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Abstract
The flow of air around an angled steel plate in a duct generates noise. Previous
experimental studies show that the noise is reduced if the plate is allowed to be
flexible, however the underlying mechanisms are not fully understood. Therefore it
is desirable to find an accurate and affordable numerical solution to the problem. In
this thesis, the stiff and the flexible plate are simulated using the commercial CFD
software Star CCM+. Sound generation is then estimated by applying a dipole
approximation of Curle’s acoustic analogy. The results show that the velocity field
and sound generation can be accurately predicted for the stiff plate and that the
Star CCM+ FSI solver accurately predicts the plate motion. However, the sound
reduction for the flexible plate is not captured. The reason for the discrepancies
between simulation and experiments in terms of sound generation are unclear, how-
ever the motion of the plate is believed to make the dipole sound approximation an
unsuitable approach.

Keywords: CFD, FSI, aeroacoustics, Curle’s acoustic analogy, vortex mixer plate,
noise reduction.
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1
Introduction

In this thesis, sound induced by a triangular plate in a duct is simulated. The plate
is treated as both stiff and flexible, where the latter case requires the use of Fluid-
Structure Interaction (FSI). For both simulation results, a dipole approximation
of an acoustic analogy is used to estimate the generated sound. The results are
validated using available experimental data.

1.1 Background
It is commonly known that unsteady flow can create noise; this is the idea behind
musical instruments such as flutes, as well as the main reason why it is difficult to
construct a silent air conditioning fan. In many applications the noise is undesired,
which has made aeroacoustics an increasingly important research topic.

A specific area where noise control is of large interest is within the automotive
industry. An overall reduction of sound includes controlling noise generated by
external flow (i.e. the flow of air around the vehicle) as well as the noise from
internal sources such as pipes within the engine.

In 2008, experiments of sound generation were performed for a triangular plate
in a circular duct, a geometry which can be interpreted as a mixer plate in the
exhaust system of a vehicle. From the experiments it was concluded that the use of a
flexible plate significantly reduced the generated noise at the dominating frequencies,
compared to the use of a stiff plate [1]. Supplementary measurements are performed
presently; some were presented in [2], and others are yet to be published [3]. The
experimental results have also been used for validation of non-commercial codes [4,
5].

1.2 Aim
The aim of the present work is to numerically investigate the same in-duct plate
case that has previously been investigated experimentally, using the commercial
Computational Fluid Dynamics (CFD) software Star CCM+. First, a simulation
is performed where the plate is treated as stiff. The sound is estimated by an
acoustic analogy, more specifically a 1D dipole approximation of Curle’s equation,
applied to a duct. This is the same approach to sound estimation that has been
employed in previous simulation studies. Secondly, a case which is identical to the
first, with the single exception of the plate being thinner and treated as flexible, is
investigated. For this simulation, FSI has to be included. The case also provides a

1



1. Introduction

good opportunity to validate the FSI solver of Star CCM+. Sound is estimated
in the same way as in the stiff plate case, and the results are compared to each
other and to experimental data. The two previous cases are performed for the same
velocity. The stiff plate is also simulated for a higher velocity to investigate how the
sound scales with velocity.

Finally, the physical factors behind the sound generation for this case remain
somewhat undetermined. An increased understanding of the mechanisms present
could be helpful in a future attempts to reduce noise. Therefore some different
attempts at understanding the flow features related to sound generation are included
in the present work.

1.3 Scope
All of the flow fields used to estimate sound generation are obtained through CFD
simulations in the commercial software Star CCM+ version 11.02.009. There are
two plate thicknesses, and hence two different sets of plate properties: a 3 mm plate
which is considered stiff and a 0.5 mm plate which is considered flexible. Three
different simulations are performed: for the stiff plate two velocities are simulated
and for the flexible plate the lower of those velocities is simulated. Incompressible
flow is assumed for all simulations, gravity is neglected and an acoustic analogy is
used to estimate sound from the numerical solutions.

2



2
Theory

In this chapter, theory relevant for understanding of the thesis is presented. The
main focus is aeroacoustics, but the chapter also treats fluid and solid mechanics,
computational fluid dynamics, fluid-structure interaction and signal processing.

2.1 Fluid Dynamics

The study of moving fluids is known as fluid dynamics. The governing equations in
fluid dynamics in their present form were developed by Navier and Stokes in the late
19th century [6]. For the case of incompressible flow the Navier-Stokes equations in
Cartesian tensor notation read

$

’

’

’

&

’

’

’

%

Bui
Bxi

“ 0

Bui
Bt
` uj

Bui
Bxj

“ ´
1
ρ

Bp

Bxi
` ν

B2ui
BxjBxj

` fi

(2.1)

where u denotes fluid velocity, p pressure, t time, x spatial coordinate, ρ density, ν
kinematic viscosity and f external forces such as gravity.

Depending on the flow characteristics, different simplifications can come into
question. In the above formulation, the assumption of incompressible flow has al-
ready been made. It is thus considered valid as long as the velocity normalized by
the speed of sound, also known as the Mach number(1), is below the limit of 0.3
[6]. Further simplifications can be made depending on the nature of the flow. A
mean of assistance in predicting and understanding the flow is to consider different
dimensionless numbers.

The most important such number is the Reynolds number(2), which is the ratio
between the inertial and the viscous forces in the flow. For low Re, a flow can be
considered to be laminar. For laminar flow and simple geometries, Equations 2.1
can be solved analytically. However, what can be seen as a low Re differs between
applications; most flows in both nature and industrial applications are high Re
turbulent flows.

(1)Mach number M “
u

a
, where a is speed of sound.

(2)Reynolds number Re “ ρu`

µ
, where µ is the dynamic viscosity of the fluid and ` is some

characteristic length scale of the flow domain.
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2. Theory

2.1.1 Turbulence
The complex nature of turbulence is evident from the fact that although it is present
in the lion’s share of flows, there is no formal definition of it. The following charac-
teristics are often used to describe turbulence:

• Irregular: the flow is unsteady and partly random, making it difficult to
predict.

• Diffusive: the turbulent fluctuations make all quantities involved spread
faster than in laminar flows.

• Wide range of scales: the variation of both length and time scales of tur-
bulent structures is considerable.

• Three dimensional: turbulent structures and fluctuations are always three
dimensional by nature.

Here, the term fluctuation refers to the deviation from the mean value [7]. Another
word frequently used when discussing turbulence is eddy, designating a turbulent
feature which has a length scale and a time scale.

2.1.2 Computational Fluid Dynamics
Since analytical solutions to Equations 2.1 are seldom available, either experimental
or numerical approaches are usually needed to achieve the relevant flow physics.
Both approaches have their advantages, but with recent technological advances the
use of numerical techniques, known as Computational Fluid Dynamics (CFD), has
increased substantially. Commercial CFD solvers are often based on finite volume
techniques, where the domain is split into smaller control volumes and the discretized
Navier-Stokes equations solved for each one of them [8].

To fully resolve turbulent flow, the cell size has to be of the same order of mag-
nitude as the smallest turbulent length scales, and the time step has to be as small
as the smallest time scale. This type of simulation is known as Direct Numerical
Simulation (DNS) and, although yielding quite accurate results, requires so much
computational power and time that it is not used in industrial applications today.
Instead, different turbulence models are used to model all or a portion of the scales.
The choice of model depends on flow type, geometry, computational resources and
desired outcome [7].

2.1.2.1 Reynolds-Averaged Navier-Stokes

Different types of averaging are frequently used to simplify Equations 2.1. The loss
of information entailed is less of a problem in applications where the mean properties
are of most interest, which is often the case in industry. The Reynolds-Averaged
Navier-Stokes equations (RANS) are based on a time average of Equations 2.1;
the velocity and the pressure are decomposed into a mean and a fluctuating part
which are inserted into the equations before averaging. A new term, known as the
Reynolds stress tensor, appears, adding six new unknowns to the equations which
thereby become unclosed. A number of models such as the k´ε and the k´ω models
have been developed to close the problem. As mentioned above, turbulence is always

4



2. Theory

unsteady and thus the Reynolds stress tensor can be seen as a representation of the
interaction between the mean flow and turbulence [7, 9].

For flows where the temporal variation is important, RANS appears to be too
coarse a method. However, if the averaging of the Navier-Stokes equation is per-
formed using an ensemble average instead of a time average, the Unsteady Reynolds-
Averaged Navier-Stokes (URANS) equations are obtained. Although these equations
include an unsteady momentum equation term, they still do not resolve turbulence
but rely on models to account for its influence [9, 10].

2.1.2.2 Large Eddy Simulation

Another possibility of simplifying the Navier-Stokes equations is by using a method
based on a spatial average. This method is known as Large Eddy Simulation (LES).
Here, it is assumed that a separation of scales can be made: all eddies larger than
some threshold length are resolved, while the influence of smaller structures is mod-
elled using a so called subgrid scale model. Again, the spatial averaging or filtering
will result in an unclosed term, the subgrid stress tensor, representing the mentioned
subgrid scale turbulence influence. As in the RANS case, the problem is closed by
modelling this term [7].

2.1.2.3 Detached Eddy Simulation

When the accuracy of URANS is not enough to capture relevant flow features,
but the computational resources are insufficient for LES, a hybrid method can be
used. Detached Eddy Simulation (DES) combines URANS close to walls with LES
further away from walls, whereby only the eddies detached from boundary layers are
resolved. The reason for using URANS close to solid walls is that the complexity
of the flow in the boundary layer, where gradients are high and viscous effects
important, lead to excessive grid requirements in this region [7].

2.1.2.4 Wall Treatment

To further alleviate the requirements on the mesh size in boundary layers, wall
functions are often used. These are based on the assumption of a fully developed
turbulent velocity profile (i.e. a profile that does not change with the streamwise
direction) close to the wall. The boundary layer can then be divided into three
different regions, using the dimensionless wall distance(3) y`. The innermost region
is known as the viscous sublayer. In this region, which extends to y` « 5, the velocity
corresponds linearly to the distance from the wall. From y` « 30, and above, the
velocity profile is approximately a logarithmic function of the wall distance. As a
result, this range is known as the log law region. Between the two, i.e. from y` « 5
to y` « 30, neither approximation holds. This region is called the buffer layer, and
smoothly connects the two other regions. An illustration of the normalized velocity(4)

u` as a function of the dimensionless wall distance y` is given in Figure 2.1 [6, 9].

(3)Dimensionless wall distance y` “
y
a

τw{ρ

ν
, where τw is the wall shear stress

(4)Dimensionless velocity u` “ u
a

τw{ρ
, where τw is the wall shear stress

5



2. Theory

100 101 1020
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20 Viscous
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Log law
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5 30
y`

u
`

Figure 2.1: The three theoretical regions of a fully developed turbulent boundary
layer. Note that the x-axis has a logarithmic scale. Details on the linear and
logarithmic laws can be found in [6].

The type of wall function used depends on in which of the regions the node closest
to the wall is placed. Typically, either a low y` treatment (y` ă 5)(5) or a high y`
treatment (y` Á 30) is applied. Combinations where the mesh size determines what
model to use are also possible [9, 11].

2.1.3 Drag Coefficient

A fluid moving around a body gives rise to forces and moments. The force component
parallel to the free stream direction is commonly defined as the drag force. This force
causes a flow loss present in all flows, irrespective of body shape and flow properties.
The omnipresence of the drag force has lead to the definition of a dimensionless
number, the drag coefficient, to quantify it for different objects. The drag coefficient
is generally defined as

CD “
FD

1
2ρu

2A
(2.2)

where FD is the drag force, ρ is the fluid density and A is an area suitable for the
problem at hand [6]. Equation 2.2 can be applied to an in-duct object as

CD “
∆pAduct
1
2ρu

2Aproj
(2.3)

where ∆p is the difference in pressure upstream and downstream of the object, when
effects of other influences on the pressure have been removed, Aduct is the area of
the duct and Aproj is the area of the object projected in the flow direction [2].

