
Active Vision System with Human Detection
Using RGB-D images and machine learning algorithms
Master’s thesis in Applied Physics and in Biomedical Engineering

ANDREAS BERGGREN
ERIC BJÖRKLUND

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2012
Master’s thesis 2012:28

MASTER’S THESIS IN APPLIED PHYSICS AND IN BIOMEDICAL ENGINEERING

Active Vision System with Human Detection

Using RGB-D images and machine learning algorithms

ANDREAS BERGGREN
ERIC BJÖRKLUND

Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems

CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2012

Active Vision System with Human Detection
Using RGB-D images and machine learning algorithms
ANDREAS BERGGREN
ERIC BJÖRKLUND

c© ANDREAS BERGGREN , ERIC BJÖRKLUND, 2012

Master’s thesis 2012:28
ISSN 1652-8557
Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Cover:
The figure shows a possible solution for the proof of concept display. The images in the display are shown and
explained in Figure 4.3.1.

Chalmers Reproservice
Gothenburg, Sweden 2012

Active Vision System with Human Detection
Using RGB-D images and machine learning algorithms
Master’s thesis in Applied Physics and in Biomedical Engineering
ANDREAS BERGGREN
ERIC BJÖRKLUND
Department of Applied Mechanics
Division of Vehicle Engineering and Autonomous Systems
Chalmers University of Technology

Abstract

This master’s thesis will focus on an active safety system for the protection of humans close to commercial
construction equipments. The purpose is therefore to propose sensors and algorithms suitable for human
detection and furthermore to demonstrate a proof of concept.

Early on in the project it was decided to use RGB-D images, which is a conventional color image together
with a depth map. This report analyzes both a Kinect sensor and a stereo vision system in order to generate a
depth map. Machine learning algorithms were used to classify humans where an artificial neural network was
found to be the best performing classifier. Finding informative features is important to facilitate classification.
Several imaging features were tested and the six most interesting are presented in this report. The feature
called fourier descriptor showed the best performance.

Keywords: Human detection, object recognition, computer vision, RGB-D, depth map, Kinect, stereo vision,
feature extraction, fourier descriptors, Haar-like features, image moments, machine learning, k-nearest neighbors,
support vector machines, decision tree, artificial neural network

i

ii

Preface

This report is the result of our master’s thesis project carried out at CPAC Systems AB in Gothenburg and
the final part of our M.Sc. degree at Chalmers University of Technology.

CPAC mainly focuses on safety-critical electronic control systems, but CPAC is also interested in further
exploring the area of computer vision in order to evaluate its applicability in active safety. These tools could
for instance be used to detect humans close to construction equipment to reduce the number of accidents.
Computer vision can also be a powerful tool when it comes to creating autonomous vehicles which is an
interesting area of development in, for example, the construction equipment industry.

Acknowledgements

First of all we would like to thank Anders Ek who initiated and were responsible for this project at CPAC
Systems. We would also like to thank Dr. Peter Forsberg, our supervisor at CPAC Systems and Dr. Krister
Wolff, our supervisor and examiner at Chalmers University of Technology.

Furthermore we would like to thank Oskar Talcoth for some, much appreciated, discussions about image
analysis and feature extraction.

And finally, we want to thank other thesis workers and employees at CPAC who helped us in building our
data set.

Göteborg July 5, 2012
Andreas Berggren
Eric Björklund

iii

iv

Nomenclature

RGB-D Red Green Blue - Depth
HOG Histogram of Oriented Gradients
ANN Artificial Neural Network
SVM Support Vector Machine
Pixel Picture Element
CMOS Complementary Metal Oxide Semiconductor
IR Infrared
DFT Discrete Fourier Transform
FD Fourier descriptors
kNN k-Nearest Neighbor
DT Decision Tree
ROC Receiver Operating Characteristics
AUC Area Under the Curve
FPS Frames Per Second

v

vi

Contents

Abstract i

Preface iii

Acknowledgements iii

Nomenclature v

Contents vii

1 Introduction 1

1.1 Background . 1

1.2 Objective . 1

1.3 Problem Definition . 1

1.4 Limitations . 1

1.5 Related Work . 2

1.6 Reading Guidance . 2

2 Theory 3

2.1 Image Setup and RGB-D Image . 3

2.2 Sensors . 3

2.2.1 Kinect . 3

2.2.2 Stereo Vision . 3

2.3 Classification . 5

2.3.1 Training a Classifier . 5

2.3.2 Pre-processing Algorithms . 5

2.3.3 Features . 6

2.3.4 Classifiers . 10

2.3.5 Evaluation . 12

3 Method and Implementation 14

3.1 Setup . 14

3.1.1 Environment . 14

3.1.2 Sensors . 14

3.1.3 Software . 14

3.2 Classification . 14

3.2.1 Segmentation . 14

3.2.2 Pre-processing . 16

3.2.3 Feature Extraction . 16

3.2.4 Classification . 16

3.2.5 Data Mining . 18

3.3 Proof of Concept . 18

4 Result and Discussion 20

4.1 Sensor . 20

4.1.1 Sensor Comparison . 20

4.2 Evaluation of Algorithms . 21

4.2.1 Feature Extraction . 22

4.2.2 Classification Method . 22

4.3 Proof of Concept . 23

vii

5 Conclusions and Future Work 27
5.1 Sensor . 27
5.2 Algorithm . 27
5.3 Proof of Concept . 27

References 28

viii

1 Introduction

Work in the vicinity of construction machines is a dangerous job. Accidents in this industry are common and
the consequences are usually severe. There are a lot of research on developing intelligent systems for detecting
humans in proximity to vehicles, also referred to as pedestrians in this thesis. The purpose is often to warn
the driver or in worst case automatically initiate braking. The long-term scenario can in some cases even be
to totally remove the influence of a driver and create fully automated vehicles. In either case a huge step
toward succeeding is to create a robust reliable vision system that enables the vehicles to interact with their
environment.

1.1 Background

A common problem with construction machines are that they often are large and bulky. The operator have to
keep track of his surrounding which can be troublesome when the machine can block a significant part of the
vision field. To aid the operator in avoiding accidents, a vision system could be developed that can help the
operator to keep track of the surroundings.

1.2 Objective

The purpose of this master thesis is to implement a proof of concept vision system for the detection of humans
in proximity to construction vehicles.

1.3 Problem Definition

The task is to implement a fast and accurate human detection system that works mounted on a moving vehicle.
The task is translated into a few questions to be answered in order to make the task more manageable. The
treatment of these questions is described in the thesis.

• Which sensors are best suitable for the application?

• Which features extraction methods should be used?

• What classifiers should be used?

The thesis work is divided into 3 main areas. These areas are, first of all, to investigate and propose sensor
technology suitable for the application. When an appropriate sensor technology is chosen the project moves on
to the main focus of this thesis work which is to investigate and propose algorithms for object detection. This
includes features and classifiers. The last step is to implement a proof of concept system which can be used to
detect humans.

1.4 Limitations

To detect humans and fulfill the objective is a huge undertaking. Some limitations have to be set to make the
goal possible to reach. All conceivable different types of image producing sensors1 are considered but there is a
limitation to the price where extremely expensive2 sensors are not considered. There are also some limitations
to the classification part. A human should be detected if having an upright pose, full body is visible and in an
indoor environment. Humans in other poses, partially occluded or in other environment is not considered in
this project. The detection is limited to individual images, which means that no motion tracking over image
sequences is implemented. All these limitation would be possible and interesting to suspend, this is further
discussed in chapter 5.

1Examples of image producing sensors could be cameras that produce conventional RGB images, heat images or distance map.
2It is interesting to evaluate low cost technology in order to develop a cost-efficient system.

