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Abstract

A primary function of radomes is to protect the antenna against climate change. However,

its presence can have a detrimental effect on the antenna radiation pattern if it has not

been taken into account during the electromagnetic design of the antenna system. Another

complication is that existing commercial electromagnetic software packages are known to

be inefficient and/or inaccurate for solving electromagnetic problems involving electrically

thin and/or complex-shaped objects.

In this work a novel method is presented, which is simple to implement and yields po-

tentially more accurate results as compared to existing commercial software packages. Fur-

thermore, efficiency enhancement techniques are employed to alleviate the computational

burden of the implemented method.

A universal approach is presented—utilizing cube-shaped high resolution basis functions—

for solving multi-scale scattering problems. A major advantage of employing micro-domain

basis functions is the ability to discretize arbitrarily-shaped geometries more accurately as

compared to conventional types of basis functions which are typically one to two orders

larger in size. However, increasing the number of basis functions increases the computa-

tion time and decreases the memory efficiency of a standard method of moments (MoM)

approach. In order to overcome this problem, we exploit translation symmetry and use

the Adaptive Cross Approximation (ACA) algorithm to ameliorate time efficiency, while

the Characteristic Basis Function Method (CBFM) is an effective approach for mitigating

the memory storage requirements. Moreover, the approach lends itself for a parallel im-

plementation and involves supplementary analytical computations for dealing with the field

singularities.

To verify the proposed method, a number of dielectric scattering problems have been solved

and results have been compared to the commercially available HFSS and WIPL-D soft-

wares, as well as the analytical Mie-series solution. The results obtained through our

method generally demonstrate high accuracy and computational efficiency in comparison

with the results obtained by the HFSS software.



x

After validating the novel implemented numerical method, the operating principle of the

Substrate Measurement System (SMS) is described for measuring the permittivity and the

loss tangent of dielectric materials. The procedure for the calculation of the constitutive

parameters of the materials, used by the SMS, are detailed. To complete the study, the

scattering from both flat and shaped radomes have been analyzed for the herein presented

method, called MEDM, and the detrimental effect of the radome on the antenna radiation

pattern are examined
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Chapter 1

Introduction

The introduction and the contextual background of the problem is discussed in this chapter.

An overview of the pros and cons incurred by the use of a radome is made. The feasibility

of obtaining a numerical solution as well as the most popular techniques in computational

electromagnetics are described. The need for a computationally efficient and accurate tool

is discussed, after which the developed and employed techniques in this thesis are described.

Finally, the organization of the thesis is provided.

1.1 Background Information

A radome is used primarily to protect the antenna against climate changes, such as humid-

ity and temperature variations [1, Chapter 14]. However, the presence of a radome may

also cause the incident electromagnetic waves to scatter in various undesired directions,

which, in turn, affects the antenna radiation pattern. Furthermore, the power absorp-

tion losses may increase and, as a result, the system noise temperature as well. Ideally,

a radome must therefore be transparent for electromagnetic waves or be accounted for in

the design otherwise. Most commonly, a radome is therefore made from a thin material

with a low effective permittivity to minimize the electromagnetic interaction between the

antenna and the radome. Neglecting the influence of the radome eases the antenna design;

however, it is still of importance to quantify the actual absorption losses and the scattering

of (possibly shaped and multilayer) radomes to indeed demonstrate that the impedance
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and radiation characteristics of antennas are barely affected by such objects.

Figure 1.1: An artist’s impression (Xilostudios) of the manner in which aperture array tiles

in the square kilometer array can be positioned in the field and be protected by radomes [2].

The Square Kilometer Array (SKA) is a future radio telescope, planned to be operational

in 2020, with an effective area Aeff exceeding 30 times that of the most sensitive radio

telescope currently in operation. The SKA will reveal the drawn of galaxy formation,

as well as many other new discoveries in the science field called radio astronomy [2, 3].

Fig. 1.1 shows an artistic impression of a SKA station with dishes surrounding the central

area made up by aperture array antenna tiles. Each tile consists of a number of antenna

elements controlled by a digital beamforming module to image the sky through multiple

beams as depicted in Fig. 1.2.

Often, the antenna’s radiation pattern is computed in the absence of a radome, however,

when a radome is used to protect the antenna elements it can cause beam pointing and

beam shaping errors if the radome has not been taken into account directly during the

electrical design of the antenna. The magnitude of these errors generally depend on the

beam-steering direction, shape and dielectric properties of the radome.

From the above discussion, it is inferred that the effect of a radome can be significant

and must therefore be taken into account when an accurate computation of the radiation

pattern of the antenna is required. Existing general-purpose electromagnetic software

tools employing the conventional Method of Moments (MoM), the Finite Element Method

(FEM), or the Finite Difference Time Domain (FDTD), are severely limited in solving
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Figure 1.2: Electronic sky survey using multiple beams through digital beamforming [2].

large complex problems accurately and fast. A number of research papers has appeared

in recent years on the development of efficient computational electromagnetic methods

to reduce the computational cost, while maintaining high accuracy. Nonetheless, further

research is on the go; a few contributions towards the development of electromagnetic

methods, for including radomes in a MoM setting, can be found in [4, 5].

1.2 Brief Review of Computational Electromagnetic

Methods

When designing electromagnetic instrumentation, the exact solution of the corresponding

mathematical EM model is desired but not always achievable. In general, the solution

error is left on behalf of the physical modeling (geometrical approximation) and/or math-

ematical modeling (discretization) error. Furthermore, it is time and resource demanding

to calculate the solution of Maxwell’s equations for large complex problems with minimal

error. In order to overcome the limited computational resource capacity of computers, nu-

merically efficient techniques are applied which alleviate the computational burden while

being capable to approximate the exact solution with minimal error.

Since the scope of existing computational methods is vast, we discuss here only a few

widely recognized computational methods. Thorough exposition of these methods can be

found in computational electromagnetics text books [6–8]. In short, the most commonly
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applied methods are:

• FDTD (Finite Difference Time Domain) [9] discretizes Maxwell’s time-dependent

curl equations and approximates the field solution iteratively. A few salient features

of this method include parallelizability and simplicity; however the FDTD alone is

not very attractive for solving electrically large problems or to handle slowly decaying

transients due to a maximum allowable time step during each iteration needed for

obtaining a stable scheme (Courant criterion), while requiring large number of time

steps at the same time to obtain a convergent result. The latter can also result in

round-off errors.

• FEM (Finite Element Method) [6] sets the weighted residual of Maxwell’s curl

equations to zero to solve for the unknown set of expansion coefficients. A few nice

attributes include the ability to deal with complex structures and the ability to handle

dispersive media, while a major disadvantage of a straight forward implementation

is the extensive computation time and memory complexity, particularly for open-

boundary problems.

• MoM (Method of Moments) [10] forms a set of equations through discretizing

a boundary or volume integral equation for the surface or volume current, respec-

tively, by imposing boundary conditions on the electric and/or magnetic field. It has

the ability to handle dispersive media but is not well suited for complex problems

employing non-uniform media.

The above methods can be formulated in both the time and frequency domain. Generally,

frequency domain methods are more accurate, while time domain methods can handle

nonlinear problems. Despite there has been prolific research towards the development

of computational methods, available commercial software tools are multi-purposes codes

and are therefore not very attractive for solving certain specific problems. For instance,

HFSS [11] rapidly loses its efficiency as the computational domain of the problem grows

large; and FEKO [12] can handle much larger problems but is still not very suitable to

deal with large finite antenna arrays. Recently, Dr. Maaskant has developed a MoM-

based simulator named CAESAR for the analysis of large antenna arrays for the SKA

(cf., Fig. 1.1), while maintaining high computational accuracy and efficiency [13], even for

problems up-to tens of wavelengths in size.
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In this thesis, we implement the recently introduced method of equivalent dipole mo-

ments [14] for the scattering and absorption of electromagnetic waves from and inside

dielectric objects, respectively. In that formulation, the volumetric polarization currents

inside the dielectric body are replaced by equivalent dipole moments (cf., Chapter 3) whose

weights are determined through enforcing a consistency condition for the electric fields in-

side the dielectric body.

An advantageous feature of this novel method is that it superimposes analytical scattered-

field solutions of canonical structures for modeling the total scattered field of an arbitrarily-

shaped object. These elementary scattered fields are non-singular when approaching the

distributed source current, in fact; they are of the same order as the incident field, (i.e., of

order one). As a result, the method does not suffer from the singularities encountered in

conventional method of moment approaches that are based on Green’s function approaches,

where a superposition is made of the fields generated by infinitely small concentrated

current sources. Furthermore, the method is relatively easy to implement, particularly

because the basis functions for the current are electrically small and can therefore be of

low order.

1.3 Organization of the Thesis

This thesis is organized as follows:

• Chapter 2 discusses the mathematical formulation of the problem, Maxwell’s equa-

tions, and the proposed computational method.

• Chapter 3 includes a brief discussion on the basis and weighting functions employed

in this thesis. The self-term (radiated electric field weighted over the source current)

is computed analytically for the employed basis functions, while the dipole moment

representation of these basis functions is used for computing the scattered field at

neighboring observation cubes external to the source cubes.

• Chapter 4 describes the analytical Mie-series solution that has been implemented for

solving scattering problems of dielectric spheres. In addition, the HFSS results are

used as reference solutions.
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• Chapter 5 describes the procedure to numerically generate a generalized set of macro-

level basis functions, their application for generating a reduced matrix equation,

and—in conjunction with that—a number of efficiency enhancement techniques. Val-

idation of the method performed for several scattering problems.

• Chapter 6 describes a measurement procedure to determine the dielectric properties

of some radome materials used for the eleven feed antenna [15]. Accordingly, the

influence of a radome covering an array of dipoles is examined.

• Chapter 7 concludes the work, and recommendations are provided for future im-

provements and extensions of the software.



Chapter 2

The Method of Equivalent Dipole

Moments (MEDM)

In this chapter, we discuss some fundamentals of electromagnetics and develop a mathe-

matical formulation for the problem as discussed in Chapter 1. The volume equivalence

principal is invoked and the Electric Field Integral Equation (EFIE) is formulated to deter-

mine the equivalent currents inside the dielectric volume. The EFIE is discretized through

the method of weighted residuals using Galerkin’s method, which then leads to a moment

matrix equation that can be solved for the unknown current.

2.1 Introduction

In this chapter, we will consider the scattering and the absorption of a dielectric body

of arbitrary shape. The problem is solved through the method-of-moments by employing

micro-domain basis functions for the electric current. The support of these basis functions is

one to two orders smaller in terms of wavelength than the typically employed basis functions

with edge length λ/10. The advantageous feature is that the radiated field of a micro-basis

function simply equals the field of an electrically small dipole and, hence, this field is known

in analytic form. As a result, this significantly eases the computation of the moment-matrix

elements since all the matrix elements, including the self-term whose field is tested inside

the canonical object, can be computed analytically. To some extent, the proposed method
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J

V

µ0, ε0
µ0, ε

Ei

Es

Figure 2.1: The scattering from a dielectric object of arbitrary shape.

bypasses the Green’s function approach as the method employs distributed currents as

basis functions as opposed to infinitely small concentrated ones. The high-resolution basis

functions have the potential to accurately model the fine features in the current resulting

in accurate loss computations. Furthermore, it does not suffer from the low-frequency

breakdown problem, and enables us to solve problems involving a mixture of conductor

and dielectric materials with little to no modification to the formulation.

2.2 Mathematical Problem Formulation

Fig. 2.1 depicts a dielectric domain of arbitrary shape occupying a volume V . The object

is made of dielectrics with constitutive parameters {µ0, ε} and is placed in free space

{µ0, ε0}. Furthermore, k = ω
√
µ0ε is the wavenumber of the interior medium. The object

is illuminated by an electric field Ei which induces an electric current J inside the object.

The scattered field is denote by Es. Our objective is to compute the induced current

inside this dielectric object, whose solution will be synthesized indirectly by electrically

small micro-basis functions. Another major advantage of taking an electrically small basis

functions is that the associated radiated field can be computed in closed form. When

the problem size becomes unmanageable, larger-domain basis functions can be constructed

from smaller ones through a multi-level approach. A monolevel approach is discussed in

Chapter 5.

With reference to Fig. 2.1, the relation between the incident field Ei, the total electric

current J , the medium parameters ε and ε0, and the scattered electric field Es is readily
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found from Maxwell’s equations.

In frequency domain, Maxwell’s equations for the fields and currents inside the volume V

of homogeneously-filled dielectrics are given by [16]

∇×E = −jωµ0H , (2.1a)

∇×H = Jprim + jωεE, (2.1b)

∇ ·H = 0, (2.1c)

∇ ·E = ρ/ε, (2.1d)

where

E(r, ω) is called the electric field strength [Vm−1],

H(r, ω) is called the magnetic field strength [Am−1],

Jprim(r, ω) is called the impressed electric current density [Am−2],

J = Jprim + jωεE is called the total electric current density [Am−2],

ρ(r, ω) is called the electric charge density [Asm−3].

In the equations above, we have used that the complex-valued permittivity ε = ε0εr−jσ/ω,

where σ is the conductivity of the medium.

2.2.1 The Volume Equivalence Principle

The volume equivalence principle is used here to replace the dielectric medium by vaccum,

which can be done if the total current J is replaced by an equivalent current J eq which is

radiating in free space and gives rise to the correct scattered field Es [17, pp. 327,328]. In

fact, it is easily seen that the right-hand side of (2.1b) can be written as

Jprim + jωεE = Jprim + jω(ε− ε0)E + jωε0E = J eq + jωε0E, (2.2)

where

J eq = Jprim + jω(ε− ε0)E (2.3)

is the equivalent current, which includes the primary impressed, the polarization, and

conduction currents. Upon substituting (2.2) in (2.1b), one readily observes that the
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equivalent current J eq is radiating in free space. i.e.,

∇×E = −jωµ0H , (2.4a)

∇×H = J eq + jωε0E, (2.4b)

∇ ·H = 0, (2.4c)

∇ ·E = ρeq/ε0, (2.4d)

where ρeq is related via the continuity equation for charges and currens as∇·J eq = −jωρeq.

