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Abstract
Friction is a topic that has been researched since the times of Leonardo
da Vinci. The computation of friction allows to derive the force which is
needed in order to set robotic devices in motion. To be able to do this, dif-
ferent friction models have been developed. Among these are models that
directly connect the velocity to the frictional force such as Coulomb friction
and viscous friction, as well as models that use an extended state, for ex-
ample the model by Dahl, the LuGre model and the elasto-plastic model.
However, all these friction models have in common that they only focus on
one-dimensional motion. However in many robotic manipulation applications
the objects move on a plane e.g. when an object can move in the robotic
gripper depending on the grasping force. One-dimensional models cannot
capture these multi-dimensional motions like sliding and spinning. There-
fore it is necessary to model friction not only for a one-dimensional motion
but also for planar motion. There are models that combine translational and
rotational friction, but only the Coulomb friction model has been taken into
account. Thus in this thesis the combination of different friction models and
planar motion is examined. To achieve this the computation of the states
of the more refined friction models were changed to include constraints that
arise for multi-dimensional friction modelling. These constraints allow the
coupling of translational and rotational motion as the frictional forces for
both motions are interacting.
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Notation

Symbols

Symbol Unit Description

A m2 Contact area
A - Frictional matrix
c m Distance between centre of rotation and origin of coordi-

nate system
ev - Unit vector of translational velocity
eω - Unit vector of rotational velocity
E - Complete elliptic integral of the second kind
fapplied N Force applied on a body
fC N Coulomb friction constant
ff N Friction force
fmax N Maximal static friction level
fn N Normal force
fr N Resultant tangential force
fss N Stribeck force
fx N Friction force along x-axis
fy N Friction force along y-axis
g m/s2 Gravitational acceleration
I m2kg Moment of inertia
k N/m Stiffness of spring
K - Complete elliptic integral of the first kind
m kg Point mass of the object
M Nm Torque
mz Nm Friction torque normal to z-axis
r - Vector describing the position of an infinitesimal small

area
r0 - Vector from the origin of the coordinate system to a local

area

xi



xii NOTATION

Symbol Unit Description

R m Radius of a disk
s m Rigid body displacement of the object
p N/m2 Pressure
v - Absolute value of translational velocity
v - Vector of translational velocities
w m Plastic (irreversible) component of body displacement
x m Total body displacement
ẋ m/s Translational velocity of the object
ẋs

m/s Critical velocity for Stribeck effect
δy m Microscopic translational displacements
z m Elastic (reversible) component of body displacement
zba m Breakaway displacement
zss m Steady-state deflection
α - Parameter for Elasto-Plastic Model
γ - Ratio of microscopic displacements
ε - Ratio of translational and rotational velocity
µd - Independent coefficient of dynamic friction
µs - Independent coefficient of static friction
σ0

N/m Contact stiffness
σ1

Ns/m Damping for tangential compliance
σ2

Ns/m Viscous friction parameter
τf Nm Frictional torque
δϕ - Microscopic Rotation
ω 1/m Absolute value of rotational velocity
ω - Vector of rotational velocity



Chapter 1

Introduction and Related Work

1.1 Context

Robots have been used in many different production systems in industry.
Industrial robots work in known environments and their tasks are defined
clearly. If the movement of robots and forces needed to be assigned in order
to perform a task are known, it is possible to derive the control effort off-line.
In case of industrial robots, one of the main sources of uncertainties is friction
in the joints. To deal with uncertainties in friction in the robot joint, much
research has been done to model friction.
However, in recent years there is an increase in the usage of robots not only
in many different industrial areas but also in human-centred environments.
For example in industrial environments, more recent concepts of object ma-
nipulation tasks include in-hand manipulation and pushing an object across
a flat surface. Due to new applications resulting from this broader scope of
usage, new issues arise. One of these new applications is object manipulation
done by robots with simple grippers. To do manipulation tasks efficiently,
it is necessary to understand many physical processes. For example, one
process is the friction between the robot and the object that should be ma-
nipulated. It is necessary to know the force needed to manipulate the object
as precisely as possible because the object must not be damaged by the robot
and it should be done efficiently. An example of efficient object manipulation
is to push the object so that it slides on a surface. To do such tasks it is
necessary to compute the force needed in real time which in turn requires ac-
curate friction models. In the past many models were developed that change
their structure when friction changes from static to dynamic or in reverse. In
such models it can be necessary to reinitialise the simulation with a different
model. To avoid this, different approaches without a structural change are

1
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needed.

1.2 Definition of Topic
The purpose of this project is to gain a thorough understanding of friction
modelling with a focus on friction models applicable to object manipulation.
This aim requires understanding of different friction phenomena with a focus
on friction at low velocities. As it is aimed to develop a general friction
model applicable to a wider range of scenarios, it should allow to include
planar motions.
Thus, the developed model has to result in a continuous friction force without
change of model when transitioning between static and dynamic friction.
Furthermore, the model should predict friction both accurately and efficiently
to be usable in robotic manipulation. For an efficient use it is also essential
to identify the conditions the model is valid for.

1.3 Related Work
Friction is an ongoing research topic from the times of Leonardo da Vinci [2]
until today. Nowadays for example, friction models are part of simulations
used to predict behaviour in object manipulation [3]. To do efficient object
manipulation tasks with simple grippers, it is necessary to allow external
forces like gravity to act on the object and control the sliding motion of the
object [4]. Additionally to grasping, it is possible to move objects by pushing
them across a surface. For both applications it is essential to understand
the principles of friction to readjust correctly the grasp and forces needed as
described in [4].
Furthermore, an accurate model is needed to predict operating point stability
and performance, see [5]. Such accurate models are also important when
small motions are simulated. Therefore, it is important to predict correctly
whether the object moves or stays in the same place. However, friction
properties depend on the movement of the object. In [6] it is described
that there is an interplay of transitional and rotational movement that af-
fects sliding. This connection was shown by independent research groups, for
example in [7] and [8]. One such result is that in the case of a spinning and
sliding disk both translational and rotational movement stop at exactly the
same time [9].
While Dahmen et al. consider the onset of sliding with both transitional and
rotational movement in [6], a different research project pays close attention