(5)In Star CCM+, y` À 1
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2.2 Solid Mechanics

Solid material is, naturally, ruled by other governing equations. Here, only the
equations that belong to the subcategory of linear elastic isotropic material will
be treated. The assumption of elastic material, valid only for small deformations,
means that the body will return to its original configuration when all loads are
removed. Linearity implies that there is a linear relation between the stress and the
strain of the material, making Hooke’s law a valid constitutive relation. Finally, the
term isotropic means that the material properties are the same in all directions [12].
Under these assumptions, the governing equations for solid displacement, known as
the equilibrium equation, read

ρ
B2Xi

Bt2
´
Bσji
Bxj

´ bi “ 0 (2.4)

where X denotes displacement of a solid element (hence B2Xi

Bt2
is acceleration) and b

any body load per unit volume [11, 13]. It should be noted that the Cauchy stress
tensor σij is dependent on X; first of all Hookes law gives that

σij “ Cijklεkl (2.5)

where Cijkl is a forth order stiffness tensor. Since linearity is assumed, the compo-
nents of the stiffness tensor do not depend on the state of the material [13]. Then
the linear strain tensor reads

εij “
1
2

ˆ

BXi

Bxj
`
BXj

Bxi

˙

, (2.6)

and gives a measure of how much the body has deformed [12]. Thus Equation 2.4
is more complicated than it might appear at first glance.

2.2.1 Finite Element Method

For most industrial applications, the equilibrium equation with boundary conditions
is too demanding to be solved analytically. Instead, Equation 2.4 can be multiplied
by a test function that fulfils certain criteria. It is then integrated over the solid
domain. The new version of the problem is known as the weak formulation, and it
can be shown that it is equivalent to the original formulation. Now, approximating
the (continuous) solid displacement by a (discrete) weighted sum of basis functions,
and choosing said basis functions one at a time as the test function, the so called
Finite Element formulation is obtained.

This approximate version of the original problem can be solved numerically in an
efficient way. The accuracy of the solution depends on the quality of the mesh but
also on the order of the test functions. For further details, see any textbook on the
Finite Element Method (FEM), such as [14].
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2.2.2 Modal Analysis
Determining the characteristics of the dynamics of a solid structure in terms of its
modal data can provide useful insight into its behaviour. Finding this data, which
consists of the natural frequencies, the damping factors and the mode shapes of a
structure, is the purpose of a modal analysis. This topic has become increasingly
important in engineering contexts during the past 20 years, and one application is
to verify that a mathematical model, such as a finite element model, corresponds to
the structure which it attempts to represent [15].

2.3 Fluid-Structure Interaction
In problems where a significant dependence between fluid and structural mechanics
exist, the Fluid-Structure Interaction (FSI) must be considered. On the interface
between media, fluid pressure can lead to deformations of a structure and in return
a displacement of a solid will affect the motion of a fluid. An FSI analysis can
be one-way or two-way coupled. In one-way coupled problems, only the effect of
one medium on the other is considered. This is usually a good approximation in
systems where no large deformations occur, or where a solid structure moves without
deforming. In two-way coupling, each medium’s effect on the other is of importance
[11].

Two-way coupled FSI solvers are divided into loosely coupled and strongly cou-
pled algorithms. In loosely coupled problems solutions can be found sequentially:
for each time step the fluid governing equations, the solid governing equations and
the mesh movement are solved, in that order. In strongly coupled problems, on the
other hand, the three equations are solved simultaneously, making it fully-coupled.
The latter is more robust, but also requires more computational resources [11, 16].

2.4 Aeroacoustics
Sound can be induced by fluids moving over bodies. This is studied in aeroacoustics,
which is a field that combines fluid dynamics and acoustics.

2.4.1 Acoustics
Sound is essentially weak pressure waves, governed by the homogeneous three di-
mensional wave equation

B2p

Bx2
i

“
1
a2
B2p

Bt2
(2.7)

where a is the speed of sound. Additional source terms can be introduced in Equa-
tion 2.7, making it inhomogeneous.

The strength of sound is usually expressed in dB, into which the varying pressure
is converted by calculating the Sound Pressure Level (SPL)

LP “ 20 log10

ˆ

p̃

p0

˙

(2.8)
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where p̃ is the root mean square-value of the pressure fluctuations and p0 “ 2¨10´5 Pa
is a reference pressure that roughly corresponds to the threshold of human hearing
[17].

2.4.2 Lighthill’s Acoustic Analogy
In numerics, fluctuating pressure can be transformed into sound using either a direct
approach or an acoustic analogy. The direct approach is straight forward but compu-
tationally demanding: it requires solving the compressible Navier-Stokes equations,
using a grid resolution fine enough to capture the acoustic pressure waves and a
domain large enough to avoid boundary effects. The acoustic analogy, on the other
hand, indirectly estimates sound from flow simulations to a far-field observer.

The first acoustic analogy was proposed by Lighthill in 1952. He rewrote the
compressible Navier-Stokes equations in a form which can be interpreted as the
inhomogeneous wave equation with sources.

The compressible version of Equations 2.1 reads
$

’

’

’

&

’

’

’

%

Bρ

Bt
`
Bpρuiq

Bxi
“ m

Bpρuiq

Bt
`
Bpρuiujq

Bxj
“ ´

Bp

Bxi
`
Bτij
Bxj

` fVi

(2.9)

where τij is the viscous stress tensor and fV denotes external volume forces. The first
equation governs conservation of mass and the second conservation of momentum.
Differentiating the conservation of mass with respect to time and the conservation
of momentum with respect to space, and then taking the difference between the two
gives

B2ρ

Bt2
´

B2p

BxiBxi
“
Bm

Bt
´
BfVi

Bxi
`

B2

BxiBxj
pρuiuj ´ τijq. (2.10)

Then, the decomposition p “ p0`p
1 and ρ “ ρ0`ρ

1 is introduced(6). Adding 1
a2
B2p1

Bt2
to both sides of Equation 2.10, and rearranging some terms, a form of the wave
equation is obtained:

1
a2
B2p1

Bt2
´

B2p1

BxiBxi
“
B

Bt

ˆ

m`
1
a2
B

Bt
pp1 ´ a2ρ1q

˙

´
BfVi

Bxi
`

B2

BxiBxj
pρuiuj ´ τijq. (2.11)

This is the acoustic analogy: the left hand side represents the wave equation,
and the right hand side represents monopole, dipole and quadrupole source terms
respectively. Solving Equation 2.11 gives the fluctuating pressure based on the
governing equations of fluid dynamics. The sound waves themselves have not been
resolved, but rather the sources which give rise to the sound. It should be noted
that the sound’s effect on the flow is neglected.

Equation 2.11 can be simplified further. First of all, the term pp1 ´ a2ρ1q, which
corresponds to deviance from adiabatic changes of state, can be neglected if no heat
release is present in the flow. The monopole term then only consists of change in

(6)Subscript 0 denotes the reference value and superscript 1 denotes a fluctuation
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mass flow, which can be neglected if there is no mass flow injection. The dipole
term includes the spacial derivative of the volume force, which is zero when there
are no volume forces present. Given these assumptions, only the quadrupole source
term is left. Solving Equation 2.11 with respect to pressure gives

p1px, tq “

¡

V

B2

BxiBxj

ˆ

Tijpxs, t´ r{aq
4πr

˙

dVxs (2.12)

where Tij “ ρuiuj ´ τij is known as the Lighthill tensor, r is radial distance and
xs denotes source position vector. The viscous stress τij has negligible importance
for sound production, and can also be neglected. The simplified expression of the
Lighthill acoustic analogy becomes(7) [18]

p1px, tq “

¡

V

B2

BxiBxj

´ρuiuj
4πr

¯

dVxs . (2.13)

2.4.3 Curle’s Equation
To include the effect of stationary solid bodies, an extension of Lighthill’s analogy
known as Curle’s equation can be derived. Equation 2.13 can be rewritten using
the Kirchhoff-Helmholtz equation, the free field Green’s function and the equation
of motion. A detailed description of the procedure can be found in e.g. [18]. The
resulting equation reads

p1px, tq “
¡

V

B2

BxiBxj

”ρuiuj
4πr

ı

te
dVxs

´

"
S

B

Bxi

”pni ` ρuiujnj
4πr

ı

te
dSxs `

"
S

B

Bt

”ρuini
4πr

ı

te
dSxs (2.14)

where x is the position vector and te “ t´ r
a
is emission time, i.e. the time required

for a signal to travel from the source to the observer. Via these mathematical manip-
ulations the quadrupole source term of Equation 2.13 has been rewritten into three
different sources. The last integral is a monopole source connected to vibrationally
induced volume flow, which in many cases can be neglected. Also assuming that the
body is acoustically compact(8) Curle’s equation simplifies to

p1px, tq “
¡

V

B2

BxiBxj

”ρuiuj
4πr

ı

te
dVxs ´

B

Bxi

ˆ

Fipt´ x{aq

4πx

˙

(2.15)

where Fiptq “
!
S
ppxs, tqnidSxs is the fluctuating force that the body excerts on the

fluid.
(7)ui and uj are still functions of the source coordinate xs and the time t ´ r{a, however to

increase readability of the equations this is no longer explicitly stated
(8)I.e. small compared to the wavelength of the generated sound

10
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It can be shown that, for small Mach number, the dipole source will be the
dominating term and hence Curle’s equation is reduced to

p1px, tq “ ´
B

Bxi

ˆ

Fipt´ x{aq

4πx

˙

. (2.16)

In addition the assumption of small Mach numbers implies that the flow can be
considered incompressible [18].

2.4.4 The Dipole Sound Approximation
Equation 2.16 states that generated sound can be approximated from the instanta-
neous pressure loss and that the dipole is the dominating source term. The expres-
sion can be further simplified by approximating the dipole source as a 1D dipole in
the plane wave range. The sound field generated in a semi-infinite duct can then be
expressed as

p̃˘pxq “ ˘
F̃ e´ik˘x

2Aductp1˘Mq
(2.17)

where F̃ is the time varying dipole force and the ` and ´ subscripts denote upstream
and downstream propagation directions respectively. As the wave propagation speed
is infinite for incompressible flow(9), Equation 2.17 simplifies to

∆p̃ “ p̃` ´ p̃´ “
F̃

Aduct
(2.18)

which is the dipole sound approximation. Solving the flow numerically, the force
per area, F̃

Aduct
, is by definition equal to the time varying pressure difference over

the body. This pressure loss, averaged over the cross section area, can therefore be
interpreted as the acoustic pressure [4].

2.4.5 Comparability to Experiments
When sound generation is investigated experimentally, the active part of the acous-
tics, which represents sound generated by the flow, can be measured upstream and
downstream of the sound source. The sound is then expressed in terms of the au-
tospectra, see Section 2.5.2, of the generated noise upstream (Gs

11) and downstream
(Gs

22) [1, 2]. Estimating sound from an incompressible flow simulation, however, the
sound can not be divided into an upstream and a downstream propagating wave.
Consequently, if the dipole sound approximation is used to estimate sound, it can
not be compared to the upstream or downstream experimental sound. However since
Equation 2.18 gives a measure of the total sound generated, it can be argued that
it corresponds to the sum of the sound measured in the experiments (Gs

11 `G
s
22).

2.5 Signal Processing
A signal, here meaning a time dependent data series, can be analyzed using a number
of different mathematical and statistical tools. Some of these are described below.

