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Modelling the transition from animal to human culture
A statistical study of community splitting
SOFIA CVETKOVIC DESTOUNI
Department of Space, Earth and Environment
Chalmers University of Technology

Abstract
How human culture came to complexify in an explosive manner and become incomparable to
any other animal culture is as interesting a question as it is challenging. It has recently been
proposed (the social protocell hypothesis) that the earliest steps toward human culture were
taken (some 2-3 million years ago) on the level of social communities and their collective be-
havioural patterns, rather than, as commonly believed, on the individual level of social learning
with the emergence of high fidelity copying capacity of cultural know-how. The hypothesis pro-
poses that the crucial inheritance of information occurred on the community level, through high
fidelity copying of systems of culturally learned traits through events of community splitting.

The aim of this master thesis is to develop, test and propose some novel analytical tools for
studying spontaneous community splitting that can serve in further investigations of the social
protocell hypothesis. Specifically this study develops theory to predict the fidelity of primi-
tive cultural knowledge in community splitting. Using a parameterised theoretical setting of a
primitive human community, the concept of institutions as systems of traditions is introduced
and serves as a hypothetical prototype of the social protocell proposed in the social protocell
hypothesis. Then a theoretical expression for the institutional fidelity as a function of the pa-
rameters is derived.

The fidelity expression is tested and analysed. It is tested through simulations, both of the
theoretical setting and of more general settings where some assumptions have been relaxed.
Results show estimated fidelity values in the theoretical setting indeed converging with theory,
and that in the more general setting, when deviations emerge, they still largely maintain the
same trends and long term behaviours predicted by theory. These results indicate the expression
is useful for qualitative analysis in a more general setting than in which it was derived, and that
further analysis could provide relatively simple transformations for making the same expression
useful also for more accurate quantitative results, in a general setting. The expression is
further used to analyse fidelity behaviour in different parameter spaces, and results show high
fidelity community splitting could indeed relatively easily have been achieved for institutions
of primitive communities, indicating strong support for the social protocell hypothesis.

Keywords: social protocell hypothesis, cumulative cultural evolution, origin of human culture,
transmission fidelity
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1 Introduction
The family of great apes of which we are proud members is called the hominid branch of the
evolutionary tree, and includes today’s orangutans, chimpanzees, bonobos and gorillas (Wilson
and Wrangham, 2003; White et al., 2009). It emerged from the superfamily of apes (homi-
noids) some 20 Mya (MacLatchy et al., 2015), that in turn had emerged from the branch of
old world monkeys some 5-10 million years earlier (Stevens et al., 2013; White et al., 2009).
Our last branching from other still existing ape species was the divergence between the panin
and hominin taxa, with the panins including today’s chimpanzee and bonobos and ancestors
thereof, and hominin being the ancestral bipedal branch out of which our Homo species emerged
(Pontzer, 2012; White et al., 2009). The description of the ape-to-hominin-to-homo develop-
ment as simple linear branching events is today considered a great over-simplification of what
was rather a web of complex and to large extent unknown speciation and hybridisation processes
stretching tens of million years (John, 2008; Milford and Caspari, 2008) but consensus is that
by 4-5 million years ago the to-be Homo branch was distinct from the Pan branch (MacLatchy
et al., 2015; Pontzer, 2012; Prüfer et al., 2012). While the Pan branch has shown relatively
little changes from that point to today’s modern chimpanzees and bonobos (Andersson and
Törnberg, 2019; van Schaik, 2016), the Homo lineage has seen dramatic changes during the
course of these 4 million years. It is safe if not understating to say the state of a modern human
was utterly inconceivable in the mind of our primitive ancestors. Unlike all others, our lineage
went on to see the mastering of fire, the complexification of tool use, an agricultural and a tech-
nological revolution, expansive civilisations, expression and language, exploration and trade,
debate and morality, energy use and transportation, money and politics, philosophy and ideol-
ogy. Individualism, human rights, social security, weapons, science, globalisation, world wars,
finance, internet, and today’s very real possibility of self destruction. To make things further
more puzzling, all this happened while we still to this day genetically resemble our chimpanzee
relatives by 99% (Prüfer et al., 2012; Tomasello, 1999) which is same level of relatedness as that
of lions and tigers, horses and donkeys, rats and mice (Tomasello, 1999; King and Wilson, 1975).

Understanding the mechanisms behind our species’ unique and explosive cultural evolution is
particularly challenging considering that we are our culture’s very building stones and consid-
ering that culture fundamentally defines our being. The subject lacks established theory and
many proposed theories fail to fit the scarce and uncertain but continuously improving his-
torical data (Andersson and Read, 2016; Andersson and Czárán, 2022). Recent years however
have seen promising theoretical development on the subject, and it has been proposed that
mechanisms from biological evolutionary theory could be relevant also in the study of human
cultural evolution. A theory called the Social Protocell Hypothesis (SPH), see (Andersson and
Czárán, 2022; Davidson et al., 2021; Andersson and Törnberg, 2019), suggests the complexifica-
tion of our lineage took place on a social level before it took place on a individual (intellectual)
one, creating and evolving new collective bodies rather than evolving our own biological bodies
(brains). The theory refers to the setting of adaptive collective bodies as a ’social protocell’,
emphasising a parallel to biological evolution, where the biological protocell was the setting of
spontaneously cooperating genomes which began to faithfully copy, leading to the emergence
of life (bionta) (Eigen, 1971; Smith and Szathmary, 1995). In the case of the social protocell,
it is proposed that the cooperating components of the collective body instead are abstract,
specifically simple skills of primitive hominins, but that analogously the skills spontaneously
joined together in a community in benefit to both individual and community. It is argued that
the presence of a beneficial collective body in a community would much like in the case of
the biological protocell cause incentive for increased population growth, and further that the
probability of the community splitting due to instability will firmly grow with community size,
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as will the probability that the community will split due to instability (Davidson et al., 2021;
Feldblum et al., 2018; Dunbar, 1993). What this deduces to is that community splitting can be
assumed to eventually occur in communities with beneficial collective bodies, which provides
a copying mechanism for the social protocell as cell division did for the biological protocell.
While referring to the beneficial setting as a social protocell, including the crucial dynamical
components of splitting and faithful copying, the beneficial collective body per se is referred to
as a sociont, another parallel to biology where biont refers to all living things (Survey, 1930;
Andersson and Törnberg, 2019).

A vital question for the SPH is how well could socionts survive community splittings. Before
the human innovation of permanent writing systems, collective knowledge and traditions would
permanently disappear if crucial individuals were to forget, decease or destructively rearrange.
Thus a sociont would be existentially dependent on both social spreading, and non-destructive
community rearrangements. In the cases that a community split could be a non-destructive
rearrangement for the sociont, meaning the sociont could proceed to exist in the post-split
sub-communities, it would not only support stable existence of collective knowledge and skill,
it would also infer a heavy evolutionary potential, or in other words the presence of a social
protocell. We call the capacity of sociont persistence in a split transmission fidelity, a borrowed
term that can be found in literature both on biological and cultural evolution (including the
SPH).

1.1 Aim and scope
The aim of this thesis is to explore transmission fidelity of community splits in the hypothetical
social protocell. The specific aim is to develop, test and propose analytical tools that can be
used in qualitative and quantitative study of cumulative cultural evolution, with a special focus
on the social protocell hypothesis (SPH). Procedures used in the SPH are followed here to de-
velop a theoretical model community of primitive hominin agents, including a simple mechanism
of community splitting and the concept of institutions as the cooperation of simple traditional
skills. The setting is parameterised and analytical expression for the fidelity of institutions is
derived as a function of the defined parameters. This expression is then compared to results
by simulations of community splits, to determine convergence. The expression is also used to
theoretically analyse fidelity in different parameter settings and identify interesting behaviour.
The potential for generalisation of the expression is also explored, through simulations of more
general community setting where a crucial assumption for the theoretical model is relaxed. Fi-
nally an evaluation is made of the usefulness of the defined fidelity quantity and its implications
in the context of the SPH.

2 Background

2.1 Animal culture
We often claim it for ourselves, but culture is not unique for Homo Sapiens. Animal culture is
an elaborated scientific topic on the transmittance of social behaviour of non-human species,
both amongst peers and between generations (Whiten, 2019; Brakes et al., 2021). In a large
variety of species one can identify evolved behavioural strategies, traditions and knowledge.
Examples include socially learnt migration routes (Carroll et al., 2015; Mueller et al., 2013),
avoidance of unsafe geographical areas (O’Corry-Crowe et al., 2020), vocalisations and acous-
tic codes for communication (Anne et al., 2011), foraging strategies (Kühl et al., 2019), and
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predator avoidance strategies (Kierulff et al., 2012).

2.2 Open questions concerning cumulative cultural evolution
The idea that human culture diverged from animal culture through cumulative evolution is
by now a fairly rooted proposal, not unique for SPH (Boyd and Richardsson, 1985; Foley and
Gamble, 2009; Montrey and Shultz, 2020). What is meant is that cultural elements such as
ideas, materials and technologies, began to evolve through social spreading and became prone
to natural selection, thus growing all the more complex. A compelling definition of cumulative
culture is one from the Cumulative Cultural Evolution research group at the Santa Fe Insti-
tute as follows: ’something that no individual could have produced on their own’ (Ferdinand,
2018). It is established that a requirement for cumulative cultural evolution is the ability for
preservation and transmission of cultural elements both between peers and generations. Also
established is that this in turn requires social learning which requires faithful copying at some
level. But specifics on what exactly were the cultural elements, or the driving mechanisms and
level of copying, remain open topics. As a consequence so remains the historical dating of the
emergence of cumulative cultural evolution (Andersson and Törnberg, 2019; Ferdinand, 2018;
Tomasello, 1999).

A large variety of definitions of ’modern human behaviour’ can be found in the literature. In
this study I choose the emergence of clothing, art and abstract symbolism, dating up to half
a million years ago (Galway-Witham et al., 2019), to define the emergence of ’early modern’
(EM) Homo Sapien. From this point and on, it is agreed that the human brain had the ca-
pacity to imitate sophisticated cultural elements off one another (Andersson and Czárán, 2022;
Tomasello, 1999). Before this point, we will refer to this period as ’pre-EM hominin’ or ’early
hominin’, it is argued that social learning by imitation occurred only on a much more elemen-
tary level (Tennie et al., 2020b; Galef, 1992; Tomasello, 1999). To specify, (Tennie et al., 2020b)
describes the pre-EM level of social leaning roughly as follows: by observing the existence of
the skill in a peer, one was in principle as likely or more to produce an independent version of it
alone (emulation), as of copying the exact actions of the observed skill of the other (imitation).
Tennie denotes the categorical space of skills of the lowest level, as the Zone of Latent Solutions
(see (Tennie et al., 2020b,a)), this notation will be used in this study as well. Given the Zone of
Latent Solutions (ZLS) for pre-EM hominins, one could in hastiness conclude that cumulative
cultural evolution did not begin until the emergence of the EM human. This conclusion is
attractive because from the point in time of EM humans one has a clear channel of cultural
knowledge: simply the faithful copying of the innovative solutions (cultural elements) of ones
peers, which paves the way both for evolution of the cultural elements themselves, and for
evolution of the human brain in the direction of improved social learning mechanisms.

But as the SPH argues, concluding the above leaves important issues unresolved (Andersson
and Czárán, 2022). The conclusion implies that the millions of years of Homo evolution leading
up to the point of EM humans, was simply genetically driven. Although this is a long time
comparing to the 200 000 years of EM human development, in terms of genetic evolution it is
very brief and arguably not enough to explain high levels of complexification leading up EM
Homo Sapien (Andersson and Czárán, 2022; Tomasello, 1999). Further, findings show that
complex cultural behaviour had emerged long before the EM human. Already around 2 million
years ago, records show the homo lineage had accumulated sufficient cultural knowledge for tool
aided, cooperative big game carnivory, from which followed active hunting and handling of large
variation of habitats emerged (Andersson and Czárán, 2022). This marks a clear divergence
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from the Pan lineage culture and any other animal culture to this day, and the SPH states that
this is the actual point where cumulative evolution of human culture emerged. What follows is
the SPH proposal of how.

2.3 The Social Protocell Hypothesis
The SPH proposes an alternative scenario where the for-cumulativity-crucial copying took place
on a collective level instead of on a individual one. The scenario is one of primitive hominin
communities with coexisting low level skills in individuals, that spontaneously coincide and cre-
ate more complex cultural elements. The SPH calls this collective cultural element institution,
and its components, the individual cultural elements- traditions. The individual traditions are
in this scenario imagined simple enough to have existed and spread already in social pre-EM
hominin communitites, meaning they fall under the ZLS, and copied between peers by imi-
tation or emulation. We will jointly refer to copying by imitation or emulation as pre-EM
social learning (Davidson et al., 2021; Andersson and Czárán, 2022). The idea is that such
institutions became prone to cumulative evolution before than any individual tradition did.
(Andersson and Törnberg, 2019) calls this a ’culture first’ scenario. But institutions exist on
the community level, and so for cumulative evolution to emerge, there needs to have been
inter-community copying. The pre-EM social learning of traditions on the individual level,
although crucial for an institution to grow and adapt within a community, is not believed to
have occurred significantly between communities (Davidson et al., 2021; Chivers, 1987; Wilson
and Wrangham, 2003). But SPH suggests that inter-community copying did indeed occur on
the level of institutional cultural organisation, via the growing and splitting of early hominin
social communities.