1

1.5 Related Work

There are a wide range of different methods and projects to automatically detect humans. All projects have
their different approach and main focus. Some are focusing on finding better sensors, some are focusing on
creating better features, and others on creating better classifiers. Inputs from other works done on the subject
are considered when choosing the appropriate method to be used.

A commonly used way to detect humans is to use some kind of conventional camera combined with a
feature called histogram of oriented gradients (HOG)[1, 2, 3] or Haar-like features [4, 5]. More information about
the environment can be obtained using other sensors like thermal imaging[6, 7], IR-flash[8] or depth sensing
technology such as LADAR[9], Kinect[10, 11] or stereo vision[12, 13].

A common factor in the reviewed reports is the use of some kind of heuristic classifier. Commonly used
classifiers are artificial neural networks (ANN)[14] and support vector machines (SVM)[1, 9].

Comparison of different detection methods are difficult to perform due to different data sets and varying
evaluation methods but an attempt is made in [15, 16].

A lot of research has also been done on using motion information to facilitate identification of moving
objects. Kamijo et al. presents an algorithm for on-board monocular cameras that tracks foreground objects
like pedestrians with the use of motion difference [17].

A common method used with stationary cameras is to subtract the background to find a moving human
[18], however this method is not possible to use in this project due to the fact that the camera will be placed
on a moving vehicle.

1.6 Reading Guidance

The next chapter explains the theory behind the sensor technology, image processing, image analysis and
machine learning. The theory chapter can be seen as an encyclopedia and will be referred to from the other
chapters. Chapter 3 contains the method and implementation and a description of the setup and circumstances
for this project. It is recommended to start reading this chapter and go back to the theory chapter when a
better understanding is required. The results and the motivation of choices will be presented and discussed in
chapter 4. The last chapter is where the different conclusions are drawn and suggestions for further research
are proposed.

Some basic background knowledge in machine learning and image processing could be of good use to fully
understand this report, although it should not be necessary.

2

2 Theory

The Theory chapter will cover the needed theory to understand the report. The Theory chapter is meant to
be used as an encyclopedia and will be referred to from the the Method and Implementation chapter. It is
recommended to start reading the Method and Implementation and check the theory chapter if needed.

2.1 Image Setup and RGB-D Image

Gray scale digital images are constructed as matrices where each element in the matrix represents a pixel. In
case of 8-bit images, each pixel can take a value from 0 to 255, where 0 is a black pixel and 255 a white. A
RGB image can be constructed with the use of three such 8-bit matrices where each 8-bit channel represents
one of the three colors; red, green and blue [19].

The RGB-D image is an extension of the RGB image where another channel, usually called depth map, is
added which contain depth information. This channel is not restricted to be an 8-bit image. In this project a
16-bit image is used, which means that it can handle values from 0 to 65535, where the value represents the
distance from the camera in millimeter.

The use of depth map is a way to represent 3D-images. This method to present 3D-images is also called
2D+Z where 2D is either a color or gray scale image and Z is the depth map. This means that each pixel in the
color or gray scale image has a corresponding position in the depth map with the information of the distance
from the camera [20].

Examples of depth maps can be seen in Figure 4.1.1. Since the depth map contains values from 0 to 65535
and a normal gray scale image can only contain 255 different type of gray, it is hard to visualize the depth map
with a gray scale image. For such images color mapping is often used to enhance the contrast and make the
image more easy to interpret [21].

2.2 Sensors

Two technologies for acquiring RGB-D images are analyzed in the report, these are the Kinect sensor [22] and
a stereo vision system. Both techniques have their advantages and disadvantages which are further analyzed in
section 4.1.1.

2.2.1 Kinect

The Kinect sensor consists of three parts, a CMOS camera that captures color images, an IR laser emitter and
another CMOS camera that is used as an IR receiver. The IR sensors is used to create a depth map with a
technique called light coding [22].

The IR emitter projects a static pseudo-random grid of points on the surroundings and the reflections of
these points is captured by the receiver, see Figure 2.2.1. This creates two different views of the point grid, the
transmitted light pattern and the deformed received light pattern, and by comparing these patterns a depth
map can be created [22].

The Kinect sensor is an active sensor that uses IR. This makes it ineffective in environments with large
amounts of radiation in that frequency, for instance outdoors in direct sunlight. This problem is further
discussed in section 4.1.1. The quality of the depth map also depends on how the environment reflects IR [22].

2.2.2 Stereo Vision

The stereo vision method is actually quite similar to the light coding method. The difference is that stereo
vision uses two conventional cameras and tries to identify the position of identical points in both images. When
the position of a point is identified in both images the distance to that point can be determined by triangulation,
see Figure 2.2.2.

The challenge with stereo vision is the correspondence problem, that is to identify the same points with
both cameras. This is difficult for a number of reasons. The matching is a two-dimensional problem but by

3

(a) An illustration of how the Kinect sensor works (b) A pseudo-random grid

Figure 2.2.1: (a) The black arrows represents the borders of the static pseudo-random grid of points and the
gray arrows are supposed to illustrate how the other camera is seeing the reflection of this grid. (b) An image
of a part of the pseudo-random grid emitted by the Kinect.

performing an epipolar rectification1 the problem can be simplified to one dimension.

The images can lack consistency due to intensity and color differences in images from viewpoint or camera
differences and camera noise, these effects are usually not a major problem.

It is harder to deal with the fact that the environment can consist of untextured regions or repetitive
patterns which complicates unique matching of two points. There is also a possibility that some regions are
occluded in one of the cameras in which case it is totally impossible to get any depth information in that region
[24]. These problems will not be further discussed here as they are outside the scope of this thesis.

Figure 2.2.2: An illustration of stereo vision. The figure shows how the angle between a point and the cameras
changes when an object moves away from the camera system.

1Epipolar rectification is the procedure of transforming a pair of images so that epipolar lines are parallel and horizontal in
each image [23].

4

2.3 Classification

In contrast to deterministic classification, the heuristical method uses “trial and error” to solve a given problem
and uses training data in order to give the classifier the information it needs. This makes the classifier highly
dependent on how well the training data represents the actual classification problem.

The detection of a human is a complex problem. If deterministic methods were to be used the problem
would probably need to be simplified to be able to prove that the problem is solved. The simplification means
that the solved problem is not the actual problem but a simplified version of it.

The simplification of the problem is not needed when using a heuristic method. The negative aspect of the
heuristic method is that it is hard, if not impossible, to actually prove that an optimal solution is found. It is
also often hard to know which information the classifier is using when the classification is done [25].

2.3.1 Training a Classifier

This report will only describe the very basics of what is needed for a computer to be able to learn and to
classify images. It will not cover the mathematics behind the learning theory or the used learning algorithms.

The purpose of the classifier is to determine which class an image belongs to, in this case: human or not
human. To be able to do this, the classifier is trained with a data set. A commonly used method is called
supervised learning which is implemented by training the classifier with a set of images and the classes they
belong to. Pre-processing and features help the classifier to interpret the images. Figure 2.3.1 shows the
training procedure.

The classifier uses the inputs and the class labels of the training data to optimize classifier-dependent
internal parameters to correctly classify the training data.

A common problem with supervised learning is overfitting, that is when the classifier becomes to specialized
towards the training data. Overfitting is dealt with differently depending on the classifier but usually
crossvalidation is used. Crossvalidation means that some of the labeled data are used for validation instead of
training. If the classification accuracy is improved for the training set but reduced for the validation set, the
classifier is becoming to specialized and training should be stopped [26, 27].

Figure 2.3.1: This figure illustrates the procedure when training a heuristic classifier. The training set is
preprocessed, features are extracted and presented to the classifier along with a class label that tells the classifier
whether an image contains a human or not.

