
Internet
Connection

A Search for a Convenient Data Encryp-
tion Algorithm
For an Internet of Things Device

Master’s thesis in Systems, Control and Mechatronics

OLGEIR GUNNSTEINSSON

Department of Signals and Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2016

Master’s thesis EX020/2016

A Search for a Convenient Data Encryption
Algorithm

For an Internet of Things Device

OLGEIR GUNNSTEINSSON

Department of Signals and Systems
Division of Automatic control, Automation and Mechatronics

Chalmers University of Technology
Gothenburg, Sweden 2016

A Search for a Convenient Data Encryption Algorithm
For an Internet of Things Device
OLGEIR GUNNSTEINSSON

© OLGEIR GUNNSTEINSSON, 2016.

Supervisors: Jonas Arvidsson and Erik Barrefors, Parakey AB
Advisor: Jessica Chani Cahuana, Chalmers
Examiner: Henk Wymeersch, Chalmers

Master’s Thesis EX020/2016
Department of Automatic control, Automation and Mechatronics
Division of Signals and Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover:
Connections between devices, cloud and customer using the Parakey product.

Typeset in LATEX
Gothenburg, Sweden 2016

iv

A Search for a Convenient Data Encryption Algorithm
For an Internet of Things Device
OLGEIR GUNNSTEINSSON
Department of Systems and Signals
Chalmers University of Technology

Abstract
Nowdays, the number of IoT (Internet of Things) devices are growing rapidly around
the world with wide range of purposes. Many types of these devices collect data and
depending on their purpose, some of the data can be highly sensitive for the user.
This calls for security on the device which has to secure the collected data and send
it to a server through the Internet. Using TLS (Transport Layer Security) is a great
way to provide such a security and one part of it is the data encryption which is
the main focus of this thesis. The problem is that IoT devices are often made out
of microprocessors having a low computational power and performance. The main
goal of this thesis is to find the most suitable data encryption algorithm for a small
32-bit CPU hardware with requirements of good speed performance, security and
space complexity using a specific encryption library from ARMmbed. The four most
popular symmetric encryption algorithms DES (Data Encryption Standard), 3DES
(Triple DES), AES (Advanced Encryption Standard-Rijndael) and Blowfish from the
library are going to be compared in order to find the most suitable one for a mid-high
end IoT device. Then the most suitable block cipher mode of operation, the ECB
(Electronic Codebook), CBC (Cipher Block Chaining), OFB (Output Feedback),
CFB (Cipher Feedback) or CTR (Counter) are compared to find the one that fits
the task the best. Based on literature studies, it is shown that the AES-128-bits
using CTR cipher block model provides the best speed performance and security on
the device.

Keywords: IoT, security, data encryption, speed, DES, 3DES, AES, Blowfish, CTR.

v

Acknowledgements
I would like to thank my supervisors, Jonas Arvidsson, Erik Barrefors and all their
coworkers from Parakey AB for all the help and support throughout the thesis. Also I
want to thank my adviser Jessica Chani Cahuana and my examiner HenkWymeersch
from Chalmers (Division of Signals and Systems) for guidance and support.

Olgeir Gunnsteinsson, Gothenburg, June 2016

vii

Contents

1 Introduction 1
1.1 Background . 1
1.2 The Benefits and problems of IoT . 1
1.3 Cryptography and security between an IoT device and a server 3
1.4 Parakey product . 3
1.5 Open-Source algorithms and speed performance 4
1.6 Overall aim and constraints . 4
1.7 Outline . 5
1.8 Related work . 5

2 Theory 7
2.1 ARM® mbed™ TLS library and the STM32F0 MCU 7
2.2 Architecture and layers of IoT . 8

2.2.1 Perception (Edge node) layer 8
2.2.2 Access gateway layer . 9
2.2.3 Network layer . 9
2.2.4 Middleware layer . 9
2.2.5 Application layer . 9

2.3 Cryptography Algorithms and SSL/TLS 9
2.3.1 Secure Sockets Layer(SSL)/Transport Layer Security(TLS) . . 10
2.3.2 Symmetric encryption . 12

2.3.2.1 Data encryption standard 13
2.3.2.2 Triple-DES (3DES) 14
2.3.2.3 Advanced Encryption Standard (Rijndael) 15
2.3.2.4 Blowfish . 16

2.3.3 Block cipher modes . 17
2.3.3.1 Electronic Codebook (ECB) 18
2.3.3.2 Cipher Block Chaining (CBC) 19
2.3.3.3 Cipher Feedback (CFB) 20
2.3.3.4 Output Feedback (OFB) 20
2.3.3.5 Counter (CTR) . 21

2.4 Cryptanalysis . 22
2.4.1 Brute force attack . 22
2.4.2 Meet-in-the-middle attack . 23
2.4.3 Side-channel attack . 23
2.4.4 Differential cryptanalysis . 23

ix

Contents

2.4.5 Padding-oracle-attack . 23

3 Method 25
3.1 Examined aspects . 25
3.2 Comparison of Block Cipher Mode of Operation 26

4 Performance results 29
4.1 Security . 29

4.1.1 DES . 29
4.1.2 3DES . 29
4.1.3 Blowfish . 30
4.1.4 AES . 30

4.2 Execution and throughput speed . 30
4.2.1 Encryption speed . 30
4.2.2 Key setup and IV . 34

4.3 Space complexity . 35
4.4 Key size . 35
4.5 Summary . 37

5 Conclusion 41
5.1 Recommendation for future work . 42

Bibliography 45

A Appendix 1 I

x

1
Introduction

In this chapter, the background of the IoT and cryptographic world will be shortly
described. Then the benefits and problems of IoT and the root of the problem will
be investigated. An introduction of the company Parakey AB will be given out and
short discussion regarding OpenSource and speed performance of an IoT in order
to inform the reader why that is a topic worth to discuss. Then to help the reader
to understand the overall aim of the thesis and what constraints and requirements
appear for a encryption algorithm on a IoT device.

1.1 Background
After a fast growing net of connections worldwide the machines and computers have
gotten faster and smaller giving the opportunity to connect more devices and ma-
chines together to share information and process it. This development has triggered
a trend where all things in the world should be connected to the Internet in order
to provide a system which could improve the transmission of information, called the
Internet of Things.

The concept of IoT was formally proposed around 2005 in a report from Interna-
tional Telecommunication Union (ITU) called "ITU Internet Report 2005: Internet
of Things (IoT)"[1]. An IoT device, sometimes called IoT edge node, is an indepen-
dent hardware that is uniquely identifiable through its embedded computing system
and connected to the Internet. For example, it could be a vehicle, phone or a pres-
sure sensor but what they all have in common is that they collect data from sensors
and/or used as actuators. The growth of IoT connected devices around the world
in 2015 is astonishing and keeps on growing with a forecast of 20.8 billion units by
the year 2020[2].

1.2 The Benefits and problems of IoT

Trust is the new currency. Trust
will define companies that win and
companies that lose.

Gary Kovacs, AVG CEO
There are many benefits of having everything connected together. Who doesn’t
want to ease their lives with a home automation and security, getting notifications

1

1. Introduction

when your health is getting worse or even feed your pet when you are not at home
and keep track of it? IoT will have a great impact for instance on health-care,
car industry and monitoring business but unfortunately, it has a downside. When a
device is connected to the Internet, it opens up connection possibilities to others who
are not allowed to connect or interact with the device, so called hackers. Hackers
are often compared to pirates of the Internet, trying their best to steal data from
servers, devices or get full control of devices which can be devastating for people
and companies.

In the beginning of the 21st century, data became more valuable for companies,
people and, of course, hackers. Some data is personal but it is not always well
protected and can be misused. People often think that the data collected by their
phones or IoT devices does not matter. They do not mind if someone sees how many
steps they took last month or gets data about their power usage. Hackers do not care
about it either. They want to get to the valuable data, your bank account, social
security numbers, credit card information and so on. People tend to forget that
this information is stored in the company servers or, in worst cases, in the device
itself. If the company has a weak or no encryption on the data or does not provide
a secure connection from the device to their servers the hackers will eventually find
it and abuse it. Then the customers lose their trust which can be dreadful for the
company. Unfortunately, many start-up companies skip this part but security must
be included from the beginning and should not be an option.

In the OWASP (Open Web Application Security Project)[3] webpage, they made a
list of the IoT Attack Surface Areas where they list for instance:

• Device memory
• Device firmware
• Local data storage
• Update mechanism
• Authentication/authorization
• Transport encryption

Only Transport encryption, local data storage and update mechanism will be one of
the main security concern discussed in the theory part where the are affected by
secure communication. From the same security project, a list of top IoT vulnera-
bilities were made. There they mentioned the "unencrypted services" as one of the
vulnerabilities, which will be the main IoT vulnerability focus in this thesis. Many
other critical vulnerabilities must also be considered, for instance, "weak password",
"update sent without encryption", "no manual update mechanism" and others that
do not fit in the scope of this work.
Implementing security in a normal PC with unlimited power usage, a lot of pro-
cessing power and CPU speed is normally not a problem. When dealing with IoT
devices, it gets a bit more complicated. The IoT devices are typically small low-
power devices with low processing and battery power. Therefore, companies face
various problems today when implementing a security on IoT devices, for example
following problems inspired by Nermin H.[4]:

• Devices are low cost and essentially disposable

2

1. Introduction

• It is difficult to update firmware or apply a patch.
• IoT hardware is and will remain a problem
• The small size and limited processing power of many connected devices could

inhibit encryption and other robust security measurement
• It is difficult to compress 25 years of knowledge into tight time-frame.

Also in [5], a list of constraints on an IoT device is shown which include:
• Constraints on the maximum code complexity (ROM/Flash),
• Constraints on the size of states and buffers (RAM),
• Constraints on the amount of computation feasible in a period of time (pro-

cessing power),
• Constraints on the available power
• Constraints on user interface accessibility in deployment (ability to set keys,

update software etc.).

1.3 Cryptography and security between an IoT
device and a server

In order to provide security of data transmitted back and forth from an IoT device to
a server, the communication has to be encrypted. Cryptography is the practice and
study of techniques for secure communication and has been around for a long time.
One of the cryptographic protocol is the TLS (Transport layer security) protocol
where the data are encrypted with ciphers to protect them from third parties through
the Internet. Many ciphers exist today with a range of possibilities and different
purposes, for example the symmetric ciphers AES (Advanced encryption algorithm),
DES (Data encryption algorithm), 3DES (Triple DES) and Blowfish. Those four
encryption algorithms will be compared and the most convenient cipher will be
chosen and hopefully implemented in future work.

