
Parallelization of computational tools
for the no core shell model
A computational study including statistical ab initio predictions
for the 8Be decay energy threshold

Master’s thesis in Physics

JOHANNES HANSSON

DEPARTMENT OF PHYSICS

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

Master’s thesis 2022

Parallelization of computational tools for the no core shell
model

A computational study including statistical ab initio predictions for the 8Be
decay energy threshold

Johannes Hansson

Department of Physics
Division of Subatomic, High Energy and Plasma Physics

Theoretical Subatomic Physics
Chalmers University of Technology

Gothenburg, Sweden 2022

Parallelization of computational tools for the no core shell model
A computational study including statistical ab initio predictions for the 8Be decay energy thresh-
old
Johannes Hansson

© Johannes Hansson, 2022.

Supervisor and examiner: Christian Forssén, Department of Physics

Master’s Thesis 2022
Department of Physics
Division of Subatomic, High Energy and Plasma Physics
Theoretical Subatomic Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Sweden
Telephone: +46 (0)31-772 1000

Typeset in LATEX
Printed in Sweden by Chalmers digitaltryck
Gothenburg, Sweden 2022

iii

Parallelization of computational tools for the no core shell model
A computational study including statistical ab initio predictions for the 8Be decay energy thresh-
old
Johannes Hansson
Department of Physics
Chalmers University of Technology

Abstract
The many-body Schrödinger equation is of fundamental importance in nuclear physics. It can
be (approximately) solved by employing the no core shell model (NCSM). Using this numerical
method in nuclear simulations is a computationally heavy task that requires powerful computer
hardware and purpose-built software. In this project we use the NCSM code JupiterNCSM to
study an eight-nucleon system, 8Be. This research code has previously only been used for nuclei
with A ≤ 6 nucleons, and our extension to study an eight-nucleon system represents a significant
increase in computational requirements. Therefore, code performance is a key factor. We find
that a single computer node running JupiterNCSM has insufficient computational power to
simulate 8Be at large model spaces. To overcome this limitation we introduce distributed-memory
parallelization to JupiterNCSM using the Message Passing Interface, which makes it possible to
use the computational capabilities of several computer nodes at the same time. In addition, we
optimize other areas of the code, such as data access patterns, to further increase performance.
As a result we have managed to extend the predictive reach of the JupiterNCSM software,
enabling the study of atomic nuclei in larger model spaces. With the memory architecture and
code optimization improvements in place, we then use JupiterNCSM to sample the posterior
predictive distribution (PPD) of the decay energy threshold of 8Be. We find that our NCSM
computations are not fully converged, which leads to low-precision predictions manifested by a
wide PPD. Still, the predictions are accurate since they reproduce the experimentally measured
decay energy. Future efforts to reach even larger model spaces and achieve better convergence
are suggested by identifying the most relevant areas for further improvement.

Keywords: nuclear physics, no core shell model, Lanczos algorithm, large-scale matrix diago-
nalization, parallelization, high performance computing, MPI

iv

v

Acknowledgments
I would like to express my deepest gratitude to my supervisor Prof. Christian Forssén for all
the guidance and support throughout this project. I am also very grateful to Dr. Tor Djärv for
writing the JupiterNCSM software and for helping me use it. Furthermore, I would also like to
express my gratitude to Dr. Håkan T. Johansson for interesting and engaging discussions about
programming and computer systems. Special thanks should also go to Prof. Andreas Ekström
for his encouragement, valuable insights and help with data generation. The computations and
data handling were enabled by resources provided by the Swedish National Infrastructure for
Computing (SNIC) at National Supercomputer Centre (NSC) partially funded by the Swedish
Research Council through grant agreement no. 2018-05973.

Last but not least, I would like to thank my parents Örjan and Maricel, and also my brother
Niklas. You are always there to lighten my burdens and share my joy. I would never have come
this far without your everlasting support.

Johannes Hansson, Gothenburg, June 2022

vi

Contents

I Background 1

1 Introduction 3
1.1 The nuclear many-body problem . 3

2 The no core shell model 5
2.1 The no core shell model basis . 5
2.2 The Lanczos algorithm . 7
2.3 Computation of large matrix-vector products in the Lanczos algorithm 8
2.4 JupiterNCSM . 10

3 Parallel computing and computer memory 11
3.1 Outline of computational difficulties . 11
3.2 Description of a typical high performance computing cluster 12
3.3 Memory in high performance computing systems 12
3.4 Methods of parallelization . 13
3.5 OpenMP . 14
3.6 The Message Passing Interface, MPI . 14
3.7 Hybrid parallelization: OpenMP and MPI . 14
3.8 Hybrid parallelization in JupiterNCSM . 15

II Implementation 17

4 Profiling 19
4.1 Profiling single instructions . 19
4.2 Study of number of files and file sizes . 20

5 Work order for the matrix-vector product 23
5.1 Improved work order . 23
5.2 File division between nodes using Venus . 24
5.3 Disk load estimation program . 25

6 MPI parallelization 27
6.1 From partial sums to JupiterNCSM instructions 27
6.2 MPI implementation details . 29
6.3 Checkpointing . 29

vii

viii CONTENTS

III Results 33

7 Computational performance 35
7.1 Feasibility of 8Be simulations at larger model spaces 35
7.2 Typical run times for the Lanczos solver . 38
7.3 Performance profiling of the Lanczos solver Bacchus 40
7.4 Optimized work order . 40
7.5 MPI performance scaling . 44

8 Statistical study of the 8Be decay energy threshold 47
8.1 Validation of 8Be results . 47
8.2 8Be convergence study . 48
8.3 Three nucleon force uncertainty study . 48

IV Summary, discussion and outlook 55

9 Summary 57

10 Discussion and outlook 59
10.1 Suggested improvements . 60

Acronyms

Acronyms used in this thesis; listed in alphabetical order.

2NF Two-nucleon forces.
3NF Three-nucleon forces.
4NF Four-nucleon forces.
API Application Programming Interface.
CPU Central Processing Unit.
EFT Effective Field Theory.
HDD Hard Disk Drive.
HPC High Performance Computing.
I/O Input/Output.
IOPS Input/Output operations Per Second.
LEC Low-Energy Constant.
NVMe Non-Volatile Memory Express.
PPD Posterior Predictive Distribution.
QCD Quantum Chromodynamics.
RAID Redundant Array of Independent Disks.
RAM Random Access Memory.
SSD Solid State Drive.
TSP Traveling Salesman Problem.

ix

x Acronyms

Part I

Background

1

Chapter 1

Introduction

Nuclear physics is the study of the building blocks of matter and the fundamental forces that
govern them. One task in this area of research is to simulate atomic nuclei using realistic models
of the nuclear interaction. This task can be achieved by solving the many-body Schrödinger
equation with all nucleons as active degrees of freedom. Several computational many-body
methods have been developed to approximately solve this problem. One such method is the no
core shell model (NCSM) [1]. The NCSM method turns the many-body Schrödinger equation
into a large matrix eigenvalue problem. However, the matrix can become very large such that
special memory management techniques are required for efficient handling by currently available
computers.

This project aims to further develop on an existing research code, JupiterNCSM [2], employing
the NCSM method for simulating atomic nuclei. A main task is to introduce distributed-memory
algorithms to the current implementation. Another goal is to improve utilization of memory
locality to reduce the load on secondary memory, which has been identified as a bottleneck.
These improvements would enable the code to fully utilize the computational power of modern
computer clusters to speed up calculations. Study of more complex many-body systems would
then become possible. With these improved capabilities implemented, this project aims to study
a comparatively complex many-body system of eight nucleons, the 8Be isotope.

One of the limitations of this project is that we will assume that the realistic models of nuclear
interactions are precomputed and available for use. We will not construct these models ourselves.
Another limitation is that we will only consider a subset of the NCSM simulation toolchain in
JupiterNCSM. We will mainly focus on the Lanczos solver Bacchus.

1.1 The nuclear many-body problem
The atomic nucleus is a self-bound quantum-mechanical system composed of one or more strongly
interacting nucleons. To study it, we generally refer to the many-body Schrödinger equation

Ĥ |Ψ〉 = E |Ψ〉 , (1.1)

where E is the energy and |Ψ〉 is the state of the system. The nuclear Hamiltonian Ĥ is given
by [2]

Ĥ = T̂int + V̂2NF + V̂3NF, (1.2)

where T̂int is the intrinsic kinetic energy of the system and V̂2NF and V̂3NF represent two- and
three-nucleon potentials, respectively. In modern nuclear theory, these potentials come from

3

4 CHAPTER 1. INTRODUCTION

chiral effective field theory (χEFT), a type of effective field theory [3, 4]. EFTs are a class of
approximations that simplify physical theories by integrating out effects of short-range physics
below the relevant resolution scale [5]. This can, equivalently, be seen as regulating effects of
high-energy physics.

The nucleus is held together by the strong nuclear force, which is described by quantum
chromodynamics (QCD). This theory is, unfortunately, nonperturbative at the comparatively
low energies relevant to nuclear physics [3]. Direct use of QCD is then difficult for describing
interactions between nucleons. This is where χEFT is used to apply controlled approximations.

An important property of χEFT is that it predicts the appearance of many-nucleon forces.
These forces cause interactions between two or more nucleons, and are referred to as two-nucleon
forces (2NF), three-nucleon forces (3NF), etc. The inclusion of 3NFs increases the accuracy of
the description, but also adds significant complexity to the model. This project uses theory
and computational tools for nuclear interactions including 2NFs and 3NFs. Using four-nucleon
forces (4NFs) in the calculations would not improve accuracy significantly, but it would increase
computational requirements drastically. The inclusion of 4NFs is therefore outside the scope of
this project [1, 3].

In the χEFT framework, it is possible to parametrize the contributions of these many-nucleon
forces, as is summarized in equation (1.2) where we have three terms: a kinetic term, a term
representing 2NFs and a term representing 3NFs. From χEFT we know that we can further split
the interactions into a linear combination of contributions, scaled by χEFT parameters known
as low-energy constants (LEC). In this project we will consider a Hamiltonian with a 3NF term
that can be written as [6]

V3NF = V3NF,2π + cDV3NF,1π−ct + cEV3NF,ct, (1.3)

where cD and cE are two such LECs. The subscripts 2π, 1π−ct and ct refer to two-pion exchange,
one-pion exchange and contact, and lastly three-nucleon contact interactions. The values of cD
and cE have to be inferred from data and therefore have some degree of uncertainty, see for
example [6] and [7]. How this uncertainty propagates to the computed ground-state energies of
many-body systems is explored in section 8.3, where a study of the energy difference between
the ground states of 8Be and 4He is of extra importance.

Chapter 2

The no core shell model

The many-body Schrödinger equation cannot be solved analytically, except in some special cases.
Some form of approximation method is needed. The NCSM is one such method that is used in
nuclear physics [1]. It is closely related to configuration-interaction methods used for many-
electron systems [8].

2.1 The no core shell model basis
In order to represent equation (1.1) in a discrete model space, we need to define a truncated basis
and project the many-body Schrödinger equation onto it. In the NCSM, the basis is constructed
from harmonic oscillator single-particle states. The nucleons are fermions, so we must use an
antisymmetric wave function to describe them. This is accomplished by antisymmetrizing the
product of harmonic oscillator single-particle states using a Slater determinant.

The individual basis vectors in the many-body basis are denoted |Φi〉 and the complete
set is denoted {|Φi〉}∞i=1 [9]. This infinite basis captures all the information in the Schrödinger
equation. But we cannot store an infinite number of states on a computer, so we must truncate it
at some dimension D(Nmax). The cut-off parameter Nmax represents a total harmonic oscillator
energy truncation. This user-supplied variable specifies the maximum number of single particle
excitations above the lowest possible configuration. It is defined as [1, 2]

A∑
i=1

(2ni + `i)−Nmin ≤ Nmax, (2.1)

where ni (`i) is the principal (orbital angular momentum) quantum number of the ith nucleon,
out of a total of A nucleons. The variable Nmin is given by

Nmin =

A∑
i=1

(2ñi + ˜̀
i), (2.2)

where ñi (˜̀
i) denotes the lowest possible configuration for the principal (orbital angular momen-

tum) quantum number.
A visual representation of how the single particle harmonic oscillator basis is populated is

shown in figure 2.1a. More specifically, it shows the lowest energy configuration in the harmonic
oscillator basis for a nuclear system of four protons and four neutrons. Here we use the notation
N = 2n + `. The N = 0 level is the lowest energy level, and larger values of N correspond to

5

6 CHAPTER 2. THE NO CORE SHELL MODEL

N = 0

N = 1

N = 2

N = 3

N = . . .

protons neutrons

(a) Lowest energy configuration.

N = 0

N = 1

N = 2

N = 3

N = . . .

protons neutrons

(b) Excited configuration.

Figure 2.1: Visualization of a single particle harmonic oscillator basis for a system with four
protons and four neutrons. The energy levels are indexed by the shorthand notation N = 2n+ `.

higher energies. The basis is constructed from a three-dimensional harmonic oscillator (3D,HO),
which has a degeneracy of

d3D,HO =
(N + 1)(N + 2)

2
(2.3)

for each level. Additionally, the particles are fermions with spin 1/2, which means that we have
two possible spin orientations (up and down) for each set of quantum numbers n and `. This
gives us a total single-particle, harmonic-oscillator (sp,HO) degeneracy of

dsp,HO = 2 · d3D,HO = (N + 1)(N + 2). (2.4)

Note that this degeneracy is per particle type, and we have two types, protons and neutrons. For
example, the lowest energy level has N = 0, which gives a total degeneracy of (0 + 1)(0 + 2) = 2.
Similarly, the N = 1 level has a degeneracy of 6. In this notation using N , equation (2.2) is
written as Nmin =

∑A
i=1Ni.

For the 8Be case illustrated in figure 2.1a we have four protons and four neutrons. The lowest
energy level has space for two particles of each species. The remaining four nucleons must be
placed in a level with higher energy. If these extra nucleons are placed in the N = 1 level then
the system is in the lowest possible energy configuration, which gives us

Nmin =

8∑
i=1

Ni = 0 + 0 + 1 + 1︸ ︷︷ ︸
protons

+ 0 + 0 + 1 + 1︸ ︷︷ ︸
neutrons

= 4. (2.5)

Note that this is the lowest configuration in the single particle harmonic oscillator basis. It is
not the same as the ground state of the many-body Schrödinger equation.