Experimental evidence shows that social communities do not grow limitlessly, but tend to reach
socio-economic population limits at which communities will split into smaller communities due
to increased tension and conflict (Dunbar, 1993; Hill and Dunbar, 2003). Here lies the evo-
lutionary potential of institutions according to the SPH. If the community split is such that
existing institutions stay present in emerged sub-communities, there are now more communi-
ties that carry the same institution and an institutional copying has occurred. Whats more,
suddenly the setting is ready to repeat this cycle. Emergence of such a steady grow-and-divide
cycle, paves the way for variation and natural selection thereof (Norris and Raine, 1998). The
SPH setting provides a plausible way of cumulative cultural evolution emerging earlier than the
EM human and so the setting allows for the possibility that human culture complexification
preceded and even caused human brain complexification. But the SPH does not settle here.
Variation and natural selection happen to be the key elements for evolution of living organisms
(Norris and Raine, 1998; Eigen, 1971; Ganti, 1996). The SPH proposes this is no latent coin-
cidence. The suggestion is that adaptive institutions of traditions, went so far as to develop
into an entirely novel evolutionary individual, what we refer to as the sociont (Andersson and
Törnberg, 2019).

The adaptive institutions (socionts) are upheld and driven by Homo individuals and specifically
their traditions, but exist and function on a level above and beyond any single individual or
tradition. In evolutionary biology, events of lower level components joining together and creat-
ing a novel higher level component, is not new. Phenomena of such micro-to-macro transitions
go under the name Evolutionary Traditions of Individuality (ETI) and have well established
theory (Smith and Szathmary, 1995). Such transitions have occurred several times during the
course of biological evolution, and are believed to account for the greatest complexification
events in natural history including the origin of life, eukaryotes and multicellularity (Smith
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and Szathmary, 1995; Hanschen et al., 2018; West et al., 2015). While not being the first to
propose the occurrence of a cultural ETI event somewhere along the the homo lineage (Waring
and Wood, 2021), SPH is first to date the event to 2-4 million years ago, possibly relating
it to our divergence from the pan-lineage. It is also first to offer specifics of an actual such
evolutionary entity, as well as mechanisms of its development.

The SPH was formally published in 2019 (Andersson and Törnberg, 2019), in this paper the
authors extensively describe the constituting concepts and argue for their plausibility and like-
lihood using historical context. In (Davidson et al., 2021) the hypothesis was further strength-
ened, as formal criteria was used, developed for assessing evolutionary individuality of biological
units, to test the theoretical social protocell setting The criteria included existence of spatial
and temporal boundaries, indivisibility, and evolutionary division of labour, amongst others.
The results found that the social protocell could indeed have led to evolutionary individuality
according to these criteria. Further, using the Pan lineage (including modern day chimpanzees)
as a proxy of early hominin culture, it was confirmed that evolutionary transition into indi-
viduality of the social protocell indeed could have begun already in the hominin lineage by
2-2.5 Mya. Currently in press, the paper (Andersson and Czárán, 2022) further develops the
hypothesis through agent based modelling, testing by simulation the idea of institutions of sim-
ple ideas emerging and complexifying over generations through community splitting. Results
show that in the presence of both social spreading of ideas on agent level, and community-
level spreading of systems of ideas through growing-and-splitting mechanisms, accumulation
and complexification of such systems are indeed plausible.

3 Description of setting
This section describes a theoretical setting of a hominin community. The concepts and nota-
tions of this section are borrowed from the works of SPH and some of the borrowed elements
have already been mentioned and somewhat described above. Thus, although the following
setting and its derivation aim be to logically plausible and self-sufficient, in the case that this
was not successful, I refer to (Andersson and Törnberg, 2019; Davidson et al., 2021; Andersson
and Czárán, 2022), for more extensive and historically contextualised descriptions of the com-
ponents, all notations used here are shared with ones in the SPH works. A note is needed to
specify that not an entire setting has been borrowed, just consisting components, one can find
several more components present in the SPH works that have not been used here. In the future
explicit reference to the SPH works is there only when necessary due to some specific parallel,
but a constant underlying reference to the SPH exists in this section.

3.1 The community
Let us imagine a group of primitive hominin individuals coexisting on a land which offers them
a sufficient amount of retrievable nutritional resources to stay and survive. We call the coexist-
ing group of individuals a community, and the individuals we call agents. On the land there
exists different types of resources with varying accessibility. Further imagine the agents have
spent enough time there or on similar land to have developed certain knowledge and skills to
retrieve enough from the nature to survive. These will be referred to as traditions, inclusive
to both skill and knowledge and consistent practice: imagine simply the ability and motivation
to perform a function with a certain rewarding outcome. We assume them elementary enough
to have emerged from spontaneous innovation by single hominin individuals and can easily be
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maintained without copying any detailed underlying know-how (ZLS, see section 2.2). The tra-
ditions remain unspecified for generality, to avoid unintentionally specifying an environment.
The level of recognition in an agent of a tradition as such is not either specified, which allows
for traditions to be quite unconscious/implicit (primitive). The traditions are just beneficial
enough for the agent to have developed the conscious or unconscious habit of receiving its re-
ward. Further we regard all successful learning of an agents’ tradition by other agents, as new
realisations of that same tradition, and call each realisation an instance of that tradition.

So, in different agents there exists instances of the same tradition. Further all realisations of the
tradition by the same individual count as the same single instance. Imagine that the source of
new tradition types are innovating agents that have tried something new and found some new
value. The aim was to keep the imagined level of traditions and social learning on a plausible
level of primitive hominin culture proposed by (Tennie et al., 2020b), see section 2.2. Imagine
that the source of new instances of existing tradition types is either through independent inno-
vation, or through social learning by imitation or emulation of some able peer agent. One can
further assume however that social when possible is significantly easier than innovation and
therefore more frequent.

A schematic overview of the relation between the components community, agents, tradition and
tradition instances is shown in the figure below.

Figure 1: A schematic overview of the model components agent, community, tradition
and tradition instances. The coloured circled dots are instances of traditions in able agents.
Instances of the same tradition type in different agents share the same color.

3.2 The institutions
With tradition instances as building blocks, let’s proceed to assume that in some communities
emerged traditions would be such that when performed together they result in a greater access
to resources and so result in a fitness boost for the agents involved. We refer to such systems of
synergetic traditions as institutions. We avoid specification of particular ways of cooperation
and coordination in an institution, and just assume that it occurs as soon as the constituting
tradition types sufficiently exist in the community (’sufficiently’ will be defined through thresh-
old parameter θ in parameter section 4.2). The institution may be organised or spontaneous,
explicit or implicit, this also remains unspecified. The institutions are assumed beneficial for
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both agent and community, so that once an institution is present in a community, it stays
present and persists as long as ’sufficiently’ many able agents exist to perform the necessary
traditions. The concept of institutions aims to serve as the prototype of a sociont.

Figure below shows a schematic overview of an example of the model setting of a community
that has an institution.

Figure 2: A schematic overview of the model components. The coloured circled dots are
instances of a tradition type in able agents. The tradition types and their colours are listed
above as components of the institution. Below is the instance vector, the count of instances for
each tradition type.

3.3 The split
The emergence of beneficial institutions is likely to cause general fitness increase for agents in
the community and thus likely to cause an increase in the rate of population growth. Imagine
the population grows until it reaches some socio/economic boundary of the community. It
could for example be a point where the shared resources are no longer sufficient to provide for
all members, or where the high population reduces peer affinity so that tension and conflicts
occur. For whatever reason, instability is assumed to arise in the community structure and
result in a splitting of the community into smaller stabler groups. Imagine the split splitting the
population into simply two sub-populations, and being a spontaneous and unorganised event.
The original community will hereon be referred to as the mother community and the two
sub-communities emerged after split the daughter communities. Below figure 3 shows the
schematic overview of how the split is modelled to occur. The figure includes a characterising
parameter p, and shows how the split is realised by each single agent’s independent choice
of daughter community. The parameter p will be formally introduced and described in the
following section, along with the other parameters.
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(a) Community about to split.

(b) Community under split, an example of setting p=0.4.

(c) Community after split, an example of setting p=0.4.

Figure 3: The pre, present and post stages of the splitting event shown in (a), (b) and (c)
respectively. (a) shows an example model community, institution, and instance distribution.
The community is under tension which has led to each member faced with a choice of between
two sides. The choices are modelled as random with choice probability p of going left. (b) shows
an example of the realisation of such a random choice for every agent, for the example value
p=0.4. (c) shows the result of this realisation, the mother community has become two daughter
communities in the split. Included below are the resulting instance counts for each daughter
cell. One can see in this example that institution was not successfully transmitted to the left
daughter community, as tradition type number ’7’, is missing (see red encirclement). But in
the right daughter community, the institution has indeed successfully transmissioned.
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Recall now the main question of this study can be formulated as: what happens to the existence
of institutions in a split? Or, which kinds of institutions survive and what kinds of splits? The
next step will be to establish parameters inside the described setting with which one can
distinguish different ’kinds’ of institutions and community splits.

4 Mathematical derivation

4.1 Components
The components of the model setting derived above are gathered in the list below, after which
characterising parameters of these components are introduced:

agent - a hominin individual
community - a group of agents that coexist on the same land and share resources

tradition - a simple function performed by agents to obtain some beneficial result. All
functions with the same beneficial result are counted as the same tradition.
The tradition is brought to the community through (possibly spontaneous) in-
novation by some agent and stays in the community through social learning.
Realisations of tradition functions by able agents we call instances of that tra-
dition.

instance - the realisation of a tradition by an able agent. The able agents carry one
instance each and the rest carry none. Different instances of the same tradi-
tion need not share the exact actions, but have the same overall function and
beneficial outcome.

institution - the spontaneous cooperation of a group of different traditions in a community.
The cooperation is assumed to be a co-execution of a set of traditional types by
agents, that the benefits themselves and the community as whole.

community split - the spontaneous splitting event of an unstable community into two stable
daughter communities.

4.2 Parameters
Next some parameters are introduced to characterise the described setting. Some are taken
straight from the SPH works, others are new parameters added to further nuance/specify the
setting. The institution will depend on two parameters, complexity c, and threshold θ.
Complexity c, is equal to the size of the institution, specifically the number of tradition types
that compose it. The threshold θ is the minimum number of instances a tradition type needs
to persist in the community. For the institution to be considered present, at least θ instances of
all included tradition types must be present in the community. Note that all setting examples
mentioned and shown in figures above have implicitly assumed a minimal threshold θ = 1. The
number of instances existing of each tradition type t in the institution are put in the instance
population Nt, which becomes a vector of length c, t = 1, ..., c and where each element is
a count of how many agents currently hold the corresponding tradition. The community is
characterised by the number of agents involved in sharing the resources and constituting the
institution, agent population Na. A specification is needed to allow for the possibility that
the number of agents involved in the institution and the number of agents enjoying its reward
do not coincide. For example, if an institution leads to the seizing of a carcass, there might
be resources left for a lot more agents than the ones involved in the seizing. In this case the
parameter is specified to be the number of agents involved in maintaining the institution, and
could also be called the agent carrier population. This number indicates how spread out the
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tradition instances are amongst agent carriers and is more likely to affect fidelity. But the
resource sharing population is likely more relevant for specifying the limit size of a community,
and note this information is lost when choosing Na as agent carrier population. Although an
assumption could be made that at a moment of tension about to split, the resource population
is likely not much larger than the agent carrier population. Keeping this in mind proceed with
the agent population Na is specified as the number of instance carrying agents.

The splitting event is modelled as the individual choice of each agent between the two emerging
daughter communities, and the choice is random with probability p for one and 1 − p for the
other. Probability p will define the balance between the daughter cells. If p = 0.5 the two
daughter cells are equally chosen, in what we call a symmetric split. The further p moves
from 0.5, the more unequally the daughter communities are picked, resulting in a bigger and
a smaller daughter community. We call this an asymmetric split. So the level of symmetry of
the split is determined by parameter p, which will be called symmetry p.

A table is made including all the setting parameters.

Symmetry p

The probability with which each agent chooses one daughter com-
munity over the other in a split. p ∈ (0, 0.5] where p = 0.5 is a sym-
metric split where both daughter community choices are equally as
likely

Complexity c
The number of existing traditional traits which together compose
an institution

Threshold θ
The minimum number of instances that need to exist for every c
traditional traits for the institution to be considered existent

Instance popula-
tions [N1,...,Nc]

Vector including the number of instances of all tradition types in
the mother community before split. Equivalent notation is Nt, ∀t =
1, ..., c

Agent population
Na

The number of agents carrying at least one instance before split

Table 1: Parameters

4.3 Defining fidelity
Next a quantity called fidelity is defined to determine the rate of successful institutional trans-
missions in a split. The aim is that the main idea of fidelity be the same here as in the works of
SPH and works leading up to it, as well as lot of other literature on the subject of cultural or
biological evolution: a quantification of the level of transmission of a system of information, in a
rearranging event. In our case the system of information is the institution and the rearranging
event is the community split.