1.4 Parakey product
Parakey is the next generation product for physical access control and can control
access to, e.g., doors and gates which has an electromechanical locking mechanism.
The product consists of three parts: a cloud service, a small hardware and a smart-
phone app.

The cloud service handles and distributes digital keys to users and their smart-
phones. The hardware acts as a bridge between a smartphone, such as an iPhone,
and door lock or existing access control system. The smartphone app gathers the
user’s digital keys and sends a signal to the hardware which opens the chosen door.

Parakey’s hardware is currently using Bluetooth to communicate with smartphones.
Parakey AB plans to add Internet connection to the hardware thus making it more
flexible to add functions that requires Internet connection, such as remote to open
a door.

3

1. Introduction

Parakey is using a STM32F0xx microcontroller in their hardware device, which
will be connected to the Internet in augment to their current Offline solution via
Bluetooth. The main requirements are that it has to be secure, fast and reliable.
Using an STM32F0xx microcontroller sets the boundaries with computing speed and
therefore the "size" of the security algorithm and execution speed. Also, Parakey
will use the ARM® mbed™ TLS encryption library for implementation. That makes
it easier for developers to include cryptographic and TLS capabilities in embedded
products to connect securely from a so called perception layer to the application
layer.

1.5 Open-Source algorithms and speed performance
The Open-Source community is a great place to learn when starting and building
a product or a business. Using an Open-Source library or algorithm for encryption
can save both time and money which is of great advantage for startup companies
and even for stable corporations. One can have easy access to the algorithm and
can be sure that many other people are using it. That means, there is a lot of
documentations about it and even its own forum where everybody can share their
experience and propose new ways to improve the library.

In most cases when encrypting data, a good speed performance is one of the best
advantages after the security. If the encryption was overall a slow procedure, it would
be more tempting for people to discard the security over the speed performance
which can have a terrible impact on the privacy for people and companies. The
speed depends on many things such as the library, implementation, which block
cipher mode is used, structure of the encryption algorithm and what language it is
written in. One of the worlds most famous cryptographer, Bruce Schneier, once said
that if speed and performance is critical, the code for the algorithm itself and the
most suitable block cipher mode, can be written in assembly. It is the same when
choosing the right key size, increasing the keysize will increase the execution time of
the encryption procedure[6]. From the beginning of the cryptography studies, there
have and will always be a trade-off between security and performance.

1.6 Overall aim and constraints
The main purpose of this thesis work is to find the most convenient cipher to im-
plement in an IoT device to establish a secure data communication with the server.
This should be done by taking into account that the IoT device has narrow limits
of available memory, computing power and speed. Also some of the critical secu-
rity strategies for IoT devices are examined, in order to highlight the main keys in
any security solution, and to draw conclusions for a successful encryption algorithm
approach between the server and the (IoT) device.

When trying to compare encryption algorithms and operation modes and find which
of them would suit a specific hardware the best, one should specify the hardware,

4

1. Introduction

platform, library usage, data package sizes and the purpose of the data encryption.
With the boundaries and requirements described in sections 1.2 and 1.4, the con-
straints imposed on the (required) algorithm can be summarized as follows:

• Has to be a Open Source algorithm and included in the ARM mbed TLS
library.

• Has to be fast.
• Has to work on 32-bit CPU with low CPU power.
• Has to be able to handle data packages smaller than 10kB.
• Has to have a low space complexity.
• Has to be secure.

With those constrains, only specific algorithms will be examined in this thesis work.
The four most known encryption algorithms and Open-Source from the mbed TLS
library, called DES, 3DES, AES and Blowfish, are compared in order to find the
most suitable encryption algorithm for a specific hardware made by Parakey AB.
Also different operation modes of the ciphers are investigated to select the fastest
and most secure mode (among them).

1.7 Outline
The rest of this thesis is organized as follows. In Chapter 2, the theoretical back-
ground of this work is presented. The architecture of the IoT is briefly described
and the cryptography concept is introduced. Moreover, a short introduction to sym-
metric and asymmetric encryption algorithms is presented, the block cipher modes
are explained and few cryptanalysis methods are described. Chapter 3 introduces
the comparison factors considered to select the convenient data algorithm and block
cipher mode. Thereafter in Chapter 4, the potential algorithms are evaluated and
compared by the factors which were introduced in chapter 3. Finally in Chapter 5,
conclusions are drawn and recommendations for future work are provided.

1.8 Related work
Even though IoT is a fairly new "thing" in the Internet world, in the past 25 years
the IT security controls have evolved and can be just as effective for this but it is
difficult to compress those 25 years of knowledge into these devices[7]. Today, no
unified classification or standards have been made for the devices in the IoT world.
In [8] the performance of the AES, DES and Blowfish encryption algorithms are
examined by comparing their performance using a varying key- and block-sizes and
also number of round of encryption input file. In order to analyze the performance of
every and each algorithm, the performance of execution time, memory requirement
and throughput were computed.
Ciphers can be split in asymmetric and symmetric encryption algorithms. Studies
have shown that the asymmmetric algorithms tend to be much slower than sym-
metric encryption methods and an old rule of thumb says that block ciphers can be
around 50 times faster than asymmetric encryption[9]. That been said, this thesis

5

1. Introduction

does not focus on asymmetric encryption algorithms for data encryption which are
mainly used for key exchange methods.
Various larger companies like Atmel, WindRiver and Intel have conducted researches
on how to protect an IoT device in the best way, how to secure communication
between IoT devices and published articles and white papers regarding their results.
Most of the studies and comparisons on ciphers have been made on different plat-
forms, hardware and libraries which makes it harder to use their results to make
any conclusions.

6

2
Theory

When looking into the problems of having an IoT edge node connected straight to the
Internet, there are many things that need to be kept in mind. How the architecture
of the IoT is set up, what encryption algorithms should be used and what are the
potential threats for the system. The decision on what algorithms and encryption
should be used depends on what the device is capable of regarding to processing
power, computing speed and purposes. As mention in Section 1.4 the STM32F0XX
microcontroller will be the hardware that the chosen encryption algorithm has to be
deployed on using the ARM® mbed™ TLS library. In this chapter, the main theory
of cryptography and the fundamental aspects of the encryption algorithms will be
investigated.

2.1 ARM® mbed™ TLS library and the STM32F0
MCU

Implementing a security library from scratch can be hard, complicated and time
consuming. Using a pre-build library can be a great way to get past that and spare
some time which is a big deal for startup companies. In that case, the ARM® mbed™

TLS library, a successor of the PolarSSL library, is used in this work. This library
can be used as a replacement for the OpenSSL library or other SSL libraries. It
includes few of the most-used data encryption algorithms, that is AES, Blowfish,
Triple-DES (3DES), DES and more. The library’s memory footprint can get as
small as 30k and averages below 110k, which is a great benefit for an IoT device
with low ROM. The mbed TLS is primarily licensed under the Apache 2.0 license.

Using the ARM® mbed™ TLS library with the STM32F0XXmicrocontroller is a suit-
able match because they are made by the same company consequently compatibility
errors are less likely to occur and cause security issues. The STM32F0XX microcon-
troller is an ARM® based 32-bit Cortex®-M0 CPU provided by STMicroelectronics.
The chip has relatively high processing power and speed compared to the Arduino
platform which is often based on a 8-bit microcontrollers. The STM32F0XX is a
part of the STM32 family and is used all around the world in many different prod-
ucts for example phones, cars and measuring devices. It is suitable for cost-sensitive
applications and highly competitive in traditional 8-bit and 16-bit chips in power
consumption.

7

2. Theory

2.2 Architecture and layers of IoT
The basic architecture of IoT consists of three-layers, the application layer, network
layer and sensing layer. This representation is widely used in the IoT studies to
show the framework of a simple IoT architecture[10]. In recent studies, new layers
have been added in between the layers, e.g. middleware layers, transport layers,
service layers and link layers [11][12]. In order to get a clearer picture of the IoT
set-up, interaction and connections, it is convenient to split the architecture in up
to the five layers architecture as shown in figure 2.1 [13],[11],[14] and [12].

Cloud

Perception Layer

Access Gateway Layer

Network Layer

Middleware Layer

Application Layer

The IoT Architecture

Figure 2.1: Architecture layers of IoT.

When applying full security to an IoT device, the security has to be considered on
each layer. In this thesis, part of a security in the perception layer is investigated
where the data encryption happens on the hardware itself. Although, it is feasible to
shortly introduce the other layers in order to have a better and more clear overview
of the structure, data flow and connections between devices.

2.2.1 Perception (Edge node) layer
This layer is also called physical layer. Here is the data collected or provided with
many different hardware devices such as sensors networks, RFID tags, embedded
edge processors and actuators.

8

2. Theory

2.2.2 Access gateway layer
This layer is the first stage of data handling and is important in order to publish
and subscribe the services that are provided by the IoT devices. Also, if required,
it performs cross platform communication.

2.2.3 Network layer
The network layer filters the received data from IoT edge nodes and other hardware
devices. Then also it provides an access control from the application layer making
a two-way transmission.

2.2.4 Middleware layer
The middleware layer acts as an interface between the application layer and percep-
tion layer and operates in bi-directional mode. This layer is responsible for device
and information management and can take care of many functionalities such as
access control, data aggregation and information service.

2.2.5 Application layer
The application layer delivers various application services through the middleware
layer to the user in system based on IoT devices. This service can be used for
instance in logistics, industries and healthcare.

2.3 Cryptography Algorithms and SSL/TLS
In the Internet Security Glossary RFC2828[15] the cryptography system is defined
as "a set of cryptographic algorithms together with the key management processes
that support the use of the algorithms in some application context." This definition
gives a clear picture of the mechanism that is used to provide secure communication
protocols and data encryption algorithms. When sending sensitive data between an
IoT device and a server or application, the sender encrypts the unencrypted text,
called plaintext, and sends the encrypted text, called ciphertext, to the receiver who
(later) decrypts it.
The main requirements to be fulfilled for Parakey hardware device are then the
following:

• The device has to be fast and responsive, the time between pressing "open" in
the app and the door opening must not fend off customers by being too slow.
That means the faster the encryption time of the encryption the better.

• Has to have tight security that involves three fundamental components of
security which refer to the acronym "CIA" :
– Confidentiality - whether data are stored or transit in a message it

should be visible only to an authorized person.
– Integrity - When a message is sent, it should not be tampered or changed

on the way to its destination.

9

2. Theory

– Authenticity - The sender of the message is who he says he is.
• The encryption algorithm must be well documented, that is, have been re-

searched, attacked and written about. Also the implementation methods and
library are more or less Open-Source.

• The encryption algorithm must be has to be suitable for STM32F0 32-bit
MCU hardware which the IoT device from Parakey is based on.