(9)Implying that M “ 0 and k “ 0
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2.5.1 Fourier Transform
In Fourier analysis, the basic assumption is that any signal can be written as a
sum of sinusoidal functions with different frequencies and amplitudes. This implies
that it is possible to transform the signal from the time domain to the frequency
domain, a procedure known as Fourier transform. The continuous Fourier transform
is defined as

f̂pξq “

ż 8

´8

fpxqe´iξxdx. (2.19)

where fpxq is the time dependent signal. The Discrete Fourier Transform (DFT) is
the equivalent of the Fourier transform, but for discrete valued signals such as the
pressure fluctuation or spatial displacement of a point. The DFT of a data series
tanu

N
n“0 with length N is defined as

âm “
N´1
ÿ

n“0
e´2πimn{Nan. (2.20)

The DFT can be computed more efficiently. The most common algorithm for this
is the Fast Fourier Transform (FFT), which has become widely used for numerical
Fourier analysis [19].

Normally, the Fourier transform is computed assuming an infinitely long signal,
which is never available for a numerical data series. When computing the DFT,
it is thus assumed that the signal available will repeat itself. This means that
the signal start and the signal end need to match to avoid undesired noise in the
frequency domain. To enforce a match, a smoothing can be applied. The type
of smoothing is categorized in terms of different windowing techniques, where no
smoothing corresponds to a rectangular window. A commonly used window is the
Hanning window, based on a multiplication of the signal by a cosine function [20].

2.5.2 Power Spectral Density
The autospectral density function, also known as the autospectral density or the
Power Spectral Density (PSD), is defined as the Fourier transform of the auto-
correlation function and provides similar information(10). The autospectral density
function can be estimated according to

Ĝxxpfq “
2
ndT

nd
ÿ

k“1
|f̂kpf, T q|

2 (2.21)

where f̂kpf, T q is a Fourier transform evaluated in the limited range of p0, T q instead
of p´8,8q as in Equation 2.19. This corresponds to averaging the square of the
DFT over a number nd of time sequences of length T , requiring a total signal length
of ndT [20]. The sequence length T affects the frequencies resolvable, where large T
increases the resolution. A larger number of sequences nd reduces numerical noise
and gives a clearer view of dominating trends.
(10)Such as if the compontents of a signal repeat themselves, and if so, with what time lags
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To increase the efficiency and reduce the impact of the partitioning of the interval,
the Welch method can be used to compute an estimate of the PSD. The method uses
Equation 2.21 but also applies windowing, and overlapping of subintervals reducing
the possible information loss caused by this [21].

2.5.3 Cross-spectral Density Function
In the same way as the autospectral density function can be used to study how
a signal correlates with itself, the cross-spectral density function or cross power
spectral density, defined as

Ĝxypfq “
2
ndT

nd
ÿ

k“1
f̂˚k pf, T qĝkpf, T q (2.22)

where ˚ denotes complex conjugate, can be used to estimate the correlation between
two different signals with finite Fourier transforms f̂k and ĝk [20]. Unlike the power
spectral density, which is always real, Ĝxy can also contain an imaginary part. This
means that the argument of Ĝxypfq, which corresponds to the phase shift of the
frequency component f between the two signals, can be non-zero [22].

2.5.4 Coherence Function
To normalize the measure of similarity of two signals, the ordinary coherence func-
tion γ̂2

xypfq can be used. The coherence relates the autospectral density to the cross
spectral density via

γ̂2
xypfq “

|Ĝxypfq|

ĜxxpfqĜyypfq
. (2.23)

Trivially, 0 ď γ̂2
xy ď 1 [20].
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3
Methods

This chapter is centered around the simulations. First the set-up of the fluid and
solid simulations are presented in separate sections, and then the combined problem
is treated. In the end of the chapter, the practical aspects of the post-processing
are explained.

3.1 Geometry

The computational domain consists of a circular duct, in which a triangular plate
is inserted with a certain angle. The measurement specifications used to construct
the domain were found in [2], where the diameter of the pipe D “ 90 mm and
the plate is mounted with an angle of 32˝. The length of the duct was defined in
terms of pipe diameters and set to -3.5D upstream and 20D downstream of the
plate respectively, see Figure 3.1. At this length it was assumed that the boundaries
would have negligible effect on the flow in important regions. The dimensions of
the triangular plate, also from [2], are visualized in Figure 3.2. Simulations were
carried out for two different geometries, identical except for the plate thickness: a
3 mm plate, which was considered stiff, and a 0.5 mm plate, which was modelled as
flexible. The thicknesses were chosen in order to make the cases as comparable as
possible to the experiments.

3.5D 20D

D32˝

z

x

Figure 3.1: Two dimensional overview of the computational domain. The pipe
diameter D “ 90 mm. The line with the angle specification represents the plate.
The flow is in the positive x direction, and the coordinate system is defined such
that the point x “ 0 is located at the most upstream contact between the plate and
the duct wall, while y “ 0 and z “ 0 are positioned at the centerline of the duct.

The geometry for the fluid computational domain was created using the CAD
software Catia v5. It was then exported in the form of a step file which was
imported into Star CCM+ as a surface mesh. The built in feature Surface Repair
was then used to define important surfaces and, in the flexible plate case, create
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95

64 39.4˝

[mm]

x

y

z

Figure 3.2: The plate, with the back (as defined in Figure 3.3) facing upwards.
The rounded edge is connected to the upper duct wall. The plate thickness is 3 mm
or 0.5 mm, depending on the case. Note that y “ 0 at the symmetry plane of the
plate.

Front Ñ
Ð Back

Edge Ñ
Ð Tip

Figure 3.3: A 3D view of a part of the computational domain, including the names
of important geometrical features.

a geometric part for the plate. The resulting computational domain is shown in
Figure 3.3.

3.2 Modelling of Fluid Domain
Air at ambient conditions was chosen as the working fluid in the duct, and the Star
CCM+ predefined properties (ρ “ 1.18415kg{m3, µ “ 1.85508 ¨ 10´5 Pa/s) were
used. The flow was assumed to be incompressible and gravity was neglected. Two
different velocities, M “ 0.125 and M “ 0.188, were simulated.

3.2.1 Computational Mesh
The mesh was created using the Polyhedral Mesher together with the Advancing
Layer Mesher and the Surface Remesher. In the greater part of the domain the Base
size(1) of the polyhedrons was set to 0.002 m. To improve the accuracy, a volumetric
refinement with a Base size of 0.001 m was introduced around and downstream of
the plate. The refinement was confined to a cylinder ranging from x “ ´0.25D to

(1)The Base size is a characteristic length of the problem, and is not directly correlated to the
size of cells
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Figure 3.4: The fluid domain mesh around the thin plate, as seen in the symmetry
plane of the pipe (y “ 0). To the left a small portion of the non-refined mesh is
visible. The refinement around the plate wall is apparent as well as the prism layer
total thickness.

x “ 4D, with a radius of 0.043 m(2). In addition to this, a similar cylinder was
introduced from x “ 15D to the domain end. Here, the Base size was increased
to 0.0024 m. The aim of this second cylinder was to slightly reduce computational
time, but still keep a domain length where boundary conditions would not affect
important flow features. The volumetric controls did not affect the prism layers,
which were instead refined only at the plate surfaces, in order to keep y` À 1
throughout the domain.

Special attention was paid to avoid cells with poor quality around the plate tip.
Since the Advancing Layer Mesher more or less removed the low quality cells in
this region it was considered well suited for the mesh construction. The final mesh
consisted of 9,072,876 cells, and had some poor quality cells in the sharp corner
where the plate meets the wall, see Figure A.2.

An overview of the mesh is presented in Figure 3.4, for detailed representations of
different areas see Appendix A. The complete mesh settings are listed in Table A.1.

3.2.2 Boundary Conditions
For the pipe inlet, a velocity inlet boundary condition was used. To achieve a fully
developed turbulent velocity profile, theory gives that the upstream length would
have to be in the order of 30 pipe diameters(3) [6]. To reduce this length, and hence
computational time, a fully developed velocity profile was computed separately and
then applied at the inlet. The turbulent viscosity ratio obtained from the same
separate simulation was also used at the inlet.

The computation of the velocity profile was carried out using a thin axial slice of
the original duct. An interface was created between the inlet and the outlet of the
slice, and a periodic boundary condition with the fully developed flow option was

(2)The radius was set so that the refinement would cover all of the polyhedral mesh, but not
include the prism layers on the duct wall

(3)Based on the sixth-power-law for the entrance length Le “ D ¨ 4.4Re1{6
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chosen. In the first stiff plate simulation, the aim was to have an upstream centerline
velocity of 50 m/s, as was the case for the velocity profile measurements in [2]. By
iteration, it was concluded that a mass flow rate of 0.324 kg/s gave a center line
velocity of 50.0 m/s, this corresponds to a mean(4) Mach number of 0.125(5). This
is slightly different compared to the experimental results in [2], where a centerline
velocity of 50 m/s corresponded to a mean Mach number of 0.124. For the second
simulation of the stiff plate, a mass flow rate of 0.479 kg/s gave a center line velocity
of 73.4 m/s and a mean Mach number of 0.188, which was the same Mach number
as was used in experiments. Otherwise the settings were chosen equal to what
would be applied to the steady simulation of the complete pipe, further discussed in
Section 3.2.3, with one exception: for convenience, another computational grid was
used. However, a study on three different meshes showed no major differences in
the resulting velocity profile, indicating that grid independence was achieved. This
resulting velocity profile is shown in Figure 3.5.

0 0.2 0.4 0.6 0.8 1

´0.4

´0.2

0

0.2

0.4

u{umax

y
{
D

Figure 3.5: The normalized velocity profile that was specified as inlet condition.
Here, the maximum velocity umax “ 50 m/s. It should be noted that for the case
with the higher velocity, umax “ 73.4 m/s, the velocity profile is practically identical.

The pipe outlet was modelled as a pressure outlet with p “ 0 Pa, and the pipe
wall and plate surface were both modelled as walls with no-slip conditions.

3.2.3 Initial Conditions

Having set up the computational domain with the boundary conditions mentioned
above, RANS in combination with the k ´ ε turbulence model was applied. The
complete settings are presented in Table B.1. The model was run until the residuals

(4)Here corresponding to a spatial mean, sometimes denoted bulk.
(5)Throughout the report, the speed of sound a “ 340 m/s. Furthermore, M was based on a

mean velocity of umean “ 42.5 m/s computed from the mass flow rate above.
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were low and steady, and thus the simulation considered converged(6). The resulting
solution was used as initial conditions for the transient simulations.

3.2.4 Transient Solver Settings

Detached Eddy Simulation (DES) was selected together with Spalart-Allmaras(7) as
the turbulence model(8) for the transient simulation. Additional settings for this
physics model are collected in Table B.2.

A time step of ∆t “ 5 ¨ 10´5 s was chosen. This time step was based on the fact
that wishing to reproduce results from [2], frequencies up to 1,000 Hz needed to be
resolved. This corresponds to a period time of 0.001 s, and 20 steps per period was
recommended to properly resolve this frequency [11]. In addition 10 and 15 inner
iterations per time step were used for the lower and higher velocity case respectively.
With these settings, the continuity residual dropped one order of magnitude within
each time step. Furthermore, controls of pressure and velocity were performed for
some points in the domain to assure that the values stabilized within the time step.

The transient simulations for the stiff plate were started from the initial conditions
described in Section 3.2.3. The settings used for the solver are listed in Table B.5.
A total of 2 s of flow was simulated. The first half second of the simulation time
was considered undeveloped and was hence not included in the post-processing.

3.3 Modelling of Plate
In the rigid plate case, the plate was assumed to be infinitely stiff, and hence no
modelling of the plate was needed. Since experiments show that the vibrations of a
3 mm plate in this case are of such a small magnitude compared to the thickness,
this should be a valid approximation [2].