The above equations are known as the free-space Maxwell’s equations. Hence, we have

removed the dielectric by incorporating its presence into the equivalent current J eq. This

is generally referred to as the volume equivalence principle and illustrated graphically in

Fig. 2.2. In our configuration, the total electric field E is the superposition of the incident

ε, µ0

Es

Ei

ε0, µ0

J

(a) Object present

Ei Es

ε0, µ0

ε0, µ0

J eq

(b) Object removed

Figure 2.2: The Volume Equivalence Principle.

and scattered field Ei and Es, i.e., E = Ei +Es(Jeq), where the scattered field is generated

by the equivalent current Jeq radiating in free space. Using that E = Ei +Es(Jeq) in (2.3),

we conclude that the fields and currents inside the dielectric domain must satisfy the

relation

J eq = Jprim + jω(ε(r)− ε0)
[
Ei(r) +Es(J eq)

]
, (2.5)

which is the consistency condition for the electric field and currents everywhere throughout

R3. Assuming that the object in Fig. 3.1 has no internal sources, (2.5) simplifies to

J eq = jω(ε− ε0)[Ei(r) +Es(J eq)], r ∈ V. (2.6)

2.2.2 The Electric-Field Integral Equation (EFIE)

Equation (2.6) can be formulated as an integral equation for the unknown electric current

J eq. To demonstrate this, we need to develop the integral representation of the scattered
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electric field Es as a function of the current J eq [18].

To this end, we proceed with (2.4a) and (2.4b) as described in [13]. BecauseH is solenoidal

[∇ ·H = 0 in (2.4)], we can express this field in terms of a magnetic vector potential A,

i.e.,

H =∇×A. (2.7)

Substituting this equation in (2.4a) and (2.4b), we get

∇× (E + jωµ0A) = 0, (2.8a)

∇×∇×A = J eq + jωε0E. (2.8b)

The curl in (2.8a) is operating on a conservative (irrotational) vector field. Hence the

general solution to (2.8a) can be formulated mathematically as

E = −jωµ0A−∇Φ, (2.9)

where Φ is an electric scalar potential, yet to be determined. Substituting (2.9) in (2.8b),

and utilizing the vector identity ∇ ×∇ ×A = ∇(∇ ·A) −∇2A, leads to the following

result

∇2A+ k2
0A = −J eq +∇(∇ ·A+ jωε0Φ), (2.10)

where k0 = ω
√
µ0ε0. The vector field A is defined uniquely if both its curl and divergence

are specified, provided that A is known in a single point or vanishes at infinity. With

reference to definition (2.7), and in view of (2.10), it is advantageous to set

∇ ·A = −jωε0Φ, (2.11)

which is known as Lorentz gauge. Upon substituting this result in (2.10), one arrives at

the inhomogeneous Helmholtz wave equation

∇2A+ k2
0A = −J eq, (2.12)

which can be solved for a given forcing function J eq. The radiation condition imposed on

A at infinity requires that only outward traveling wave solutions are physically possible.

It can be shown that the well-known general solution to (2.12) is [19, pp. 78-80]

A(r) =

∫∫
V

∫
G(r − r′)J eq(r′) dV ′, (r outside V ), (2.13)

with the scalar free-space Green’s function G = exp (−jk0R)/(4πR) and R = |r − r′|.
Upon taking the divergence of (2.9), and by using (2.11) as well as that ∇ ·E = ρ/ε0, one
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readily arrives at the inhomogeneous wave equation for the electric scalar potential, which

reads

∇2Φ + k2
0Φ = − ρ

ε0

, (2.14)

and has the generic solution

Φ(r) =
1

ε0

∫∫
V

∫
G(r − r′)ρ(r′) dV ′. (2.15)

Substituting the continuity equation ∇′ · J eq(r′) = −jωρ(r′) in the above expression for

Φ, we get

Φ(r) = − 1

jωε0

∫∫
V

∫
G(r − r′)∇′ · J eq(r′) dV ′. (2.16)

By substituting (2.16) and (2.13) in (2.9), the radiated free-space electric field Es is deter-

mined as

Es(r,J eq) = −jωµ0

∫∫
V

∫
J eq(r′)

e−jk0|r−r
′|

4π|r − r′|
dV ′

− 1

jωε0

∫∫
V

∫
∇′ · Jeq(r′)∇′

(
e−jk0|r−r

′|

4π|r − r′|

)
dV ′. (2.17)

The EFIE is obtained by substituting (2.17) in (2.6), i.e.,

J eq = jω(ε− ε0)

Ei(r)− jωµ0

∫∫
V

∫
J eq(r′)

e−jk0|r−r
′|

4π|r − r′|
dV ′ · · ·

− 1

jωε0

∫∫
V

∫
∇′ · Jeq(r′)∇′

(
e−jk0|r−r

′|

4π|r − r′|

)
dV ′

 . (2.18)

The exact solution to the above equation can only be found analytically in a few cases e.g.,

through Wiener-Hopf techniques. However, there exist a number of numerical techniques

to find the approximate solution to the EFIE in (2.18). One of those techniques is discussed

in the next section.

2.3 The Method of Weighted Residuals (MWR)

The MWR is an approximation technique for solving differential and integral equations [20].

Using the MWR, an approximate solution is constructed for the current as a linear com-

bination of known basis functions for the current with unknown expansion coefficients.
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These unknown coefficients can be obtained by solving a matrix equation, which is formed

through testing the EFIE in (2.18) at least at an equal number of test points as the number

of basis functions. The MWR can be further classified into many sub-methods depending

on the choice of testing functions. Among the most well-known techniques, we mention

the collocation method, and Galerkin method [7].

At this moment, we proceed generally and discretize (2.18) by expanding the current J eq

as follows [10]:

J eq =
N∑
n=1

αnfn(r), (2.19)

where fn are the N basis functions and {αn}Nn=1 is the corresponding set of N expansion

coefficients. Detailed mathematical studies exist for the appropriate selection of basis

and test functions for certain formulations involving integro-differential operators [21]. A

modest exposition about this is made in the next chapter, or can be found in detail in [17].

Herein, we only proceed with the general formalism (i.e., by not yet assuming explicit

forms for the basis and test functions). Substituting (2.19) in (2.6), yields

J eq =
N∑
n=1

αnfn(r)

= jω(ε− ε0)

[
Ei(r) +Es

(
N∑
n=1

αnfn(r)

)]

= jω(ε− ε0)

[
Ei(r) +

N∑
n=1

αnE
s(fn(r))

]
, (2.20)

where {α1, α2, . . . , αN} are the N unknown expansion coefficients to be determined. The

next step is to test (2.20) at N points to get N equations with N unknowns, which we can

then solve for the mth test point (m = 1, 2, . . . , N). In general, one can test the above EFIE

over a small region, i.e., in a weak form using the symmetric product, which is defined as,

〈a, b〉 =

∫∫
Sa

⋂
Sb

∫
a · b dV, (2.21)

where Sa and Sb are the supports of the basis and test or weight functions a and b, respec-

tively. Accordingly, we get,

N∑
n=1

αn 〈fn(r),wm(r)〉 = jω(ε− ε0)

[〈
Ei(r),wm(r)

〉
+

N∑
n=1

αn 〈Es(fn(r)),wn(r)〉

]
,

(2.22)
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for m = 1, 2, . . . , N . The vector function wm is the mth weighting function with support

Sm and wm = 0 outside of its support. The choice of the weighting function is also

very important in terms of the accuracy of the result. As mentioned above, two important

choices are Galerkin’s method and the point matching method. For point matching: wm =

δ(r − rm), and for Galerkin’s testing: wm = fm. Galerkin’s method is known to be more

accurate and leads to a well-conditioned matrix [22]. Note that, for Galerkin’s method

(wm = fm), Eq. (2.22) leads to the matrix equation

ZI = V, (2.23)

where,

Zmn =
1

jω(ε− ε0)
〈fn(r),fm(r)〉 − 〈Es(fn(r)),fm(r)〉 , (2.24)

Vm =
〈
Ei,fm(r)

〉
. (2.25)

Using the integral representation in (2.21), we obtain,

Zmn =
1

jω(ε− ε0)

∫∫
V

∫
fn · fm dV −

∫∫
V

∫
Es(fn) · fm dV, (2.26)

where the first entry in the above equation is non-zero if fn and fm partially overlap.

We refer to the self-term in case fn and fm fully overlap (m = n). The moment matrix

equation in (2.23), that is,

Z11 · · · Z1N

...
. . .

...

ZN1 · · · ZNN


α1

...

αN

 =

V1

...

VN

 , (2.27)

can be solved using direct Gaussian elimination techniques provided that the matrix condi-

tion number is sufficiently low to obtain a unique solution [23, Sec. 2.2.4.3]. It is important

to realize that, typically, the Gaussian elimination method, or any other matrix inversion

technique, has a time complexity O(N3), while the filling of Z has complexity O(N2).

The time needed to solve the equation I = Z−1V can be further reduced by a number of

matrix acceleration/compression techniques. A suitable technique is selected and discussed

in Chapter 5.
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2.4 Conclusions

In this chapter we have formulated and discretized the EFIE using the method of weighted

residuals. This discretization leads to a moment matrix equation which can be solved for

the unknown expansion coefficients for the current. The next step is to select a suitable and

explicit form for the basis and test functions and to evaluate the moment matrix elements.
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Chapter 3

Choice of Basis and Testing

Functions

The choice of the basis and weighting functions in the MoM plays a key role in both the

numerical solution accuracy and computational efficiency. Theoretical aspects of basis and

weighting functions with a description of the restrictions on their choice are described,

leading to a discussion on the implication of Galerkin and non-Galerkin moment method

approaches. The microdomain basis functions are discussed with pros and cons compared

to existing types of basis functions, thereby motivating our specific choice of microdomain

basis functions. The self-generated field in the center of a microdomain basis function is

derived analytically as well as for the field outside of the source cube.This allows us to

develop expressions for the moment matrix elements are formulated in closed form.

3.1 Introduction

The choice of a suitable set of basis and weighting functions is dependent on both mathe-

matical and physical requirements. The general discretization process through the MWR

has been explained in Chapter 2, hence, the next step is to select explicit mathematical

forms for the basis and weighting functions.
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3.1.1 Basis Function Selection

In practice, basis functions can be classified into two types: subdomain basis functions and

entire domain basis functions [17, pp. 683-689]. Subdomain basis functions are nonzero

only over an electrically small part of the domain, while entire domain basis functions are

nonzero over a larger or even the entire domain of the considered object. Both types of

basis functions should have the ability to accurately represent or resemble the anticipated

unknown function, which is the equivalent electric current J eq in our case. Because entire

domain basis functions of an analytical type are for specific structures only and are difficult

to use for forming a matrix equation (self-term), we choose to employ low-order subdomain

basis functions. The size of these subdomain basis functions need to be choosen small

enough to approximate the solution with sufficiently high accuracy (typically λ/10 edge

length). However, we will employ so-called microdomain basis functions of edge length

≈ λ/100 to obtain a potentially very accurate solution as well as an easy-to-implement

discretization scheme. A microdomain basis function has been depicted in Fig. 3.1 and can

be defined mathematically as follows:

fn

x̂

ŷ

V

a

a

a

ẑ

Figure 3.1: The microdomain basis function.

fn(r) =


x̂, r ∈ Vn;n ∈ {1, . . . , N/3}
ŷ, r ∈ Vn;n ∈ {N/3 + 1, . . . , 2N/3}
ẑ, r ∈ Vn;n ∈ {2N/3 + 1, . . . , N}
0, r /∈ Vn.

where Vn is the cubic support of fn with constant cube-volume a3 and n ∈ {1, . . . , N}.
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Although the moment matrix is larger than the case that entire-domain basis functions

were to be employed, we can still solve electrically large problems by realizing that entire-

domain basis functions can be expanded through a fixed combination of micro-domain

basis functions (Chapter 5).

3.1.2 Selection of Weighting Functions

After the discretization of the EFIE by assuming an explicit form of the basis functions, the

next step in the MWR is to select the weighting functions. The appropriate choice of the

weighting functions depends on the range-space of the integro-differential operator. With-

out justifying the choice, we will employ Galerkin’s method since this choice is known to

yield accurate results for a large variety of problems [24]. In our case, however, we can also

use the collocation method for testing the field, which is equivalent to Galerkin’s method

evaluated through the midpoint integration rule (discussed in the following section).

3.2 Computation of the Moment Matrix Elements

The procedure to compute the moment matrix elements [see (2.27)] has been described in

this section. In MEDM, we employ equal sized basis functions of low order, as a result

of which the self-coupling moment matrix entries are all identical and can be computed

analytically. The off-diagonal matrix elements can be computed via the dipole-moment

approach as explained below.

3.2.1 The Self-Term Znn

With reference to (2.24), to compute an on-diagonal matrix element Znn, we have to

evaluate

Znn =
1

jω(ε− ε0)
〈fn(r),fn(r)〉 − 〈Es(fn(r)),fn(r)〉 . (3.1)

The first term in the above equation is evaluated analytically in this section as 〈fn,fn〉 =

a3.