First note that the institution is considered either as complete or non-existent: as soon as one
tradition from the institution is missing in the community we count the institution of complexity
c as extinct. The following figure demonstrates the possible outcomes of the given community
split:
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(a) The institution was successfully transmitted
to one daughter community

(b) The institution was successfully transmitted to
the other daughter community

(c) The institution was successfully transmitted to
both daughter communities

(d) The institution was not successfully transmit-
ted to any daughter community

Figure 4: Shows the four possible transmission outcomes of the community split

We group together outcomes 4(a) and 4(b) as the outcome of exclusively one transmission,
and introduce a transmission count T indicating the number of successful transmissions after
a split. Given the possible outcomes above, this number can be exactly 0, 1, or 2. Recall that
successful transmission depends on θ, and is when at least θ instances of each tradition type
composing the institution is present.

T =


2, if the institution was successfully transferred to both daughter communities
1, if the institution was successfully transferred to exactly one daughter community
0, if the institution was not successfully transferred to any of the two daughter communities,

Since the split has been defined as a random event, the transmission count T is a random
variable. If the split would be repeated in the identical setting several times, an average trans-
mission count of that particular setting can be determined. As one increases the number of
repetitions towards the infinite limit, the average T starts to coincide with a theoretical ex-
pected value of the transmission count. This value is a deterministic constant uniquely defined
by its particular setting. This value is what will be defined as institutional fidelity Q for a
given setting. Recall that the setting is jointly described by the community, the institution, and
the split, through parameters instance population vector Nt, ∀1, ..., c, threshold θ, complexity
c, symmetry p and agent carrier population, Na.
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A note is needed because the exact definition of fidelity somewhat differs from others used
in literature. The fidelity is usually defined as a likelihood between 0 and 1 of transmission.
However in this setting of community splitting it is decided useful to distinguish between trans-
mission to one or to two daughter communities, since these two outcomes implicate different
rates of spreading. Expression of the likelihood of overall transmission will however also be
derived and compared to the defined fidelity quantity, in section 7.4.

Another note is needed, on the question of what could be the fate of a daughter community
left without institution, such as the left daughter community in 4(a) and the right daughter
community in 4(b) above. In these cases at least one tradition type from the institution has
gone missing. We will categorise this as a loss of institution, even though it was stated above
in the definition of traditions that tradition types are easy enough to be innovated alone. One
could argue then that the institution is likely to be resurrected. Indeed the possibility exists,
but one can imagine that when the trait is present and can be socially learnt its incidence in the
population will be much higher. Further, we assume that if a tradition type has disappeared
it is as (un)likely to reappear as any other possible alternative is to appear. And thus we
categorise an institution as lost once one of the constituting tradition types has been lost.

4.4 Interpreting fidelity
The question of what to make of a resulting fidelity value Q, needs elaboration. In rule the
expected value of a discrete random variable is interpreted as the infinite average of the random
variable. First note is that while the transmission count T is a discrete random variable with
outcomes 0,1,2, fidelity is a theoretical mean that can take on values in between the actually
possible outcomes, Q ∈ [0, 2]. When not exactly on 0,1 or 2, the fidelity value indicates that
the outcome of the given setting has a significant likelihood of more than one of the possible
transmission outcomes.

The three possible transmission values 0,1,2 can be ordered from closest to furthest from any
given fidelity value. However, the degree with which closeness corresponds to likelihood is not
unambiguous. Take the most extreme case of this for example, the mean value of 0’s and 2’s
can land arbitrarily close to unity without including a single actual outcome of single transmis-
sion. But on the other hand unit fidelity can also be caused by exclusively single transmission
outcomes. Ambiguity in the interpretation of fidelity exists for other outcomes than just unity
but is indeed largest around unit fidelity due to the equidistance to 0 and 2. The region of
fidelity values around unity (on both sides) will be referred to as single transmission region.
As tools for analysing the ambiguity and obtaining more informed interpretations of fidelity,
the theoretical variance of the transmission count will be derived along with fidelity itself, as
the fidelity variance. The expression of overall transmission probability will also be derived and
compared to fidelity values.

Note however that in the social protocell context, an adaptive institution (sociont) after a few
generations of community splits would already exist in a good amount of communities, so that
after not too long copies of the institution are frequently subject to community splitting. In this
situation of a sociont in frequent community splitting the ambiguity of fidelity interpretation
looses significance as the average result moves towards the fidelity value the more frequent the
splits. On average the single transmission region will hold only one existing institution at the
time and has thus no evolutionary spreading. It further means that the sociont is dependent
on single communities which makes it existentially insecure. We will thus refer to unit fidelity
and all lower values as the maladaptive region Q ≤ 1 and the region above unity as the adaptive
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region. The adaptive is the region where evolutionary spreading would be expected.

4.5 List of model assumptions
Gathered here are the crucial assumptions made for the model setting. Some assumptions have
already been mentioned above (marked with ’E’ below), others have up until now only been
implicit (marked with ’I’ below).

• Traditions are elementary functions/skills performed by single agents. Only com-
bined with other traditions in so called institutions, can they reward a bigger group (E)

– A tradition type has emerged by innovation of some agent at a previous point in
time(E)

– If Nt > 1 for tradition type t, more instances of the same tradition type have
emerged in other agents through spreading by pre-EM social learning. (E)

– If Nt ≥ θ for tradition type t, we count tradition type as present: adaptive and
stably persisting (E)

– No distinction is made between tradition types, θ is the same for all tradition
types (I)

• The stable co-existence of a number of different traditions, t=1,...,c, sponta-
neously permits cooperation between them in form of an institution. (E)

– All existing tradition types (Nt ≤ θ) in the mother community will be assumed to
be part of the institution (I),

– The existence of an institution depends on the existence of each one of its
traditions, meaning Nt ≥ θ of each tradition type t are present in the community
(E)

– The existence of an institution solely depends on the above and thus is unaffected
by of the number of carrying agents. (I)

• An existing institution is adaptive by being beneficial to the agent carriers, and they
continuously express their instances in the institution and not on their own.

• In this environment a spontaneous split occurs in the community due to instability

• The split is dual (E) and instantaneous (I)

– The split occurs as the instantaneous and simultaneous choice of each agent
between moving to one daughter community or the other. (E)

– The agents are conserved in the split meaning all agents reach one out of the
two emerged daughter communities (I)

– The traditional knowledge of each agent is also conserved in the split, meaning
each agent brings along all of its instances.(I)

– The choice of an agent is independent of the other agent’s choices, and the
choice probability p is identical for all agents (E)
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4.6 The binomial assumption
One last assumption is separately added in this section. It is distinguished from the assumptions
stated above in the sense that the model setting is complete without it, given the parameters
and the already stated assumptions. Instead the following assumption is purely theoretically
motivated, it allows for significant simplification in mathematical derivation of fidelity, as will
be seen shortly. Given its independence from model setting construction, this assumption can
easily be relaxed affecting only theory, not the model setting in itself. This is done as a final
stage of this study.

As demonstrated in figure 3, the split is modelled as the event of every agent choosing one
out of two daughter communities at random, each with the same choice probability p for one
daughter community and 1 − p for the other. Such random dual-outcome events with constant
choice probability, are called binomial trials (or Bernoulli trials) in theory of probability and
statistics and are very common in priori modelling of real life situations. The split becomes a
set of Na binomial trials, one for each agent, all with parameter p. This further means that
the random number of agents that reach each daughter community is a binomially distributed
random variable with parameters Na, p for the one daughter, and parameters Na, 1 − p, for
the other. This makes a good basis for analytical derivation since it provides well established
tools and methods from probability theory and statistics for working with the probabilities of
the random outcomes. Importantly we note however, that in the general case it is the number
of agent carriers, in each daughter community, that is a binomially distributed number. The
interesting components for defining fidelity, are not the agents but the instances of each tradi-
tion type.

We introduce a new quantity, the average number of instances per agent, aIpA,

aIpA =
∑c

t=1 Nt

Na

.

aIpA is the sum of instance populations over all traditions in the institution, divided by the
total number of agent carriers, returning the average number of instances carried by the agents.
We recall that an agent can only either carry none or one instance per tradition, so several
instances in one agent are always of different tradition types.

If the aIpA is kept down to 1, this means all the agents carry only one instance from any tradi-
tion type. Even though aIpA is an average quantity in the general case, note that the number
of instances must be exactly aIpA for all agents in the case of aIpA=1. This is so because we
have defined the agent population to be equal to the agent carrier population, meaning that
all agents included in Na carry at least one tradition, and so an average of 1 can only occur in a
homogeneous case where all agents carry one instance. In this special case of one instance per
agent, the fate of each instance after split is uniquely defined by their (unique) agent carrier.
Recalling that every agents fate is modelled through a binomial trial, so is then every instance
in the special case of aIpA= 1. This results in Nt binomial trials with parameter p, for each
tradition type t.

If instead aIpA> 1, several instances share the same agent carrier, and their fates are sealed by
the same single binomial trial of their shared agent carrier. In this case there are less binomial
trials than there are instances, (∑c

t=1 Nt > Na), and without introducing new information into
the system, in form of new parameters, we claim we cannot know which instances share the
same binomial trials. We claim (and show in appendix) that as long as one does not know
the exact distributions of the instances in each agent, an inevitable uncertainty will prevail
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in whatever theoretical prediction one makes of the fidelity, even in converged limits. For the
general case of aIpA> 1, given only the parameters defined above which results in unknown
exact distributions of instances in agents, mathematical derivation demands complex stochastic
theory that would still result in uncertain predictions. Meanwhile the special case aIpA= 1,
when the binomial trials of the agents are in 1:1 correlation with the instances, an exact pre-
diction can be expected along with extensively simpler theoretical derivations. In this study we
propose and test the approach of first deriving theory for the special case aIpA= 1, which once
confirmed and elaborated, is used as a reference tool to explore the general case by relaxing the
aIpA= 1 assumption in simulations and comparing the emerged results to the derived theory.

We call the assumption of aIpA= 1, the binomial assumption since it leads to binomially
distributed instance populations in the daughter communities with exact (not stochastic) pa-
rameters. This will be our final assumption.

Figure 5: aIpA=1, A schematic overview of the related components of an example community
under the binomial assumption. The instance count of an example insitution is included below

In practice the binomial assumption can be seen to represent a kind of specialist community
where all agents have focused on only one tradition within the institution. It could also be the
model of agents not necessarily only carrying one instance each, but only dominantly practising
one of them in service of the institution. However the main motivation at this point is not to
be realistic, but to begin developing theory from initially strong and simplifying assumptions
that will later be relaxed to move in more realistic directions. Thus we do not argue that any
binomial setting was the most likely case, particularly since we have assumed that the traditions
are simple enough to be included in the Zone of Latent Solutions (ZLT), which weakens the
assumption that agents would not carry more than one. But we do argue that the case it is not
irrelevant to study, since it is still a possible case and may well be seen as a starting point case.
It is also likely to be the most challenging case for transmitting institutions, since every agent
brings the minimum ’chunk’ of a complete institution with them in the split. And so, when
this case predicts successful emergence, this should only indicate increased such in the general
case. We explore these questions in the results but first, under the binomial assumption, we
are finally ready to derive mathematical predictions for the institutional fidelity Q.
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4.7 Formulating fidelity under the binomial assumption
(aIpA= 1) Begin by recalling the definition of fidelity made above. The fidelity Q is defined as
the expected value of the following random variable defined for every split,

T =


2, if the institution was successfully transferred to both daughter communities
1, if the institution was successfully transferred to exactly one daughter community
0, if the institution was not successfully transferred to any of the two daughter communities

We shall refer to one daughter community as Dx and the other one as Dy, and make the arbi-
trary choice of relating daughter community Dx to probability p and Dy to be the corresponding
one with probability 1 − p. This will be the order maintained throughout the study.

For compactness we will make use of the mathematical notations in further derivations, thus
before proceeding we include a table of all mathematical notations used in this study.

List of mathematical notations
∈ ’is in’ or ’is an element of’
∀ ’for all’
∪ ’union’ or ’or’
∩ ’intersection’ or ’and’
⊕/XOR ’exclusive or’ or ’either one or the other’
⇐⇒ ’if and only if’ or ’two way implication’
=⇒ ’if’ or ’implies’
P (A) ’probability of event A’∑N

t=1 At ’sum of all terms At for subscripts t=1,...,c’∏N
t=1 At ’product of all factors At for subscripts t=1,...,c’

max(A, B) ’returns the largest value out of values A and B’

FBin(x; Nt, p, θ) ’the binomial cumulative distribution as a function of x
with parameters Nt, p and θ’

E[X] ’expected value of random variable X’

Next we introduce the pair of random variables Xt and Yt for t = 1, ..., c, a pair for each
tradition t counting the number of instances that made it to daughter community Dx and
Dy respectively. Note that each pair depends on each other by Nt = Xt + Yt. The different
outcomes of a split can then be expressed precisely in terms of the parameter θ and random
variables Xt, Yt, and denoting institutions with I. We write the three cases:

Case ’X’ = {I ∈ Dx} =
(
Xt ≥ θ, ∀t = 1, ..., c

)
Case ’Y’ = {I ∈ Dy} =

(
Yt ≥ θ, ∀t = 1, ..., c

)
Case ’XY’ = {I ∈ (Dx ∩ Dy)} =

(
(Xt ≥ θ) ∩ (Yt ≥ θ), ∀t = 1, ..., c

)

Next we will use the logical ’exclusive or’ (XOR) notation: ⊕ meaning for two events A and
B, A ⊕ B is true either if only A is true, or if only B is true, but false if none or both are true.
Using this we can express random variable T in terms of cases ’XY’, ’X’, ’Y’, and ’otherwise’,
latter meaning none of the other cases are true. Next step will be to find the probabilities of the
cases ’XY’, ’Y’ and ’X’, to serve as building blocks for the probabilities of the outcomes of T .
The binomial distribution with parameters n and p, Bin(n, p) is the probabilistic progression
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of the random number of ’successes’ from n repeated binomial trial with success probability
p. For Xt, success counts as an instance of tradition t reaching Dx in a split. There exists Nt

instances of tradition type t, and under the binomial assumption aIpA= 1, each will reach Dx
with a probability p, there are Nt binomial trials of each tradition t and the random number
Xt is binomially distributed with parameters Nt, and p. Further, the failures of Xt counts as
successes for Yt, and equivalently under the binomial assumption, Yt is biniomially distributed
with parameters Nt and 1 − p.