The flexible plate, with a thickness of 0.5 mm, on the other hand was mod-
elled using the predefined Star CCM+ material Carbon Steel UNSG101000 (ρ “
7832 kg/m3, ν “ 0.285, E “ 200, 000 MPa). The motion of the plate was computed
using the built-in solid stress FE model, for complete settings see Table B.4.

The part of the plate boundary coinciding with the duct wall was assigned a fully
restrained boundary condition.

3.3.1 Computational Mesh
The solid mesh was created using the Tetrahedral Mesher with the Surface Remesher
and, since the plate is indeed thin, the Thin Mesher. A Base size of 0.01 m was
chosen, which is substantially larger than for the surrounding fluid mesh. Mid-side
vertices were added to reduce the stiffness, resulting in second order triangular prism
elements, also called Wedge15 elements. Additional settings are listed in Table A.2.

(6)A total of 1,500 iterations were required
(7)This default Star CCM+ setting implements a variation of DES known as Improved Delayed

Detached Eddy Simulation (IDDES)
(8)With an estimated Re « 87, 000, the flow is clearly turbulent and thus the turbulence has to

be considered
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Using two thin layers resulted in a mesh of 20,811 cells. An overview of the mesh is
presented in Figure 3.6, and a zoomed in view is presented in Figure A.3.

Figure 3.6: The mesh used for the thin solid plate. The plate has the same
orientation as in Figure 3.2.

A mesh indepency study for the plate was carried out, where a static FSI simula-
tion was performed for three different meshes, see Table 3.1, and the displacement of
the plate tip was measured. No significant change in static deflection was observed
when using the finer meshes. Furthermore, it was confirmed that the recommenda-
tion of a cell aspect ratio smaller than 5 was satisfied [11].

Table 3.1: The different meshes investigated in the plate mesh independency study.

No. elements No. thin layers Base size
„ 21000 2 0.01 m
„ 85000 3 0.006 m
„ 240000 4 0.004 m

3.3.2 Modal Analysis
To verify the Star CCM+ model of the plate, a simple modal analysis was per-
formed on the thin plate to find the eigenfrequencies of the model. Since Star
CCM+ does not have any native modal analysis functionality, the following strat-
egy was used: a model of only the plate, with the same computational mesh and
clamped edge boundary condition that would be used in the fluid-structure problem,
was set up. A small, constant surface load(9) was applied to the free surfaces of the
plate for a brief period of time, creating an oscillating motion. When the oscillating
plate was close to an undeflected state, the load was removed, allowing the now ex-
cited plate to vibrate freely. By releasing the plate at this specific moment, it went

(9)Star CCM+ does not support point loads.
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into a multi-modal vibration state allowing examination of the first three modes.
To find the bending modes, the displacement of the tip of the plate was tracked.
The modal vibrations were monitored for 0.047 s, a time which spanned 4 periods
of the dominating mode. Analysis of the movement was performed using the FFT
function in Matlab.

In order to find the torsional modes, two equal loads with opposite direction were
applied; positive for y ă 0 and negative otherwise, where y is defined as in Figure
3.2. The motion was tracked via a point at the plate edge. Otherwise the procedure
was as before. The plate modal vibrations were monitored for 0.048 s and this
included 24 periods of the dominating frequency. The placement of the measuring
probes is visualized in Figure 3.7.

Plate edge Ñ

Ð Tip

Figure 3.7: The placement of the two probes used to capture the plate displacement
for the modal analysis.

3.4 Fluid-Structure Interaction
The fluid-structure interaction simulation was set up using the same settings used for
the previous fluid and solid simulations respectively, as far as this was possible. The
lower velocity ofM “ 0.125 was simulated. The meshes were created as described in
Sections 3.2.1 and 3.3.1, resulting in a total of 9,089,780 cells(10). As opposed to the
stiff plate case, the meshes were now allowed to deform. The motion specification
was set to Morphing for the fluid mesh and Solid Displacement for the solid mesh.
The physics models were also kept the same, as well as the boundary conditions,
with the exception of the regions where the plate and the flow coincide, which were
now treated as interfaces.

3.4.1 Fluid-Structure Interface
For each surface where the fluid and the solid domain are in contact, a Mapped
contact interface was created. This allows for the meshes of the respective domains
to be non-conformal, enabling them to be of different type and resolution. Instead of
(10)9,069,133 cells for the fluid domain and 20,647 cells for the solid domain
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having a direct vertex to vertex match, which would have been difficult to implement
due to the different requirements on the fluid and the solid mesh respectively, the
data is interpolated from one mesh to the other. At the fluid boundary included in
each interface, the Morpher option was set to Floating, and at the corresponding
solid boundaries the option Solid Displacement was chosen.

3.4.2 Initial Conditions
To find suitable initial conditions for the transient FSI simulation, a static simulation
was performed. In this simulation, the fluid domain was treated as in Section 3.2.3,
while for the solid domain a steady solid stress model was used (see Table B.3). Only
one non-default solver setting was used: Morph From Zero was enabled, meaning
that when morphing, the mesh was recalculated from its original state instead of
from the previous mesh solution. The unchanged settings imply that a two way
coupled solver was used: the fluid domain was solved using RANS, and that the
plate was allowed to deflect due to the fluid forces of the steady simulation. Since
the fluid forces were steady, the plate obtained a constant deflection. As before,
the static simulation was run until the residuals were low and steady(11), and the
resulting solution was then used as initial conditions for the transient simulation.

3.4.3 Transient Solver Settings
Changing the physics models of the FSI simulation to DES for the fluid domain and
transient solid stress for the solid resulted in additional solver settings. Since the
simulations are of a low density fluid around a high density solid, a loosely coupled
FSI model was considered sufficient. To implement this, the FSI Displacement
Convergence Tolerance was changed to 1, meaning that data was only transferred
once per time step. Surveying the residuals, and using the same criterion as in
Section 3.2.4, a number of 12 inner iterations was chosen. The complete transient
solver settings are presented in Table B.6. In conformity with the stiff plate case, a
total of 2 s were simulated and the first 0.5 s was disregarded in the post-processing.

3.5 Post-processing
When it was convenient, post-processing was performed directly in Star CCM+.
Otherwise, Matlab was used. Some information regarding the procedures is given
below.

3.5.1 Velocity Profiles
To find velocity profiles downstream of the plate, both space and time averaging
were used. The velocity magnitude of the flow was saved at 21 by 21 equally spaced
monitor points spanning the whole diameter of the duct, see Figure 3.8. In the

(11)1,500 iterations was found sufficient
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Figure 3.8: The grid of probe points used for computation of velocity profiles. The
figure shows the grid used for extraction of a profile in the z-direction, meaning that
the domain is viewed as in Figure 3.1. This also means that y “ 0 for all points.

streamwise direction, the points covered 0.5D upstream and downstream respec-
tively of the coordinate investigated. A total of 200 samples were collected, spanning
a time of 0.1 s. The velocity was then averaged with respect to time and streamwise
direction.

3.5.2 Sound Estimation
To find the generated sound, the pressure average was computed in planes perpen-
dicular to the flow direction. This was done for every time step and for a number of
cross sections both upstream and downstream of the plate. By inspecting the pres-
sure drop around the plate and observing where the pressure had recovered, it was
concluded that planes located at ´2D upstreams and 5D downstreams of the plate
were suitable for sound estimation. This will be developed further in Section 4.3.

The sound estimation procedure started by computing the difference between
upstream and downstream pressure average for every time step. The mean of the
resulting time signal was subtracted, to center the signal around zero. Then the PSD
of the signal was computed using the Welch method(12) and applying a Hanning
window. To achieve correct input data for the method, the signal was divided
into several shorter subintervals, all with a length of 2048 (211) samples, and every
subinterval had a 50% overlap with the next. This results in a total of approximately
28 subintervals.

Since the obtained autospectrum is equivalent to the averaged squared Fourier
transform of the pressure fluctuation, it can then be expressed in dB/Hz using
Equation 2.8. The Matlab code used can be found in Appendix D.

3.5.3 Investigation of the Flow Physics
To better understand different flow features, contour plots of pressure and velocity
in the symmetry plane (where y “ 0) were sampled. Furthermore, pairs of probe
points were placed behind the plate edge. Three pairs of points at varying height and
separated by varying horizontal distances were used. In addition, a single point was
added behind the plate tip. The locations of the points are visualized in Figure 3.9.
(12)The Matlab function pwelch
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The instantaneous pressure in each of the points was sampled, such that the auto-
and cross-spectral densities(13) of the fluctuations could be investigated. From this
the coherence, γ2

xy, could be computed according to Equation 2.23. From the real
and the imaginary parts of the cross-spectral density the phase shift between the
monitor pairs could be found(14).

1
2
3
4

Figure 3.9: The placement of the seven probes used to investigate instantaneous
pressure variations around the plate, seen from two different perspectives. Note that
the two subfigures have the same scale. The graphics were taken from the stiff plate
model, where the plate is represented by void, which explains the dent in the side
view.

The resulting coherence and phase shift data was studied using a location de-
pendent version of the Strouhal number. The characteristic length was given by the
width of the plate at the same height as the corresponding probe pair. The charac-
teristic velocity was given by the inlet velocity, see Figure 3.5, at the y´z-coordinate
of the points. The values are presented in Table 3.2.

Table 3.2: Quantities used to calculate the alternative Strouhal number, Stvar.
The plate width was used as characteristic length and the upstream local velocity
as characteristic velocity.

Point pair Width (`) [m] Velocity (u) [m/s]
1 0.044 45.0
2 0.027 48.8
3 0.010 49.6

(13)The cross power spectral density was computed using the Matlab function cpsd, which like
pwelch employs the Welch method
(14)Using the cross-spectral density as input argument to the Matlab function angle
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4
Results and Discussion

In this chapter, the outcome of the simulations is presented and discussed. First,
some results concerning validation of the numerical model (modal analysis and ve-
locity profiles) are presented. Then, the focus is moved to sound generation. The
stiff and flexible plate cases are compared. As far as possible, comparisons with ex-
perimental results from [1, 2, 3] are also performed. Thereafter some analysis of the
physics in the problem (pressure and velocity) is made. Finally, some more general
discussion treating error sources such as mesh quality, FSI solver performance and
suitability of sound estimation method is included.

4.1 Modal Analysis
The results of the initial modal analysis of the flexible steel plate are presented in
Table 4.1. Frequencies are given in terms of the Helmholtz number(1), which was
computed using half of the maximum plate width as the characteristic length (i.e.
` “ 0.032 m).

Table 4.1: The result of the modal analysis. The reference frequencies are from [2],
where the third column lists the experimental bending modes, and the last column
lists frequencies determined with a commercial finite element software.

Mode Freq. (He) Ref. exp. freq. (He) Ref. FE freq. (He)
1st bending 0.05 0.06 0.05
2nd bending 0.21 0.22 0.20
3rd bending 0.46 0.46 0.46
1st torsional 0.30 - 0.28
2nd torsional 0.74 - 0.69

As can be seen, the three bending modes found in Star CCM+ are in good
agreement with both the experimentally and numerically found reference values.
This indicates that the model behaves as desired. For the torsional modes, the
computed eigenfrequencies differed by approximately 7% compared to the reference
values. However, the reference values for the torsional modes have been computed
using an FE model and there are no experimental results available for comparison.

The fact that the simulated bending modes are in agreement with the experimen-
tal ones is quite promising; if incorrect material properties had been used this would

(1)Helmholtz number He “ 2πf`
a

.
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have affected the characteristic frequencies, making them distinctly different from
the experimental results. The same would be true for a too stiff FE model, however
since a mesh independency study was performed for the plate, see Section 3.3.1,
it is unlikely that this is the case. Therefore it seems probable that the material
properties used is representative of reality.

