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Deep Path Planning Using Images and Object Data
MARIA BERGQVIST
OSKAR RÖDHOLM
Department of Electrical Engineering
Chalmers University of Technology

Abstract

Autonomous vehicles are currently being heavily researched with the purpose of
finding a manner in which a vehicle can drive safely. An approach for doing this
is imitation learning by which human behavior is imitated, and which recently has
found success in steering vehicles using images. For this thesis, the purpose is to in-
vestigate whether imitation learning can be applied to path planning for autonomous
vehicles using several sources of input data. We also want to investigate if merging
different types of information will improve the safety and robustness of the vehicle.
The aim is therefore to design and implement a neural network which merges input
data from several sources and predicts the path of the vehicle 5 seconds into the
future.

This thesis compares a variety of neural network models used to predict the path.
Some models use data from only one source, while other merge the data. The results
show that it is possible to use deep learning to predict the path for autonomous
vehicles in some situations. They also show that including images as input to the
model does not significantly improve the performance. Instead, using only object
data make the networks performs as good as merging the inputs. However, more
research are needed in order to find a more accurate and stable model.

Keywords: autonomous driving, deep learning, neural networks, machine learning,
path planning, convolutional neural networks, recurrent neural networks.
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1
Introduction

This chapter covers the background on autonomous vehicles and deep learning. It
also presents some previous work and the objective of this thesis. Finally the outline
of the thesis is presented.

1.1 Background

Since the early twentieth century automobiles have been the main form of trans-
portation. Today, most vehicle manufacturers include software for autonomous driv-
ing. These vary from cruise control on highways to autopilot capable of steering and
properly adjusting speed. The advances in this area have shown that it might be
possible to one day have vehicles which are completely autonomous.

A study by RethinkX predicts that only 20 % of Americans will own a car in 15
years and 95 % of all passenger miles traveled will be done by Transportation-as-a-
Service providers using autonomous vehicles [1]. In order to meet this estimation,
the software for autonomous driving will need to become more intelligent so the
vehicles can drive autonomously and safely.

The first big movement of autonomous cars, came in the form of ”The Grand Chal-
lenge”. The competition was organized by DARPA and was organized multiple
years between 2005-2012. The first installation was set in the desert, with not a
single vehicle finishing the race. However, during the second installation in 2006, 6
cars finished the race before the time limit. The winner, Stanley, was designed with
carefully implemented control systems, based on sensor data collected by the car [2].

Nowadays, companies such as Waymo [3], NVIDIA [4], Volvo Cars and Zenuity [5]
are using deep learning to develop their autonomous vehicles. In 2015, Waymo were
able of driving a fully autonomous car on public roads and in 2017 they began trials
in Arizona with no driver behind the wheel in their autonomous cars [6]. NVIDIA
also showed in 2016 that it was possible to do lane and road following using deep
learning [7]. In Gothenburg, the Drive Me project by Volvo Cars is working towards
fully autonomous commercial vehicles by 2021 [8].
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1. Introduction

An autonomous vehicle is typically controlled using a carefully designed hierarchical
decision control system and data collected by sensors on the vehicle [9]. The vehicle
has to fully explore the surrounding area and only once it has been fully explored is
the vehicle capable of driving in a safe manner. While this method seems to work on
small scale, it is expensive and time-consuming to do this at all times while driving.

A method for avoiding the process of exploring the whole environment is to imitate
the behavior of a human. This can be done by a form of deep learning called
imitation learning. In this, the actions of a human are recorded when solving the
task considered. A neural network is then taught to imitate this behavior and
hopefully be capable of understanding the underlying thinking of the human it is
imitating. By doing so the network should be able of making good decisions in
situations similar to those it has been shown.

Imitation learning can be applied to driving a vehicle. This has been done mostly
to predict the immediate actions which should be taken by the vehicle, such as
decide the steering angle [7, 10, 11]. Outputting the immediate actions is however
potentially dangerous as a neural network may output something incorrect. Further,
the neural networks function as a black box solution, which means there is little to
no understanding about why a certain prediction is made. For this thesis we instead
want to predict the future path of the vehicle. A controller can then be influenced
by the predicted path and together with other constraints decide what the actual
steering commands. This would introduce an understanding behind the vehicle’s
behavior. Thereby, the autonomous driving functions less as black box compared to
when the neural networks output the immediate actions.

1.2 Previous Work

In vision-based autonomous driving, the industry has different approaches to how
this should be done. There are two approaches today which are common; mediated
perception and behavior reflex. Currently, mediated perception is the most common
approach. This approach first extracts information about the surrounding environ-
ment, e.g. bounding boxes of surrounding objects and lane marking estimations.
The information is then used to operate the vehicle. Meanwhile, behavior reflex
does not extract any specific information. Instead, this approach uses only the raw
data to operate the vehicle.

The first approach, mediated perception, extracts information about the surround-
ing environment. This information can then be used to compute how the driving
should be done. Using this approach, the control system is presented a set of ex-
tracted information, which is commonly helpful for driving and can improve the
performance. However, the networks rely on the necessary information being ex-
tracted in an appropriate manner before being able to decide how to drive.

Mediate perception was used by a team from New York University and Net-Scale
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1. Introduction

Technologies to predict traversability for off-road driving [12]. They used a deep
hierarchical network to detect and classify objects and thereby determine whether it
was possible to drive there. They claimed that their classifier was able to see obstacle
5 to 100 meters away. More recently, it has also been shown that convolutional
neural networks can be used to estimate the lane-markings and surrounding cars in
a highway situation [13].

On the other side lies the behavior reflex approach. Here, the information about
the surrounding environment is not extracted but instead has a direct mapping
between the input and output. That is, the surrounding environment is represented
by images which is the only available information for the neural network to perform
the task.

The first big success in behavior reflex autonomous driving came in the form of
ALVINN (Autonomous Land Vehicle In a Neural Network) in 1989 [14]. ALVINN is
a 3-layer neural network architecture used to control NAVLAB, the Carnegie Mellon
autonomous test vehicle. The network was trained on simulated road snapshots and
it managed to predict the steering direction with 90 % accuracy in a real-world
environment.

In 2016, NVIDIA presented their model PilotNet. This model uses a behavior reflex
system to predict the steering angle of a vehicle and has shown success in this field
[7]. A team from Peking University has had more recent success using only images
to predict the steering angle with their model Deep Steering [11]. They claim their
model beats other models on known benchmarks. Both PilotNet and Deep Steering
were trained by imitation learning to choose the same steering angle as human driver
did.

In 2017, a team from the University of California, Berkeley, also using imitation
learning, created an end-to-end network given images from a video feed and informa-
tion about previous motion using their fully convolutional network - long short-term
memory (FCN-LSTM) network structure [15]. The network predicted the desired
motion at the current time and therefore successfully combined raw images with past
motion, where it predicted different discrete actions, i.e. steer left, right, forward,
brake. The model was trained on the Berkeley DeepDrive dataset which consists of
crowdsourced driving videos and IMU data. They evaluate two different ways to do
motion, one where they have a set of specific actions and one where the actions are
continuous.

There is an ongoing discussion whether mediated perception or behavior reflex
should be used in vision-based autonomous driving. The approach by the Berkeley
team uses a behavior reflex approach combined with information about past motion
[15]. By doing so, some information may be highlighted and easier to access for
the network instead of having to deduce the information by the images alone. This
approach can be taken a step further by combining behavior reflex approach with
more information about the surroundings.
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Further, most studies to date have focused on what the autonomous vehicle should
do at the current time. This means that the neural networks do not consider what
future actions but instead consider what should happen now. By also looking into
the future, it is possible that a different action is better to perform right now. In
addition, by not predicting the steering angles and instead consider a path, it is
possible to use a controller to compute the actual steering commands. This allows
for a more transparent system and understanding for the vehicle’s behavior.

1.3 Thesis Objective

The objective with this thesis is to further the planning from the neural networks.
Instead of only considering what steering angle or velocity the vehicle should have
now, the network should predict the path for an autonomous vehicle for the upcom-
ing seconds. The neural network is provided a sequence of gray-scale images together
with information about past ego motion, detections of surrounding objects and lane
marking estimations during the last second. The aim is to investigate whether neural
networks are capable of predicting the path 5 seconds into the future. An additional
aim is to investigate whether merging different forms of input data will improve the
performance, and thereby the reliability and safety of the autonomous vehicle.

The hope is that by merging both types of input data, the neural network will be
able to use both sets of information. It would hopefully then, in situations where
the information about the surrounding environment is lacking, use the image to
compensate for the missing information in a manner similar to the behavior reflex
approach.

The predicted path is given by points of coordinates. Each coordinate represents the
predicted position of the vehicle after a fix time interval. These predicted coordinates
can then in another future project be given to a controller which can use them to
compute the desired steering angle and acceleration for the vehicle in the upcoming
seconds.

1.3.1 Scope

The focus of this project lies in driving in rural Europe. Almost all available data has
been collected in Europe. The network is not supposed to handle decision-making
and thus the training data does not include situations where there were multiple
paths. Thus, urban traffic is excluded as there often exists several valid paths there.

