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Radar-based gait analysis for medical applications using a millimeter wave FMCW radar
A Feasability Study
HALLDÓR STEFÁN LAXDAL BÁRUSON
Department of Signal Processing and Biomedical Engineering
Chalmers University of Technology

Abstract
When it comes to gait analysis in clinical settings, constant monitoring of patients is some-
thing that has not yet been fully realized. Current methods often involve added sensors
or discrete equipment that is generally limited by the monitoring environment or the pa-
tient’s ability to interact with on a daily basis. Recent developments in millimetre wave
technology has given us radar sensors with high operating frequencies which allows for a
significantly higher resolution when compared to conventional microwave radar sensors.
In this thesis we present a potential solution that utilizes a millimetre wave sensor for
a non-contact, privacy preserving method of gait analysis that yields relatively accurate
data as a result.

The primary focus of this thesis is to explore the feasibility of using this millimetre wave
radar sensor for gait analysis and to extract clinically relevant parameters from radar
data. The data was acquired from human subject measurements that we performed in
front of the radar sensor. The parameters are extracted from the data using signal and
image processing methods in Matlab which are then compared with parameters acquired
from video footage of the same tests in order to gauge the relative accuracy of our methods.

In the end we find that the millimetre wave radar sensor is indeed a good candidate for
non-contact gait analysis, as it shows a relatively accurate measure of relevant gait param-
eters ranging from temporal to kinematic. The findings presented here are a significant
foundation for further research and development of constant, non-contact gait monitoring
methods.

Keywords: Radar, Gait, Analysis, FMCW, Continuous, Wave, Non-Contact, micro-Doppler.
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1
Introduction

With a steadily increasing world population, which is estimated to surpass 8 billion in the
year 2022, the population of elderly grows steadily along with it as modern medicine and
new technologies continue to improve the quality and capability of life [1]. According to
the World Health Organization, the global proportion of elderly individuals over the age
of 60 is estimated to double from around 11% to 22% between 2000 and 2050 [2]. The
normal process of aging does come with a decrease in body functionality which has been
linked with a decrease in quality of life, sometimes even an increase in the risk of falling
and mobility impairments as the person grows older [3]. The fact that the population that
is at a greater risk of developing and su�ering from cognitive diseases would still remain
proportional to the population of elderly has brought the question forward whether it is
possible to predetermine or detect ahead of time if a patient is at risk of developing severe
cognitive disabilities.
Diseases that a�ect a person's cognition and cognitive abilities most commonly begin the
onset in senior or elderly persons, with Parkinson's patients usually developing their �rst
symptoms around the age of 60 and Alzheimer's patients aged 65 and older [4] [5]. The
prevalence of new Alzheimer's patients in the United States was found to be increasing
with age, ranging from 4 out of 1000 individuals aged 65 to 74 and up to 76 per 1000 for
individuals older than 80 [5].
Numerous studies have shown that a link exists between early cognitive degeneration
and an increased abnormality in a person's gait, which can manifest in variations on the
person's gait parameters based on where the cognitive degeneration originates [6] [7]. For
patients with early onset Dementia, this can be observed as insecure, short steps, widened
stances and an overall decrease in the patient's ability to regulate their own movement
speed [8]. Patients with early onset Parkinson's exhibit similar gait abnormalities with
an added di�culty of performing key gait related events such as starting, stopping and
turning while walking [9].
The gait changes are usually incredibly minuscule as the disease begins to manifest, but
they grow more and more apparent as the disease progresses, which makes it di�cult to
detect early on so that preventative or mitigative measures can be taken. The current
clinical evaluation of gait parameters is carried out by a specialist of the �eld, but tends
to give highly subjective results as the tests can be both time consuming and costly and
also lacking reproducibility as they are based on a controlled observation of the patient.
In order for a more objective analysis, the patient must be passively observed for longer
periods of time over many days. This would result in a baseline estimation of the patient's
gait and their gait parameters which can be monitored over time for signs of changes.
This means that patients that are at risk of developing gait abnormalities could be ob-
served earlier and for longer periods of time in order to detect any gait abnormalities
early, and therefore be able to take preventative or mitigative measures against cognitive
degeneration.
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1. Introduction

1.1 Existing Methods

There have been developments in technology that have enabled the possibility of constant
gait monitoring, but a lot of the solutions are not feasible for long term monitoring of the
elderly. Some solutions include wearable sensors that monitor inertia of limbs which is not
feasible to expect elderly patients and users to apply to themselves every time monitoring
is to take place [10].