In addition to the eigenmodes, the plate deflection could be used to confirm
the plate model. However, the only experimental data available for comparison is
dependent on the surrounding flow. Thus, validation of the amplitude could not be
performed within the modal analysis, and will instead be discussed in connection
with the drag coefficient in Section 4.3.1.

4.2 Velocity Profiles

The velocity profile used as inlet boundary condition was first presented in Sec-
tion 3.2.2. To confirm its accuracy, Figure 4.1 shows the profile compared to a
velocity profile measured at x “ ´3D. The two profiles are indeed in very good
agreement.
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Figure 4.1: The normalized inlet velocity profile, also shown in Figure 3.5, together
with experimental data from [2]. Both cases have an upstream centerline velocity
of 50 m/s.

The downstream velocity profiles were calculated according to the description in
Section 3.5.1 at 3D, 6D and 9D downstream of the plate. Measurements were taken
along both the y and z axes. The results for the stiff and the flexible plate, together
with the experimental results of [2], are shown in Figure 4.2 and 4.3 respectively.
Both simulations and experiments have an upstream centerline velocity of 50 m/s.

Note that for all velocity profiles, the experimental data has been extracted man-
ually from Figure 5 and 6 of [2]. The extracted data has been renormalized to
enhance comparability with the simulation data. This means that the experimental
data in Figure 4.2 and 4.3 is an approximation. Since it is only used for visual
comparison, however, the effect of this should be negligible.

26



4. Results and Discussion

0 0.2 0.4 0.6 0.8 1

´0.4

´0.2

0

0.2

0.4

u{umax

y
{
D

x = 3D

0 0.2 0.4 0.6 0.8 1

´0.4

´0.2

0

0.2

0.4

u{umax

z{
D

x = 3D

Experiment
Simulation

0 0.2 0.4 0.6 0.8 1

´0.4

´0.2

0

0.2

0.4

u{umax

y
{
D

x = 6D

0 0.2 0.4 0.6 0.8 1

´0.4

´0.2

0

0.2

0.4

u{umax

z{
D

x = 6D

0 0.2 0.4 0.6 0.8 1

´0.4

´0.2

0

0.2

0.4

u{umax

y
{
D

x = 9D

0 0.2 0.4 0.6 0.8 1

´0.4

´0.2

0

0.2

0.4

u{umax

z{
D

x = 9D

Figure 4.2: The normalized velocity profiles obtained from the stiff plate simulation
together with experimental data from [2]. Both cases have an upstream centerline
velocity of 50 m/s. The legend is common for all plots.
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Figure 4.3: The normalized velocity profiles obtained from the flexible plate sim-
ulation together with experimental data from [2]. Both cases have an upstream
centerline velocity of 50 m/s. The legend is common for all plots.

28



4. Results and Discussion

From Figure 4.2, it seems that in the stiff plate case, close to the plate, the
velocity profiles of the simulation correspond very well to the experiment. This is
promising since the plate is important for the sound and hence accurate physics
close to the plate is required.

Further downstream (at x “ 6D and x “ 9D), the simulated profiles are less
rounded than the experimental ones, meaning that the simulated velocity close to
the wall is higher than in the experiments. The more square velocity profiles indicate
that the amount of turbulence in the flow may be larger in the simulation. This
means that the turbulence is not decaying as quickly as in experiment, probably
due to imperfection in the wall treatment. An investigation of the turbulent kinetic
energy could give increased insight into this, but falls outside the scope of this thesis.

Supposedly the velocity profiles will become more similar further downstream.
Considering that the inlet velocity profile was created with the same settings and
yielded an accurate fully developed velocity profile, the downstream velocity profiles
should approach the experimental ones, as the flow once again approaches a fully
developed state.

Another interesting observation is that the velocity profile in the y-direction at
x “ 9D is slightly asymmetric, which is not expected. It is possible that sampling
the velocity over a longer time span would remedy this problem.

For the flexible plate, Figure 4.3, similar trends can be observed: close to the plate
the profiles coincide well, while further away (x “ 9D) the simulated profile becomes
slightly too square. However, the velocity profile in the z-direction at x “ 3D does
not match the experimental one perfectly; the experimental velocity profile has its
maxima slightly closer to the center of the duct, and shows a more rapid decrease
in velocity as z{D approaches 0.5 than any other profile. It is possible that the
difference is due to some problem in the simulation, however there is also a risk that
the experimental measurements are not as accurate as desired.

Due to the data available, the velocity profile validation can only be performed
for the lower velocity case.

4.3 Pressure Recovery

The plate causes a drop in the pressure in the pipe. Measurements of the average
pressure in cross sections of the pipe at different x-locations allows for investigation
of the pressure drop caused by the plate. Figures 4.4a and 4.4b show the average
pressure as a function of the position in the streamwise direction for the stiff and
the flexible plate respectively. In addition to averaging the pressure over the cross
section, a time average over a time of 0.5 s has been performed.

From Figure 4.4, it is clear that there is a large pressure drop at the location
of the plate. Further downstream the pressure recovers although it does not reach
the upstream pressure level. Before and after the plate, there is a linear pressure
decrease due to friction between the fluid and the pipe wall. This decrease can be
compensated for to obtain the pressure drop caused by the plate. In Figures 4.4c
and 4.4d, the linearly decreasing pressure component has been subtracted. Note
that the pressure curve has also been translated such that the outlet boundary
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(a) Pressure recovery for stiff plate in-
cluding friction loss due to walls.
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(b) Pressure recovery for flexible plate
including friction loss due to walls.
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(c) Pressure recovery for stiff plate when
friction loss has been corrected for.
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(d) Pressure recovery for flexible plate
when friction loss has been corrected for.

Figure 4.4: Pressure recovery in the duct with and without friction loss. The
pressure is spatially averaged over the pipe cross section and since the pressure is
fluctuating a time average over 0.5 s is also performed. The point at 20D was added
manually, since the pressure here is known from the outlet boundary condition.

condition is still fulfilled. Studying the pressure drop, it seems that the pressure can
be considered recovered at x “ 5D.

The fact that the pressure, when friction is disregarded, is constant both before
and after the pressure drop indicates that sufficient upstream and downstream pipe
length has been included to capture the effect of the plate. It also confirms that the
friction loss due to the duct walls is linear, as expected.

4.3.1 Drag Coefficient
Using Figures 4.4c and 4.4d, the pressure loss solely due to the presence of the plate
can be found. From this pressure loss, the drag coefficient CD can be computed ac-
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cording to Equation 2.3 for both the experiments and the simulations(2). The values
are computed for the mean velocity 42.5 m/s, for which there are also experimen-
tal values to compare to. Resulting values are presented in Table 4.2, along with
experimental data from [1]. The experimental procedure included measurements of
pressure loss in an empty duct and in the duct with the plate, for different veloc-
ities. This data was post-processed to find the pressure loss due to the plate; see
Appendix C for details.

Table 4.2: Values for the pressure loss in the pipe for simulation and experiment.
Three different aspects of the pressure loss are given: pressure loss per meter due
to wall friction in an empty pipe, pressure loss due to the plate (when the effect of
wall friction has been corrected for) and drag force based on the plate pressure loss.

Plate Source ∆pempty

∆L [Pa/m] ∆pplate [Pa] CD

Stiff Simulation 187 711 2.01
Experiment 202 629 1.76

Flexible Simulation 186 646 1.83
Experiment 202 549 1.54

It can be concluded that the drag coefficient for the flexible plate is lower than
for the stiff plate for both simulation and experiment. The main reason for this
is probably that the flexible plate is deflected, meaning that the actual projected
area is decreased. However, since this is not considered in the calculations of the
projected area, a lower value of CD is expected.

It is also clear that there is a difference in the predicted drag compared to ex-
periments. This is a consequence of the difference in pressure drop over the plate,
which seems to be overpredicted in the simulations. This could be a result of the
different methods used to find the pressure loss due to friction. The pressure loss per
unit length due to friction in the empty pipe appears to be slightly underpredicted
by simulations. If the pressure loss in the empty pipe is assumed to be the same
as in the experiment, the predicted pressure drop caused by the plate is almost 6%
lower, resulting in a corresponding decrease of CD. However since the experimental
friction pressure loss ∆pempty

∆L is computed using a friction factor that would not be
representative of the simulation model, this method is rejected.

The fact that the predicted pressure loss due to friction in the pipe is too low
indicates once again that the wall treatment might not be entirely correct. That
the pressure drop over the plate is too high is harder to explain. Possibly, a better
wall treatment would improve this too, but there is also a risk that an increase in
friction would contribute to an even higher ∆pplate.

The deflection of the plate is never stated explicitly in [1] or [2], but the drag
coefficient can also be used to analyze the deflection of the flexible plate. Introducing
a flexible plate leads to a decrease in CD of 12.5% in the experiments, and to a
decrease of 9% in the simulations. Since the drag coefficient decreases more for
experiments it is reasonable to think that the deflection is underpredicted by the
FSI simulation.

(2)Calculations of and values of constants can be found in Appendix C.2
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4.4 Flow Induced Plate Vibrations

For the modal analysis presented in Section 4.1, the flexible plate was excited by
an applied body load and allowed to vibrate freely, unaffected by other forces: a
situation comparable to vacuum. In the FSI simulation on the other hand the plate
is excited by the surrounding air, which can also dampen the induced vibrations.
This might affect the behaviour of the plate.

Studying the displacement of the plate tip, see Figure 4.5, there is an obvious
variation of amplitudes present. Large amplitudes appear to correspond to a specific
frequency, while for small amplitudes it is obvious that other, higher, frequencies
are also present. Note that the amplitude of the oscillations keeps varying in the
same way as visualised in Figure 4.5 during all of the time simulated. Also note
that no pattern regarding the shift from small to high amplitudes or vice versa was
observed.
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Figure 4.5: The displacement of the tip of the plate for a short period of time,
chosen to show the great variation in amplitude present. The pattern of irregular
changes in amplitude continues troughout the simulation.

In the same way as for the modal analysis, the frequencies with which the plate
vibrates is computed. The frequencies are compared to experimental reference fre-
quencies in Table 4.3(3). The eigenfrequencies still seem to coincide well with the
experimentally found bending modes, which indicates that the flow will cause the
plate to vibrate at its eigenfrequencies. Since the deflection of the plate tip, which is
located at the plate symmetry line, was used for analysis, possible torsional modes
could not be found.

The displacement can also be analyzed with respect to extrema, mean and am-
plitude, see Table 4.4. In [2] it is estimated that the oscillations have a magnitude of
approximately 0.4 mm. In Table 4.4 the maximum amplitude is presented. Given the
variation in amplitude it is clear that the mean amplitude is smaller than 0.53 mm,

(3)This table can also be compared to Table 4.1, which lists the eigenmodes from the modal
analysis
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Table 4.3: The vibration frequencies of the plate. Experimental reference frequen-
cies from [2].

Frequency (He) Ref. frequency (He)
1st bending 0.05 0.06
2nd bending 0.21 0.22
3rd bending 0.50 0.46

and probably not too far from 0.4 mm. This suggests that the simulation quite
accuratley predicts the amplitude of the vibrations.

Table 4.4: The mean, maximum and minimum displacement of the plate tip, and
the consequent maximum amplitude of vibrations. All values are given in mm.

Mean Max Min Amplitude
2.46 2.72 2.19 0.53

As mentioned in Section 4.3.1 the plate tip displacement was not explicitly stated
in any of the experimental studies, but the drag coefficient analysis indicated that
the deflection was too small for the simulations. In Figure 9 of [2], an image of the
plate in an undeflected and a deflected state is shown. From this a crude estimate
of the tip displacement was found to be around 3 mm. This confirms that the
simulated deflection of approximatly 2.46 mm is probably somewhat too small.

