS data node
[5]. Since EC2 is virtualized on top of a large number of commodity PCs,
an instance might be powered by many di�erent hardware con�gurations over
time. Hence, it is not possible to give exact hardware speci�cations. For this
reason, Amazon has introduced the EC2 Compute Unit, which according to [1]
is equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor. A small
instance is guaranteed to be allocated 1 EC2 Compute Unit on a single virtual
core.

The following software versions were used:

• Linux 2.6.21.7

• Hadoop 0.20.1
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• Dumbo 0.21.24

• Python 2.5.2

• Sun Java SE Runtime Environment 1.6.0_14

Data for the test was gathered from parser output for the month of September
2009. Four data sets of varying sizes were used:

• Data set A: 1 million users (approximately 2 million sessions)

• Data set B: 2.5 million users (approximately 5 million sessions)

• Data set C: 5 million users (approximately 10 million sessions)

• Data set D: 10 million users (approximately 20 million sessions)

To account for variances in the test environment (e.g. network load), each test
was run twice and the results shown below are averages.

6.2.2 Test results

Figure 11: Classi�er performance (each bar within a group of four corresponds
to data sets A-D, in left-to-right order)

Results (Figure 11) show that all tested classi�ers have similar performance,
but that the results get spoiled by a very large overhead from the reduce phase
(recall the map and reduce phases from the description of MapReduce in Section
3.1.9). This overhead includes the shu�ing and sorting of mapper output values
before they are handed to the reducer, followed by the actual execution of the
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reduce tasks which do nothing more than to write the classi�ed data to di�erent
�les based on the probability distribution.

One might then question why it is even necessary to have a reduce phase
in our case, as it only serves the purpose of shu�ing data through. And quite
rightly so, as it isn't! We can take care of writing output to �les from directly
within the map phase, and thus eliminate the redundant copying and sorting.
However, we cannot simply omit a reducer de�nition from our job code, as
Hadoop in that case would provide an identity reducer for us. Instead, Hadoop
provides a parameter for its job con�guration that allows us to set the number
of reduce tasks to zero, simply by saying job.setNumReduceTasks(0). Now we
have e�ectively eliminated the overhead of the reduce phase depicted in Figure
11. The improved results are shown in Table 5 and Figure 12. From this �gure
it is apparent that RIDOR, RandomForest and NaiveBayes has a performance
advantage in our tests.

Figure 12: Classi�er performance with reduce phase eliminated (each bar within
a group of four corresponds to data sets A-D, in left-to-right order)
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A B C D

User data aggregation 18min 56s 34min 9s 77min 28s 158min 23s
Classi�cation
- MultilayerPerceptron 3min 43s 5min 1s 7min 25s 12min 6s
- NaiveBayes 2min 28s 2min 13s 4min 47s 7min 29s
- RandomForest 2min 22s 3min 2s 4min 31s 6min 57s
- RIDOR 2min 8s 2min 41s 3min 47s 5min 55s
- LibSVM (two-class) 6min 31s 9min 23s 13min 32s 21min 15s

Table 5: System performance

6.3 Scalability with size of cluster

6.3.1 Test setup

The tests in Section 6.2 were all run on a cluster of four nodes. In order to
evaluate how well the system scales up and down with the number of machines
it runs on, tests were run on data set D with varying cluster sizes on Amazon
EC2. The single-node setup was run in pseudo-distributed mode, while the
remaining tests were run with Hadoop in fully distributed mode. All clusters
were set up identically to those used for the tests in Section 6.2.

6.3.2 Test results

The results are presented in Table 6 and Figure 13. Note that due to MapReduce
overhead (e.g. job coordination and copying data between machines in the
cluster) we do not halve the time it takes to complete a job by doubling the
number of machines in the cluster. Furthermore, the results show that the
performance of the classi�cation step does not improve mentionably with the
sixteen-machine setup for a data set of this size. However, we still expect the
classi�cation step to scale close to linearly if the data set was to further increase
in size, as Hadoop start-up and job scheduling would constitute a smaller part
of the entire job. It should also be possible to make considerable improvements
to the user data aggregation by reducing the amount of data that is being
transferred between mappers and reducers - something that can be achieved by
the use of a combiner (as mentioned in Section 3.1.9).