Other directions to solve this problem have been explored, with one company developing
�oor sensors that can detect if patients have fallen or are at the risk of falling. This is
mainly to be used in elderly homes, but the company is exploring private use [11]. This
can be quite expensive to set up, as every square meter of walkable �oor space will have
to be covered in these sensors as it is quite di�cult to predetermine where the patient is
at risk of falling.

Camera monitoring in both visible and infrared (IR) light have been explored extensively
for gait monitoring purposes, as depth based systems that utilize IR light can calculate
time of �ight [6], which can be used to determine distances traveled to a very precise
degree. Infrared light is also the primary tool behind infrared thermography, which is able
to create visual images based on thermal intensity of the target, which can be recorded
and classi�ed to extract relevant gait parameters.

These systems have shown decent performances in most environments, though as with all
camera systems, the environmental lighting levels have to be considered as it can a�ect
the output signi�cantly, change based on clothing re�ectivity levels or even thermal levels
during days or hours where the radiation of the sun can a�ect indoor surface temperatures.
Camera systems that are installed in the patient's home are also perceived to be rather
intrusive for their sense of privacy, regardless of the system's purpose.

For this reason radar technology seems to be the most optimal candidate for gait monitor-
ing. Microwave radar sensors have been widely examined and researched for the purposes
of gait monitoring [12] [13] [14] as they o�er a non-contact solution due to the ability
to be set up virtually anywhere and with a good �eld of view and delivers continuous
monitoring of a person within that �eld. It is also cost e�ective, simple to use and set up
and preserves the person's privacy if it is being used at home.

1.2 Using Radar Devices for Gait Analysis

Recent developments in the �eld of radar technology has brought forth millimeter wave
sensors, which can operate at a signi�cantly higher frequency than the conventional mi-
crowave radar sensors. The available bandwidth that they operate on gives a signi�cantly
higher spatial resolution than conventional radar sensors. The higher frequency range
means that the antenna array is signi�cantly smaller as well, so the form factor of a mil-
limeter wave system is smaller, cheaper and more compact than a microwave system, which
makes it optimal for in-home deployment. The smaller antenna array has the bene�t of
a narrower radar beamwidth, which can help reduce interference and to focus the EM
energy that is radiated towards the subject in front of it. These sensors have already been
researched for the purpose of human body measurements in the automotive industry as a
vital sign monitoring system [15], but they are a promising candidate for gait monitoring
as well.
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1. Introduction

1.3 Thesis Structure

The papers cited in this thesis were obtained via the Chalmers digital library and Google
by using simple search terms such asgait analysis, gait in elderly, radar based gait analysis,
and more. The data processing in this thesis was performed using Matlab on the student's
computer, which was also used for communicating with and recording tests with the radar
system used in this thesis.
In chapter 2 - Theory, we outline the physiological process of the human gait; what pa-
rameters make up the gait, where it originates from and how it is a�ected by cognitive
diseases. We then introduce the radar system chosen for this thesis, how it works and
what signal processing methods are used for processing the data from it. In chapter 3 -
Methodology, we delve deeper into the test set-ups using the radar device, the methods we
use for processing the acquired data and how we will be able to perform gait monitoring
and parameter extraction using them. In chapter 4 - Results we present the di�erent tests
we performed, all from simple target tracking, to analyzing gait variation and parameter
extraction. We brie�y cover a simultaneous experiment performed side by side with a
Continuous Wave (CW) microwave sensor which was done in order to visualize the dif-
ferences between the two systems. In the end we perform a comparison analysis of the
extracted parameters from the radar system and the measured parameters from a video
recording of the same tests. The results from this chapter are then further discussed and
elaborated on in chapter 5.
The thesis is then concluded in chapter 6 - Conclusion, where we summarize our experi-
ments and the results from it and come to a conclusion regarding the thesis question posed
here at the start. We also discuss how the presented methods could be improved as well
as potential future work related to this topic.