Encryption Decryption

Plaintext Ciphertext Plaintext

Figure 2.2: Secure communication with Symmetric Key.

2.3.1 Secure Sockets Layer(SSL)/Transport Layer Security(TLS)
In order to fulfill the "CIA" requirements, a cryptographic protocol called Transport
Layer Security (TLS), or its predecessor Secure Sockets Layer, is often used. The
main purpose of TLS is to provide secure communication between two computer
applications that includes privacy, data integrity and also authenticity.
Having a secure TLS connection means that:

• The connection is using symmetric cryptography, which is a requirement, in
order to encrypt the transmitted data which provides the privacy of the mes-
sage. For the thesis, this part of the TLS protocol is the main focus, that
is, which symmetric cryptography algorithm is the most suitable to provide
privacy or confidentiality of the message.

• Public-key cryptography is used to authenticate the identity of the message
sender. This procedure is generally required for the server side but the authen-
tication can be made optional depending on the importance of the message.

• The transmitted message includes an integrity check meaning that the connec-
tion is reliable. The integrity check is made by using message authentication
code (MAC) using a hash function which prevents alteration of the data and
some undetected loss of the message during its transmission caused for example
by "man-in-the-middle".

A typical TLS connection process starts with a procedure called "handshake" be-
tween the client and server and will be described shortly as following:

1. The client, often a browser, sends a ClientHello message to a specific server,
including a highest TLS protocol version it supports, cipher settings, a random
number and a list of suggested compression methods.

2. The server responds with the message ServerHello which contains the chosen
protocol version which always has to be the highest version that both the client

10

2. Theory

and server can provide. The message also contains the servers certificate with
the servers public encryption key and other information that the client needs
to communicate with the server over TLS.

3. Next, the client checks the certificate from the server and encrypts a random
number pre-master-secret used to generate the symmetric key. That will be
used for the secure communication in the end, with the servers public key
and sends it to the server with the clients certificate. This is called the key
exchange.

4. The client sends ChangeCipherSpec to the server to indicate that it has
now sent the pre-master-secret, generated the symmetric key and changed the
cipher spec to using symmetric encryption. Then the client sends ClientFin-
ished message, telling the server that the client is done with the key exchange
and the handshake and ready to begin secure communications using the gen-
erated symmetric key.

5. Now the server sends back ChangeCipherSpec to the client indicating the ci-
pher change. Also it sends back ServerFinished message which is encrypted
with the symmetric key. This message tells the client that a successful hand-
shake with the server has been made, making the secure communication, using
the chosen symmetric cipher which could be for example AES, DES, 3DES or
Blowfish.

The focus in this thesis will be on the privacy or confidentiality of a message, that is,
what is the best and most convenient data encryption algorithm for the Parakey’s
IoT device using the ARM® mbed™ TLS library in order to have a secure commu-
nication between a IoT device and a server.

Figure 2.3: TLS handshake procedure.

11

2. Theory

2.3.2 Symmetric encryption
In cryptography, there are two main techniques to encrypt/decrypt data and other
information. They are called symmetric and asymmetric cryptosystems. For asym-
metric encryption the keys are distinct where the encryption key is public and acces-
sible by everyone and can be disseminated widely but the decryption key to decrypt
messages is kept secret, often in a server [16]. This method is called Public-key cryp-
tography and as mention in the Introduction Chapter, it will not be investigated
further as a candidate for a suitable data encryption algorithm. In figure 2.4 the
classification of encryption algorithms can be examined.

Asymmetric
encryption Level 1 Symmetric encryption

RSA Stream Ciphers

Seal

Ciphers

Block CiphersDSA D-H

RC4

Camellia

AESDESBlowfish

3DES

Secret KeyPublic Key

Figure 2.4: Classification of encryption algorithms. The underlined algorithms
indicates those that will be examined in the thesis.

The symmetric encryption is told to be the most known encryption technique and the
oldest one, also called secret key encryption. The method is based on the idea that
the same secret key is used for both the sender and reciever to encrypt or decrypt,
i.e., the encryption key is equal to the decryption key[16]. As mentioned in section
2.3.1, the secret key is pre-agreed by the sender and receiver in the "handshake"
process.
Symmetric encryption algorithm can be divided in two types of ciphers, a block
cipher and stream cipher.

• Block cipher: Block ciphers operate on so called blocks which are fixed-
length groups of bits. Each block is usually 64, 128 or 256-bits in length.
Having a 128-bit block cipher will be able to process 128-bits of plaintext and
give out 128-bits ciphertext. If the plaintext is shorter than 128-bit scheme
called padding will modify it in order to get the length of it equal to a multiple
of the given block size. Typical block ciphers are the DES, Blowfish and AES
algorithms [17] [9].

• Stream cipher: In stream ciphers the encryption is done on each bit of
a plaintext at a time using a random digit stream of a pseudorandom bits
(keystream)[17]. In order to have the stream cipher implementation secure,

12

2. Theory

the generator for the pseudorandom should be unpredictable. For example,
the symmetric key algorithm RC4 is a popular stream cipher[18].

DecryptionPlaintext Ciphertext

EncryptionPlaintext Ciphertext

Symmetric Key Cloud

Figure 2.5: Secure communication with Symmetric Key.

The function of the four symmetric algorithms that will be evaluated in chapter four
are described in following subsections:

2.3.2.1 Data encryption standard

Data encryption standard (DES) is a block cipher which was the predominant sym-
metric key algorithm for data encryption until its successor AES was introduced.
DES was created at IBM in the early 1970s based on a design of Horst Feistel and is
the most studied cipher in the world. It has 64 bits block size and key size of 56 bits
plus 8 parity bits. For encrypting DES uses 16 rounds of Feistel structure, as can
be seen in figure 2.6, where it takes a 64-bits plaintext in the first round and splits
it in two 32-bits blocks called R0 and L0. Then it puts R0 into a Feistel function
and XORs the output of it to L0 which provides R1 while L1 is made straight out
of R0. Then this procedure is repeated 16 times, giving out a 64-bits ciphertext.

Figure 2.6: Feistel structure.

13

2. Theory

The Feistel function is often called the "heart" of the cipher where the actual en-
cryption happens. The input is a 32-bits of text which is expanded to 48-bits and
XOR-ed with 48-bits sub-key. The product is then divided into eight parts including
6-bits each which are imported to a S-box (a special made look up table), giving out
4-bits. All the bits are then combined making a 32-bits text where permutation is
made before it goes out as an output.

2.3.2.2 Triple-DES (3DES)

The Triple DES is the DES cipher algorithm but applied three times to each data
block. Therefore, it has the same block size of 64-bits but the number of rounds
are 48 using the Feistel network structure. When the DES was made, the key size
of 56 bits where enough security but with faster computer processors and power
the key size had to be increased to ensure the security and in the year of 1998 the
3DES algorithm was published. The key size of the 3DES depends on which keying
option is used. The key sizes are then 168, 112 or 56 bits and the keying option 1,
2, 3 respectively. The four common proposals for 3DES are showed in table 2.1 and
described in figure 2.7.

Shorthand Description
2-key ENC-DEC-ENC EDE2 c = ENCk1(DECk2(ENCk1(m)))
2-key ENC-ENC-ENC EDE2 c = ENCk1(ENCk2(ENCk1(m)))
3-key ENC-DEC-ENC EDE3 c = ENCk3(DECk2(ENCk1(m)))
3-key ENC-ENC-ENC EDE3 c = ENCk3(ENCk2(ENCk1(m)))

Table 2.1: Table of the common proposals for 3DES encryption, inspired by [9].

Figure 2.7: Figure of the common proposals for 3DES encryption, inspired by [9].

One of the most common proposal deployed is the EDE2 which might be a surprise
but the fact is that it allows backward compatibility with single encryption[9]. Al-
though the NIST standard specifies using the form three-key EDE (EDE3). One

14

2. Theory

should notice the when IBM designed the DES, it was designed for efficient hard-
ware implementation but unfortunately it is really slow in software which leads to
the fact that the 3DES is about three times slower in software.

2.3.2.3 Advanced Encryption Standard (Rijndael)

Advanced Encryption Standard (AES) is the successor to DES and is based on
the Rijndael (Dutch pronunciation is similar to Rain-Doll) cipher. Rijndael was
introduced in 2000 and was chosen by NIST and other cryptographers in 2001 to
become the AES cipher. It is a symmetric key block cipher. AES uses a 128-bits
block size for encryption and the key size can differ from 128,192 or 256-bit size
using 10,12 or 14 cycles of repetition (rounds) respectively to the key size.

Figure 2.8: AES high-level structure.

In each round, the AES uses the four fol-
lowing operations[9]:

• SubBytes: Each byte of the array
is transformed using a nonlinear sub-
stitution box called the AES S-Box.
The S-Box in the AES has been care-
fully constructed and the cipher uses
only one S-Box throughout the en-
cryption.

• ShiftRows: Is a transposition step
which ensures that the last three
rows of the array are shifted by a
different number of byte positions.

• MixColumns: Mixes each column
in the array to create even more dif-
fusion.

• Addkey: Using bitwise XOR, each
byte of the array is mixed with
a byte of a sub-key material, also
called round-key. The sub-key is
made by "key expansion" and is de-
rived from the main cipher key using
a Rijndael key-schedule.

The overall structure of the cipher begins
with a key expansion before going in to
the pre-whitening which only includes Ad-
dKey. Then the rounds performing Sub-
Bytes, ShiftRows, MixColumns and Add-
Key will loop for n− 1 rounds where n is
the numbers of rounds. The n-th round or
final round does not include MixColumns
and produce the output ciphertext. This
high-level description of the algorithm, see figure 2.8, can give a better overview how
the cipher works.

15

2. Theory

When using longer keys, it becomes much harder to break the cipher and in addition
but can slow down the performance of the cipher. For a comparison, AES has double
the block size of DES and having a much bigger block size makes the cipher more
resilient against information leak which can occur by using repetitive blocks.[26]
Many CPUs and MCUs include hardware support for AES which can boost up the
speed performance and make it a really fast cipher.

2.3.2.4 Blowfish

Introduced in 1993, the blowfish algorithm was designed to replace DES and is known
for its overall effectiveness, speed and being one of the flexible encryption methods
available [19]. The Blowfish encryption algorithm has the default key length of 128
bits and operates on 64-bit bit blocks of plaintext. It has a variable key lengths
which can range from 32 up to 448 bits but key size is never used below the default
128-bit key size. It uses a modified Feistel structure where both sides are modified
in each round, which is different from the DES Feistel structure where only other
one is modified each round. First, the sub-keys are generated using Blowfish’s key
schedule which initializes so called P-array and S-boxes. In order to prevent that
the initialization values that are used will not contain any obvious patterns, they
are derived from the hexadecimal digits of pi. After the conversion of a key of at
most 448 bits, the sub-keys arrays, noted as K, will be totaling 4168 bytes but the
method will not be described in details in this thesis. A plaintext is split into two
32-bits L0 and R0, then in each round (Blowfish uses 16 rounds) four actions are
performed:

• The left half (L0 in the first round) is XORed with the first sub-key.
• The output is used as an input for the Blowfish F-function.
• The output of the F-function is XORed with the right half (R0 in the first

round).
• Lastly the XORed bytes are swapped and a new round begins.