2.3.2 Pre-processing Algorithms

This section contains the theory behind three of the images created in the pre-processor, see Figure 3.2.4. The
purpose of having the pre-processor, instead of doing these computations as a part of the feature, is to make
sure that these computations are only executed once.

Binary Image and Thresholding

The binary image is acquired from the depth map by thresholding as shown in the first step in Figure 2.3.2.
Thresholding is a imaging operation which means that a certain threshold is chosen and all pixels with values
greater or equal to the threshold is set to white and all pixels below is set to black. In the example of Figure
2.3.2 the purpose is to keep all pixels that have information about the depth and therefore the chosen threshold

5

is set to 1. The binary images are used in many situations, primary to find interesting areas and extract
contours but also in the pre-processor to understand how much information a certain segment contains [19].

Contour Image

When working with object detection or object recognition it is often preferred to find the contour of the
object of interest. The first step in finding the contour is to create a binary image. The binary image is then
systematically scanned until a component is found. When a component is found its edge is followed and stored
before the systematic scanning continues. This procedure continues until the whole image is scanned and all
contours are stored [28]. In this project, the largest contour is kept and the rest discarded. The procedure of
finding the contour is shown in Figure 2.3.2.

Figure 2.3.2: Illustration of the steps from depth map to contour image of a human.

Integral image

The purpose of the integral image is to speed up calculations of features that uses rectangular filters, that is
the sum of rectangular areas of an image.

The integral image is used as a lookup table. It is constructed so that the element with index (i, j) in the
integral image corresponds to the sum of all elements inside a rectangle with the corners (0, 0), (i, 0), (0, j)
and (i, j) in the original image, see Figure 2.3.5.

The use of integral images is only beneficial if the total area of the used rectangles are greater than the the
area of the image, or more precise, if the computations used to sum the total area of the used rectangles is less
than the computations used to construct the integral image and perform the look ups [29].

2.3.3 Features

This section explains some background theory of the used methods to extract features. In this report, a feature
is defined as one value. Each method generates a feature vector that consists of several features. The word
feature is sometimes also referring to a feature extraction method.

Fourier Transform

The fourier transform is an important tool that can be used in image processing to decompose an image into
sine and cosine components. The output of the fourier transform will be the image representation in the
frequency domain from which both the amplitude and the phase can be extracted as shown in Figure 2.3.3. The
discrete fourier transform (DFT) is the sampled version of the fourier transform and is used for digital images.
Using the frequency domain representation of the image, numerous operations can be done with different kind
of image processing purpose [19]. In this report the phase and amplitude are used by the classifier without
further processing.

6

Figure 2.3.3: Illustration of the fourier transform. The amplitude and the phase are the output from the
fourier transform. The shown amplitude image is in logarithmic scale. Both the amplitude and phase image
are normalized.

Fourier Descriptors

Fourier descriptors (FD) is a shape based feature that utilizes that the shape can be roughly described by the
low frequency components of the contour.

The contour is given by N points in a two-dimensional space. To be able to use the fourier transform on
these points they are represented as complex number with the x-coordinate encoded as the real part and the
y-component as the imaginary part. The resulting frequency spectra (F0, F1 ... F(N-1)) contains information
about the shape, low frequency contains information about the general shape and high frequency describes
finer details. For classification general information is desirable and for some classification methods, like neural
networks, it is important to have the same number of inputs so a fixed number of the lowest frequencies are
used to construct the feature vector. Figure 2.3.4 illustrates how much information that is contained in the
coefficients.

Figure 2.3.4: Illustration of the contained information in the coefficients. Fourier transform is applied on the
contour image to the left. Then a number of low frequency coefficients are used to create the images to the
right via inverse fourier transform. The number above the images tells how many coefficients that are used.

An advantage of FD is that they are rotation invariant. It is also possible to make them translation and
scale invariant. All translation information is contained in F0, the constant component. Thus FD is made
translation invariant by setting F0 to zero. The scale invariance can be realized by dividing each component by
F1 [30]. In this project 40 of the low frequencies are used to create the feature vector.

7

Image Moments

The image moments are shape descriptors that often plays an important role in object recognition. There are
three kind of moments that are used in this project; spatial moments, central moments and central normalized
moments. These are calculated as shown in Equation 2.3.1 - 2.3.3 and uses a filled version of the contour image
from the pre-processor [19].

Mji =
∑
x

∑
y

xiyjf(x, y) (2.3.1)

µji =
∑
x

∑
y

(x− x̄)i(y − ȳ)jf(x, y) (2.3.2)

ηji =
µij

µ
(1+ i+j

2)
00

(2.3.3)

Here, f(x,y) represents the intensity of an image and x and y is the pixel’s position in the image. From these
equations 24 moments have been proven to be useful and are shown in [31]. The central normalized moments
calculated by Equation 2.3.3 are shown to be both translation and scale invariant. Another interesting moment
feature that is often being used but not in this report are the Hu moments. These moments are invariant under
translation, changes in scale and also rotation [19]. These are not used due to that they did not perform well.

Haar-Like features

Haar-like features compare the pixel intensities at different parts of an image usually using rectangular filters.
A rectangular filter is just the sum of all pixels inside a rectangular area of the image. The features are derived
by adding or subtracting one or several of these sums [32]. An example of a Haar-like feature can be seen in
Figure 2.3.5.

In this project, several rectangular filters of random size are randomly placed. Then a random number
between 2 and 6 of theses are either added or subtracted from the final feature value. The features are created
at random but the random generator is initialized with the same seed for all images, that is, the features used
on the training set is the same as the ones used on the images that are classified.

(a) How to create integral image. (b) How to use integral image.

Figure 2.3.5: (a) How the integral image is created. Each number is the value of a pixel. Each element in the
integral image is the sum of all elements inside a rectangle with upper left corner in origin and the down right
corner at the corresponding element from the original image. (b) How the integral image could be used. In
this case the wanted feature is the value of sum of pixels inside the white rectangle subtracted by the sum
of all pixels inside the black rectangle. If you have the integral image it is possible to calculate this value by
using the points shown in the integral image. These points corresponds to the corners of the rectangles in the
original image.

8

Histogram of Oriented Gradients

HOG is a widely used feature for pedestrian detection in color/grayscale images. This method uses intensity
gradients for each pixel to represent shape information.

A typical setup is to have an image size of 128x64 pixels and to divide the images into 8x8 pixel cells. The
gradient is computed for each pixel in the cell and is used to build a histogram where the gradient orientation
is divided into 9 bins in the range 0-180◦. The cells are divided into larger blocks and their corresponding
histograms are normalized within the block to take into account local variation of lighting. Each cell typically
belongs to four blocks and will hence contribute with four versions of its histogram to the final feature vector,
normalized in four different ways [2]. Figure 2.3.6 shows the procedure.

Figure 2.3.6: An illustration of how HOG works. The whole picture is 64x128 pixels and is divided into many
8x8 pixel cells. Each cell has a small corresponding HOG. The white square, called block, of size 16x16 pixels,
covers four cells for which the histograms are normalized and sent to the final feature vector.

Overview Histogram Feature

The overview histogram feature was created with some inspiration from [33]. The purpose is to make a 2D -
histogram of the depth map image by removing the Y-axis and projecting all points to the XZ-plane as shown
in Figure 2.3.7. This means that if a point would be at (1,2) with depth value (Z) 3 it would increase the 2D
histogram at point (1,3) by one.

Figure 2.3.7: How the overview histogram is created. The histogram is the gray scale image in the bottom of
the box. The whiter the pixel the more corresponding positions from the depth map exist.

9

After the histogram is created it is smoothed, thresholded, contours are found and finally a rectangle and a
ellipse are fitted to the contour as good as possible. The values from the width and length of the rectangle and
the ellipse are used to create the feature vector. Figure 2.3.8 shows this procedure.