One or more of the particles may be excited, see figure 2.1b. Here, one of the particles
in the N = 1 level has been excited to N = 2. This represents a higher energy than the
configuration in figure 2.1a. It is also possible to have other excitations, up to and including

2.2. THE LANCZOS ALGORITHM 7

Ntotmax =
∑A
i=1 N̂i, with N̂i denoting the highest allowed configuration (note the difference

between Nmax and Ntotmax). This is how the total energy truncation parameter Nmax limits the
size of the basis. A large value of Nmax is desirable for increased accuracy, but it also corresponds
to a large basis set, with a correspondingly high computational cost. The notation D(Nmax)

represents the number of basis states of the total-energy truncated model space {|Φi〉}D(Nmax)
i=1 .

The exact state vector |Ψ〉 for the system can be approximated by the NCSM state
∣∣ΨNCSM

k

〉
[2, 10]

|Ψ〉 ≈
∣∣ΨNCSM

k

〉
=

D(Nmax)∑
i

ci |Φi〉 , (2.6)

where ci represents the amplitudes of the different basis configurations. If we use this NCSM
state in the many-body Schrödinger equation (1.1) we get

Ĥ

D(Nmax)∑
i

ci |Φi〉 = Ek

D(Nmax)∑
i

ci |Φi〉 . (2.7)

We can then multiply from the left with 〈Φj |, giving us

D(Nmax)∑
i

〈Φj |Ĥ|Φi〉 ci = Ekcj . (2.8)

Once the quantities have been expressed in this basis, we can see that equation (2.8) is in fact
a typical linear algebra matrix eigenvalue problem of the form Av = λv, where A is a matrix,
v is an eigenvector and λ is the corresponding eigenvalue. In the NCSM case we have matrix
elements 〈Φj |Ĥ|Φi〉 and vector elements ci, as well as the energy eigenvalues Ek. These quantities
then take the form of numerical values: a D(Nmax) × D(Nmax) matrix for the Hamiltonian
Ĥ, a D(Nmax)-dimensional vector for the state |Ψ〉 and a scalar for the corresponding energy
eigenvalue Ek. The Hamiltonian matrix has a total of D(Nmax) eigenvalues, so we would in fact
need D(Nmax) eigenvectors of dimension D(Nmax), and D(Nmax) scalar eigenvalues. Now that
we have expressed our problem as a typical matrix-eigenvalue problem, we could in principle
use known linear algebra methods for solving this system. However, using typical linear algebra
methods is in this case impractical due to the rapidly increasing problem size, see section 3.1.

2.2 The Lanczos algorithm
As will be outlined in section 3.1, the method of direct diagonalization becomes intractable
since the dimension D(Nmax) of the matrix increases rapidly as the number of particles, or the
parameter Nmax, increases. Instead, iterative solution methods must be used. One such method,
that is able to quickly approximate extreme eigenvalues in the spectra, is the Lanczos method
[11]. This algorithm is well suited for working with very large matrices. In this project we
are only interested in nuclear ground-state energies, so we only need the most extreme negative
eigenvalue.

An outline of the Lanczos algorithm is presented in algorithm 1. The goal of this algorithm
is to find the extreme eigenvalues of the H matrix. It does this by projecting the H matrix
onto a smaller subspace spanned by so called Krylov vectors. This means that the essential
characteristics of the large H matrix are captured in a smaller tridiagonal matrix T and a
set of Krylov vectors |Kk〉. This smaller system T can then be diagonalized exactly to get
approximations to the eigenvalues of the large matrix.

8 CHAPTER 2. THE NO CORE SHELL MODEL

Algorithm 1: Outline of the Lanczos algorithm. Quoted algorithm and notation from
[2].
Data: D ×D symmetric matrix H, initial Krylov vector |K1〉
Data: |K0〉 = 0, B0 = 0
Result: Tridiagonal matrix Tk with diagonal elements Ai and off-diagonal elements Bj

where i = 1, · · · , k and j = 1, · · · , k − 1
Data: Iteration index k, starts at 1

1 while eigen-spectrum of Tk is not converged do
2 |wk〉 ← Ĥ |Kk〉
3 Ak ← 〈wk|Kk〉
4 |vk〉 ← |wk〉 −Ak |Kk〉 −Bk−1 |Kk−1〉
5 Bk ←

√
〈vk|vk〉

6 |Kk+1〉 ← |vk〉
Bk

7 k ← k + 1
8 Reorthogonalize Krylov vectors if needed.
9 end

From a computational perspective, the Lanczos algorithm is a rather good candidate for
parallelization in high performance computing (HPC) environments. Not all calculations in the
algorithm are inherently parallel, but the most time-consuming one, the matrix-vector product on
row 2, is. Calculating this product is a well understood process that has favorable properties for
parallelization. There are many software libraries for computing smaller matrix-vector products
in parallel. The problem in this project is that the matrix is so large that it cannot be handled
directly by this type of libraries, a special solution for this particular use-case is needed. But the
underlying parallelizable property of the matrix-vector product still remains.

2.3 Computation of large matrix-vector products in the Lanc-
zos algorithm

One important property of the Lanczos algorithm is that it does not need to explicitly store the
entire matrix. It just needs to be able to compute the product of the matrix with some vector.
The matrix elements in our specific Hamiltonian matrix can be generated on the fly from 2NFs
and 3NFs, together with transitions densities. The elements are generated when they are needed
in the computations. This means that the matrix-vector product can be computed without
storing the full Hamiltonian matrix, as long as we have access to the data needed to generate
the matrix elements. This is sometimes referred to as an implicit matrix. In JupiterNCSM (see

2.3. COMPUTATION OF LARGE MATRIX-VECTOR PRODUCTS IN THE LANCZOS ALGORITHM9

section 2.4), the matrix-vector product is implemented according to [2]

|wk〉 = Ĥ |Kk〉

=

Dπ∑
i=1

Dπ∑
l=1

Dν∑
j=1

∑
x

Kn(i,j)

(
M int−pp
x +Mpp

x

)
〈πl|t̂ppx |πi〉 (|πl〉 ⊗ |νj〉)

+

Dπ∑
i=1

Dν∑
j=1

Dν∑
m=1

∑
x

Kn(i,j)

(
M int−nn
x +Mnn

x

)
〈νm|t̂nnx |νj〉 (|πi〉 ⊗ |νm〉)

+

Dπ∑
i=1

Dπ∑
l=1

Dν∑
j=1

∑
x

Kn(i,j)M
ppp
x 〈πl|t̂pppx |πi〉 (|πl〉 ⊗ |νj〉)

+

Dπ∑
i=1

Dν∑
j=1

Dν∑
m=1

∑
x

Kn(i,j)M
nnn
x 〈νm|t̂nnnx |νj〉 (|πi〉 ⊗ |νm〉)

+

Dπ∑
i=1

Dν∑
j=1

Dπ∑
l=1

Dν∑
m=1

∑
x,y

Kn(i,j)M
pn
x,y 〈πl|t̂px|πi〉 〈νm|t̂ny |νj〉 (|πl〉 ⊗ |νm〉)

+

Dπ∑
i=1

Dν∑
j=1

Dπ∑
l=1

Dν∑
m=1

∑
x,y

Kn(i,j)M
ppn
x,y 〈πl|t̂ppx |πi〉 〈νm|t̂ny |νj〉 (|πl〉 ⊗ |νm〉)

+

Dπ∑
i=1

Dν∑
j=1

Dπ∑
l=1

Dν∑
m=1

∑
x,y

Kn(i,j)M
pnn
x,y 〈πl|t̂px|πi〉 〈νm|t̂nny |νj〉 (|πl〉 ⊗ |νm〉) .

(2.9)

This equation looks quite complex, but it is constructed from only a few basic parts. On the first
line we have a compact representation of the matrix-vector product in the Lanczos algorithm. A
Hamiltonian operator Ĥ (a matrix) operates on the state |Kk〉 (here a Krylov vector) to produce
a new state |wk〉 (a new vector). The second line and below shows this operation in more detail.
The variable Kn(i,j) represents vector elements in our Krylov vector, the M variables represent
matrix elements and the brackets 〈|t̂|〉 with the t̂ operator are transition densities. The kets at
the end with |π〉 and |ν〉 are the proton and neutron Hilbert bases. They are multiplied together
to form the full Hilbert space for the system. The variables Dπ and Dν represent the dimensions
of the proton and neutron bases. We also have the x and y variables, which are abstractions for
sets of single-particle quantum numbers. The p and n superscripts indicate if the terms operate
on the proton or neutron spaces, respectively. The int superscript indicates that the term is
related to the internal kinetic energy.

As we can see in this equation, the matrix-vector product is just a large number of combi-
nations of a smaller set of precomputed input data. This is what it means that the matrix is
implicitly constructed. For full details about how this equation is derived, see chapter 4 of [2].

From this equation we can also see that the required set of precomputed data consists of
matrix elements and transition densities. The Krylov vectorsK are part of the Lanczos algorithm
and are constructed as part of algorithm. The proton and neutron bases are part of the proton-
neutron formalism, where protons and neutrons are considered to be separate species of fermions
[12]. It is also possible to treat protons and neutrons as the same type of fermion, with different
values of the isospin quantum number. The advantage of using proton-neutron formalism is that
the two individual bases are much smaller than the corresponding basis in isospin formalism (for
a typical nucleus with a combination of both protons and neutrons).

Additionally, we can see that the matrix-vector product naturally divides itself into many
partial sums of products between Krylov vectors, matrix elements and transition densities. These

10 CHAPTER 2. THE NO CORE SHELL MODEL

sums then become very natural work items when parallelizing the matrix-vector product. If each
core of the central processing unit (CPU) takes responsibility for a few of these items, then the
results of all of the operations can be summed up in the end to get the final result.

2.4 JupiterNCSM
Much of the work in this project is related to the NCSM solver JupiterNCSM [2]. It has previously
been used to accurately compute ground-state energies for nuclei with A ≤ 6 nucleons [6]. The
program covers some of the main parts of the NCSM solution method, but the code also requires
input data from other research codes. For example, the 2NF and 3NF matrix elements in a
harmonic oscillator basis are required as a given input. JupiterNCSM also uses a many-body
basis computed by pAntoine, which is then transformed to a state usable by JupiterNCSM by the
Anicre code [2] . When provided with these inputs, JupiterNCSM computes energy eigenvalues
and eigenvectors to the nuclear Hamiltonian for the given nucleus.

The JupiterNCSM code is structured around several somewhat independent subprograms.
The programs Neptune and Mercury transform the precomputed 2NF and 3NF data from so
called JT- and J-scheme to M-scheme, which JupiterNCSM uses internally. For more details, see
section 4.1.4 in [2].

One of the main subprograms of interest in this project is Bacchus. This program runs
the Lanczos algorithm based on input data prepared by other subprograms in the JupiterNCSM
toolchain. Bacchus is closely coupled to the subprogram Minerva, which specializes on computing
large matrix-vector products. Most of the work in the current project is performed in Bacchus,
but the other programs are essential for the correct functioning of the complete toolchain.

There are also two smaller programs, Mars and Vulcan, that are of interest in this project.
Mars is an early attempt at improving the matrix-vector product work order. In this project we
create a new program, Venus, that improves upon and replaces the Mars software, for details see
section 5.1. Vulcan is used to perform addition of separate terms in the nuclear Hamiltonian, see
section 1.1. This addition of terms is an important part of the statistical analysis in section 8.3,
but the program itself is trivial and is therefore not discussed further.

There are a few additional subprograms that are part of the JupiterNCSM system, but they
are only used to a small degree in this project. A more complete description of the programs is
available in [2].

Chapter 3

Parallel computing and computer
memory

Chapter 2 outlined how the NCSMmethod can be applied for solving the Schrödinger equation for
the nuclear many-body problem. The chapter focused mainly on the physics and mathematical
equations that are needed to solve the problem. However, using the NCSM to describe the nucleus
is a very computationally demanding task, so we also need to consider the computational aspects.
This chapter presents the main computational difficulties in this project and how they are solved,
or at least how they are made manageable for current computer systems.

3.1 Outline of computational difficulties

One of the main problems when using the NCSM method is that the memory required to store
the Hamiltonian matrix increases rapidly as the dimension increases. One of the specific aims
of this project is to simulate 8Be at Nmax = 8, which means that we must diagonalize a matrix
with D ≈ 107. The entire matrix would then consist of D2 ≈ 1014 matrix elements. This is too
many elements to be handled directly by common linear algebra software libraries. Fortunately,
the matrix is relatively sparse, having in the order of D3/2 non-zero matrix elements for the
case including 3NFs [13]. Thus, we have approximately D3/2 ≈ 1.1× 1011 non-zero elements.
Storing this as double-precision floating point numbers, with a size of 8 bytes each, would require
approximately 9× 1011 bytes = 900 GB of memory for the matrix elements (plus additional
memory for saving the matrix indices). A more reasonable number, but still too large to be
saved explicitly.

Another useful property is that the matrix elements do not need to be explicitly stored. The
non-zero elements can be generated on the fly from a smaller set of precomputed data. This
favorable property makes it possible to divide the matrix into smaller blocks and perform com-
putations with those instead. The computer then only needs to store one block of precomputed
matrix data and a small section of a vector at any given time. The computations are then
completed in blocks and in the end collected into the final result. These properties reduce the
intractable problem into one that is manageable with currently available computer systems [14].
Using these properties, the JupiterNCSM code is able to reduce the storage size of this matrix
to around 200 GB.

11

12 CHAPTER 3. PARALLEL COMPUTING AND COMPUTER MEMORY

3.2 Description of a typical high performance computing
cluster

Typical desktop computing is the type of computing most people are familiar with. It generally
involves a single desktop computer or laptop used by a single person at a time. This usage is
enough for many tasks, but not for the heavy calculations required in this project. Instead, it is
beneficial to use one of the many HPC clusters available to researchers. Using these, the user can
access much better computational performance than what is available on a single workstation.
These HPC clusters are designed to run programs that use a large amount of resources in terms
of time, CPU power, memory or similar.

HPC systems are generally composed of many regular computers (nodes) interconnected to
each other via high-throughput, low-latency network interconnects. These individual nodes can,
in terms of hardware, be similar to powerful desktop workstations or servers. However, the
variations in hardware configuration can be quite large since there is no standard configuration.
The HPC system Tetralith, that is used in this project, is composed of 1908 compute nodes, where
each node has two Intel Xeon Gold 6130 server CPUs, see table 7.1 [15]. Access to Tetralith is
shared among researchers of several universities, so a single user is typically only able to use a
smaller part of the system at any given time.