After the last round, both left and right half outputs are swapped back and XORed
with the last sub-keys K17 and K18. A better explanation of the Blowfish’s Feistel
structure can be seen in figure 2.9.

Figure 2.9: Blowfish’s Feistel structure.

16

2. Theory

The F-function takes 32-bits as an input, splits them into four 8-bits blocks and
feeds each block into a 8-to-32 S-Box. Then the outputs from S-Box one and two
are added together using addition mod 232 and the output from that XORed with
S-Box three. Lastly the output from earlier XOR is added together using addition
mod 232 again and the product is the output from the F-function as can be seen
from figure 2.10.

Figure 2.10: Blowfish’s F-function.

The Blowfish algorithm can be optimized in hardware applications though it’s mostly
used in software applications.

2.3.3 Block cipher modes
A block cipher which has two or more equal plaintext blocks to process, will produce
the same ciphertext blocks for each of plaintext blocks. In that case, ciphertext might
reveal patterns in the plaintext which is a potential weakness for the cipher. In order
to counter this, the block ciphers have different modes of operation that can by used.
The National Institute of Standards and Technology (NIST) have five recommended
modes called Electronic Codebook (ECB), Cipher Block Chaining (CBC), Cipher
Feedback (CFB), Output Feedback (OFB), and Counter (CTR).
When the modes are described, following characteristics are investigated in order to
have a better understanding of the modes:

• Padding schemes: The block ciphers use fixed size blocks but messages are not
always in the same size as the block size. Padding is needed to fill up to the
block and can be done by several padding schemes for example adding extra
null bytes to the plaintext. Padding can produce problems were the original
length of a plaintext can be recovered, using for instance side-channel-attack
or padding-oracle-attack.

17

2. Theory

• Hides repeating plaintext blocks: When encrypting a plaintext, it will produce
a ciphertext. If two identical plaintext are encrypted with the same key, it
could produce the same ciphertext twice and can causes security issues.

• Proof of security: Has the operation mode been proofed as secure? Are there
any knowable cracks in the method itself and what kind of security services
can it provide, that is, confidentiality, integrity and/or authentication.

• Speed and efficiency:
– Parallelization is examined, that is, the feature to process different blocks

at the same time which could increase speed of the encryption of a plain-
text.The capability for parallel processing is also called random read ac-
cess.

– Is there any capability for preprocessing available for the certain method
which could also be used in some environments to increase speed perfor-
mance. In the preprocess the mode can compute the "pad" Y generated
from the encryption block in "spare cycles" even before one knows the
plaintext P. When P becomes known, it need only be XOR’ed with the
already-computed pad Y.[20]

2.3.3.1 Electronic Codebook (ECB)

ECB is the simplest and native mode of the block cipher modes where only one
message block is encrypted completely independently of the encryptions of other
blocks. The data is divided into plaintext blocks where the block size depends on
the encryption algorithm and each block is encrypted separately from the others. For
ECB encryption and same for decryption, the multiple forward and inverse cipher
functions can be processed in parallel. That feature makes ECB on of the fastest
and easiest cipher block mode to implement and is one of the most common mode
of DES algorithm.

Block Cipher
Encryption

Plaintext

Ciphertext

Block Cipher
Encryption

Plaintext

Ciphertext

Block Cipher
Encryption

Plaintext

Ciphertext

Figure 2.11: Electronic Codebook (ECB).

The ECB block cipher mode require their input to be an exact multiple of the
block size at each time. For instance, if the input is 14-bits and the block is only
8-bit a padding is needed to fill up the last 2 bits in the second block. This mode
has some fundamental and widely known problems. First among these is when the
plaintext blocks being encrypted are identical the encryption will produce identical
ciphertext using the same key. As stated before, for ECB, each block is encrypted

18

2. Theory

independently, giving it the feature that encryption and decryption is parallelizable
procedure. For the same reason, ECB has random read access which is a good
factor of getting better speed performance. In speed test done by Wei[21], the speed
performance of key setup and IV(initialization vector) for AES in ECB mode is the
best compered to the other modes, as can be seen in table A.1 in Appendix 1. That
is related to the fact that ECB does not use IV. For messages longer than one block
or keys are reused for more than a single block message, the ECB block cipher mode
is not recommended were it does not hide data patterns. Hence, if plaintexts are
completely uniformly random and no padding is needed, the ECB will be able to
provide confidentiality.[20]
Specifically, when a block cipher can not hide repeating plaintext blocks, it can allow
an attacker to:

• distinguish whether two ECB encrypted messages are identical;
• distinguish whether two ECB encrypted messages share a common prefix;
• distinguish if and where a single ECB encrypted message contains repetitive

data, such as long runs of spaces or null bytes, repeated header fields or coin-
cidentally repeated phrases in text.

2.3.3.2 Cipher Block Chaining (CBC)

Cipher block chaining is an IV-based encryption scheme. The IV (Initialization
vector) is a fixed-size input to a CBC mode. How the ciphertext is generated is
described in the following equation and an explanation figure of the mode is shown
in figure 2.12. There the plaintext m1 is first XORed to the IV before it is encrypted
with the key producing the ciphertext c1. Thereafter the ciphertext c1 produced by
the first round of CBC is XORed with the next plaintext m2 block and so on, thus
making all the blocks dependent on all the previous blocks [9].

c1 = ENCk(m1 ⊕ IV) and ci = ENCk(mi ⊕ ci−1) for 2 ≤ i ≤ n,

Block Cipher
Encryption

Plaintext

Ciphertext

Block Cipher
Encryption

Plaintext

Ciphertext

Block Cipher
Encryption

Plaintext

Ciphertext

Initialization
Vector (IV)

Figure 2.12: Cipher Block Chaining (CBC).

As can be seen in figure 2.12, the CBC is chaining dependent were a ciphertext block
in the chain is dependent on the input plaintext blocks and all preceding plaintext
blocks. The CBC only allows random access to ciphertext, not plaintext, giving
it the capability to have only the decryption parallelizable. The CBC uses IV for
the first block but the IV does not need be set secret, but its integrity should be

19

2. Theory

protected. Changing IV or the first plaintext block results in different ciphertext
in other words, same plaintext will not produce identical ciphertexts using different
IV. CBC ciphers can be attacked with a so called Lucky Thirteen attack if the
library is not written carefully to eliminate timing side channels[22]. Although,
CBC is said being secure and providing confidentiality if the user employs a random
IV but if one merely uses a nonce (number only used once) IV, the mode can not
been considered secure[20]. Unfortunately, preprocessing is not doable where every
encryption process depends on the one before.

2.3.3.3 Cipher Feedback (CFB)

The CFB is primarily a mode to derive some characteristics of a stream cipher from
a block cipher. In particular, the decryption using CFB is almost identical to CBC
encryption but only performed in reverse. In CFB mode, in each call to the block
cipher a t bits are encrypted where 1 ≤ t ≤ b and b is the b-bit block size. For
simplification, MSBt is the most significant bit and LSBt will be the least significant
bit of t respectively of a block. Assuming that each ciphertext and message block
is t bits of length the encryption of a block mi is given by following equation:

ci = mi ⊕MSBt(ENCk(xi)) and xi+1 = LSBb−t(xi)||ci for 1 ≤ i ≤ n,
(2.1)

where x1 is a chosen initial value IV.[9]

Block Cipher
Encryption

Plaintext

Ciphertext

Initialization
Vector (IV)

Plaintext

Ciphertext

Plaintext

Ciphertext

Block Cipher
Encryption

Block Cipher
Encryption

Figure 2.13: Cipher Feedback (CFB).

CFB mode of operation of a block cipher effectively turns the block cipher into a
stream cipher. The mode is similar to CBC, that is, does not have identical messages
and the chaining is the same. CFB allows random access to ciphertext which only
gives the capability for parallel processing in decryption. It uses IV which does not
need to be secret were it is XOR’ed with the plaintext. Preprocessing is not an
option for CFB were the plaintext has to be XORed with the keystream before it is
used as an input for the next message block.

2.3.3.4 Output Feedback (OFB)

The OFB is similar to the CFB mode. In order to get the ciphertext, it generates
keystream blocks which are XORed with the plaintext blocks. But unlike the CFB

20

2. Theory

mode, the encryption in OFB does not depend on previous ciphertexts. Thus, each
OFB encryption operation is dependent on all the previous ones which leads to the
fact that it can not be performed in parallel. For each iteration of the encryption
function, the OFB mode provides s bits of keystream for all the block messages
except the last one where s = b. Depending on the size of the input block, s ≤ b
bits might be used in the last block of message[9]. In following equation, the OFB
encryption of block mi can be seen as:

ci = mi ⊕MSBs(ENCk(xi)) and xi+1 = ENCk(xi)||ci for 1 ≤ i ≤ n, (2.2)

Block Cipher
Encryption

Plaintext

Ciphertext

Initialization
Vector (IV)

Plaintext

Ciphertext

Plaintext

Ciphertext

Block Cipher
Encryption

Block Cipher
Encryption

Figure 2.14: Output Feedback (OFB).

This mode also turns the block cipher into a stream cipher. It is similar to CBC
and CFB where it does not produce identical ciphertexts from identical plaintexts
due to the chaining properties and therefore it hides repeating plaintext blocks. For
OFB, there is no possibility for parallel processing nor random access for either
encryption or decryption. Instead it has a great advantage that preprocessing is
possible where it keeps encrypting and decrypting previous output blocks. IV is used
for the first encryption block but does need not be secret, but should be changed if
a previously used key is to be used again. OFB does only provide a confidentiality
and is considered a secure mode.