Figure 2.3.8: How the overview histogram is used. The final feature vector consist of the length and width of
the ellipse and rectangle.

Unfortunately this feature did never work since it was discovered that the resolution of the depth, the Z
axis, decreased the further away an object was. The feature was included in the report anyway because it
seems promising if the problem with the resolution could be fixed, this is further discussed in section 4.2.1.

2.3.4 Classifiers

This section contains a brief description of the analyzed classifiers. These classifiers are machine learning
classifiers that all are trained using supervised learning.

There are two different types of supervised learning models, classification classifiers and regression classifiers.
Classification classifiers map the input space to a finite set of predefined classes, whilst regression classifiers
map the input space to a continuous real valued output space [34].

k-Nearest Neighbor

The k-nearest neighbor (kNN) is a very simple classifier but is in many cases effective. The training procedure
only consists of storing the features from the training data. When a new instance is to be classified it is placed
in the feature space and is then given the label of the most common labels of the k nearest neighbors [35].
Figure 2.3.9 illustrates a simple example.

Figure 2.3.9: Example of how kNN-classifier works in a 2D feature space. The ring in the middle is to be
classified as either a circle or a square. The already existing circles and squares are the used training data.
How should it classify the ring in the middle? If k = 3 it would classify the ring as a circle but if k = 5 it
would classify the ring as a square.

10

Support Vector Machine

SVM are primarily intended for two-class classification and uses a quite straight forward method. During the
training phase, the SVM tries to find a (N-1)-dimensional hyperplane that separates the N-dimensional training
data into the two classes with maximal margin, that is, with maximal distance to all nearby samples. A sample
can then be classified depending on where the sample is located in relation to the hyperplane, see Figure 2.3.10.

When the problem is non-linear it is impossible to separate the classes with a linear hyperplane. The
solution is to map the problem into a higher dimension space2 which often makes the problem easier to separate
in that space.

The training samples that lie closest to the hyperplane are the only ones that affect the position of the
hyperplane, hence they are called support vectors as they “support” the hyperplane. The other training samples
do not contribute to the training. This makes the SVM somewhat vulnerable to noise which motivates the
introduction of a soft margin that allows some of the training samples to lie inside the margin or even be
misclassified [36].

Figure 2.3.10: Example of how SVM classifier works in a 2D feature space. The already existing circles and
squares are the used training data. The support vectors are marked with a square and lying on the line. The
ring is in this case classified as a circle.

Decision Tree

A decision tree (DT) consists of a tree of linked decision nodes and can be either a classification tree or a
regression tree. The output of a classification tree is which class the input belongs to and the output of a
regression tree is a floating point number which gives an indication of the probability that the input belong to
some class.

The input vector can consist of both continuous valued variables and discreet case variables. In the case of
continuous valued variables the node checks which range a sample belongs to.

The tree structure is created at the training stage. A set of labeled input vectors is recursively split into
subsets until some stopping criteria is met, for instance if all samples in a subset belongs to the same class.
Each split corresponds to a node in the tree, the first split is done in the root node, the second in one of its
child nodes and so on. The split is based on the input parameter that can order the subsets the most which
means that the depth of the node indicates how influential the parameter used by that node is. The root node
is most important and the importance decreases with each generation [34]. A simple example of a DT can be
seen in Figure 2.3.11

Artificial Neural Network

An ANN consists of neurons and connection between the neurons which are supposed to imitate a human brain.
A neuron can take an arbitrary number of inputs, which are weighted individually and summed. The summed
value is compared with a threshold function and the threshold value is weighted and then sent as an output.
This output could either be the final output or used as input to one or several other neurons [37]. The neurons
can be connected in many variations but the most common is that they are placed in layers and this is the
used type of network in this project. Figure 2.3.12 illustrates a neuron and an example of a network. This type

2This is accomplished with the use of kernel functions, more about this can be read in [36].

11

(a) (b)

Figure 2.3.11: Example of how DT classifier works in a 2D feature space. The already existing circles and
squares in (a) are the used training data. The lines in (a) shows how the tree in (b) split the features. The
method to classify the ring is just to follow the tree in (b) from the top until a class is found, in this case a
circle.

of network is called a feed forward network which is arranged so that the output of the neurons in one layer are
used as input in the next layer [37].

(a) A neuron (b) A neural network

Figure 2.3.12: Example of how an ANN-classifier works. An illustration of a neuron can be seen in (a). In (b)
an example is shown of how input and output can be connected together with one hidden layer. The numbers
of hidden layers and neuron in the hidden layer can be changed.

2.3.5 Evaluation

Confusion matrix and receiver operating characteristic (ROC) are the two methods used to be able to compare
the features or classifiers and present the result in the report.

Confusion Matrix

To evaluate the different classifiers and features a confusion matrix is created. This is a method of analyzing
how often the classifier is correct and how often it gives false classification. The correct classifications are
divided into true positive and true negative and the same thing is done for false classification [38]. Figure 2.3.13
a confusion matrix. The accuracy of a classifier is defined as correctly classified samples divided by all samples.

12

Figure 2.3.13: Illustration of how a confusion matrix works.

Receiver Operating Characteristic

The ROC curve is a method to evaluate the classification. This method analyze the true positive rate and the
false positive rate as a function of the classification threshold. Points are generated by sweeping the threshold
range and computing both the true positive rate and the false positive rate. The ROC curve is generated by
connecting these points, an example can be seen in Figure 4.2.1. The area under the curve (AUC) can be
calculated and used to compare performance with other classifiers [38]. A good classifier is characterized by
having a high true positive rate and a low false positive rate.

13

3 Method and Implementation
This chapter describes the approach used to achieve the results of the report. Starting with the choice of
sensors and then moving on to how the algorithms are built and at the end, a working prototype.

3.1 Setup

This section presents under which circumstances the project where performed.

3.1.1 Environment

The training data is collected in an indoor environment due to restrictions in the Kinect sensor which does not
work outdoors. This indoor environment contains more regular shapes, like walls, floor and furniture, than an
outdoor environment or a construction site where the final product is supposed to be used.

3.1.2 Sensors

To start with, a comparative study is conducted to find suitable sensors. The analyzed sensors in this study
are LADAR, thermal imaging, Kinect and stereo vision. The idea to use LADAR and thermal imaging were
discarded but are discussed as a future improvements in chapter 5. The two remaining sensors; a Kinect sensor
and a stereo vision system, are described in section 2.2. The advantages and disadvantages of the sensor is
analyzed and presented in section 4.1.1. The stereo vision system is created with two standard webcameras
with fixed position relative to each other. This setup is shown in Figure 4.1.2.

3.1.3 Software

The software used during this project are listed in Table 3.1.1. The C++ environment from MS Visual studio
combined with OpenCV have been the main tools to solve the problem. MATLAB was added as a means of
presenting data graphically and OpenNI is used to receive the Kinect image from the sensor.

Table 3.1.1: The software used in this project.

Software Purpose Comment

MS Visual Studio 2010 [39] C++ environment
MATLAB R2010b [40] Plotting graphs
OpenCV V 2.3.0 [41] Image function An open computer vision library.
OpenNI V 1.5 [42] Kinect image grabbing An open source device interface library.

3.2 Classification

Theory behind heuristic classification is described in section 2.3. This section contains the implementation
of segmentation, pre-processing, feature extraction and classification. Figure 3.2.1 shows how these parts
are connected. To get a working classifier it has to be trained before it can be used for classification, this is
described in section 2.3.1.

