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Development of a Test Suite for Verification & Validation of OpenFOAM
SIMON PERSSON
Department of Applied Mechanics
Division of Fluid Dynamics Chalmers University of Technology

Abstract
Computational fluid dynamics is an important tool which can be used to simulate
various properties of a flow. CFD simulations are used within the nuclear power
industry to aid in the evaluation of thermal loads within a given system. In order to
verify and validate some aspects of the open source solver OpenFOAM a test suite
was developed. The main goal was to build a series of automated tests while at the
same time enable future additions of new tests. The verification process focused
on the evaluation of certain numerical schemes used for both incompressible and
compressible solvers in OpenFOAM. In order to evaluate the results of each case
two different test criteria where used. The difference between simulated results and
exact solutions to a specific problem was used to calculate a discretization error for
the whole computational domain. The discretization error can then be used together
with a refinement of the mesh to calculate an observed order of accuracy. In order
to obtain exact analytic equations to the governing equations the method of manu-
factured solution was implemented. A solution for the equations was manufactured
and a resulting source term was implemented in the simulation. The results from
the simulation should then correspond to the manufactured solution. It was found
that the results for the order of accuracy could be used as a test criteria when eval-
uating numerical schemes and solvers. A validation test case was also implemented
into the test suite. The simulation was based upon an experiment previously used
as a benchmark for various CFD simulations. It was found that a coarse mesh with
a limited amount of cells could be used for evaluation of thermal mixing. In order
to determine if a test is accurate enough a validation metric evaluated from the dif-
ference between the results from simulation and the experimental data. The metric
was defined from the discretization error also used in the verification cases. The
error was evaluated at the points where experimental data was available.

Keywords: Verification, Validation, OpenFOAM, CFD, MMS, Manufactured Solu-
tion.
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Nomenclature

δij Kroenecker delta
ε Error
φ̂ Discretized solution
p̂ Observed order of accuracy
µ Dynamic viscosity
φ Time averaged φ
φ′ Fluctuating φ
φ General variable
ρ Density
τij Stress tensor
ε Viscous dissipation
cp Specific heat capacity
e Internal energy
g Gravitational acceleration
h Enthalpy
K Kinetic energy
k Turbulent kinetic energy
Pr Prandtl number
q Heat flux
Rs Specific gas constant
S Volumetric source
t Time
TE Truncation error
U Magnitude of velocity
u Velocity
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Chapter 1

Introduction

This section will briefly cover the general topics presented in this thesis. The em-
phasis is put on computational fluid dynamics and its applications within some
application of the nuclear power industry. The section will also cover some of the
fundamental properties of a nuclear reactor and how those properties can affect
simulation performed with computational fluid dynamics.

1.1 Computational Fluid Dynamics

Computational Fluid Dynamics (CFD) is a process where fluid flow and heat transfer
are modeled from the transport equations that describe the motion of fluids. CFD
is used in various industrial applications where aerodynamics, hydrodynamics and
thermal transport of fluids are a part of the process [1].

Since the numerical models solved within CFD-calculations introduce approxima-
tions it is important to verify that the calculations are performed properly and that
the simulations are validated. Verification is important in order to ensure that the
software is operated according to its specifications. Correct implementation of the
model and application of various mathematical tools within the software are pro-
cesses which need to be verified. The validation procedure is focused on comparing
the results from the simulation with data from real applications. It is not necessarily
the process to prove that a model is correct in all aspects, rather if it is accurate
enough to represent and provide information about the system that is being mod-
eled. Experimental data or other already validated simulations are two examples of
data that can be used to validate a simulation.

The CFD process generally involves a few steps in order to estimate the propagation
of parameters within a fluid flow problem. The first step is to specify the domain and
construct a geometry that represents the system and define the physical properties of
the fluid flow. The domain is then divided into several small volumes which will make
up a mesh of the domain. The solution of the problem is performed by numerical
solution of the governing transport equations in each cell. This data can then be
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used to describe the properties of the flow in the specified system. There are various
types of techniques that can be applied but the most commonly used technique in
CFD is based on the finite volume method [1]. This method is based on solving
the transport equation in a defined finite control volume. The governing transport
equation is integrated over the control volume, and the resulting equations are then
discretised so that a system of algebraic equations is obtained. These equations can
then be solved with numerical iterative methods from specified initial conditions.