20 Chapter 3. Choice of Basis and Testing Functions

To evaluate the second term, we assuming that the basis function fn is a z-directed unit

current, which is supported by a cube of size a× a× a. Accordingly,

fn = ẑ [U(x+ a/2)− U(x− a/2)] [U(y + a/2)− U(y − a/2)] [U(z + a/2)− U(z − a/2)] ,

(3.2)

where the Heaviside step-function U borders the cubic support region. Before substitut-

ing (3.2) in (2.17) for computing Es(fn), we first note that

∇′
(
e−jk0R

4πR

)
= (r − r′) [1 + jk0R]

e−jk0R

4πR3
, (3.3)

where R = |r − r′|. Upon assuming that a is electrically small, then, in the quasi-static

case, k0R� 1, so that e−jk0R = 1− jk0R+ . . . ≈ 1. Accordingly, we can approximate (3.3)

as

lim
k0a→0

{
∇′
(
e−jk0R

4πR

)}
=

(r − r′)
4πR3

. (3.4)

Using (3.2), we have for the charge density,

∇′ · fn(r′) = [δ(z′ + a/2)− δ(z′ − a/2)] , (3.5)

which appears to exist only at the top and bottom faces of the cubic support. Substituting

the preceding expressions in the quasi-static form of (2.17), yields

Es(fn) ≈ −jωµ0ẑ

4π

∫∫
V

∫
1

|r − r′|
dV ′+

1

jωε04π

∫
S+

∫
(r − r′)
|r − r′|3

dS ′ −
∫
S−

∫
(r − r′)
|r − r′|3

dS ′

 ,
(3.6)

where S+ and S− are the top and bottom surfaces of the cube at z = a/2 and z = −a/2,

respectively. The integrals with singular kernels in (3.6) can be solved analytically using

methodologies described in [25, 26]. Following [26, Eq. (7)], we transform the volume

integral in (3.6) into a surface integral, yielding∫∫
V

∫
1

|r − r′|
dV ′ = −1

2

∫∫
V

∫
∇′ · (r − r′)

|r − r′|
dV ′ =

1

2

∫
∂V

∫
R̂
′ · n̂ dS ′, (3.7)

where R̂
′
= (r′ − r)/|r′ − r| and where we made use of Gauss’ theorem [27, pp. 193-196],

that is, ∫∫
V

∫
∇ ·A dV ′ =

∫
∂V

∫
A · n̂ dS ′, (3.8)
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with the normal vector n̂ pointing outwards. The most obvious choice is to test the E-field,

given by (2.5) in the center of the cube, that is, at r = 0. Along with (3.7), Eq. (3.6)

reduces to

Es(fn)|r=0 =
−jωµ0ẑ

8π

∫
∂V

∫
r̂′ · n̂ dS ′ +

1

jωε04π

∫
S−

∫
r̂′

r′2
dS ′ −

∫
S+

∫
r̂′

r′2
dS ′

 , (3.9)

where r′ = |r′|, and where r̂′ = r′/r′. This expression can be evaluated analytically to

yield (see Appendix A)

Es(r = 0,fn) = ẑ

[
−jωµ0a

2

[
3

4π
ln

(√
3 + 1√
3− 1

)
+

3

2π
a2 arctan

(
1√
3

)
− 3

8

]

− 1

jωε0

[
1− 4

π
arctan

(
1√
3

)]]
. (3.10)

Note that this result is valid if we account for only one Taylor term in (3.4) when approxi-

mating e−jk0R. Taking also the second Taylor term −jk0R into account (see Appendix A.2)

yields,

Es(r = 0,fn) = ẑ

[
−ωµ0k0

4π
a3 − jωµ0a

2

[
3

4π
ln

(√
3 + 1√
3− 1

)
+

3

2π
a2 arctan

(
1√
3

)
− 3

8

]

− 1

jωε0

[
1− 4

π
arctan

(
1√
3

)]]
, (3.11)

which shows that the approximation error, when taking only one Taylor term into account,

is ωµ0k0a
3/4π. This finalizes the formulation of the self-generated field for a z-polarized

basis function current. The unit vector ẑ can be replaced by x̂ or ŷ as defined in Fig. 3.1

to find the field of the other polarizations.

Upon substituting (3.11) in (2.26), and by using that 〈fn,fn〉 = a3, the expression for the

self-term becomes

Znn =
a3

jω(ε− ε0)
−a3

[
−ωµ0k0

4π
a3 − jωµ0a

2

[
3

4π
ln

(√
3 + 1√
3− 1

)
+

3

2π
a2 arctan

(
1√
3

)
− 3

8

]

− 1

jωε0

[
1− 4

π
arctan

(
1√
3

)]]
, (3.12)

where, we have used the mid-point integration rule, i.e.,

〈Es(fn),fn〉 =

∫∫
V

∫
Es(fn) · fn dV ≈ a3Es(fn(rn)) · fn, (3.13)
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where rn is the centroid of the nth cube, and

a3 =

∫∫
Vn

∫
dV (3.14)

is the volume of the nth cube. As long as k0a � 1, we can approximate Eq. (3.12) as

follows:

Znn ≈
a3

jω(ε− ε0)
− a3

[
− 1

jωε0

[
1− 4

π
arctan

(
1√
3

)]]
, (3.15)

3.2.2 The Off-Diagonal Moment Matrix Term Zmn (m 6= n)

The off-diagonal moment matrix entries are computed using the equivalent dipole moment

approach. Using this approach, the field radiated by a basis function of uniform current is

assumed to be equal to the field of an infinitesimal dipole placed at the center of this cubic

support with dipole moment Ilf̂ , where f̂ ∈ {x̂, ŷ, ẑ}. The E-field of a z-oriented dipole

can be easily computed using the following analytical expressions (derived in Appendix B).

Es
x =

IlC

4πjωε0

xze−jk0|rmn| (3.16a)

Es
y =

IlC

4πjωε0

yze−jk0|rmn| (3.16b)

Es
z =

Il

4πjωε0

[
Cmnz

2 +
k2

0

|rmn|
− jk0

|rmn|2
− 1

|rmn|3

]
e−jk0|rmn|, (3.16c)

where

Cmn = − k2
0

|rmn|3
+

3jk0

|rmn|4
+

3

|rmn|5
. (3.17)

Substituting (3.16) in (2.26), and using that fn ·fm = 0 (∀ m 6= n), we get for a z-oriented

basis function current

Zmn = −a3[Es
xx̂+ Es

yŷ + Es
zẑ] · fm. (3.18)

Here, Zmn is the electric field tested by the mth basis function which is radiated by the

nth basis function current, which is assumed to be z-oriented.

It will be demonstrated numerically in Sec. 4.4 that a single dipole is indeed sufficient

to accurately represent the external field of a microdomain basis function. This is done

through a convergence analysis for the external E-field by subdividing the source cube into

smaller subcubes.
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In the following we will justify that we can choose for the strength of above dipole moment

that Il = a3. By substituting (2.11) in (2.9), we have that

E =
1

jωε0

[
∇ (∇ ·A) + k2

0A
]
. (3.19)

The magnetic vector potential A in (2.13) can be evaluated for fn(r′) = Ilẑδ(x′)δ(y′)δ(z′)

as

A =

∫∫
V

∫
fn(r′)

e−jk0|r−r
′|

4π|r − r′|
dV ′

=
Il

4π
ẑ
e−jk0|r|

|r|
. (3.20)

Substituting (3.20) in (3.19) gives the field of a dipole (see Appendix B) which is then

tested at the observation cube to get Zmn. However, instead of computing the field from a

dipole, we have to evaluate the actual volumetric integral in (3.20) for the basis function

fn. Assuming a cube of z-oriented uniform current

fn(r) =

{
ẑ, r ∈ Vn
0, r /∈ Vn,

(3.21)

where Vn = a3 represents the volume of the source cube. Using (3.21) in (3.20), yields

A =

∫ a/2

−a/2

∫ a/2

−a/2

∫ a/2

−a/2
ẑ
e−jk0|r−r

′|

4π|r − r′|
dV ′.

Then, using the mid-point integration rule,∫∫
Vn

∫
f(r′) dV ′ = Vnf(r0) = a3f(r0),

where r0 = (0,0,0) is the center point of the cube, and Vn is the cube volume, we obtain

A =

∫ a/2

−a/2

∫ a/2

−a/2

∫ a/2

−a/2
ẑ
e−jk0|r−r

′|

4π|r − r′|
dV ′

=
a3

4π
ẑ
e−jk0|r|

|r|
, (3.22)

which shows that taking a dipole in (3.20) to represent the scattered field is equivalent

to using a mid-point integration rule for evaluating A using the actual volumetric current

distribution, provided that Il = a3. Conclusively, subdividing the source cube into smaller

sub cubes each of which contains a dipole with associated dipole moment will therefore yield

the same total radiated field as evaluating A through a composite mid-point integration

rule using the actual cube supporting a uniform current.
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3.3 Conclusions

In this chapter we have made our choice of basis and test functions. The equivalent dipole

moment of a micro-domain basis function has been derived. The scattered field at the

center of the cube has been calculated, which is needed for testing the field inside the

observation cube to compute the self-term. The scattered field values in the centers of

the remaining cubes (i.e., the coupling-terms) have been determined through the dipole

field representation. We now have regular closed-form expressions for the moment matrix

elements which can be evaluated numerically. The next step is to implement and to examine

the accuracy of the herein presented formulation.



Chapter 4

Numerical Validation

The Mie-series solution is the analytical field solution for the scattering of a dielectric

or conducting sphere. In this chapter, the Mie-series is formulated mathematically and

validated by comparing the results for a specific problem to published data. Afterwards,

the numerically computed results by using the MoM implementation as described in the

previous chapter are validated and compared to the analytical Mie series solution. Fur-

thermore, HFSS and WIPL—which are commercially available electromagnetic software

tools—are then also used to compare the numerically computed results to the present MoM

implementation.

4.1 Mie-Series Solution

To validate computational methods, it is important to have an analytical reference solution

available to be able to determine the accuracy of the developed numerical method. The

Mie-series is an important reference solution since it represents a closed-form solution of

the scattered field from a dielectric or conducting sphere. In this section, we will outline

the mathematical steps to derive the Mie-series; while a more detailed description on the

associated series expansion methods can be found in [7, Chap. 2] or [16, Sec. 9.25].

Consider an x-polarized plane wave traveling in the positive z-direction and a sphere of

radius R placed at the origin of a spherical coordinate system as depicted in Fig. 4.1.
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The free-space permittivity and permeability are ε0 and µ0, respectively; the permittivity

and permeability of the sphere are ε and µ0, respectively. The propagation constant k2 =

ω
√
ε0µ0 is for the exterior free space medium (represented by medium 2), and k1 = ω

√
εµ0

is the propagation constant of the interior sphere region (represented by medium 1).

The medium properties of the sphere are assumed to be homogeneous. Using separation

R

ε, µ0

ε0, µ0

1

2

x̂

ŷ

ẑ

Ei = E0e
jk2zx̂

S

Figure 4.1: Plane wave incidence on a sphere of radius R.

of variables, the incident field can be decomposed into a sum of vector spherical wave

functions jn, as follows [16, Sec. 9.25]:

Ei = E0e
j(k2z−ωt)x̂ = E0e

−jωt
∞∑
n=1

jn
2n+ 1

n(n+ 1)
(mE − jnE), (4.1a)

H i =
k2

µ0ω
E0e

j(k2z−ωt)ŷ = −k2E0

µ0ω
e−jωt

∞∑
n=1

jn
2n+ 1

n(n+ 1)
(mH − jnH), (4.1b)
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where E0 is the amplitude of the incident field and

mE =
1

sin θ
jn(k2R)P 1

n(cos θ) cosφθ̂ − jn(k2R)
∂P 1

n

∂θ
sinφφ̂, (4.2a)

mH = − 1

sin θ
jn(k2R)P 1

n(sin θ) cosφθ̂ − jn(k2R)
∂P 1

n

∂θ
cosφφ̂, (4.2b)

nE =
n(n+ 1)

k2R
P 1
n(cos θ) sinφr̂ +

1

k2R
[k2Rjn(k2R)]

′ ∂P 1
n(cos θ)

∂θ
sinφθ̂

+
1

k2R sin θ
[k2Rjn(k2R)]

′
P 1
n(cos θ) cosφφ̂, (4.2c)

nH =
n(n+ 1)

k2R
P 1
n(cos θ) cosφr̂ +

1

k2R
[k2Rjn(k2R)]

′ ∂P 1
n(cos θ)

∂θ
cosφθ̂

− 1

k2R sin θ
[k2Rjn(k2R)]

′
P 1
n(cos θ) sinφφ̂, (4.2d)

where jn is a spherical Bessel function of the first kind and of order n, P 1
n is the Legendre

polynomial of the first kind and of order n, and the superscript ′ represents differentiation

with respect to the argument of the Bessel function (i.e., k2R). The spherical Bessel

function is used to represent the standing wave in the radial direction. Analogously to the

spherical Bessel function of the first kind, the spherical Bessel function of the second kind

is denoted by yn. The scattered field in medium 2 can be written as

Es = E0e
−jωt

∞∑
n=1

jn
2n+ 1

n(n+ 1)
(as
nm̃E − jbs

nñE), (4.3a)

Hs = −k2E0

µ0ω
e−jωt

∞∑
n=1

jn
2n+ 1

n(n+ 1)
(bs
nm̃H + jas

nñH), (4.3b)

which is valid on the boundary surface S and outside of the sphere (i.e., R ≥ a). The

functions m̃E, m̃H , ñE and ñH are obtained by replacing jn(k2R) by h
(1)
n (k2R) in (4.2).

Here, h
(1)
n is the spherical Hankel function of the first kind and of order n, used to represent

the outward-traveling spherical wave. The spherical Hankel function of the first and second

kind can be obtained using the spherical Bessel functions of the first and second kind as

follows:

h(1)
n = jn + yn,

h(2)
n = jn − yn.