3.2.1 Segmentation

The sensor provide both a color image and a depth map image to the segmentation.
The segmentation is performed by first dividing the 3D space into depth layers with a thickness of 1000 mm

and an offset of 250 mm, meaning that the layers overlap.
Equation 3.2.1 is used as an approximate way of determining the pixel height corresponding to 2100 mm at

different depths. The constant C is calculated by using a measured value of the pixel height (442 px) at a depth
of 2500 mm. The calculated height and an aspect ratio of 2.5 are used to construct a rectangle at each depth

14

Figure 3.2.1: Overview of the procedure to classify a human.

for which the pixel dimensions corresponds to the real dimensions: height = 2100 mm and width = 840 mm.
The rectangle is used as a window which is swept, sometimes called sliding window, over the depth layer with
some overlap, see Figure 3.2.2, and each resulting segment corresponds to a 3D box which is further processed.

f(x) = C/x

C = 442 [px] · 2500 [mm] ≈ 1.1e6[px · mm]
(3.2.1)

As the approximate size of a human is known at each depth, the percentage of depth pixels that should lie
inside the box when the box contains a human is also known. Boxes that contain little or no depth pixels at all
can therefore be discarded without further processing which saves a lot of computations.

Figure 3.2.2: Overview of the segmentation procedure. First two images, the color image and depth map, are
received from the sensor. A depth layer is extracted and a rectangle is swept over the images in order to obtain
the segments from both the depth map and the color image. Then a new depth layer is extracted and the
procedure continues until the whole space is segmented.

15

The classifier assumes that all segments have the same size. The solution used is that the change of window
size is actually implemented by changing the size of the original image and keeping the window size fixed.

In this way if the distance is swept from 2500 mm to 7500 mm about 2000 segments are created of which as
many as 1800 segments contain little or no depth information and can be discarded1. This means that about
200 images are further sent to the pre-processor.

Figure 3.2.3: The height of a human as a function of the distance to the camera. The function in Equation
3.2.1, used to convert the real height of 210 cm at a certain distance to pixel height, is compared to measured
values of a 180 cm tall person.

3.2.2 Pre-processing

The pre-processor receives two types of images from the segmentation part. These are the segments from the
color image and the segments from the depth map. During the pre-processor step the color segments and depth
segments are transformed to other types of images to make it easier for the feature extractor to extract the
feature. Another aspect is that multiple feature extractors can use the same image type without having to
recompute that image. The types of images created and sent forward from the pre-processor step are shown in
Figure 3.2.4.

Two of the image types are a gray scale image, which is derived from the color segment, and the color
segment itself.

The depth layer segment is converted to three other types of images; binary image, contour image and
an integral image, which are described in section 2.3.2. These three, along with the original segment is sent
forward to the feature extractor. Altogether there are six types of images sent from the pre-processor to the
feature extractor, all this is illustrated in Figure 3.2.4.

3.2.3 Feature Extraction

This section will describe how the features are used. A more detailed description on how these features work
can be found in section 2.3.3. Every feature uses one or more images from the pre-processing part. The
implemented features along with their used image type can be seen in Table 3.2.1.

3.2.4 Classification

Four different heuristic classifiers are being analyzed, these are kNN, SVM, DT and ANN. How these work
are described in section 2.3.4. There are several parameters that can be customized for each method and the

1The number of segments that can be discarded is of course highly dependent on the environment at the moment. The indoor
environment shown in Figure 3.2.2 is considered in this case.

16

Figure 3.2.4: Overview of the pre-processing procedure. The binary image is not used in any feature itself but
is used to determine whether a segment contains enough information to be a human. It is also used to derive
the contour image.

Table 3.2.1: The most interesting feature extraction methods.

Feature Used Image Comment

Depth Map Depth Map Depth map is downsampled
DFT Depth Map
FD Contour Image
Moments Contour Image
Haar-like features Integral Image
HOG Gray Scale Image
Overview Histogram Depth Map Does not work yet

purpose is to make them as good as possible for the chosen features. The problem here is that it is impossible
to know if the parameters are optimized for a certain problem. This mean that it can be hard to compare
classifiers if the parameters are badly chosen. The goal is to make the conditions for the classifiers as similar as
possible. The base for all of these classifiers were already implemented in OpenCV. This did save a lot of time
when creating the classifiers and also made it possible to use some classifiers even when the experience in those
classifiers were low.

Combination of Features

Each feature has its own classifier in a “pre-classification” stage. When two or more features are used a new
classifier of the same kind is created and uses the output from the “pre-classification” stage as input. This
procedure is shown in Figure 3.2.5. This method makes it very easy to add and analyze additional features.

17

Figure 3.2.5: Shows the implemented setup which makes it easy to add and analyze new features.

3.2.5 Data Mining

The data set is divided into two parts, a training set and a test set. As the name indicates the purpose for the
training set is to train the classifier and the purpose of the test set is to test the performance of the classifier.
The positive training set contains 1100 images of four persons and the positive test set contains 800 images of
four other persons. The negative test set were collected by capturing 1500 images from an environment that
was not used for the training set. The method to collect the negative training set follows a different procedure.
First 3500 negative training images were captured at four different places. The classifiers were then trained and
used in an environment without humans. Whenever an object in this environment were classified as a human it
was added to the negative training set. After several false classifications the classifier was retrained with the
new training set and the procedure was repeated until a satisfying classifier was trained. At the end there were
5000 negative images.

3.3 Proof of Concept

The purpose of this project is to implement an active safety system that should detect pedestrians from a
moving vehicle. The implication of this is that the detector must be able to detect a pedestrian before a
collision is inevitable or the consequences might be catastrophic.

Image processing is often very suitable for parallelization, including this case. The same computations are
done on several parts of the same image making it possible to run them concurrently. This will not make
any difference if they are run on a single processing core. Running computations concurrently on a multicore
processor however, can increase the computation speed considerably.

Multi-threading is implemented in the application to enable parallel classification of the different segments.
A threadpool with a work queue is used to avoid unnecessary spawning of threads. When the image is segmented
each segment is added to the queue and is processed as a thread becomes available.

18

The proof of concept prototype consists of a Kinect sensor connected to 12 V battery and mounted on
mobile robot. An ordinary laptop is used as processor and display. The setup can be seen in Figure 4.3.2.

19

4 Result and Discussion

This chapter presents the results from the evaluation. The first part is a comparison between the Kinect sensor
and a stereo vision system. The rest of the result chapter is focused on the image processing and algorithms.
Only the Kinect sensor is used for the evaluation of the algorithms. This is due to the lack of robustness in the
implemented stereo vision setup which led to a decrease in image quality some time after calibration. However,
the algorithms are developed for RGB-D images obtained with any sensor technology.

4.1 Sensor

After a lot of research it was decided to use a RGB-D image because it provides a lot of information and can be
obtained with cost-efficient technology. The depth map is considered suitable for classification as it is invariant
to color and different lighting conditions, thus providing general information.

There are some different technologies available that generates depth maps. Two technologies were chosen
for further evaluation, Kinect and stereo vision. LADAR was discarded as it was considered too expensive.

Other technologies that were researched includes thermal imaging, IR-flash, conventional RGB, radar and
ultrasound.

A major flaw with several of the other researched methods are that they are not invariant to variations in
conditions that are very common. Thermal imaging, for instance, will provide very different contrast depending
on the temperature and a conventional RGB-camera will provide different contrast under different lighting
conditions.

The reviewed articles that used the IR-flash method all assumed that pedestrians wears reflex vests. This
was considered a too strict restriction.

Radar and ultrasound would have been very challenging and a lot of time would have been spent on just
getting the sensors to work, and did not seem particularly promising for this application.

4.1.1 Sensor Comparison

The results from the comparison between the Kinect sensor and the stereo vision system is shown in Figure
4.1.1 and Table 4.1.1. The Kinect sensor was much easier to use and well suited for the indoor environment
used when evaluating algorithms and is therefore used in the rest of the comparison between features and
classifiers.