HPC systems also have other special properties, such as the ability to run user-supplied
programs in parallel on several nodes at the same time. If these programs are structured correctly,
then the nodes can cooperate to solve large problems in less time than a single computer would
be able to. This ability is not unique to HPC systems, but it is a very prominent characteristic
of them.

3.3 Memory in high performance computing systems

Most current computer systems have several layers of memory, each with different performance
characteristics. Consider first the CPU of a single computer node. It performs all the calculations
that we need in our simulations. Inside, it has a set of very small memory caches, with storage
sizes typically in the kB to MB range, which are used as very fast, short-term storage for data
that is currently in use. The CPU is connected to a larger primary memory, often referred to as
random access memory, RAM. This type of memory is typically not as fast as the CPU caches,
but it is much larger, in the order of tens to a few hundred GB. This makes it suitable for storing
active application data. However, as we could see from section 3.1, RAM is generally not large
enough to store all the data required for diagonalizing the Hamiltonian matrix.

Computers typically also have secondary memory in the form of a hard disk drive, HDD, or a
solid state drive, SSD. Storage on these devices is not as fast as on RAM, but is generally much
larger, typically in the range of a few hundred GB to a few TB. SSDs are faster than HDDs,
but are usually more expensive. The average throughput rate achieved while simulating 8Be at
Nmax = 8 with JupiterNCSM on a thin, large-disk node on the Tetralith cluster, see table 7.1, is
approximately 0.44 GiB/s. This type of node has a non-volatile memory express (NVMe) scratch
disk.

If node-local storage on secondary memory is not enough, then it is also possible to use an
array of network attached disks to emulate an even larger file system. This allows the use of huge
amounts of storage space, the total size of which is mainly limited by financial considerations.
For example, the storage system used by Tetralith has a size of a few PB [16], but since it is a
shared resource a single project is not able to use all of it. An allocation in the order of up to a
few hundred TB are reasonable for larger research projects in Sweden at the moment [17]. The

3.4. METHODS OF PARALLELIZATION 13

throughput of this type of memory depends to a large degree on the file access pattern. If a single,
large file is processed then it might have performance comparable to, or even exceeding, the node-
local HDDs or SSDs. However, if a large amount of small files are processed, then performance
could be significantly lower, especially compared to node-local SSDs. When simulating the
8Be, Nmax = 8 case with JupiterNCSM we get an average throughput rate of approximately
0.125 GiB/s when using the network attached disks on one of the storage systems at Tetralith.

From this summary it is clear that there is a trade-off between storage space and data through-
put. Fast memories such as CPU caches are typically small, while large memories such as network
attached disks can be slow. In the current project we are interested in getting the best possi-
ble computational performance. The best performance translates, in this case, to the highest
possible data throughput rate. Our data is large, so it will not fit in the fastest (but smallest)
memories. Slower, but larger, storage must then be used to some degree in order to perform the
calculations. It is possible to use a combination of storage systems, which is what is typically
done for problems with large amounts of data. In this project we store the input data on sec-
ondary storage and then load it into primary storage for processing as needed. This combines the
large storage space of the secondary storage with the fast data throughput rate of the primary
storage.

3.4 Methods of parallelization

The simplest form of computation is the single-threaded processing. In this case, all computa-
tions are done by a single CPU core. This method is conceptually simple to understand and
implement, but it is generally not the most efficient way of performing calculations. Instead,
most modern computer systems utilize parallelization to some degree, often using the multi-core
approach. The CPU in this type of system has two or more CPU cores that are able to con-
currently perform several independent computations. Ideally, this could increase performance
linearly with the number of independent cores. However, this approach introduces a stronger
need for synchronization, work division and sharing of resources that usually limits the overall
performance increase. How prevalent this punishment is depends on several factors, such as
the type of computer running the calculations, as well as the kind of tasks being performed.
Performance is typically better if work items are completely independent of each other and fit
in core-local cache. The performance penalty can, however, be quite severe if the calculations
depend on a slow external resource, such as files saved on an HDD.

Developing multi-threaded applications is generally more cumbersome than writing single-
threaded ones. A common first step when parallelizing a program is to adapt it so that it
can make use of the multi-core architecture available on most modern CPUs. An application
programming interface (API) that can make this process simpler for the programmer is OpenMP
(Open Multi-Processing) [18]. Using this API, the programmer defines which sections of code
should be parallelized, and the API takes care of how this is achieved in practice. OpenMP
performs parallelization on a single computer node, meaning that it works in a shared-memory
architecture.

Even further parallelization can be achieved by using several computers at once. Using
parallelization between separate nodes requires a different approach than between cores in a single
CPU. Parallelization between nodes is a distributed-memory system, as opposed to the shared-
memory system used by OpenMP, and therefore implies the need for inter-node communication.
A commonly used communications standard for facilitating program execution across several
network-attached computers is the Message Passing Interface, MPI [19]. The goal of using MPI
is to get more parallelization than what is possible on a single computer node. If we use only a

14 CHAPTER 3. PARALLEL COMPUTING AND COMPUTER MEMORY

single computer node, then performance is essentially limited by the speed of a single component
in a single computer. If we use many computers, the parallel performance is limited by the
number of nodes that we manage to recruit, and also how well the workload can be parallelized.

3.5 OpenMP

OpenMP is an API that simplifies the development of certain types of multi-threaded programs.
It is often used in scientific computing to parallelize execution of loop iterations that are inde-
pendent of each other. It is possible to write parallel code without help from specialized APIs,
but it typically requires significantly more developer effort. The developer has to manually keep
track of which thread is doing what and make sure that the different threads are not interfering
with each other. One of the aims of OpenMP is to hide some of these details from the developer.
The task of the developer is then to indicate to OpenMP which parts that can efficiently be par-
allelized. The developer also has to know how to separate the threads from each other, so they
do not interfere with each other. Other than that, OpenMP takes care of the low-level details.
This frees up developer time that can be spent on other tasks or improving other parts of the
program. Introducing OpenMP parallelization is a common way of speeding up single-threaded
programs without having to spend too much time rewriting existing code.

3.6 The Message Passing Interface, MPI

The MPI is a specification for how nodes in a computer network should communicate and co-
operate to execute a given program. The nodes can be interconnected using regular Ethernet
connections, or using specialized communication systems such as Intel Omni-Path [20] or Infini-
band [21]. There are several implementations available of the MPI standard, for example MPICH
[22] and Open MPI [23], but since the interface is standardized, there should not be any issues
when switching between compliant implementations of the standard.

In order to allow efficient collaboration, programs wishing to use more than one computer
node need to be structured in a specific way. The MPI specification provides rough guidelines for
how this can be achieved. It is then up to the developer to adapt any programs to this general
structure.

With the general structure in place, the developer can use an implementation of MPI to
take advantage of the communication algorithms that are specified in the MPI standard. These
algorithms range from simple messages between two nodes to collective communication between
all nodes at the same time.

It is of course possible to implement this functionality without MPI. However, one of the main
benefits of MPI is that it reduces the workload of the developer. It hides many of the complexities
of initializing and maintaining communication in a computer network. This saves development
time, which can be directed at other tasks. MPI is also an industry standard technology, which
means that it has been thoroughly tested and evaluated. An implementation of MPI is generally
available at most HPC centers.

3.7 Hybrid parallelization: OpenMP and MPI

By combining the OpenMP and MPI technologies, it is possible to leverage both types of paral-
lelization. On a lower level, we utilize the multi-core nature of modern CPUs using OpenMP, as
well as the more higher-level parallelization that comes from connecting several such computers

3.8. HYBRID PARALLELIZATION IN JUPITERNCSM 15

Node 0 Node 1 Node 2

Thread 0

Thread 1

Thread 2
...

Thread 0

Thread 1

Thread 2
...

Thread 0

Thread 1

Thread 2
...

MPI

OpenMP

Figure 3.1: Schematic representation of hybrid parallelization via the combination of (distributed
memory) MPI and (shared memory) OpenMP.

to a network, with communication using MPI. This combination of OpenMP and MPI is quite
common in scientific computing and is known as hybrid parallelization.

A schematic representation of how this parallelization is structured is presented in figure 3.1.
It shows, in this case, three nodes connected to each other using MPI. Within each node we have
parallelization between threads using OpenMP. Together they give us two levels of parallelization.

3.8 Hybrid parallelization in JupiterNCSM
The original version of JupiterNCSM has OpenMP parallelization for some of the more com-
putationally heavy tasks. For example, the matrix-vector product is calculated in blocks using
OpenMP parallelization.

One of the main improvements in this project is the extension of JupiterNCSM with MPI
capabilities for running the Lanczos algorithm. The blocks in the matrix-vector product can
then be distributed between nodes on a network. One node, the server node, is responsible for
coordinating tasks, distributing input data and collecting partial results from the other nodes.
The other nodes calculate partial sums (work items) using data from the server node. When
they are done, they return their partial results to the server node and wait for new input. All of
this communication is achieved using algorithms specified in the MPI standard.

The addition of MPI capabilities to JupiterNCSM means that this research code now can
leverage the advantages of the OpenMP and MPI combination.

Part II

Implementation

17

Chapter 4

Profiling

The efficient use of available computer resources is an important area to explore for future use
of the tool. Large-scale JupiterNCSM runs can take days or more to run. It is therefore crucial
that the code uses computer resources as efficiently as possible. Investigating code performance,
especially when looking for bottlenecks, is often known as code profiling. In this chapter we
explore the main profiling and optimization efforts performed in this project.

4.1 Profiling single instructions
One of the main objectives in this project was determining the main performance bottleneck in
JupiterNCSM. One of the first tasks was then to evaluate which portions of the code are the
slowest. The conventional wisdom when optimizing code for performance is to start by profiling
the code. This gives objective measurements of which parts of the program take the longest
time to run. These parts are then good candidates for performance optimization. By using this
methodology, the potential performance gains are maximized while at the same time limiting the
required development effort.

The profiling efforts were focused on the Lanczos algorithm implementation Bacchus. It is
a code that can take quite a significant amount of time to run. Good run-time performance
is then an important factor. This solver uses the code Minerva to calculate the matrix-vector
product using the smaller blocks, or partial sums, defined in equation (2.9). Each such block
can be seen as an individual instruction. The execution of each of these instructions has a few
different stages. These stages define the general characteristics of the workload throughout the
computation. At the start, a thread is assigned a certain instruction to compute. This thread is
then placed in a queue to allocate primary memory for the required data files (vector files, index
lists and matrix data). If JupiterNCSM has RAM available for these files, then it immediately
allows the thread to allocate the required memory. If not, then old files are evicted from RAM to
make room for new ones. It is important that this process does not evict files that are currently
in use. This time for memory allocation is one of the investigated parameters.

Then comes a phase of reading files from disk. Since we are working in a multi-threaded
environment, then we cannot guarantee in advance which files have already been loaded into
primary memory and which ones have not. If the files are already in RAM, for example if they
were used in the computation of a previous block or if another thread is currently using them,
then they are directly re-used, without disk access. If another thread is currently working on
loading them into primary memory, then this thread just waits for that process to finish. On
the other hand, if the required files are not in main memory, and they are not currently being

19

20 CHAPTER 4. PROFILING

read by another thread, then this thread starts reading them from disk. Both the time waiting
for other threads to finish reading files, and the time spent actively reading files is measured.

Finally, time spent performing useful calculations on the CPU is also recorded. This is the
time used for actually performing the multiplications in the matrix-vector product.

The implementation of instruction-level profiling of the four main run-time parameters de-
scribed above is one of the contributions of this project. This profiling data is stored to a file
on disk, and can be used to study program execution in greater detail than what has previously
been possible. Due to the nature of how parallel computer systems work, timing information
will overlap between instructions. This corresponds to how parallel cores execute instructions
simultaneously. From this information it is possible to construct a timeline over a complete
JupiterNCSM run. This timeline can be used to both diagnose possible performance problems
and study effects of proposed optimizations. We will in section 7.3 use this profiling data to
understand the main performance bottlenecks in JupiterNCSM.

4.2 Study of number of files and file sizes
One aspect of the code that has impact on usability is the number of files required. One of the
programs in the JupiterNCSM toolchain, Anicre, does produce an excessive number of very small
files. Figure 4.1 shows the number of needed data files as a function of Nmax for three different
nuclear systems. It is clear that even the small 8Be, Nmax = 2 case generates several thousand
files. The Nmax = 8 and Nmax = 10 cases consist of well over a hundred thousand files.

This large number of files can be cumbersome to handle, especially if the storage medium has
limited IOPS (input/output operations per second) performance. For example, typical HDDs
might be able to perform in the order of 100 IOPS [24]. A large fraction of the simulation run time
would then be dedicated to just opening very small files. This problem is somewhat mitigated by
using SSDs, which can achieve rates in the order of 100 000 IOPS or more [25]. Even so, a large
number of files is still undesirable and can cause problems with, for example, storage allocations
on HPC systems. It would definitely improve usability if the number of files could be reduced.
However, other improvements were considered of higher importance and the file number issue
was left for future work.

4.2. STUDY OF NUMBER OF FILES AND FILE SIZES 21

0 2 4 6 8 100 2 4 6 8 100 2 4 6 8 1010
Nmax

101

102

103

104

105

106

Nu
m

be
r o

f f
ile

s

4He
6Li
8Be

Figure 4.1: Number of implicit matrix element data files as a function of Nmax for 4He, 6Li and
8Be.

Chapter 5

Work order for the matrix-vector
product

In this chapter we explore improvements made to JupiterNCSM that relate to the disk data
bandwidth bottleneck. In section 5.1 we present an improved work order (also called evaluation
order) that minimizes the amount of data that must be re-read from disk in each Lanczos
iteration. Section 5.2 discusses a new file division scheme that allows JupiterNCSM to use matrix
data spread out over several node-local scratch disks to avoid using slow network attached disks.
Finally, section 5.3 introduces a disk load estimation program that can be used to estimate
simulation run times.

5.1 Improved work order

One of the most important performance factors in JupiterNCSM is the locality of data. Perfor-
mance is good if data files can be kept in RAM, but it suffers when files must be loaded from disk,
which is the case for the larger simulations in this project. It is therefore desirable to minimize
the amount of data that JupiterNCSM must load from disk. Certain files are re-used in several
partial sums of the matrix-vector product. It would then be beneficial if these files could be
loaded, fully processed, and lastly evicted from RAM to make room for new files. This way, the
file is only loaded once, thereby minimizing the amount of data that must be re-read from disk.