1.4. APPROACH AND SCOPE OF THE THESIS 3

to slowing down movement [7].
As described in [2], in the case of static friction the maximal friction force is a
product of the normal force and a coefficient. In the case of dynamic friction,
the friction force is a product of the normal force and a kinetic coefficient
that is usually smaller than the coefficient in the static case. Additionally,
a further term can be added to describe the viscous friction. This friction
phenomenon is proportional to the velocity.
Other models (described in [3]) do not need different structures in the case
of static or dynamic friction. One example of such a model was published
by Dahl in 1968 [10]. As Dahl’s model excludes friction phenomena that are
linked to the case of lubricated friction, a generalised model known as LuGre
Model [5] was developed. The model’s name originates from the two cities it
was developed in: Lund and Grenoble [11]. However both Dahl’s model and
the LuGre model exhibit drift instead of static friction, see [3].
Other friction phenomena that have to be taken into account are described
in [5]. For example the dominant friction phenomenon in high-precision
pointing can be presliding, that is the transition between static and dynamic
friction. As shown in [6], the microscopic process during presliding is still
not fully understood.
To sum up, there are various friction models that are useful for different one-
dimensional applications. However, existing planar motion models are based
on the Coulomb friction model. Therefore, this thesis seeks to examine the
possibilities of simulating planar motion using other friction models.

1.4 Approach and Scope of the Thesis
In this thesis, general friction models will be developed after gaining under-
standing of physical principles involved in friction phenomena. These models
should not change their structures under transition between different friction
phenomena. To guarantee a smooth modelling of applications, it is necessary
to be aware of critical points within the model that result in limitations of
the usage of the model. Regarding a general friction model, it is important
to know what material characteristics and forces, such as the applied force
and gravity, need to be taken into account to allow a more precise modelling.
To evaluate the usability of a model, each model will be compared to oth-
ers that evolved based on different theoretical approaches, either the aim
of the model is to mimic experimental data or it resembles certain physical
phenomena most closely. When modelling friction, a clear understanding of
the model properties is needed to determine what friction phenomena are
described in the particular model. Since different amounts of friction phe-
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nomena are covered in the models, the applicability of models vary. These
restrictions will be taken into account when developing a general model.
As the models are chosen with manipulation tasks in mind, there is no fo-
cus on friction in combination with lubricated surfaces. Furthermore, special
consideration will be placed on models that predict friction with low forces
and low velocities. Additionally, the models should include not only trans-
lational movement but planar motion so that it is possible to predict reach
and direction of sliding motion. For this, friction models for rotational and
translational movement need to be coupled.
Following the models’ generation, the models will be applied to specific appli-
cations for testing purposes without fine-tuning. This will be done to gauge
the model’s usefulness in practical applications. After testing, it will be eval-
uated if there is a model most fitting for general usage.
This thesis begins with a theoretical review of different friction models and
friction phenomena in chapter 2. In the next two sections, there are introduc-
tions of planar friction modelling and their application to both the Coulomb
and the elasto-plastic friction model. These different models are compared
in chapter 5 when they are applied to exemplary test cases.



Chapter 2

Comparison of Friction Models

In the past, many different friction models were developed. To allow for
a comparison of friction models, all models are described to be used in the
following minimal working example: An external force fapplied is applied to an

mass m

position x

fapplied

applied force

friction force ff

velocity ẋ

Figure 2.1: Body moving under the influence of friction and externally ap-
plied force.

object with mass m at is at position x as shown in figure 2.1. In this scenario,
a reacting force is the frictional force ff . In the case of dynamic friction,
the objects moves with the velocity ẋ. There are many different attempts
to model this translational friction ff . However, to stay close to common
descriptions of the friction models, all friction forces but the Coulomb friction
force (section 2.1) are defined in the opposite direction.

5
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2.1 Coulomb Model
One of these models is the Coulomb friction model. This model includes
stiction and kinetic friction. Stiction is the static friction that arises when
the applied force is not large enough to overcome the threshold necessary to
slide. When the applied force is bigger than the threshold, the object starts
sliding. Then the applicable friction phenomenon is kinetic friction. For a
one-dimensional case, both static and kinectic friction can be described by
the following equation:

ff ≤ −µdfn · sign(ẋ) (2.1)

where ff is the resulting friction force, µd a dimensionless parameter describ-
ing the coefficient of friction, fn the resulting normal force, and ẋ the velocity
of the object. The parameter µd depends on the materials used but not on
the velocity or the normal force fn [4]. The cases of static and dynamic fric-
tion can be distinguished by the inequality. In the case of static friction the
inequality applies as the normal force is not enough to initiate a movement.
However, in the dynamic case the equality describes the resulting friction
force ff [4]. The resulting friction force ff always is opposed to the direction
of the resulting movement. As seen in figure 2.3 equation (2.1) leads to a
constant friction force under the assumption of a constant normal force. This
friction force is called the Coulomb friction constant fC [12]:

fC = µdfn (2.2)

In equation (2.1) only the normal component of the applied force is consid-
ered. However, the applied force is not limited to this direction. It can be
seen in figure 2.2 that the normal component of the applied force can be
computed using geometric principles. In this example the resulting normal
force is defined by:

fn = fapplied · sin(β) +m · g (2.3)

where g is the gravitational acceleration.
Furthermore, the magnitude of the frictional force is independent of the

velocity of the object. This relation can be seen in figure 2.3.

2.2 Enhancements of the Coulomb Model
The model described in section 2.1 is often used because of its simplicity [13].
However, the Coulomb model does not predict friction accurately enough as
many phenomena are ignored. Viscous friction is one of these phenomena.
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Object (mass m)

fapplied fn

ft

β

g

Figure 2.2: External force from an arbitrary direction acting on a body.