2.3.3.5 Counter (CTR)

In the same manner as CFB and OFB, the Counter mode makes stream cipher out
of a block cipher. By encrypting a successive values of a so called "counter", the
next keystream block can be generated. This "counter" can be a function which
produces a sequence of a number and is guaranteed not to repeat for a long time.
The counter is combined with a nonce (arbitrary number that may only be used
once) and encrypted with a key. Then the keystream is XORed with the message
to produce the ciphertext. In its most general form, the encryption of block mi is
given by

ci = mi ⊕MSBs(ENCk(xi)) and xi+1 = Increment(xi) for 1 ≤ i ≤ n,
(2.3)

21

2. Theory

The CTR does not depend on the values of previous encryption operations like OFB
which gives it a parallelizability which makes it faster than other confidentiality
modes and in some settings it can be made much faster. [9]

Block Cipher
Encryption

Plaintext

Ciphertext

Nonce

Plaintext

Ciphertext

Plaintext

Ciphertext

Block Cipher
Encryption

Block Cipher
Encryption

Counter Nonce CounterNonce Counter

Figure 2.15: Counter (CTR).

The mode is the simplest and most elegant of the confidentiality-only schemes that
have been examined above, ECB, CBC, OFB and CFB. It is not using the chaining
method like CBC, CFB and OFB, instead similar to ECB mode, each encryption
block is independent from another. That gives CTR the possibilities to preprocess
the encrypting/decrypting counter and IV where encrypted counter is sufficient to
encrypt or decrypt. Also it allows random access and makes both encryption and
decryption to be parallelizable. Unlike ECB it can hide repeating plaintext blocks
by changing nonce results in different ciphertext but the nonce should be random
and should be changed if a previously used key is to be used again. Given that CTR
is a pseudorandom permutation, which is the standard cryptographic assumption
about a blockcipher’s security, proves that the security of CTR-mode encryption is
enough.[20]

2.4 Cryptanalysis

Cryptanalysis deals with the attacks on cryptosystems and is used to gain access
to an encrypted message without even not knowing the cryptographic key[16]. In
this thesis section, some of the most popular symmetric key algorithms attacks, that
concerns the investigated algorithms in this thesis, will be introduced.

2.4.1 Brute force attack

The brute force attacks also known as exhaustive search is a cryptonanalytic attack
which can be used on any encrypted data. In a brute force attack, the attacker tries
to decrypt a ciphertext by trying all different key combinations from the key space.
Although it is consider the weakest attack, it can be very effective for cryptosystems
with two key sizes, using the Meet-in-the-middle attack.[16].

22

2. Theory

2.4.2 Meet-in-the-middle attack
Meet-in-the-middle is a known attack that can reduce the number of rounds using
the brute force attack on order to decrypt a message that has been encrypted by
more than one key.
The attacker applies brute force attack to both the ciphertext and plaintext of the
cipher. Then encrypts the plaintext and simultaneously decrypts a ciphertext with
various keys to achieve an intermediate ciphertext. If there is a match in a block
of intermediate ciphertext and plaintext, it is highly probable that the key used
to encrypt the plaintext and the key used to decrypt the ciphertext are the two
encryption keys used for the block cipher.

2.4.3 Side-channel attack
In cryptanalysis, side-channel attacks do not target weaknesses in the encryption
algorithms themselves. The side-channel attack exploits weaknesses in the imple-
mentation of the algorithm in software and retrieve information from the encryption
device, in this case the Parakey IoT device, which is neither a plaintext or the ci-
phertext. That is why software developers must be aware of the potential threat of
a side-channel attack form the beginning[24].

2.4.4 Differential cryptanalysis
Differential cryptanalysis was invented in 1990 by the Israeli researchers Adi Shamir
and Eli Biham. Differential cryptanalysis is suited to the block ciphers with a
weak round function (Feistel-network ciphers) like DES for instance. The main
function of the method is to study how differences in plaintext will make changes
in the ciphertext in block ciphers. It tries to discover where the cipher displays a
non-random behavior and from that use that weakness to retrieve the secret key.
Differential cryptanalysis method is fairly complicated and will not be studied into
details in this thesis.

2.4.5 Padding-oracle-attack
Padding-oracle-attack is an attack which is often aimed to the specific block cipher
mode CBC but can be used on other ciphers which needs padding, for instance RSA
cipher. It is hard to describe this attack in few words but the main idea is to use an
oracle, usually a server, which you send a ciphertext to and ask if it has a proper
padding. Depending on the answer you get back, error or success, you can modify
the IV in order to get the original plaintext. This attack requires at least two-block
ciphertext, one IV and one block of ciphertext. The method will not be described in
details but the main observation for the padding-oracle-attack is that if the attacker
modifies the ith byte of the IV, it will cause a predictable change in the ith byte in
the encoded data.

23

2. Theory

24

3
Method

The main goal is to investigate and figure out which encryption algorithm and
block cipher mode is the best for a hardware device made by Parakey. In this
chapter, results and conclusions from other studies are examined in order to find the
encryption algorithm that fits the best to Parakey’s microcontroller. The examined
aspects will be introduced and explained in order to help the reader to understand
how each encryption algorithm will be evaluated and what operation mode will be
selected.

3.1 Examined aspects
The encryption algorithms are examined with respect to security, execution and
throughput speed and space complexity:

• Security: When security in encryption algorithms is discussed, the security of
a cipher is often measured in bits of security. Having an encryption algorithm
with 256-bits of security indicates that the cipher uses an encryption key which
is 256-bits long. According to RFC 7525, The Recommendations for Secure
Use of Transport Layer Security (TLS), says that cipher suites that offers less
than 112 bits of security must not negotiate with the implementation. Then,
cipher suites that use algorithms offering less than 128 bits of security should
not negotiate with the implementation [25]. This is critical for algorithms
in order to be called a secure encryption algorithm for TLS 1.2 and will be
examined in this section.
– Possible key generation: What is the lowest and highest key bits security

that the algorithm can provide. As mention above, an encryption algo-
rithm has to obey the RFC 7525 recommendations in order to be called
a secure algorithm.

– Time taken for a brute force attack: How long time does it take to find
the key searching all possible combinations using a fast guessing tool
as brute-force-attack. For example, if an algorithm offers a more than
128-bits of security it will take a computer with a guessing rate of 1012

keys/sec[26], millions of years to find all possible keys and is considered
secure with today’s technology.

– Most effective attack: What kind of an attack is the most effective for at-
tackers to use? Here the brute-force-attack will not be taken into account
where it has the same impact on all the algorithms. Often an algorithm

25

3. Method

has a certain "weak spot" which can allow a hacker to use a certain at-
tack made for a special task. In most cases, the weak spot does not exist
in the algorithm itself, rather it lies in its implementation of it. Most
often the attack does not break the code, it makes it weaker, resulting a
theoretically possibility to break the code but is unfeasible with current
technology.

– Has it been cracked?: Has there been any successful attack on the algo-
rithm? If that is the case, the algorithm is considered as not secured.

• Execution and throughput speed:
– Encryption speed: How relatively fast is the encryption execution com-

pared to the other ones. Speed often called throughput is displayed in
data length per second, i.e., Megabyte/seconds = Throughput. The com-
parison of encryption speed of different algorithms has to be done on the
same platform, hardware and computer language. Comparing AES in C
and Blowfish in Java or computers with different CPU would not make
sense at all. Unfortunately, an algorithm speed test was not doable for
this thesis on specific hardware using 32-bit MCU, instead, results from
other research papers on a speed comparison between the algorithms are
examined and educated conclusion from them will be made. Different
researches will be examined with respect to encryption speed.

– Key setup and IV: How relatively fast is the key setup and IV initialization
compared to the other ones.

• Space complexity: When a plaintext gets encrypted, its size can scale up
depending on the encryption algorithm. In this section, each encryption al-
gorithm will be examined and compared how the plaintext scale after being
encrypted using the specific algorithm.

• Choosing the right key size: Some algorithms tend to have slower key
setup encryption for larger key size while other have constant speeds and key
setup for all keys. Even in some cases, algorithms have slower key setup for
smaller keys but that is really rare.[6] Also the key size can affect the speed
performance of the encryption procedure itself where more computation is
involved. As stated before, the security level of an algorithm depends directly
of the key size, lower key size, lower security but better speed performance.

3.2 Comparison of Block Cipher Mode of Opera-
tion

In Chapter 4, the following aspects of the block cipher modes, described in Section
2.3.3 will be compared in the Summary. In order to find the most suitable block
cipher operation mode it should:

• Not need padding scheme.
• Be able to hide repeating plaintext blocks.

26

3. Method

• Be proven as a secure mode and provide at least confidentiality.
• Be able to provide parallelization for encryption and/or decryp-

tion.
• Be able to provide random access for writing and/or reading data.
• Have the capability for preprocessing.

Having the ability to provide parallelization, random access and the capability
for preprocessing, will increase the speed of the operation mode of the cipher.
The security will increase if the operation mode is able to hide repeating
plaintext blocks, does not rely on a padding scheme and has no history of
being cracked.

27

3. Method

28

4
Performance results

4.1 Security
In this section, the security aspects will be evaluated on each encryption algorithm,
as described in Chapter 3.

4.1.1 DES
DES does not fulfill the RFC requirement [25] with only 56-bits keys giving a 256

possible keys. This relatively small key size makes it vulnerable to attacks and
has been broken many times for instance with SciEngines RIVYERA FPGA cluster
computer, having utilized 128 Spartan-3 5000 FPGAs[27]. Using a brute force at-
tack, with a guessing rate of one thousand billions keys per second 1012 keys/sec[26],
it would take less than day to find the key. Therefore DES is not considered to be
a secure algorithm and has been removed from TLS 1.2.

4.1.2 3DES
The 3DES algorithm uses either two or three effective DES keys which are 56-bit
keys which provide security from 56-bits to 168-bits depending on the key option.
The 3DES has three key options:

• Key option 1: For key option 1, all three keys are independent from each
other giving the strongest security having a key of 3 · 56 = 168-bits.

• Key option 2: In key option 2, two of the three keys are independent, giving
this option a security of 2 · 56 = 112-bits. This size of key is a few bits lower
than recommended minimum of 128 bits[25].

• Key option 3: Here, all keys are identical which is equivalent to DES, giving
only a 56-bit key of security. This option is, as mentioned above, no longer
recommended by the National Institute of Standards and Technology (NIST).

Using the lowest possible security key (excluding key option 3) gives 2112 possible
keys which would take 1.6 · 1014[26] years to check all the keys using the guessing
rate 1012 keys/sec. That can be judged as fairly safe algorithm but is not considered
highly secure by NIST. Even the key length of 3DES is 168 bits, the security strength
can be reduced to only 112 bits when the most standard technique to attack 3DES
is used, called the Meet-In-The-Middle attack which requires 2112 encryption steps
[28]. Up until today it has never been cracked and it is even currently used in
German passports and banking systems.