For reference, in the 8Be, Nmax = 8 case, JupiterNCSM reads data from disk equivalent to
about three times the total size of the input data in each Lanczos iteration, see figure 7.6. This
type of behavior is true for cases where the total size of the input data is significantly larger
than the available RAM. The fact that JupiterNCSM reads the same data several times hints to
possible inefficiencies in the way the software processes data.

The most direct way of overcoming this inefficiency is to reorganize the order in which the
instructions are processed. The instructions are independent of each other, so the order in which
they are evaluated does not affect the final result. The order in which they are processed is
defined in the evaluation_order file. An early attempt at optimizing this order was performed
in the Mars program in JupiterNCSM [2].

The problem of finding an optimal work order is a type of Traveling Salesman Problem (TSP).
Finding an exact solution to this problem is conceptually easy but computationally very hard.
The brute-force approach is to test every single possible order and then pick the best one. This
method is only practical when the number of TSP graph nodes is very small. However, in this

23

24 CHAPTER 5. WORK ORDER FOR THE MATRIX-VECTOR PRODUCT

project we often have millions of instructions (TSP nodes) that must be visited. Exact solutions
are then not possible to find.

In this project we developed a new application-specific heuristic for approximating the optimal
solution to this TSP. First, we sort all input data files by decreasing file size. Then, we focus
on the largest file. We find all instructions that reference this file and place them first in the
evaluation_order file. While processing these instructions we must also access other, smaller,
data files. The large file is placed in RAM for as long as this set of instructions is being evaluated.
The small extra files could be loaded for a single instruction, and might then not be needed for
a while. They are then evicted from RAM and will eventually be reloaded again, when required.
Reloading these small files a few times is cheaper than reloading the large file. When the large
file has been processed we move on to the second-largest file and complete the corresponding
instructions. We continue this process until we have processed all instructions. This way, we
minimize the number of loads that have to be performed for large files. This heuristic gives us
an evaluation order that is a much better approximation of the optimal solution to the TSP
than what was previously available in JupiterNCSM using the Mars program. Since this way
of computing the evaluation order differs a bit from the old version in Mars, it is also fitting
that the program receives a new name: Venus. A comparison of the performance of the two
evaluation orders computed using Venus and Mars is presented in section 7.4.

5.2 File division between nodes using Venus

As was described in section 3.3, the type of storage used can have a significant impact on the
disk read data throughput rate. For a single node on the Tetralith HPC system, a node-local
NVMe scratch can deliver around three times the average disk read throughput rate compared to
an array of network attached disks. It is then very favorable to keep data on node-local scratch
disks. Unfortunately, these disks are not large enough for the input data required by the 8Be,
Nmax = 10 case, see figure 7.1, which we want to be able to run in the future. We are then
left with two options. The first one is to use network attached storage and accept a penalty to
performance. The second one is to find a way to divide the files between several MPI nodes.
That way, we can use the combined NVMe scratch-disk space of several nodes to store the data.

One of the interesting properties of the evaluation order heuristic described in section 5.1 is
that the larger files are processed in a concentrated manner. For example, the largest file is only
processed at the very beginning, and then not used again in this iteration. This means that we
could, in principle, make sure that a single MPI node has this file on its scratch disk. None of the
other nodes would need to have this file. Similarly, the second-largest file could then be assigned
to the second MPI node. We could continue this process until all files have been assigned to a
particular MPI node. Some files would inevitably be duplicated across MPI nodes, but no single
node would have to store the entire input data. We would then, with enough MPI nodes, be able
to store input data that is larger than the size of individual scratch disks.

Venus saves the names of the needed index list and matrix element data files for each MPI
node as plain text files. File names required by the node with MPI world rank 0 are saved in the
files index_list_indices_0 and matrix_element_indices_0. Similarly, the node with MPI
world rank 1 uses index_list_indices_1 and matrix_element_indices_1, etc.

Using multiple MPI nodes also requires instructions to be divided across all MPI nodes. Venus
does this by having separate instruction queues for each MPI node. These queues are then stacked
on top of each other in the end of the division process to form a single evaluation_order file.
This file is then structured in a similar way as in the single-node case, but now it is accompanied
by the evaluation_order_indices file which describes which MPI node should handle which

5.3. DISK LOAD ESTIMATION PROGRAM 25

instructions, see section 6.2.

5.3 Disk load estimation program
Since we know the size of all files, and we know the order of appearance in the evaluation_order
file, we can estimate the disk load we are going to encounter when we run the simulation. Knowing
this could be especially useful in the large Nmax cases, where simulations take a long time to
complete. It is also useful for estimating if a certain simulation is feasible.

To calculate this approximation, we developed a small program that mimics the internal
memory handling system in the Bacchus subprogram of JupiterNCSM. It pretends to load matrix
data files, and then handles them in memory just as Bacchus would, but without doing any NCSM
calculations. While doing this, it records the amount of data read from disk. The end result
of this program is a simulation of the total amount of data read from disk for a single Lanczos
iteration. This information together with average data read rates for JupiterNCSM simulations
can be used to predict run times, at least under the assumption that JupiterNCSM continues to
be bottlenecked by disk data throughput rate.

Chapter 6

MPI parallelization

The original version of the JupiterNCSM software had only OpenMP parallelization on a single
computer node. This enabled some degree of computational parallelism, but computations were
limited to the performance of a single node. An additional level of multi-node parallelization was
identified as a requirement for the study of nuclei with a larger number of nucleons [2]. In this
chapter we begin by describing how JupiterNCSM translates the partial sums in equation (2.9)
to the instructions that are processed in parallel using the OpenMP parallelization. This is
described in section 6.1. Then in section 6.2 we outline how this underlying structure is used
to introduce a distributed-memory architecture using MPI. And finally, section 6.3 describes an
MPI-compatible resume feature that was added to the software.

6.1 From partial sums to JupiterNCSM instructions
As described in section 2.3, JupiterNCSM performs the matrix-vector product in the Lanczos
algorithm in smaller blocks and then combines the result in the end. The fact that this product
can be performed in blocks is very advantageous because it allows us to divide the workload
between independent computer nodes. The OpenMP parallelization utilizes this property to
some degree, but only within a shared-memory architecture. In order to maximize the use of
current computer systems, JupiterNCSM must be able to distribute work items in a distributed-
memory architecture.

We start by describing how the mathematical operation in section 2.3 is translated into
computer code. The large matrix-vector product involves two Krylov vectors, (input and output
ones), one or two index lists and one matrix element file. Each of the variables in equation (2.9)
is represented by a file on a storage device on the computer. Each file is also identified by an
integer index. Every instruction (partial sum) in equation (2.9) can be broken down into a set
of four or five file indices. The instructions indicate how to combine the data files to create one
partial sum. This list of instructions is stored as four or five space-separated indices in rows in
a plain text file, by default called evaluation_order. The set of all partial sums is then added
together to form the complete solution. All information that we need to perform the complete
matrix-vector product is therefore contained in the data files for each factor in equation (2.9),
and in the list of instructions.

An excerpt from an evaluation_order file for 8Be, Nmax = 0 is shown in figure 6.1. Each
row represents an individual instruction that must be processed. Notice that the rows have
either four or five indices. The first two integers after the BLOCK: prefix represent the indices of
the input and output Krylov vector blocks. If a row has only four indices, then the third index

27

28 CHAPTER 6. MPI PARALLELIZATION

identifies a particular index list (also called transition density). If a row has five indices, then
the third and fourth integers represent index lists. The last index (fourth or fifth, depending on
length) represents the required matrix element file.

BLOCK: 3 4 38 134 113
BLOCK: 4 5 46 141 113
BLOCK: 2 3 65 18 66
BLOCK: 3 4 87 39 66
BLOCK: 4 5 94 47 66
BLOCK: 2 2 158 159
BLOCK: 1 1 161 159
...

Figure 6.1: Excerpt from an evaluation_order file for 8Be, Nmax = 0. The four or five integers
correspond to file indices in the input data. The columns represent input Krylov vector, output
Krylov vector, index list 1, index list 2 (not included in all instructions), and finally a matrix
element file.

The instructions in the evaluation_order file could in principle be computed in order, one at
a time, by a single thread. This would work, but it would give poor computational performance.
Instead, the instructions are processed in parallel using OpenMP, where each instruction is
assigned to a separate thread. The matrix-vector product is then computed in parallel, usually
with the same number of threads as there are physical CPU cores on the computer. Ideally, this
would mean that simulation run time is inversely proportional to the number of CPU cores used.

Since the instructions are independent of each other, it is then possible to parallelize the
program even further by letting several computer nodes cooperate on computing the same matrix-
vector product. For example, if two computers are used, then the first computer could process the
first half of the instructions in the evaluation_order file, while the second computer processes
the second half of the instructions. These halves are processed using OpenMP, just as before. If
both computers have similar computational performance and the instructions take approximately
the same time to complete, then they should be able to perform the matrix-vector product
in about half the time. Unfortunately, not all instructions take the same amount of time to
complete, which complicates the reasoning a bit. Some effects of this are studied and mitigated
in section 5.1. These multi-node computations could be achieved by adding distributed-memory
MPI parallelization on top of OpenMP. Note that the main performance bottleneck is not CPU
performance, but rather the storage medium data bandwidth. The main performance gains then
come from increasing parallelism in the secondary storage data read performance. Some gains
also come from the added RAM space when using several nodes.

Since the results of each operation is added to the (node-local) output Krylov vector, this
vector must periodically be synchronized across nodes. This requires a reduction operation
followed by a broadcast operation. In other words, at the start of each parallel matrix-vector
product computation, the server node broadcasts its version of the input Krylov vector to all the
worker nodes. The worker nodes then use this input vector in their computations, and gather
partial results in a node-local output Krylov vector. At the end of the matrix-vector product
operation, the server node collects partial results (the node-local output Krylov vectors) from all
the nodes and creates a unified version of this output Krylov vector using a reduction operation.
This vector can then be broadcast as the input Krylov vector in the next Lanczos iteration,
which restarts the cycle.

6.2. MPI IMPLEMENTATION DETAILS 29

6.2 MPI implementation details

The MPI parallelization implemented in this project is structured in a way that minimizes the
amount of changes that must be introduced to the JupiterNCSM code. The original version of
the code was already structured in a way that allows for OpenMP parallelization, so an important
foundation and thread-safe synchronization mechanism was already in place for a shared-memory
architecture. What was needed was synchronization and sharing of data between nodes in the
new distributed-memory architecture.

Figure 6.2 shows a graphical representation of the main steps in the MPI parallelization. The
server node1 is responsible for initializing the environment and communicating the initial Krylov
vector to all other nodes. This communication is performed using the MPI broadcast operation.
The nodes then read two files, the evaluation_order file and the evaluation_order_indices
file. The first file indicates all instructions that must be performed and the second file specifies
which instructions should be processed by which worker node. It essentially specifies a start
and a stop index in the evaluation_order file that each node should process. The indices in
the evaluation_order_indices file are non-overlapping, which ensures that each instruction is
completed exactly once. When each node has completed the assigned instructions, it waits for
the other nodes to finish, then they collectively reduce the node-local output Krylov vectors to
a unified version on the server node. This communication is performed using the MPI reduce
operation. The reduction operation is a sum over all node-local versions of the output Krylov
vector. The server node then checks if the Lanczos convergence criteria has been met. If it has,
then the process ends. If not, then it starts another iteration.

Internally, the division of instructions between nodes is handled using instruction indices
and iterators. JupiterNCSM contains an iterator that points to the next instruction to be
processed. This works well in the shared-memory OpenMP environment, but must be modified
slightly in the distributed-memory MPI environment. On each node, JupiterNCSM looks at
the local MPI world rank and then reads the block of instructions that it should process from
the evaluation_order_indices file. It then sets the internal instruction iterator to point to
this first instruction. After that, it sets a variable for the maximum number of elements so
that the iterator does not go further than the last assigned instruction. When the iterator has
traversed all the assigned instructions, it prepares to communicate the partial results back to the
server node. The evaluation_order file was previously generated by the Mars code, but is now
generated by the newly introduced Venus subprogram. This program is described in section 5.1.
The evaluation_order_indices file generated by Venus is a new addition to JupiterNCSM.

6.3 Checkpointing

This project lays the groundwork for performing significantly larger simulations than what have
been attempted so far with JupiterNCSM. Such new capabilities are welcome additions since they
allow the study of more complex nuclear systems and the use of larger model spaces. However,
these new capabilities also mean that the code will need more computational power to achieve
the desired results. This power is typically attained by allowing the simulations to run for a
longer time, or by using several computer nodes at the same time. These methods therefore
increase the risk for data loss due to, for example, power loss in the data center or hardware
failure in one of the computer nodes. Such increased risks must be handled to safeguard against
loss of computational results. This includes loss of researcher time and loss of HPC CPU core
hour allocations.

1In this case the MPI node with world rank 0 is treated as the server node.

30 CHAPTER 6. MPI PARALLELIZATION

Start

Initialize Lanczos environment

Initialize next Krylov vector

Broadcast Krylov vector Receive new Krylov vector

Run matrix-vector multiplication
on subset of data

Return partial resultsReduce Krylov vector

Check if eigenvalues
have converged

End

Initialize Lanczos environment

SERVER NODE WORKER NODES

Not converged

Converged

MPI Broadcast

MPI Reduce

Figure 6.2: Flowchart of the MPI parallelization. The dashed line indicates the separation
between the server node and the worker nodes. The processes that cross this barrier are imple-
mented using MPI. Note that the server node is just a regular worker node that has been given
a few extra tasks.

6.3. CHECKPOINTING 31

One way to mitigate these risks is to introduce checkpointing to the simulations. When the
simulation reaches one of these checkpoints, it saves the current state of the system. If the
program is unable to run to completion for some reason, then it is possible to restart from the
latest checkpoint. Some progress is inevitably going to be lost, but a large part of the simulation
can still be salvaged if the checkpointing and resume procedures are adequate.

The first version of the Lanczos solver Bacchus had no checkpointing feature. Since the goal of
this project is to run simulations that are much larger than what has previously been attempted,
a proper checkpointing and restart feature is needed. This feature was developed and introduced
during the course of this project.

In order to be able to restart the Lanczos algorithm, we need access to the Krylov vectors
and the tridiagonal matrix as defined in algorithm 1. The Krylov vectors are always saved to
disk, so we only need to make sure the tridiagonal matrix is also saved continuously. Internally,
this matrix is represented by two arrays of double precision floating point numbers. These arrays
are then saved in a directory on disk together with all other data (Krylov vectors, index lists,
etc.).