The stereo vision system setup, shown in Figure 4.1.2, was a fast and cheap setup which can be improved. It
would probably be an interesting way of proceeding when the application is developed for outdoor use. There
are some embedded solutions for stereo vision which could possible provide a high quality depth map.

It might seem contradictory that the Kinect was chosen even though it does not work outdoors and
the long-term objective is to use the application outdoors. This was mainly to be able to start with the
classification software development in an early stage. It was also argued that it is easy to switch to another
depth map-providing technology when the proof of concept application works satisfactory indoors.

Table 4.1.1: A short list of advantages and disadvantages with Kinect and the implemented stereo vision system.

Kinect Stereo Vision

Advantages Disadvantages Advantages Disadvantages

Night vision Does not work in daylight Works in daylight Light dependent
Stable quality Limited range, up to 9 meters Works at long distance Unstable quality of image
Sharp image Problems with reflecting materials Can see through glass Needs calibration

Texture dependant
Computational heavy

20

(a) One of the two cameras from the stereo vision
setup.

(b) The depth map created from the stereo vision.

(c) Color image from Kinect. (d) The depth map created from the Kinect.

Figure 4.1.1: A comparison between depth maps from Kinect and stereo vision. The depth maps are color
coded to make them more observable and the black regions mark areas for which the depth is undefined. The
advantages and disadvantages are very visible here. The stereo vision can create a depth map for environments
that are far away, consists of reflecting materials or are occluded by glass, these parts will be problematic with
Kinect. The lack of texture on the floor makes the stereo vision lose much important information. The biggest
difference is the sharpness, where the Kinect provides a much sharper depth map.

(a) The stereo vision setup. (b) The Kinect setup.

Figure 4.1.2: The two analyzed sensor setups.

4.2 Evaluation of Algorithms

Early in the project the use of heuristical classification algorithms was chosen. This makes it easy to change
the classifiers intent by just changing the training data, for instance if classification of humans from a different
angle or even classification of other objects would be wanted.

A comparison between this project and other projects is difficult due to differences in circumstances. The
following results are therefore mostly interesting to be compared with each other. A comparison with other
projects might not yield a fair result.

The results are presented as ROC curves and AUC values which are briefly explained in section 2.3.5. The

21

results from the evaluation of algorithms are shown in Table 4.2.1. The AUC value should not be mixed up
with the accuracy.

Table 4.2.1: Performance of the different features using different classifiers. The result is presented as mean ±
standard deviation. The classifiers are first trained and tested 10 times on 50 % of the test set. These 50 % are
randomly chosen each time. *The final classification stage in Figure 3.2.5 is a simple neural network and not a
DT. A DT at the final classification stage could not create enough nodes to get a decent AUC.

Feature AUC for ANN AUC for kNN AUC for SVM AUC for DT

Depth Map 0.905 ± 0.0079 0.971 ± 0.0038 0.882 ± 0.0105 0.965 ± 0.0047
DFT 0.922 ± 0.0065 0.944 ± 0.0028 0.940 ± 0.0035 0.939 ± 0.0028
FD 0.994 ± 0.0018 0.991 ± 0.0017 0.981 ± 0.0033 0.994 ± 0.0012
Moments 0.965 ± 0.0024 0.759 ± 0.0099 0.927 ± 0.0059 0.945 ± 0.0043
Haar-like features 0.962 ± 0.0057 0.916 ± 0.0065 0.937 ± 0.0044 0.972 ± 0.0040

Combination of Features 0.997 ± 0.0007 0.996 ± 0.0016 0.997 ± 0.0004 0.995* ± 0.0009

The values in Table 4.2.1 are highly dependent on how the training set and test set are formed. The method
to create those are described in section 3.2.5.

4.2.1 Feature Extraction

The performance of the features can be seen in Table 4.2.1. For most features there are at least some parameter
that can be tuned to change the performance. The features are explained in section 2.3.3 and some choices of
parameters are also stated there.

The overview histogram is not included in Table 4.2.1 because the performance differed greatly depending
on distance. The performance was very promising for distances shorter than about 5 m, but got increasingly
worse with longer distances. Upon investigation it was realized that the depth resolution for the Kinect is
depth dependent which probably is the cause of the depth dependance in performance. The reason why the
overview histogram is kept in the report is because it is considered a very interesting feature that could perform
very well if it is implemented correctly and the distance resolution problem is solved.

HOG is also not included because it was implemented as an already trained classifier. The performance of
HOG on the test set gave an AUC of 0.925 which is a good value to compare with the other features. One
should keep in mind that the HOG classifier is trained on a more general data set than the other used classifiers,
which are only trained on the data that was generated in this project. The features in the list were the features
that performed well and the most successful feature would be the fourier descriptor.

Figure 4.2.1 shows the ROC curves for four different features evaluated with an ANN classifier. It can be
seen that the FD feature is the best performing feature of those four.

4.2.2 Classification Method

The four different classification methods used are ANN, SVM, kNN and DT which are explained in section
2.3.4. The kNN classifier is a simple classifier that actually performs quite well. Both kNN and DT were easy
to configure. The ANN and SVM classifiers are more advanced than kNN and DT and performs slightly better
but is harder to configure.

The result for the different classifiers shown in Table 4.2.1 differs a bit for each feature but is surprisingly
similar for the combined version. All classifiers but kNN have several parameters that can be configured. The
configurations that generated the results are optimized to some extent but can not be proved to be the optimal
configurations. However it seems to be, as Dollár mentions in [16], that the choice of classification method
plays very little role.

One of the best performing classifier was the ANN classifier with an AUC of 0.997. To get a better picture
of how the classifier actually performs, one can look at the following example: Consider the ROC curve of the
classifier as seen in Figure 4.2.2. The marked point of the curve have three values; X = 0.002, Y = 0.94 and Z
= -0.4 which are false positive rate, true positive rate and the threshold. This means that 0.2 % of the false
images are classified as true and 94 % of the true images are classified as true when the threshold is set to -0.4.
The confusion matrix for the this threshold can be seen in Figure 4.2.3.

22

Figure 4.2.1: Four ROC curves for HOG and the three best performing features for the ANN. These features
are FD, moments and Haar-Like features. The graph is zoomed in to make it easier to observe the differences
in the curves.

Consider that the segmentation will find about 200 negative segments each frame and the frame rate is
10 frames per second (FPS). This would be a total of 2000 negative images each second which would lead to
about four missclassified images each second. If a human appear on in the environment the segmentation would
probably have at least four segments of the human due to the overlap. This means that the probability to find
a human where four segments are found would be 1 − (1 − 0.94)4 = 0.9999870 if these four segments would be
independent. Of course many segments of the same human taken at the same time are not independent but the
chance to find at least one of human in several segments is greatly increased. The conclusion of this is that the
threshold could be increased to decrease the amount of false positives while still have a very high detection rate.

4.3 Proof of Concept

The display for the proof of concept is shown in Figure 4.3.1 and the setup can be seen in Figure 4.3.2.
An important aspect when it comes to the proof of concept is the speed of the classifier. All classifiers

where analyzed with the combined feature setup and the FPS differed. DT was the fastest and achieved 13
FPS, ANN had 12 FPS, SVM had 4 FPS and the kNN had 0.5 FPS for k = 30 when running on a 2.2 GHZ
Intel i7 quad core processor. Only minor optimization, such as multi-threading, has been done since a speed
over 10 FPS was satisfying and the main focus was the classification performance.

23

Figure 4.2.2: The figure shows a portion of the ROC curve for the ANN classifier when combining all features
in Table 4.2.1. The X and Y value are the corresponding axes and the Z value represents the threshold at the
given point.