It should be noted that the minus or plus signs in the above spherical Hankel function

definitions of the first and second kind depend on the chosen time factor e±jωt [here e−jωt,
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since the propagation is in the positive z-direction in (4.1)]. Analogously to the scattered

field, the transmitted field in medium 1 is written as

Et = E0e
−jωt

∞∑
n=1

jn
2n+ 1

n(n+ 1)
(at
nmE − jbt

nnE), (4.4a)

Ht = −k2E0

µ0ω
e−jωt

∞∑
n=1

jn
2n+ 1

n(n+ 1)
(bt
nmH + jat

nnH). (4.4b)

The transmitted field is valid on the boundary and the interior region of the sphere. Ap-

plying the boundary conditions to the total {E, H} fields at R = a, gives

r̂× (Ei +Es) = r̂×Et, (4.5a)

r̂× (H i +Hs) = r̂×Ht, (4.5b)

where r̂ is the outward-pointing radial unit vector on the sphere surface. Substituting the

values of the incident, transmitted and scattered fields in the above boundary conditions

leads to the system of inhomogeneous equations [16, Sec. 9.25]

at
njn(Nρ)− as

nh
(1)
n (ρ) = jn(ρ), (4.6a)

at
n[Nρjn(Nρ)]′ − as

n[ρh(1)
n (ρ)]′ = [ρjn(ρ)]′, (4.6b)

Nbt
njn(Nρ)− bs

nh
(1)
n (ρ) = jn(ρ), (4.6c)

bt
n[Nρjn(Nρ)]′ −Nbs

n[ρh(1)
n (ρ)]′ = N [ρjn(ρ)]′, (4.6d)

where ρ = k2a, k1a = Nρ and N = k1/k2 is the refractive index of the dielectric sphere,

which may be complex for lossy dielectrics. By substituting as
n from (4.6a) in (4.6b), the

value for at
n is derived and vice versa for determining as

n; the same analogy is used to

determine bt
n and bs

n. This yields.

as
n = − jn(Nρ)[ρjn(ρ)]′ − jn(ρ)[Nρjn(Nρ)]′

jn(Nρ)[ρh
(1)
n (ρ)]′ − h(1)

n (ρ)[Nρjn(Nρ)]′
, (4.7a)

bs
n = − jn(Nρ)[Nρjn(ρ)]′ −N2jn(ρ)[ρjn(ρ)]′

h
(1)
n (ρ)[Nρjn(ρ)]′ −N2jn(Nρ)[ρh

(1)
n (ρ)]′

, (4.7b)

at
n =

µ0jn(Nρ)[ρh
(1)
n (ρ)]′ − µ0h

(1)
n (ρ)[ρjn(ρ)]′

µ0jn(Nρ)[ρh
(1)
n (ρ)]′ − h(1)

n (ρ)[Nρjn(Nρ)]′
, (4.7c)

bt
n =

µ0Njn(Nρ)[ρh
(1)
n (ρ)]′ − µ0Nh

(1)
n (ρ)[ρjn(ρ)]′

N2jn(Nρ)[ρh
(1)
n (ρ)]′ − µ0h

(1)
n (ρ)[Nρjn(Nρ)]′

. (4.7d)

We now have determined the mode expansion coefficients in (4.3) and (4.4) to find the

total fields inside and outside of the sphere. The field inside of the sphere can be computed

using (4.4), while the field outside of the sphere is the sum of the incident, i.e. Eq. (4.1),

and the scattered fields, i.e. Eq. (4.3).
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4.2 Mie-Series Validation

4.2.1 Comparison With a Published Mie-Series Solution

The Mie-series, as derived mathematically in the previous section, has been implemented

in Matlab and is herein validated by comparing it to a reference solution published in [28]

for the scattering of the electromagnetic fields from a dielectric sphere. The specifications

of the problem are as follows:

Table 4.1: Specifications for the dielectric sphere.

• x-directed plane wave • k0R = 1/2

• εr = 16 • φi = 0

• θi = π • R = λ/4π

Figure 4.2 depicts the comparison between the solution of the implemented Mie-series

and the published results in [28]. In [28] the hybrid MoM and FEM method has been

validated by comparing it to the Mie-series solution. The analytical solution as presented

in the journal paper and the one obtained by the herein implemented Mie-series, are in

exact correspondence with each other. The comparison in Fig. 4.2 shows that we can

proceed using our implemented Mie-series for the validation of our MoM code.

4.2.2 Mie-Series in Comparison With HFSS

In addition to the above comparison, the Mie-series solution and the numerically computed

results obtained by HFSS have been compared as depicted in Fig. 4.3. The specifications

of the problem are as follows:

Table 4.2: Specifications for the dielectric sphere.

• x-directed plane wave • k0R = π

• εr = 3.55 • φi = 0

• θi = π • R = λ/2
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(a) The hybrid MoM and FEM method in compari-

son with the Mie-series [28].
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(b) The Mie-series solution for the magnitude of the

E-Field along the x-axis.

Figure 4.2: Mie-series comparison with [28]; specifications: see Table 4.1.

(a) Problem (graphical illustration).
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(b) The magnitude of the E-Field along z-axis.

Figure 4.3: The Mie-series in comparison with HFSS; specifications: see Table 4.2.

Upon comparing the analytical solution to the HFSS solution, it can be observed that

HFSS suffers from certain field discontinuities in the solution, particularly at the surface

of the sphere, as is evident from Fig. 4.3(b). Overall, the HFSS solution is in very good

agreement with the Mie-series solution with a root mean square relative error of 6.32%, for
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2001 sample points, calculated using the following formula:

Error =

√√√√ 1

N

N∑
n=1

∣∣∣∣(En
Mie − En

HFSS

En
Mie

)∣∣∣∣2 × 100%, (4.8)

where N represents the total number of samples and E = |E|.

4.3 MEDM in Comparison with Ansoft’s HFSS and

WIPL-D

Thus far, we have developed two reference solutions that can be used to validate MEDM,

i.e., the Mie-series solution, and the commercial HFSS software. In this section, we make a

comparison among Ansoft’s HFSS (v 13.0), WIPL-D Pro (v 9.0) [29], and MEDM in terms

of the accuracy, execution time and memory usage. For the generation of the results, an

Intel Centrino laptop equipped with a dual core processor@2.2GHz and 2GB of RAM has

been used; except for the sphere of radius R = λ/50, where a remote desktop server has

been used equipped with a dual core processor@2.4GHz and 16GB of RAM. For the HFSS

computation, a desktop server with a quad core processor@2.33GHz, has been used with

4GB of RAM memory.

4.3.1 Scattering From a Dielectric Sphere

A dielectric sphere has been simulated using the HFSS, WIPL-D and MEDM software.

The comparison between the results, obtained by MEDM, WIPL-D and HFSS, is depicted

in Figs. 4.4 and 4.5. In HFSS, a maximum delta energy1 of 0.00027 is reached for the error

in the computed field after six mesh-refinement steps (passes) for this particular problem.

The specifications of the problem are described in Table 4.3.

1The maximum delta energy is the difference in computed field energies in going from one mesh refine-

ment step to the next one.
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Table 4.3: Specifications for the dielectric sphere.

• x-directed plane wave • k0R = π
50

• εr = 6 • φi = 0

• θi = π • R = λ/100

(a) Problem (graphical illustration).
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(b) The magnitude of the E-Field along x-axis.
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(c) The magnitude of the E-Field along y-axis.
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Figure 4.4: MEDM in comparison with the HFSS and the Mie-series; specifications: see

Table 4.3.

As compared to the analytical Mie-series solution, the results obtained by HFSS demon-

strate a root mean square relative error of 2.24% while this error is 16.38% for the MEDM

and 10.34% in case of WIPL-D [for 21 sample points in (4.8)]. Note that the field inside

the sphere is approximately uniform, which is particularly true if the sphere is electrically
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(a) Problem (graphical illustration).
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Figure 4.5: WIPL-D in comparison with the Mie-series; specifications: see Table 4.3.

small and has a low dielectric contrast. The level of the field inside the sphere can be

calculated from [30] as

|Et| =
[

3ε0

εr + 2ε0

]
(4.9)

which is evaluated to be 0.375 V/m for this particular problem. But when the size of the

sphere becomes electrically large, the field is no more constant inside the sphere. Addi-

tionally, as the conductivity of the sphere increases, the field inside the sphere decreases

because charges and currents tend to reside on the surface of the conductors.

The magnitude of the field inside the sphere as computed by the MEDM code (cf. Fig. 4.4)

is observed to be almost uniform, which resembles the analytical computations rather well.

To further analyze the convergence of the field uniformity inside the sphere a larger sphere

(as compared to R = λ/100) is simulated. The results have been depicted in Fig. 4.6. The

specifications for the larger sphere with R = λ/50 can be found in Table 4.4.

Table 4.4: Specifications for the dielectric sphere.

• x-directed plane wave • k0R = π
25

• εr = 6 • φi = 0

• θi = π • R = λ/50

As can be seen in Fig. 4.6, increasing the size of the sphere forces the value of the magnitude

of the E-field inside the sphere to approach the theoretical value of 0.375 V/m, primarily
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(a) Problem (graphical illustration).
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Figure 4.6: MEDM in comparison with the HFSS and Mie-series; specifications: see Ta-

ble 4.4.

because the number of basis functions increases for large spheres, so that the geometrical

and electrical discretization error becomes smaller. However, a strong discontinuity is

observed (similar to in Fig. 4.4) at the surface of the sphere which needs particular attention

as it clearly deviates from the analytical solution. In order to investigate the reason for

this spurious glitch in the field, certain tests have been performed; one obvious choice is

to remove the side cubes and observe the differences between the results, obtained with

and without side cubes. The latter has been illustrated in Fig. 4.7. The reason for the

field discontinuity at the surface of the sphere (using MEDM) can be investigated using

Fig. 4.7, where the glitch disappears after removing the side cubes. As stated previously,

we employ pulse-type basis functions for the equivalent current and the divergence of that
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(a) Problem (graphical illustration).
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Figure 4.7: MEDM in comparison with HFSS and Mie-series; specifications: see Table 4.4.

for the charge density. Hence, taking the divergence of a locally-supported uniform current

amounts to surface charges at the end faces of each basis-function cube. By employing

these type of basis functions, we possibly observe some glitch in the field solution at the

boundary of the dielectric domain due to some residual spurious surface charge at the

end faces of this last cube, which can not be compensated for by an opposite charge of a

neighboring basis function (since we are already at the boundary). But the results obtained

by WIPL-D (c.f. Fig. 4.5) demonstrate that the spurious solution at the edges of the sphere

persists even when the entire-domain basis functions of WIPL-D are applied, which renders

the above described hypothesis enigmatic.

4.3.2 Scattering From a Small Plate

As mentioned in Chapter 1, available computational tools are known to be inaccurate in

case of thin structures; such as thin wires, thin plates, etc. However, MEDM can still yield

potentially accurate results as compared to existing commercial software packages owing to

the micro-domain basis functions, even if the geometry of the problem is electrically thin.

For verification purposes, an electrically thin dielectric plate is simulated using HFSS,

WIPL-D and MEDM. The comparison between MEDM, WIPL-D and HFSS is depicted

in Fig. 4.8. A maximum delta energy in the field solution of 3.2492e-6 is obtained after 11

adaptive mesh refinement steps in HFSS. The specifications of the problem are mentioned

in Table 4.5.
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Table 4.5: Specifications for the electrically thin plate.

• x-directed plane wave • k0lx = k0ly = π
25

• εr = 6 • φi = 0

• θi = π • k0lz = π
125

Here lx, ly, and lz are lengths of the plate in the x, y and z-directions, respectively. To

(a) Problem (graphical illustration).
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Figure 4.8: MEDM in comparison with HFSS and WIPL-D; specifications: see Table 4.5.

substantiate the aforementioned discussion in this section, the transmission coefficient for

a plate with specifications as mentioned in the Table 4.5—but infinitely large in the xy

plane—is computed and found to be 0.58. By considering this factor as a reference value,

it is apparent from Fig. 4.8 that, MEDM is in good agreement with HFSS and WIPL-D.

4.3.3 Scattering From a Small Dielectric Cube

For completeness, a small dielectric cube is simulated in HFSS and compared to the re-

sults that are computed by MEDM. The results are depicted in Fig. 4.9. A maximum

delta energy of 0.000737 is obtained after 8 adaptive mesh refinement steps in HFSS. The

specifications of the problem are as follows:
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Table 4.6: Specifications for dielectric cube.

• x-directed plane wave • k0lx = k0ly = k0lz = π
25

• εr = 6 • φi = 0

• θi = π

Here lx = ly = lz are the edge lengths of the cube.

(a) Problem (graphical illustration).

−0.02 −0.015 −0.01 −0.005 0 0.005 0.01 0.015 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

z

|E
| 

[V
/m

]

 

 

x−Component (MEDM)

y−Component (MEDM)

z−Component (MEDM)

x−Component (WIPL−D)

y−Component (WIPL−D)

z−Component (WIPL−D)

x−Component (HFSS)

y−Component (HFSS)

z−Component (HFSS)

(b) The magnitude of the E-Field along z-axis.

Figure 4.9: MEDM in comparison with HFSS and WIPL-D; specifications: see Table 4.6.

Table 4.7 summarizes the comparison between MEDM and HFSS, for the three different

types of problems as discussed in this and the previous sections. It is concluded from

Table. 4.7 and the Figs. 4.6, 4.8 and 4.9 that the total execution time is generally shorter

than that required by HFSS, while the results are still in good agreement.

4.4 Convergence Study

As described in Sec. 3.2.2, taking a dipole in (3.20) to represent the scattered field is

equivalent to using a mid-point integration rule for evaluating the vector potential A with

the actual volumetric current distribution, provided that Il = a3. This is a quasi-static

approximation of which the error can be analyzed by subdividing the source cube into

smaller sub-cubes each containing an equivalent dipole with a corresponding smaller dipole
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Table 4.7: Summary of the comparison between HFSS and MEDM.