4.5 Sound Generation
In Figure 4.6, the sound spectrum for the stiff and flexible plate respectively is
presented and compared to experimental values from [3]. The frequency is given in
terms of the Strouhal number(4), which is computed using the same characteristic
length as for the Helmholtz number (` “ 0.032 m) together with the mean velocity.
For the simulations the velocity is computed from the mass flow rate, giving umean “

42.5 m/s, while for the experiments, the mean velocity is obtained by scaling the
centerline velocity (52 m/s) by a constant factor of 0.82 [1]. The difference in
frequency resolution between the simulations and the experimental measurements
is a result of the difference in signal length: in the experimental case, a signal of
around 10 s was available whereas in the simulation, the signal analyzed spans 1.5 s.

From Figure 4.6a it can be noted that the sound estimate from the simulation of
the stiff plate corresponds well to the experimental measurements regarding level.
The experimental maximum at St « 1.2 is also fairly well predicted by the simula-
tion, although it is somewhat overpredicted and has its peak at the slightly higher
frequency of St “ 1.3.

Moving on the the flexible plate in Figure 4.6b, it is remarkable that the clear
dip in sound around St « 1.9 is not captured by the simulation. Instead there seems
to be a peak in the sound spectrum at this frequency, resulting in a significantly

(4)Strouhal number St “ 2πf`
u
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Figure 4.6: The PSD sound estimate as a function of the frequency for M “

0.125. The experimental result is given by the sum of the upstream and downstream
components, Gs

11`G
s
22, from [3]. Frequency resolution for the simulation is 9.77 Hz.

different level between the cases. For higher frequencies (St ě 2.5) the levels coincide
better. The peak at St “ 1.2 is fairly well predicted, although once again slightly
overpredicted and with a minor shift in frequency.

The fact that the mechanism behind the reduction of sound at St « 1.9 is un-
known makes it difficult to speculate about the reasons behind the absence of a dip
in the simulation result. It could be due to a problem in the simulation set-up, but
it could also be caused by some shortcoming of the numerical solver, or an inability
in the sound estimation method to capture this specific phenomenon. The error
sources will be discussed continuosly in the remainder of the chapter.

To evaluate whether the flexible plate reduced the sound compared to the stiff
plate, the spectra from both simulations are presented together in Figure 4.7. The
difference between the two cases is much smaller than expected. The experimental
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results show that the sound level is generally 1-2 dB lower for the flexible case. This
difference might be explained by the deflection of the plate, decreasing the size of
the intruding object when projected in the streamwise direction. The fact that the
difference is not larger between the simulation cases indicates, once more, that the
deflection is too small.
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Figure 4.7: The PSD sound estimate as a function of frequency, for the stiff and
flexible plate simulations, M “ 0.125. The frequency resolution is 9.77 Hz.

4.5.1 Sensitivity to Downstream Measurement Location
As a complement to Figure 4.6, Figure 4.8 shows sound spectra computed from a
number of different downstream cross sections together with experimental data for
the stiff plate. From this, it is obvious that choosing the correct location for the
measurement is essential. The same trend of decreasing levels are present in the FSI
simulation, with the addition that around St “ 5, the level of sound estimated close
to the outlet climbed in dB, approaching the levels measured close to the plate; the
reason for this is still unclear.

As mentioned in Section 2.4.4, the wave propagation speed in an incompressible
flow simulation can be assumed to be infinite. Accordingly, the sound estimation
was expected to give the same result independently of the upstream and downstream
pressure measurement location chosen, as long as the measurements are taken out-
side of the pressure drop region. As mentioned earlier, it can be concluded from
Figure 4.4 that the drastic drop in pressure caused by the plate has recovered at
x “ 5D. Therefore it is assumed that the pressure drop induced by the plate is not
the only factor affecting the sound level.

It is clear that the further downstream of the plate the measurement plane is
placed, the lower the sound level. From x “ 5D to x “ 9D, there is a difference of
approximately 6 dB. As the distance from the plate increases, the difference in levels
between computed sound spectra decreases; it was noted that for 12D, 15D and 18D
the sound curves coincide. However with the outlet located at 20D, it cannot be
ruled out that the decreasing difference in sound level is a boundary effect.
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Figure 4.8: The PSD sound estimate for the stiff plate, M “ 0.125, for differ-
ent downstream measurement locations. Upstream measurements were taken at
x “ ´2D. A low frequency resolution (39 Hz) was chosen for the simulation, to
emphasize level difference. The experimental result is the sum of the upstream and
downstream component, Gs
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22.

The decreasing sound levels cannot be explained by the friction loss in the duct.
The friction loss only affects the mean pressure, and in the sound estimation the
mean is subtracted, leaving only fluctuations.(5)

It is possible that the decrease in level stems from hydrodynamic effects, de-
creasing with the downstream location as the turbulence eventually dies out. The
difference in sound level between any two consecutive measurement planes in Fig-
ure 4.8 is approximately the same for all frequencies. Since dB is a logarithmic
quantity, this indicates that the pressure fluctuations decrease by a factor rather
than a constant; a decrease with any other appearance would affect the shape of
the sound curves, changing it as the distance from the plate increases. This means
that the decaying quantity has the same frequency spectrum as the sound genera-
tion mechanism. Consequently, if the decrease in sound level is due to turbulence,
the turbulence must have the same frequency spectrum as the sound generation
mechanism.

Another possible explanation is that the difference in level comes from some
type of unphysical numerical efffect. To decrease the impact of such effects, the
measurements should be taken as close to the plate as possible when the pressure
has recovered. This is somewhat confirmed by Figure 4.8, where measurements close
to the plate agree best with experiments. This study was limited by the fact that
cross sections had to be created before the simulations. It is likely that the optimal
cross section is located somewhere between the ones available.

A similar investigation as in Figure 4.8 was made for different upstream pressure
measurement locations, however this showed that the upstream location does not

(5)For further details on how the sound was estimated, see Appendix D
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significantly affect the sound estimate with respect to level or appearance. It can be
concluded that the pressure drop begins after x “ ´1D, thus allowing for pressure
estimation at any point further upstream.

4.5.1.1 Standard Deviation of Fluctuations

The sound level computed is connected to the amplitude of the pressure fluctuations,
which can be quantified by means of the standard deviation σ. To further analyze
the decrease in sound level the standard deviation for different cross sections is
shown in Figure 4.9.
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Figure 4.9: The standard deviation of the pressure fluctuation as a function of the
measurement location, for the simulation of the stiff plate, with M “ 0.125. The
corresponding mean value can be seen in Figure 4.4a.

Upstream of the plate the standard deviation is approximately constant, σ « 8.
Directly after the plate, the pressure fluctuation amplitude is drastically increased.
However further downstream the fluctuation rapidly decreases, and the standard
deviation reaches a new and lower constant level of σ « 5. The behaviour of the
standard deviation resembles the behaviour of the pressure recovery, Figure 4.4:
where the pressure drop is large, the standard deviation is also large, and vice versa.
A difference is that the pressure drop has recovered at x “ 5D while the standard
deviation stabilizes further downstream.

The standard deviation appears to be related to the difference in sound levels in
Figure 4.8. Not only are they both decreasing downstream of the plate, the standard
deviation also becomes constant around the location where the sound levels start to
coincide. Above, it was mentioned that that this could be an effect of the outlet.
The fact that the standard deviation approaches σ “ 5 Pa somewhat contradicts
this, since at the outlet the pressure is set to be constant and equal to zero, and
hence the deviation must also be zero at the outlet.
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4.5.2 Impact of Time Signal Length
The length of the time signal analyzed affects the results. In theory, the longer the
time signal, the more accurate the estimate of the sound spectrum. It also means
that longer time windows can be used, improving the frequency resolution.

To investigate how sensitive the spectrum is to the length of the time signal,
computed spectra for three different signal lengths is presented in Figure 4.10.
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Figure 4.10: Investigation of the impact of signal length on the sound spectrum.
The signals were taken from the simulation of the stiff plate at M “ 0.125. The
time in the legend is the total sample time used for analysis, and does not include
the discarded first 0.5 s.

In general, the three spectra are quite similar both in terms of sound level and
appearance. The shorter signal, with a length of 1 s, has larger variation. This
is due to the low number of time sequences, nd, available for computation of the
autospectral density given that the sample length was kept constant at 2048 samples.
If anything, using a longer signal will make the spectrum even smoother and no new
peaks or dips in sound are thus to be expected for a longer time signal, as long as
the frequency resolution is not changed. The 1.5 s signal lenght, which has been
used for the majority of the analyses in the report, is therefore assumed long enough
to aviod major errors.

4.5.3 Comparability to Experiments
The method used to estimate the sound spectrum in the experimental studies is not
applicable to simulation counterparts. Hence, the sum of the upstream and down-
stream experimental sound measurements was chosen for comparison, as described
in Section 2.4.5. In the previous numerical studies, however, there is no consensus
regarding which experimental sound quantity to compare to. In Figure 4.11 the
different experimentally measured sound estimates are compared to the simulated
sound. Note that since the summation is done before the conversion to dB, the
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difference between the compontents and their sum is fairly small. In this figure, the
simulated sound and the sum of the experimental sound components are in good
agreement.
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Figure 4.11: The experimentally measured upstream, downstream and total gen-
erated sound. Data from [3]. The sound estimate from the stiff plate simulation at
M “ 0.125 is included for comparison.

4.5.4 Scalability with Velocity
Experimental studies show that if the sound is scaled by u4

mean, the sound curves
for different mean velocities coincide [3]. To confirm the validity of this, a second
velocity (M “ 0.188) of the stiff plate case was simulated. Once again, the velocity
choice is motivated by the existance of corresponding experimental data.

The increased velocity might change the pressure field in the duct, and hence the
location of the cross section suitable for pressure measurements. However, studying
the pressure recovery in the same way as in Section 4.3, it was concluded x “ 5D
was a suitable choice also for this simulation. It can also be noted that although it
recovered as rapidly, the pressure drop was increased for the higher velocity.

The resulting sound estimate is presented in Figure 4.12, toghether with equiva-
lent results for the lower velocity of M “ 0.125. The unscaled sound estimates are
shown in Figure 4.12a, whereas Figure 4.12b presents the sound estimates scaled by
the mean velocity to the power of four.

From Figure 4.12b, it can be concluded that the scaled sound curves coincide
very well. Hence, it seems as if the simulated sound can also be scaled by u4

mean.
Remembering that dB is a logarithmic quantity makes the results even more remark-
able. In the unscaled figure the higher velocity is also approximatly 6 dB louder,
corresponding to a noise which is four times louder. After the scaling the difference
is much smaller.

It is also interesting to note that, when plotting the frequency in terms of the
Strouhal number, the trends of the sound curves coincide well. This would not have
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(a) PSD sound spectra for the stiff plate.
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Figure 4.12: Investigation of scalability of PSD sound estimate by mean velocity,
for two velocities for the stiff plate case. The frequency resolution is 9.77 Hz in both
cases.

been the case if the frequency had been expressed in Hertz, and indicates that a
broadband noise peak at St « 1.3 is expected nonwithstanding of the mean flow
velocity used.

4.6 Flow Physics
As a first step in the investigation of the flow, the Mach number is computed.
In Section 3.2.2 the Mach number was computed as M “ 0.125. However, this
number is based on the mean velocity. To rule out compressibility effects, the Mach
number based on the maximum velocity in the domain is needed. This is found in
the narrow passage created by the plate and is approximately 94 m/s, which gives
M “ 0.28. Recalling that M ă 0.3 is the recommended threshold, see Section 2.1,
incompressibility is a valid approximation in the whole domain for the case with the
low velocity.

For the case with the higher velocity, the mean Mach number is M “ 0.188 but
the maximum velocity is higher, M « 0.41. This exceeds the threshold of M “ 0.3
for the incompressible flow assumption, meaning that results obtained from this
simulation should be studied with some caution.