1.3.1 Aims

Currently there exists no non-contact product on the market that performs gait analysis
continuously, while also ful�lling the patient's requirements of personal privacy and being
cost-e�cient enough for the private market. In this thesis we aim to show how feasible it is
to use a millimeter wave, frequency modulated continuous wave (FMCW) radar sensor for
the purpose of continuous gait monitoring and to examine how it can be used to extract
medically relevant gait parameters.
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2
Theory

In this chapter we cover the necessary theoretical concepts required for this thesis. We
discuss how Frequency-Modulated Continuous Wave sensors operate and the basics of data
analysis. We also discuss the origin of gait in the brain and how cognitive diseases can
a�ect the gait process.

2.1 Frequency-Modulated Continuous Wave Radar Sensors

A FMCW (Frequency Modulated Continuous Wave) radar sends out a series of chirps,
which are an oscillating sine wave with an increasing frequency over time for some de�ned
bandwidth [16].
As shown in �gure 2.1, the chirp signal is characterized by a starting frequency fc, a
bandwidth B representing the frequency interval and a chirp duration time Tc. The slope
S of this frequency-time curve determines how fast the chirps increase in frequency, and is
a function of its bandwidth and the chirp duration, which is represented in equation 2.1
[16].

S =
B
Tc

(2.1)

The main method of generating, transmitting, receiving and processing these chirps is
demonstrated in the block diagram in �gure 2.2 [17].
The signal transmitted from the radar can also be described mathematically as T(t) in
equation 2.2, with an amplitude At (t), starting frequency f c, bandwidth B and a chirp
duration Tc as shown in equation[18].

T(t) = A t (t)sin
�

2�
�

f ct +
B

2Tc
t2

��
(2.2)

Since the emitted signal is electromagnetic in nature and propagates from the antenna to
an object and re�ects back towards the receiving antenna with the speed of light c, there
will be a slight time di�erence between transmitting and receiving as the wave propagates
from the radar sensor towards a target positioned D0 meters away from the sensor and
back again. This time di�erence can be calculated using equation 2.3.

td =
2D0

c
(2.3)

To describe the re�ected signal reaching the receiving antenna, the delay de�ned in equa-
tion (t d) must be taken into account. If the object is assumed to be still when it is hit
by the radar signal, the re�ected signal can be described according to equation 2.4 [18],
where Ar (t) is the amplitude of the received signal.
However this is not really realistic as the body does not remain still. People breathe, �dget
and the body sways and moves slightly as the person tries their best to remain still. This

5



2. Theory

(a) Amplitude-Time

(b) Frequency-Time

Figure 2.1: Illustration of a chirp: (a) Time-Domain waveform (b) Frequency versus
time

can be addressed by making Tc as small as possible, making it so that the measured range
(D0) between consecutive chirps separated by Tc, can be seen as constant as the signal is
re�ected from the target.

R(t) = A r (t)sin
�

2�
�

f c(t � td) +
B

2Tc
(t � td)2

��
(2.4)

The process of demodulating is inherently similar to how regular FM signals are demod-
ulated: The received signal,R(t) (2.4), is mixed with a copy of the transmitted signal
T(t) (2.2), low pass �ltered, and the e�ects of the transmitted signal are thereby removed,
forming a signal referred to as the intermediate frequency (IF) signal. This IF signal can
now be sampled using the onboard A/D converter, allowing us to sample the signal at a
signi�cantly lower frequency as we now have just the information acquired from the radar,
not the 77 GHz carrier wave. This IF signal is described asS(t) in equation 2.5 [18]

S(t) = A IF (t)cos

 

2�

 
2BD 0

cTc
t +

2f cD0

c
�

B
2Tc

2D0

c

2
!!

(2.5)

Where AIF (t) is the amplitude of the IF signal. For very small distances D0, we can
approximate the last part of that equation to zero, which results in the following approx-
imation:
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2. Theory

Figure 2.2: A Typical FMCW Radar System Block Diagram[17]

S(t) � A IF (t)cos
�

2�
�

2BD 0

cTc
t +

2f cD0

c

��
(2.6)

As demonstrated by equation 2.6, the IF signal contains the information of a single re-
�ected object with a �xed, constant distance D 0 from the sensor with one frequency,
f object . This frequency is inherently proportional to the range of this object, which we can
estimate by using equations 2.6 and 2.1:

f object =
2BD 0

cTc
=

2SD0

c
(2.7)

However in reality, the radar produces an IF signal that contains responses from several
di�erent re�ections, which range from static to dynamic objects within the radar sensor's
�eld of view. These frequencies are proportional to the distances to the targets as stated
in equation 2.7.
The radar's ability to distinguish between two objects close to each other is determined by
the range resolution, which means if two objects are closer to each other than the range
resolution allows, they will be indistinguishable from each other in the IF signal. For an
FMCW radar, this resolution is described according to equation 2.8 [16].