29

4. Performance results

4.1.3 Blowfish
The variable length key for Blowfish can range from 32 up to 448 bits, having
a 128-bits as a default, using a 64-bit block cipher. The least security that can
be given is having 232 possible keys up to the highest security of 2448 possible keys
with a brute-force time ranging from few minutes up to 10115 years. The best known
public cryptanalysis is Truncated-differential-cryptanalysis or weak-keys attacks but
no effective cryptanalysis of it has been found to date[29]. Blowfish has not been
cracked yet and is stated as a secure encryption algorithm today.

4.1.4 AES
Where AES has the key sizes of 128-bits, 192-bits and 256-bits, it is able to produce
between 2128 and 2256 possible keys. Using the least amount security of AES, that is
128-bit key size, it would take 1019 years to find the right key using the guessing rate
of 1012 keys/sec. The AES has not been cracked and brute force attack which is the
only effective attack known against it. Although, the best public cryptanalysis is
side-channel attack are made to exploit weaknesses in the cryptographic algorithm
implementation and thus are not strictly related to this thesis in that context. As
for today, no known practical attack has broken the AES algorithm which indicates
that AES is secure.

4.2 Execution and throughput speed
When comparing speed performance results from many different researches, one
should keep in mind that the CPU power, clock rate and memory of a hardware
used for the tests may not be always the same. Not even the implementation may
be the same. Consequently, the speed rate must be compared instead of the actual
execution time it takes to encrypt a message.

4.2.1 Encryption speed
In the research made by Aamer Nadeem and Muhammad Younus Javed[30], per-
formance comparison is made between DES, 3DES, Blowfish and AES. As a basis
for the time measurements, a Pentium-II 266 MHz machine and a Pentium-4, 2.4
GHz machine, both running Microsoft Windows XP operating system, where used.
Both of the tests where made in ECB mode which is the most straight-forward way
of processing message blocks. The platform used was Java platform (JDK 1.4) and
was chosen by the authors due to benefits reasons that are irrelevant to this thesis.
However, choosing the Java platform to implement the ciphers had the drawback
that it slows the speed of the encryption which could be have been a concern where
the performance of the algorithms were tested but as stated before, using the same
language (Java) and platform, the effect of inefficiency was balanced out. The main
purpose of this comparison in the research was "to compare the relative performance
of various popular algorithms" [30] only measuring encryption time and without ini-
tialization and key-setup but with arbitrarily key sizes.

30

4. Performance results

0.5 1 1.5 2 2.5

Data length in bytes ×10
5

2

3

4

5

6

7

8

9

10

11

12

M
b
/s

×10
-4 Pentium-II 266Mhz

BF
DES
TDES
AES

Figure 4.1: Comparative execution throughput of secret key algorithms in ECB
mode on a Pentium-II 266-MHz machine[30].

0.5 1 1.5 2 2.5

Data length in bytes ×10
5

2

4

6

8

10

12

14

M
b
/s

×10
-3 Pentium-4 2.4Ghz

BF
DES
TDES
AES

Figure 4.2: Comparative execution throughput of secret key algorithms in ECB
mode on a Pentium-4 2.4-GHz machine[30].

In figures 4.1 and 4.2 one can observe that the average throughput is from 11 second
up to 383 seconds which is really slow but one should not be concern about from
this research. The main conclusion taken from the figures is that the performance of
3DES is really poor compared to AES, DES and Blowfish. The DES is almost two
times faster than AES but still slower than Blowfish. Then again in research [31],
made by Gurpreet Singh and Supriya, where DES, 3DES and AES were compared,
the 3DES algorithm is also really slow. The other two block ciphers DES and AES
have a similar speed performance though the Blowfish is the fastest in encryption

31

4. Performance results

for these data sizes. The reason for the poor speed performance of the 3DES can
be related to the fact that it has to perform three iteration of the normal DES
algorithm to meet the security standards that DES does not fulfill.

Timo Bingmann posted a blog the 14th of July 2008 named "Speedtest and Com-
parison of Open-Source Cryptography Libraries and Compiler Flags"[32]. There
he compared many of the well-known open-source cryptography libraries available,
which can implement many different ciphers on a Pentium 4 CPU at 3.2 GHz com-
puter. In that research, OpenSSL the predecessor of ARM mbed TLS, is one of the
compared libraries. There he compares the throughput of AES(Rijndael), Blowfish,
CAST5 and 3DES as function of data length or size. One should notice that CAST5
is a cipher which is not in the thesis scope and will not be noticed or considered any
further. Each test made consists of one encryption process immediately followed by
decryption of a decided buffer sizes ranging from 16 bytes to 1MB. In figure 4.3, the
AES is performing as the fastest cipher up to 20 kB but then the Blowfish takes
the lead. That results reflects the research done by Nadeem and Javed where the
Blowfish is reasonably faster than AES and 3DES having a larger than 20kB of data
size.

Figure 4.3 shows clearly how the length of the encrypted data affects the speed and
performance of the cipher algorithm. That is due to the key preprocessing/initial-
ization time which becomes less effective with bigger buffer size. Although the key
size was not specified in those test but assumed they have been set to be default
sizes, that is AES(128-bit), DES(56-bits), 3DES(168-bits) and Blowfish(128-bits).

Figure 4.3: Performance of ciphers in OpenSSL.

32

4. Performance results

When comparing speed performance of algorithms in encryption libraries, it is a
great idea to see how it scales with different hardware or CPU power. From the test
in [32], all the algorithms from its specific library was compared using a different
computers with different clock rate. Using the OpenSSL library on a Intel Pentium
2 at 300Mhz computer the following results in figure 4.4 can be investigated.

Figure 4.4: Performance of ciphers in OpenSSL on a Intel Pentium 2 at 300Mhz.

From the test results in Figure 4.4, figures A.1 and A.2 in appendix, one can draw
the conclusion that the speed of the algorithm scales almost linearly with the CPU
power within the same platform (32-bit computer), library and language. This
feature can help when trying to decide which encryption algorithm should be chosen
on a 32-bit hardware with relatively low CPU speed performance when having only
researches which where made on 32-bit hardware with fast CPU. No other important
observations can be found on the Charts in Figures 4.4, A.1 and A.2 which is really
convenient in order to take an educational guess on how the ciphers AES, Blowfish,
3DES and DES will perform in speed on a 32-bit IoT device. Due to the fact that a
speed performance test was not doable for this thesis it is save to assume from the
test results from above leads to the conclusion that on average, for long data lengths
Blowfish is faster than the AES, DES and 3DES. But for small data lengths, that is
smaller than 20kB packages, the AES is the fastest of the encryption algorithms in
this specific library. One thing should be cleared out, encryption time is generally
the same as decryption time for almost all examined algorithms but the performance
can change by different key sizes and key setups.

33

4. Performance results

4.2.2 Key setup and IV
In table 4.1, a speed benchmarks were made by Wei Dai[21] for some of the most
commonly used cryptographic algorithms from the Crypto++ 5.6.0 library. The
algorithms were compiled with Microsoft Visual C++ 2005 SP1, optimized for speed
which includes using the default key size and ran under Windows Vista in 32-bit
mode on an Intel Core 2 1.83 GHz processor.

Cipher Setup Key and IV[µS] Cycles to Setup Key and IV
AES-CTR-128-bit 0.698 1277

DES-CTR 8.309 15320
3DES-CTR 27.317 49989

Blowfish-CTR 62.683 114710

Table 4.1: Key setup and IV comparison on a Intel Core 2 1.83 GHz processor PC
using the Crypto++ 5.6.0 library[21].

Here the AES is significantly faster than DES, 3DES and Blowfish in the process
of setting up the key and IV in CTR block cipher mode. This is crucial where the
initialization of a key and IV is a frequent action. The main reason that Blowfish
makes initial key setup a fairly slow operation is that it makes a brute-force (key-
exhaustion) attack difficult.

Figure 4.5: Absolute time in seconds required to run one unit of a small buffer
size of the speed test [32].

34

4. Performance results

From the test made by Timo[32] it also shows how Blowfish has the slowest start-up
to reach it’s peak performance in both OpenSSL library and Crypto++. AES, 3DES
and Blowfish are all acting and showing the same characteristics for the OpenSSL
library, that is, Blowfish is picking up speed between 10kB and 20kB of data length
where the key initialization time becomes less relevant to the actual encryption/de-
cryption time, AES is the fastest to begin with and 3DES is the slowest in all buffer
sizes. In figure 4.5, a test was done by Timo[32] where the actual time taken to
encrypt and decrypt each buffer size at the time. If only the small buffer sizes are
investigated, one can measure the library overhead and cipher key preprocessing/ini-
tialization time indirectly.

There it shows clearly how the AES performs the fastest of the ciphers in the be-
ginning with small data length but after the buffer size gets bigger, it will almost
correlate with Blowfish but 3DES will give a worse performance as often in speed
performance.

4.3 Space complexity
In research [33], written by Asif Mushtaque and three others, a comparison was made
by DES, 3DES, AES and Blowfish algorithm based on space complexity. There he
investigates how size of a plaintext will expand after it has been encrypted with
different encryption algorithms. A plaintext of 240 KB size was encrypted with each
encryption algorithm, then the size of the produced ciphertexts were compared, as
can been seen in following table 4.2.

Cipher Plaintext After Encryption After Decryption
DES 240KB 328KB 240KB
3DES 240KB 614KB 240KB
AES 240KB 847KB 240KB

Blowfish 240KB 955KB 240KB

Table 4.2: Comparison of space complexity [33].

From the results of this experiment, the DES algorithm is distinctly using the least
amount of space compared to the other algorithm. There the Blowfish requires bit
more of space for the ciphertext than the AES algorithm which could be a crucial
factor in amount of data sent between IoT client and a server-side. Also if a IoT
device appears to be offline and wants to store the incoming encrypted data until it
gets back online again, the small memory IoT device might not afford the wasted
space.

4.4 Key size
For all the algorithms in this thesis the key size affects the execution speed, that
is, using larger keys decreases the execution speed. In a research made by Wei

35

4. Performance results

Dai[21], the speed of AES using different key sizes using CBC and also for CTR are
investigated. One can notice that one column is in MiB per second but MiB is a
unit symbol for mebibyte which is a multiple of the unit byte for digital information
and can be defined as 1 MiB = 220.

Cipher Key Size Cycles Per Byte MiB/Second
AES/CTR 128-bits 12.6 139
AES/CTR 192-bits 15.4 113
AES/CTR 256-bits 18.2 96
AES/CBC 128-bits 16.0 109
AES/CBC 192-bits 18.9 92
AES/CBC 256-bits 21.7 80

Table 4.3: Comparison of speed performance using different key sizes in CTR and
CBC modes. [21].