Xt ∼ Binom(Nt, p),
Yt ∼ Binom(Nt, 1 − p).

This allows us to utilise already established theory of binomial distributions. For example, we
know the cumulative distribution functions of Xt and Yt, meaning FXt(x) = P (Xt ≤ x) and
FYt(x) = P (Yt ≤ x) respectively, to be:

FXt(x) = FBin(x; Nt, p) =
x∑

k=0

(
Nt

k

)
pk(1 − p)(Nt−k)

FYt(x) = FBin(x; Nt, 1 − p) =
x∑

k=0

(
Nt

k

)
(1 − p)kp(Nt−k)

Note above the differences in the expressions for Xt and Yt being a subtle switch of p and (1−p)
in the terms of the sum: pk(1 − p)(n−k) to (1 − p)kp(n−k).

We utilise this in the following derivation of the probability of case ’X’. We also utilise the
discreteness of the outcomes, and the assumed complete independence between tradition types

P (’X’) =P (Xt ≥ θ, ∀t = 1, ..., c) =
{
independence

}
=

c∏
t=1

P (Xt ≥ θ) =
{
discreteness of x

}
=

=
c∏

t=1
(1 − P(Xt ≤ θ − 1)) =

c∏
t=1

(1 − FBin(θ − 1; Nt, p)
)

The product is over all tradition types in the institution, where t defines the instance popula-
tions Nt in each factor, Nt are taken from the instance vector [N1, ..., Nc]. The probability of
case ’Y’ calls for the exact same derivation since the only difference between the cases is the
parameter p.

P (’Y’) =P (Yt ≥ θ, ∀t = 1, ..., c) =
c∏

t=1
(1 − FBin(θ − 1; Nt, 1 − p)

)
For case ’XY’ we define the two subcases:

’XY’(1): If Nt < 2θ for some tradition t =⇒ case ’XY’ is impossible

’XY’(2): If Nt ≥ 2θ, ∀t = 1, ..., c =⇒ all possible outcomes of a tradition not reaching Dy, are
included in the possible outcomes of the traditions reaching Dx.
This is because if, and only if, all Nt ≥ 2θ:

(
Yt = Nt − Xt < θ

)
⇐⇒

(
Xt > Nt − θ > θ

)
.

Thus in subcase ’XY’(2) for every tradition, we can remove the probability of not reaching
Dy, from the probability of reaching Dx, which leaves just the probability of reaching both:
P (Xt ≥ θ) − P (Yt < θ). In subcase ’XY’(1) however this difference is not a legal probability,
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because if Nt < 2θ there are cases when Yt < θ is true without Xt ≥ θ being true. In fact the
difference is always negative, because no cases of Xt ≥ θ can be true without Yt < θ being true.
Knowing this, if we utilise the max(·, ·) function, which returns the maximum of two values,
and write max(0,P (Xt ≥ θ) − P (Yt < θ)) we will also get the correct probability of 0 in the
subcase of ’XY’(1). Now:

P (’XY’) =P (Xt ≥ θ ∩ Yt ≥ θ, ∀t = 1, ..., c) =

=
c∏

t=1
(P (Xt ≥ θ ∩ Yt ≥ θ) =

=
c∏

t=1
max

(
0, P (Xt ≥ θ) − P (Yt < θ)

)
We now use the following from probability theory: for any two events A and B, the exclusive
or probability P(A ⊕ B) is found by removing the intersection (’and’) of events from the union
(’or’): P (A ⊕ B) = P (A ∪ B) − P (A ∩ B) = P (A) + P (B) − 2P (A ∩ B), since P (A ∪ B) =
P (A) + P (B) − P (A ∩ B). In our case,

P (′X ′ ⊕′ Y ′) = P (′X ′) + P (′Y ′) − 2P (′XY ′)

and we are equipped to express the institutional fidelity, Q, the expected value of T , given
parameters p, θ, c and instance vector [N1, ..., Nc]

Q = E [T ] =
{
the three possible T

}
=

=2 · P (′XY ′) + 1 · P (′X ′ XOR Y ′) + 0 · P (’otherwise’) =
=2P (′XY ′) + P (′X ′) + P (′Y ′) − 2P (′XY ′) =
=P (′X ′) + P (′Y ′)

And so the final fidelity expression becomes:

Q =
c∏

t=1
(1 − FBin(θ − 1; Nt, p)

)
+

c∏
t=1

(1 − FBin(θ − 1; Nt, 1 − p)
)

(1)

We note case ’XY’ disappeared due to the values of T. Done with expected value, we proceed
to the variance.

4.8 Formulating fidelity variance
The theoretical variance of a random variable X is defined as,

Var(X) = E
[
(X − µ)2

]
where, µ is the mean value of the random variable, that is µ = E [X]. In words the variance is
the expected value of the squared difference between the variable and its mean. We can rewrite
the variance as,

Var(X) = E
[
(X − E [X])2

]
= E

[
X2
]

− E [X]2
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In our case, the random variable is the transmission count T , for which the expected value is
the derived fidelity Q. Thus the second term in the variance formula will be just Q2. The first
term, using the case notations and derivations from above, becomes

Var(T ) = E
[
Q̃2
]

=22 · P (’XY’) + 12 · P (’X’ ⊕ ’Y’) + 02 · P (’otherwise’) =
=4 · P (’XY’) + P (’X’ ⊕ ’Y’) =

=4 · P (’XY’) +
c∏

t=1

(
1 − Fx(θ − 1; Nt, p)

)
+

c∏
t=1

Fx

(
θ − 1; Nt, p)

)
− 2 · P(’XY’) =

=2 · P (’XY’) + Q =

=2 ·
c∏

t=1
max

(
0, 1 − FBin(θ − 1; Nt, p) − FBin(θ − 1; Nt, 1 − p)

)
+ Q

And so the variance becomes, for any given parameters p, θ, c and [N1, ..., Nc]:

Qvar = 2 ·
c∏

t=1
max

(
0, 1 − FBin(θ − 1; Nt, p) − FBin(θ − 1; Nt, 1 − p)

)
+ Q − Q2 (2)

For simpler notation, we have denoted the variance Var(T )=Qvar, but this is not to be confused
with Var(Q). What is always referred to is the theoretical variance of the random variable T ,
as Q is the deterministic expected value, it is without theoretical variance.

4.9 Some special cases
The proposed fidelity formulas have the advantages of being fairly simple, and can be simplified
even further for some special cases presented below.

Single tradition fidelity case

The fidelity of a single tradition t in a split, is included in the institutional fidelity Q as a
special case of c = 1, an institution of one. This is not really an institution and we call it single
tradition fidelity qt = Q(c = 1 = t). This special case reduces the instance vector to a single
value of Nt, which leaves just the parameters p, θ and Nt.

qt = 1 − FBin(θ − 1; Nt, p) + 1 − FBin(θ − 1; Nt, 1 − p)

For its simplicity will be used for initial study in the results.

Symmetric case

In the symmetric case of daughter community Dx and Dy being equally frequently picked by
the agents, the two terms in the fidelity expression 2 , become equal. We get

Qsym = 2
c∏

t=1
FBin(θ − 1; Nt, p) (3)
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Case of minimum θ

The minimum case for the threshold θ is θ = 1, which is when the presence of a single instance is
enough for the tradition to be counted as present in the community. In this case, the cumulative
distribution functions become easily explicitly expressed, since their sums include only one the
term of zero:

FBin
(
0; Nt, p) = (1 − p)Nt

FBin
(
0; Nt, 1 − p) = pNt

Q =
c∏

t=1

(
1 − Fx(0; Nt, p)

)
+

c∏
t=1

(
1 − Fx

(
0; Nt, 1 − p)

)
=

=
c∏

t=1

(
1 − (1 − p)Nt

)
+

c∏
t=1

(
1 − pNt

)
(4)

For the case of both a symmetric split and θ = 1, the fidelity expression becomes,

Q = 2
c∏

t=1

(
1 − pNt

)
(5)

In the future this case will be referred to as the base case.

Case of a homogeneous instance vector [N, N,...,N]

The instance populations of c traditional traits in the institution compose the instance vector
Nt t = 1, ..., c. The fidelity formula handles every component in separate factors in the product
series. In the quite narrow case of a homogeneous instance vector, or in a more inclusive
set of cases of estimations of actual heterogeneous instance vectors by homogeneous ones of
a single value perhaps in lack of knowledge or perhaps with the purpose of generality. For
whatever reason a homogeneous vector into the formula greatly simplifies the expression, for a
homogeneous instance vector [N, N, ..., N ] of length c the fidelity becomes,

Q =
(
1 − FBin(θ − 1; N, p)

)c
+
(
1 − FBin(θ − 1; N, 1 − p)

)c

5 List of population names
The study will proceed to frequently refer to some different types of populations. To make it
easier to distinguish them the following list is included with the used population names and a
short description. Make a note here that some of these populations are not necessarily realistic
scenarios, but are used because they are central or extreme points in different population
dynamics.

• agent population - referring to the agents existing in a community

• instance population - referring to the instances existing in the agent population

• homogeneous instance population - referring to the instances in a agent population
with a homogeneous instance vector [N, N, ..., N ] meaning there are the same number of
instances of all tradition types existing in the institution. This population quantity will
be denoted as N .
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• heterogeneous instance population - referring to the instances in a agent population
with a heterogeneous instance vector [N1, N2, ..., Nc], meaning there are tradition types
with various number of instances in the community (various frequencies). The mean of
this quantity will be referred to as the mean instance population and denoted as N̄ .

Another note is that it is not necessarily excluded that there could be instances of other existing
tradition types in the community as well, that are not included in the institution. However
these tradition types have no impact in this setting and thus will be neglected so that by
tradition types we refer only to the types included in the existing institution.

6 Testing procedure
The results presented in this study are a combination of theory and simulations, this section
describes how the simulation parts have been performed. First are a set of simpler simula-
tions subject to all the same assumptions upon which the theory was derived, to confirm the
derivations and the convergence of the estimated quantity. Second part of simulations are
more generalised when the one instance per agent assumption is relaxed, and settings of sev-
eral instances per agent (IpA) is included and the effects of increasing aIpA on the behaviours
predicted by theory is studied.

The simulations were all performed in python and to evaluate the cumulative distribution func-
tion points necessary in the theoretical expressions, the cdf function from the scipy.stats.binom
classes was used.

6.1 Simulations of single tradition fidelity qt
The theory is first tested for the simplest case of c = 1, in which the institution is only a single
tradition, and we have called this the single tradition fidelity qt. In this case the binomial
assumption always holds since there can always only be one instance per agent. Thus the agents
can be neglected in the simulation, as the agents who do have an instance can be represented
by that instance, and agents who don’t have an instance are not included (as mentioned in the
parameter section 4.2 we count only the agent carrier population). The mother community
population is represented simply as the instance population Nt which in case c= 1 is a single
number, which will be equal to or larger than threshold parameter θ. The simulated split
becomes the random choice of Nt instances between two groups, with choice probability p,
or as called the symmetry parameter. The populations in both groups are counted after the
split, the number of successful transmissions is decided. This is simply how many daughter
communities have a population of at least θ, 0,1, or 2, for each split. The institutional fidelity
is estimated as the long term average of this outcome over many repetitions of the split. The
resulting quantity is compared by the one predicted by theory for the given parameters c, p, θ,
[N1, ..., Nc].

6.2 Simulations under binomial assumption
In the following simulations, institutions (c > 1) are included by introducing the presence of
c different types of traditions in a mother community, the instance population of each tradi-
tion type is determined by the instance vector parameter [N1, ..., Nc]. As we stay in setting
of aIpA= 1, the split is still simulated on the instance level, independent binomial trials with
parameter p one for every instance. The difference is that now there are c different types in the
mother community that all need to be separately present after split. The resulting outcome is
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found by counting the instance populations of tradition types in both daughter communities
after split, and counting a successful institutional transmission if there are θ or more of each
tradition type.

Testing is performed first for homogeneous instance vectors, vector [N, N, ..., N ] of length c.
Then heterogeneity is included, and the number of parameters increase with c and the param-
eter space to be tested grows exponentially (number of dimensions increased with c). To cover
as large a region of this space as possible, we create heterogeneous instance vectors at random,
and then for analysis sort them into parameters θ, c, mean and range (the difference between
highest and lowest value in the instance vector), but also if needed other useful statistics such
as median, and upper and lower quantiles. Random heterogeneous instance vectors where gen-
erated as follows:

→ Create a vector of length numMeans spanning a desired interval of mean instance pop-
ulations.