The resume feature is implemented by reading the tridiagonal matrix elements and Krylov
vectors from disk to recreate their internal equivalents. Together with the iteration index, which is
provided by the file name of the tridiagonal matrix elements, this is enough to completely recreate
the internal state of the Lanczos solver at this checkpoint. From this state the solver is then able
to continue as if nothing had happened. The Krylov vectors and tridiagonal matrix elements are
saved after each iteration, so it is possible to restart the algorithm from any previous iteration, if
so desired. The implementation works in both the single-node and multi-node configurations. In
the multi-node case, the server node is responsible for reading the tridiagonal matrix from disk.
It is possible to use a different number of nodes when restarting, compared to the original count.

Practically, this is implemented as an additional command line flag that is passed to Bacchus,
the --resume flag. The default behavior if no additional argument is provided is to restart from
the latest available iteration. It is also possible to choose which iteration to restart from by
passing a positive integer after the flag. For example, --resume 3 instructs Bacchus to restart
from the third iteration.

Part III

Results

33

Chapter 7

Computational performance

As we have established in earlier chapters, using the NCSM poses significant computational
challenges. JupiterNCSM is designed to handle the very large matrices that arise when solving
the Schrödinger equation using this method, but even so, we are pushing the limits of what this
tool is capable of.

To get the most value out of the software, we must make sure that it is indeed able to run the
large simulations we want. A feasibility study is conducted in section 7.1. This is expanded in
section 7.2, where run-time considerations are explored to make sure we can run our simulations
in a reasonable amount of time. Once we have established which cases we should be able to run,
we carry out performance profiling on JupiterNCSM to identify and improve components that
are not working optimally. This is done in section 7.3. Results from the work-order performance
optimization will be explored in section 7.4. Similarly, results from the distributed-memory
parallelization will be explored in section 7.5.

Due to the nature of software performance profiling, some of the results presented in this
chapter are specific to the JupiterNCSM software running on Tetralith hardware. Results will
probably look somewhat different on other systems, but the overall behavior of the system should
remain more or less the same. A summary of the technical specifications of typical Tetralith nodes
is presented in table 7.1. All simulations are performed with 32 OpenMP threads and an energy
eigenvalue convergence tolerance of 1× 10−7 MeV, unless otherwise noted. For reference, In
order to achieve convergence with this tolerance we need 21 Lanczos iterations for the Nmax = 0
case, up to 45 iterations for the Nmax = 8 case. Results presented in section 7.2 onwards are for
the Lanczos solver Bacchus only. Time required for generation of matrix elements and similar is
not included in the presented results.

7.1 Feasibility of 8Be simulations at larger model spaces
As stated earlier, one of the main computational difficulties in this project relates to storing
the Hamiltonian matrix. The dimensionality of this matrix increases rapidly as the number of
nucleons, or the size of the model space, increases. To illustrate this, we see in figure 7.1 the
total file size of the implicit matrix element data as a function of Nmax for three different nuclei,
4He, 6Li and 8Be. The figure corresponds to the case with both 2NFs and 3NFs in the nuclear
Hamiltonian. The nuclei 4He and 6Li have been studied before with JupiterNCSM [6], while 8Be
has not. Recall that simulating 8Be at Nmax = 8 is one of the main goals in this project. As
can be seen from the figure, the implicit matrix data for all cases with Nmax ≤ 6 fits within the
available RAM of a regular thin node. At Nmax = 8 we need to use a fat node to store the entire

35

36 CHAPTER 7. COMPUTATIONAL PERFORMANCE

Table 7.1: Summary of computational hardware on the Tetralith HPC system [15]. In this
work we use thin, large disk nodes for profiling measurements. Fat nodes are also used when
transforming matrix elements from J- scheme to M-scheme using Mercury, but performance in
this process is not measured.

Node type Number
of nodes CPU CPU

cores RAM Scratch disk

Thin 1674 2 × Intel Xeon Gold 6130,
(2.1 GHz) 32 96 GiB 240 GB SSD

Thin,
(large disk) 170 2 × Intel Xeon Gold 6130,

(2.1 GHz) 32 96 GiB 2 TB NVMe

Fat,
(medium disk) 60 2 × Intel Xeon Gold 6130,

(2.1 GHz) 32 384 GiB 960 GB SSD

Fat 4 2 × Intel Xeon Gold 6130,
(2.1 GHz) 32 384 GiB 240 GB SSD

8Be input data in RAM. If we want to proceed to Nmax = 10 using only RAM, then we need
significantly more memory than what is available, even on fat nodes.

Fortunately, JupiterNCSM can store the implicit matrix element data on secondary memory,
such as HDDs or SSDs. If the data can be stored on disk, then only a small fraction of this,
the current working set, needs to be loaded into RAM for processing. We can then focus on
the dashed lines in figure 7.1, which indicate the amount of scratch disk storage available on the
Tetralith nodes. The large disk nodes, each with a 2 TB NVMe disk [15], are then able to run
almost all cases in the figure, except for the 8Be, Nmax = 10 case which is just above the total
available storage space.

In the future it would be beneficial to run the Nmax = 10 case for 8Be, see chapter 10. In order
to do this, we need to find a way to perform the simulation, despite the storage space limitation.
One possible solution is to store the implicit matrix data on network attached disks. A very large
file system can then be emulated, the size of which is mainly limited by financial considerations.
This would solve the data size problem. Unfortunately, network storage is generally not as fast
as node-local scratch storage. Using it would lead to a performance penalty, slowing down the
entire simulation. In the case of the Tetralith cluster, this slowdown is on the order of a factor
three, see section 3.3.

Another way of running the Nmax = 10 case is to divide the implicit matrix data between
several nodes, see section 5.2. Not all nodes need access to the entire implicit matrix. We could
assign one part of the Hamiltonian matrix to the first node, another part to the second node,
etc. until we have used the combined storage capacity to store the entire set of implicit matrix
data. This procedure is tested experimentally in the 8Be, Nmax = 8 case in section 7.5. It works
as expected and should scale well to the Nmax = 10 case.

In summary, 8Be simulations at Nmax = 8 are indeed manageable in terms of storage space on
a single node. It is also clear that simulations at Nmax = 10 pose significant additional challenges
in terms of data management. We would then need large network storage to hold all implicit
matrix data in one place, and two large disk nodes to actually perform the simulation from
node-local scratch disks. The two nodes would need to use the file division scheme introduced
in section 5.2.

7.1. FEASIBILITY OF 8BE SIMULATIONS AT LARGER MODEL SPACES 37

0 2 4 6 8 100 2 4 6 8 100 2 4 6 8 1010
Nmax

1 KB

1 MB

1 GB

1 TB

To
ta

l f
ile

 si
ze

RAM (thin node)
RAM (fat node)
Disk (thin node)
Disk (thin, large disk node)
4He
6Li
8Be

Figure 7.1: Total size of the JupiterNCSM implicit matrix data as a function of Nmax for three
nuclei, 4He, 6Li and 8Be. The simulations are performed with both 2NFs and 3NFs in the nuclear
Hamiltonian. At the top of the figure we have solid lines indicating the amount of RAM installed
on Tetralith compute nodes. Additionally, the dashed lines indicate the amount of scratch disk
storage available on the nodes [15].

38 CHAPTER 7. COMPUTATIONAL PERFORMANCE

7.2 Typical run times for the Lanczos solver

Now that we have established that it is indeed feasible to run the 8Be, Nmax = 8 simulations on
the computational hardware we have at our disposal, see section 7.1, we must consider if we are
able to run it in a reasonable amount of time.

At this point we need to categorize our usage of JupiterNCSM into one of two classes. The
first type of usage consists of solving a given many-body problem once. In this case we need to run
each step in the processing chain once. In the second type of usage we solve the same many-body
problem, but using several different Hamiltonians. In this case we need to run the pre-processing
steps only once, but the Lanczos solver Bacchus must be run once for each Hamiltonian. Both
the pre-processing steps and the Lanczos algorithm take significant amounts of time to complete.
It is then clear that the total run-time requirements in the second case are heavily dependent on
the number of Hamiltonians used. In this project we are mainly interested in this second type
of usage, see for example the study in chapter 8, so run-time is going to be dominated by the
Lanczos solver Bacchus. In the rest of this chapter we focus on run-time performance of Bacchus.

Please consider the “Mars evaluation order” in figure 7.2, which shows typical run times for
a set of single-node Bacchus runs for 8Be. The code was run on a Tetralith thin, large disk node
with 32 threads, see table 7.1. There is no problem in running the simulations with lower Nmax

values. For example, the Nmax = 6 simulation takes about 23 minutes. But simulation run times
start to become noticeable at Nmax = 8, where the simulation takes about 19 hours. It is also
clear from the figure that the step from Nmax = 6 to Nmax = 8 causes a sudden change in the
slope of the graph. This new, steeper slope is caused by the fact that the matrix data no longer
fits in RAM. JupiterNCSM must then fetch files from disk instead of from RAM file cache, which
slows down the simulation considerably.

We want to pave the way for running the Nmax = 10 case in the future, so we perform a rough
extrapolation of the expected run time. The main factor limiting computational performance
is disk data throughput rate, see section 7.3. When simulating 8Be, Nmax = 8 on Tetralith,
the average read speed is approximately 0.125 GiB/s when using network attached disks and
0.44 GiB/s when using node-local NVMe scratch disks. If we assume that this transfer rate is
approximately the same for both the Nmax = 8 and Nmax = 10 cases, then we can translate the
increased data demands of the Nmax = 10 case directly into an increase in run time.

Using the disk read estimation tool described in section 5.3, we can estimate that the 8Be,
Nmax = 10 case would need to read about 15 TB of data from disk in every Lanczos iteration.
A full simulation often needs on the order of 40 to 50 iterations, meaning that we need to
read approximately 600 TB from disk. This corresponds to run times on the order of two to
eight weeks, depending on if we use scratch-disk or network storage. The two-week scratch-disk
estimate is shown as an open circle in figure 7.2.

The long expected simulation run time for the Nmax = 10 case is a very pressing issue. For
example, the maximum job time limit on Tetralith is one week [26]. It might be possible to get
special permission to run a single job for longer than that, but it would not be practical. It
is then clear that we need to optimize and parallelize the code using distributed memory if we
want to run the Nmax = 10 case in the future. See section 7.4 for results from the work-order
performance optimization and section 7.5 for results from the distributed-memory parallelization.

The optimized work order introduced in section 5.1 reduces the 8Be, Nmax = 10 data read
requirements to about 2 TB per Lanczos iteration (estimated using the program in section 5.3).
This is close to the total size of the matrix data, see figure 7.1. Assuming that we need 40 to 50
Lanczos iterations, this gives us a total data read requirement of about 100 TB. The simulation
should then take between three and nine days on a single computer node, which is much more
practical than the several weeks needed when using the old work order. The three-day estimation

7.2. TYPICAL RUN TIMES FOR THE LANCZOS SOLVER 39

0 2 4 6 8 10
Nmax

101

102

103

104

105

106

Si
m

ul
at

io
n

wa
ll-

clo
ck

 ti
m

e
[s

]

Estimate

Mars evaluation order
Venus evaluation order

Figure 7.2: Total run time for the Lanczos algorithm in Bacchus as a function of Nmax for 8Be
using two different evaluation orders. The old version was computed using the Mars program
in JupiterNCSM. The new, optimized, version of the evaluation order is computed by the new
program Venus. All measurements, and the two estimates, refer to JupiterNCSM running on a
single Tetralith thin, large disk node. The optimized evaluation order becomes important when
the amount of data exceeds the size of RAM, which for the Tetralith thin nodes happens for
Nmax ≥ 8, see table 7.1. At Nmax = 8 we see a reduction in run time of almost a factor three.
The figure also includes estimates for the Nmax = 10 case based on results from the disk load
estimation program that was introduced in section 5.3.

40 CHAPTER 7. COMPUTATIONAL PERFORMANCE

is illustrated with an open triangle in figure 7.2.

7.3 Performance profiling of the Lanczos solver Bacchus

We begin by looking at the case 8Be with Nmax = 8, one of the largest cases that we are able to
run on a single Tetralith thin, large disk node. We do this first for the single-threaded case. In
figure 7.3, we show a bar diagram indicating the time spent waiting on the two major bottlenecks
that were identified in the simulation, I/O (input/output) and CPU processing. The I/O bar
refers to time spent waiting for implicit matrix data to be loaded from disk to RAM. Note that
this simulation is run on a Tetralith thin, large disk node, see table 7.1, which means that not all
data fits in RAM. Bacchus must then frequently perform I/O tasks. The time it needs for these
operations is measured and presented in the figure. The CPU bar refers to time spent waiting for
the CPU to finish processing matrix data. The results indicate that we are mostly bottlenecked
by the CPU in the single-threaded case. But since this is only a single thread, we must be careful
when generalizing to the multi-threaded case. We can get an idea of how the multi-threaded
case will behave by also considering the utilization of the disk and CPU components of a single
compute node, see figure 7.4. The node has a single disk, represented by the block on the left,
and a CPU with total of 32 CPU cores, indicated by the 32 smaller blocks to the right. Note that
the real compute node has two CPUs, each with 16 CPU cores. But for our purposes this can
be considered to be equivalent to a single CPU with 32 cores. Regions colored red indicate that
the resource is busy, green that it is idle. A resource can be partially filled with red, meaning
that it is busy only a certain fraction of the time.

From the measurement presented in figure 7.3 we see that the disk is the active component
about 20 % of the time, whereas the CPU is active during the remaining 80 % of the time. We
can then draw the conclusion that disk (CPU) utilization is approximately 20 % (80 %) of total
capacity, on average.

The single-threaded case is simple to reason about, but it is not very computationally efficient.
To increase performance we go to the multi-threaded case. Since disk storage is a shared resource,
there is an upper limit for how many CPU cores the disk can provide data to in a timely manner
before data read latency increases significantly. We know that the disk is active about 20 %
of the time in the single-threaded case. We would then expect that it is able to continuously
supply data to about 4 or 5 CPU cores. This has been experimentally tested and was found to
be approximately true on average.

This situation is illustrated schematically in figure 7.5. Here, disk is utilized to full capacity,
whereas only a few CPU cores are busy. Most of them are idle, waiting for data from disk. We
are then only able to use a small fraction of the 32 available cores, which is not very efficient.
From this reasoning it is clear that disk data throughput rate is the main bottleneck in the
multi-threaded case when using the Lanczos solver Bacchus.