Another limitation is to only consider right-hand traffic. This limitation is done as
what constitutes an appropriate path differs largely between left- and right-hand
traffic.
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1.4 Thesis Outline

The remainder of the thesis is outlined as follows. Initially, chapter 2 describes the
data available, its source and how it was extracted. Afterwards, theory about how
artificial neural networks work is presented in chapter 3. This includes the various
types of network structures which are used in this thesis. The chapter also contains
theory on how the training of a neural network works. Then, once the theory is
presented, chapter 4 will describe the design of the evaluated models. Each model
is described in general and also the architecture of their parts. The chapter ends
with a description of the implementation and how they were trained. Chapter 5
then presents the result obtained in the thesis. These results are then discussed
in chapter 6. It is also discussed what potential explanations may be for why the
particular results were obtained. The chapter then ends with some potential future
work which can be done in the area. Finally, chapter 7 presents the conclusions
drawn in the thesis.
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2
Data Source and Description

Good data is essential when implementing and training a neural network. In order
to handle many types of scenarios it is important that the data is versatile and
covers many different situations. This chapter covers the data used in this project.

2.1 Data Source

The data used in the project is real-world data collected by Volvo Cars during expe-
ditions with the purpose of testing implemented functions. While on the expeditions
the vehicles also recorded data which can be used for future development of new
functions.

The stored data was collected from many sources. The data used in this project
was mainly collected from a front-looking camera and on-board sensors. The front-
looking camera was used to record videos of the road ahead and the on-board sensors
were used to detect objects and road information. While moving, the vehicle also
recorded its own movement in terms of yaw rate and how far it has moved in a time
step.

2.2 Data Extraction and Synchronization

In the log files, the object detections and road information are recorded with the
same frequency as the vehicle’s movements. However, the camera used a different
frequency, which was approximately 2.5 times slower. In order for the network to
be trained properly, the data needed to be synchronized so that the inputs provided
together were recorded simultaneously.

The extraction from the dataset was made so that the sample rate was 10 samples
per second. For this, some reference times were used. The object detections and
the videos were synchronized to the reference times. The data was synchronized by
taking the sample with time stamp closest to that of reference time in consideration.
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2. Data Source and Description

In some sequences the object detections and/or the videos could not be synchronized
in a satisfactory manner and the sequence was then not considered in the project.

2.2.1 Image Extraction

The log files contained the video-feed from the camera. From this video-feed, images
were extracted by sampling each frame to a 640× 480 gray-scale image. Examples
of what these images look like can be seen in figure 2.1.

Figure 2.1: Examples of images extracted from the front-looking camera’s video
feed.
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2. Data Source and Description

2.2.2 Object Data Extraction

The object data used in this project includes information about detections of sur-
rounding objects and estimates for the lane markings. In addition, the vehicle’s
movement is included in the object data.

At each given time, the 32 most relevant object detections were extracted and used.
As there were not always 32 objects surrounding the vehicle not all of these were
real detections. If there were fewer than 32 detections the list of detections was filled
with zeros. Additionally, if a detected object was too small the detection’s position
was set to zero.

A similar filtering was done for the lane markings estimations. From the log files
a third degree polynomial estimate was fitted and used. In some cases, one or
more actual lane markings did not exist or were not detected. In these cases, the
coefficient for that lane marking estimate was set to zero.

2.3 Data Formatting

While most of the data was not modified after extraction from the logs, some for-
matting had to be done. This section presents how the ground truth was computed
given the vehicle’s motion and how the data was pruned in order to avoid biased
input.

2.3.1 Computation of Ground Truth Path

The data collected in the expeditions did not contain explicit information of the
driven path. This information had to be computed using the yaw rate and the
distance moved at each time step. While computing the ground truth path many
variables had to be computed, these are visualized in figure 2.2 and explained in the
following paragraphs.

The coordinate system was decided by the vehicle’s position and direction at the
current time (t0). The time between two sequential observations was constantly
0.1 seconds and is here denoted ∆t.

In order to compute the full path, the distance moved and direction at each time
had to be known. The distance moved in the time interval [tn−1, tn] was δn and the
yaw rate during the same time period was ωn. Using the yaw rate it was possible to
compute the change in direction during the interval as

∆θn = ωn ×∆t.
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2. Data Source and Description

The direction at time tn in comparison to time t0 thus became

θn =
n∑
i=1

∆θi.

The next step was to compute the lateral and longitudinal movements made. First
the movements made during each time step needed to be computed. During the
time [tn−1, tn] the lateral movement was

∆xn = δn × sin (θn)

while the longitudinal movement was

∆yn = δn × cos (θn) .

The position at time tn was computed by summing all movements made up to that
point. Thus, the lateral position was

xn =
n∑
i=1

∆xi

while the longitudinal position was

yn =
n∑
i=1

∆yi.

Once the lateral and longitudinal positions were computed, the full path could be
created. The position of the vehicle at time tn was

pn = (xn, yn).

The ground truth path was a vector p = [p1, . . . , pN ] where N was the desired
number of positions. For this project N = 50 as the prediction were made 5 seconds
into the future with a sample rate of 10 samples per second.
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∆xn

∆ynδn

∆θn

θn

xn

yn
pn

pn−1

pn−2

pn+1

p0

vehicle

latitude

longitude

Figure 2.2: The image shows the measurements used in order to compute the
ground truth path p = [p1, . . . , pN ]. The coordinate system was determined by the
vehicle’s position and direction at t0. During the time interval [tn−1, tn] the vehicle
moves a total distance of δn in the direction θn. At time t0 the vehicle was moving
purely in the longitudinal direction.

2.3.2 Data Pruning

The performance of a network largely depends on the quality and distribution of
the data. If the data contains an uneven distribution the network will be biased
towards the more common outputs. In order to alleviate this problem, the data was
pruned so no type of output was overly dominant.

The first step of pruning was simply to remove overlapping data. Time series of
1 second were used as input to the network. Therefore, permitted sequences were
created so the inputs had no overlap between samples. After that the ground truth
target path was computed for each of the sequences. The lateral and longitudinal
positions after 5 seconds were then extracted from the target path. The pruning
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2. Data Source and Description

of data was then done with respect to the lateral and longitudinal positions after 5
seconds.

Figure 2.3a shows that most observations of the lateral position lie in the range
[−30, 30] meters. Similarly, figure 2.3b shows that the range [90, 180] meters covers
most observations of the longitudinal position, which corresponds to a velocity range
of [65, 130] kilometers/hour. Therefore, to avoid tails on the distribution of data,
sequences with values outside these ranges were excluded when pruning.

The next step in the pruning process was to create bins for the ranges in question.
One by one, the target path was computed for the sequences, and the lateral and
longitudinal positions were put into their respective bin. If either of the bins for
lateral or longitudinal position was full, the sequence was discarded, otherwise it
was added to the list of permitted sequences. The cap for each bin was set to 2000
for the lateral position and to 800 for the longitudinal position.

Figure 2.3 shows the histograms of the lateral and longitudinal positions after prun-
ing, with the remaining data representing 7 hours of driving. From the histograms
it is visible that the pruning reduced the domination of one bin for both the lateral
and the longitudinal position. Thereby, the network should have lesser risk of being
biased and always producing the same output.
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(a) Histogram of lateral position before
pruning.
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(b) Histogram of longitudinal position
before pruning.
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(c) Histogram of lateral position after
pruning.
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(d) Histogram of longitudinal position
after pruning.

Figure 2.3: The figures show the histograms of the ground truth position’s x and
y coordinates after 5 seconds. Figures 2.3a and 2.3b are before pruning while 2.3c
and 2.3d are after pruning.

12



3
Artificial Neural Networks

In 1943 Warren McCulloch and Walter Pitts released their work on how the nervous
system could be modelled by using a mathematical model of a neuron [16]. With
Frank Rosenblatt’s work “The Perceptron” building on their work the concept of
artificial neural networks was introduced [17]. However, neural networks had to wait
for another 60 years until the computational power and availability of data made
them useful. This chapter covers the types of networks used in this thesis along with
some theory about how neural networks are trained.

3.1 Feedforward Neural Network (FFNN)

The feedforward neural network (FFNN) is the first and most basic neural network.
Each neuron in the network is similar to the McCulloch-Pitts neuron as it receives
and transmits a value and can be seen as a direct and acyclic graph. The neurons
are separated into layers which are fully connected.

The fully connected layers get their name from the fact that a neuron gets input
from all neurons in the previous layer. The value of a neuron is determined by
computing a weighted sum of all neurons in the previous layer and also adding a
bias. The sum is usually passed through an activation function in order to create
non-linearity (see section 3.4). The value then becomes

z
(n)
i = f

Nn−1∑
j=1

w
(n)
i,j z

(n−1)
j + b

(n)
i


where z(n)

i is the value of neuron i in layer n, f is the activation function, w(n)
i,j is the

weight between neuron j in layer n− 1 and neuron i in layer n and b(n)
i is the bias

of neuron i in layer n. This is computed for each neuron in layer n. Once the values
are computed they are used to compute the values of the neurons in layer n+ 1.

The input to the network is typically a vector of values. This vector can be used as
layer 0 when computing the values of the first layer. Finally, the values of the last
layer are used as the output from the network.
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Figure 3.1 shows a small FFNN with two fully connected layers. The network has
two inputs, z(n)

1 and z
(0)
2 , which are used to compute the values of the next layer

according to

z
(1)
1 = f

(
w

(1)
1,1z
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1 + w
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(1)
1

)
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(0)
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(1)
3

)
.