D res =
c

2B
(2.8)

The maximum range that can be acquired is described in equation 2.9 and is determined
by the sampling rate, Fs.

Dmax =
Fsc
2S

(2.9)

Note how the phase of the IF signal in equation 2.6 is also proportional to the range D0.
Because of this we can utilize the phase of the IF signal to detect smaller movements over
time.

2.1.1 Fast time and slow time in FMCW radar

As we capture each chirp, the resulting IF signal is sampled by an A/D converter before
being collected in a matrix as shown in �gure 2.3(b). This �gure shows how data from
each chirp is placed in its own row in the matrix.

7



2. Theory

This matrix is inherently de�ned by two time dimensions, fast and slow time. Fast-
time corresponds to minuscule time measurement of the radar data that is acquired with
each chirp and slow-time is a typically much larger time scale, which corresponds to the
dimension of when each chirp was sent out [18].

In order to measure instantaneous velocity using this system, the radar must transmit
at least two chirp frames. The high transmission rate of these frames would show that
while two consecutive frames might have peaks in the same place in the range data, their
respective phase information will di�er. This is because the phase of each frame is a�ected
by velocity, not the range so in order to measure the velocity of a target, we need to observe
the phase di�erence between frames. This transmission is referred to as a chirp frame,
which is illustrated in �gure 2.3(a) [16]. For our project, the radar was con�gured so that
the system would transmit one chirp per chirp frame for convenience.

In �gure 2.3(a), the time di�erence between two chirps is labeled as Ts, and the frequency
with which these chirps are transmitted can be calculated simply as fs = 1

Ts
, which we can

de�ne as our sampling frequency.
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(a) The chirp train

(b) The matrix that is formed by recorded chirps.

Figure 2.3: Illustration of (a) the chirp train and (b) the resulting matrix that is formed
from the data acquired from the FMCW radar. Each subsequent chirp is recorded in each
row of the matrix depicted in (b)

The data obtained from the radar that is sampled and collected into the rows of the matrix
described in �gure 2.3(b) is complex valued and also referred to as I/Q data [15].
The I/Q data is separated into two components; in-phase (I) and quadrature (Q) phase,
which are phase shifted 90� to each other [15]. In order to obtain microscopic velocity
movements of the target as it moves in front of the radar sensor, we need to extract this
phase information from the complex I/Q data [15]. In this section we describe the process
used to obtain the necessary information from the complex radar signal.

If an object travels within the radar's de�ned maximum range then it is possible to detect
this speci�c object's precise movement by studying the phase di�erence in the resulting
IF signal. The accuracy of these movements is determined by the range resolution that is
described with equation 2.8.
For this project, we heuristically decided upon a frequency bandwidth of 3.6 GHz, which
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2. Theory

with equation 2.8 results in a range resolution of 4.16 centimeters. This allows us to detect
each leg as a separate object in front of the radar and to distinguish between the foot and
the knee joints. However, the phase of the IF signal is very sensitive to small movements
from di�erent objects. This can be various microscopic movements of clothes, arms, even
just torso movement. The phase can be mathematically described with equation 2.10,
where � = cf c is the chirp's starting wavelength [19] [20].

� =
4�f cD0

c
=

4�D 0

�
(2.10)

Even if the phase information contains D0, it is not possible to determine the absolute
range between the radar sensor and the object by only observing the phase when it is
2� - periodic [19]. Instead the phase can only be used on its own to detect the target's
relative range displacement [15]. For each transmitted chirp, a phase value is obtained and
therefore the phase sampling frequency will be equivalent to the chirp transmission rate.
By observing the phase di�erence, � � between IF-signals from two consecutive chirps,
the relative range displacement� D0 can be used to describe the phase di�erence with
equation 2.11 [20].