(a) HFSS

Problem Specifications Delta No. No. Simulation Time

Type [Reference] Mag Energy Passes Tetrahedra’s [Sec]

Sphere Table 4.3 07.2186e-5 14 24178 676

Plate Table 4.5 3.2492e-6 11 3559 21

Cube Table 4.6 0.000737 8 1778 10

(b) MEDM

Problem Specifications No. Simulation Time

Type [Reference] Basis Functions [Sec]

Sphere Table 4.3 1545 11.2686

Plate Table 4.5 600 2.1111

Cube Table 4.6 3000 16.4713

moment. Fig. 4.10 illustrates the comparison for the exterior and interior fields in case the

source cube is subdivided into eight subcubes relative to a single one. Fig. 4.10 shows that
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Figure 4.10: Convergence analysis for the exterior field radiated by one basis function of

which the supporting cube is subdivided into eight subcubes relative to no subdivisions;

specifications: see Table 4.3.

the magnitude of the computed E-field does not improve significantly. It is clear that both

results, with and without subdivisions, are approximately the same, so that, a subdivision

of the source cube does not lead to more accurate results for the radiated field external to
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this cube. It should be realized that this criteria is valid as long as the basis functions are

small enough to satisfy the quasi-static condition.

4.5 Conclusions

The Mie-series has been formulated mathematically and its implementation has been val-

idated by comparing the solution for the scattered field to a result published in the litera-

ture. In addition, we have numerically computed the results in HFSS and WIPL-D. Despite

the simplicity of the MEDM code, the numerical solutions of several scattering problems

(sphere, thin plate and cube) are in good agreement with the HFSS and WIPL-D results,

as well as with the analytical Mie-series solution for the sphere. However, MEDM is gen-

erally faster and requires less amount of memory. Finally, it has been verified numerically

that a subdivision of the source cube does not lead to a significant improvement in the

field value at neighboring observation cubes.
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Chapter 5

Solution to Large Problems

After discretizing the Electric Field Integral Equation (EFIE), one can obtain the numerical

solution for electrically small problems only, since the solution of large scattering problems

is still memory and time consuming. In order to overcome these limitations, this chapter

includes the description of a few novel memory and time efficiency enhancement techniques.

More specifically, the Characteristic Basis Function Method (CBFM) and the Adaptive

Cross Approximation (ACA) are employed to improve both the memory and time efficiency.

Translation symmetry and the Lorentz reciprocity theorem are used to further enhance the

time efficiency.

5.1 Introduction

The MoM has been a commonly used tool for obtaining a full wave solution of various

computational electromagnetic problems. However, a conventional MoM approach is in-

efficient in handling electrically large structures. In fact, the large number of required

basis functions renders the solution of electrically large problems intractable. A number of

computationally efficient techniques have been proposed for the MoM to be able to solve

electrically large problems on moderate sized computers. In this chapter, we select and

discuss a few of the recently published Efficiency Enhancement Techniques (EETs)—that

are compatible with our method—and hybridize these with the previously presented MoM

method.
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As already pointed out in Chapter 3, when the electrical size of the electromagnetic problem

becomes very large, the solution for I of the relatively large matrix equation ZI = V

becomes cumbersome, since the time complexity of a direct Gaussian elimination method

scales as O(N3), where N is the total number of high-resolution basis functions. Note that

the filling of the moment matrix has only a time complexity of O(N2). In the following,

the CBFM will be used to employ a relatively small set of entire-domain basis functions

for the current, thereby reducing the size of the moment matrix equation leading to a

faster solve time and reduced memory storage requirements [31]. Furthermore, the ACA

algorithm [32] is used, and reciprocity [17, Sec. 7.5] and translation symmetry [13, pp.

104-109] are exploited to reduce the matrix fill time. In the CBFM, entire-domain basis

functions—called the Characteristic Basis Functions (CBFs)—are generated numerically

using a plane wave spectrum [33], then down-selected using a singular value decomposition

with a thresholding procedure on the singular values, after which the reduced set of CBFs

thus generated leads to a reduced matrix equation which can be solved for Multiple Right

Hand Sides (MRHs). The use of a plane wave spectrum renders the problem independent

of the angle of incidence, which is desired in many electromagnetic scattering applications.

5.2 Formulation

The procedure to generate the CBFs, which are then used to reduce the size of the moment

matrix, will be discussed in this section.

5.2.1 CBF Generation

The CBFM starts by subdividing the original problem into many smaller blocks each of

which will support a set of CBFs. Toward this end, each sub-block is first extended by

its neighboring blocks as illustrated in Fig. 5.1 and then excited by plane waves incident

from different directions with equal steps in azimuth and elevation angles to obtain a

set of basis functions which are independent of the angle of incidence. A two dimensional

pictorial representation of a plane-wave spectrum incident on an extended block is provided

in Fig. 5.1. To generate CBFs, we use the self-coupling matrix block ZExt
bb (b = 1, 2, . . . , Nb),

where Nb represents the total number of (extended) CBF-blocks. The CBFs pertaining to
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Extended
CBF Block

θ

Figure 5.1: 2D Representation of a plane-wave spectrum generation.

the bth sub-block are extracted from the induced current distribution by truncating the

support of the current to the original (non-extended) block size. The truncation step is

needed to eliminate the edge-singular current at the outer edge of the extended blocks and

will therefore lead to a more continuous representation of the equivalent electric current at

the interfaces between the non-extended sub-blocks.

Ideally, it is desired to have an orthogonal set of CBFs that can span the whole solution

space of the problem. However, the basis functions that are obtained by solving the rela-

tively small MoM equation for MRHS are in general, i.e. after truncation, not independent

and carry therefore redundant information (this primarily depends on the density of the

plane wave spectrum). Through the the application of the singular value decomposition,

the set of CBFs can be orthonormalized and reduced using an appropriate thresholding

procedure on the singular values as detailed in the next section.

5.2.2 Reduced Matrix Implementation

To rapidly solve the full moment matrix equation, the matrix equation in (2.27) is first

reduced through the application of the above-described set of CBFs. To demonstrate the

principles of CBFM, we select a simple example representing twelve contiguous CBF-blocks

as depicted in Fig. 5.2. In this figure, only one CBF is generated and thus supported per

sub-block to maintain simplicity in the notation. As mentioned above, the CBFM subdi-
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vides the basic geometry of the problem into many extended sub-blocks, which themselves

consist of many micro-domain cubes, and then solves each correspondingly small matrix

equation for a spectrum of incident plane waves to generate the CBFs.

For the derivation of the reduced matrix elements, we expand the total equivalent current

J eq in terms of NCBF = Nb characteristic basis functions (CBFs), so that

J eq(r) =
NCBF∑
b=1

αCBF
b JCBF

b (r), (5.1)

where JCBF
b represents the bth CBF and αCBF

b represents the bth unknown expansion

coefficient for that CBF. The bth CBF is expanded in terms of NµBF
b micro-basis functions

with known expansion coefficients {αbl}
NµBF
b

l=1 , as;

JCBF
b (r) =

NµBF
b∑
l=1

αblf
b
l (r). (5.2)

The vector basis function f bl represents the lth micro-domain basis function on the bth

domain. The reduced moment matrix element ZCBF
mn between the nth source and mth ob-

servation CBF is given as

ZCBF
mn =

1

jω(ε− ε0)

〈
JCBF
n (r),JCBF

m (r)
〉
−
〈
Es(JCBF

n (r)),JCBF
m (r)

〉

=

NµBF
b∑
i=1

NµBF
b∑
j=1

αmi
 1

jω(ε− ε0)

〈
fnj (r),fmi (r)

〉
−
〈
Es(fnj (r)),fmi (r)

〉
︸ ︷︷ ︸

Zmnij

αnj


=

NµBF
b∑
i=1

NµBF
b∑
j=1

αmi Z
mn
ij α

n
j

= (αm)TZmnαn. (5.3)

Similarly, the mth element VCBF
m of the reduced excitation vector is computed as

VCBF
m =

∫∫
Sm

JCBF
m ·Ei(r) dS

=

NµBF
b∑
i=1

αmi

[∫∫
Sm

fmi ·Ei(r) dS

]
= (αm)TVm, (5.4)
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Figure 5.2: 2-D representation of the block extension in the CBFM.

where the vector Vm is the excitation vector of the original problem pertaining to the mth

block.

In conclusion, the moment matrix equations can be reduced to a small size matrix repre-

sentation using the CBFM to yield
ZCBF

11 · · · ZCBF
1(12)

...
. . .

...

ZCBF
(12)1 · · · ZCBF

(12)(12)



αCBF

1
...

αCBF
(12)

 =


VCBF

1
...

VCBF
(12)

 , (5.5)

where ZCBF
bb is the reduced self-coupling matrix element for the CBF-block b; ZCBF

bc is the

reduced coupling element for the source CBF-block c and the observation CBF-block b (cf.,

Fig. 5.2). Similarly, VCBF
b and αCBF

b are the elements for the reduced excitation and CBF

expansion coefficient vectors, respectively.

If more than one CBF is generated per subdomain, say NPWS
b CBFs for the bth subdomain,

the NPWS
b CBF expansion coefficient vectors αCBF

b,nw
for nw = 1, 2, . . . , NPWS

b can be stacked

in a column-augmented matrix Ab as Ab = [αPWS
b,1

...αPWS
b,2

... · · · ...αPWS
b,NPWS

b
]. To reduce and

orthonormalize this set we use the singular value decomposition of Ab:

Ab = UbSbV
H
b , (5.6)

where Ub is a matrix with orthogonal columns, VH
b is a matrix with orthogonal rows, and Sb

is a diagonal matrix holding the singular values in descending order. Accordingly, an appro-

priate threshold—depending on the final desired accuracy of the synthesized current—can
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be selected beyond which the singular values can be set to zero. As a result, the corre-

sponding columns of Ub with zero eigenvalues and rows from VH
b can be removed. In effect,

this leads to a more compact representation of the CBFs since only a few columns of Ub

have to be retained as CBFs.

5.3 Acceleration Techniques

In the previous section, we have described the CBFM to increase the time and memory

efficiency of solving the moment matrix equation. In this section we will introduce a

number of complementary techniques that can be used to reduce the moment matrix fill

time. One widely known technique to reduce the moment matrix fill time is the Fast

Multipole Method (FMM) [34] which involves the multipole expansion of the free-space

Green’s function. Since the FMM is not kernel independent, we opt for more general fully

algebraic efficiency enhancement techniques for reducing the time complexity of filling the

reduced moment matrix equation. In particular, MEDM will be enhanced by exploiting

reciprocity and translation symmetry, and by making use of the ACA. In this section, we

briefly describe these techniques.

5.3.1 Lorentz Reciprocity

The Lorentz reciprocity theorem describes the symmetric relation between the transmitting

and receiving antenna, that is, if a current is applied at the source antenna, it will induce

an open-circuit voltage at the receiving antenna, while – in the reciprocal case – if this same

current is applied at the receiving antenna, it will induce the same open-circuit voltage at

the transmitting antenna [17, Sec. 7.5]. The reciprocity relation for electric currents only

is expressed as ∫∫
V

∫
J1 ·E2 dV =

∫∫
V

∫
E1 · J2 dV. (5.7)

A consequence of this theorem is that the mutual impedance between the antennas is iden-

tical in both the transmitting and receiving situations (Z12 = Z21, see Fig. 5.3). Similarly,

the moment matrix is symmetric since the source basis functions act as the “transmitting

antennas” while the testing functions are the “receiving antennas”. Hence, the matrix
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Z21

Z12

21

Figure 5.3: Coupling between the two blocks.

in (2.27) is symmetric so that only the upper triangular and diagonal entries need to be

computed. The entries in the lower triangular matrix block can simply be obtained by

transposing the upper triangular matrix block. It is pointed out that reciprocity can be

exploited at multiple-levels in the moment matrix formulation, i.e., on micro- as well as

on macro-domain level. An example at macro-domain level is given in Fig. 5.2, where the

matrix element ZCBF
62 is observed to be the same as the matrix element ZCBF

26 .

5.3.2 Translation Symmetry

The off-diagonal moment matrix entries [i.e. Eq. (3.16) and (3.18)] depend primarily

on the distance and mutual orientation between the source and the observation micro-

domain basis functions; this property also holds for the CBFs. The reaction integrals

for source and observation basis function pairs are therefore the same. This, so-called

translation symmetry, has also been exploited in the CBFM-enhanced MEDM to rapidly

form the many self and coupling block matrices. The latter has been illustrated in Fig. 5.2;

the matrix elements ZCBF
62 and ZCBF

73 are identical, so that, only one of them needs to be

computed, while the second can simply be replaced by that value.

5.3.3 The Adaptive Cross Approximation (ACA)

The interaction (moment matrix block) between two well-separated groups of basis func-

tions can be represented accurately and efficiently by a much smaller subset of these groups.

In fact, the interaction of two well-separated groups of basis functions results in a rank re-

duction of the corresponding moment matrix block. A near-square low-rank matrix block
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can be compressed efficiently through the ACA algorithm. This algorithm is described

thoroughly in [32,35], and summarized below.

Let Zm×n represent the moment matrix coupling block between the basis functions sup-

ported by two well-separated blocks in the MoM computational domain. The goal of the

ACA is to approximate Zm×n by the lower rank matrix Z̃
m×n

with a prescribed accuracy.

More specifically, the ACA algorithm constructs the approximated matrix Z̃
m×n

through

a product form,

Z̃
m×n

= Um×rVr×n =
r∑
i=1

um×1
i v1×n

i (5.8)

where r is the effective rank of the matrix Zm×n. The goal of the ACA is to achieve

|Rm×n| = |Zm×n − Z̃
m×n| ≤ ε|Zm×n| (5.9)

where R is termed the error matrix and ε is a given accuracy. The norm |.| is herein the

2−norm, or Frobenius norm.

Let I = [I1, . . . , Ir] and J = [J1, . . . , Jr] be the arrays containing orderly selected row and

column indexes of the matrix Zm×n. The following ACA algorithm is written in Matlab’s

notation, where R̃(I1, :) stands for the Ith row of the matrix R̃.