7.4 Optimized work order

A natural follow-up question is then if the effect of this data transfer bottleneck can be reduced.
There are essentially two ways forward: we can either increase the data bandwidth between
disk and main memory, or we can reduce the amount of I/O required in the simulation. If we
can improve either (or both) of these two aspects, then we also increase CPU utilization, and
consequently reduce simulation run times. In this project we mostly use fast NVMe disks, so
increasing storage system performance is difficult. A possible alternative to the single-disk case
would be to use several NVMe scratch disks in a RAID (redundant array of independent disks)

7.4. OPTIMIZED WORK ORDER 41

I/O CPU0

10

20

30

40

50

Ti
m

e
[h

ou
rs

]

Figure 7.3: Time spent waiting for I/O and CPU. The simulation is for 8Be at Nmax = 8. Notice
that this simulation is for the single-threaded case.

42 CHAPTER 7. COMPUTATIONAL PERFORMANCE

CPU utilization

CPU
24

CPU
25

CPU
26

CPU
27

CPU
28

CPU
29

CPU
30

CPU
31

CPU
16

CPU
17

CPU
18

CPU
19

CPU
20

CPU
21

CPU
22

CPU
23

CPU
8

CPU
9

CPU
10

CPU
11

CPU
12

CPU
13

CPU
14

CPU
15

CPU
0

CPU
1

CPU
2

CPU
3

CPU
4

CPU
5

CPU
6

CPU
7

Disk utilization

Figure 7.4: Schematic illustration of the disk and CPU utilization of a compute node running
JupiterNCSM in a single thread. Red indicates that the resource is busy, green that it is idle. A
resource that is partially filled with red indicates that it is busy only a fraction of the time. For
example, the disk resource is approximately 20 % filled with red, indicating that disk throughput
is used to about 20 % of total capacity.

CPU utilization

CPU
24

CPU
25

CPU
26

CPU
27

CPU
28

CPU
29

CPU
30

CPU
31

CPU
16

CPU
17

CPU
18

CPU
19

CPU
20

CPU
21

CPU
22

CPU
23

CPU
8

CPU
9

CPU
10

CPU
11

CPU
12

CPU
13

CPU
14

CPU
15

CPU
0

CPU
1

CPU
2

CPU
3

CPU
4

CPU
5

CPU
6

CPU
7

Disk utilization

Figure 7.5: Multi-threaded equivalent of figure 7.4. Full utilization of disk data transfer rate is
enough to continuously supply about 4 or 5 CPU cores with data. The other CPU cores are idle,
waiting for data.

7.4. OPTIMIZED WORK ORDER 43

configuration to increase read throughput, but that option is typically not available on general
HPC systems. We must then look at the second solution, to reduce the amount of I/O needed.

When using the Lanczos method to estimate eigenvalues to the Hamiltonian matrix, Bacchus
must read the complete set of implicit matrix data at least once. In figure 7.6 we see a blue bar
on the left (labeled “Old version”) representing the amount of data actually read from disk in a
single Lanczos iteration for the case 8Be, Nmax = 8. The dashed line close to 220 GB indicates
the actual size of the matrix data, and therefore represents a theoretical lower limit on how much
data must be read and processed in each iteration. The lower dashed line at 96 GiB ≈ 103 GB
indicates the amount of RAM installed on a typical compute node at Tetralith. It is clear that
the input data does not fit in RAM, an important factor for performance. If the entire set of
matrix data were to fit in RAM, then we would only need to read the data once in the entire
simulation. But RAM is smaller than the data, which means that the matrix elements need to
first be loaded into RAM, and then discarded after a while to make space for new data. The
matrix elements are used several times in each Lanczos iteration, which means that the same data
might be read more than once. This is a rather inefficient use of resources, but unfortunately a
consequence of the large data sizes.

Old version Optimized work order0

100

200

300

400

500

600

700

Da
ta

 re
ad

 fr
om

 d
isk

 [G
B]

size input data

RAM tetralith@NSC

Measured
Predicted

Figure 7.6: Amount of data read per Lanczos iteration for the old (Mars) and the optimized
(Venus) work order for a simulation of 8Be at Nmax = 8. The upper dashed line indicates the
size of the implicit matrix data. The lower dashed line indicates the amount of RAM on thin
compute nodes at Tetralith. The figure also shows predicted results from the disk estimation
tool introduced in section 5.3.

Importantly, these measurements show that Bacchus, when using the old evaluation order

44 CHAPTER 7. COMPUTATIONAL PERFORMANCE

computed using Mars, reads much more data than the approximately 220 GB that is the total
size of the implicit matrix data. For example, in the 8Be, Nmax = 8 case illustrated in figure 7.6,
Bacchus reads the entire input data set more than three times in each iteration, on average.
This is, of course, not very efficient. The work order, and therefore file access pattern, can to
some degree be adjusted. One possibility for reducing the amount of data that must be re-read
from disk involves sorting the files by size and then processing them in decreasing order, starting
with the largest file as discussed in section 5.1. Implementing this optimized work order is an
important result of this work. It turned out that this new file access pattern could significantly
decrease the number of times a file had to be re-loaded into RAM, see the blue “Optimized work
order” bar in figure 7.6. We can see from the figure that the new file access pattern significantly
reduces the amount of data that must be read. It is reduced essentially to the theoretical lower
limit, a more than factor three improvement. Since Bacchus is heavily bottlenecked by disk
throughput rate, it means that this improvement translates almost directly into an equivalent
increase in overall computational performance, as can be seen in figure 7.2.

In figure 7.6 we also see two orange bars representing the disk load predictions from the disk
load estimation tool introduced in section 5.3. The predictions are quite close to the real measured
values, which indicates that this tool has good predictive power and thereby can remove the need
for expensive measurements. If we also have average disk read rates when running Bacchus, such
as the ones presented in section 3.3, then we can predict total simulation run times with good
accuracy. This type of prediction is useful when assessing the feasibility of completing a given
simulation within a certain time frame.

A measurement of how this optimization affects the simulation run time is shown in figure 7.2.
This figure shows the total run time for the Lanczos algorithm in Bacchus as a function of Nmax

for the old (Mars) and the optimized (Venus) work order. The simulations are for 8Be on a single
thin, large disk node on Tetralith. The run time of simulations with Nmax ≤ 6 are not affected
by the new evaluation order. This is because the entire set of implicit matrix data fits in RAM.
It stays there throughout the entire simulation, meaning that there is no need to read data from
disk. It then eliminates disk data throughput rate as the main performance bottleneck.

Conversely, the Nmax = 8 case is clearly affected by the new evaluation order. The increased
size of the matrix data means that it no longer fits in RAM, so it must be read from secondary
storage. Disk throughput is then the major performance bottleneck, and a reduction in the
amount of read data in each iteration translates almost directly into an equivalent reduction in
simulation run time. Here we observe a reduction of almost a factor three in time required to run
the Lanczos algorithm when using the optimized work order. A prediction for the Nmax = 10
case is also provided, and the effect of the new work-order is even more noticeable.

7.5 MPI performance scaling

So far in this chapter we have mainly treated the single-node computational performance of
JupiterNCSM. The introduction of a distributed-memory architecture using MPI, one of the
main achievements of this project, means that the software is parallelized beyond the single-
node OpenMP parallelism. This allows computational performance to scale more efficiently.

Figure 7.7 shows the Bacchus simulation run time required for the 8Be, Nmax = 8 case as
a function of the number of MPI compute nodes when using JupiterNCSM. The NVMe times
include time for copying data from network to node-local storage, an operation that is not needed
when using network storage. The copy takes about 40 minutes in the single-node case, less in
the multi-node case because we are using the file division scheme from section 5.2. For reference,
the copy time when using eight nodes is about 14 minutes.

7.5. MPI PERFORMANCE SCALING 45

As expected, the required run time decreases as more nodes are used. Using more MPI nodes
means that we achieve a higher data throughput rate, which also decreases simulation run time.
It is also expected to see that the advantage of using NVMe disks decreases as more nodes are
used. This is because using more nodes means that we have a larger total RAM space. More
implicit matrix data can then be stored in fast RAM file cache, which decreases the need for
slow storage file access.

1 2 4 8
Number of nodes

1

2

3
4

6
8

10

20

Si
m

ul
at

io
n

wa
ll-

clo
ck

 ti
m

e
[h

ou
rs

] Data on network
Data on NMVe

Figure 7.7: Simulation run time for the 8Be, Nmax = 8 case as a function of the number of
Tetralith MPI nodes. The figure shows two different cases, one where implicit matrix data is
stored on network-attached disks, the other where matrix data is stored on node-local NVMe
scratch disks.

Chapter 8

Statistical study of the 8Be decay
energy threshold

The results presented so far have been on the computational performance of the JupiterNCSM
code, with particular focus on the performance achieved on the Tetralith HPC system. However,
the main purpose of this research code is to study nuclear many-body systems and learn about
the nuclear interaction. In this section we explore the physics results that came out of this
project.

Since JupiterNCSM has not been used for simulating 8Be before, we start by validating it
against a previously developed NCSM code in section 8.1. With the tool validated, we study
the NCSM ground-state energy convergence rate as a function of Nmax in section 8.2. Using
extrapolation formulas for the convergence rates, we can then study how statistical uncertainties
in two of the parameters in the chiral interaction model employed in this work affect the computed
ground-state energy of 8Be. This is then used to compute the 8Be decay energy threshold, which
is the energy difference between the ground states of 8Be and two 4He nuclei.

8.1 Validation of 8Be results

We begin by validating new JupiterNCSM results for 8Be against results from pAntoine, which is
a previously developed NCSM code that only handles 2NFs [14]. Figure 8.1 shows the computed
8Be ground-state energy as a function of the basis truncation parameter Nmax. The simulations
use the NNLOsat interaction with a harmonic oscillator basis frequency of ~ω = 20 MeV [27].
Validation energies are calculated using pAntoine. The absolute difference between the pAntoine
and JupiterNCSM 2NF results are 3× 10−5 MeV or less. This is illustrated in the figure with an
almost complete overlap between the results. From this we conclude that JupiterNCSM is able to
accurately reproduce these 2NF results. The small difference is attributed to the use of slightly
different convergence criteria in the two codes. JupiterNCSM assumes that it has reached con-
vergence when the absolute difference in the lowest eigenvalue between two consecutive Lanczos
iterations is smaller than 1× 10−7 MeV. The equivalent limit in pAntoine is 1× 10−4 MeV. The
observed difference of 3× 10−5 MeV means that it can be attributed to the (larger) pAntoine
convergence criterium. Figure 8.1 also shows first 2NF+3NF results from JupiterNCSM for the
8Be nucleus with the NNLOsat interaction. As can be seen in the figure, the convergence rate is
lower in the 2NF+3NF case compared to the 2NF-only case.

From this analysis we can see that JupiterNCSM is able to reproduce 2NF-only results from

47

48 CHAPTER 8. STATISTICAL STUDY OF THE 8BE DECAY ENERGY THRESHOLD

pAntoine. JupiterNCSM has, for smaller nuclei, been validated in the 2NF+3NF case against
the nsopt software [28, 2]. We are, therefore, confident that JupiterNCSM works as expected for
the full 2NF+3NF case.

8.2 8Be convergence study
From figure 8.1 it is clear that the computed ground-state energy Egs for 8Be converges towards
a fixed value as Nmax increases. The convergence behavior of the ground-state energy can be
approximated using an exponential function on the form [6]

E(Nmax) = E∞ + a exp(−bNmax), (8.1)

where E∞ is an estimator for the ground-state energy of the fully converged NCSM solution as
Nmax → ∞. The parameters a and b describe the convergence rate. These three parameters
can be found for a particular nuclear state by fitting the exponential function to the computed
ground-state energy for a few different Nmax values. Figure 8.2 shows a graphical representation
of this procedure for the two cases, 2NF-only and 2NF+3NF, for a 8Be nucleus using a chiral
interaction model as defined in [6] and LEC values from [7]. Using these interactions, the fitted
values for E∞ are −59.77 MeV and −54.93 MeV for the 2NF and 2NF+3NF case, respectively.

If we had been able to run NCSM simulations for Nmax → ∞, then the fully converged
NCSM ground-state energy could be denoted E(cD, cE), where cD and cE are LECs in the
nuclear Hamiltonian, see equation (1.3). Our simulations are, unfortunately, limited to finite
Nmax. A simulation would then give us ENCSM(cD, cE , Nmax). In order to get an approximation
for the Nmax →∞ case, we need to add a method-error correction term δE(cD, cE , Nmax). This
error term is a stochastic variable that will be more precisely defined in section 8.3. In summary,
this gives us [6]

E(cD, cE) ≈ ENCSM(cD, cE , Nmax) + δENCSM(cD, cE , Nmax). (8.2)

An important consideration to keep in mind is that equation (8.1) is just an empirical model.
The real convergence behavior can be somewhat different. This means that the prediction E∞
has a finite precision, with the uncertainty growing with the distance we need to extrapolate.
We define the convergence distance as

∆E∞(cD, cE , Nmax) ≡ E∞(cD, cE)− E(cD, cE , Nmax). (8.3)

This quantity is an estimation of how far away an NCSM solution at finite truncation Nmax is
from the fully converged result. Extrapolations performed with small ∆E∞(Nmax) have smaller
errors than extrapolations with large ∆E∞(Nmax).

8.3 Three nucleon force uncertainty study
The chiral interaction model employed in this work has 16 parameters [7]. In particular, the
strength of the 3NF interaction is parametrized by a pair of scalar LECs, see equation (1.3). The
numerical values of the interaction parameter pair are only known through statistical inference
from low-energy data, which means that we cannot use a single set of LECs to describe the
interaction and make predictions for nuclei. Instead, the LEC values have to be sampled from
the probability distributions, and then used in a statistical analysis.

8.3. THREE NUCLEON FORCE UNCERTAINTY STUDY 49

0 2 4 6 8 10
Nmax

50

40

30

20

10
E g

s(8 B
e)

 [M
eV

] NNLOsat
= 20MeV

2NF only (pAntoine)
2NF only (JupiterNCSM)
2NF+3NF (JupiterNCSM)

Figure 8.1: Validation runs comparing JupiterNCSM to the (2NF-only) pAntoine code. The
absolute difference between pAntoine and JupiterNCSM (2NF only) is at most 3× 10−5 MeV.
This is close to the pAntoine convergence criteria of 1× 10−4 MeV, which explains the small
difference. The chiral interaction model used in this study is NNLOsat [27] with and without
3NFs.