Once these have been computed, they are used to compute the values of the next
layer which is also the output layer. The values of the output neurons is

z
(2)
1 = f

(
w

(2)
1,1z

(1)
1 + w

(2)
1,2z

(1)
2 + w

(2)
1,3z

(1)
3 + b

(2)
1

)
z

(2)
2 = f

(
w

(2)
2,1z

(1)
1 + w

(2)
2,2z

(1)
2 + w

(2)
2,3z

(1)
3 + b

(2)
2

)
.

and thereby the full network has been passed through.

Commonly, these computations are computed in vector form. For this the values of
the neurons in one layer are placed in vectors. For the small FFNN, the calculations
then become

z(1) = f
(
W(1)z(0) + b(1)

)
z(2) = f

(
W(2)z(1) + b(2)

)
where W(n) is the weight matrix and b(n) the bias vector of layer n. The output
from the network is the vector z(2).

z
(0)
1

z
(0)
2

z
(1)
1

z
(1)
2

z
(1)
3

z
(2)
1

z
(2)
2

Layer 1
(hidden)

Layer 0
(input)

Layer 2
(output)

Figure 3.1: The image shows a small FFNN with two fully connected layers.

3.2 Convolutional Neural Network (CNN)

In 1989 Yann LeCun showed that the convolutional neural network (CNN) were
able to recognize hand-written characters and thereby showed the potential of the
convolutional neural network [18]. The architecture of the neural network consisted
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of convolutional layers, pooling layers and non-linear activation functions, which
later became the key building blocks of the convolutional neural networks. The
most recent successes in image recognition and natural language processing have
been done using convolutional neural networks [19, 20].

The success of the CNN comes from its structure. Unlike other neural networks, a
CNN assumes its input is 3-dimensional and has a width, a height and a depth. A
common input is an image, where the width and height are determined by the size
of the image and the depth represents the number of channels in the images.

CNN usually use a combination of convolutional and pooling layers. These layers aim
to reduce the size of the image in terms of width and height, with some exceptions
such as done in GoogLeNet [21]. Usually the depth increase in the convolution layers
as channels are added to the image. In doing so, the channels can find different
features of the images.

Depending on the desired output, a CNN can have some fully connected layers after
the convolutional and pooling layers. This is common when the desired output is
a feature vector. In this case the image remaining after convolutional and pooling
layers is flattened into a vector. The fully connected layers then work as described
in section 3.1.

3.2.1 Convolutional Layer

The convolutional layers rely on local connectivity of the units, meaning that close-
by pixels are most likely correlated. This means that the value of a neuron does
not depend on the value of all neurons in the previous layers. Instead, it is only
dependent on a local area, as seen in figure 3.2. The resulting value depends on the
values of all the channels for the local area in the previous layer.

All neurons in one layer use the same weights when computing its value. Thus,
the weights serve like a filter which slides over the entire layer trying to distinguish
features. The purpose of this is to make the CNN space-invariant, as a feature may
be anywhere in the layer.

The convolutional layers depend on some hyperparameters which influence its be-
havior, where the main ones are kernel size, stride and padding. The kernel size
determines the size of the filter containing the weights. The stride is the step size
with which the filter is moved as it slides over the image. Padding is done to increase
the size of the image by adding values on either side of the layer. This is typically
done for the image to remain the same size in terms of width and height.
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Figure 3.2: Example of a convolutional layer from the current layer (blue) to next
(green). The filter (yellow) has 3× 3 kernel size, 1× 1 stride and no padding.

3.2.2 Pooling Layer

The pooling layers, like the convolutional layers, do not look at the complete previous
layer when computing the values of a neuron. However, the pooling layers works on
each channel separately.

A pooling layer pools together neurons in the previous layers into clusters. It then
performs an action on the cluster to determine the value of the neuron. The most
common is max pooling, which means that the largest value in the cluster becomes
the value of the neuron. Figure 3.3 illustrates how a 2 × 2 max pooling layer with
2× 2 stride works.

6 1 0 1

5 1 5 3

2 7 8 4

6 1 6 9

6 5

7 9

Figure 3.3: Illustration of how a 2× 2 max pooling layer with 2× 2 stride works.

16



3. Artificial Neural Networks

3.3 Recurrent Neural Network (RNN)

In contrast to the FFNN and CNN which only consider the current input, the
recurrent neural network (RNN) is capable of keeping a memory between inputs.
Therefore, the RNN is capable of accessing temporal information within sequential
inputs. This in turn makes the RNN suitable for tasks in which the input data is a
time series.

A RNN can be seen as a unit which is passed through several times, with a hidden
state kept in its memory between each passage. Figure 3.4 shows how a sequence of
inputs is fed to a RNN unit. At each time point t the network is fed input xt and it
computes the hidden state ht which functions as both the output at the given time
and is kept as memory until time t+ 1.

RNNt

ht

xt

= RNN1 RNN2 . . . RNNN

h1 h2 hN

x1 x2 xN

h1 h2 hN−1
ht

Figure 3.4: The image shows the input and output of a RNN unit over time. To
the left a folded RNN is shown, in which it is clear that the hidden state is kept in
the RNN. To the right it shows the RNN unfolded, where each time step is visualized
as a separate unit which receives two inputs at each time t ∈ 1, . . . , N . The inputs
at time t are the actual input is xt and the hidden state from the previous time ht−1.
The output is ht, and this is also kept in memory until the time t+ 1.

The internal structure of a RNN can vary greatly. In a simple form the RNN unit,
seen in figure 3.5, considers the hidden state from the previous step ht−1 as an input
alongside the actual input xt. The two vectors are concatenated and and the new
values of the hidden state are computed as

ht = tanh (W[ht−1,xt] + b)

where [·, ·] denotes vector concatenation and W and b are the weight matrix and
bias vector respectively.
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ht−1 ht

xt

ht

tanh

Figure 3.5: The image shows a schematic view of the process inside a simple
RNN unit. The unit concatenates the current input with the hidden state from
the previous time step. This is then passed through a fully connected layer with
hyperbolic tangent activation.

3.3.1 Long Short-Term Memory (LSTM)

The most successful RNN is called long short-term memory (LSTM), introduced
in 1997 by Hochreiter and Schmidhuber [22]. It has found success in e.g. natural
language processing and speech recognition. Figure 3.6 shows a schematic view of
an LSTM unit.

In addition to the hidden state ht of the RNN, the LSTM unit keeps the cell state
ct in memory at time t. Updates to the states are done in each time step, and these
updates are controlled by four gates in the unit; the forget gate (f), the input gate
(i), the modulation gate (g) and the output gate (o). Each of the gates has a weight
matrix Wn and a bias vector bn for n ∈ {f, i, g, o}.

When an input vector xt is given to an LSTM unit it is immediately concatenated
to the hidden state vector from the previous time step ht−1. The first gate it then
encounters is the forget gate which controls how much should be forgotten from the
previous cell state and is computed as

ft = σ (Wf [ht−1,xt] + bf )

where [·, ·] again represents vector concatenation and σ is the sigmoid function.

In order to update the cell state, the LSTM needs to decide which new information
to add. This is done in two steps. The first step is to calculate which states to
update. This is done by the input state which also guards against noisy input data
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which will hurt the cell state. The computations are given by

it = σ (Wi[ht−1,xt] + bi) .

The second step is computing potential candidates for new values to be given to the
states which are being updated. These values are given by

gt = tanh (Wg[ht−1,xt] + bg) .

After finding which states should be updated and by how much, the cell state is
ready to be updated according to

ct = ft ◦ ct−1 + it ◦ gt

where ◦ represent the Hadamard product.

With the cell state updated, an output from the LSTM can be computed. This is
done with the output gate which determines how much of each cell state should be
used. The output gate is computed as

ot = σ (Wo[ht−1,xt] + bo)

and is used to update the hidden state by

ht = ot ◦ tanh (ct) .

Thereby the cell and hidden states have been fully updated and the hidden state is
provided as output.

ht−1 ht

ct−1 ct

xt

ht

σ σ tanh σ

◦

◦ ◦

+

tanh

ft it gt ot

Figure 3.6: The image shows a schematic view of an LSTM unit. The rectangles
represent gates in the units which pass the input through a fully connected layer
with either sigmoid or hyperbolic tangent activation. The circles signify operations
between two vectors, ◦ for the Hadamard product and + for addition. Ellipse
represent that a function is applied to a vector.
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3.4 Activation Function

Activation functions are used in order to introduce a non-linear dependency between
the input and output of the network. In theory any function can be used as an
activation function, but there are some functions which are commonly used. These
functions are listed in equations (3.1)-(3.6) and their respective graphs are shown in
figure 3.7.

Identity: f(x) = x (3.1)

Binary step: f(x) =

1 if x ≥ 0
0 if x < 0

(3.2)

Sigmoid: f(x) = σ(x) = 1
1 + e−x

(3.3)

Hyperbolic tangent: f(x) = tanh(x) = ex − e−x

ex + e−x
(3.4)

Rectified linear unit: f(x) =

x if x ≥ 0
0 if x < 0

(3.5)

Leaky rectified linear unit: f(x) =

x if x ≥ 0
αx if x < 0

(3.6)

The binary step is one of the oldest activation functions and it decides whether a
signal is on (1) or off (0). This function has derivative zero at all places where it
is differentiable. Therefore, this function will always give zero-gradients and is not
suitable to use in combination with optimization methods which use the gradients.