By comparing the speed performance for both using CTR or CBC for three different
key sizes can give a reasonably good idea on how the key size affects the performance
of a encryption algorithm. In table 4.3 one can see clearly that increasing the key
size will decrease the speed performance of the algorithm. Even if it does not seems
much to begin with because it only differs around six cycles per bytes using 128-bits
and 256-bits keys, it will greatly affect on the speed when encrypting a data package
using large amount of bytes, for instance megabytes or even gigabytes.

36

4. Performance results

4.5 Summary

Comparison Table
Factor DES 3DES AES Blowfish
Key Sizes (bits) 56 56, 112 or 168 128, 196 or 256 32-448
Cipher Type Block cipher Block cipher Block cipher Block cipher
Blocks sizes (bits) 64 64 128 64
Rounds 16 48 10,12 or 14 16
First published 1975 1998 1998 1993
Brute Force At-
tack*

Less than day Less than a
day up to
≈ 1034 years

1019 years up
to ≈ 1058 years

Few minutes
up to ≈ 10115

years
Most effective
attack[34]

Differential
cryptanalysis

Meet in the
middle attack

Side channel
attack

Weak key at-
tacks

Cracked Yes No No No
Security Status Not Secured Passes Secure Secure
Encryption
Speed**

Fast Slowest Fastest Slow

Key Initializa-
tion

Medium Slow Fast Slowest

Space Complex-
ity

Great Good Good Bad

*Time taken to find all possible keys using Brute Force with the guessing rate 1012.
**Encrypting data length smaller than 10kB.

Table 4.4: Comparison table of the examined algorithms.

From table 4.4 the first thing to observe is that DES is old, out-dated and not a
secure data encryption algorithm. It has been cracked many times and it is doable
to find the key with in a day using the brute force attack. It is reasonable fast
compared to the other algorithms but in a favor of less security and small key size.
Increasing the security with bigger key size of DES, using the 3DES, costs speed.
The 3DES has to perform up to three iterations of DES depending on the key option
used which will result poorer speed performance and space complexity. Even if it
is made to have a better security, it is only fair enough to meet the requirements of
FTC to be qualified in TLS 1.2.

The key-initialization of DES is slow which makes it even slower operation for 3DES.
The AES and Blowfish are dominant in performance and can be considered a highly
security encryption algorithms. They have never been cracked and Blowfish can use
up to 448-bit encryption key size and 256-bit for AES which is more than enough to
be able to securely store data in the next twenty years, or until the next computer
technology breakthrough like quantum computers.

As mention in section 4.2, Blowfish is the fastest algorithm when encrypting data
length larger than 20 KB and without using any hardware acceleration. On the

37

4. Performance results

other hand, Blowfish is extremely slow in key initialization were AES has the best
performance among the other ciphers, giving AES the advantage to be chosen the
fastest algorithm for encrypting small data packages as for Parakey IoT device.
There are also few advantage for AES over Blowfish worth to mention, AES is
well documented to be optimized to speed up the algorithm and was choosen to
be the Advanced Encryption Standard. Today, there are many products that have
a hardware acceleration for AES which is a great advantage and can dramatically
decrease the execution time of the algorithm. Also, AES is the only block cipher of
compared ciphers that uses 128-bit block size which will lower the chance of two or
more plaintext blocks being the same, causing leak of information about the message
contents.[35]

In Table 4.5, the block cipher modes of operations have been compared in terms of
given aspects in chapter 3.2.

Comparison Table
Aspects ECB CBC CFB OFB CTR
Padding schemes Yes Yes No No No
Hides repeating
plaintext blocks

No Yes Yes Yes Yes

Proof of security No Yes Yes Yes Yes
Parallelization Encryption-

Decryption
Decryption Decryption None Encryption-

Decryption
Random access Reading-

Writing
Writing
only

Writing
only

No Reading-
Writing

Preprocessing No No No Yes Yes
Security service* Confid. Confid. Confid. Confid. Confid.
Speed Perfor-
mance

Fast (no IV) Medium Slow Medium Fast

*All modes only provide confidentiality security.

Table 4.5: Comparison table of the examined block cipher modes of operations.
The highlighted indicates that the mode passes the requirements of each aspect.

CBC and ECB do both need padding which can lead to security breach but where
OFB, CFB and CTR are working as a stream ciphers they have the advantage of
not needing padding.
Having the ability to encrypt or decrypt in parallel can increase the speed of the
algorithm and from table 4.5, ECB and CTR have both the ability to use parallel
procedure for encryption and decryption. This gives CTR a great speed performance
compared to OFB, CFB and CBC but still ECB is faster where it does not use IV.
Also, it is possible to use preprocessing for CTR and OFB which is a good advantage
when the speed is a great concern. That being said, the ECB has the best speed
performance but provides the worst security. The speed performance of the CBC
and CTR are similar but using the preprocessing and parallelization ability the CTR
can outperform the CBC when not encrypting a large amount of data.

38

4. Performance results

In Table 4.5 one can notice that ECB is not semantically secure and has not been
proven as a secure block cipher mode. By only observing ECB-encrypted ciphertext
the information about the plaintext can leak out. This characteristic is already
enough to imply that ECB will not achieve any desirable privacy property.

As stated before, the three modes of operation of a block cipher, OFB, CFB and CTR
effectively turn the block cipher into a stream cipher. While there is a substantial
literature on the design of stream ciphers, it remains useful to be able to use a
block cipher in the kind of environments where stream cipher properties might be
preferred. One motivation for considering a stream cipher mode might be when we
need to encrypt single characters, instead of whole blocks. For this purpose the
CFB, OFB, and CTR modes would all be suitable.[9]

Unfortunately, no message integrity nor authentication is provided for those types of
block cipher modes of operation but so called MAC (message authentication code)
is typically used whenever message integrity is required. The two most common
modes are the CCM (Counter with CBC-MAC) and GCM (Galois/Counter Mode)
which also provide integrity and authentication but will not be investigated further
in this thesis.

Selecting an operation mode may depend on the data package size and amount of
data. When encrypting a lot of small package like messages including few strings
and variables, a block cipher mode acting like a stream cipher would be a great
choice such as CTR it does not need padding, can use preproccessing and process
in parallel.
From the requirements in chapter 3.2, the results in Table 4.5 indicates that the
CTR block cipher mode is the most suitable mode for the job. It is fast due to the
ability of preproccessing, process in parallel and random access. It is also secure
because it hides repeating plaintext blocks and does not need padding.

39

4. Performance results

40

5
Conclusion

There is always a trade-off between security and performance. The application
for Parakey AB has to be really responsive and fast, which forces the encryption
algorithm to be fast and secure at the same time. In the thesis, the final conclusion
is that the best and most convenient data encryption algorithm for a mid-high end
IoT device using ARM mbed-TLS library is the AES algorithm using 128-bit key
size in CTR block cipher mode.

AES has also one advantage over the other encryption algorithms. As the name
indicates, AES is an industry standard, is not patented and free for all to use. One
of the attribute of an AES algorithm is that it should work securely on all platforms
as hardware and software and therefore AES is well documented and world-spread.
That means if AES gets broken, regardless of who it happens with, the headlines
will not be about the company that used the hacked AES, they will be about the
flaws in something that many companies and people are using. On the other hand,
if a company uses a patented algorithm, for example Camellia, the headlines should
be on why the company used the algorithm that led to a security breach.

Parakey uses small package sizes and according to table 4.3 in Chapter 4, AES has
the best performance encrypting small data, is fast, has proven to be secure and
is expected not to be broken in the next 30 years or until the arrival of the next
technology breakthrough, such as the quantum computers. The data which are being
secured is not top secret allowing the key size of the AES to be only 128-bits which
will also increase the encryption speed. AES is a well documented algorithm and free
to anybody, is suitable for hardware and software implementation and many chips
for instance STM32F0XX, have hardware acceleration for AES algorithm which can
enhance its performance even more.

Choosing the most suitable block cipher mode of operation can be hard when they
have many different features. For a mid-high end IoT hardware with rather low CPU
speed but demanding a fast encryption method for encrypting small amount of data,
the CTR is the most suitable. CTR has the ability to preprocess and encrypt the
data in parallel which is a great feature to increase the speed of the algorithm. CTR
does not have any known flaws and is proven to be a secure block cipher mode,
which does not need padding and hides repeating plaintext blocks.

If Parakey would add a feature to their device which could collect large chunk of
files such as images and video, the space complexity could grow as an issue for
algorithms like Blowfish and AES where the encrypted data becomes much larger

41

5. Conclusion

than the original data as can be seen in table 4.2. Choosing a mode of operation,
the CBC would be a better choice where CBC takes bigger blocks in each round to
encrypt the data. Then the Blowfish would also be a good choice for an encryption
algorithm where its peek performance is when encrypting large amount data where it
does not have to generate or setup new keys or IV often. This is just a speculation
indicating that type of data which being encrypted will affect how to choose an
encryption algorithm or an operation mode.

5.1 Recommendation for future work
It is really hard to make an absolute conclusion on which encryption algorithm
is the best for a specific task with specific constraints without doing any test by
yourself and only relying on other studies and make an educational decision. The
cryptography world is huge and the amount of ciphers, algorithms and libraries is
way too large for one person to grasp on, especially if that person does not have
a great cryptography background. The best way to find the most suitable data
encryption algorithm for a project is to have a clear idea of the constraints and
purpose of the project, and good programming and cryptography knowledge to be
able to implement the AES algorithm into the hardware or software and make tests
on it. That would give a great overview and performance results of a cipher on that
specific hardware.

As stated before, only the confidentiality is provided by the block cipher modes
ECB, CBC, OFB, CFB and CTR. In this thesis, the authentication and integrity
was not included as an issue but in future work it should be investigated in order to
provide more secure communication in IoT devices. As a starter, it would be good
to look for AES-GCM (AES operating in Galois/Counter Mode (GCM)) mode or
AES-CCM (Counter with CBC-MAC).
AES-GCM is fast and secure and works similar to stream ciphers and can achieve
high speeds on low power hardware. The one drawback of using AES-GCM is that
it only supported on TLS 1.2 and above but at the moment TLSv1.2 is not widely
used.

While existing Internet security technologies, like SSL/TLS, can do a good job
protecting communications channels between an uncompromised edge node and a
server, they are not invincible. SSL/TLS does nothing to protect against attacks
that do not involve the incoming network. It should be easy to see that SSL/TLS
does not help if an attacker takes control of an edge node [12].