0 2 4 6 8 10 12 14 16 18 20
Nmax

60

50

40

30

20

10

0

E g
s (

8 B
e)

 [M
eV

]

2NF + 3NF
2NF only

Figure 8.2: Ground-state energy Egs as a function of Nmax. Results for both 2NF-only and
2NF+3NF simulations using JupiterNCSM. These results were generated using interactions and
LEC values as specified in [6] and [7]. The fitted values for E∞ were −59.77 MeV for the 2NF-
only case and −54.93 MeV for the 2NF+3NF case. The fit and extrapolation were made using
the three data points represented by filled boxes and circles in the figure.

50 CHAPTER 8. STATISTICAL STUDY OF THE 8BE DECAY ENERGY THRESHOLD

In this study we draw 100 pairs of 3NF LEC values from the pr(cD, cE |D, I) distribution
obtained in [7] and then run an NCSM simulation for each pair. This gives us a set of LEC pairs
and the corresponding NCSM ground-state energy.

The NCSM is a variational method, which means that it represents an upper bound to the
fully converged NCSM ground-state energy. This is especially important when Nmax is finite
and the lowest energy eigenvalue has not yet converged to the infinite model space equivalent.
The variational nature of this method means that the expectation value of the method-error
correction term is negative, i.e. [6]

E[δENCSM(cD, cE , Nmax)] ≡ µδENCSM
(cD, cE , Nmax) < 0. (8.4)

The magnitude of this term is largely dependent on the convergence distance ∆E∞(cD, cE , Nmax)
defined in equation (8.3). But since this distance is estimated on the basis of an extrapolation,
it suffers from an extrapolation error σNCSM. Taken together, they give an approximation of the
expectation value of the method error correction term, which is given by

µδENCSM(cD, cE , Nmax) = ∆E∞(cD, cE) + σNCSM(cD, cE). (8.5)

In [6], the authors mention that the extrapolation procedure often underestimates the extrapo-
lation distance. They estimate the error in the extrapolation distance to

σNCSM = 0.2∆E∞(cD, cE). (8.6)

However, they also note that this estimation is too large for the 4He nucleus, so they assign it
a numerical value of σNCSM = 120 keV. Furthermore, they assume that the extrapolation errors
are normally distributed, which means that the true value of the method error correction term
is sampled from a normal distribution according to

δENCSM(cD, cE , Nmax) ∼ N (µδE(cD, cE , Nmax), σ2
NCSM). (8.7)

The process of generating samples from the decay energy PPD pr(Q2α|D, I) is summarized
in algorithm 2. This process generates a total of m · n samples from this PPD, which can be
described by

PPD = pr(E8Be|D, I) = {E8Be(cD, cE) : cD, cE ∼ pr(cD, cE |D, I)} , (8.8)

where D represents previous few-body data [7] and I denotes other information, such as models
used and assumptions. The variable m represents the number of NCSM samples simulated and n
represents the number of samples from the method error correction term for each NCSM sample.
In this study we use m = n = 100. An equivalent analysis as the one for equation (8.8) can be
done for 4He, which gives us the PPD pr(E4He|D, I).

We aim to study the decay energy threshold of 8Be as it decays via the reaction

8Be → 4He + 4He. (8.9)

The energy released Q2α in this reaction is defined as

Q2α = Egs(
8Be)− 2Egs(

4He) (8.10)

This energy has been experimentally measured to be Q2α ≈ 92 keV [29]. A graphical repre-
sentation of this decay process is shown in figure 8.3. We wish to calculate Q2α theoretically,
but we do not have access to exact values of Egs(

8Be) and Egs(
4He). But we do have access

8.3. THREE NUCLEON FORCE UNCERTAINTY STUDY 51

Algorithm 2: Schematic representation of the sampling process used in this chap-
ter. This algorithm generates a total of m · n samples from the decay energy PPD
pr(Q2α|D, I).
1 for m do
2 Draw a pair of cD and cE values from the distribution pr(cD, cE |D, I).
3 Solve the many-body Schrödinger equation with H = H(cD, cE), see equation (1.3),

using the NCSM. Do this for a few values of Nmax. In this case we use
Nmax = 4, 6, 8.

4 Apply the extrapolation formula to obtain (using equations (8.3) and (8.5)):
∆E∞(cD, cE , Nmax) ≡ E∞(cD, cE)− E(cD, cE , Nmax),
µδENCSM(cD, cE , Nmax) = ∆E∞(cD, cE) + σNCSM(cD, cE).

5 if Adding extrapolation error then
6 Draw n samples δENCSM(cD, cE , Nmax) ∼ N (µδE(cD, cE , Nmax), σ2

NCSM)
7 E8Be(cD, cE , Nmax) = E∞(cD, cE) + δENCSM(cD, cE , Nmax)

8 else
9 E8Be(cD, cE , Nmax) = E∞(cD, cE) + µδE(cD, cE , Nmax)

10 end
11 end

8Be0+

Q2α ≈ 92 keV

4He + 4He

Figure 8.3: Schematic representation of 8Be decay.

52 CHAPTER 8. STATISTICAL STUDY OF THE 8BE DECAY ENERGY THRESHOLD

to the corresponding PPDs, pr(E8Be|D, I) and pr(E4He|D, I). We can then sample Q2α using
ground-state energy PPD samples drawn from pr(E8Be|D, I) and pr(E4He|D, I). Each sample
pair drawn from pr(E8Be|D, I) and pr(E4He|D, I) must, of course, use the same pair of cD and
cE values. We can then calculate the decay energy PPD as

pr(Q2α|D, I) = {E8Be(cD, cE)− 2E4He(cD, cE) : cD, cE ∼ pr(cD, cE |D, I)} . (8.11)

Figure 8.4 shows 100 samples drawn from the decay energy PPD, with σ = 0. The dashed ver-
tical line indicates the experimentally measured decay energy. The distribution, with a standard
deviation of about 0.3 MeV, captures the experimental value, which is encouraging. However,
this width is still quite large, considering that the experimental value is only 92 keV.

To include effects of the uncertainties in the extrapolation procedure, we also sample the decay
energy PPD with non-zero values of σ, as specified in equation (8.6). This is shown in figure 8.5,
where we sample δENCSM(cD, cE , Nmax) 100 times for each sample of ENCSM(cD, cE , Nmax). This
gives us a total of 100 · 100 = 10 000 samples of the decay energy PPD. In practice, this means
that the distribution is widened to correspond to our uncertainty in the extrapolation procedure.
The standard deviation of the distribution is in this case about 1.5 MeV, which is significantly
wider than the σ = 0 version in figure 8.4. This increased width indicates that we have a large
uncertainty in the extrapolation procedure. This can be reduced by decreasing the extrapolation
distance, which requires NCSM simulations at larger values of Nmax.

A more extensive error quantification analysis would also need to consider model errors, but
that is beyond the scope of this project. However, this type of analysis is performed in [6] for
A = 6 observables.

8.3. THREE NUCLEON FORCE UNCERTAINTY STUDY 53

1.5 1.0 0.5 0.0 0.5
Egs (8Be) - 2Egs (4He) [MeV]

0

2

4

6

8

10

12
Sa

m
pl

es
 fr

om
 p

r(Q
2

|D
,I)

 (
=

0) pr(Q2 |D, I)
experimental

Figure 8.4: Sampling of the decay energy PPD, pr(Q2α|D, I), using 100 samples. Notice that
this figure does not include corrections for method uncertainty, i.e. the figure shows the σ = 0
case. The vertical dashed line indicates the experimentally measured energy difference [29].

6 4 2 0 2 4 6
Egs (8Be) - 2Egs (4He) [MeV]

0

100

200

300

400

500

600

700

Sa
m

pl
es

 fr
om

 p
r(Q

2
|D

,I)
 (

0) pr(Q2 |D, I)
Experimental

Figure 8.5: Sampling of the decay energy PPD, pr(Q2α|D, I), using 100 · 100 = 10 000 samples.
This figure includes corrections for method uncertainty as specified in equation (8.6), i.e. σ 6= 0.

Part IV

Summary, discussion and outlook

55

Chapter 9

Summary

The overarching goal in this project has been to study the ground-state energy of the 8Be nucleus
starting from realistic nuclear interactions and solving the many-body Schrödinger equation using
the NCSM. This type of simulation requires substantial amounts of computational power. A
significant component of this project was focused on issues relating to the feasibility of performing
large-scale NCSM calculations.

One of the investigation points related to evaluating the computational performance of the
JupiterNCSM code. In particular, disk data throughput rate was found to be one of the major
performance concerns. A distributed-memory architecture using MPI was then introduced to
JupiterNCSM which allows the program to use several compute nodes at the same time. This
increases parallelism and counteracts the disk bandwidth limitations by allowing the program to
read more data in parallel. This new memory architecture increases code simulation capabilities
and improves computational performance. Additionally, the impact of the limited data through-
put rate was alleviated by finding a more optimal work order that maximizes reuse of data in
RAM. Finally, NCSM simulations with large Nmax need a lot of storage space. Only network
storage is large enough for storing all matrix data in a single place, but it is typically slower than
node-local scratch disks. To address this, a file division scheme was devised and implemented
that allows JupiterNCSM to use a set of node-local scratch disks instead of network storage,
avoiding a significant performance penalty for the large Nmax cases.

With the performance improvements in place, we studied a few physical aspects of the 8Be
nucleus. A special case of the 8Be simulations in JupiterNCSM was validated against another
NCSM code, to verify that it works as expected. While performing this study we found that the
computed ground-state energy was not fully converged forNmax = 8, the largest case that we were
able to simulate. To compensate for this, we implemented a previously developed procedure for
extrapolating the computed ground-state energy as Nmax →∞. This gave us an approximation
to the result of the fully converged NCSM simulation for large Nmax.

With this result, and with results from previous 4He studies performed with JupiterNCSM,
we studied the decay energy threshold of 8Be as it decays into two 4He nuclei. This decay energy
is known from experiment, but it is also possible to compute it as the difference between the
ground-state energies of the 8Be nucleus and the two 4He nuclei. These ground-state energies
come from NCSM simulations and depend on, among others, the cD and cE LECs. The values of
these constants are only known through probability distributions, so we needed to sample them.
This means, by extension, that the computed decay energy threshold is a sampling of the real
decay energy. This was presented as a histogram of NCSM energy differences.

57

Chapter 10

Discussion and outlook

We achieved the goal of simulating the 8Be nucleus at Nmax = 8. However, from the results
presented in figure 8.2, it is clear that the NCSM calculations are not fully converged. The
NCSM results with only 2NFs is relatively close to converging, as indicated by the shallow slope
at Nmax = 10. However, the simulation with both 2NFs and 3NFs is still some distance away from
full convergence, as can be seen from the still quite significant slope at Nmax = 8. Consequently,
it would be desirable to run simulations including both 2NFs and 3NFs at Nmax = 10 and
possibly Nmax = 12. This would decrease the extrapolation errors, which in turn would make
the predictive distribution in figure 8.5 more narrow. We did attempt to run the 8Be case
with Nmax = 10, but due to difficulties with large RAM requirements in the J- to M-scheme
transformation code Mercury, we were unable to generate the needed implicit matrix data files.

We attempted to locate the root cause of this issue by applying typical debugging techniques.
The idea was that if we could locate the point in the code where the out-of-memory crashes
were triggered, then we would be able to determine what had caused them. Unfortunately, the
program seemed to crash at different places each time. This made debugging quite challenging.
One of the debugging approaches involved tracking the amount of RAM Mercury used, to see
if the excessive RAM usage was constant or sudden. It appeared that Mercury respected the
imposed memory limit most of the time, but sometimes it would suddenly spike in RAM usage,
far above the specified limit. This meant that most of the crashes were due to the process being
killed by the Linux out-of-memory killer. This happens when physical memory on the computer
is exhausted. But there were also some Mercury runs that crashed due to segmentation faults.
This type of crash happens when a process tries to access a memory address that it should not
have access to. It is likely that these symptoms are related to the out-of-memory errors. It could,
for example, be that a memory allocation using malloc fails. A segmentation fault would then
be triggered when Mercury attempts to use that memory block. Currently, not all malloc calls
are checked for a NULL return value. The segmentation fault might then be caused by the code
trying to dereference a NULL pointer.

A possible workaround to the RAM issue could have been to use a node with even more
RAM. There are computer nodes on other HPC systems that have 700-800 GiB of RAM or even
more. Unfortunately, we did not have access to any of these nodes.

Another issue that made the Nmax = 10 case even more difficult was that, even if we managed
to solve the issue of high RAM usage, the transformation process was still very slow. In the case
where Mercury crashed after three days, it had only managed to generate about 10 % of the
data that was needed for running the Nmax = 10 case. It is expected that the data generation
rate is more or less constant throughout the entire transformation process, meaning that the full

59

60 CHAPTER 10. DISCUSSION AND OUTLOOK

transformation would take about a month to complete.
The RAM issue, together with the slow progress rate in the transformation, makes it imprac-

tical to run the Nmax = 10 case at this time. It is worth noting, however, that these limitations
are due to the Mercury code. The Lanczos solver Bacchus, which has been the focus of this
project, should have no problem handling the Nmax = 10 case.

Some of the newly added performance improvements in JupiterNCSM might not have been
strictly necessary for the 8Be, Nmax = 8 case studied in this project, but they will become crucial
for future calculations with larger model spaces. For example, the work order optimization will
have a very noticeable effect on any simulation where the implicit matrix data does not fit in
RAM. This is already true for the 8Be, Nmax = 8 case, but the effect will be even more pronounced
for larger values of Nmax. Also, the distributed-memory architecture introduced in this project
means that significant increases in performance can be achieved by using several computer nodes
at the same time, something that will be critical for our ability to run simulations with even
larger Nmax.

10.1 Suggested improvements

Some of the studies and improvements done in this project were based on the outlook in the
PhD thesis by Tor Djärv [2]. Other investigation points emerged and were studied as the project
progressed. As a result, several aspects of the tool have been improved, especially in terms
of computational performance. This allows the study of more complex nuclei at larger model
spaces. However, there are still areas that need further development, with the most important
ones outlined below.