The sigmoid function (also known as logistic function) is a smoother version of the
binary step. It has continuous values in the range [0, 1] and is differentiable at all
points. Historically, this function has been used widely in neural networks along
with the hyperbolic tangent function. The hyperbolic tangent function is similar
to the sigmoid in shape but has a larger range which is centered in 0. This makes
it similar to the identity function for inputs close to 0. However, the sigmoid and
hyperbolic tangent become saturated for large values.

The last two functions, rectified linear unit (ReLU) [23] and leaky ReLU do not
saturate for large positive values. This allows for large activations and thereby a
sensitivity towards large inputs. Leaky ReLU has a parameter α < 1 which is
a small value to allow for the output to not become zero, but still have a small
value. Currently, ReLU is the most commonly used activation function in deep
neural networks. However, other linear units such as leaky ReLU are becoming
more popular due to their non-zero derivative for negative inputs.
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Figure 3.7: The figure shows the graph for some of the common activation func-
tions. For leaky ReLU the parameter in equation (3.6) is set to α = 0.1 for visual-
ization purposes.

3.5 Training a Neural Network

In order to train a neural network there is a need for a method in which a network
is taught to execute a task. This is usually done by letting the network compute the
value of the function it represents and then providing feedback. The network can
then use the received feedback in order to change the parameters so that its output
improves.

There are two common types of learning; supervised and unsupervised learning. The
main difference between these forms of learning is that in the former the desired
output of the network is known. This means that the feedback provided to the
network is a form of error determining how much the output of the network differs
from the target. On the other hand, when performing unsupervised learning there
is no definitive desired output. The feedback can instead consist of how well the
density of the inputs is captured or some other measurement which reflects back on
the input data.
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3.5.1 Supervised Learning

As supervised learning has a target for each input it gives the possibility to compute
a loss of how much the computed output differs from the target. Given an input x
the network computes the output ŷ = f(x|θ) where θ are the network’s parameters.
The loss is computed with a loss function L(y, ŷ) which uses the target output y and
the actual output ŷ. Depending on the problem at hand, different loss functions are
used. Common loss functions are mean square error for regression type problems
and cross entropy for classification type problems.

Imitation learning is a form of learning where the neural networks are trained to
imitate the behavior of humans. For supervised imitations learning this means that
a human has performed the task which the network is supposed to learn. The
human’s solution is then used as the target output y while training the network.

When using supervised learning it is common to use backpropagation to update the
parameters of the network. This is an algorithm which works iteratively to minimize
the loss. The basic steps of the algorithm are:

1. Compute ”forward pass” of the network, i.e. compute the network’s output ŷ.
2. Compute gradients ∇θL(y, ŷ) with respect to parameters θ.
3. Update parameters with an optimization algorithm. A commonly used opti-

mization method is gradient descent which updates the parameters according
to θ ← θ − η∇θL(y, ŷ), where η is the learning rate.

4. Has the network converged?
Yes: Stop algorithm
No: Repeat from step 1.

3.5.2 Optimization Methods

A common optimization method used to minimize the loss is to use gradient descent.
The method works iteratively and the idea is to at each iteration take a step in
the direction in which minimizes the loss function the greatest. This is done by
computing the gradient of the loss with respect to each parameter and taking a step
in the opposite direction.

Stochastic gradient descent (SGD) is a slightly modified version of gradient descent.
The difference comes in when the gradients are computed. In gradient descent the
function is computed for all the input data in the training set. In SGD the gradients
are computed after each mini-batch. The purpose for this is that gradient descent
easily finds a local minimum and has difficulties improving further. By computing
the gradients after each mini-batch the specific mini-batch may have gradients which
differ from the overall and thereby leave the local minimum and hopefully find a
better solution.
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A method to further improve the gradient descent is to use SGD with momentum.
By doing so, the update of parameters does not only depend on the gradient of the
current values. Instead it also remembers the step taken in the previous iteration.
This leads to a modified update rule θ ← θ − η∇θL(y, ŷ) + β∆θ where ∆θ is the
update in the previous iteration and β a scalar forgetting factor.

A more recent optimization method which is also an offspring of gradient descent
is adapted moment estimation (Adam) [24]. Adam uses both running averages of
the gradients and second moments of the gradient. Adam updates the parameters
according to

mθ ← β1mθ + (1− β1)∇θL(y, ŷ)
vθ ← β2vθ + (1− β2) (∇θL(y, ŷ))2

m̂θ = mθ

1− β1

v̂θ = vθ
1− β2

θ ← θ − η m̂θ√
v̂θ + ε

where β1 and β2 are scalar forgetting factors and ε is a small number used to avoid
diving by 0.

3.5.3 Regularization

In order to have a robust model it is not enough to only have a low training error
on the training set, but also on the validation and test set. A model, given enough
parameters, can in theory gain near-perfect loss on the training set, but still not
learn the underlying structure of the data. Therefore, a model has to be able to
generalize the behavior of the dataset, instead of only fitting the unimportant noise
in the training set. The purpose of regularization is to use techniques which lower
the validation loss, but not the training loss. Two commonly used techniques are
early stopping and dropout.

Early stopping is one of the most fundamental regularization methods used when
training a neural network [25]. The idea is to stop training the network as soon
as the validation loss stops decreasing. This means that the network has stopped
generalizing and started overfitting to the noise in the training set.

Dropout is a regularization technique which randomly disconnects neurons (their
value is set to zero) from a computation graph during training [26]. By forcing a
network to not completely rely on a specific set of weights to produce the wanted
output, the network learns to use more of its weights to produce the output. This
has been shown to increase the robustness of neural networks and has increased
the accuracy on difficult tasks such as image classification [19, 27]. Dropout has
the added benefit of being very computationally cheap and can be applied to most
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networks and problems [28]. However, since all the weights are not used during
training the overall model size and number of training iterations may need to be
increased to compensate [28].
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Model Designs

This chapter presents the main models used to predict the path. A total of four
models are presented; a CNN which uses only images, an LSTM which uses only
object data and two different models which merge images and object data. Finally,
the chapter presents how the models were implemented and trained.

4.1 CNN Model

The first model is a CNN model which uses a behavior reflex approach, using images
as the only input. The presented model has two similar versions, with the difference
lying in the input data. One version uses 1 image and the other version uses 10
images. When 10 images are used, there is some temporal information within the
data as all the images are taken within a fixed time-frame.

4.1.1 Image Preprocessing

The image extraction described in section 2.2.1 provides images of size 640×480. In
order to reduce computation time while running the model, the images were cropped
and down-sampled. Initially the images are cropped by 168 rows at the top and 72
rows at the bottom, as the top rows shows the sky and the bottom rows shows the
vehicle’s hood. These parts are deemed unnecessary for the network to process as
they are seldom beneficial for driving. After the cropping a 640×240 image remains.
This is further down-sampled to a 182 × 68 image in order to reduce computation
time.

After cropping and down-sampling the image, per image normalization is performed.
This is done by subtracting the mean of the entire image from each pixel value and
then dividing the remaining value by the image’s standard deviation. The purpose
of the normalization is to make the image input less dependent on the brightness
of the surrounding environment. This is necessary as the data was collected both
daytime and nighttime.
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The version of the model which uses only one image uses a 3-dimensional tensor
with dimensions 1×68×182 as input. For the version using 10 images, the input to
the network is a sequence of the 10 images. This is done by stacking the images from
the sequence by using each individual image as a channel of the input. Thereby the
input in this version is given as a 3-dimensional tensor with dimensions 10×68×182.

4.1.2 CNN Architecture

This model is given an input which consist of either 1 or 10 images, preprocessed
as described in section 4.1.1. The CNN has five convolutional layers and three max
pooling layers, which are illustrated in figure 4.1. All the pooling layers have 2× 2
kernel size and 2× 2 stride. The first convolutional layer has 5× 5 kernel size while
the subsequent convolutional layers have 3 × 3 kernel size. All convolutional layer
use 1× 1 stride and are followed by leaky ReLU activation.

The depth of the first convolutional layer is usually used for RGB of a single image,
but can have any size. In the version which uses stacked images, the time aspect is
used as each image represents a channel of the input.

10 × 68 × 182

24 kernels
size: 5 × 5

24 × 64 × 178

Pooling
size: 2 × 2

24 × 32 × 89

36 kernels
size: 3 × 3

36 × 30 × 87

Pooling
size: 2 × 2

36 × 15 × 43

48 kernels
size: 3 × 3

48 × 13 × 41

Pooling
size: 2 × 2

48 × 6 × 20

64 kernels
size: 3 × 3

64 × 4 × 18

76 kernels
size: 3 × 3

76 × 2 × 16

Figure 4.1: The image shows the convolutional and pooling layers used in the
CNN with 10 images as input. The convolutional layer all have 1× 1 stride and are
followed by leaky ReLU activation. All pooling layers have 2× 2 stride and perform
perform max pooling. The version of the network which uses only image instead
has input with dimensions 1× 68× 182.