0

−fC

0

fC

v

F

Figure 2.3: Friction force modelled with Coulomb model.
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In the case of viscous friction the moving object and the surface below are
separated by a lubrication layer. This viscous friction depends proportionally
on velocity. Because of this proportionality, the influence of viscous friction
is zero when the object does not move [14].
To include this phenomenon the model described above was extended as
follows [13]:

ff =


ff (ẋ) if ẋ 6= 0

fr if ẋ = 0 and |fr| < fC

fC · sign(fr) if ẋ = 0 and |fr| ≥ fC

(2.4)

where fr is a resultant tangential force, and fC the Coulomb friction con-
stant. In the case of zero velocity the possible friction force is limited by the
Coulomb friction constant fC . As long as the force is below this threshold,
the friction force is equal to the resultant tangential force fr.
If the force is larger that this threshold, the body can start to slide. In this
case the resultant friction force depends on the velocity of the body. By con-
sidering a simple viscous friction model where viscous friction is proportional
to the velocity, the friction force ff of (2.4) can be written as follows [2]:

ff (ẋ) = fCsign(ẋ) + σ2ẋ (2.5)

where σ2 is the viscous friction constant. The friction force is shown in fig-
ure 2.4.
In experiments the following was discovered: If the friction force increases

continuously then the velocity increases. However, at low velocities the fric-
tional force first decreases before it increases again. This behaviour can be
seen in figure 2.5. As this phenomenon was first observed by Stribeck, it is
called Stribeck friction or Stribeck effect. To include the Stribeck effect,
equation (2.5) has been modified as follows [15]:

ff (ẋ) = fC · sign(ẋ) + (fmax − fC)e
−| ẋ

ẋs
|2 + σ2ẋ (2.6)

where ẋs is the Stribeck velocity and fmax the maximal static friction force:

fmax = µsfn (2.7)

where µs is the static coefficient of friction analogous to µd in the dynamic
case. Therefore fmax is the static equivalent to the Coulomb friction coeffi-
cient fC as defined in (2.2). In general, it holds that:

µs ≥ µd (2.8)
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0

-fC

0

fC

v

F

Figure 2.4: Friction force modelled by enhanced Coulomb model to include
viscous friction.

0 ẋs

fC

fmax

v

f f

equation 2.6
equation 2.5

Figure 2.5: Stribeck effect included in the friction force modelling.
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The Stribeck velocity ẋs describes the characteristic velocity at which the
friction changes between the static and kinetic friction [15]. This parameter
determines how fast the friction force ff converges to the Coulomb friction
constant [16]. As seen in figure 2.5 accounting for the Stribeck effect results
in a smooth friction force [3]. The parameters needed for this parametrisation
can be evaluated experimentally [13].

2.3 Dahl’s Model
In 1968, Philip R. Dahl published a different friction model [10]. This model
was developed to fit experimental data better and in order to be able to
model presliding in control applications [5].
Presliding is a friction phenomenon that describes the motion before the ob-
ject slips completely [5]. Because of this, it describes the transition between
static and kinetic friction. This phenomenon occurs during the transition,
because at asperity contacts the adhesive forces dominate the frictional be-
haviour. Compared to other friction phenomena it is a function of displace-
ment rather than velocity [17]. In this model the friction force ff mono-
tonically approaches the Coulomb friction constant fC . If the velocity ẋ is
positive ff will tend to +fC , if ẋ is negative it will approach −fC [18].

dff (x)

dt
= σ0

∣∣∣∣1− ff
fC

· sign(ẋ)
∣∣∣∣i sign

(
1− ff

fC
· sign(ẋ)

)
(2.9)

In this model the friction force is depended on the contact stiffness σ0 as
well as on the exponent i. This parameter i describes the friction law used
and changes the model for different material characteristics. In the case of
ductile materials the exponent should be i = 1, 2 and for brittle materials
i = 0, 0.25, 0.5 [18]. However, the value i = 1 is used typically [5].
Because of comparability, the representation of Dahl’s model in [5] will be
used and can be seen in figure 2.6:

ff = σ0z, σ0 > 0, ż = ẋ

(
1− σ0

fC
· sign(ẋ)z

)i

(2.10)

where x is the body displacement and z the elastic component of the dis-
placement.
Compared to the previous models, the Dahl’s model can be used to predict
presliding displacement with the single continuous state z [5]. An advantage
of this model is, that the resulting friction force is smooth even when the
velocity crosses zero and therefore avoids discontinuity [3]. However, under
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0 1 2 3 4 5 6

·10−3

0

fC

ẋ[m/s]

f f

Figure 2.6: Friction force depended on velocity modelled with Dahl’s model.

certain circumstances simulations using this model can show drift instead
of static behaviour [3] as Dahl’s model does not capture static friction [13].
Furthermore, Dahl’s model is not able to model the Stribeck effect [12].

2.4 LuGre-Model
In order to include the viscous friction phenomenon, the model of the friction
force described in (2.10) was modified as follows:

ff = σ0z(t) + σ1ż(t) + σ2ẋ(t) (2.11)

where σ1 is the parameter that is used to damp tangential oscillations of the
elastic displacement [3] and parameter σ2 describes the influence of viscous
friction. Combining this parameter with the elastic displacement results
in a frictional memory in the case of slipping. Because of the parameter
σ1 the LuGre-Model is able to model stiction, as the elastic displacement
takes place before sliding. After the onset of sliding, the term σ1ż(t) loses
its importance [16]. Thus, an accurate value of σ1 is important to model
systems that predict slow movements.
In the following for clarity of presentation the argument of time t will be
omitted. The state z is governed by:

ż =

(
1− z

zss(ẋ)

)
ẋ (2.12)
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where zss is the steady-state deflection. This deflection can be computed
with the help of the steady-state friction force fss that is defined later in the
text using the following relation:

zss =

{
fss(ẋ(t))

σ0
|ẋ| > 0

fmax

σ0
ẋ = 0

(2.13)

Both branches for deflection include the normal force fn in the friction mod-
els.
The two cases in (2.13) are needed to insure that zss is defined in the case of
zero velocity [3]. This steady-state friction force is also called the Stribeck
curve and can be modelled in various ways [3]. One such equation reads as
follows:

fss(ẋ) =
[
(fmax − fC)e

−(ẋ/ẋs)2 + fC

]
sign(ẋ) (2.14)

A different variant to compute fss is:

fss(ẋ) =

[
(fmax − fC)

1

1 + ( ẋ
ẋs
)2

+ fC

]
sign(ẋ) (2.15)

As shown in figure 2.7 both forms show a similar behaviour. However, equa-
tion (2.15) is more efficient for computational purposes [3].
By introducing the Stribeck curve in the friction model, the Stribeck effect
described in 2.2 can be modelled. This is important for friction modelling at
low velocities as it allows to distinguish more accurately between stick and
slip. In the case of stiction, the friction force is smaller than the steady-state
friction force. Therefore the object has zero velocity although an external
force is applied. A motion that alternates between stick and slip at low
velocities is called a ”stick-slip motion”.