� � =
4�f c� D0

c
=

4� � D0

�
(2.11)

This phase di�erence can then be used to �nally calculate the instantaneous velocity of
an object at distance D0 between those consecutive chirps with equation 2.12 [20] where
T c is the observation interval of the current chirp frame.

v =
� � �
4�T c

(2.12)

2.1.2 Preprocessing of radar signals

In section 2.1.1 we showed how the IF signal is acquired from each chirp frame of the
data, resulting in the slow and fast time matrix described in �gure 2.3. If we apply the
fast Fourier transform (FFT) to the I/Q data of each chirp, for every row in �gure 2.3(b),
the di�erent frequency components of the IF signals can be distinguished by observing
the amplitude spectrum as a function of its frequency. If the signals contain re�ections
from some range away from the sensor, it will contain the frequency corresponding to
the current distance that target was re�ected from, as determined by equation 2.7. At
that frequency we can obtain a peak in the amplitude spectrum. This is referred to as
range-FFT [15]. In �gure 2.4, we can see the steps required to extract the fast-time and
slow-time data from the radar sensor's I/Q data.

Figure 2.4: Flow diagram of the preprocessing of raw data.
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Figure 2.5: An example of the amplitude spectrum as a function of range from one I/Q
data row.

Figure 2.5 demonstrates what the amplitude spectrum as a function of range looks like
from the I/Q data of a chirp. For this �gure, we've chosen an arbitrary minimum value
so that the peaks in the spectrum can be considered re�ected objects.
The resolution of the horizontal axis in �gure 2.5 is limited by the range resolution of
the range-FFT in equation 2.8. This scale is divided into range bins. To �nd informa-
tion regarding a speci�c target within the range-FFT, we can look at the range bin that
corresponds to the distance to the target [15].
For each chirp, the phase of the current range bin is then obtained by calculating the
phase of the complex signal obtained after the FFT has been applied to the I/Q data [15],
[20]. This obtained phase value ranges between� and � � radians, which is therefore said
to be wrapped.
In this wrapped phase there can be discontinuities in the data when the phase value is
close to either� or � � . In order to eliminate this issue, we can perform phase unwrapping.
One way to unwrap the phase is to add or subtract 2� when the phase di�erence between
two consecutive chirps is greater than� or less than � � radians [21].
We can use this unwrapped phase to observe the relative displacement of the detected
object at the range bin selected by using equation (2.10).
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2.2 Gait Analysis

The human gait is for the most part periodic and we can de�ne it with a set of spatial,
spatio-temporal and kinematic parameters. Spatial parameters refer to distances that the
limbs travel. These can be divided further into stride width, which is the width between
feet in a successful stride,stride length and step length, which is the length between
consecutive, alternating steps [12]. Spatio-temporal parameters refer to both space and
time and in the case of gait analysis it refers to the time duration of various gait events.
Namely stance time, step time and stride time. Finally, kinematic parameters describe the
gait velocity. That is the stride velocity which is usually tracked at the foot level. Stride
velocity is also de�ned as the product of step length and cadence, or walking rate.

In �gure 2.6 the spatial gait is illustrated, along with a few of its most notable parameters
[22].

Figure 2.6: Spatial Gait and the most notable parameters [22]

These parameters tend to be vary slightly between individuals, which makes gait analysis
ideal for person identi�cation and classi�cation [23] For the purposes of video surveil-
lance, the stride length was found to be the most signi�cant spatio-temporal parameter
for identifying di�erent persons [24].

The periodic motion of the human gait cycle can be classi�ed and separated by the speed
of which it is performed, and can be separated into walks, jogs or runs. The speed we
are most interested in for this project however is the regular human walking gait, which
is what most are capable of performing, and �nd most comfortable to perform. The
preferred walking speed for adults ranges between 1 and 1.4 m/s and tends to decrease
signi�cantly as the person ages, where studies have shown that gait velocity in community
dwelling elderly trends down between 0.7 and 1.1 m/s [25] [26]. This variation in speed
can generally be linked to various physiological parameters, such as physical �tness, height
and limb length but this sudden decrease in speed is mostly linked to some of the myriad of
factors that come with aging, such as a general decrease in cognitive function and physical
capability [27]. However gait disturbances can also occur much earlier than anticipated
due to further cognitive decline caused by the onset of brain disorders such as Parkinson's,
Alzheimer's or dementia.