→ For each mean instance population N̄ , create a number of numVars different variances
by randomly drawing from a uniform distribution from a determined minimum value
minVar to a determined maximum value maxVar.

→ For each variance, of each mean instance population, create an instance vector by drawing
c numbers from a normal distribution with the mean and the created variance, and
rounding the c numbers to their closest integer value.

→ For each created instance vector, calculate and save the actual mean (which will vary
somewhat from the desired due to randomness and rounding but will on average be the
desired value), the range, and if shown necessary any other statistic to be studied as a
parameter.

This procedure is used both for study with simulations but also just for creating a large variety
of parameter points for theoretical study. With this procedure a total of numMeans·numVars
different instance vectors is created within a controlled mean interval and a controlled range
interval. One can go towards a fixed range by reducing the range interval, and study a dense
interval of means by increasing the numVars. This is done for testing of convergence of
simulated values to theory. One can also increase the range interval, and keeping the numVars
value high, for some specific means, study the effect of ranges, this was also done, theoretically,
given confirmation of convergence. Note that 2 ·

√
(maxVar) indicates the expected maximum

range of the created instance vectors.

6.3 Simulations in the more general setting
In the general setting, aIpA≥ 1 instances of different tradition types in an institution can
be carried by the same agent. Consequently the community split can no longer be simulated
on the instance level since the one to one correspondence between instance and agent is lost.
Necessarily agents are introduced into the simulations, each agent carrying a so called tradi-
tion repertoire. The tradition repertoire is a binary vector of length c, indicating with 1s the
tradition types which that agent carries at the time of the split, and 0s for the rest. The
split is then simulated as a binary trial for each agent carrying along its tradition repertoire
to the daughter community. What follows is the procedure of generating a variation of com-
munities with the same instance population vector, but different instance carrier population Na.
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→ Generate random heterogeneous instance vectors generated using the procedure described
above. The range interval is however kept low to reduce sources of variation, (without
excluding heterogeneity per se).
For each instance vector, create numCom mother communities for which the generated
instance vector holds as follows:

→ Create a copy of the instance vector which is the available instance vector (AIV)
→ Until the AIV is emptied:

(1) Add a new agent
(2) Draw a random sample of the available tradition types (the tradition types which

have positive values in the AIV). Let the size of the sample be a random integer
number between one and a certain predetermined maximum value maxaIpA,
if the AIV allows, if not, as many as it allows.

(3) Assign an instance of each tradition type to the new agent, by setting these
tradition types to one in the instance vector, while reducing the number of
these tradition types in the AIV, by one.

(4) If the AIV remains unemptied, go back to (1).

This procedure creates numCom distinct communities all with the same parameters (and thus
with the same theoretical fidelity value, if p, θ are also kept the same), but distributed dis-
tinctly in distinct communities amongst a distinct number of agents. By this procedure, the
agent population of each community becomes a random number, and so becomes the aIpA of
each community. What is controlled apart from the instance vector is the interval of possible
aIpA values (defined by maxaIpA). This procedure serves for creating a large number points
for varying aIpA values for the same instance vector to study the variation of effect .

But communities with controllable aIpA values are also desired for more specific study of the
effects. The procedure described above is in this case repeated just with a change in step (2).
Instead of step (2) the size of the drawn sample for each agent is in this case instead constantly
the desired value of aIpA. We note here that due to the randomness of the sampling from the
available traditions, the available tradition vector might not allow the full number of aIpA to
be assigned for the last agent. The resulting aIpA for the community will then be slightly lower
than the desired (but results show not more than a few tenths of a percentage point). Note
that the number of agent carriers becomes determined upon the determination of aIpA.

7 Results
Results begin by a brief look at the single tradition fidelity, which is special case of Q(c=1)=qt,
and informs of how well a homogeneous group of instances reach the daughter communities
in a dual split. The few parameters and simple nature of this case makes it more intuitive
and helps to identify and explain the effects of the primary parameters, p, θ, and Nt, on
the fidelity function. We choose to study qt as functions of varying instance population Nt,
leaving symmetry p and threshold θ as the parameters. Recall that θ is the minimum number of
instances that needs to reach a daughter community for successful transmission of the tradition.
We recall the instance population is the number of instances of the tradition t present in the
community before split and that we refer to case of symmetrical split and minimal θ, p =
0.5, c = 1, as the base case.
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Figure 6: Shows the convergence of simulated estimations of fidelity values qt to the derived
theoretical values as a function of instance population Nt. Each sub-figure (A)-(D) shows results
for a different set of parameters p and θ, the values stated above. For every Nt point, the dotted
points show the average fidelity outcome value calculated over 5, 10, 50, 100, 1 000 and 50 000
simulated splits. At each Nt, the black x-point shows the theoretical value. Note that all curves
start at Nt = θ, since for smaller values there is no tradition present in the mother community.

The figure confirms that fidelity monotonously grows with instance population until it reaches
and stabilises at the maximum value of 2 for sufficiently large instance populations Nt. It is
clear by definition, figure and formula that it will stay there for any larger instance populations.
The figure shows that for the base case of (A) ’sufficiently large instance populations’ are in
fact not large at all. Naturally for the base case fidelity starts at unity since one instance is
certain to reach one and only one community, and it has reached 2 by eight instances. Figure
(B) compared to (A) shows that greater thresholds θ worsened not only all the fidelity values
but also the over all growth of fidelity, because the larger the threshold, the less significant
becomes the addition of a single instance. Figures (C) and (D) indicate that also asymmetry
p < 0.5 reduces likelihood in the adaptive region of transmission q> 1, but that it helps in the
maladaptive region q≤ 1. This is also intuitive since a bias split makes it more likely to reach
one community, but an unbiased split makes it more likely to reach both. Finally figure also
confirms convergence of the simulated splits fidelity toward the expected theoretical function
for all cases (A)-(D) by 1 000 runs, and shows a faster convergence for the base case that
appears to have converged by 50 runs whilst several values for the other parameter sets had
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not yet converged at 100 runs. On this note we proceed to look at the variance of the fidelity
of a single tradition.

Figure 7: Convergence of the variance of simulated fidelity values qtvar to the theoretical
values. as a function of instance population Nt. A different set of parameters p, θ for each
sub-figure (A)-(D), values stated above. At each Nt, colored dotted points show the progression
of the fidelity average calculated over an increasing number of splits: 5, 10, 50, 100, 1 000 and
50 000. At each Nt, the black x-point shows the theoretical value.

The simulated values in figure 7 were calculated as the estimated variance of transmission
counts T from all simulated splits up to that point. This figure confirms convergence of the
simulated variance to theory, but at a somewhat slower rate than for the fidelity values. This
is expected for the estimation of a variance of an unknown mean, compared to of simply the
mean. A variance is often easier interpreted when put into the context of its mean and so we
do best to proceed to the following figure.
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Figure 8: Theoretical values of fidelity qt as a function of Nt plotted together with the theo-
retical standard deviation of qt, the square root of the variance qtvar, coloured as a symmetrical
deviation. Different values of p and θ in each sub-figure. As they share the same parameters,
sub-figure (A) is a merger of above sub-figures 6(A), 6(C), 7(A) and 7(C) and the same goes
for sub-figure (D) with 6(B), 6(D), 7(B) and 7(D).

Figure 8 shows the standard deviation as a symmetrical deviation, for an unknown deviation,
this is the best uninformed guess. However in our case one knows that the fidelity does not
cross under 0 or over 2, thus in the regions in figure for which the symmetrical deviation does,
we can conclude that the true variation is asymmetrical and heavier towards the other way
than is shown.

We note there is a point of zero variance in all tested cases when fidelity exactly crosses unity.
Any way such a group is split into two, one group will be certain to have θ instances and the
other one will be certain to not. Note that zero variance can only occur exactly on the true
possible transmission count values 0,1, or 2. Thanks to the cumulative nature of the fidelity
function, such a zero variance point for fidelity qt= 1 further implies that values above that
point cannot either ever deviate below 1, because fidelity monotonously grows with instance
population. On the same note, no values below this point can ever deviate above 1. The zero
variance points can be noted also by the convergence of the fidelity plot in figure 6. See there
that the corresponding instance population points, show no variance of the simulation values
from the theoretical, not even for the smallest number of runs.
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Zero variance points can be assumed much more unlikely in the case of institutions c> 1 as
other traditions can easily remove any certainty of a single tradition fidelity. However we can
look for low variance points, specifically at fidelity 1, since the implication that this introduces
probable edges to all other points would still hold and can be used in future analysis.

7.1 The effect of adding complexity (c > 1)
We now put the concept of institution to the test, introducing complexity c> 1. Recall the
complexity parameter c is the number of different traditions types which compose the insti-
tution. Recall the threshold θ holds for all c tradition types and is the minimum number of
instances that must exist in the community the institution to be present.

The symmetry parameter p is still the probability of an agent (and instance, since aIpA=
1) reaching one of the daughter cells, leaving probability 1 − p for the other. The instance
population parameter is now a vector [N1,N2,...,Nc], specifying the instance population of each
tradition type in the institution. We begin this section with a theoretical plot. The theoretically
expected effects of growing complexity of the institutions on fidelity Q is shown in the following
figure. To keep the number of parameters low, we begin by assuming a homogeneous instance
vector, [N,N,...,N] defined by parameters N and length c. This means all c traditions have the
same number of instances spread out amongst agents in the community before split. Under the
binomial assumption aIpA= 1 we get the following results:

Figure 9: θ=1. First row (A)-(C) shows the theoretical fidelity Q as a function of complexity
c for the threshold value θ = 1, for different values of the homogeneous instance populations
N in different columns, and different symmetries p for different coloured curve. Second row
(A)-(C) shows the corresponding theoretical variance Qvar for the same complexity region and
same parameter values as the fidelity Q shown above.
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As seen in figure 6, it is also seen in figure 9 that the fidelity values for the chosen instance
populations are almost all at the maximum of qt = 2 at the starting case c = 1 (slightly under
for (A) N = 6). Figure 9 shows as expected a decay of fidelity for increasing complexity, as
for a growing institution an increasing number of tradition types need to make it to the same
daughter community for successful transmission. As fidelity equation 2 states, the decay is
exponential. For the symmetrical case (purple) it is slow enough to appear linear, and as the
instance populations grow, it appears more so also for the asymmetrical splits. Slower decay
of the symmetrical split is shown to come with a rapidly growing standard deviation, which is
as high as 0.7 in (A) as the symmetrical split fidelity crosses one. This implies that decay will
firmly continue as fidelity falls into the maladaptive region, because the increasing deviations
must be caused by increasing cases of zero transmission outcomes T = 0. For the higher in-
stance populations N ≤ 10, (B) and (C) fidelity of symmetric splits appears almost stable on
2, however the growing variance seen in (E) and (F) reveals its decay.

Unlike the symmetrical split where the variance seems to peak at 1, the variance for the asym-
metrical splits seem to stabilise for a minimum at 1. On the other note, the asymmetrical splits
show a decaying variance as fidelity approaches 1. Case (A) p = 0.2 reveals that variance will
slowly start growing after that and the fidelity as a consequence will start moving toward zero.
For p = 0.3 the variance appears to stabilise above zero and therefore does not really stay on
unity. Of the tested cases only the case p = 0.2 appears to have approximately zero-variance.
As mentioned for figure 7, we propose this reveals not only that the transmission outcome is
almost exclusively unity (and not a balance of 0s and 2s). We propose it also reveals ’edges’
at fidelity 1, meaning that the values above point 1 do not (significantly) deviate to 0 and the
values below 1 do not (significantly) deviate to 2.

The effect of increasing the threshold θ on the functions Q(c) and Qvar(c) is shown in the next
figure.

28



Figure 10: θ=4. (A)-(C) shows the theoretical fidelity Q as a function of complexity c, now
for the threshold value θ = 4 , for different values of instance populations N in each column
and different symmetries p for each colour. The instance population holds for all c tradition
types, as do the parameters p and θ. (D)-(F) shows the theoretical variance Qvar for the same
complexity region and corresponding parameter values as the fidelity Q shown above it.

Figure 10 shows that increasing the threshold from θ = 1 to θ = 4, allows none of the tested
cases to stay in the adaptive region for particularly long. The symmetrical splits show again
the slowest decay when in the adaptive region. Below the crossing of unit fidelity however, the
asymmetrical splits seem better for staying over zero, as was understood also in figure 6 for the
single tradition fidelity qt.

Overall both figures show that for low thresholds symmetrical splits would allow institutions
(incipient socionts) to complexify substantially in the adaptive region, for fairly low instance
populations like (A) N = 6. By complexification we imagine the phenomena of an institution
growing by adding newly emerged tradition types over time. Asymmetrical split is shown to
instead allow institutions to complexify substantially in and around the single transmission
region Q ∼ 1 without/before reaching the loss region. Recall however that a Q ∼ 1 most
likely indicates an eventual loss of institution. This is because it does not allow spread, only
survival. For higher threshold values or comparably lower instance populations, the fidelity
shows all the quicker exponential decay down to 0. Figures 9 and 10 show for all tested cases
that the fidelity behaviour even at such high complexity values have not yet stabilised. Another
complexification figure is included showing long term values.
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Figure 11: θ=4. Same figure as 10 with double the range of complexity values.