2.5. ELASTO-PLASTIC MODEL 13

0 0.2 0.4 0.6 0.8 1

1

1.02

1.04

1.06

1.08

1.1

ẋ[m/s]

f s
s
[N

]

equation 2.14
equation 2.15

Figure 2.7: Graph of different forms for computing fss using fmax = 1.1N,
fC = 1N and ẋs = 0.1m/s.

2.5 Elasto-Plastic Model

A further advancement of the friction models that use an additional state is
the so-called elasto-plastic model. The conceptual idea of the elasto-plastic
model is to include microscopic reversible displacements that occur as the
material experiences stress. When a force is applied to an object, asperity
contacts of the material deform as seen in figure 2.8. If the stress is low
enough, the movement of asperity contacts will be reversed without move-
ment of the object. This reversible displacement z is called elastic motion.
Once the object begins sliding, it moves irreversible (called ”plastic” dis-
placement); it is associated with the notation w. In order to include both
irreversible plastic and reversible elastic displacement, the total displacement
x is defined as the sum of both components: x = z + w.

The used friction force is the same as for the LuGre model, described in
equation (2.11). However the state z is governed by:

ż =

(
1− α(z, ẋ)

z

zss(ẋ)

)
ẋ(t) (2.16)
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mass m

plastic displacement w z

position x

Figure 2.8: Elastic and plastic displacement of an object based on asperity
contacts.

where α is a piece-wise defined function that controls the rate of change of
the state z:

α(z, ẋ) =


0 |z| ≤ zba

1
2
sin

(
π

z−
(

zss+zba
2

)
zss−zba

)
zba < |z| < zss(ẋ)

1 |z| ≥ zss(ẋ)

(2.17)

where zba is the breakaway displacement that allows for stiction as the model
shows elastic behaviour for |z| < zba [19]. This breakaway displacement is
necessary to allow for small elastic motions that do not lead to sliding even
if it is accumulated [3]. For the object to start sliding, the friction force has
to become larger than the associated breakaway force.
Since the Stribeck curve is used, the elasto-platic model can predict Stribeck
effect like the LuGre model. The elasto-plastic model includes all friction
phenomena that are also included in the LuGre-model but it also includes
stiction [19].
When both directions of the velocity ẋ and of z are the same, then α is
a piece-wise continuous function. This case is plotted in figure 2.9. If the
directions of ẋ and z differ, α will be defined to be zero [3]. The state of the
irreversible displacement w is governed by [3]:

ẇ = α(z, ẋ)
z(t)

zss(t)
ẋ(t) (2.18)
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Figure 2.9: Plot of parameter α if sign(ẋ) = sign(z)

In the elasto-plastic model the stick-slip behaviour is defined as follows: In
the case of sticking, only elastic displacement occurs. Therefore it holds that:

ẋ = ż ẇ = 0 (2.19)

However, in the case of sliding only the plastic displacement is relevant:

ẋ = ẇ ż = 0 (2.20)

In comparison, the LuGre model does not differentiate between elastic
and plastic movement since only the dynamics of the elastic motion are taken
into account. The additional distinction between LuGre and elasto-plastic
model is the modelling of the stick-slip effect. While the LuGre model in-
cludes the stick-slip effect, the transition between stick and slip is not mod-
elled explicitly as is done with the parameter α in the elasto-plastic model.
When only elastic motion occurs as shown in equation (2.19), the dynamics
of the LuGre model and the elasto-plastic model are identical if it holds that
α = 1.

2.6 Summary of models
In the following there is a summary of the presented friction models. The
table 2.1 includes both the captured friction phenomena and the needed
parameters.
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Chapter 3

Friction Models for Planar
Motion: Sliding and Spinning

In chapter 2, it is only considered that an object moves one-directional, for
example translationally. However, that is a strong restriction. In this chap-
ter, movements in more directions will be discussed.
These models will simulate the behaviour of a disk with radius R and mass m
that slides and spins on a flat surface. Like it is shown in figure 3.1 the disk
slides with the translational velocity v and spins with the angular velocity ω.
This results in both a frictional force ff as well as a frictional torque τf .

In the case of multi-dimensional friction behaviour a modification of the
translational friction models is necessary since experiments show that an ob-
ject slides further when it is spinning at the same time compared to an object
that only slides [7]. Because of this, it is clear that less force is needed to
move an object that is spinning and sliding simultaneously. A further reason
for enhancing translational friction models can be shown for purely sliding
objects. Consider an object that moves in a Cartesian coordinate system.
However, it does not move along an axis. When only translational friction
models are taken into account to model the frictional behaviour of this object,
it would be possible to model friction with the help of two independent mod-
els along both axis. In one-dimensional friction models the friction force is
bounded, for example in Coulomb’s model by the Coulomb friction constant
fC . As shown in figure 3.2 it is possible for two independent friction forces
that simulate the frictional behaviour of a single object to become larger
than the boundary force fC . To prevent this occurrence friction models for
multiple dimensions have to be coupled.
In planar motion it is important to consider the microscopical process that

happens when links between the object and the surface break.
In literature two scenarios are discussed.

17
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mass m
radius R v

ω

x

y

Figure 3.1: Schematic view of a sliding and spinning disk.

x

y

fx

fyftotal

fC

fC

Figure 3.2: Friction force in x direction fx and in y direction fy add to a
friction force ftotal larger than fC .
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1. In the first theory it is assumed that each microscopical link experiences
its own set of force and torque. Therefore the links break at individual
times. Furthermore, it is assumed that the links do not reestablish
themselves after their breaking. Thus, the applied force and torque on
the whole object distribute on fewer links resulting in higher forces and
torques for each link. Therefore the breaking of links happens like an
avalanche [6]. In [6] it is shown that the friction force and torque are
proportional in this scenario.

2. The second scenario differs from the first in the assumption that bro-
ken links reestablish themselves immediately after the breaking. This
breaking and reestablishing of links happens until all links experience
approximately the same stress. Because of this, all links break finally
at the same time when the object begins moving [6]. For this case the
theoretical relation between frictional force and torque is non-linear [6].