This dramatic change of walking speed as the person ages has also been linked to an
increased risk of adverse e�ects, with gait velocities going below 0.7 m/s being a strong
indicator of fall risk among community dwelling elderly aged 75 and over [26].
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2.2.1 The origin and control of gait in the brain

The gait process is a�ected by many internal and external factors, though the regula-
tion of gait is performed by the central nervous system (CNS) as a combination of both
autonomous and voluntary commands which are generated within the Central Pattern
Generators (CPG) [28]. The CPG are a cluster of neurons within the spinal cord which
control the rhythmic pattern of human gait.
As mentioned, the regulation of the human gait can be divided up into voluntary and au-
tomatic commands and processes. The automatic process which is de�ned as the periodic
limb movements that are performed during walking is regulated within the cerebellum and
the midbrain which respond directly to the CPG [28]. The automatic process is depen-
dent on a lot of sensory inputs, such as direct visual input, somatosensory information
originating from joints and muscles, cutaneous sensory information for identifying surface
characteristics and gravity information from the graviceptors in the stomach and brain.
The complexes that provide the goal and purpose during walking are located in the fore-
brain and which are then regulated within the cerebellum, spinal cord and brainstem.
Together these parts form the processing section of the gait pathway [28]. -
The voluntary process of gait is primarily derived from the cerebral cortex in the forebrain,
which is in direct communication with the brainstem and spinal cord for gait regulation.
There, the sensory inputs from the visual, vestibular and primary sensory cortices are
combined and regulated for �ne locomotive execution. The information generated here
is transmitted to the supplementary motor area (SMA) which handles postural control
and the premotor area. These processes are still dependent on automatic processes for
the execution of gait and maintaining posture and regulating balance and muscle tone
[28]. The voluntary processes that exhibit emotional references can also be a�ected by
sympathetic nervous system responses, such as ��ght or �ight� events [29], which are
further regulated within the brainstem and spinal cord.

2.2.2 How does cognitive decline a�ect gait?

As previously established, the gait process is primarily controlled in the CPG and regulated
by the cerebellum, brainstem and spinal cord. The forebrain also contains many complexes
that a�ect the gait process. Among them are the basal ganglia, frontal subcortex and
motor cortex, which provide the purpose and goal for walking and are very sensitive to
perturbations. As these complexes are within the gait pathway, it is only natural that gait
disturbances occur due to some form of disturbance in these complexes [27].
Gait disturbances can be expressed in multiple di�erent ways, both very minute and
subtle changes to very exaggerated or reduced movement. The most common patterns of
gait disturbances can range between hypo- and dyskinetic (meaning slowed and staggered
movement), ataxic (unsteady and staggered) and psychogenic (excessive slowness and
hesitation).
These disturbances are most often observed in patients who su�er from various cognitive
diseases. An example that can be seen in patients su�ering from Parkinson's disease is how
their gait freezes between steps. This is expressed as arrested movements during kick-o�
of the foot [27].
In the elderly population, the pattern of gait disturbances are increasingly common as
sensory de�cits and cognitive decline are the leading ailments that a�ect this population,
especially as the years go on. The prevalence of Parkinson's disease in Europe alone is
108 to 257 persons per 100,000 and the incidence rate is 11 to 19 per 100,000, making
Parkinson's the most common neurodegenerative condition, with the most common age
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of development being around 60 [30].
Research of Parkinson's disease has so far mostly been focused on the e�ect on the basal
ganglia, but recent investigations have shown that the cerebellum plays a certain role in
how the disease manifests from the beginning of onset [31]. The cause of Parkinson's dis-
ease is still unknown, but research has shown that it a�ects the basal ganglia signi�cantly,
causing a degeneration of dopamine secreting neurons. This hormonal imbalance has been
shown to cause morphological changes in the cerebellum, which are related to a variety of
gait related symptoms; such as rigidity, tremors, dyskinesia and other non-motor related
symptoms [31]. As both the cerebellum and the basal ganglia are a part of the gait path-
way, it is no surprise to discover a reciprocal connection between the two, especially when
it comes to expressing gait disturbances.