The steps involved in the ACA algorithm are as follows:

1. Initialize the 1st row index I1 = 1 and Z̃ = 0.

2. Initialize the 1st row of the approximate error matrix: R̃(I1, :) = Z(I1, :).

3. Find the 1st column index J1: |R̃(I1, J1)| = max
j

R̃(I1, j).

4. v1 = R̃(I1, :)/R̃(I1, J1).

5. Initialize 1st column of the approximate error matrix: R̃(:, J1) = Z(:, J1).

6. u1 = R̃(:, J1).

7. |Z̃(1)|2 = |Z̃(0)|2 + |u1|2|v1|2.

8. Find the 2nd row index I2 : |R̃(I2, J1)| = max
i

(|R̃(i, J1)|).
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kth iteration:

1. Update Ith
k row of the approximate error matrix: R̃(Ik, :) = Z(Ik, :)−

∑k−1
l=1 (ul)Ikvl.

2. Find the next column index Jk: |R̃(Ik, Jk)| = max
j

(|R̃(Ik, j)|), j 6= J1, . . . , Jk−1.

3. vk = R̃(Ik, :)/R̃(Ik, Jk).

4. Update J th
k column of the approximate error matrix: R̃(:, Jk) = Z(:, Jk)−

∑k−1
l=1 (vl)Jkul.

5. uk = R̃(:, Jk).

6. |Z̃(k)|2 = |Z̃(k−1)|2 + 2
∑k−1

j=1 |uT
j uk| · |vT

j vk|+ |uk|2|vk|2.

7. Check convergence: if |uk||vk| ≤ ε|Z̃(k)|, end iteration.

8. Find the next row index Ik+1: |R̃(Ik+1, Jk)| = max
i

(|R̃(i, Jk)|), i 6= I1, . . . , Ik.

5.3.4 Fast Matrix Generation and Solution

To examine the effectiveness of the previously described EETs, we select a plate of size

20×20×5 microdomain basis functions and then subdivide and solve the combined problem

using CBF blocks of size 5× 5× 5 micro-domain basis functions. The comparison results

between the MEDM, with and without employing Efficiency Enhancement Techniques

(EETs), are listed in Table 5.1. The corresponding problems have been depicted in Fig. 5.4.

The computational platform used for solving the problems consists of a remote desktop

server, equipped with a quad core processor and 148 GB of RAM, operating at 2.2 GHz.

For the problems mentioned in Table 5.1, the tolerance for the ACA and the CBFM are

set to be 1/15 and 1/100, respectively.

5.4 The MEDM with and without the Efficiency En-

hancement Techniques (EETs)

The dielectric objects discussed earlier in Chapter 4 for several different shapes are recon-

sidered in this section for the case when EETs are employed. The computed scattered
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Table 5.1: Comparison of the total solution time for the MEDM with and without employ-

ing the EETs

(a) Performance parameters for both the CBFM and ACA

No. of No. of No. of No. of Min. Block Sep. Dist.

Blocks Micro-Basis Uniq. CBFs MoM Blocks [λ] ACA

16 6000 9 117 0.012

32 12000 18 459 0.012

48 18000 27 1026 0.012

64 24000 27 1701 0.012

80 30000 27 2376 0.012

(b) Time efficiency comparison

No. of CBFM & ACA No CBFM & No ACA Fig. Ref.

Blocks Time [s] Time [s] [Fig. No.]

16 46.48 56.3 5.4(a)

32 157.00 155.73 5.4(b)

48 391.05 409.26 5.4(c)

64 620.5 841.75 5.4(d)

80 782 1493.7 5.4(e)

fields for MEDM with EETs have been compared to those computed in Chapter 4. In

Chapter 4, we have validated MEDM by comparing the numerically computed solution to

Ansoft’s HFSS (v 13.0), in terms of the accuracy, execution time and memory usage. In

the following subsections, we will investigate the accuracy and time efficiency of the EETs

in comparison with the plain MEDM.

For the generation of the results that follow, an Intel Centrino laptop equipped with a

dual core processor@2.2 GHz and 2GB of RAM has been used; except for the sphere of

radius R = λ/50, where a remote desktop server has been used equipped with a quad core

processor@2.2 GHz and 148GB of RAM.
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(a) 16 CBF-blocks (b) 32 CBF-blocks (c) 48 CBF-blocks (d) 64 CBF-blocks

(e) 80 CBF-blocks

Figure 5.4: Progressive increase in CBFM blocks, examining the effectiveness of EETs

5.4.1 Scattering From a Dielectric Sphere

A dielectric sphere has been simulated using the MEDM, both with and without employing

the EETs. The comparison between the numerical results is depicted in Fig. 5.5. The

specifications of the problem are described in Table 5.2.

Table 5.2: Specifications for the dielectric sphere.

• x-polarized plane wave • k0R = 1
2

• εr = 6 • φi = 0

• θi = π • R = λ/4π

The results obtained when EETs are employed seem to be in good correspondence to those

obtained without EETs, as illustrated in Fig. 5.5. The field inside the sphere—as computed

by the MEDM code (cf., Fig. 5.5)—resembles the analytical computations very well, apart

from a spurious glitch in the field solution that has already been discussed in Chapter 4.

Usually we are interested in physical quantities that are integrals over the fields or currents

(scattering patterns, power losses, energy storage, etc.); hence, the glitch at only the last

cell may not be of much concern. For instance, the time-average stored electric energy

1/4
∫∫∫

ε|E|2 dV is for MEDM: 5.68e-15 [J]; HFSS: 5.60e-15 [J]; and Mie: 5.77e-15 [J],

which shows that MEDM result is close to the analytically derived value, than is the one

given by HFSS.
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(a) Problem (graphical illustration).
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Figure 5.5: MEDM results with and without employing EETs; specifications: see Tables 4.3

and 5.2.

5.4.2 Scattering From a Small Plate

An electrically thin dielectric plate has been simulated using the MEDM (see Table 4.5).

The comparison between the MEDM—with and without employing EETs—is depicted in

Fig. 5.6. The specifications for the corresponding EETs and the total execution time are

listed in Table 5.3.

Table 5.3: EET specifications for the electrically thin plate.

• CBF-Block Size = 3×3×3 • CBF-Block Exten. Dist. = 2 Cells

• MinDistACA = 5×MeshCellSize • TolACA = 1/40

• Execution Time = 25.1248 Sec

It is apparent from Table 5.3 that, when the geometry of the object is very small compared

to the size of CBF-block, or when the degree of translation symmetry is less, a plain MEDM

can even outperform the MEDM with EETs employed, both in terms of the execution time

and memory usage. This is due to a relatively large computational overhead in the CBFM

which is needed for generating the CBFs.
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(a) Problem (graphical illustration).
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Figure 5.6: Accuracy of MEDM with and without employing EETs; specifications: see

Tables 4.5 and 5.3.

5.4.3 Scattering From a Small Dielectric Cube

A relatively small dielectric cube is simulated using MEDM without employing EETs to be

able to compare it to the results that are computed by MEDM when EETs are employed.

The results are depicted in Fig. 5.7. The specifications of the problem are as follows:

Table 5.4: EET specifications for the dielectric cube.

• CBF-Block size = 3×3×3 • CBF-Block Exten. Dist. = 2 Cells

• MinDistACA = 5×Mesh Cell Size • TolACA = 1/40

• Execution Time = 159.7257 Sec

Table 5.5 summarizes the comparison between the results—generated by MEDM—with

and without the application of EETs, for the three different types of problems as discussed

in this and the previous section.

It is concluded from Table. 5.5 and the Figs. 5.5, 5.6 and 5.7 that the use of EETs do not

affect the solution accuracy much but do increase the computational efficiency significantly.

A larger improvement is expected for a multi-level CBFM approach.
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(a) Problem (graphical illustration).
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Figure 5.7: MEDM in comparison with HFSS; specifications: see Table 4.6.

Table 5.5: Summary of comparison between EETs and without EETs.

Problem CBFM Specifications Execution Time Execution Time

Type [Reference] With EETs Without EETs

Sphere Table 5.2 150.0000 165.0000

Plate Table 5.3 25.1248 2.1111

Cube Table 5.4 159.7257 16.4713

5.4.4 Solution to Electrically Large Problems for MEDM

Generally, the largest size of the problem that can be solved by MEDM depends upon

the available system memory. Nevertheless, in order to guesstimate the largest number of

basis functions that can be solved on a machine whose specifications have been mentioned

in Section 5.3.4, a sphere of radius R = λ/8 has been simulated first, for which the results

have been depicted in Fig. 5.8. The edge length for the basis functions is set to λ/100.

Table 5.6: Specifications for the largest solvable dielectric sphere.

• x-polarized plane wave • k0R = π
4

• εr = 6 • φi = 0

• θi = π • R = λ/8

Accordingly, the size of sphere is increased even further. The results have been depicted
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(a) Problem (graphical illustration).
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Figure 5.8: Solution to an electrically large problem by the MEDM. Specifications: see

Table 5.6.

in Fig. 5.9, while the specifications of the problem can be found in Table 5.7.

Table 5.7: Specifications for the largest solvable dielectric sphere.

• x-polarized plane wave • k0R = π
3

• εr = 6 • φi = 0

• θi = π • R = λ/6

(a) Problem (graphical illustration).
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Figure 5.9: Solution to an electrically large problem by the MEDM. Specifications: see

Table 5.6.
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5.5 Conclusions

The CBFM and the ACA algorithm have been described, implemented, and applied to

several scattering problems. It has been demonstrated that the MEDM with EETs em-

ployed can provide enhanced memory storage capabilities and reduce the total execution

time significantly, with only a subtle compromise on the accuracy of the desired results.

In general, there exists no hard limit on the size of the problem. It merely depends on the

available memory resources, and processor specifications to achieve fast results, nonethe-

less, we have solved an electrically large problem with promising results, among which is a

sphere of radius λ/6 whose current is synthesized by approximately 60,000 high-resolution

basis functions. It is expected that even larger problems can be handled when a multi-level

version of MEDM is employed.



Chapter 6

Numerical Results

The procedure to measure the permittivity of a radome material using a substrate mea-

surement system has been described in this chapter. The MEDM, as developed during this

research project, has been applied to an electrically-large radome covering a dipole antenna

array. The influence of the radome on the antenna gain pattern has been studied.

6.1 Substrate Measurement System (SMS)

The SMS is a ring-resonator-based system for the measurement of the permittivity and

loss tangent of a sample of dielectric material in the frequency range 1-13 GHz [36,37]. In

this section, we briefly describe the procedure to measure the permittivity of a dielectric

material, and elaborate on the electromagnetic principles of the measurement method.

6.1.1 Measurement Setup

The apparatus consists of a mechanical setup and software for processing the measurement

results that are obtained from a network analyzer. The mechanical setup procedure is

described as follows:

A sample of the radome, to be used for the measurements, must be cut with dimen-
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sions 56×64 mm and placed on the ground plane of the measurement device as shown in

Fig. 6.2(b). The accuracy of the 56 mm size must be quite precise (±0.1 mm) and the

thickness of the sample must be between 0.5 and 1.5 mm. If the thickness of the sample

is less than 0.5 mm, it can be stacked with other samples. Samples of Teflon material (5

stacked layers of 0.1 mm each) and Mylar (5 mm thickness) are shown in Figs. 6.1(a) and

6.1(b), respectively. The resonator is placed on top of the sample with the microstrip ring

(or strip) facing downwards as shown in Fig. 6.2(c). Afterwards, the coupling elements

are placed at the brass board [cf., Fig. 6.2(d)]. There are two available types of coupling

elements embedded with the SMS; the coupling element with pin length 0.7 mm can be

used, however, if it does not yield a scattering parameter S12 in the range -50 to -15 dB,

then a coupling element with pin length 0.3 mm can be used. The sample is tightened

using the clippers as depicted in Fig. 6.2(e). To measure the resonant frequencies, connect

the coaxial cables of the network analyzer must be connected to the coupling elements (cf.,

Fig. 6.3).

(a) Teflon (b) Mylar

Figure 6.1: Measurement samples as used for the Eleven Feed Radome [38]

6.1.2 The Principle of the Measurement Technique

Herein, we briefly describe the principle of the measurement technique. A thorough expo-

sition of the microstrip ring resonator measurement technique can be found in [37]. The

basic principle relies upon the variational principle, where the permittivity of the test ma-

terial is varied, and hence, the capacitance of the resonator. A ring resonator is used to

perform the measurements, primarily because the ring resonator has high quality factor.

The ring resonator comprises a copper ring etched on a substrate as shown in Fig. 6.5.

The resonance frequency can be determined by setting the guided wavelength (λg) equal
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(a) Ground plane (b) Sample on ground plane (c) Resonator on top of sample

(d) Couplers attached to res-

onator

(e) Cliping to tighten the sample

Figure 6.2: Dielectric substrate measurement setup

to a multiple of circumference of the ring, as dictated by the expression [39]

π(a+ b) = nλg. (6.1)

In the above expression, n is the harmonic number, a and b are the inner and outer

diameters of the ring, respectively, λg = λ0/
√
εeff(f), and the effective permittivity εeff(f)

of the microstrip line can be found in, for instance, [17, 40, 41, Sec. 8.8.2, Sec. 3.4.1, Sec.