3.1 Friction Models for Rotational Movement
In this section a multi-dimensional friction theory is presented. This theory is
based on the Coulomb friction model as described in equation (2.1). To allow
for more diverse external forces instead of the normal force fn, a pressure
distribution is used. The pressure distribution p(x, y) describes the local
pressure on an infinitesimal area at position (x, y). Therefore the normal
force fn at position (x, y) can be computed as:

dfn
dA

= p (3.1)

where dA is the infinitesimal large area [4].
As the friction force in equation (2.1) is independent of the velocity but the
direction of movement is important, instead of using sign(ẋ) the unit vector
will be used v(x,y)

|v(x,y)| where v(x, y) is the translational velocity of the body.
A further change compared to the Coulomb model is to allow different fric-
tion coefficients. Thus the constant µd changes to reflect the specific friction
coefficient for an infinitesimal area: µd(x, y).
In order to be able to compute friction force and torques the following con-
ditions should be met [4]:

• The body is sliding on a planar surface.

• The pressure distribution across the contact area between body and
surface p(x, y) is known.
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• The friction coefficient µd(x, y) is known.

With these assumptions the general friction force according to [4] is:

ff = −
∫

contact area
µd(x, y)p(x, y)

v(x, y)

|v(x, y)|
dA (3.2)

Under the same conditions the associated frictional torque mf is:

τf = −
∫

contact area
µd(x, y)p(x, y)

[
r0 ×

v(x, y)

|v(x, y)|

]
dA (3.3)

where r0 is the vector from the origin of the coordinate system to the local
area where friction is computed and the symbol × signifies the cross-product.
As equations (3.2) and (3.3) depend both on the specific local pressure distri-
bution p(x, y) and coefficient of friction µd(x, y) the integral cannot be solved
in general. Analytic solutions only exist for few special cases [4].
However, it is possible to simplify these equations for the case of axisymmetric
pressure distribution and axisymmetric contacts. Under this assumption and
the help of transformation of coordinate systems equations (3.2) and (3.3)
can be rewritten in polar coordinates (r, θ) as follows:

ff = −
∫ 2π

0

∫ R

0

µd(r)p(r)
(r cos θ − c)r√

r2 + c2 − 2rc cos θ
drdθ (3.4)

τf = −
∫ 2π

0

∫ R

0

µd(r)p(r)
(r − c cos θ)r2√
r2 + c2 − 2rc cos θ

drdθ (3.5)

where c describes the distance between the origin of the coordinate system
and the current centre of rotation and R is the radius of the contact area.
Even with the reduction to axisymmetric pressure distribution and contacts,
analytic solutions only exist for special cases. The equations (3.4) and (3.5)
are elliptic integrals. This can be used to solve special cases.
One such special case is the sliding and spinning of a homogeneous flat disk
with a constant pressure distribution. Therefore, the pressure distribution
can be represented as the ratio of the formal force fn that acts on the complete
area of the disk and the corresponding area:

p =
fn

π ·R2
(3.6)

Furthermore, the friction coefficient is assumed to be constant µ. With this
assumptions the Coulomb friction can be written for multiple dimensions as:

ff = −µdfn
πR2

∫
contact area

v + ω × r

|v + ω × r|
d2r (3.7)
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where ω describes the angular velocity of the disk [7]. Similarly, the friction
torque can be written as:

τf = −µdfn
πR2

∫
contact area

r × v + ω × r

|v + ω × r|
d2r (3.8)

In [7] it is stated that the friction force and torque depend only on the
dimensionless ratio

ε =
v

R · ω
(3.9)

where v is the absolute value of v and ω is the absolute value of ω. Fur-
thermore, the friction force does only depend on the direction of the relative
velocity. Therefore Farkas et al. present the analytical solution of equa-
tion (3.7) for a flat disk [7]:

ff = −µdfnevF(ε) (3.10)

where ev is the normalized translational velocity and F(ε) is defined as fol-
lows:

F(ε) =

{
4
3
(ε2+1)E(ε2)+(ε2−1)K(ε2)

επ
ε ≤ 1

4
3

(ε2+1)E( 1
ε2

)−(ε2−1)K( 1
ε2

)

π
ε ≥ 1

(3.11)

where K(ε) and E(ε) are the first and the second kind of complete elliptic
integrals. It is important to note that in this thesis the inputs for the complete
elliptic integrals are in squared form.
The friction torque is presented accordingly to be:

τf = −µdfnReωT (ε) (3.12)

where eω is the normalized angular velocity and T (ε) is given by:

T (ε) =

{
4
9
(4−2ε2)E(ε2)+(ε2−1)K(ε)

π
ε ≤ 1

4ε
9

(4−2ε2)E( 1
ε2

)+(2ε2−5+ 3
ε2

)K( 1
ε2

)

π
ε ≥ 1

(3.13)

The analystical solutions described here were first published in [7] and later
corrected in [6].
Both equations (3.11) and (3.13) result in smooth lines as both the equations
and their derivatives are identical for the left-hand and right-hand sides.
These curves are shown in figure 3.3.
The connection of friction force and torque is shown in figure 3.4 and was

discovered by various research groups. This curve lies in accordance with the
second scenario mentioned in section 3. That means that the micro-contacts
between the object and the surface immediately reestablish themselves after
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Figure 3.3: Plot of the dimensionless friction force F and T over the ratio ε.

breaking until all links experience nearly the same stress [6].
Figure 3.4 shows the elliptic curve that displays the critical point for each
pairing of force and torque. If the force and torque combination is below
the curve, the object will not start moving. However, with a combination
above the curve the object moves. If the object is already moving and any
combination above the curve is applied, the object will accelerate [20].

3.2 Modelling the onset of sliding
To model the onset of sliding accurately, it is important to be able to deter-
mine the force and torque combination that will lead to movement. However,
the curve shown in figure 3.4 depends on the ratio between translational and
angular velocity. Thus, it cannot be used to determine the needed force and
torque combination.
To solve this issue, microscopic displacement before the onset of sliding is
considered. The threshold friction force can be described as:

ff = µsp

∫
contact area

δyey + rδϕeϕ

|δyey + rδϕeϕ|
d2r (3.14)
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where δy symbolises the microscopic translational displacement and δϕ the
microscopic rotation [6]. ey and eϕ are the directions of the microscopic
displacements. In contrast to the dynamical friction coefficient µd, in the
static case the static friction coefficient µs is used. In general µs is larger
than µd and depends not only on the materials of the body and the surface
but also on different conditions like contamination and aging that can be at
atomic level [20]. Accordingly, the friction torque is:

τf = µsp

∫
contact area

r × δyey + rδϕeϕ

|δyey + rδϕeϕ|
d2r (3.15)

With the help of the microscopic displacements a new ratio can be defined:

γ =
δy

Rδϕ
(3.16)

However, Coulomb’s model does not accurately define microscopic displace-
ments. Thus, in the simulation the microscopic displacements were replaced
with the first displacements unequal to zero.
Equations (3.14) and (3.15) can be solved to the same solution as in equa-
tion (3.10) and (3.12) [20]. The solution differs only in the used friction
coefficient and the ratio. When a force and torque combination reaches the
upper curve in figure 3.5, the object is set in motion. Generally that means
it both slides and spins. However, after the initial onset of movement the
needed force and torque combination to keep the object moving recedes to
the lower curve in figure 3.5. Therefore it is important to determine the
ratio ε that is valid immediately after the onset of movement. This can be
done under the assumption that the externally applied force and torque only
vary slightly in comparison to the difference between the force needed to set
the object moving and to keep it moving [20]. Additionally to model the
beginning of movement, the ratio ε is redefined to be a ratio of accelerations
instead of velocities:

ε =
v̇

Rω̇
(3.17)

With the help of this new definition it is possible to include directly the force
and torque that set the object in motion. The translational acceleration is:

v̇ =
1

m
(fapplied − µdfnF(ε)) =

fn
m

(µsF(γ)− µdF(ε)) (3.18)

where m is the mass of the sliding and spinning disk [6]. Accordingly, the
angular acceleration can be computed by:

ω̇ =
fnR

I
(µsT (γ)− µdT (ε)) (3.19)
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Figure 3.5: Construction of constraints to compute ε at the onset of sliding.

where I is the moment of inertia [6].
Combining equation (3.17) with (3.18) and (3.19) results in a new implicit
definition of ε:

ε =
I

mR2

µsF(γ)− µdF(ε)

µsT (γ)− µdT (ε)
(3.20)

According to [20] this solution is not only valid for disks but also for any
cylindrical bodies that have a circular contact area and the mass is distributed
in a way that the pressure can be assumed to be constant.
As shown in figure 3.5 depending on the value of γ two values of ε can be
chosen that act as constraints for equation 3.20. Both values ε1 and ε2 can
range theoretically from zero to infinity, however it is possible to limit the
values using

T (ε1) ≡ min
(

µs

mud

T (γ), T (0)

)
(3.21)

and
F(ε2) ≡ min

(
µs

mud

F(γ),F(∞)

)
(3.22)

These values are needed to solve the non-linear equation. However the bound-
ary values themselves are excluded from the solution in general [20]. Only
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in the case of pure translational respectively pure rotational movement, the
value of γ equals to both values of ε1 and ε2. In this case ε is equal to
ε1 = ε2 = γ.



Chapter 4

Elasto-Plastic Model for Planar
Motion

The coupling between force and torque presented in section 3 is based on the
Coulomb friction model. To be able to judge the validity of the presented
model a second model will be built. This second model will be used to draw
comparisons between both concepts.
The method in section 4.1 was published in [1] and was developed to plan
motion of a n-fingered robot. This model includes friction along both x- and
y-direction as well as rotation around the z-axis. Both concepts were devel-
oped to be used with Coulomb’s friction model. However, both concepts will
be used with the elasto-plastic friction model. This adaptation is discussed
in section 4.2.

4.1 Coupling of Sliding and Spinning Motion
In section 3 friction force and torque are coupled by the elliptic curve shown
in figure 3.4. The approach for planar motion presented there was calculated
analytically and is specific to the shape of the object.
In the following approach, the influence of the shape of the object is neglected.
Furthermore, it is not based on analytical computations but uses previous
experimental results [1]. Here the coupling is limited by the ellipsoid in
figure 4.1. Force and torque combinations inside the ellipsoid do not result
in sliding and spinning while combinations outside of the ellipsoid result in
motion. As presented in [1] the ellipsoid is computed by:

fTAf = 1 (4.1)

27
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Figure 4.1: Three-dimensional ellipsoid that bounds the frictional force.
Source:[1]

where f = [fx, fy,mz] is a friction force vector and A is a matrix of the form:

A =


1
f2
C

0 0

0 1
f2
C

0

0 0 1
(a·R·fC)2

 (4.2)

where a is a constant that is chosen to be a = 0.6 in accordance with both [1]
and the findings by [7]. Note also that fC is the maximal friction force in the
Coulomb model that is computed by:

fC = µdfn

In the two-dimensional case, this approximate solution is compared to the
analytic solution presented in chapter 3 in figure 4.2. Here the analytical
solution is depicted in blue while the approximation is red. In this model the
acting friction force is computed by:

ff =
A−1v√
vTA−1v

(4.3)

where v = [vx, vy, ωz]
T is the velocity of the object.

Because of the usage of the Coulomb friction model, it is necessary to dis-
tinguish between static and dynamic friction. In the static friction it holds
that:

fTAf < 1 (4.4)
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Here the limiting ellipsoid does not come into play so that the motion can
be computed using the following equation:

m 0 0
0 m 0
0 0 I

 v̇ = fapplied − f (4.5)

where v̇ is the acceleration of the object and I the inertia of the object.
However, in the dynamic case the friction force and torque has to be limited.
Therefore, instead of using the force vector f the limited force vector ff is
used. Thus equation (4.5) is changed to:

m 0 0
0 m 0
0 0 I

 v̇ = fapplied − ff = fapplied −
A−1v√
vTA−1v

(4.6)
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4.2 Implementation
The classical translational Coulomb friction as given in equation 2.1 can be
rewritten as:

ff = −µdfnsign(ẋ) (4.7)
= −fCsign(ẋ) (4.8)

In the planar case this equation 4.7 changes to equation 4.3. A different
representation of equation (4.7) is:

ff = µd
A−1v√
vTA−1v

(4.9)

where A is changed to:

A =


1
f2
C

0 0

0 1
f2
C

0

0 0 1
(a·R·fn)2

 (4.10)

To be able to include the planar motion in the elasto-plastic model it is
necessary to enhance the model as presented in section 2.5. The Coulomb
friction is bounded by the Coulomb friction force fC . The counterpart in the
elasto-plastic model that limits the friction force is the steady-state friction
force fss(ẋ). This force has to be changed to include planar motion. There-
fore it is necessary to change equation (2.14) with the help of equations (2.2)
and (2.7) to resemble equation (4.7) more closely:

fss(ẋ) =
[
(µsfn − µdfn)e

−|ẋ|2/ẋ2
s + µdfn

]
sign(ẋ) (4.11)

=
[
(µs − µd)e

−|ẋ|2/ẋ2
s + µd

]
fnsign(ẋ) (4.12)

This allows to include planar motion in the following way:

fss =

[
(µs − µd)e

−
(

|v|
vs

)2

+ µd

]
A−1v√
vTA−1v

(4.13)

where A stays the same as given in equation (4.10).