A patient su�ering from early Parkinson's disease might present with a shortened stride
length, increased stride variability and reduced gait velocity [32]. In a control study of
early stage Parkinson's disease patients and healthy individuals found that the most sig-
ni�cant temporal parameters were cadence, stride duration and stance duration [32].

Other highly prevalent neurodegenerative diseases that are worth mentioning are multiple
sclerosis (MS) and amyotrophic lateral sclerosis (ALS), which a�ect the motor cortex and
the spinal cord, causing gait disturbances as the disease manifests. For instance, patients
with MS usually exhibit higher cadence and shorter overall walking speed than subjects
without MS [6].

Impaired gait can also be observed with increased di�culty of performing dual- or multi-
task actions. This was further researched in a paper by Lundin-Olsson et al [33], where
they observed an increased risk of falling when the patient �stopped walking when talk-
ing�, showing how gait observation can be a good measure for fall risk among the elderly
population [33].
In a study by Kenshi Saho et al, a single frequency micro Doppler radar system was
used to measure gait features in an elderly group of patients who su�ered from cognitive
decline. The study was performed alongside cognitive function tests which were used to
validate their results and as a statistical basis. Among these tests were themini-mental
state examination (MMSE), which is a common test used to screen for dementia. The
results revealed that the foot and leg velocities were statistically e�ective as a means of
classi�cation of elderly participants with cognitive decline[12]. In particular was the leg
velocity in the swing phase very signi�cant in their results.
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In this section we cover the various methods we used to perform gait analysis using the
FMCW radar sensor. We describe how the data collection took place and which hardware
was used to process the data received from the sensor. Finally we cover the data processing
methods and how micro Doppler signatures and the respective envelopes were extracted.

3.1 Project Hardware

For this thesis we used an AWR1642BOOST radar board along with a DCA1000EVM
data capture board, both from Texas Instruments for performing radar measurements
and capturing the resulting raw data.

(a) AWR1642BOOST Sensor (b) DCA1000EVM Capture Board

Figure 3.1: Figure (a) shows the AWR1642BOOST Radar Sensor Board and (b) shows
the DCA1000EVM Data Capture Board

The radar system modules are depicted in �gures 3.1(a) and (b) and in �gure 3.2 the
assembled device is pictured as it was set up in its operating mode. The AWR1642BOOST
module is an automotive FMCW radar sensor with an operating frequency of 77 GHz and
a possible bandwidth of 4 GHz. In order to capture and process the data, the software
mmWave Studio was provided by Texas Instruments. As of the release of this thesis, it is
only available for Microsoft Windows computers [34]. For data processing and analysis,
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the most recent version of Matlab was used, along with various signal and image processing
packages that Matlab o�ers.

Figure 3.2: Assembled Radar Sensor Module and the Data Capture Board

There were several di�culties with the set-up of the radar user software due to various
software and hardware incompatibilities. After a long back-and-forth between the student
and Texas Instruments support, a full reset of the student's personal computer, the soft-
ware was up and running and we were able to perform the data capture, processing and
analysis for this project.

3.1.1 Radar Con�guration

As mentioned in chapter 2, the bandwidth of our transmitted signal was chosen heuris-
tically to be 3.6 GHz as it yielded a 4.16 cm range resolution. There are several more
parameters that we are able to con�gure within the operating software mmWave Studio.
These parameters control the direct shape of the chirp frame, as well as how many frames
the radar sends out. These parameters a�ect the depth of penetration of the transmitted
radar waves, the range of transmission and reception, as well as resolution of the re�ected
data. We can select the frequency that we start transmitting at, the bandwidth that we
wish to modulate our chirps across, the time duration of each frame as well as the time
duration of the chirps within and the number of chirps per chirp frame.
As our tests are kinematic for the most part, we decided on having only one chirp per
frame and instead to increase the number of frames to correspond with the recording
time. The frame duration was set to 0.5 milliseconds with a chirp ramp up time set to
0.45 microseconds. The number of frames varied between 30000 and 60000 depending on
the type of tests we performed, which gave us a recording time of 15 to 30 seconds total.
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Since our purpose is only to measure and observe the human gait cycle, we do not need a
deep penetrating radar signal which is why we select the default starting frequency to be
77 GHz. In order to penetrate the target, we would choose a signi�cantly lower frequency,
something that the chosen radar system is not designed for. The received radar signal was
sampled with a rate of 6.25 MHz which gave us 250 samples per frame.
The radar sensor's radiation pattern is depicted in �gure 3.3 as it will become important
for the analysis of our results [35]. As the sensor is designed primarily for automotive
purposes, we can see that the sensor's horizontal plane is attenuated evenly as its �eld of
view is expanded, but its elevation plane is rather non-linear in its attenuation. Therefore
the positioning of the radar system could seriously a�ect the test results as anything
directly outside of the � 20 degrees �eld of view could be attenuated signi�cantly, making
it di�cult to extract any meaningful information.