Finally, the feature remaining after the convolutional and pooling layers is flattened
into a vector. This vector then goes through three fully connected layers which aim
to format the output. Each of the layers decrease the dimensionality of the vector.
All layers are followed by leaky ReLU activation, except the last which is followed
by identity activation.
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2432
flattened

1000
FC 1

500
FC 2

100
FC 3

(output)

76 × 2 × 16 = 2432

flattened vector

Figure 4.2: The image shows the structure of the FFNN in figure 4.4. All layers use
leaky ReLU activation, except the last which uses identity activation. The values
below each layer list how many neurons are in each layer.

4.2 LSTM Model

The second model is an LSTM network which uses only the object data as input.
The object data is provided sequentially to the LSTM in order to make use of the
temporal information.

4.2.1 Object Data Preprocessing

The object data consists of the object detections, the lane estimations and the
vehicle’s movements. At each time step these are placed into a vector containing
the lateral and longitudinal positions of the detections, the coefficient for the lane
estimations, the distance the vehicle has moved during the time step and the yaw
rate during the time step. This vector then contains 82 elements and the input then
consists of a sequence of 10 vectors.

4.2.2 LSTM Architecture

The architecture of the LSTM is visualized in figure 4.3. The network uses a sequence
of object data as described in section 4.2.1. The network has three LSTM units after
one another, each functioning as a layer and containing a cell state and hidden state
of size 100. In order to format the output from the model the final output from the
LSTM layers is passed through a fully connected layer with identity activation.
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LSTM(1)

h(1)
t

c(1)
t

LSTM(2)

h(2)
t

c(2)
t

LSTM(3)

h(3)
t

c(3)
t

h(1)
t

h(2)
t

h(3)
t

xt

(a) The image shows how information is passed between the three LSTM units used
at each time point t.

100
h(3)

10

100
output

last output

from LSTM(3): h(3)
10

(b) The output from the third LSTM unit for the tenth and final time step is passed
through a fully connected layer. The values below each layer list how many neurons
are in each layer.

Figure 4.3: The two subfigures show a schematic view of the LSTM network. The
input passes through three LSTM units for all samples in the sequence, which is
visualized in figure 4.3a. Once all have gone through the the units, the final hidden
state of LSTM(3) is passed through a fully connected layer with identity activation
to format the output and allow for a non-saturated output, seen in figure 4.3b.

4.3 Merging Model 1

The third model uses both the images and the object data. In order to do this
the model is constructed using a combination of networks. The resulting model has
three inner networks as shown in figure 4.4.

The inner networks allow for the images and the object data to be processed sepa-
rately in a manner suitable to the data type. The images are processed by the CNN
described in section 4.1, the version which stacks 10 images. Meanwhile, the object
data is processed by an LSTM of the type described in section 4.2.

Both the CNN and the LSTM output a vector each. The vectors are then concate-
nated and passed to a FFNN. The FFNN consists of four fully connected layers as
seen in figure 4.5. The first layer increases the dimensionality of the data. The sub-
sequent layers then decrease the dimensionality of the data until the last layer which
produces the output vector with 100 elements. All layers except the last are followed
by leaky ReLU activation, while the last uses identity activation. The output from
the FFNN is then also the output from this model.
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CNN

LSTM

FFNN

Images

Object
data

Predicted
path

Merging model 1

Figure 4.4: The image shows a schematic view of the neural network, which has
three inner networks. The CNN processes the images while the LSTM processes
the object data. Afterwards the outputs from these networks are concatenated and
passed to the FFNN.

1000
FC 1

200
concatenated

500
FC 2

100
FC 3

100
FC 4

(output)

vector

concatenated

Figure 4.5: The image shows the structure of the FFNN in figure 4.4. All layers
use ReLU activation, except the last which uses identity activation. The values
below each layer list how many neurons are in each layer.

4.4 Merging Model 2

The fourth model also uses both the images and the object data. The structure of
the model is similar to the model implemented at Berkeley for predicting steering
angles [15]. The model first lets each image pass through a CNN to extract a feature
vector. These feature vectors are then merged with the object data and passed to
the LSTM. A schematic view of this model can be seen in figure 4.6.

The images are processed by a CNN which uses 1 image as input, as described in
section 4.1. This provides a feature vector for each of the 10 images. Each of the
features vectors is then concatenated with the corresponding object data, which has
been preprocessed as described in section 4.2.1. This creates a time series of 10
vectors, each with 182 elements.

The concatenated vectors are then given to an LSTM of the type described in section
4.2, but the input vectors have 182 elements. The output from the LSTM is also
the output from this model.
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CNN
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Merging model 2

Figure 4.6: The image shows a schematic view of merging model 2, which has two
inner networks. The CNN processes each individual image and outputs a feature
vector. The feature vectors are then concatenated with the corresponding object
data and passed to the LSTM as a time series.

4.5 Output Format

The models are trained to predict 5 seconds into the future. With a sample rate
of 10 samples per seconds this means that the path consists of 50 future positions.
Each position is 2-dimensional and therefore the models must output 100 values to
account for the lateral and longitudinal positions. This is the reason the models
output vectors with 100 elements. These were then grouped into points such that
every two output elements corresponds to a 2-dimensional position.

4.6 Implementation

The models were constructed, trained and evaluated using PyTorch [29], which is a
machine learning library developed mainly by Facebook. While training, Adam was
used as the optimization algorithm with the default parameters.

The CNN (with both 1 and 10 images as input) and the LSTM models were trained
first. These models did not require any other models while training. While training
merging model 1, pretrained CNN and LSTM models were used, which means that
the output vectors from these two networks were also predicted paths. Merging
model 2 used a pretrained CNN model while training. Thereby, the feature vector
from the CNN was a predicted path.

While training the models, early stopping and dropout were used. Early stopping
was used by interrupting the training once the validation loss had stopped improving.
Dropout was used in the training of all models. For the CNN, dropout was used
on the second and third fully connected layers. In the LSTM, dropout was applied
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to the output from the first two LSTM units. Merging model 1 had dropout in its
FFNN part, on the first and second fully connected layers. Merging model 2 had
dropout on its LSTM part in the same manner as the LSTM model. For all models,
dropout probability was 0.5, which is the common dropout probability for linear
layers [26].

4.6.1 Normalization of Paths

While driving, the vehicle moved further longitudinally than laterally, as could be
seen in section 2.3.2. In addition, the position after 5 seconds is likely to have larger
values than the position after 1 second. Due to this, each output value will have a
different range in which its potential values lie. This difference in ranges will cause
the data to be scaled badly and thereby be unbalanced.

To balance the data when computing the loss, the path had to be normalized. This
was done for each position ci individually, with c ∈ {x, y}, i ∈ {1, . . . , 50}. The
mean and standard deviation of ci, µci and σci respectively, were computed over the
full training set. Then all the values of the ground truth path were normalized as

c′i = ci − µci
σci

.

Similarly, the predicted path also had to be normalized. This was done using the
mean and standard deviation computed for the ground truth paths. Thus, a pre-
dicted value ĉi is normalized to

ĉ′i = ĉi − µci
σci

.

4.6.2 Loss Function

While training the network, a mean square error was used on the normalized values.
The loss is thus defined as

L = 1
100

( 50∑
i=1

(x̂′i − x′i)
2 +

50∑
i=1

(ŷ′i − y′i)
2
)

where (x′i, y′i) is the normalized true position at time ti and (x̂′i, ŷ′i) is the normalized
predicted position at the same time.
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5
Results

This chapter covers the evaluation of the different model. The models are evaluated
in a few different manners. First, the distribution of errors which occurred on the
test set. Second, the predicted paths for some scenarios are shown alongside the
target path. Third, predictions and target through one whole video are shown.
Last, the models are compared to an interpolation which can be used to predict the
path.

5.1 Error Distribution

This section shows box plots for how the errors on the test set are distributed for
the models. A box represents the values between the first quartile q1 and the third
quartile q3 while the line inside represents the median. The whiskers above and below
the box are q1−1.5(q3−q1) and q3 +1.5(q3−q1) long respectively and corresponds to
the 99.3 percentile if the data were normal distributed. Box plots are shown first for
the CNN model and then for LSTM model. Finally, the box plots of the CNN and
the LSTM are compared to the box plots of the two merging networks are shown.

5.1.1 CNN Model

Figure 5.1 shows the distribution of the errors for the CNN with 1 image and the
CNN with 10 images. The figure shows the errors as they are after 1, 2, 3, 4 and 5
seconds for the three models. It is visible from the plot that the CNN model with
10 images as input performs best of these models.
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Figure 5.1: The box plots contain information about how the distributions of the
absolute error for the lateral and longitudinal position over time. The plots represent
the models which only use images as input; CNN with 1 image and CNN with 10
images.

5.1.2 LSTM Model

The LSTM model was tested in three different ways. The first is when the input
data works just as it should, the second is when lane marking estimates are missing
and the final manner is when object detections are missing. Figure 5.2 shows the
distribution of errors for these three cases after 1, 2, 3, 4 and 5 seconds. The
plots show that excluding lane marking estimates is harmful while excluding object
detections does not make a large difference.
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Figure 5.2: The box plots contain information about how the distributions of the
absolute error for the lateral and longitudinal position over time. The plots all
represent the LSTM model tested in three different manners; with all data, with
lane marking estimates missing and with object detections missing.