The long term figure 11 shows slow but firm declination to zero for the symmetrical cases, as
instance population grows the declination slows down quite rapidly. The asymmetrical cases
instead show a quick stabilisation on unit fidelity that for the most cases has yet started de-
cline by c = 100. The red p = 0.3 in (A) is the only asymmetrical case where slow declination
towards zero has begun as revealed also in (D) by the growing variance.

The next figure shows the convergence of simulations for the institutional fidelity c > 1. All
simulations are still under the binomial assumption aIpA= 1 (and will proceed to be until
stated otherwise) which allows us to disregard the agents and handle the community as a
population of instances, of c different types. The population of each type is given by the
instance vector [N1, ..., Nc]. The fidelity is estimated as the average tradition count over all
repetitions. The instance population vectors are still kept homogeneous, to focus solely on the
effect of complexity. Instance vector is [N, ..., N] given parameter N and length c. To easier
compare how complexity has changed to Q from qt, the figures show the same parameter sets
as previous figures 6 and 7, only with c = 10 instead of c = 1. The corresponding c = 1 curve
is shown in grey in each sub-figure.
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Figure 12: c=10 Shows the function of fidelity Q for an institution of c = 10 traditions in
a community split of symmetry p, with threshold θ, both of which hold for all tradition types.
On the x-axis is the instance population N which is same for all tradition types, meaning a
homogeneous instance vector [N, N, ..., N ] of length c. The dots show the simulated fidelity Q
for increasing number of runs, 5,10,100, 1 000, and 50 000 in different colours. Included as a
grey line for comparison are the corresponding single fidelity (c = 1) functions from figure 6.

Figure 12 shows, as expected, drops for all the fidelity functions of institutions compared to
single traditions. All sub-figures show that the staring point values have dropped to 0, which
in (A) and (B) with lowest threshold θ = 1 is directly followed by rapid growth, in symmetrical
(A) all the way to the maximum 2, in the asymmetrical (B) up to 1 where growth slows down.
For higher threshold such as θ = 5, symmetrical (C) still shows rapid growth to maximum,
although somewhat slower and starting at much higher instance populations, at N = 10 in case
(C). Before that, transmission shows to be steadily impossible. Asymmetrical split fidelity (D)
begins growth somewhat earlier around N= 7, stays rapid until fidelity reaches unity where
a plateu has formed of certain transmission of exactly one, unaffected by growing instance
populations until a sufficient number has been reached so that transmission is possible also
for the second, lower populated/unpopular, daughter community. In (D) this appears to be a
number slightly lower than N = 20. Fidelity then grows although slowest of all cases, weighted
both by the high threshold and the biased choice of daughter community in the splits. Figure
shows convergence to theory more or less by 1 000 runs in all cases, and certainly by 10 000 runs.
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Next we look at the corresponding variance functions.

Figure 13: c=10 Shows the function of fidelity variance Qvar for an institution of c = 10
traditions in a community split of symmetry p, with threshold θ, both of which hold for all
tradition types. On the x-axis is the instance population N which is same for all tradition types,
meaning a homogeneous instance vector [N, N,...,N] of length c. The dots show the simulated
fidelity Q for increasing number of runs, 5,10,100, 1 000, and 50 000 in different colours.
Included as a grey line for comparison are the corresponding single fidelity (c = 1) functions
from figure 7

Figure 13 shows that institutions will have a higher variance in fidelity than single traditions,
which is very reasonable since the value is determined by several independent tradition out-
comes. Figure (A) shows a high variance peak which seems to reflect the region of growth in
figure 12(A). Same for the other figures (B)-(D), the variance peak regions reflect the growth
regions in the corresponding fidelity curves above in figure 12. Whats more this seems to be
regions in between possible transmission outcome values of 0,1 and 2. This is understood since
in these regions the true values actually always deviates from the expected value. The fact that
the peaks are double in height from the single tradition fidelity for the symmetric cases (A) and
(C) should indicate now that the fidelity is expected to jump significantly often between all the
three possible values, while in the single fidelity only jumps between two. In the asymmetrical
cases (B) and (D) the peaks remain the same heights as the single tradition fidelity, indicating
that the outcomes remain significantly between only the two closest possible values, for insti-
tutions as for single traditions. We note that by significantly we mean the third outcome could
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still occur but not to a statistically significant level. An example of this seems to show in (B) at
a point on the second peak, where the estimated variance after five simulations (green dot) is
closer to the double height, indicating that higher jumps might indeed have occurred, although
seems not often enough to heighten the mean variance value. The crossing of unit fidelity in
the asymmetrical cases seem to correspond to a dip in variance as opposed to the peak in the
symmetrical case. This should mean that in the asymmetrical cases, unit fidelity to a much
larger extent is caused by the actual unity outcome value, and not by the balanced frequency
of values 0 and 2.

7.2 The effect of a heterogeneous instance population
The instance vectors have up till now been homogeneous, meaning all c instance populations
are the same. This is likely not often a realistic case, especially as complexity grows. True that
the institutions are assumed to be made up of fairly equally challenging/impactful traditions,
since no distinction of value or role has been made between them (homogeneous θ). Someone
could argue that they for that reason indeed should be found with similar frequency in the
community. However at closer consideration there can be found several reasons that would
cause varying instance populations, that still allow for homogeneous θ. For example one can
imagine some tradition types are newer than others, that is more recently added as components
of the institution. These tradition types might then not have had as much time to spread to
many agents, at the time of the split, and thus have lower instance populations, even though
equally they are significant to the (now larger) institution. Another setting could be the that
different tradition types are correlated with different demographic groups in the community.
Perhaps by age groups or by varying physical versus intellectual fitness, and can still be equally
valuable to an institution. We will study now how the introduction of heterogeneity in the
instance vectors affects the institutional fidelity.

This is done by creating a large set of random instance vectors of varying mean and range, as
described in simulations section 6.2. By range we mean the difference between the highest and
the lowest values in the instance vector. Complexity is kept at c = 15 in the following figure.
The fidelity value Q is then calculated by equation 2 and the values are visualised as dots in
figure 14 below. In (A) each point is sorted on the x axis by the mean of its instance vector. In
(B) the same group of points are instead sorted by the minimum value of its instance vector.
In both (A) and (B) the ranges in the instance vectors are indicated by colours.
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Figure 14: Institutional fidelity Q of heterogeneous instance vectors [N1, N2, ..., Nc=15] in a
symmetrical split p = 0.5, complexity c = 15 and threshold θ = 1. Each dot is the Q value
of a single randomly created instance vector sorted on the x-axis by their mean values in (A)
and their minimum values in (B). The range of each vector is specified by its colour. Range is
simply the difference between the highest and the lowest value in the instance vector. The drawn
curves show the functions of the homogeneous cases [Nmean, Nmean, ..., Nmean] in (A) and
[Nmin, Nmin, ..., Nmin] in (B).

In both (A) and (B) the line shows the fidelity of a homogeneous instance vector, in (A) the
homogeneous vector of the mean value Nmean, in (B) of the min value Nmin. As the line and
the points on the same x value in (A) share the same mean, the figure shows that any vector
with varying instance populations, will always have lower fidelity than if all values had been
replaced by the mean value. Furthermore the higher the range of different population values
in the vector, the lower the fidelity will be.

A heterogeneous vector contains both higher and lower values than its mean and by definition
the higher values must together be as much higher than the mean as the lower values are lower.
The phenomena seen in figure 14(A) thus implies that lower instance populations weigh down
more on the fidelity than what the higher instance populations weigh up, making all the hetero-
geneous results lower than the homogeneous mean result. This is generally the case for concave
functions as they grow all the less for increasing values and thus two points equally far from
a mean in different directions on the x axis, will result in a greater distance downward than
upward on the y axis. We see in figure 14(A) that the fidelity function is indeed concave for
the most part, and that the part where it is convex it is so only very slightly and is right as the
function starts leaving zero, for which we can see the differences are insignificantly low. The
other parameter cases in figure 12 indicate the fidelity function is overall a concave function for
all parameter variations expect for the very lowest values, and the slight exception of case (D)
p = 0.3 and θ = 5, where at the value of unit fidelity when leaving the plateau and reaching
for the adaptive region, but again the convexity appears so slight that it is practically linear,
which would indicate agreement with homogeneous mean case.

In a less surprising result, (B) shows that the homogeneous instance vector composed of a
smallest value in a heterogeneous vector, will have much lower fidelity, than the heterogeneous
case, and that the deviation will grow with range since high range implies existence of higher
values (instance populations). Case (B) was included to show that there is both an upper and
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lower limit for the fidelity value of a heterogeneous vector, using its mean value and its mini-
mum value, and the homogeneous formula. This gives a much simpler formula and a significant
parameter reduction. The fact that the intervals seem to grow on both sides with range in the
heterogeneous vector, although undeniably more in (B), would indicate the interval changes
relatively slowly in shape (shape here meaning relation of distance on both sides from the true
value). This gives hope that some combination of these limit values could serve for reasonable
estimate for the true heterogeneous value.

Before doing that, we also mention that the convergence of simulated fidelity in the heteroge-
neous case was confirmed by additionally simulating splits for all created instance vectors. The
result was a perfect overlap for all dots by 10 000 runs, see these results in appendix.

7.3 On the estimation of a heterogeneous instance population
The results of the previous section was that a upper and lower limit can be found for the
fidelity value of any heterogeneous vector using its mean and minimum value respectively,
in the homogeneous fidelity equation. Here some possible estimators of the true fidelity are
proposed, using the homogeneous Q function of the mean and the min. First a reminder of the
homogeneous Q function, we denote our cases, Qmean and Qmin,

Qmean = (1 − FBin(θ − 1, Nmean, p))c + (1 − FBin(θ − 1, Nmean, 1 − p))c

Qmin = (1 − FBin(θ − 1, Nmin, p))c + (1 − FBin(θ − 1, Nmin, 1 − p))c

Next follows three proposed combinations of Qmean and Qmin values to be tested as estimators
for the true value. The first one is a perfect balance between the values.

Qest1 = Qmean + Qmin

2

However, seeing in figure 14 that the underestimation of Qmin (B), seems more severe than the
overestimation of Qmean (A), for almost all points, we propose two other combinations which
way somewhat heavier on Qmean, so as to compensate.

Qest2 = 2Qmean + Qmin

3 Qest3 = 3Qmean + Qmin

4

Figure below shows the result of estimation, in the plots below together with the true homoge-
neous value, the figure shows this for the base case, for two complexity values c = 5, 10.
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Figure 15: Results from estimations of the fidelity value using the mean and the minimum
value in the heterogeneous vector. The performance is shown through plots with the true value
on the X axis, where coinciding with the blue equality line would mean perfect agreement. The
different columns show the different estimators, in the order defined above. Each estimator is
tested for two different complexities, c = 5 in first row and c = 10 in the second.

Figure 15 (A) and (D) show that a balance between Qmean and Qmin, as proposed in Qest1
results in a general underestimation of the true value which was expected due to the larger
impact of low instance populations. Remaining figures show that as the weight increases on
the Qmean term, the lower fidelity values begin to become overestimated, in figures (C) and
(F) quite greatly so. Of the three proposed estimators, claim Qest2 would be best for it seems
to have the best balance between the overestimation for the low vales and a underestimation
of the higher. In appendix, further results show that for increased threshold θ and asymmetry
p < 0.5, the estimations seems to serve a better accuracy than the base case, and again best for
Qest2. With respect to the great facilitation that an estimation using only mean and min would
provide for analysis, we judge the results of Qest2 to be good enough to use as an analytical
tool, for qualitative analysis especially.

7.4 On the question of transmission or loss
The early question of how one should interpret fidelity values remains in the air. What does
unit fidelity (Q = 1) really mean for the institution? Does the adaptive region of transmission
1 < Q ≤ 2, secure transmission? How well do values in the critical region of 0/leQ ≤ 1 reflect
the risk of institution loss, in terms of probability? The variance has given some guidance
in the ambiguity of unit fidelity, where the variance in some of these cases drops near zero
indicating a true unit outcome, whilst higher variance values at unit fidelity indicate mixed
outcomes, including all values 0,1,2 with a unity average. However, because the variance is an
absolute value of the deviation, and because of the equidistance of the possible outcome values,
further interpretation of variance values is limited without further analysis. Comparing and
analysing obtained fidelity and variance results could likely provide some more detailed rules
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of thumb. For example, when comparing different valued cases and their characteristics one
could probably find which variance values indicate a mixture of only two closest outcome values
and which variance values indicate a mixture of all three outcome values. Also, thanking the
cumulativity and the small number of three possible outcomes, one could look for informative re-
lations between direction of change (or derivative) of fidelity values and corresponding variance.

While encouraging this exploration, I leave above proposals beyond the scope of this study,
instead this section will look at how well low fidelity values reflect the risk of no transmission,
and how well high fidelity values secure transmission. We derive the probability of transmission
under the binomial assumption, and compare this with corresponding fidelity function.