1.2.1, respectively]. By rearranging the above expressions, the resonant frequencies of the

microstrip line can be calculated as

fn =
nc

π(a+ b)
√
εeff(f)

, (6.2)

where c is the speed of light in free space. The following expression describes the relation

between the capacitance of a loaded and an unloaded line,

λ

λ0

=

√
C0

C
=

1√
εeff(f)

. (6.3)

In the above equation, λ0 and C0 are the wavelength and capacitance—respectively—of

an unloaded (ε1 = ε2 = 1, see Fig. 6.4) line. Similarly, λ and C are the wavelength
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Figure 6.3: Measurement setup and results
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Figure 6.4: Schematic diagram of a dielectric substrate measurement system. Symbols S

and H denote the substrate (ring resonator) and sample thicknesses, respectively.
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Figure 6.5: Ring resonator
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and capacitance—respectively—of a loaded (ε1 = 10, ε2 = v) line, where v denotes the

variable to be determined. The capacitance of the line can be calculated using the following

expression [42,43]:
1

C
=

1

πQ2ε0

∫ ∞
0

[f(β)]2g(β) dβ, (6.4)

where

Q =

∫ +∞

−∞
f(x) dx, (6.5a)

f(β) =

∫ +∞

−∞
f(x)ejβx dx, (6.5b)

g(β) =
ε2s

|β|ε2[ε2 + ε1hs]
. (6.5c)

In the above equations,

h = coth(|β|H), (6.6a)

s = coth(|β|S), (6.6b)

while the function f(x) is approximated by the trial function

f(x) =

{
1 +

(
2x
w

)3
, −w

2
≤ x ≤ w

2

0, otherwise,
(6.7)

where w is the width of the line. The capacitance of the unloaded line (C0) can be

computed by substituting ε1 = ε2 = 1 in Eqs. (6.4)-(6.6b), while the capacitance of the

loaded line (C) can be computed by substituting ε1 = 10 and ε2 = v. The variable v is

varied and the corresponding values of εeff are plotted using Eq. 6.3. In the next step, the

resonant frequencies of the ring with and without test material are measured which are F1

and F0, respectively, using a network analyzer. The effective permittivity without the test

material, εeff0, is calculated by substituting ε1 = 10, ε2 = 1 and S →∞, in Eqs. (6.3)-(6.7).

Afterwards, the effective permittivity in the presence of the test material εeff1 is calculated

from the following relation:

πdm = n
λ0√
εeff

= n
c

F0
√
εeff1

= n
c

F1
√
εeff0

, (6.8)

where c is the velocity of light. Using the above relations,

εeff1 = εeff0

(
F0

F1

)2

. (6.9)
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Knowing εeff1, we can search for ε2 from the curve plotted by Eq. (6.3).

The procedure used to compute the dielectric constant of a material using the SMS consists

of the following steps:

• Measuring the resonance frequencies and 3 dB bandwidth of each resonance using

spectrum analyzer (see Fig. 6.6). From these measurements, the constitutive param-

eters of the dielectric material will be extracted.

• Performing a thru measurement by removing the SMS and interconnecting the coaxial

cables from the network analyzer together. This calibration setup is required to

eliminate the effect of the cables.

• The software of the SMS system shows two graphs, one with the initially determined

attenuation coefficient and the other with the effective relative dielectric constant.

• Accordingly, the software starts to calculate the dielectric constant and loss tangent.

This is done by performing EM simulations using the procedure described in this and

the following section.

• Finally, the window displays the determined loss tangent and dielectric constant.

6.1.3 Objective (Cost) Function

In the previous section, we have constructed a model for the system and established a

relation between the effective permittivity and the measured resonance frequencies. The

second step in the optimization procedure is to construct the objective or cost function to

minimize the error between the exact and the developed approximate system. This fitting

procedure allows us to extract the effective permittivity of the material under test. By

substituting (6.5c) in (6.4), and after subtle manipulations, we arrive at

1

C
=

ε2s

πQ2ε0ε2[ε2 + ε1hs]

∫ ∞
0

[f(β)]2

|β|
dβ, (6.10)

which is an inhomogeneous integral equation that can be compactly written as

L(f) =
1

C
. (6.11)
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In the above equation, L is an integral operator defined as

L =
ε2s

πQ2ε0ε2[ε2 + ε1hs]

∫ ∞
0

[.]2

|β|
dβ. (6.12)

The unknown function f can be discretized as follows:

f =
∑
n

αnfn, (6.13)

where {fn} are the basis functions and {αn} are the expansion coefficients. Substituting

the above expression in Eq. (6.11), and using the linearity of L, leads to the following

expression: ∑
n

αnL(fn) =
1

C
, (6.14)

An objective function can be constructed and minimized to determine the unknown ex-

pansion coefficients {αn}, i.e.,

min

∣∣∣∣∣∑
n

αnL(fn)− L(f)

∣∣∣∣∣ , (6.15)

where | · |, in this case, represents a modulus operator. The above expression can be

optimized by a number of existing optimization techniques [23].

6.1.4 Measurement Results

The above mentioned procedure has been brought into practice by measuring the dielectric

properties of the Mylar (0.5 mm thickness) and Teflon materials (5 stacked layers of 0.1

mm each) over the frequency band ranging from 500 MHz up to 13 GHz upon assuming

that the relative permittivity and tangent delta are independent of frequency, the average

measured values are as follows:

Table 6.1: Measured values for Teflon and Mylar

Material Relative Permittivity Tangent Delta

Type (F/m) (-)

Mylar 2.89 0.007

Teflon 2.03 0.003
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HFSS uses for Teflon εr=2.1 and tanδ=0.001, which are similar to the values provided

in Table 6.1. For completeness and in accordance with the aforementioned operating

principal of the SMS, the measured scattering paremeter S21 and the associated resonance

frequencies in the presence of Mylar and Teflon materials have been depicted in Fig. 6.6.
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(b) Teflon material

Figure 6.6: Absolute value of the scattering parameter (|S21|) versus frequency. Peaks

represent the resonance frequencies.

6.2 A Realistically Large Radome Simulation

In the previous chapters, we have focused on the implementation and validation of the

MEDM. In this section, we focus on radomes for the radio astronomical applications as

alluded to in Chapter 1. The section begins by describing an idealistic antenna array used

as a radiation source for illuminating the radome. Afterwards, we present the numerical

results—computed through the use of MEDM—and detrimental effect of the radome on

the antenna radiation pattern.

6.2.1 Antenna Array Beam

In radar and radio astronomical applications, the primary aim is to point the main beams

of the radiation (or receiving) pattern in the desired directions with high precision, while it

may be required to place nulls in directions of RF interference sources. Reflector antennas

can be used to focus the EM-field from or into a certain direction. However, to steer the
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beam using reflector antennas requires the mechanical steering of the reflector antenna

itself, which is time consuming as the physical size of these antennas is usually very large.

An antenna array, on the other hand, can be used for beam forming and to steer the beam

electronically within fractions of seconds.

In the following, we use an array of infinitesimal dipole antenna elements as a radiation

source for illuminating the radome with a certain beam. The basic principle is to progres-

sively shift the phase of each antenna element in the array in order to point the antenna

beam in the desired direction. For two antenna elements, the resulting field can be ex-

pressed mathematically as a superposition of two dipole fields, i.e.,

E = E1e
−j(Φc+kr1·r̂) +E2e

−j(Φc+kr2·r̂), (6.16)

where, Φc is a constant phase offset depending upon the geometrical center of the array,

the electric field En(θ, φ) represents the embedded element field pattern radiated by the

nth dipole and can be computed using the expressions provided in Appendix B, k is

the propagation constant, rn represents the position of the nth dipole, and r̂(θ0, φ0) is a

position vector pointing in the main direction (θ0, φ0) of the array beam. Often, the total

radiation pattern E is expressed in terms of an array factor sum, which can be obtained

by manipulating the above expression as follows

E = E1e
−j(Φc+kr1·r̂) +E2e

−j(Φc+kr2·r̂),

= e−jΦc
[
E1e

−j(kr1·r̂) +E2e
−j(kr2·r̂)

]
. (6.17)

6.2.2 Numerical Results

The objective of the experiments that have been performed in this section is to simulate

a realistically large radome using the MEDM. In this section particular attention is given

to study the effect of the radome on the radiation pattern as opposed to focusing on the

numerical and/or memory efficiency. For all the experiments listed in this section, the

relative permittivity of the material is chosen to be 6, the operating frequency is 1 GHz,

and the mesh cell size is λ/50. The numerical experiments that have been performed are

as follows:
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Dipole Radiation Pattern in the Presence of a Thin Radome

A relatively thin radome plate of dimensions 1.6λ × 1.6λ × 0.12λ, which is excited by an

x-directed infinitesimal dipole placed underneath the radome as depicted in Fig. 6.7(a),

has been simulated and the results for the azimuth and elevation patterns of the dipole

have been depicted in Figs. 6.7(b) and 6.7(c), respectively. The effect of the presence of

(a) x-oriented dipole
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Figure 6.7: Dipole radiation pattern with and without the radome.

the dielectric material is apparent in the azimuthal direction [cf., Fig. 6.7(c)].
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Dipole Radiation Pattern in the Presence of a Thick Radome

The above steps are repeated for the above step with a radome plate of dimensions 1.6λ×
1.6λ × 0.36λ so as to analyze the effect on the radiation pattern for thicker radomes.

The results have been depicted in Fig. 6.8. It is evident from Fig. 6.8(c) that the thick
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0 50 100 150 200 250 300 350
−20

−15

−10

−5

0

5

θ (Deg)

G
a

in
 (

d
B

i)

 

 

Radome Absent

Radome Present

(b) Theta Variations (φ0 = 0)
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Figure 6.8: Dipole radiation pattern with and without the radome

radome affects the radiation pattern more than the thin radome, as expected. However,

the change is minimal in the main beam direction (broadside), but more pronounced for

larger elevation angles.
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Dipole-Array Radiation Pattern in the Presence of an Electrically Large Radome

In this step, we implement the beam-forming routines for an array of two infinitesimal

dipoles illuminating a plate of dimensions 1.6λ × 1.6λ × 0.36λ, which is placed above the

dipole array as depicted in Fig. 6.9. The distance between the dipole-array and the plate

interface is λ/4. The antenna array beam is scanned for different azimuthal angles. As

(a) x-oriented dipole array along y-axis
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(b) Theta Variations (φ0 = π/2, θ0 = 0.)
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(c) Theta Variations (φ0 = π/2, θ0 = π/6.)
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Figure 6.9: Dipole radiation pattern with and without the radome

illustrated in Figs. 6.9(c)and 6.9(d), the effect of the radome on the antenna beam is rather

significant when the radome covers most of the radiation by antenna, is relatively thick,

and has a large dielectric contrast (ε = 6).
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Dipole-Array Radiation Pattern in the Presence of a Thin Curved Radome

Next, we simulate an electrically large curved radome of radius= 2λ, thickness= 0.36λ and

arc length= 1.6λ with a dipole array placed underneath as shown in Fig. 6.10. A change in

(a) x-oriented dipole array along y-axis
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(b) Theta Variations (φ0 = π/2, θ0 = 0.)
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Figure 6.10: Dipole radiation pattern with and without the curved radome.

the amplitude of the field is observed in the elevation direction, whereas in the azimuthal

direction, both the amplitude and the beam pointing direction is distorted.



70 Chapter 6. Numerical Results

Dipole-Array Radiation Pattern in the Presence of a Thic Curved Radome

As a last step, we simulate a realistically large curved radome with dipole array placed

underneath as shown in Fig. 6.11. As evident from Fig. 6.11, an increase in the radome-

(a) x-oriented dipole array along y-axis
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Figure 6.11: Dipole radiation pattern with and without the curved radome.

thickness leads to an increased distortion in the antenna actual radiation pattern and

increased beam pointing error as compared to the thin radome.
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6.3 Conclusions

In this chapter, we have described the operational principle of the permittivity and loss

tangent measurement system for dielectric materials. The values of permittivity for the

Mylar and Teflon radome materials are measured and compared to the constitutive param-

eter values provided by HFSS. Furthermore, the field scattered by several radomes have

been analyzed whose scattering effect of this scattering, on the resulting beam, is observed.

The detrimental effect of the radome on antenna beam can be significant if the objective is

to accurately point the antenna beam into a specific direction, particularly for off-broadside

scan angles, thick radomes, and for radomes having a large dielectric contrast.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In this thesis, we started with a an introductory chapter describing some background

information on radomes for electromagnetic antennas, provided a motivation into the thesis

subject by introducing the Square Kilometer Array (SKA) radio telescope, and stressed

the importance of employing radomes for the SKA design. Afterwards, we briefly reviewed

the most prominent existing computational methods for solving electromagnetic (radiation

and scattering) problems.

Thereafter, in Chapter 2, we formulated and discretized the Electric Field Integral Equation

(EFIE) using the method of weighted residuals. This discretization has led us to a moment

matrix equation, which can be solved for the unknown current. Before doing so, we made

an explicit choice of basis and test functions; we have chosen to employ low-order micro-

domain basis functions because they are potentially well-suited to model fine details in

the current, while the numerical implementation is straightforward. The equivalent dipole

moment of a micro-domain basis function has been derived for the representation of the

field external to the source basis function. The self-term is calculated by testing the

scattered field at the center of the source cube. The scattered field value in the center of
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the remaining cubes (i.e. coupling-terms) have been determined through the dipole field

representation. This allows us to establish regular closed-form expressions for the moment

matrix elements which can be evaluated rapidly and in a direct numerical manner.

Following the formulation and implementation of the method, the method is then vali-

dated against analytically-known scattering solutions, and compared to existing numerical

softwares. For this purpose, the Mie-series has been formulated mathematically and its

implementation has been validated by comparing the solution to published results that are

available in the literature. In addition, we have simulated the results in HFSS. Overall,

the results obtained via the presented MEDM code are in good agreement with the exact

solution and the HFSS results, despite the simplicity of the numerical scheme. Further-

more, the solution is computed faster and requires less amounts of memory. Finally, it has

been verified numerically (through a convergence study) that a subdivision of the source

cube into smaller source cubes does not lead to a significant improvement in the accuracy

of the computed radiated field at neighboring observation cubes.

From a theoretical standpoint, we have formulated and implemented a novel numerical

Computational Electromagnetic (CEM) method for the accurate solution of dielectric scat-

tering problems. However, employing electrically small basis functions inevitably causes

memory storage problems and excessively long simulation times. To overcome these mem-

ory and time inefficiency problems, the CBFM and the ACA algorithm have been described,

and used to enhance the plain MEDM code. It has been demonstrated—through various

examples—that the MEDM with EETs employed reduces the memory storage require-

ments and increases the time efficiency with only a subtle compromise on the solution

accuracy. There is no hard limit on the size of the problem, since this merely depends on

the available memory resources and processor specifications; we have successfully solved

electrically large scattering problems, among which a dielectric sphere of radius λ/6.