5.1.3 All Models

Figure 5.3 shows the distribution of the errors for the best CNN model and the
remaining models; the LSTM, merging model 1 and merging model 2. Again, the
errors are shown as they are after 1, 2, 3, 4 and 5 seconds for these models. It is
visible from the plot that the errors are larger for the CNN, while the other models
have similar error distributions.

Figure 5.4 shows how the errors build throughout the predicted path. The box plots
shown at 2 seconds display the difference between the error after 1 second and the
error after 2 seconds, and similarly for the box plots after 3, 4 and 5 seconds. The
corresponding measure after 1 second is equal to the error after 1 second.
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Figure 5.3: The box plots contain information about how the distributions of the
error for the lateral and longitudinal position over time. The network shown in the
box plots are the CNN, the LSTM and the full network.
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Figure 5.4: The box plots contain information about how the distributions of the
error difference for the lateral and longitudinal position over time. The network
shown in the box plots are the CNN, the LSTM and the full network.

5.2 Example Paths

A different method for evaluating the performance of the models was to plot the
predicted paths alongside the target path. Figures 5.5-5.7 shows examples of what
this may look like for the CNN with 10 images, the LSTM. The image shows the
input from the camera to the left, the detected objects and third degree polynomial
lane marking estimates in the middle and lastly the predictions alongside the target
to the right.
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Figure 5.5: Examples of input and output from the network. The sample was
recorded in a tunnel and the road appears to be turning left, with no surrounding
objects. The predicted paths are similar with the exception of the CNN which
performs the worst. The best prediction is the merging model 1 which manages to
catch the curvature of the path but has misjudged the speed slightly.
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Figure 5.6: Examples of input and output from the network. The sample was
recorded daytime and the road appears to be turning slightly right. In the middle
image the estimated lane markings differ in comparison to how the detected objects
are aligned. The predictions vary a lot in this case, with the best prediction in done
by merging model 2 which manages to follow the ground truth. The CNN misjudges
the path a lot but has figured it should be a right turn. The LSTM and merging
model 1 have very similar paths and has estimated the longitudinal position good,
but overestimated the lateral position.
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Figure 5.7: Examples of input and output from the network. The sample was
recorded nighttime and the road appears to be turning right, but is hard to estimate
from the image alone. The predictions from all models deviate from the ground
truth, with the best prediction done by the LSTM and the merging model 2, which
coincides. The CNN misjudges the scene by a lot and the merging model 1 finds a
right curve but is not accurate to the ground truth.

5.3 Consecutive Sequences

Figure 5.8 shows the target and predictions in terms of lateral and longitudinal
position after 5 seconds for 77 consecutive sequences. The input and output for
sequence 8 in the figure are shown in figure 5.7. These sequences are among the
toughest to estimate in the test set, as they vary much in terms of lateral and
longitudinal position. Additionally, the consecutive sequences are recorded during
the night.
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Figure 5.8: The lateral and longitudinal position after 5 seconds 77 different con-
secutive sequences. The predictions are done by the CNN, the LSTM and the full
model in comparison to the ground truth. The x-axis shows the numbering of the
sequences through the video.

5.4 Comparison to Interpolation

To evaluate the performance of the LSTM, merging model 1 and merging model 2,
they were compared with an interpolation from the input data. The interpolation
was done by using the longitudinal movement recorded in the last value of the
input sequence. By assuming that the vehicle would not change its current speed
the longitudinal position at each future time step could be computed. The lateral
position was calculated from the lane marking estimations, such that the vehicle’s
lateral position was placed between the lane marking estimates. If either of the lane
marking estimates did not exist, the path was placed alongside the existing lane
marking estimate with the same offset as the vehicle currently has. If neither of the
lane marking estimates existed, the path was to drive straight ahead. However, this
occurred very seldom and had no significant effect on the result.
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The comparison between the models and the interpolation is shown in figure 5.9.
From the figure it is visible that the models perform similarly to the interpolation.
In terms of the lateral movement the models are better than the interpolation, while
the interpolation is better at predicting the longitudinal movement.
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Figure 5.9: The box plots contain information about how the distributions of
the error for the lateral and longitudinal position is over time when the data is
faulty. The boxes represent the LSTM, merging model 1, merging model 2 and the
interpolated path.

5.4.1 Accuracy

Figure 5.10 shows two paths which follow the same curvature but at different speeds.
This causes the lateral and longitudinal positions of the two paths to differ largely.
Therefore, looking at only the distance between the target position and the predicted
position does not show the full performance of a model.

A different method of evaluating the predicted path is to not look at how far the
vehicle has moved. Instead, one can use a third degree polynomial representation
of the target path. The predicted path can then be evaluated by comparing the
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predicted lateral position at a certain longitudinal position to the target position
at the given longitudinal position. One can then look at how often this difference
is larger than a threshold. The threshold was set to 30 centimeters, as a deviation
smaller than this will likely not affect the comfort of the passengers when driving
on the roads considered in this thesis.

Table 5.1 shows the frequency with which the models and interpolation were within
30 centimeters of their target. This is shown after 1, 2, 3, 4 and 5 seconds. The
table shows that it is more common to be within the acceptable area early along
the path. Table 5.2 shows the median of the deviations larger than 30 centimeters
for the models and table 5.3 shows the largest deviation for each model. The tables
show that the LSTM, merging model 1 and merging model 2 perform similarly and
that the interpolation has lower accuracy and larger deviations.

∆x

∆y

Figure 5.10: The image shows two paths which follow the same curvature, but
at different speeds. Due to the difference in speed, the positions in the paths differ
both laterally and longitudinally.

Table 5.1: The table shows the percentage of times the models were within 30
centimeters of a third degree polynomial representation of the target path after 1, 2,
3, 4 and 5 seconds.

Accuracy
Model 1 second 2 seconds 3 seconds 4 seconds 5 seconds
LSTM 99.92 % 91.65 % 70.44 % 48.44 % 33.00 %

Merging model 1 99.86 % 91.60 % 70.62 % 49.19 % 33.69 %
Merging model 2 99.97 % 92.12 % 70.66 % 49.09 % 33.62 %
Interpolation 97.04 % 82.08 % 58.13 % 36.73 % 23.34 %
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Table 5.2: The table shows the median of the deviations (in meters) which were
larger than 30 centimeters after 1, 2, 3, 4 and 5 seconds.

Median of deviations larger than 30 centimeters
Model 1 second 2 seconds 3 seconds 4 seconds 5 seconds
LSTM 0.32 0.41 0.49 0.61 0.79

Merging model 1 0.36 0.41 0.49 0.60 0.75
Merging model 2 0.42 0.41 0.49 0.61 0.79
Interpolation 0.38 0.42 0.52 0.70 1.04

Table 5.3: The table shows the largest deviation (in meters) from the target path
representation after 1, 2, 3, 4 and 5 seconds.

Largest deviation
Model 1 second 2 seconds 3 seconds 4 seconds 5 seconds
LSTM 0.39 2.21 5.75 10.59 15.77

Merging model 1 0.51 2.31 5.70 10.10 15.06
Merging model 2 0.54 2.52 6.15 10.95 15.91
Interpolation 1.27 4.38 9.58 17.61 30.48
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6
Discussion

This chapter discusses the work done in the thesis and the obtained result. The
chapter starts by discussing the idea behind each of the presented models. Then
the obtained results are discussed along with potential explanations for why the
results are as they are. Additionally, the chapter presents thoughts on why the
images influence the merging models so little, and also alternative methods tried to
increase the influence from them. Lastly, ideas for what could be done in the future
to further improve the results are discussed.

6.1 Model Selection

The models presented in chapter 4 were designed such that the network structure
suited the network type. The LSTM model was designed to use the temporal infor-
mation within the object data, while the CNN was to process the images. The main
difference between the two merging models lies in where the recurrency appears. We
have investigated two forms of recurrency; early recurrency on the merged inputs
separately versus late recurrency on the merged inputs.

The model which was most straight forward in its implementation was the LSTM.
The object data was separated into sequences. The sequences were then provided
as input so the model was always trained to use 10 sequential input vectors before
computing an output. After each input vector has passed the temporal information
is used as the cell state and hidden state of the each LSTM unit is updated.

The CNN was the model which required most time to design and implement. The
purpose with this model was to find a model which used only the images to predict
the path. The presented CNN model has two versions as we wanted to investigate
whether the model could make use of temporal information in sequential images.
Stacking the images turned out to be the most effective manner of accessing this
information.

Merging model 1 were designed such that images and object data were processed sep-
arately. In this model, the access to temporal information was done before merging
the two inputs and was a part of the processing done on each input separately. Once
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each set of input is processed, the information obtained from them is merged. The
hope was that the model would be able to decide which information was most useful
or combine them in order to make a more accurate prediction using two different
sources of data.

Merging model 2 combines a single processed image with the object data. This was
done to merge the information before trying to access the temporal information.
The main reason to try to implement this model was due to a similar architecture
having had success in predicting the steering angle [15]. Therefore, we wanted to
investigate whether this type of structure could be used to predict the path.

While training merging model 1 and merging model 2, pretrained models were used,
as mentioned in section 4.6. This was done for a couple of reasons. In the case of
both the models, the main reason was to force a larger dependency on the output
of the early inner networks, especially the CNN. Additional benefits were that the
training time was reduced and the total performance of the models improved.