The probability of transmission for the homogeneous case is derived as follows, using again the
formula of joint probability of overlapping events P (A ∪ B) = P (A) + P (B) − P (A ∩ B), and
above notations and derivations. Recall ’X’, ’Y’ and ’XY’, describe the cases of the institution
reaching daughter cell Dx, Dy and both, respectively. N is the instance population for all c
tradition types, p is the symmetry and θ the threshold.

P (transmission) = P (’X’) + P (’Y’) − P (’XY’) =
=(1 − FBin(θ − 1, N, p))c + (1 − FBin(θ − 1, N, 1 − p))c+

+ max
(
0, 1 − FBin(θ − 1, N, p) − FBin(θ − 1, N, 1 − p)

)
)c

A perfect reflection of the transmission probability would be an overlapping of the two curves
in the region 0 ≤ q, so that the (cumulative) probability reaches one as the the fidelity function
crosses 1. The fidelity will always be higher or equal to the to the transmission probability
since it involves the same possible outcomes only one is doubly weighted. The regions when the
fidelity becomes higher than the probability is when the probability of double transmission has
become non-zero and starts contributing to the fidelity value. The regions when fidelity has
crossed unity while transmission not yet has reached unit probability, are regions in which the
fidelity needs to be considered with some caution. Since it includes a non-zero risk of institution
loss although fidelity is higher than unity. The regions under unit fidelity which overreaches the
probability are also considered as regions of caution, since the fidelity then has the appearance
of a probability value but is in fact the real one at all. Basically, all regions where fidelity over
represents probability of transmission, we refer to as regions of cautions.
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Figure 16: Shows institutional fidelity for homogeneous instance populations plotted as a func-
tion of N together with the corresponding function of transmission probability. The parameters
of the sub-figures are indicated in the titles. The blue line on the constant value of one is plotted
for visual aid.

Figure 16 shows that such regions of caution indeed do exist, for some parameter values more
than others, indicating that symmetrical splits have greater such reasons. The figure implies
that the deviations do not begin until transmission probability has reached or crossed 0.5, and
that the fidelity does not cross over unity before transmission probability has reached or crossed
0.75.
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Figure 17: Institutional fidelity for homogeneous instance populations plotted as a function
of the complexity c, together with the corresponding function of transmission probability. The
parameters of the sub figures are indicated in the titles. The blue line on the value of one is
plotted for visual aid. Note the differences of ranges in both x and y axis for every sub-figure

Figure 17 with functions of complexity show broader regions of caution, likely because of the
slower fidelity change for the complexity parameter than for the variable Nt. Figure does show
that deviation begins at lower values, but again the fidelity for all tested cases does not cross
unity before the probability has reached 0.75. Further, the figures show in the worst cases, that
the probability has reached unity by when fidelity reaches 1.75. For the better cases, which are
asymmetrical ones, the fidelity leaves the region of caution earlier, by 1.5 in 17(C). For high θ
and c the asymmetrical case 16(D) shows perfect overlap.

One concludes that for fidelity, as we have defined it, a value of unity or higher does not nec-
essarily mean guaranteed (in the probabilistic sense) transmission, although in some cases it
does. The ’if’ will depend on the parameter of the studied case, where higher thresholds and
asymmetry cases have shown better correspondence to transmission rate. This is in agreement
with the results of figure 9 and 10 where existence of near zero variance regions were identified
for cases with higher asymmetry, which implies non occurrence of double transmission in the
low region and vice versa which should indeed result in better overlap with the probability
curve. The figures imply a general region of which the fidelity will indeed give good loss risk
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implications. For the lower region q ≤ 0.5 is shown to overlap the transmission probability for
all tested parameters. A unit fidelity or above is shown to imply a transmission probability of
at least 0.75. And finally it seems a fidelity of 1.75 or above will guarantee transmission for all
parameter cases.

7.5 The effect of agent carriers
Up until this point, the simulations have been prone to the same assumptions upon which
the binomial theory was derived, including the assumption of one instance per agent. This
assumption is far from the only assumption made in this study, but it is one that was made
inside an already complete setup of the other assumptions, solely for the sake of theoretical
derivation. It is thus an assumption that is easily lifted without changing any building stones.
This is done in the next part of the study, where the simulations move on to the more general
setting a community of multi-traditional able agents.

A comment for the following section, the agent carrier population numbers of different cases
will almost always be implicit, because the impact of aIpA and instance populations are chosen
as the central ones. But the agent carrier population can always be approximately calculated
by multiplying the mean instance populations by c, and dividing this by the mean number of
instances per agent, Na∼ N̄ ·c

aIpA
.

The general method of generating agent communities and the simulation of the splits were
described in section 6.3.

40



Figure 18: Institutional fidelity as a function of mean instance population N̄ , results from
simulations with agents are shown as dotted points, each dotted point represents a unique com-
munity for which the split was repeated 10000 times. For each dotted point, there is a black
’x’ point on the theoretical Q value of that given instance vector. The colours represent aIpA
in that community, values are seen in the colour bars to the right of each sub figure. Each
sub figure shows the function for a different set of parameters symmetry p, complexity c and
threshold θ.

All sub-figures show that as the number of aIpA starts to increase in the community, deviations
emerge from the values expected from theory. The darkest points, that is the points with a
majority number of single instance agents, show overlap to theory. This confirms the assump-
tion that at low densities the presence of agents is negligible. But already as density starts to
approach 2, the simulated values start to lift above the theoretical, and for higher densities still
the deviation upward seems to only increase. The deviation exclusively upward is understood,
since the case of one instance per agent is the most difficult case for institutional transmission.
In the case of one instance per agent, each instance moves alone, and thus can as likely end up
with several of its own kind, as with several of different kinds, (if they are as populated in the
mother community). In the case of higher aIpA however, the instances do not move alone but
thanks to their agent carrier along with other instances, and these instances are guaranteed to
be all of different types. So a higher aIpA will increase the probability that an arbitrary group
of instances reaching a daughter community, are of different tradition types, which increases
the chances of institutional transmission, since this requires presence of all types.

(A) and (B) show the highest deviating points, right at the start for the lowest mean instance
populations N̄ . Imagine the case of such low instance populations, for small institutions c = 5,
and a minimum threshold. If agents carry three or four instances each, one agent carries a
great chunk of the institution alone. This dramatically increases the chances for transmission,
which is almost zero without that help. For corresponding cases with increased complexity, (D)
and (E), the deviations from theory are not as large, although they are also largest in this low
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population region. This is expected since three or four instances per agent of larger institution
is a less significant chunk. The higher complexity cases c=10 over all show lower deviations
and probably all for that same reason. Higher threshold cases show high deviations but also
appear more systematic ones, where distinct curves of near-constant number of instances per
agent, can almost be seen. Comparing to the asymmetric cases of θ = 1 there seems to be
overlaps in deviations of different aIpA. We do note high concentration of randomly created
points in the figures makes it hard to look for systematic trends in the errors, since theoretic
points themselves, deviate from any specific curve. Also the varying concentration of points
in different regions makes it harder to visualise any potential curves. The overall high concen-
tration of random points does however help to visually indicate that the deviating values in
all sub figures, do in fact seem to stay within certain proximity of the theoretical curves, and
that the region of proximity seems to follow the main shapes derived by theory, for all different
parameters.

Next we show the corresponding plot but for the fidelity variance.

Figure 19: Fidelity variance as a function of mean instance population N̄ , results from simu-
lations with agents are shown as dotted points, each dotted point represents a unique community
for which the split was repeated 10000 times. For each dotted point, there is a black x-ed point
on the theoretical Q value of that given instance vector. The colours represent average number
of agents in that community, values are seen in the colour bars to the right of each sub-figure.
Each sub-figure shows the function for a different set of parameters symmetry p, complexity c
and threshold θ.

In the variance curves for aIpA> 1, there are clearer indications that the deviations of higher
aIpA might be occuring as transformations of the curves derived from theory. We note though
on what appears as an interesting exception in (C) p = 0.5 c = 5 and θ = 5, where for high
enough aIpAs, the shape seems to have changed dramatically, and introduced what could be a
new minima. Also (F) shows indications of something like (C). The figures indicate for different
parameters, quite different kinds of transformations. Interestingly enough, the asymmetrical
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cases (B) and (E) are the ones that most indicate translation, whilst in the fidelity figures 18
these cases do not show the same indication. Instead, in the fidelity figures it is cases 18(C) and
18(F), that mostly indicate translation. We make a daring suggestion that maybe the shapes
of the theoretical curves such as steepness or concavity can serve as better indicators than the
parameters themselves, either for the visibility of the transformations, or for the transforma-
tions themselves. We finally note also on the difference that the deviations of the variance have
no particular sign, while the fidelity deviations do.

Next we show the progression of the deviation, of the theory from the agent simulations, and
do for this simulations of two particular aIpA= 2, 4. This was done for the base case p = 0.5,
θ = 1, for three different complexities c = 5, 7, 10. Again, randomly generated instance vectors
were created for each mean with range kept mostly on 0 or 1, meaning homogeneous or only
slightly heterogeneous instance vectors.
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Figure 20: Plotting the error of predicted theoretical values from the simulation outcomes,
as a function of instance population. In (A) the error is presented as a difference, Q-Qtheory,
that is the absolute increase of the error as mean instance population N̄ increases. In (B) the
mean values are sorted into bin values of size 0.5, an the results presented as a logarithm of
the difference. In (B) the errors are plotted as a ratio Q/Qtheory, that is the factor with which
the simulated results have increased from prediction. In (C) the mean values are again binned
into intervals of size 0.5, and the factor is log-ed two times. Note that the x axis is for the
binned plots (B) and (D), indicate the bin index and not the instance population mean. The
mean interval is then around half of the bin index, since each bin has the size of 0.5.

The figure shows the deviation of theory in the base case, analysed in different ways. The
increase in the deviation for decreasing instance populations appears highly exponential. The
ratio figures (C) and (D) reveal however, that it is not the ratio of deviation that exponentially
increases (for decreasing instance population), it is the exponent of the exponent of the devia-
tion that exponentially increases. This truly means an explosion of deviation from theory, when
increasing aIpA for low populated traditions. Again, although maybe not to this extent, the
dramatic increase in the deviation factor, for decreasing instance populations, was expected.
This is because of the theoretical predictions are almost zero, while the simulated are not. Fig-
ures (C) and (D) shows the deviation factor being highest for the higher complexity c = 10, for
both densities, 2 and 4 instances per agent, while the absolute deviation is shown on average
highest in (B), for the lowest complexity c=5, as was also seen in previous figure 18. In (B) the
curves show the absolute deviation to be ordered primarily by density, showing the group of all
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complexities with aIpA= 4 to be higher than the entire group of aIpA= 2. Inside these groups
the deviation is higher for lower complexities. In (D), the deviation ratio is shown highest for
the highest complexity c = 10 for both aIpA, at start. But their lines also indicate the steepest
decay, as the instance populations increase (and thus the fidelity values too). The lines in (D)
indicate some sort of crossing of all complexity lines, for both aIpAs separately, bit both at bin
index around 13, which with binsize= 0.5, which represents the mean instance population N̄
value of around 6.

No opinion is given of which way of analysing the deviations would be better, the different
ways show to reveal distinct interesting patterns. In all cases the questions that arise about
the deviations are many, and call for deeper and more rigorous exploration. Recall there are
other ways of testing deviations that might be better, such as for example relative errors, or
functional transformations.

We proceed to study deviation functions for some other parameter cases, first for symmetric
splits with higher θ = 5, and next for asymmetrical splits p = 0.3 and the higher θ = 5.

Figure 21: Deviations of theory from simulations, as the difference (Q-Qtheory) shown for
case p = 0.5, θ = 5 in (A), and p = 0.3, θ = 5 in (B), as functions of mean instance populations
N̄ . Colours indicate different complexities c = 5, 7, 10, and aIpA = 2, 4.

Figure shows new very different progressions of the deviation, (A) and (B) are different both
from each other and from the base case. The deviations no longer seem to be overall of
exponential decay for growing instance populations. The deviations now show more complex
dynamics, with peaks and dips for different regions of mean instance populations. We can relate
the region of zero deviation at low mean instance populations, to the region of zero fidelity that
we have seen emerges from higher threshold values. See the zero regions in 18(E) and (F),
which we conclude are largely unaffected by higher numbers of aIpA. Then the left side of the
emerging peaks of deviations seem to coincide with steep growth of fidelity values, specifically
the convex region. The right (downward) side of the peak, corresponds to the concave part of
the steep curve in 18, and shows again exponential decay almost independent of complexity,
which reminds of the base case which we note is concave more or less from start.
For the asymmetrical (B) with θ = 5, we have no comparison in 18, however we can refer to the
trends found in earlier figure 12(D) with this same parameter configuration but for aIpA= 1.
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Also there, there had emerged a flat zero fidelity region for the lowest instance populations,
due to the high threshold θ = 5, although somewhat briefer, around half the extent in the
asymmetrical case than that of the symmetrical case. This is shown to be reflected in the
deviations, followed by a steep growth and peak, again as in (B) for a region of steep convex
fidelity growth. The steep dip that follows reflects the plateau region in 12(D). The plateu is
then followed by a convex growth in fidelity, although somewhat slower, and the deviations
here remind of the deviations of convex fidelity growth also in 21(A).