4.6.1 Velocity and Pressure Fields
In Figure 4.13, 2D contour plots of pressure and velocity in the symmetry plane of
the stiff plate simulation with M “ 0.125 are presented. The fields illustrate the
chaotic behaviour of turbulence in the wake behind the plate quite well. Comparing
the two subfigures, it is also clear that there is a large variation in the velocity and
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pressure fields with time. In Figure 4.13a, a periodic creation of small low pressure
areas after the plate can be noted, while in Figure 4.13b, there is a single large area
of low pressure. The pressure is coupled to the velocity, meaning that also high
velocity areas vary in size and distribution. However, even when investigating a
large number of instantaneous velocity and pressure fields, recurring patterns that
could be linked to the sound generation are not visible to the naked eye. Further
analysis of possible noise generation mechanisms can be found in Section 4.6.2.

(a) Instantaneous pressure (top) and velocity (bottom) at t “ 1.9188 s

(b) Instantaneous pressure (top) and velocity (bottom) at t “ 1.9366 s

Figure 4.13: Pressure and velocity fields for the stiff plate at the symmetry plane
of the domain (y “ 0), for two different time steps. The mean Mach number is
M “ 0.125. Values above the maximum or below the minimum of the colour scale
is shown as the maximum or minimum value respectively. Only a section (x « ´2D
to x « 7D) of the domain is included. The gray vertical line marks x “ 5D.

A closer look at the pressure contours reveals that the spatial variation in pressure
downstream of x “ 5D is barely visible, especially in comparison with the variation
before this coordinate. This indicates that x “ 5D is not too close to the plate and
can be chosen as the downstream measurement location.
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4.6.2 Sound Generation Mechanisms

It has been concluded that the plate contributes to the sound generation, see e.g.
[1]. Since visual inspection does not reveal the mechanisms behind the sound gen-
eration, a more quantitative investigation of the pressure around the plate is made.
The autospectral density is analyzed in some points just behind the plate edge, as
described in Section 3.5.3. The autospectral densities for the points is presented
in Figure 4.14. From the cross-spectral densities, the coherence and phase shift of
the two signals (left and right point) of each pair are calculated, see Figure 4.15.
For both figures, the x-axis has been limited to a range of Strouhal numbers where
something of interest can be observed.
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(a) Pressure fluctuation spectra from two pairs of measurement points placed close
to the base of the plate. Their positions are visualized in Figure 3.9.
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(b) Pressure fluctuation spectra for the last point pair and the single point at the
tip of the plate.

Figure 4.14: Investigation of pressure fluctuations in points close to the stiff plate
by autospectral density. Index m denotes middle, r right and l left. The dashed line
marks the peak in the simulated sound estimate. Both plots have the same axes for
easy comparison.

In Figure 4.14a a trend can be observed. Here, all autospectra have a peak at St “
2, indicating that this is a dominating frequency. The fact that the peak magnitude
is lower in point pair 1 is probably due to wall effects. Studying corresponding
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(a) Point pair 1, defined as 1 in Figure 3.9.
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(b) Point pair 2.
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(c) Point pair 3.

Figure 4.15: Investigation of pressure fluctuations in points close to the stiff plate,
in terms of coherence and phase shift. Indices r and l denote right and left re-
spectively. For the phase shift the absolute value is used, and values correspond-
ing to very low coherence have been removed. The top x-axis shows St based on
` “ 0.032 m and u “ umean as in previous figures, while the bottom x-axis shows
a Strouhal number Stvar that is dependent on plate width and local velocity, see
Table 3.2. The dashed line marks the peak in the simulation sound estimate. The
legend is common for all subplots.
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coherence and phase shift, Figure 4.15a and 4.15b, it can be noted that there is a
phase shift of about 180˝ at this frequency for both point pairs.

Studying the phase shift in Figures 4.15a and 4.15b, common behaviours can be
found when scaling with the alternative Strouhal number. For 0.5 ă Stvar ă 1 the
phase shift is 0˝, meaning that the pressure fluctuations are in phase. Above this
the phase shift is instead 180˝ indicating that the pressure fluctuations are now in
antiphase. In the last coherence plot, Figure 4.15c, this trend is not seen. However,
it should be noted that the coherence is relatively low in all figures.

Moving on to Figure 4.14b, and point pair 3, the peak around St “ 2 has become
considerably lower, such that this is no longer a clearly dominating frequency. In-
stead, a broadband spectrum between the Strouhal numbers 1 and 2.2 has emerged.
Comparing with the coherence in Figure 4.15c it is obvious that a new peak, with
a stronger coherence has emerged at St « 1.2. This peak was present already in
Figure 4.15b, and it is in phase. Another interesting observation in Figure 4.15c is
that the phase shift for St “ 2 has changed, and is now approximately 90˝ instead
of 180˝, although the coherence is fairly low.

The furthest downstream monitor location has only a single point, since the pairs
of points meet there. Having only one point, it is not possible to calculate the cross-
correlation or coherence, but the autospectral density shows that the broadband
spectrum is still present, see Figure 4.14b. Its highest peak is centered around
St « 1.3, which is the same frequency as the peak in the estimated sound spectra
for the stiff plate, see Figure 4.6a.

The periodicity and the antiphase behaviour shown in Figure 4.14a is probably
the effect of a von Kármán vortex street. It is characterized by periodic shedding,
where vortices are alternately created at the opposite edges of the body. When the
plate width decreases, towards the tip, the horizontal distance between the points
in a pair also decreases. It is possible that this decrease in distance is causing the
decrease in phase shift. Instead the dominating sound frequency emerges behind
the plate tip. This could indicate that this is where the peak in the sound spectrum
arises.

A similar investigation was made for the flexible plate. It showed no major
differences compared to the stiff plate case. However, as seen in Figure 4.16, the
autocorrelation of the point near the middle of the plate shows that the noise content
at the peak at St « 2 is slightly reduced when a flexible plate is introduced. The
peak also has a more broadband character.

4.7 Fluid Mesh Strategy and Dependency
For the geometry at hand it was unexpectedly difficult to create a high quality
mesh. The tip and the back of the plate near the wall are areas in which the normal
automated mesh tools perform poorly unless a number of additional settings are
made.

The plate tip is a very important region; the velocity is high and it is presumably
important for sound generation. The difficulty in creating a well performing mesh
stems from the sharp corner at the plate tip causing problems in the prism cell
generation. As mentioned in Section 3.2.1, it was found that the Advancing Layer
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Figure 4.16: Pressure fluctuation spectra for the flexible plate case, from two pairs
of measurement points placed at the base of the plate. The position of the pairs is
visualized in Figure 3.9.

Mesher created fewer skew or disproportionally large cells than the more commonly
used Prism Layer Mesher, and therefore it was used.

In the other problematic area, at the plate back just where the plate meets
the wall, prism cells with large skewness or poor aspect ratio tend to form. From
a numerical perspective, it is problematic if the combined center of mass of two
adjacent cells is not located within the cells in question. This problem was indeed
present here, and might have been the cause of divergence problems experienced.
Using the Advancing Layer Mesher the only way found to remedy the cell quality
problems was to drastically lower the cell size in the region. Since the flow has a very
low velocity here, and therefore probably does not contribute much to the general
flow, the refinement was kept at a level as moderate as possible(6).

An alternative solution to both mesh problems mentioned could be to round off
complicated sharp edges. This was considered, but the technique has a number of
drawbacks. First, a change in the geometry would constitute a source of error when
comparing to results from the experimental study. Secondly, it would complicate
the setup of the flexible plate case, since the plate and fluid surfaces at interfaces
would not have a 100% match.

Initially, two meshes of different cell count were created, to investigate the in-
dependence of the solution with respect to the mesh. Unfortunately, the less fine
mesh resulted in divergence, probably due to numerical effects. Thus only the finest
mesh was used for simulations. This mesh, as mentioned in Section 3.2.1, contained
almost 107 cells and the simulations were carried out using a cluster with 120 CPUs.
With a recommendation of 105 cells per CPU, there was thus quite limited room for
further refinements without drastically increasing the required simulation time [11].

4.8 Star CCM+ Fluid-Structure Interaction
Given the difference in sound generation of the FSI simulation and the experimental
results, see Section 4.5, some aspects of the solver were studied further.

(6)For a visual representation, see Figure A.2
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In the plate mesh independency study, described in Section 3.3.1, all meshes gave
a deflection of almost 2.4 mm. The conformity in deflection indicated that the plate
mesh used was fine enough. Since the modal analysis performed (see Section 4.1)
confirmed that the material properties of the solid were reasonable, it seems that
the model of the plate should not be the reason for the unexpected results.

Even if the plate model is assumed to be accurate, there are still doubts regarding
the correctness of the plate displacement, which as discussed in Section 4.3.1 appears
to be at a bare minimum compared to the value estimated from [2]. The problems
might be caused by an inaccurate load from the surrounding flow. Thus, a study
on how the fluid mesh refinement affected the displacement was performed. In the
study the fine fluid mesh used for simulation was compared to a much coarser test
grid, with a base size of around 0.0018 m around the plate(7). Once again, a static
FSI simulation was performed, and no difference in plate deflection was found.

However, the cell size is not the only important parameter in creating an adequate
mesh. It is also important that the cells have a reasonable aspect ratio, that the
difference in volume between adjacent cells is acceptable etc. The mesh must remain
high quality also when it is recomputed due to the plate motion. In Star CCM+,
it is possible to always recompute the mesh starting from its original state instead
of from the previous mesh, an option called Morph from Zero. The effect of this
option was evaluated by comparing two transient simulations on a coarse test mesh.
The simulations were identical except for the activation of Morph from Zero, see
Figure 4.17. The option proved to have a clear impact on the plate vibration. At
first, the difference is small but as the solver advances, the solutions differ more and
more. Since the difference is non-negligible and Morph from Zero is recommended
for periodic motions [11], and thus in our case presumably more exact, it was used
in the simulation from which the flexible plate results are extracted. It can also be
noted that the option had negligible impact on the computational time for the test
case.

Another option in the FSI solver is to make the problem strongly or weakly
coupled, see Section 2.3. A weakly coupled approach was chosen, since this should
in theory be sufficient and reduce the computational time. For verification, an
investigation similar to the one on Morph from Zero was performed. The result
showed that there was no significant difference in plate tip displacement depending
on whether a strong or a loose coupling was chosen, but that the weakly coupled
case required less simulation time.

Even after investigation of the above settings, the results indicate that the plate
does not deflect as much as expected. One possible explanation is that the plate
model is too stiff, which can occur if the solid mesh quality is low. However, as
mentioned in Section 4.1, a too stiff plate model would also affect the modes, which
were confirmed to be accurate. Additionally, the mesh independency study suggested
that the plate mesh used was fine enough. Another explanation could be that the the
flow is incorrectly predicted, which would in turn affect the plate, but no indications
of this were found. Finally, the explanation to the underpredicted deflection might
be a problem in the FSI solver, possibly with the transfer of forces at the interfaces.

All in all, though the plate displacement is smaller than desired, the FSI has
(7)The fine mesh used has a Base size of 0.001 around the plate
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Figure 4.17: Effect of Morph from Zero on tip displacement. The two cases were
started from an identical FSI simulation on a coarse test mesh. The option Morph
from Zero was enabled in one of the cases around t “ 1.425 s.

predicted the plate motion accuratley. Fundamental frequencies, which are probably
more important for the problem at hand, were captured and agreed with the available
reference values.