Chapter 6, contains a description of the permittivity and loss tangent measurement system

for dielectric materials. The complex-valued permittivity for Mylar and Teflon materials

have been measured and compared to those specified in the HFSS software. Finally, the

field scattered by a radome has been analyzed and the effect of this scattering on the

resulting antenna phased-array beam has been examined. It is concluded that the effect

of the radome on the antenna beam can be relatively large if accurately beam-pointing is

required, particularly for thick radomes, off-broadside scan angles, and radomes of high

dielectric contrast. In these cases the radome must be taken into account during the
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electromagnetic design phase of the antenna system.

7.2 Recommendations

Although we have focused on making the presented method as optimal as possible, we

believe that the proposed method can be improved further. The following itemization

describes our findings and research curiosities as recommendations which may help to

improve and extend the numerical method in future. Also, these recommendations can be

effectuated and be an input for a future PhD project. The suggestions are as follows:

• The glitch in the field at the surface of the sphere in Fig. 4.5(a) is a result of spu-

rious charges at the boundary surface of the sphere as described in Chapter 4. It

is worthwhile to examine whether this spurious surface charge can be mitigated by

introducing more than three degrees of freedom for the basis function current in a

micro cube.

• Secondly, the CBFM—as implemented during this project—represents a monolevel

version of CBFM. The multilevel implementation of CBFM can result into a fast

solution of problems that are even electrically larger, at a reduced computational

cost and at a reduced solution time, relative to a monolevel approach.

• Although we have established a short discussion about the scattering analysis of com-

bined antenna-radome problems, a more detailed analysis is required to accurately

quantify the detrimental effect of radomes on the antenna performance. It is desired

that beam pointing errors incurred by the presence of radome can be predicted in

advance and possibly be compensated for in an early stage of the antenna design

process.

• The volume equivalent currents employed in MEDM can be combined with the surface

equivalent currents in CAESAR to develop a hybrid formulation for solving entire

antenna-radome problems. This capability also enables us to design antenna arrays

in the presence of a radome.

As a final note, it is worth pointing out that this work has been published at the Interna-

tional Conference on Electromagnetics and Advanced Applications (ICEAA) [44]:
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M. Naeem, R. Maaskant, G. W. Kant, P.-S. Kildal, and R. Mittra, “The method of equiv-

alent dipole moments (MEDM) combined with CBFM for the fast and accurate solution

of dielectric scattering problems”, International Conference on Electromagnetics and Ad-

vanced Applications (ICEAA), Sep. 2011.



Appendix A

Field in the Center of the Cube

A.1 Scattered Field Evaluation

Here, we evaluate the integral terms involved in (3.9), one by one, for simplicity and

substitute the simplified forms back to have an integral free expression for the scattered

field in the center of the microdomain cube. The first integral in (3.9) is evaluated as

∫
∂V

∫
r̂′ · n̂ dS ′ =

∑
i

∫
∂iV

∫
r′

|r′|
· n̂i dS ′, (A.1)

where the sum of integrals over ∂iV indicates that all faces of the cube are integrated

separately and then summed. For the face S+
y at y = a/2, for instance,

∫
S+y

∫
r′

|r′|
· ŷ dS ′ = ŷ ·

a/2∫
−a/2

a/2∫
−a/2

x′x̂+ (a/2)ŷ + z′ẑ√
x′2 + (a/2)2 + z′2

dx′ dz′

=
(a

2

) a/2∫
−a/2

a/2∫
−a/2

1√
x′2 + (a/2)2 + z′2

dx′ dz′ =
(a

2

)∫
Sy+

∫
1

R
dS ′. (A.2)

This last integral can be evaluated with the aid of [26, Eq. (5)], where we will now have

a “residue” contribution, unlike it was the case for the volume integration in (3.7). The
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evaluation proceeds as follows,∫
S+y

∫
1

R
dS ′ = lim

ε→0

∫
S+y −Sε

∫
∇′s ·

(
R

P
P̂

)
dS ′ + lim

ε→0

∫
Sε

∫
1

R
dS ′, (A.3)

where Sε is a small circular area excluded from the face of the cube at y = a/2, i.e.

Sε ⊂ S+
y , with center (x = 0, y = a/2, z = 0) and radius ε. Here, P = |ρ′|, P̂ = ρ′/P , and

ρ′ = x′x̂+ z′ẑ. One readily concludes that the last integral amounts to zero, since

lim
ε→0

∫
Sε

∫
1

R
dS ′ = lim

ε→0

2π∫
0

ε∫
0

P√
P 2 + (a/2)2

dP dϕ = lim
ε→0

2π(
√
ε2 + (a/2)2 −

√
(a/2)2) = 0.

(A.4)

Using Gauss’ theorem for surfaces, that is,∫
S

∫
∇′s ·As dS ′ =

∮
∂S

As · m̂ d`′, (A.5)

where m̂ is pointing outwards along the closed contour, the other integral in (A.3) is

evaluated as

lim
ε→0

∫
S+y −Sε

∫
∇′s ·

(
R

P
P̂

)
dS ′ =

∮
∂S+y

(
R

P
P̂

)
· m̂ d`′ − lim

ε→0

∮
∂Sε

(
R

P
P̂

)
· P̂ d`′

=
4∑
j=1

∫
`+,jy

R

P
P̂ · m̂j d`′ − 2π lim

ε→0
ε

√
(a/2)2 + ε2

ε

=
4∑
j=1

∫
`+,jy

(
1

R
+

(a/2)2

P 2R

)
ρ′ · m̂j d`′ − aπ, (A.6)

where we integrate over the 4 line segments of the face at y = a/2 and sum their contri-

butions. The segment `+,j
y is the jth segment at y = a/2. The term ρ′ · m̂j = a/2. The

first line integral in (A.6) is written as

4∑
j=1

∫
`+,jy

1

R
d`′ = 4

a/2∫
`′=−a/2

1√
(a/2)2 + (a/2)2 + `′2

d`′ = 4 ln

(√
3 + 1√
3− 1

)
(A.7)
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and the second line integral as

4∑
j=1

∫
`+,jy

1

P 2R
d`′ = 4

a/2∫
`′=−a/2

1[
(a/2)2 + `′2

]√
(a/2)2 + (a/2)2 + `′2

d`′

=
32

a2
arctan

(
1√
3

)
, (A.8)

where we have used that∫
1

[d2 + x2]
√

2d2 + x2
dx =

1

d2
arctan

(
x√

2d2 + x2

)
. (A.9)

Substituting (A.8) and (A.7) in (A.6), and then in (A.3), and (A.2), yields∫
S+y

∫
r̂′ · n̂ dS ′ = a2

[
ln

(√
3 + 1√
3− 1

)
+ 2a2 arctan

(
1√
3

)
− 1

2
π

]
. (A.10)

The flux that we have calculated through the face at y = a/2 is equal for all the six faces.

Hence, we have in (A.1) that∫
∂V

∫
r̂′ · n̂ dS ′ = a2

[
6 ln

(√
3 + 1√
3− 1

)
+ 12a2 arctan

(
1√
3

)
− 3π

]
. (A.11)

Next, we will evaluate the last two integral expressions in (3.9). On the basis of symmetry,

we have for the face S+ at z = a/2 that

∫
S+

∫
r̂′

r′2
dS ′ =

a/2∫
−a/2

a/2∫
−a/2

x′x̂+ y′ŷ + (a/2)ẑ

[x′2 + y′2 + (a/2)2]3/2
dx′ dy′

= ẑ
(a

2

) a/2∫
−a/2

a/2∫
−a/2

1

[x′2 + y′2 + (a/2)2]3/2
dx′ dy′ = ẑ

(a
2

)∫
S+

∫
1

R3
dS ′. (A.12)

This last integral can be evaluated using [25, Eq. (26)]. Taking for the present case that

ρ′ = x′x̂ + y′ŷ, R =
√
x′2 + y′2 + (a/2)2, P =

√
x′2 + y′2, and P̂ = ρ′/P , one can

express (A.12) as∫
S+

∫
1

R3
dS ′ = lim

ε→0

∫
Sε

∫
1

R3
dS ′ − lim

ε→0

∫
S+−Sε

∫
∇′s ·

(
P̂

PR

)
dS ′, (A.13)
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which can be simplified using Gauss’ theorem to

∫
S+

∫
1

R3
dS ′ = lim

ε→0

∫
Sε

∫
1

R3
dS ′ −

∮
∂S+

(
P̂

PR

)
· m̂ d`′ + lim

ε→0

∮
∂Sε

(
P̂

PR

)
· P̂ d`′. (A.14)

The first term on the right-hand-side is evaluated as

lim
ε→0

∫
Sε

∫
1

R3
dS ′ = lim

ε→0

2π∫
0

ε∫
0

P

[P 2 + (a/2)2]3/2
dP dϕ = 2π lim

ε→0

[
2√
a2
− 2√

a2 + 4ε2

]
= 0,

(A.15)

and the last term on the right-hand-side is evaluated as

lim
ε→0

∮
∂Sε

(
P̂

PR

)
· P̂ d`′ = lim

ε→0

∮
∂Sε

(
1

PR

)
d`′ = 2π lim

ε→0

ε

ε(
√
ε2 + (a/2)2)

=
4π

a
, (A.16)

and the middle term on the right-hand-side as

∮
∂S+

(
P̂

PR

)
· m̂ d`′ =

(a
2

) ∮
∂S+

(
1

P 2R

)
d`′ =

16

a
arctan

(
1√
3

)
, (A.17)

where we made use of (A.8). Substituting the preceding results back in (A.12), yields

∫
S+

∫
r̂′

r′2
dS ′ = −

∫
S−

∫
r̂′

r′2
dS ′ = ẑ

[
2π − 8 arctan

(
1√
3

)]
. (A.18)

Finally, Eqs. (A.18) and (A.11) are substituted in (3.9) to give the scattered field at the

origin, i.e.,

Es(r = 0,J eq) = ẑ

[
−jωµ0a

2

[
3

4π
ln

(√
3 + 1√
3− 1

)
+

3

2π
a2 arctan

(
1√
3

)
− 3

8

]

− 1

jωε0

[
1− 4

π
arctan

(
1√
3

)]]
. (A.19)
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A.2 Contribution of the Second Taylor Term

To arrive at (3.11), we add Adding the second Taylor term (−jk0R) to (2.17) for the basis

function J eq(r′) = fn(r′), which results in the following:

Es(fn)|2T = −jωµ0

∫∫
V

∫
fn(r′)

−jk0|r − r′|
4π|r − r′|

dV ′ (A.20)

− 1

jωε0

∫∫
V

∫
∇′ · fn(r′)∇′

(
−jk0|r − r′|
4π|r − r′|

)
dV ′

= −ωµ0k0

4π

∫∫
V

∫
fn(r′) dV ′ + 0

= −ωµ0k0

4π

∫∫
V

∫
ẑ dV ′

= −ωµ0k0

4π
a3ẑ, (A.21)

where Es(fn)|2T denotes the scattered field due to second taylor term.
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Appendix B

Field of an Infinitesimal Dipole

The field of an infinitesimal dipole is derived in this section. By substituting (2.11) in (2.9),

we have that

E =
1

jωε0

[
∇ (∇ ·A) + k2

0A
]
. (B.1)

The solution of this equation can be found by substituting the current density for the

infinitesimal dipole, Jeq(r′) = Ilẑδ(x′)δ(y′)δ(z′), in (2.13) as

A =

∫∫
V∞

∫
J eq(r′)

e−jk0|r−r
′|

4π|r − r′|
dV ′

=
Il

4π
ẑ
e−jk0|r|

|r|
. (B.2)

Substituting (B.2) in (B.1), gives the following expression for the field:

E =
Il

4πjωε0

[
∇
(
∇ · ẑ e

−jk0|r|

|r|

)
+ k2

0ẑ
e−jk0|r|

|r|

]
. (B.3)

The different terms in the above expression are solved separately as follows:

∇ · ẑ e
−jk0|r|

|r|
=

∂

∂z

e−jk0|r|

|r|

= −
[

1

|r|3
+

jk

|r|2

]
ze−jk0|r|, (B.4)
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∇
(
− 1

|r|3
ze−jk0|r|

)
= e−jk0|r|

[(
3xz

|r|5
+
jk0xz

|r|4

)
x̂+ · · ·(

3yz

|r|5
+
jk0yz

|r|4

)
ŷ + · · ·(

3z2

|r|5
+
jk0z

2

|r|4
− 1

|r|3

)
ẑ

]
, (B.5)

∇
(
− jk

|r|2
ze−jk0|r|

)
= e−jk0|r|

[(
2jk0xz

|r|4
− k2

0xz

|r|3

)
x̂+ · · ·(

2jk0yz

|r|4
− k2

0yz

|r|3

)
ŷ + · · ·(

2jk0z
2

|r|4
− k2

0z
2

|r|3
− jk0

|r|2

)
ẑ

]
. (B.6)

Substituting the above terms in (B.3), and after re-arranging, one obtains

Ex =
IlC

4πjωε0

xze−jk0|rmn|, (B.7a)

Ey =
IlC

4πjωε0

yze−jk0|r|mn , (B.7b)

Ez =
Il

4πjωε0

[
Cmnz

2 +
k2

0

|rmn|
− jk0

|rmn|2
− 1

|rmn|3

]
e−jk0|rmn|, (B.7c)

where

Cmn = − k2
0

|rmn|3
+

3jk0

|rmn|4
+

3

|rmn|5

and where the radiated field outside the source cube is

E(r) = [Exx̂+ Eyŷ + Ezẑ]. (B.8)
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