A physical attack on an IoT device involves a physical access to an IoT device which
can led the attacker use the vulnerabilities as mention in OWASP[3] :

• Firmware extraction
• User CLI
• Admin CLI
• Privilege escalation
• Reset to insecure state

42

5. Conclusion

• Removal of storage media
• Tamper resistance
• Debug port
• Device ID/Serial number exposure

For a future work, this security issue should be investigated further, focusing on
ways to prevent a physical attack on the IoT device. Although, there are also other
factors to keep in mind when making an IoT device with Internet connection:

• Include security in the development process from day one.
• Do not collect data that you do not need
• Let the customer choose what data to share
• Secure all layers
• Know your enemy and prepare for security breaches [4]
• Lifecycle, future-proofing updates [4]
• Access control and device authentication [4]

Security is fundamental for the successful rollout of the Internet of Things. Edge
nodes are currently the weakest link in ensuring IoT security and the protection of
cryptographic key. The best way to achieve lockdown is by protected hardware. It
is the only way to keep those keys and other secrets away from prying eyes. An IoT
device can only be as secured as its weakest link.

43

5. Conclusion

44

Bibliography

[1] ITU. ITU Internet Reports 2005 The Internet of Things Executive Summary.
[Online] Available:

[2] Rob van der Meulen, "Gartner Says 6.4 Billion Connected "Things" Will Be
in Use in 2016, Up 30 Percent From 2015", STAMFORD, November 10, 2015.
[Online] Available:http://www.gartner.com/newsroom/id/3165317

[3] "Top IoT Vulnerabilities", OWASP the free and open soft-
ware security community, 29. November, 2015. [Online] Available:
https://www.owasp.org/index.php/Top IoT Vulnerabilities

[4] Nermin Hajdarbegovic, "Are We Creating An Insecure Internet of
Things (IoT)? Security Challenges and Concerns", 2015. [Online]
Available:https://www.toptal.com/it/are-we-creating-an-insecure-internet-
of-things

[5] C. Bormann, M. Ersue and A. Keranen, "RFC 7228 on Terminology for
Constrained-Node Networks", May 2014.[Online] Available: http://www.rfc-
editor.org/rfc/rfc7228.txt

[6] Bruce Schneier, J. Kelsey, D. Whiting, D. Wagner, C. Hall and
N. Ferguson,"AES Performance Comparisons",[Online] Available:
http://csrc.nist.gov/archive/aes/round1/conf2/Schneier.pdf

[7] Wind River Systems,"Security in the Internet of Things",January 2015.
[8] Ramesh.A, Suruliandi.A, “Performance Analysis of Encryption algorithms for

Information Security”, IEEE, 2013. DOI: 10.1109/ICCPCT.2013.6528957
[9] Knudsen, L.R.; Robshaw, M.J. The Block Cipher Companion, New York:

Springer-Verlag, 2011
[10] Tsai, C., Lai, C., & Vasilakos, V. (2014). Future internet of things: Open is-

sue and challanges. ACM/Springer Wireless Networks,. doi:10.107/s11276-014-
0731-0.

[11] Li, S.; Xu, L.D. and Zhao, S., "The internet of things: a survey", Information
Systems Frontiers, vol. 17, No.2, pp 243-259, April 2015, DOI:10.1007/s10796-
014-9492-7

[12] Atmel Corporation,"Integrating the Internet of Things: Necessary building
blocks for broad market adoption", San Jose, USA: Atmel, 0776 Corporate
IOT WhitePaper US 102014.

[13] Bandyopadhyay, D. and Sen, J., "Internet of Things: Applications and Chal-
lenges in Technology and Standardization", vol. 58, No. 1, pp. 49-69 , May 2011,
DOI: 10.1007/s11277-011-0288-5.

[14] Li, T. and Chen, L., "Internet of Things: Principle, Framework and Application"
in Future Wireless Networks and Information Systems, Zhang, Y., Volume 144

45

Bibliography

of the series Lecture Notes in Electrical Engineering, Springer-Verlag Berlin
Heidelberg 2012, pp. 477-482

[15] R. Shirey "Internet Security Glossary",The Internet Society, May 2000.[Online]
Available: https://www.ietf.org/rfc/rfc2828.txt

[16] Johannes A. Buchmann, "Introduction to cryptography", 2nd ed., New York,
Springer, 2004. DOI: 10.1007/978-1-4419-9003-7

[17] Cirani, S., Ferrari, F. and Veltri, L., "Enforcing Security Mechanisms in the
IP-Based Internet of Things: An Algorithmic Overview", Algorithms, vol. 6,
no. 2, pp. 197-226, June 2013. [Online] Available: http://www.mdpi.com/1999-
4893/6/2/197

[18] Swait, "Security Advisory 2868725: Recommendation to disable
RC4", Security Research and Defense Blog, Nov. 12, 2013, Available:
http://blogs.technet.com/b/srd/archive/2013/11/12/security-advisory-
2868725-recommendation-to-disable-rc4.aspx.

[19] Prasetyo, K.N.; Purwanto, Y. and Darlis, D., "An implementation of data en-
cryption for Internet of Things using blowfish algorithm on FPGA" Information
and Communication Technology (ICoICT), 2014 2nd International Conference,
pp.75-79, DOI: 10.1109/ICoICT.2014.6914043.

[20] Phillip Rogaway, "Evaluation of Some Blockcipher Modes of Operation", Uni-
versity of California, Davis, Davis, California, USA, February 10, 2011.

[21] Wei Dai, https://www.cryptopp.com/benchmarks.html, Accessed: 10th April,
2016.

[22] Nadhem J. Al Fardan and Kenneth G. Paterson, "Lucky Thirteen: Breaking
the TLS and DTLS Record Protocols". Royal Holloway, University of London.
Retrieved 20 April 2016. [Online] http://www.isg.rhul.ac.uk/tls/Lucky13.html

[23] Paar, Christof; Pelzl, Jan; Preneel, Bart. Understanding Cryptography: A
Textbook for Students and Practitioners, Springer, 2010. ISBN 3-642-04100-
0.

[24] Hagai Bar-El, "Introduction to Side Channel Attacks", Discretix Technologies
Ltd.

[25] Sheffer, Y., Holz, R. and P. Saint-Andre, Recommendations for Secure Use
of Transport Layer Security (TLS) and Datagram Transport Layer Secu-
rity (DTLS), RFC 7525, May 2015. [Online] Available: https://www.rfc-
editor.org/rfc/pdfrfc/rfc7525.txt.pdf

[26] Riman, C. and Pierre E. Abi-Char, "Comparative Analysis of Block Cipher-
Based Encryption Algorithms: A Survey", Information Security and Computer
Fraud, Vol. 3, No. 1, pp. 1-7, 2015. DOI:10.12691/iscf-3-1-1

[27] SciEngines, "Break DES in less than a single day". [Online] Available:
http://www.sciengines.com/company/news-a-events/74-des-in-1-day.html

[28] Lucks, S.,"Attacking Triple Encryption", S. Vaudenay (Ed.): Fast Software
Encryption , pp. 239-253, Springer-Verlag Berlin Heidelberg, 1998.

[29] O.O. Adekanmbi, O.O. Omitola, T.R. Oyedare, S.O. Olatinwo, "Performance
Evaluation of Common Encryption Algorithms for Throughput and Energy
Consumption of a Wireless System", Journal of advancement in engineering
and technology, vol.3, No.1, pp. 1-8, June 19, 2015.

46

Bibliography

[30] Nadeem, A. and Dr M. Younus Javed, "A Performance Comparison of Data
Encryption Algorithms", September 2005, DOI: 10.1109/ICICT.2005.1598556

[31] Singh, G. and Supriya, "A Study of Encryption Algorithms (RSA, DES, 3DES
and AES) for Information Security", International Journal of Computer Appli-
cations, vol. 67, No.19, April 2013.

[32] Timo Bingmann, "Speedtest and Comparsion of Open-Source Cryptogra-
phy Libraries and Compiler Flags", July 14, 2008. [Online] Available:
https://panthema.net/2008/0714-cryptography-speedtest-comparison/

[33] Mushtaque, A.; Hussain, S.; Dhiman, H. and Maheshwari, S., "Evaluation of
DES, TDES, AES, Blowfish and Two fish Encryption Algorithm: Based on
Space Complexity" International Journal of Engineering Research and Tech-
nology (IJERT), vol.3, No.4, pp. 283-286, April 2014.

[34] P. Jindal and B. Singh, "Analyzing the Security-Performance Trade-
off in Block Ciphers", ICCCA2015, pp. 326 - 331, 16th May 2015.
DOI:10.1109/CCAA.2015.7148425

[35] "Why exactly is Blowfish faster than AES?", April 17, 2013. [On-
line] Available: http://crypto.stackexchange.com/questions/8009/why-exactly-
is-blowfish-faster-than-aes

47

Bibliography

48

A
Appendix 1

Performance results from Timo[32] using the OpenSSL library with different com-
puters.

Figure A.1: Performance of ciphers in OpenSSL on a AMD Athlog XP 2000.

Figure A.2: Performance of ciphers in OpenSSL on a Intel Pentium 4 at 3.2Ghz.

I

A. Appendix 1

Speed comparison of AES-128-bits for different block cipher modes of operations
was made by Wei[21] with following results.

Cipher Cycles Per Byte MiB/Second Cycles to Setup Key and IV
AES-ECB 16.0 109 462
AES-CBC 16.0 109 1041
AES-OFB 16.9 103 1285
AES-CFB 16.1 108 1695
AES-CTR 12.6 139 1277

Table A.1: Comparison of speed performance using different block cipher modes
for AES-128-bits. [21].

II

	Introduction
	Background
	The Benefits and problems of IoT
	Cryptography and security between an IoT device and a server
	Parakey product
	Open-Source algorithms and speed performance
	Overall aim and constraints
	Outline
	Related work

	Theory
	ARM® mbed™ TLS library and the STM32F0 MCU
	Architecture and layers of IoT
	Perception (Edge node) layer
	Access gateway layer
	Network layer
	Middleware layer
	Application layer

	Cryptography Algorithms and SSL/TLS
	Secure Sockets Layer(SSL)/Transport Layer Security(TLS)
	Symmetric encryption
	Data encryption standard
	Triple-DES (3DES)
	Advanced Encryption Standard (Rijndael)
	Blowfish

	Block cipher modes
	Electronic Codebook (ECB)
	Cipher Block Chaining (CBC)
	Cipher Feedback (CFB)
	Output Feedback (OFB)
	Counter (CTR)

	Cryptanalysis
	Brute force attack
	Meet-in-the-middle attack
	Side-channel attack
	Differential cryptanalysis
	Padding-oracle-attack

	Method
	Examined aspects
	Comparison of Block Cipher Mode of Operation

	Performance results
	Security
	DES
	3DES
	Blowfish
	AES

	Execution and throughput speed
	Encryption speed
	Key setup and IV

	Space complexity
	Key size
	Summary

	Conclusion
	Recommendation for future work

	Bibliography
	Appendix 1