We state that also these results shows indications of a relation between convex growth in the
theoretical curve and translative deviations from the simulated curves. And between concave
growth in the theoretical curve, and exponential decay of the deviations from the simulated
curves.

Now move on to the final results which are two more examples of comparing fidelity functions
from simulations of higher aIpA to binomial theory, this time as functions of complexity. The
figures below recreate a part of the early theoretical complexity plots in figures 9(A) and
10(A), also the case of mean instance population N̄ = 6. This time the instance vectors are
kept completely homogeneous, that is, a vector of sixes of increasing length c. This is done
again for three different symmetries p = 0.5, 0.3, 0.2, and for thresholds θ = 1, 4.

Figure 22: θ = 1. In (A) the fidelity as a function of complexity for threshold value θ = 1
and instance populations of N = 6 for all traditions. Each dot shows the average fidelity
outcome from 10 000 simulated splits of a randomly created agent community where instances
where given to agents of varying density, average indicated in the colour bar to the right. ’x’
dots represent the theoretical values of the fidelity for the homogeneous instance population of
institution of size c. (B) and (C) show the corresponding variance points, separated into two
figures for better visibility
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Figure 23: θ = 4, In (A) the fidelity as a function of complexity for threshold value θ = 1 and
instance populations of N=6 for all traditions. Each dot shows the average fidelity outcome from
10 000 simulated splits of a randomly created agent community where instances where given to
agents of varying density, average indicated in the colour bar to the right. ’x’ dots represent the
theoretical values of the fidelity for the homogeneous instance population of institution of size
c. (B) and (C) and (D) show the corresponding variance points, separated into two figures for
better visibility

We see simulated fidelity function for threshold θ = 1 shows largest deviations for the most
asymmetrical splits p = 0.2, whilst for θ = 5 the largest deviations are seen for the symmetrical
split p = 0.5. We note that the curves of high deviations resemble each other, and the curves
of low deviations resemble each other. These results support the idea that deviations depend
less on parameter values and more on the shape of the theoretical curves. Same seems to be
indicated from the variance curves, where the steep peaked curves deviate more regardless of
parameters, and the more linear shapes deviate less. Further the figures indicate that devia-
tions will decrease for growing complexity, as have the previous and as was expected, although
we note, quite slowly.

Overall the simulated results in figures indicate emergence of curves of points with similar
aIpAs, and that these curves do quite resemble the ones predicted by theory for the same
parameter values. Again simulated curves appear to be stretched or shrunken, or translated
versions of the theoretical ones.
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Finally, we refer to appendix for some further results, that show that if the instance vector is
heterogeneous meaning that some tradition types are rarer than others, even subtle differences
on the level of which instances are carried by the same agents, can affect the fidelity. If instances
of rarer tradition types, coincide together in the same agent carrier, the fidelity will deviate
significantly higher from theory, than if such rare traditions don’t coincide. This indicates that
even when one manages to find better theoretical predictions of the fidelity of higher number
of instances per agent, deviations will be still be found due to details undetectable without
adding new parameters to describe the instance-in-agent distribution.

8 Discussion
In the context of the Social Protocell Hypothesis the behaviour of fidelity serves to indicate how
well adaptive institutions could survive community splitting, adaptive institutions serving as
incipient socionts. The model setting in which the theory was derived, with uncorrelated agents
carrying single instances of tradition, is arguably a hard setting for institutions to survive split-
ting, because there is no structure to help the institution. As results indicate, only by letting
agents carry more than one tradition –not many, and still uncorrelated– will significantly help
fidelity and especially the lowest values of the maladaptive region. Theoretical results show
that in many parameter settings even for ’hard case’ scenario of aIpA= 1, institutions would
quite easily survive splitting. For lowest threshold values close to θ = 1, a number lower than
10 instances of each tradition are needed in the community for transmission of institutions to
be probable, for complexities as high as c=10. Social protocells that allow for institutional
complexity while staying adaptive provide good chances for cumulative culture since at points
of higher complexity institutions might develop autonomous traits that further increase fidelity.
A critical instance number of 10 to achieve relatively high complexity can be counted as fairly
small if one assumes social learning is present and a relaxed time frame. On top of that simu-
lated results for higher aIpA cases indicate that the critical instance number gets exponentially
smaller once agents are allowed more than one tradition type, (doubly-exponentially smaller,
figure 20 implies). Further, the theoretical curves of fidelity as functions of complexity in fig-
ure 9 imply that for low thresholds θ = 1, there is room for substantial complexification of
institution with relatively little loss of fidelity, again for fairly low instance populations, such
as six instances per tradition. We reason on top of that that a process of complexification
of institution over generations could also likely lead to increase in the aIpA, as this could be
over large time scales and also as there are all the more traditions present to learn. As results
show, increased aIpA would then further help fidelity of complexifying institutions. Let us also
recall that no assumptions have been made about the complexity of the traditions themselves
or about the method of spreading of the traditional instances. Thus, fidelity of the spreading
method need not necessarily be high, as it is only the function of a tradition that all instances
need to have in common. This allows for both individual instances and social spreading to
maintain a very primitive/maladaptive level while results show they can still serve as part of a
complexifying, cumulative, high fidelity institution.

The threshold value was shown to be an impactful parameter, as θ grows it quickly worsens
the prognosis for successful transmission in split. Figure 10 for example showed that for θ = 4
potential for complexification is dramatically lower if not gone, for the same low instance pop-
ulations that figure 9 θ = 1 showed to be sufficient for double transmission. The threshold
parameter of the traditions in a community can serve to define several aspects both about
the community and about the institution. A high threshold value could for example be the
result of a low social learning rate in relation to the death rate in the community, where in
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instances are fewer than θ instances die with their agents before they have sufficiently spread
to other agents and so the tradition is lost. But a high threshold value could also arise from
very elementary/basic tradition types that do not serve the institution unless there are a larger
number of agents performing them. We propose that by steering the threshold parameter, one
can choose to steer a broad variety of aspects, of mother communities or institutions, and find
significant differences in the fidelity.

The fidelity expression also revealed strong effects of the symmetry parameter p. Asymmetric
splits were shown to raise fidelity in the lowest values of the maladaptive region and thus better
ensure the survival rate for institutions in this region. However asymmetry has a damaging
effect on fidelity in and into the adaptive region, results show a firm fixation on unit fidelity
for asymmetrical splits and struggles to pass over to the adaptive region. As stated in section
4.4, institutions in settings with unit fidelity are assumed in practice eventually doomed to
disappear. In higher threshold cases asymmetry seems to completely remove the chances of
double transmission even for high instance populations (referring to the emergence plateau of
zero variance, seen in figure 14(D)). For the symmetric splits, results show in contrast that rapid
fidelity growth persists into the highest values of the adaptive region. This suggests a variation
of potential scenarios where symmetric splitting would more likely have lead to evolution and
spreading institutions. This gives great domination potential to the symmetric splits, although
asymmetric splits would be a better fit in settings where institutions would be on the verge
of disappearing. This fits well with empirical and historical data that state that symmetrical
community splitting is most likely the prevalent case Andersson and Törnberg (2019); Moffett
(2013).

The derived fidelity expression has shown to serve accurately under the binomial assumption
while deviations from theory were found in simulations when the binomial assumption was
lifted. The deviations were exclusively above the theoretical fidelity value. This was under-
stood by considering that agents bring larger ’chunks’ of an entire institution with them in a
split, thus help the fidelity. The larger the aIpA value, the higher the fidelity value rises above
theory (aIpA= 1). Simulated results have largely indicated that the values rise systematically
while keeping the shape of the theoretical curve, only somewhat transformed. This indicates
that the curve under the binomial assumption aIpA= 1 does manage to capture the main be-
haviours of the fidelity curve also for higher aIpA. Thus a proposal is that the derived fidelity
expression is useful for qualitative study of fidelity and the parameter’s behaviours, also for
larger cases of aIpA.

One would also argue that for more quantitative study in the general case, the proposed fi-
delity expression could serve as a useful starting point, since the simulated aIpA> 1 so often
appear to be transformations of the derived aIpA= 1 curves. While some primary analysis of
the deviation of higher aIpA was performed, the methods chosen where shown not optimal for
revealing much about the dependencies on aIpA. Further study is called for and suggestively
a more systematic investigation of the deviated curves is not far away. The aim would be an
approximated general fidelity expression, where an aIpA parameter is included for transforming
the derived expression to better suit the simulations. From the brief analysis of this study it is
proposed that the extent and type of necessary transformations, potentially show dependency
on the shape of the aIpA= 1 curve, where convex and concave regions react differently to the
increased aIpA. So that perhaps one could transform regionally depending on convexity of the
curves.

However this study has not shown, that deriving the true probabilistic expression of fidelity for
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general aIpA would not be a better way, than transforming the proposed expression. Although
one strongly believes so, one would still do right with some more sophisticated analytical tries
than was performed in this study, before ruling that out. Either way, it would be practically
rewarding to stay with an expression stochastically built up on binomial distribution functions,
because of well established theory of binomial distribution in statistics and stochastic analysis.
Binomial distributions are for example frequently handled in Bayesian statistics which could
be useful if the model was to be extended to include stochastic parameters. This would allow
for example testing for different distributions in the community of the symmetry parameter p.
Or variation in the threshold θ parameter for different tradition types.

Finally, the results calls for testing on larger simulations including more agent based community
dynamics, pre- and post split. The institution and splitting event need to be put into their
context of resource distribution and community survival. In this study the simulations have
been only repetitions of the instantaneous events to collect outcome statistics. Only when put
into the larger dynamical context, can the expression find its true usefulness.

9 Conclusion
The results of this study show several useful aspects of the derived fidelity expression, both in
its presented form in this study, but also in indicated potential for generalisation. The proposed
expression has the benefit of being nothing but simple elementary operations of binomial CDF
functions, making the expression both easily computable, and a good potential building block
for more complex analytical study. On a contextual note, this study aimed to formulate the
theoretical expression of institutional fidelity in a very general and accessible community setting,
avoiding any pre-assumed structure and organisation, outside of the institutions themselves.
The theoretical assumption of aIpA= 1, also happened to result in the most structureless setting
of all the other aIpA values. One can defensibly argue that a hominin community as described
in literature (Andersson and Törnberg, 2019; Davidson et al., 2021) would need not much more
than the presence of an institutionally rewarding resource, and the benefit of time and space,
to have obtained the scenarios upon which the theoretical expression of fidelity was derived
and showed unquestionably high values. The in cultural terms excessively long time span of
millions of years of pre-modern human development, could arguably have provided the time
and the space, and the coinciding emergence of carnivore hunting in historical records in this
time period, could arguably have provided the reward (Andersson and Czárán, 2022). The final
conclusion of this study is thus in support of the SPH, stating that high fidelity community
splitting of our most primitive traditions in cooperation might indeed have been the very early
and very powerful spark of our culture.
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Figure of qt vs p

Included is a figure of the fidelity as a function of symmetry p as no such figure was included
in the main text.

Figure 24: Single tradition fidelity qt as a function of symmetry parameter p for three different
threshold cases and for each, three different instant population cases.

As concluded in the main text, this figure shows that the symmetry parameter has different
effects on fidelity depending if fidelity value is above or below unity.

Estimation test for other parameter cases
Included are two more parameter sets for the estimation test of section ??.
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Figure 25: Estimation tests for parameters p = 0.3, θ = 5
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Figure 26: Estimation tests for parameters p = 0.5, θ = 5
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The figures show better agreement of the estimators with the actual fidelity values than the
base case, especially for Qest2 and Qest3.

Progression of the convergence of fidelity values
Included are two figures showing the progression of simulated fidelity values for increasing num-
ber of runs. The three colors in each subfigure show three different community realisations of
15agents, separated by colors. In all cases in the first figure, the instance vector is homo-
geneously Nt=[2,3,4,4,5] and for each community realisation the total of 18 instances of five
different tradition types. These are randomly distributed amongst the fifteen agents so that
five agents have two (different) instances each, and the ten have one.

Figure 27: Base Case p=0.5, theta=1. c=5 with heterogeneous instance vector=[3,3,4,5,5].
The measure maxrep shown in the legends is explained below

In each sub-figure a different colour represents a new realisation of the community, with the
instances distributed amongst the agents randomly as described in section 6.3. In every sub-
figure the same colour shows a realisation of the same community repeating 100 000 splits and
calculating the average. Thus in total the figure shows twelve different communities, and three
realisations of fidelity estimation for each community. The quantities of maxrep is unique
for each community and represents the two largest average representations of each agent in a
community. The average of representations of an agent means how much each of its instances
represent on average from the total amount of instances of the same tradition type. Thus
if an agent has an instance that no other agent has, the representation of that instance will
be 1 for that agent. For another agent who has an instance that five other agents have, the
representation of this instance for this agent will be 1

6 . This quantity is tested if it can explain
the apparent differences that exists in fidelity amongst different communities that share all
the parameters studied in this text, including the aIpA whose effect has yet to be determined.
This figure shows that the chosen limitation of parameters (including aIpA) that this study
has chosen evidently is not enough for precise results of fidelity estimation, and that there are
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interesting dynamics on the level of agent-instance relation, and perhaps even more. One can
argue too that the deviations appear to be sometimes bigger than the deviations caused by
aIpA> 1. This means that more variables could be necessary in future study of the dynamics
of agents carrying multiple instances.
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