Figure 4.2.3: The confusion matrix for the marked threshold of the ROC curve in Figure 4.2.2. The accuracy
would be (1529 + 754)/(1532 + 804) = 97, 7%. It may be more interesting to decrease the false positive than to
decrease the false negative due to several possible hits on each human.

24

Figure 4.3.1: The figure shows a screen capture of the proof of concept display. In the top image, found humans
are marked with their contour in a color corresponding to their distance from the camera. The color coded
depth map is shown in the bottom left image and an overview position display is shown in the bottom right
image. The color bar in the middle corresponds to the distances shown in the position overview. Marked
distances are 2.5 m, 5 m and 7.5 m respectively. The red region in the overview and teal regions in the top
image are outside of the detection area.

25

(a) (b)

Figure 4.3.2: The setup for a proof of concept system. The robot was constructed in another project but was
used to make the detection system mobile.

26

5 Conclusions and Future Work
This chapter contains the drawn conclusions and answers to the problem definition. It also contains suggestions
for future research.

5.1 Sensor

The conclusion from analyzing the Kinect and stereo vision was that a sensor that provides depth information
is very suitable for human detection as it gives general color-independent shape information.

It was found that the Kinect was a more appropriate technology to use in this report. But a deeper
investigation in a stereo vision system would be very interesting since it would enable the system to work
outdoors where the final product is supposed to be used. The stereo vision system used in this report were
created with two web cameras, these could be exchanged with a dedicated stereo vision system that could use
hardware accelerated algorithms to generate the depth map. That would probably provide a stable enough
depth map for the algorithm used in this report and would also give the advantages of a longer range than the
Kinect can offer. Another way of creating the depth map would be to use a sweeping laser method. This is
probably a more stable way to create the depth map but also a much more expensive solution.

It would be interesting to extend the detection system with an IR-camera and use heat signatures to further
sort out false positives.

5.2 Algorithm

The quality of the features have a large impact on detection accuracy. The feature that showed the best
individual result was fourier descriptors. Of the used classifiers ANN had the best classification performance
while using all features. ANN was also the best classifier when considering classification speed.

There are a lot of possible improvements that could be implemented. Of course there could be even more
efficient features waiting to be discovered, it could for instance be interesting to include the distance in some of
the features that performs differently for different distances.

The fact that humans are unlikely to move very far between two frames can be used for motion tracking
and concentrate the detection around interesting areas and probably prevent a lot of sporadic false positives.
Another interesting improvement could be to group several positive hits, in close distance to each other, to one
human. As for now, each human can give many hits because of the overlap during segmentation.

5.3 Proof of Concept

A proof of concept prototype have been implemented using the Kinect sensor technology. This prototype
shows good results at detecting humans with regard to the limitations. Some modifications would have to
be implemented to reach the goal of detecting humans in proximity to construction vehicles. The sensor, for
example, would have to be modified to work outdoors or switched to another sensor that works outdoors.
Stereo vision could be a very interesting alternative as previously mentioned.

The pose limitation is not realistic at a construction site and the next natural step would therefore be to
improve detection in other poses. One possible way of achieving that could be to use multiple detectors that
are trained on different poses.

Using multiple detectors for different distances could also be interesting. Experience shows that it is easier
to train a detector for a narrow distance interval compared to a general detector.

27

References
[1] Z.-R. Wang et al. “Pedestrian Detection Using Boosted HOG Features”. In: Intelligent Transportation

Systems, 2008. ITSC 2008. 11th International IEEE Conference on. 2008, pp. 1155 –1160. doi: 10.1109/
ITSC.2008.4732553.

[2] N. Dalal and B. Triggs. “Histograms of Oriented Gradients for Human Detection”. In: In CVPR. 2005,
pp. 886–893.

[3] F. Suard et al. “Pedestrian Detection using Infrared images and Histograms of Oriented Gradients”. In:
Intelligent Vehicles Symposium, 2006 IEEE. 2006, pp. 206 –212. doi: 10.1109/IVS.2006.1689629.

[4] V. Vaidehi et al. “Multiclass object detection system in imaging sensor network using Haar-like features and
Joint-Boosting algorithm”. In: Recent Trends in Information Technology (ICRTIT), 2011 International
Conference on. 2011, pp. 1011 –1015. doi: 10.1109/ICRTIT.2011.5972251.

[5] W. Yongzhi et al. “Pedestrian Detection Using Coarse-to-Fine Method with Haar-Like and Shapelet
Features”. In: Multimedia Technology (ICMT), 2010 International Conference on. 2010, pp. 1 –4. doi:
10.1109/ICMULT.2010.5630446.

[6] E.-J. Choi and D.-J. Park. “Human detection using image fusion of thermal and visible image with new
joint bilateral filter”. In: Computer Sciences and Convergence Information Technology (ICCIT), 2010 5th
International Conference on. 2010, pp. 882 –885. doi: 10.1109/ICCIT.2010.5711182.

[7] H. Sun, C. Wang, and B. Wang. “Night Vision Pedestrian Detection Using a Forward-Looking Infrared
Camera”. In: Multi-Platform/Multi-Sensor Remote Sensing and Mapping (M2RSM), 2011 International
Workshop on. 2011, pp. 1 –4. doi: 10.1109/M2RSM.2011.5697384.

[8] H. Andreasson, R. Triebel, and A. J. Lilienthal. “Vision-based People Detection Utilizing Reflective Vests
for Autonomous Transportation Applications”. In: IROS Workshop on Metrics and Methodologies for
Autonomous Robot Teams in Logistics (MMART-LOG). 2011.

[9] L. E. Navarro-Serment, C. Mertz, and M. Hebert. “Pedestrian Detection and Tracking Using Three-
dimensional LADAR Data”. In: The International Journal of Robotics Research 29.12 (Oct. 2010),
pp. 1516–1528. doi: 10.1177/0278364910370216. url: http://dx.doi.org/10.1177/0278364910370216.

[10] L. Spinello and K. O. Arras. “Leveraging RGB-D Data: Adaptive Fusion and Domain Adaptation for
Object Detection.” In: Proc. of The International Conference in Robotics and Automation (ICRA). 2012.

[11] M. Luber, L. Spinello, and K. O. Arras. “People tracking in RGB-D data with on-line boosted target
models”. In: Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference on. 2011,
pp. 3844 –3849. doi: 10.1109/IROS.2011.6095075.

[12] A Howard et al. “Detecting Pedestrians with Stereo Vision : Safe Operation of Autonomous Ground
Vehicles in Dynamic Environments”. In: System (2007). url: http://www-robotics.jpl.nasa.gov/
publications/Andrew_Howard/howard_isrr07.pdf.

[13] M. Bertozzi et al. “Stereo Vision-based approaches for Pedestrian Detection”. In: PROCEEDINGS OF
IEEE INT. CONF. ON COMPUTER VISION AND PATTERN RECOGNITION. 2005, pp. 23–28.

[14] L. Zhao and C. Thorpe. “Stereo and Neural Network-based Pedestrian Detection”. In: IEEE Transactions
on Intelligent Transportation Systems 1.3 (2000), pp. 148 –154.

[15] P. Dollár et al. “Pedestrian Detection: An Evaluation of the State of the Art”. In: vol. 99. PrePrints.
2011. doi: http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.155.

[16] P. Dollár. Pedestrian Detection: The State of the art. Video seminar (http://research.microsoft.
com/apps/video/?id=135046). [Online; accessed 5-June-2012]. 2010.

[17] S. Kamijo, K. Fujimura, and Y. Shibayama. “Pedestrian detection algorithm for on-board cameras
of multi view angles”. In: Intelligent Vehicles Symposium (IV), 2010 IEEE. 2010, pp. 973 –980. doi:
10.1109/IVS.2010.5548113.