Chapter 5

Discussion

This chapter is structured as follows. The beginning focuses on one-dimensional
motion. Therefore, the following three exemplary test cases are presented and
discussed.

• A general translational test case without focus on a specific friction
phenomenon.

• A test case that focuses on the presliding prediction of the friction
models.

• A so-called ”Rabinowicz test” that concentrates on the simulation of
the stick-slip effect.

Following one-dimensional motion, planar motion models are simulated. To
simulate planar motion, an impulse-like force and torque is applied on four
different models:

• Coulomb friction model with planar motion model by Shi.

• Coulomb friction model with planar motion model by Farkas.

• Enhanced elasto-plastic model with planar motion model by Shi.

• Enhanced elasto-plastic model with planar motion model by Farkas.

5.1 One-dimensional Movement

5.1.1 Translational test
In chapter 2 different models are presented that focus upon various friction
phenomena. Differences and similarities in the models will be discussed in

31



32 CHAPTER 5. DISCUSSION

this chapter.
To show basic differences in the models, a simple test case is used. In this
test an object is pushed across a flat surface to simulate the friction force
as depicted in figure 2.1. In this scenario, the dynamics are computed using
Newton’s second law:

F = mv̇ (5.1)

were v̇ is the acceleration of the object and F the sum of all forces, here
the externally applied force fapplied and the resulting friction force ff . This
results in:

fapplied − ff = mv̇ (5.2)

The parameters used in this test are listed in table 5.1 and the applied force
is shown in black in figure 5.1. The simplest friction model used in this
test case is the Coulomb model with enhancements described in section (2.4)
and (2.5). It can be seen that the friction force - represented in red - follows
the applied force until the friction force is limited by the Coulomb friction
constant. This results in a discontinuity in the friction force. The velocity-
dependent viscous friction coefficient of the enhanced Coulomb model has
only a marginal influence in this example.
This discontinuity is avoided in Dahl’s model because it contains one con-

tinuous state. Thus the resulting friction force of Dahl’s model is a smooth
curve. This smooth transition between the static and dynamic friction case
is a result of the model’s ability to predict presliding displacement. It is
depicted with the green line in figure 5.1.
However, when there is a transition from dynamic to static friction, Dahl’s
model is not able to model this correctly. For example in figure 5.1, all other
models predict zero friction force after 1.2 seconds, but Dahl’s model pre-
dicts an oscillating force. This can result in a drifting motion but is not

Table 5.1: Parameters used in one-dimensional test case.
Parameter Formula symbol Value

mass m 10 kg
Coulomb friction coefficient fC 1N
maximal static friction level fmax 1.5N
critical velocity for Stribeck effect vs 10−3 m/s
break-away displacement zba 8 · 10−6m
contact stiffness σ0 105 N/m
tangential damping σ1 1000 Ns/m
viscous friction coefficient σ2 0.4 Ns/m
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Figure 5.1: Plot of applied force fapplied and various resulting friction forces
ff .

noticeable in this test because of the chosen parameters. Although Dahl’s
model predicts a slightly different friction force, the difference compared to
the enhanced Coulomb model is not significant enough to lead to different
velocities in this particular test case as seen in figure 5.3.
When using the LuGre model in the same testing conditions, this oscillating
force is not noticeable. The results of the test case using the LuGre model
are depicted in figure 5.1 in blue. The further advancement of the LuGre
model compared to Dahl’s model is the extension to include the Stribeck ef-
fect described in section 2.2. Before the object moves, first the friction force
increases above the Coulomb friction coefficient until the object moves. After
the onset of movement the friction force decreases because of the Stribeck
effect. At higher velocities the friction force increases again. This behaviour
can be witnessed in figure 5.2 that is an enlargement of the figure 5.1.
Finally, the results using the elasto-plastic model are depicted in figure 5.1
in brown. In this test case, no major differences between the results of the
LuGre model and the elasto-plastic model are noticeable. However, at the
onset of motion the simulated friction force differs because of differences in
modelling. This can be observed at the time 0.6 s in figure 5.1 for example.
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Figure 5.2: Enlarged plot of figure 5.1 to depict Stribeck effect in LuGre
model compared to Coulomb’s model.
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Figure 5.3: Resulting velocities in one-dimensional test case.
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5.1.2 Presliding test case

Dahl’s model, LuGre model and the elasto-plastic model include presliding.
However, it is modelled differently. To analyse the resulting differences, in [5]
a test case was proposed. In this test, a particular force is applied that is
provided in figure 5.4. In the beginning there is a peak above the Coulomb
friction force fC . Later on there are oscillations below fC . Thus, it is ex-
pected that only presliding displacement is simulated. In table 5.2 the used
parameters are shown. As seen in figure 5.6 all three models are able to show
presliding behaviour. However, both Dahl’s model and the LuGre model
simulate drift that is not expected because of the applied force. The drift
is more pronounced in Dahl’s model as the friction force is larger as shown
in figure 5.5. The elasto-plastic model shows the displacement as expected
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Figure 5.4: Plot of applied force fapplied in presliding test case.

Table 5.2: Parameters used in presliding test case.
Parameter Formula symbol Value

mass m 1 kg
Coulomb friction coefficient fC 0.2058N
maximal static friction level fmax 0.3087N
critical velocity for Stribeck effect vs 10−3 m/s
break-away displacement zba 0.0062m
contact stiffness σ0 23.66 N/m
tangential damping σ1 2.8034 Ns/m
viscous friction coefficient σ2 0 Ns/m
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because of the input force: it shows typical presliding oscillations without
predicting drift.
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Figure 5.5: Plot of resulting friction forces ff in presliding test case.
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Figure 5.6: Plot of predicted displacements in presliding test case.
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5.1.3 Rabinowicz test case

mass m

position x

velocity ẋff

Figure 5.7: Schematic view of the Rabinowicz test case.