4.9 Validity of the Dipole Sound Approximation
Assuming that the Star CCM+ FSI solver accurately captures the physics of
the flexible plate problem, the discrepancy in estimated sound between simulations
and experiments must be caused by some other factor. Although the dipole sound
approximation (Equation 2.18) seems to be valid in the stiff plate case, it is not
sure that it is applicable to the flexible plate case. It might be necessary to use the
regular, unsimplified, version of Curle’s equation or another method to capture the
sound reduction.

The dipole approximation used is a greatly simplified method for sound esti-
mation. The fact that this crude estimation cannot capture all sound generation
mechanisms does not seem improbable. Apparently, a mechanism which is not
present in the stiff plate case causes a reduction in sound for the flexible plate case.
By analyzing the approximation with respect to uncapturable mechanisms some
understanding of the sound reduction can still be obtained.

The results indicate that the sound source term which can be captured by the
dipole approximation, is uncoupled to the plate movement. Hence the plate move-
ment can be introduced without affecting the sound estimation. If anything it seems
like the flexible plate has a sound increase effect at the expected sound reduction
frequency.
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Conclusion

Using Star CCM+ and applying the dipole sound approximation, it is possible to
accurately predict the sound generated by a stiff vortex mixer plate. However, it
was found that it is essential to measure pressure fluctuations with great attention,
since the results are heavily dependent on measurement location. It is also possible
to accurately predict the velocity profiles in the duct. Indications of the dominating
sound frequency being generated near the plate tip were found.

Furthermore, the Star CCM+ Fluid-Structure Interaction solver performs well
when it comes to solving the flow induced vibration of the plate, but slightly under-
predicts the defelction. For the flexible plate, the estimated sound does not include
trends expected from the experimental results, which might be due to the applica-
tion of the dipole sound approximation. It was also found that when scaled with
velocity the PSD sound estimates, as a function of the Strouhal number, coincides
for simulations with different mean velocity.

5.1 Future Work
Given the doubts regarding the use of the dipole sound approximation in the flexible
plate case, a first step might be to run an additional FSI simulation, and use for
example the original Curle’s analogy to estimate sound to see if the sound reduction
can be captured. Another valuable supplement to the present work would be the
performance of a fluid mesh independency study. It could also be interesting to test
different turbulence models and see if the wall treatment can be improved.
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Appendix

A Mesh Details
All settings made in Star CCM+ to generate the meshes used in the thesis, and
some additional graphics, are presented below.

Table A.1: All customized settings done to accomplish the mesh in the fluid do-
main. For definition of plate surfaces see Figure 3.3.

Parameter Settings
Meshers Surface Remesher

Polyhedral Mesher
Advancing Layer Mesher

Default controls Base size: 0.002 m
Surface Growth Rate: 1.2
Number of Prism Layers: 14
Prism Layer Total Thickness: 100% of base size
Prism Layer Stretching: 1.4
Mesh Density Growth Factor: 0.5

Volume control, refinement Surface Remesher: Enabled
cylinder Customize Polyhedral Mesher: Enabled

ë Custom size: 50% of base size
Volume control, cylinder Surface Remesher: Enabled
with increased mesh size Customize Polyhedral Mesher: Enabled

ë Custom size: 120% of base size
Surface control, plate front Surface Remesher: Enabled

Target Surface Size: 25% of base size
Number of Prism Layers: 13
Prism Layer Total Thickness: 50% of base size

Surface control, plate back Surface Remesher: Enabled
Target Surface Size: 25% of base size
Number of Prism Layers: 11
Prism Layer Total Thickness: 50% of base size

Surface control, plate edges Surface Remesher: Enabled
Target Surface Size: 25% of base size
Number of Prism Layers: 11
Prism Layer Total Thickness: 50% of base size
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Figure A.1: Fluid mesh in three cross sections, to the left the fine mesh of the
area near the plate, in the middle the mesh used in the majority of the domain and
to the right the coarse mesh close to the outlet.

Figure A.2: Zoom in of the mesh around the problematic areas for the flexible (0.5
mm) plate: the intersection of the plate and the pipe where some poor quality cells
were located (left) and the region around the plate tip (right). The mesh is oriented
as in Figure 3.4. The same scale is applied to both subfigures.

Table A.2: All customized settings for creation of mesh in the solid domain.

Parameter Settings
Meshers Surface Remesher

Tetrahedral Mesher
Thin Mesher

Default controls Base size: 0.01 m
Number of Thin Layers: 2
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Figure A.3: The solid mesh seen from the top corner of the plate.
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B Detailed Simulation Setup Parameters
The following settings were made for the different simulations in Star CCM+.
The physics model governs certain properties of and methods used on a continuum,
while details regarding how the discretized equations are solved are set under solvers.
Where no value or setting is specified, the default was used.

B.1 Physics models

Table B.1: Steady simulation model (RANS) used to obtain initial conditions for
transient simulation.

Model Settings
Three Dimensional
Steady
Gas Air
Segregated Flow
Gradients
Constant Density
Turbulent
Reynolds-Averaged Navier Stokes
K-Epsilon Turbulence
Realizable K-Epsilon Two-Layer
Exact Wall Distance
Two Layer All y+ Wall Treatment
Cell Quality Remediation
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Table B.2: Transient simulation physics model: Detached Eddy Simulation.

Model Settings
Three Dimensional
Implicit Unsteady
Gas Air
Segregated flow Convection scheme: Hybrid MUSCL 3rd

order/CD
Secondary gradients: Enabled

Gradients Limiter method: Use TVB Gradient Lim-
iting
Acceptable field variation: 0.15

Constant Density
Turbulent
Detached Eddy Simulation
Spalart-Allmaras Detached Eddy
Exact Wall Distance
All y+ Wall Treatment
Cell Quality Remediation

Table B.3: Physics model settings for static solid simulations.

Model Settings
Three Dimensional
Solid Carbon Steel, UNSG101000
Solid Stress
Linear Isotropic Elastic
Steady
Fluid Structure Coupling

Table B.4: Physics model settings for transient solid simulations. ˚Used for FSI
simulations only, i.e. not in the modal analysis.

Model Settings
Three Dimensional
Solid Carbon Steel, UNSG101000
Solid Stress
Linear Isotropic Elastic
Implicit Unsteady
Fluid Structure Coupling˚
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B.2 Solvers

Table B.5: Solver settings for the transient stiff plate problem.

Solver Settings
Implicit Unsteady Time-Step: 5 ¨ 10´5

Temporal Discretization: 2nd-order
Segregated Flow

Velocity Under-Relaxation Factor: 0.7
Pressure Under-Relaxation Factor: 0.7

AMG Linear Solver, Max Cycles: 50
AMG Linear Solver, Cycle Type: F-cycle

Table B.6: Solver settings for the transient FSI problem.

Solver Settings
Implicit Unsteady Time-Step: 5 ¨ 10´5

Temporal Discretization: 2nd-order
Fluid Structure Interaction Method: Two-Way

FSI Displacement Convergence Tolerance:
1

Mesh Morpher Morph From Zero: Enabled
Segregated Flow

Velocity Under-Relaxation Factor: 0.7
Pressure Under-Relaxation Factor: 0.8

AMG Linear Solver, Max Cycles: 50
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C Drag Coefficient Calculations

C.1 Experimental Drag Coefficients
The drag coefficient values from the two experimental studies [1, 2], although beyond
reasonable doubt computed from the same pressure drop values, differ by a factor
of 0.8. In addition to this, possible errors were detected in the computations in
[1]. After concluding that the scaling in [2] most probably did not compensate
for this, a decision was made to recompute the drag coefficients using the pressure
drop measurements, see Table C.1. The drag coefficients from the simulations were
then compared to the recomputed drag coefficients instead of the ones given in the
mentioned sources.

Table C.1: Experimental measurements of pressure loss in an empty plastic pipe
over a length ∆L “ 3.081 m. Values from [1].

Centerline velocity [m/s] Pressure loss [Pa]
29.0 210
34.7 290
58.0 770
68.0 1060
84.5 1600
102.0 2320

Using the pressure loss measurements for the empty plastic pipe and assuming
that the loss is caused by friction, the friction factor can be computed according to

cf “
∆pD

2ρu2∆L (C.1)

where the velocity used is the mean velocity, in this case given by the centerline
velocity times a scaling constant of 0.82, and D “ 0.09 m is the diameter of the
duct. In this case the density ρ “ 1.2 kg/m3 [1]. The equation gives different friction
factor values for the different velocity measurements. Evaluating all velocities, the
mean friction factor is cf “ 4.21 ¨ 10´3. Solving Equation C.1 for ∆p for the mean
velocity of interest, the pressure loss due to friction is found. Subtracting this from
the total pressure loss, the decrease in pressure due to the plate is obtained. The
results for the cases of interest are collected in Table C.2.

C.2 Projected Area
A correctly calculated projected area Aproj is key to obtain a comparable drag coeffi-
cient. Aproj can be seen as the sum of a triangular surface and a circle segment. Using
the measurements from Figure C.1, the area of the triangular part is 1.52¨10´3 m2.
The circle segment area is computed from

AcircSeg “
r2

2 pα ´ sinαq (C.2)
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Table C.2: The pressure losses obtained for the cases where simulation data to
compare with exist. ∆ptotal is the pressure loss measured. ∆pfriction refers to the
pressure loss due to wall friction for the specific velocity, calculated via cf . Finally
for ∆pplate the pressure loss wall friction has been subtracted from the total pressure
loss.

Plate thick- Centerline Mean velocity ∆ptotal ∆pfriction ∆pplate
ness [mm] velocity [m/s] [m/s] [Pa] [Pa] [Pa]

3 51.9 42.56 1250 626.60 623.40
0.5 52 42.64 1170 620.71 549.29

45

64

90.45˝

[mm]

47.39

Figure C.1: The plate as it appears when projected in the streamwise direction.
The dashed lines mark reference lengths used to compute the area. The height
of 47.39 mm was computed using the dimensions and the angle of the plate, see
Figure 3.2.

where α is the midpoint angle (see Figure C.1) expressed in radians. The area
of the circle segment becomes 5.89 ¨ 10´4 m2. This gives a total projected area
Aproj “ 2.1 ¨ 10´3 m2. The projected area of the duct is Aduct “ 6.36 ¨ 10´3 m2.
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D Matlab Code for Sound Estimation
clc, clear all, close all

% --- Change these variables if needed ---
pressFile = ’fileName.csv’; % Pressure, averaged over pipe cross sec

startpoint = 10000; % Omit first 0.5 sec
uMean = 42.5; % Based on known mass flow rate, for u_centerline = 50m/s
charLength = 0.032; % Characteristic length [m], for St calc.
NFFTfactor = 2; % Affects frequency resolution + number of windows

% Constants
p0 = 2e-5; % [Pa], reference pressure for dB

% --- Use the above to estimate sound generation ---
pressureData = csvread(pressFile,1,0); % Read physical time,

% average surface pressures upstream and downstream of plate

timeVec = pressureData(startpoint:end,1);
xmin2 = pressureData(startpoint:end,3);
x5D = pressureData(startpoint:end,10);

pDown = x5D; % Downstream pressure
pUp = xmin2; % Upstream pressure
pressFluct = pUp-pDown;

dt = mean(diff(timeVec)); % Find time step
Fs = 1/dt; % Sampling frequency

NFFT = 1024*NFFTfactor; % Window length
df = 1/NFFT/dt; % Resulting frequency resolution
numWindows = floor(2*(length(timeVec)/NFFT)-1); % Approx

window = hanning(NFFT);
pressFluct = pressFluct-mean(pressFluct);

% Center fluctuations around 0
[Pxx,f] = pwelch(pressFluct,window,NFFT/2,NFFT,Fs);

% Computes autospectral density function via Welch method

st = 2*pi*f*charLength/uMean;
lp = 10*log10(Pxx/p0^2);
lpscaled = 10*log10(Pxx/p0^2/uMean^4);

IX
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