[18] L. Zhang and Y. Liang. “Motion Human Detection Based on Background Subtraction”. In: Education
Technology and Computer Science (ETCS), 2010 Second International Workshop on. Vol. 1. 2010, pp. 284
–287. doi: 10.1109/ETCS.2010.440.

[19] R. C. Gonzales and R. E. Woods. Digital Image Processing. Pearson International, 2008, pp. 115, 205–255,
394–456, 839–840. isbn: 978-0-13-505267-9.

[20] Dimenco. http://www.dimenco.eu/2dz/. [Online; accessed 23-April-2012]. 2011.
[21] H. Levkowitz and G. T. Herman. “Color Scales for Image Data”. In: IEEE Comput. Graph. Appl. 12.1

(Jan. 1992), pp. 72–80. issn: 0272-1716. doi: 10.1109/38.135886. url: http://dx.doi.org/10.1109/
38.135886.

28

http://dx.doi.org/10.1109/ITSC.2008.4732553
http://dx.doi.org/10.1109/ITSC.2008.4732553
http://dx.doi.org/10.1109/IVS.2006.1689629
http://dx.doi.org/10.1109/ICRTIT.2011.5972251
http://dx.doi.org/10.1109/ICMULT.2010.5630446
http://dx.doi.org/10.1109/ICCIT.2010.5711182
http://dx.doi.org/10.1109/M2RSM.2011.5697384
http://dx.doi.org/10.1177/0278364910370216
http://dx.doi.org/10.1177/0278364910370216
http://dx.doi.org/10.1109/IROS.2011.6095075
http://www-robotics.jpl.nasa.gov/publications/Andrew_Howard/howard_isrr07.pdf
http://www-robotics.jpl.nasa.gov/publications/Andrew_Howard/howard_isrr07.pdf
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/TPAMI.2011.155
http://research.microsoft.com/apps/video/?id=135046
http://research.microsoft.com/apps/video/?id=135046
http://dx.doi.org/10.1109/IVS.2010.5548113
http://dx.doi.org/10.1109/ETCS.2010.440
http://www.dimenco.eu/2dz/
http://dx.doi.org/10.1109/38.135886
http://dx.doi.org/10.1109/38.135886
http://dx.doi.org/10.1109/38.135886

[22] PrimeSense. http://www.primesense.com/en/technology/115- the- primesense- 3d- sensing-

solution. [Online; accessed 16-April-2012]. 2011.
[23] A. Fusiello et al. A Compact Algorithm for Rectification of Stereo Pairs. 1999.
[24] M. Gosta and M. Grgic. “Accomplishments and challenges of computer stereo vision”. In: ELMAR, 2010

PROCEEDINGS. 2010, pp. 57 –64.
[25] N. Kokash. An introduction to heuristic algorithms. 2005.
[26] S. B. Kotsiantis. Supervised Machine Learning: A Review of Classification Techniques. Informatica

31:249–268. 2007.
[27] M. Wahde. Biologically Inspired Optimization Methods. WIT Press, 2008. isbn: 9781845641481.
[28] R. Laganiere. OpenCV 2 Computer Vision Application Programming Cookbook. Packt Publishing, 2011,

pp. 182–185, isbn: 978-1-849513-24-1.
[29] K. G. Derpanis. Integral image-based representations. Tech. rep. Department of Computer Science and

Engineering York University, 2007.
[30] M. Jie et al. “Fast Fourier Descriptor Method of the Shape Feature in Low Resolution Images”. In: Wireless

Communications Networking and Mobile Computing (WiCOM), 2010 6th International Conference on.
2010, pp. 1 –4. doi: 10.1109/WICOM.2010.5601317.

[31] Willows Garage. http://opencv.willowgarage.com/documentation/cpp/structural_analysis_
and_shape_descriptors.html. [Online; accessed 27-April-2012]. 2012.

[32] R. Lienhart. An Extended Set of Haar-like Features for Rapid Object Detection. Tech. rep. Intel Labs
Intel Corporation Santa Clara USA, 2002.

[33] T. Kim et al. Pose Robust Human Detection in Depth Image Using Four Directional 2D Elliptical Filters.
Tech. rep. Department of Computer Science, Engineering Pohang University of Science, and Technology,
2008.

[34] L. Rokach and O. Maimon. “Top-down induction of decision trees classifiers - a survey”. In: Systems,
Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on 35.4 (2005), pp. 476
–487. issn: 1094-6977. doi: 10.1109/TSMCC.2004.843247.

[35] S. Thirumuruganathan. http://saravananthirumuruganathan.wordpress.com/2010/05/17/a-

detailed-introduction-to-k-nearest-neighbor-knn-algorithm/. [Online; accessed 26-April-2012].
2010.

[36] C. J. Burges. “A Tutorial on Support Vector Machines for Pattern Recognition”. In: Data Mining and
Knowledge Discovery 2 (1998), pp. 121–167.

[37] S. Haykin. Neural Network and Learning Machines. Pearson International, 2009, pp. 40–42,51–52. isbn:
978-0-13-129376-2.

[38] T. Fawcett. ROC Graphs: Notes and Practical Considerations for Data Mining Researchers. 2003.
[39] Microsoft. http://emea.microsoftstore.com/UK/en-GB/Microsoft/Design-+-Developer/Visual-

Studio-2010. [Online; accessed 27-April-2012]. 2012.
[40] The MathWorks, Inc. http://www.mathworks.se/. [Online; accessed 27-April-2012]. 2012.
[41] Willows Garage. http://www.willowgarage.com/pages/software/opencv. [Online; accessed 27-April-

2012]. 2012.
[42] DotNetNuke Corporation. http://75.98.78.94/default.aspx. [Online; accessed 27-April-2012]. 2012.

29

http://www.primesense.com/en/technology/115-the-primesense-3d-sensing-solution
http://www.primesense.com/en/technology/115-the-primesense-3d-sensing-solution
http://dx.doi.org/10.1109/WICOM.2010.5601317
http://opencv.willowgarage.com/documentation/cpp/structural_analysis_and_shape_descriptors.html
http://opencv.willowgarage.com/documentation/cpp/structural_analysis_and_shape_descriptors.html
http://dx.doi.org/10.1109/TSMCC.2004.843247
http://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/
http://saravananthirumuruganathan.wordpress.com/2010/05/17/a-detailed-introduction-to-k-nearest-neighbor-knn-algorithm/
http://emea.microsoftstore.com/UK/en-GB/Microsoft/Design-+-Developer/Visual-Studio-2010
http://emea.microsoftstore.com/UK/en-GB/Microsoft/Design-+-Developer/Visual-Studio-2010
http://www.mathworks.se/
http://www.willowgarage.com/pages/software/opencv
http://75.98.78.94/default.aspx

	Abstract
	Preface
	Acknowledgements
	Nomenclature
	Contents
	Introduction
	Background
	Objective
	Problem Definition
	Limitations
	Related Work
	Reading Guidance

	Theory
	Image Setup and RGB-D Image
	Sensors
	Kinect
	Stereo Vision

	Classification
	Training a Classifier
	Pre-processing Algorithms
	Features
	Classifiers
	Evaluation

	Method and Implementation
	Setup
	Environment
	Sensors
	Software

	Classification
	Segmentation
	Pre-processing
	Feature Extraction
	Classification
	Data Mining

	Proof of Concept

	Result and Discussion
	Sensor
	Sensor Comparison

	Evaluation of Algorithms
	Feature Extraction
	Classification Method

	Proof of Concept

	Conclusions and Future Work
	Sensor
	Algorithm
	Proof of Concept

	References