Figure 3.3: AWR1642BOOST mmWave Radar Sensor Radiation Pattern[35]

3.2 Design of tests

We designed a basic test format for this thesis in order to capture the pattern of gait as
accurately as possible for each occasion and situation that we decided to capture.
Due to availability and accessibility issues at the start of the thesis, we decided to rather
utilize overground walking instead of walking on treadmills to base our results around1.
Past research has shown that most gait analysis methods have utilized treadmills rather
than overground walking, but according to Kenshi Saho's research that was mentioned in
chapter 2, using controlled methods like treadmills only really produces more consistent
results than overground walking and that the numerical di�erences between the two di�er
only slightly [12].
We also estimated that by using only overground walking for our data analysis, that we
would get more realistic data which could further support our question on whether the
radar system is a feasible method for gait analysis.

1At the time of releasing this thesis, Chalmers University has opened a biomechanical laboratory on
campus that o�ers a wide treadmill along with plenty of motion capturing equipment for gait analysis.
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Data was recorded and collected in three di�erent environments, all within the Chalmers
university campus at Johanneberg.
Some of these locations included various environmental clutter that was not too dissimilar
to the ones found in a typical home environment.
This clutter consisted of o�ce chairs, tables, desks and even a large metallic locker, which
proved to be a challenge to work around.
The last location was a large and open gym hall, which for the most part was free of
clutter. Most of the tests recorded for this thesis were collected in the gym environment.
These environments can be seen in �gure 3.4.

For each of these tests, a single subject is tasked with moving in front of the radar system
and asked to perform di�erent actions and activities while the system recorded them. In
order to mitigate active re�ections generated from excessive movements in the data, the
subject was asked to keep their arms behind their back and to remain as still as possible
while walking. These tests varied from the subject walking at di�erent speeds, with a
constant or varying pace and either towards or away from the radar sensor where it was
set up. In the gym environment, a track was marked on the �oor with half meter steps
that the subject was encouraged to walk along with in order to keep the step length as
�xed as possible for data analysis.

The radar system itself was also addressed during the beginning stages of testing in order
to fully resolve what the best positioning and orientation of it was in order to get the high-
est quality data possible. The quality of the recorded gait data was evaluated at di�erent
sensor elevations which takes into account the sensor's radiation pattern, seen in �gure
3.3. In an attempt to resolve the range attenuation e�ect of the radiation pattern on the
data, the orientation of the sensor was also evaluated. The results of these experiments
can be seen in section 4.1. In order to validate the results from our data analysis, a phone
camera was set up to record a few tests to validate accuracy. In Seifert [14], they state
that their radar system was able to produce parameters with a result di�erence close to
zero for all of their means of validation which was motion capture.
It was di�cult to acquire tools to aid us in validating the results generated by this thesis,
as velocity sensors were hard to come by during the time of this project.

A brief statistical analysis on the parameter estimation was therefore performed to es-
timate the accuracy of our methods with respect to video recordings of the tests. The
student's phone was used to record a few tests and the parameters were visually estimated
from there. The camera was limited to 30 frames per second, which for a frame by frame
estimate had at least a 0.033 second error, which made accurate comparisons di�cult.
This analysis is covered in section 4.3.6 and compared with the visually estimated step
times extracted from camera recordings of the same tests as the target traveled across 5
meters with a duration of 15 seconds.

The tests and the results of this thesis were produced and processed in Matlab, and the
data was captured through the data capture board that was coupled with the radar sen-
sor. This data was processed in the Texas Instruments mmWave Studio program which
was run through a virtual machine on the student's MacBook Pro, as currently the only
operating system which this software has been released for is Microsoft Windows.
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