6.2 Discussion of Results

This section discusses the results presented in chapter 5. The results and their
significance are presented. In addition, explanations for the obtained result are
discussed.

6.2.1 CNN Model

The first comparison was between models which only used the image. Figure 5.1
shows how the errors compare for the CNN model described in section 4.1 when it
uses 1 and 10 images. From the figure it is clear that the model performs better
when it receives 10 stacked images instead of only 1 image. This means that the
CNN with 10 images is better at finding a relation between the images and the path.

Research done by NVIDIA when they presented PilotNet, showed an ability to
predict the steering angle using a single image [7]. However, our results show that
using a single image does not work well when predicting an entire path. The result
instead show that including several images into the CNN will improve its ability to
predict the path.

Further in the discussion, only the CNN using 10 images is compared to the other
models. This choice was done as using 10 images was clearly better, and including
both versions of the CNN made the comparisons more difficult due to the different
scales.
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6.2.2 LSTM Model

The LSTM model was trained using object data, which contained positions of object
detections, lane marking estimations and past movements of the vehicle. Figure 5.2
compares the performance of the LSTM to when the LSTM does not use either the
object detections or the lane marking estimates. From the box plots it is clear that
not using the object detections had a very small effect on the performance of the
LSTM. However, not using the lane marking estimates had a large negative effect
on its performance.

This indicates that the LSTM does not rely much on the object detections to predict
the path of the vehicle. Instead, the LSTM relies mostly on the past movements
of the vehicle and the lane marking estimations. Therefore, in situations when the
lane markings are not available the LSTM will not perform as well. The hope was
that in these situations, merging the object data with images would increase the
reliability of the predicted path.

The object detections contain the information how vehicles ahead move in relation
to the ego vehicle and therefore include information about the surrounding vehicles’
change in velocity. This could be used to predict an acceleration or brake. However,
in the used data there were very few situations where the vehicle brakes or accelerates
and even fewer where the speed change is made due to the surrounding environment.
The object detections therefore do not contribute much to the overall performance
as shown in figure 5.2. Therefore, continuing driving in the same speed and following
the lane markings will be a good approximation.

6.2.3 Performance of the Models

The box plots in figure 5.3 compare the errors of the CNN and LSTM to the errors
obtained for the models which merge different types of inputs. In addition, figure
5.4 shows how the error build through the path. From these figure it is visible that
merging model 1 and merging model 2 perform very similar to the LSTM. They also
show that the errors of the CNN are much larger than for the other models.

Additionally, figure 5.3 shows that the obtained errors are worse the further into the
future the prediction is done. This was expected, as the predicted path will have
had more time to deviate from the target path. However, figure 5.4 shows that the
errors do not increase linearly. Instead the errors get progressively worse the further
into the future the predicted position is. A reason for this is that further into the
future, there exist more possible paths which the model can choose between.

Figures 5.5-5.7 show examples of what the predicted paths may look like. While
training the models, it was important to look at this type of plot to make sure the
networks were not simply trained to always drive straight forward. In the figures it
is clear that this is not the case, and they also show that the predicted paths are
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rather smooth. It was also important to investigate whether the predicted paths
were smooth, which they were. If the path had been jagged, the passengers in the
vehicle would have been uncomfortable while traveling.

From figures 5.5-5.7 it is visible that the path predicted by the CNN differs the
most from the target path, while the other predicted paths are quite similar to each
other and the target. It is also visible that the models are capable of understanding
how the road is turning. The behavior and performance shown in the figures is
representative for the full test set. Commonly, the CNN was the worst estimate by
far, while the other three models performed similarly and changed which was closest
to the target path.

The graphs in figure 5.8 show the lateral and longitudinal positions for the models
after 5 seconds for 77 consecutive sequences. In the figure it is immediately visible
that the CNN does not perform as well as the other models. The graphs show that
the output from the model is quite volatile and not robust, especially in terms of
the longitudinal positions. Two consecutive sequences have similar input, but the
output from the CNN can vary greatly between these. The figure shows that the
other models perform very similarly. These models have relatively smooth curves,
especially in terms of the longitudinal position. This indicates robustness in the
models as small changes in the input will result in small changes in the output. The
curves representing the lateral movements are also quite smooth for these models,
except for sequences 25 to 40 where some sudden jumps appear. A look at the input
data for these cases showed that in these cases the lane marking estimates were
flawed.

In the graphs for the longitudinal position in figure 5.8 it is visible that the LSTM,
merging model 1 and merging model 2 curves have a delay compared to the curve
of the target. This indicates that the models are not capable of predicting a change
in speed, however they can react to a change in speed provided in the input data.
The tendency is not visible in the graphs for the lateral error. This again indicates
that using the lane marking estimates is helpful when trying to predict how much
the vehicle should turn.

One likely explanation for why the LSTM is performing much better than the CNN
is that the relevant information is provided in a more accessible and extractable
manner. This is not very surprising as the LSTM is provided values for where
objects are and how the lane markings are estimated, while the CNN has to deduce
this from the images as well as how the vehicle has previously moved. Thereby, the
LSTM can focus on just computing the path given this information, while the CNN
might not be able to extract the data in the images.

The CNN being much worse than the LSTM is a probable reason for why the merging
models are very similar to the LSTM. When predicting the path of the vehicle, the
merging models will likely find the information provided by the object data to be
much more relevant than the information provided by the images. Therefore, the
merging models treat the information from the images as mainly noise. This causes
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the merging models to not be influenced by the images and perform as the LSTM.

6.2.4 Comparison to Interpolation

Section 5.4 shows the results of comparing the LSTM, merging model 1 and merging
model 2 with an interpolation. Figure 5.9 shows box plots for how the errors are
distributed after 1, 2, 3, 4 and 5 seconds. From the figure it is visible that the inter-
polation is better at predicting the longitudinal position than the models. However,
the models are better in terms of predicting the lateral position. This is a sign
that the models have a difficult time predicting the speed with which the vehicle is
moving, but are capable of understanding when and how the vehicle should turn.

While looking at examples of predicted paths we noticed that in some instances the
predicted path seemed to follow a trajectory similar to that of the target path, but
either ended to soon or continued to far. Therefore, in order to investigate how
ell the predicted path and target follow the same trajectory, a different evaluation
metric was used which is described in section 5.4.1.

The comparison between the models and the interpolation with this metric can be
seen in table 5.1 for the positions after 1, 2, 3, 4 and 5 seconds. In the table it
is clear that for all it is much easier to stay within 30 centimeters early on along
the path than later. In the table it is visible that the LSTM, merging model 1 and
merging model 2 perform very similar in terms of accuracy, while the interpolation
performs much worse.

Table 5.2 shows the median of the deviations which where larger than 30 centimeters
and table 5.3 shows the largest deviation obtained. From these tables it is visible
that the interpolation has the largest deviations. Meanwhile, the LSTM, merging
model 1 and merging model 2 have rather similar deviations.

From the tables it is visible that the models do well in predicting the curvature of
the path one second into the future; the accuracy is high and the deviation which
lie outside are not very large. While the threshold of 30 centimeters was set as to
when the passenger might experience discomfort, deviation of up to 70 centimeters
will remain in the lane. Given this, after one second all models are still within the
lane. After two second the accuracy is still good, but the larger deviations are quite
high which make the models unreliable as they may predict something which is
potentially very dangerous. Later, after 3, 4 and 5 seconds the accuracy has become
quite low and the largest deviations very high. This makes the models unreliable
after that far into the future. In order to use these models, the predicted path should
likely not be followed for more than one second in order to remain in the lane.
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6.2.5 Identified Outliers

In the data there are some cases where the predictions from the models are much
worse than commonly. This can be seen in most plots in chapter 5. It is further
seen in table 5.3 where the largest deviations after 2, 3, 4 and 5 seconds is much
worse than the medians shown in table 5.2.

These specific scenarios were shown to be recorded within a few seconds of each
other on a very curvy road. During this time the lane marking estimations did not
correlate with the actual lane markings and the vehicle drove at the lower limit
of included velocities in the dataset. Additionally, the view from the front-looking
camera was very limited.

Looking at the input data, both images and object data, it is clear why the models
cannot use the input data to predict something useful. The road is extremely curvy,
with most target paths including an S-curve. This S-curve is not visible in the
images, and only the first turn is seen. This causes the lane marking estimates to
assume there to only be one sharp turn, while in fact it is followed by more turns.
The output from all the models also assume this, and the predicted paths each
include one very sharp turn.

6.3 Lack of Contribution From Images

As could be seen in section 5.1.3 and is discussed above, the CNN performed much
worse than the other models. When looking at the performance and output of
merging model 1 and merging model 2, it is noticeable that these models appear to
ignore the images. This is likely due to the object data being consider much more
relevant than the images. But why is this the case? There are a variety of reasons
which could explain this.

One of the main reasons for this is the data used in the project. In a majority
of cases the road is very good and nothing drastic is happening. Therefore it is
beneficial for the models to simply continue with the same speed and direction as
the vehicle currently has. This information is not provided by the images, rather by
the information of how much the vehicle is moving and the yaw rate. Therefore, even
without the object detections and lane markings the models benefits from ignoring
the information in the images.