The scaling between the one- and two-machine clusters is worse than one
might expect. This is mainly due to the way the cluster is con�gured. In ac-
cordance with the test setup described in Section 6.2.1, the two-machine cluster
uses a dedicated master node and thus only has a single slave available in com-
putation. The performance gained from this setup comes from the fact that
some of the MapReduce overhead can be o�oaded to the master node.
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1 2 4 8 16

User data aggregation 416min 9s 388min 32s 158min 23s 134min 40s 92min 51s
Classi�cation 16min 39s 15min 24s 6min 57s 4min 45s 4min 41s

Total 432min 48s 403min 56s 165min 20s 139min 25s 97min 32s

Table 6: Scalability with size of cluster (column headings indicate cluster size
in number of machines)

Figure 13: Scalability with size of cluster

6.4 Summary

Of the tested algorithms it was shown that MultilayerPerceptron, NaiveBayes,
RandomForest, RIDOR and two-class LibSVM yielded the most satisfactory
classi�cation accuracy, with the RandomForest algorithm yielding the best ac-
curacy and lowest false positive rate of them all. Further testing of these algo-
rithms showed that while NaiveBayes, RandomForest and RIDOR had a perfor-
mance advantage over the MultilayerPerceptron and LibSVM implementations,
the overall performance of the classi�ers was overshadowed by the time required
to perform user data aggregation.

When evaluating the system on increasing cluster sizes with a �xed-size data
set, results showed that the horizontal scaling capabilities of the system were
adequate for our needs.
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7 Future work

This section describes future improvements that can be made to the developed
system. The adaptive nature of the system means that it will continuously im-
prove as the training data is re�ned. However, there are further ways to improve
the accuracy of the classi�cation process. In this report, we have covered a fairly
large range of classi�cation algorithms with the purpose of determining which
one would yield the best results for our application. However, as brie�y men-
tioned in Section 6.1.1, there is room for more calibration of the classi�cation
algorithms' parameters (which is beyond the extent of this thesis).

There are also possibilities for performance improvements. As shown by
the test results in Section 6, the current system bottleneck is the user data
aggregation step (which currently is at least 7x slower on the largest data set).
Thus, future e�orts to improve overall system performance should focus on this
part of the system.

In Section 4.3 we described a number of ideas that were investigated but left
out due to inability to acquire the necessary data (e.g. as in the case of �premium
clicks� or the mouse movement pattern similarity analysis). Some attributes
were not applicable in the current classi�cation process, such as geographical
location of users. Using this would require that training data was built for each
campaign, so that if most of the viewers for an ad suddenly comes from a new
location a warning �ag is raised. We believe that these ideas should be further
explored (when data can be acquired) as they could potentially provide useful
input attributes for the classi�er.

Yet another interesting area, not directly related to the functionality of our
detection system but to the usefulness of its results, is to research whether the
current way of uniquely identify users (or rather, computers) can be improved.
One such approach is using browser �ngerprinting [11] in an attempt to uniquely
identify a user's browser based on attributes of its con�guration and the user's
environment. Such attributes could include the HTTP User-Agent header �eld
that the browser emits and the set of fonts and plugins that are installed on the
user's computer. Naturally, such an approach works under the assumption that
each browser instance has a unique con�guration (and for the purpose of being
a stable identi�er also doesn't vary over foreseeable periods of time). This of
course depends on what attributes are included in the �ngerprint and how much
entropy they yield. Thus, given enough entropy from attributes such as those
described above we can in theory uniquely identify a user. However, browser
�ngerprinting has yet to be proven to work in practice.
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8 Conclusions

In this report, we have studied a number of di�erent data mining approaches
to fraud detection in an online advertising platform and applied them in a
distributed environment. We have shown that an implementation based on
supervised classi�cation algorithms can give satisfactory detection accuracy and
that our solution scales reasonably well. Since the design of our system separates
the domain-speci�c operation of extracting data attributes for building a model
from the general operation of classifying data according to this model, it is
easy to adapt the system to detect new types of behavior. This adaptiveness
has subsequently opened up possibilities for Burt to use the system for other
purposes. Furthermore, since our tests show that a large number of classi�cation
algorithms have similar accuracy, we conclude that the most important challenge
is not in �nding the optimal classi�cation algorithm but rather in constructing
a good set of training data.

54





List of abbreviations

ARFF Attribute-Relation File Format

AVF Attribute Value Frequency

CPC Cost-per-click

CTR Click-through rate

HDFS Hadoop Distributed File System

IAB Interactive Advertising Bureau

PPA Pay-per-action

PPC Pay-per-click

PPM Pay-per-impression

ROC Receiver Operating Characteristic
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