The Rabinowicz test case was first presented in [21] in 1956. Since then it
has been accepted as a test for friction models to test stick-slip behaviour [11].
In the Rabinowicz test case, a slab moves with a constant velocity below an
object with the mass m. The object is connected to the inertial reference
frame with a spring as seen in figure 5.7. In this test case the velocity was
chosen to be: ẋ = 0.5m/s. Further used parameters can be found in table 5.3.

Concerning the stick-slip effect, it is possible to distinguish two groups of
models.

1. Models not covering the stick-slip effect, like the Coulomb model and
Dahl’s model

Table 5.3: Parameters used in Rabinowicz test case.
Parameter Formula symbol Value

mass m 20 kg
stiffness of spring k 10 N/m
Coulomb friction coefficient fC 98.1N
maximal static friction level fmax 117.72N
critical velocity for Stribeck effect vs 0.05m/s
contact stiffness σ0 98100 N/m
tangential damping σ1 780 Ns/m
viscous friction coefficient σ2 0 Ns/m
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2. Models including the stick-slip effect, for example the LuGre model
and the elasto-plastic model

This clear distinction is verified in this test case. The Coulomb model and
Dahl’s model approach a constant friction force as seen in figure 5.8. Because
of this similarity, both models predict comparable velocities and displace-
ments.
The second group simulates a later onset of sliding as shown in figure 5.9.
Until time t = 25 s the object sticks on the moving slab. Furthermore, both
the LuGre model and the elasto-plastic model predict a return to stiction
again at time t = 30 s and t = 43 s.
In figure 5.10, the simulated displacements are shown. There, it is possible
to see that stiction results in constant motion because of the motion of the
slab.
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Figure 5.8: Plot of predicted frictional forces in Rabinowicz test case.
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Figure 5.9: Plot of predicted velocities in Rabinowicz test case.
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Figure 5.10: Plot of predicted displacements in Rabinowicz test case.
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5.2 Planar Movement
In the following, different approaches to model planar motion will be com-
pared using the Coulomb model and the adapted elasto-plastic model.
In this comparison the applied force includes both forces and torque as de-
picted in figure 5.11. The used parameters can be seen in table 5.4.
At first, the planar motion is modelled according to the Coulomb model. In
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Figure 5.11: Applied force and torque combination for comparison of planar
motion.

figure 5.12 the simulated translational velocities are displayed using the two
different approaches described in section 4.2 and section 3.1. The associated
rotational velocities are shown in figure 5.13.
Then the motion is modelled using the enhanced elasto-plastic model. The
translational velocities are shown in figure 5.14 and the rotational veloc-
ities are depicted in figure 5.15. When using the Coulomb model (fig-
ures 5.12, 5.13), the planar motion differs in magnitude but the derivatives
are mostly the same. Comparing the motions modelled with the enhanced
elasto-plastic model, the motions shown in figures 5.14 and 5.15 are nearly
identical. However, there is a difference in magnitude in the rotational mo-
tions when comparing the Coulomb model and the enhanced elasto-plastic
model.

Therefore, it is possible to conclude that both approaches in modelling
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Table 5.4: Parameters used in planar test case.
Parameter Formula symbol Value

mass m 2.0106 kg
inertia I 0.0064m2kg
Coulomb friction coefficient fC 7.1007N
maximal static friction level fmax 7.4952N
critical velocity for Stribeck effect vs 10−3 m/s
break-away displacement zba 8 · 10−8m
contact stiffness σ0 100000 N/m
tangential damping σ1 1000 Ns/m
viscous friction coefficient σ2 0.4 Ns/m

planar motion result in similar frictional behaviour in this scenario. The
approach described in section 4.1 is an approximate approach as it does not
rely on the form of the object for example. Because of this simplification, it
is more easily possible to include more objects as shown in [1]. This results
in some flexibility. Compared to this, the approach described in section 4.2
is more restrained. However, the approach in section 4.2 is not an approxi-
mation but based on analytical solutions.
In this test case the friction behaviour is modelled for a flat disk. As described
in [9], the formulas for F(ε) (equation (3.11)) and T (ε) (equation (3.13)) have
to be changed according to the object. However, these formulas can only be
analytically described in few cases; one of which is a flat disk. The results of
this test are depicted in figures 5.12 - 5.15. When comparing both approaches
from section 4.1 and 4.2, the most noticeable difference is the magnitude of
the resulting translational velocity when the friction force is modelled based
on the Coulomb model.
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Figure 5.12: Resulting transla-
tional velocity of planar motion with
Coulomb model.
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Figure 5.13: Resulting rotational ve-
locity of planar motion with Coulomb
model.
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Figure 5.14: Resulting translational
velocity of planar motion modelled
with enhanced elasto-plastic model.
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Conclusion

In this thesis project various one-dimensional friction models were modelled
and compared in different scenarios. In the test cases it is apparent that
different friction models result in different outcomes - especially at low ve-
locities. Using two friction models exemplary, planar motion was simulated
with the help of two different theoretical approaches.
At low velocities, it is especially important to simulate when an object sticks
again after motion. In this thesis it was shown that the LuGre friction model
and especially the elasto-plastic friction model allow such precise modelling
for one-dimensional motion. This is because both simulate stiction and the
stick-slip behaviour.
For manipulation tasks it is also important to model planar motion. Like
mentioned above, two different approaches were implemented. The theoreti-
cal approach presented in chapter 3 is more precise as it depends on analytical
solutions. However, that approach is quite specific to the shape of the object
and has to be solved for every shape separately. The second approach was
presented in chapter 4.2 is less specific to the shape of the object. This re-
sults from an approximation done in the theoretical concept. To sum up, it
is necessary to gauge the advantages and disadvantages of both approaches
for a specific application.
Recently, friction models are included in different manipulation tasks. One
example is to replace pick-and-place operations. Instead an object is pushed
across a flat surface; it is no longer needed to lift up the object. To be able to
predict the motion of the pushed object, friction models like the LuGre and
elasto-plastic models are needed because they allow precise friction modelling
at low velocities.
Because of this, suggestions for future works are:

• To be able to judge the discrepancies resulting from the approxima-
tion, it is necessary to do friction experiments for planar motion to
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gain a complete experimental data set to allow for validation of planar
frictional behaviour. This would allow to eliminate the uncertainty in
planar modelling.

• Do the models have to be changed to allow for real-time simulation?

• Implementing planar frict?ion models in robotic applications.
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