This issue could be alleviated by expanding the scope of the thesis. By including
urban driving in the project, there is a large chance that the many scenarios con-
tained either braking or acceleration. Thereby, continuing driving as right now will
not be as good as in the available situations. This could increase the relevance of
the images and also of the object detections.
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A potential improvement would be to use more data while training the CNN. Cur-
rently, the training data represents approximately 7 hours of driving. We tested
using less data, about half and a quarter of the total training set. The results show
that using more data increases the model’s ability to generalize to new test data.
This indicates that increasing the amount of data even more would be beneficial
to the CNN. One solution to this would be to extract more data. However, it is
also possible that doing data augmentation can help. This can done in a variety of
manner, for example cropping and scaling of already existing images. This approach
remains unexplored in this project.

Another factor which is likely harmful to the images, is that in many situations the
vehicle is following a truck. The truck fills a large part of the image and cover the
view of the road ahead. Thereby, the images will not contain information about how
the road turns in the future. In this cases it would be unreasonable to try to predict
the path as the image provides no information about how the road is turning.

Additionally, it is possible that the model with images should be more modular, in
a fashion which is more similar to mediated perception instead of letting the images
use full behavioral reflex. This means that the CNN should not be trying to predict
the path from the images. Instead, the images could be used to estimate the lane
markings or detect objects. Thereby the images would contribute to creating the
object data, and thereby potentially improve its reliability. This object data could
then be used in the LSTM. Thereby the images would contribute in an indirect
manner to the prediction of the path. This approach was not explored as the dataset
did not allow for this type of training.

It it also possible that the models which only consider the images are too shallow
compared to the state-of-the-art models. Structures such as the ones used in Deep
Steering [11] are much more complex. These types of structured could however not
be attempted in this thesis due to time and resource limitations.

The above-mentioned reasons lead us to think that either the images do not include
the information to predict a suitable path or the relation between image and path
is too far-fetched for our networks. A reason for the relation being to far-fetched
is that it is necessary to create a relation between the image and the real world.
This relation is not elementary and may be difficult to estimate. An alternative
could be to predict the path in the image plane and then translate to the real world.
However, the information necessary for this translation was not available for this
thesis.

Finally, it is possible that using one front-looking image is not enough to perform
this task. The surrounding environment can change a lot over time. In cases where
the sight is blocked by other vehicles or curves, the images may not contain the
required information to predict the path. It is also plausible that the images do not
contain reliable information about how the road is 5 seconds into the future.
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6.3.1 Usage of Only Images and Vehicle Movements

While driving a vehicle, it is possible that either the camera or other sensors start
malfunctioning. In this cases, pieces of the input may be lost. However, what will
likely not be dropped is the information about the vehicle’s past movements. In
order to see the effect from the images when the object detection or lane marking
estimates do not exist, we did a trial in which these were not used.

Models similar to merging model 1 and merging model 2 were implemented where
the object data used only consisted of the past movements of the vehicle. This
means that the object detections and lane marking estimations were excluded from
the models. In addition, an LSTM was trained using only the yaw rate of the vehicle
and the distance moved at the previous time steps, to use for comparison.

We believed that in this case the images would be beneficial to the performance of
the merging models, as the images could contribute crucial information about the
surrounding environment. However, the results in this trial showed that the CNN
performed slightly worse than the other models in terms of the lateral position, and
much worse in terms of the longitudinal position. In this case the merging models
also performed very similarly to the LSTM. This indicates that the CNN is not
capable of aiding the merging model by providing more relevant information than
that provided by the speed and yaw rate.

6.3.2 Alternative Image Models

The models using the object data performed better than the models using solely
the images. Therefore, most of the other models tried were models which used the
solely the images.

The CNN presented in section 4.1 makes use of a series of convolutional and pooling
layer before some final fully convolutional layers. A different model was constructed
which was inspired by PilotNet [7]. The model did not include any pooling layers,
instead only using convolutional and fully connected layers. This model also had
two versions, one with 1 image and one with 10 images. This model performed in a
similar manner to the presented model but with a slightly larger loss.

We also tried using models which made use of the full image instead of the down-
sampled version. These models were similar in structure to the presented CNN and
the CNN which used only convolutional and fully connected layers. The models
showed no improvement by including a larger image, with only difference being an
increase in the amount of computation time needed.

As an alternative approach to the image model, a pretrained ResNet-18 [30] was
loaded and had its last linear layer reset to predict a path. Since ResNet-18 is
originally trained using 224×224 RGB images, the images had to be resized to that
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size and the RGB channels were filled with the gray-scale values. This pretrained
network did however perform similarly to the CNN with one image and is therefore
not shown. In addition, the CNN performed the best when 10 stacked images instead
of one. ResNet-18 was trained using 3 channel originally and therefore, attempts at
stacking the images could not be done.

An extension of the image models was also implemented and trained which consisted
of a CNN followed by the LSTM. This extension was done with both the presented
CNN and ResNet-18, where neither showed and ability to learn the underlying be-
havior. Both implementations got stuck in the local minimum of driving straight
ahead with a fixed speed with only small deviations. We attempted to use a pre-
trained CNN to predict a path and then continue training it follow by an LSTM,
but the same behavior as before was observed.

6.4 Usage of Models

One of the aims with this thesis was to investigate whether neural networks can
be used to predict the path of an autonomous vehicle. Therefore, it is relevant to
consider whether the predicted path can be given to a controller to determine the
speed and steering angle of the vehicle.

In general, neither of the models can be used to predict the path of a fully au-
tonomous vehicle. The models have been trained on a specific set of situations.
Therefore, it is unrealistic to expect that the model could perform well in any other
situation.

Considering situations which are similar to the training situations, the LSTM, merg-
ing model 1 and merging model 2 can likely be used as lane-keeping assistance. The
models are quite capable of predicting an appropriate path in terms of understand-
ing the curvature of the road. However, they struggle with choosing the correct
velocity and cannot predict rapid changes in velocity. It is also important that the
path is updated at least once every second, as the path should not be followed much
further than that.

6.5 Future Work

In order to fully evaluate the ability of the neural networks more research should be
done to improve the performance of the models. They should also be generalized to
include more scenarios than the scope of this thesis.

For the model to act as more than a lane-keeping assistance, it needs to be capable
of predicting changes in velocity. The data used in the thesis was limited to rural
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areas where the mean speed of a sequence was within [65, 130] kilometers/hour. As
a consequence, the number of situations where a large change of speed occurs were
few and only a limited connection to the surrounding environment was found. By
including a larger variety of situations, it is possible that the model will become
better at predicting large changes in speed.

An added benefit of considering a larger variety of situations is that there is a
possibility that the images might contribute. As mentioned, it appeared that the
in most scenarios it was beneficial to simply continue in with the same speed and
stay between the lane marking estimates. In scenarios where this is not the case,
it is possible that the models might require more knowledge about the surrounding
area, which could then be provided by the images.

A further extension to the project would be to train in scenarios where the vehicle
has to choose between several valid paths. In this cases it is important that the
vehicle chooses one of the paths and not a middle road as this will have devastating
consequences. To handle this type of behavior, the models have to be structured
in a different manner and consider different input. Besides the information about
the environment, information about intent is needed so the model knows where it
should be heading.

Additionally, before implementing the models in a real vehicle the results should be
tested and verified in a simulation environment. This would give an insight to how
the model might perform in reality. This would also reveal how the model performs
if the vehicle has deviated from the target path. In addition, it would show what
the model outputs when the historic data is not provided from a drive with an
experienced human driver.

A different approach, which should be tried for the images is to use them in a
mediated perception manner. This means that the images could be used to find
surrounding objects as well as estimate the lane marking. These estimates may
then be better than the ones used as object data, and thereby the images could help
improve the performance.

The better models appear capable of predicting the path decently 1-2 seconds into
the future. Further than that the predictions become very flawed and unreliable.
It would then be reasonable to make models which do not predict further into the
future. As the model stands right now, it is possible that the attempts of predicting
5 seconds into the future hurt the models ability of predicting 1-2 seconds very well.

Finally, a controller should be implemented which makes use of the predicted path.
This would force the vehicle to follow a specified set of constraints to improve the
safety. The models have a difficult time estimating the speed of the vehicle, some-
thing which a controller could potentially help with.
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The goal of the thesis was to predict a vehicle’s position for the upcoming seconds
and investigate whether combining different forms of input improved the perfor-
mance. A total of four models are presented; one of the models used only images,
one used only object data and two used both images and object data. All models
were trained by imitation learning using approximately 7 hours of collected driving
data.

The presented models perform very similarly, with the exception of the CNN which
shows a lesser performance in all areas. In the model structures used and with the
available data, the images appear to not contribute in any significant manner to
increase the reliability of the network.

The models show an ability to predict a path with a somewhat high accuracy. The
predicted path is smooth and feasible in many situation, with a more accurate
prediction laterally than longitudinally. The models also beat the benchmark of
an interpolation when following a path. The results also show that the models are
reliable for 1-2 seconds before the accuracy drops.

However, the models need to be tested and verified, for example by letting a vehicle
follow the path predicted by the model in a simulated environment. Before this is
done, it is uncertain whether the models are capable of predicting viable paths for
a vehicle.
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