Improve J- to M-scheme transformation. The main bottleneck preventing us from running
larger Nmax cases is the J- to M-scheme transformation code Mercury. The current version
requires more RAM than what is available, leading to crashes. Also, even if the cause of the
crashes is fixed, the transformation routine is very inefficient and time-consuming. It would
probably need a dedicated optimization effort to increase performance so that it can complete
the transformation within a reasonable amount of time. This would probably require a complete
rewrite of the program [30].

Simulate 8Be at Nmax = 10 or higher. As was covered in the discussion, the Nmax = 8
simulations for 8Be suffer from relatively large uncertainties from the extrapolation procedure.
Simulations at Nmax = 10 or higher would decrease these uncertainties. This would give more
useful calculations of ground-state energies and, as observed in section 8.3, would lead to higher
theoretical precision for the 8Be decay energy threshold. The required improvements to the
Lanczos solver Bacchus have already been implemented. It only needs the transformed matrix
elements generated by the Mercury code.

Break dependencies to other codes. The JupiterNCSM software has strong dependencies
to external codes and data. These codes must be run independently, and the data they generate
must be manually fed to even more programs outside the JupiterNCSM toolchain. This makes it
difficult to use the software. One important improvement that is needed to make JupiterNCSM
more user-friendly is to break these dependencies so that all the required abilities are included
in the JupiterNCSM toolchain. This includes the generation of input data in the form of a
many-body basis and possibly also the 2NFs and 3NFs. These are all currently generated outside
JupiterNCSM. Some of these codes, for example the pAntoine code which creates the basis, are

10.1. SUGGESTED IMPROVEMENTS 61

not open source. This consideration is very important if JupiterNCSM is to be used by a larger
community of researchers.

Reduce the number of data files. The external code Anicre computes transition densities
for constructing the Hamiltonian matrix elements [31, 2]. This code generates a large number of
data files. In the 8Be, Nmax = 8 and Nmax = 10 cases this translates to hundreds of thousands
of files. This is an issue, both in terms of computational performance and in terms of usability.
HPC systems typically enforce file-count limitations on storage allocations, which means that
these quotas are filled very quickly when using JupiterNCSM. This makes it difficult to use the
software. Reducing the number of files is an important issue that should be addressed before
continuing to use JupiterNCSM for larger nuclei and model spaces.

Revisit data types to reduce memory needs. Most scalars in JupiterNCSM are stored as
double-precision floating point numbers. This data type is often preferred over single-precision
floating point numbers when accuracy is an important factor, or to avoid issues with numerical
artifacts. But a downside with using this larger data type is that it requires more storage, and
consequently also longer data loading times. This is important because disk storage throughput
has been identified as a major performance bottleneck. A possible improvement would be to
store the matrix element data as single-precision numbers. The Krylov vectors in the Lanczos
algorithm could continue to be stored as double-precision numbers. This would increase perfor-
mance without sacrificing precision. It would also be possible to rewrite the entire JupiterNCSM
software to use single-precision numbers instead. This, however, might cause side effects such
as loss of precision or numerical instabilities in the Lanczos algorithm. This change would then
be a relatively large undertaking, especially considering that validation runs would need to be
run again, to guarantee that the program performs as expected. If it is possible to use single-
precision numbers then it might also be possible to use half-precision numbers for some data,
further decreasing storage space requirements by a factor of two.

Bibliography

[1] Bruce R. Barrett, Petr Navratil, and James P. Vary. “Ab initio no core shell model”. In:
Prog. Part. Nucl. Phys. 69 (2013), pp. 131–181. doi: 10.1016/j.ppnp.2012.10.003.

[2] Tor Djärv. “JupiterNCSM: A Pantheon of Nuclear Physics. -an implementation of three-
nucleon forces in the no-core shell model”. PhD thesis. Department of Physics, Chalmers
University of Technology, Gothenburg, Sweden, 2021. isbn: 978-91-7905-552-3.

[3] R. Machleidt and D. R. Entem. “Chiral effective field theory and nuclear forces”. In: Phys.
Rept. 503 (2011), pp. 1–75. doi: 10.1016/j.physrep.2011.02.001. arXiv: 1105.2919
[nucl-th].

[4] Evgeny Epelbaum, Hans-Werner Hammer, and Ulf-G. Meissner. “Modern Theory of Nu-
clear Forces”. In: Rev. Mod. Phys. 81 (2009), pp. 1773–1825. doi: 10.1103/RevModPhys.
81.1773. arXiv: 0811.1338 [nucl-th].

[5] Riccardo Penco. “An Introduction to Effective Field Theories”. In: (June 2020). arXiv:
2006.16285 [hep-th].

[6] T. Djärv et al. “Bayesian predictions for A=6 nuclei using eigenvector continuation emu-
lators”. In: Phys. Rev. C 105.1 (2022), p. 014005. doi: 10.1103/PhysRevC.105.014005.
arXiv: 2108.13313 [nucl-th].

[7] S. Wesolowski et al. “Rigorous constraints on three-nucleon forces in chiral effective field
theory from fast and accurate calculations of few-body observables”. In: Phys. Rev. C 104.6
(2021), p. 064001. doi: 10.1103/PhysRevC.104.064001. arXiv: 2104.04441 [nucl-th].

[8] Isaiah Shavitt and Rodney J. Bartlett. Many-Body Methods in Chemistry and Physics:
MBPT and Coupled-Cluster Theory. Cambridge Molecular Science. Cambridge University
Press, 2009. doi: 10.1017/CBO9780511596834.

[9] Tor Djärv. “Three-nucleon forces in nuclear physics simulations”. Licentiate thesis. De-
partment of Physics, Chalmers University of Technology, Gothenburg, Sweden, 2019, p. 2.
url: https://research.chalmers.se/en/publication/512770 (visited on 2021-06-06).

[10] J.J Sakurai and Jim Napolitano. Modern Quantum Mechanics. second edition. Cambridge,
United Kingdom: Cambridge University Press, 2017, pp. 18, 20.

[11] Cornelius Lanczos. “An iteration method for the solution of the eigenvalue problem of linear
differential and integral operators”. In: J. Res. Natl. Bur. Stand. B 45 (1950), pp. 255–282.
doi: 10.6028/jres.045.026.

[12] B. Alex Brown. “Lecture Notes in Nuclear Structure Physics”. National Superconduct-
ing Cyclotron Laboratory and Department of Physics and Astronomy. Michigan State
University, E. Lansing, MI 48824, Nov. 2005.

63

https://doi.org/10.1016/j.ppnp.2012.10.003
https://doi.org/10.1016/j.physrep.2011.02.001
https://arxiv.org/abs/1105.2919
https://arxiv.org/abs/1105.2919
https://doi.org/10.1103/RevModPhys.81.1773
https://doi.org/10.1103/RevModPhys.81.1773
https://arxiv.org/abs/0811.1338
https://arxiv.org/abs/2006.16285
https://doi.org/10.1103/PhysRevC.105.014005
https://arxiv.org/abs/2108.13313
https://doi.org/10.1103/PhysRevC.104.064001
https://arxiv.org/abs/2104.04441
https://doi.org/10.1017/CBO9780511596834
https://research.chalmers.se/en/publication/512770
https://doi.org/10.6028/jres.045.026

64 BIBLIOGRAPHY

[13] Philip Sternberg et al. “Accelerating configuration interaction calculations for nuclear
structure”. In: SC ’08: Proceedings of the 2008 ACM/IEEE Conference on Supercomputing.
2008, pp. 1–12. doi: 10.1109/SC.2008.5220090.

[14] C. Forssén et al. “Large-scale exact diagonalizations reveal low-momentum scales of nuclei”.
In: Phys. Rev. C 97.3 (2018), p. 034328. doi: 10.1103/PhysRevC.97.034328. arXiv:
1712.09951 [nucl-th].

[15] Tetralith. National Supercomputer Centre, Linköping University. url: https://www.nsc.
liu.se/systems/tetralith/ (visited on 2021-08-27).

[16] NSC Centre Storage. National Supercomputer Centre, Linköping University. url: https:
//www.nsc.liu.se/storage/snic-centrestorage/ (visited on 2022-02-14).

[17] Current SNIC Large Storage Projects. Swedish National Infrastructure for Computing.
url: https://supr.snic.se/public/project/?type=SNIC%20Large%20Storage
(visited on 2022-03-02).

[18] OpenMP Architecture Review Board. OpenMP Application Programming Interface. Nov.
2015. url: https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf (visited
on 2022-03-24).

[19] Message Passing Interface Forum.MPI: A Message-Passing Interface Standard. Version 3.1.
June 4, 2015. url: https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
(visited on 2022-03-24).

[20] Driving Exascale Computing and HPC with Intel. Intel. url: https://www.intel.com/
content/www/us/en/high-performance-computing-fabrics/omni-path-driving-
exascale-computing.html (visited on 2022-03-03).

[21] About InfiniBand. InfiniBand Trade Association. url: https://www.infinibandta.org/
about-infiniband/ (visited on 2022-03-02).

[22] MPICH Overview. url: https://www.mpich.org/about/overview/ (visited on 2022-03-
03).

[23] Open MPI: Open Source High Performance Computing. 2022. url: https://www.open-
mpi.org/ (visited on 2022-03-03).

[24] MACH-2 Technology Paper. Seagate. 2020, p. 3. url: https://www.seagate.com/files/
www-content/solutions/mach-2-multi-actuator-hard-drive/files/tp714-dot-2-
2006us-mach-2-technology-paper.pdf (visited on 2022-03-03).

[25] Samsung V-NAND SSD 980 PRO. 2021 Data Sheet. Revision 2.1. Samsung. 2021, p. 3.
url: https://semiconductor.samsung.com/resources/data-sheet/Samsung-NVMe-
SSD-980-PRO-Data-Sheet_Rev.2.1.pdf (visited on 2022-03-03).

[26] National Supercomputer Centre, Linköping University. url: https://www.nsc.liu.se/
support/batch-jobs/tetralith/ (visited on 2022-02-18).

[27] A. Ekström et al. “Accurate nuclear radii and binding energies from a chiral interaction”.
In: Phys. Rev. C 91.5 (2015), p. 051301. doi: 10.1103/PhysRevC.91.051301. arXiv:
1502.04682 [nucl-th].

[28] A. Ekström et al. “Optimized Chiral Nucleon-Nucleon Interaction at Next-to-Next-to-
Leading Order”. In: Phys. Rev. Lett. 110.19 (2013), p. 192502. doi: 10.1103/PhysRevLett.
110.192502. arXiv: 1303.4674 [nucl-th].

https://doi.org/10.1109/SC.2008.5220090
https://doi.org/10.1103/PhysRevC.97.034328
https://arxiv.org/abs/1712.09951
https://www.nsc.liu.se/systems/tetralith/
https://www.nsc.liu.se/systems/tetralith/
https://www.nsc.liu.se/storage/snic-centrestorage/
https://www.nsc.liu.se/storage/snic-centrestorage/
https://supr.snic.se/public/project/?type=SNIC%20Large%20Storage
https://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://www.mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.intel.com/content/www/us/en/high-performance-computing-fabrics/omni-path-driving-exascale-computing.html
https://www.infinibandta.org/about-infiniband/
https://www.infinibandta.org/about-infiniband/
https://www.mpich.org/about/overview/
https://www.open-mpi.org/
https://www.open-mpi.org/
https://www.seagate.com/files/www-content/solutions/mach-2-multi-actuator-hard-drive/files/tp714-dot-2-2006us-mach-2-technology-paper.pdf
https://www.seagate.com/files/www-content/solutions/mach-2-multi-actuator-hard-drive/files/tp714-dot-2-2006us-mach-2-technology-paper.pdf
https://www.seagate.com/files/www-content/solutions/mach-2-multi-actuator-hard-drive/files/tp714-dot-2-2006us-mach-2-technology-paper.pdf
https://semiconductor.samsung.com/resources/data-sheet/Samsung-NVMe-SSD-980-PRO-Data-Sheet_Rev.2.1.pdf
https://semiconductor.samsung.com/resources/data-sheet/Samsung-NVMe-SSD-980-PRO-Data-Sheet_Rev.2.1.pdf
https://www.nsc.liu.se/support/batch-jobs/tetralith/
https://www.nsc.liu.se/support/batch-jobs/tetralith/
https://doi.org/10.1103/PhysRevC.91.051301
https://arxiv.org/abs/1502.04682
https://doi.org/10.1103/PhysRevLett.110.192502
https://doi.org/10.1103/PhysRevLett.110.192502
https://arxiv.org/abs/1303.4674

BIBLIOGRAPHY 65

[29] TUNL Nuclear Data Evaluation Project. Energy Level Diagram, 8Be. 1988. url: https:
//nucldata.tunl.duke.edu/nucldata/figures/08figs/08_04_1988.pdf (visited on
2022-04-28).

[30] T. Djärv. Private correspondence. 2022.

[31] Daniel Sääf. “Bridging scales in nuclear physics. Microscopic description of clusterization in
light nuclei”. PhD thesis. Göteborg, Sweden: Department of Physics, Chalmers University
of Technology, 2016.

https://nucldata.tunl.duke.edu/nucldata/figures/08figs/08_04_1988.pdf
https://nucldata.tunl.duke.edu/nucldata/figures/08figs/08_04_1988.pdf

DEPARTMENT OF PHYSICS
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2022
www.chalmers.se

www.chalmers.se

	I Background
	Introduction
	The nuclear many-body problem

	The no core shell model
	The no core shell model basis
	The Lanczos algorithm
	Computation of large matrix-vector products in the Lanczos algorithm
	JupiterNCSM

	Parallel computing and computer memory
	Outline of computational difficulties
	Description of a typical high performance computing cluster
	Memory in high performance computing systems
	Methods of parallelization
	OpenMP
	The Message Passing Interface, MPI
	Hybrid parallelization: OpenMP and MPI
	Hybrid parallelization in JupiterNCSM

	II Implementation
	Profiling
	Profiling single instructions
	Study of number of files and file sizes

	Work order for the matrix-vector product
	Improved work order
	File division between nodes using Venus
	Disk load estimation program

	MPI parallelization
	From partial sums to JupiterNCSM instructions
	MPI implementation details
	Checkpointing

	III Results
	Computational performance
	Feasibility of 8Be simulations at larger model spaces
	Typical run times for the Lanczos solver
	Performance profiling of the Lanczos solver Bacchus
	Optimized work order
	MPI performance scaling

	Statistical study of the 8Be decay energy threshold
	Validation of 8Be results
	8Be convergence study
	Three nucleon force uncertainty study

	IV Summary, discussion and outlook
	Summary
	Discussion and outlook
	Suggested improvements