1.2 Applications in Nuclear Power Industry

The main principle of a nuclear power plant is to convert thermal energy, released
during fission of an atomic nucleus, to electrical energy which can be delivered to
the electrical grid. The thermal energy is transferred from the reactor fuel to a
coolant medium, water is most commonly used. The water is heated in a high
pressure environment to increase the boiling temperature and to generate steam
with high thermal energy. The steam is then transported to steam turbines that
converts the thermal energy into electrical energy. Due to the high pressure and
large temperature gradients combined with the long operating time and ionizing
radiation the material properties of a component in the system may change. In order
to ensure safe operation of a power plant the material transients must be analyzed
with the help of physical models and computational simulations. Computation fluid
dynamics (CFD) is one of the computational tools available to help evaluate the
material transients within critical systems in the power plant.

Due to the presence of ionizing radiation that is produced in the fuel during operation
the nuclear power industry has a very high demand on procedures and operational
safety. The Swedish Radiation Safety Authority (SSM) has specified regulations
regarding the use and application of simulations used to evaluate the operational
safety of a power plant. Due to the approximations used to rewrite the equations
and to perform the iterative calculations the performance of the simulations must be
evaluated. By verifying and validating the results one can estimate if the simulations
have been performed according to specifications of the software and that they are
an accurate representation of the real system.

1.2.1 OpenFOAM

The computational tool to be evaluated for application within nuclear energy ap-
plications is called OpenFOAM. OpenFOAM (Open source Field Operation And
Manipulation) is an open source CFD development tool used to solve problems
within continuum mechanics [2]. OpenFOAM has a wide variety of application,
however this thesis will only deal with the solvers and applications used for CFD
simulations. More specifically, some of the solvers and utilities that can be used for
evaluation of thermal transients within the nuclear industry is of interest.

2 CHALMERS, Applied Mechanics, Master’s Thesis 2017:59



1.3 Objective of this thesis

The main goal of the thesis is to formulate a number of test cases that can be used
to evaluate simulations done with the open source CFD tool OpenFOAM. A number
of different cases will be constructed and evaluated with an automatic test suite.
The verification process should evaluate if the implementation of each simulation
performs according to the specifications of the software. Emphasis will be put on
implementation of each test case, analysis of how one can perform a verification of
the mathematical model used in a simulation and create an automatic test loop that
can be used for present and future releases of OpenFOAM.

OpenFOAM will also be validated against experimental data from experiments pre-
viously used as benchmark for various CFD simulations. The emphasis will be on
temperature transients and flow structured which may lead to thermal fatigue in
various components. The test will be based on experiments performed by Vattenfall
Research and Development AB. Much of the work will focus on how to properly eval-
uate the simulations with the experimental data and what parameters are needed
to set a criteria for the test. The work will be limited to a number of cases that are
prepared and simulated with tools available in OpenFOAM. The main focus is to
evaluate some of the solvers and numerical schemes used for simulations performed
at Forsmarks Kraftgrupp AB.
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Chapter 2

Theory

This chapter will present a theoretical background of the equations that are solved
during a CFD simulation. The governing equations within OpenFOAM are based
on the conservation equations for mass, momentum and enthalpy. A method used to
verify the mathematical model of the simulations will also be stated. Finally some
of the metrics used for the verification and validation will be explained.

2.1 Governing equations in CFD

The CFD simulations performed in this thesis are based upon solving the governing
equations for fluid flow. These equations are often defined as the conservation of
mass, momentum and energy. In order to close the system of equations additional
relationships are needed, an equation of state is used to relate pressure and density
while a thermophysical model is used to link the internal energy, or in this work
enthalpy, to temperature.

2.1.1 Conservation of Mass

The equation that defines the conservation of mass (also called the continuity equa-
tion) can be derived from the rate of change for mass inside the system and the mass
flow through each surface element of a control volume [1]. The resulting equation
can be written with Einstein notation as [1]

∂ρ

∂t
+ ∂

∂xi
(ρui) = 0, (2.1)

where ρ is the density of the fluid and ~u is the velocity of the flow. Note that this
equation describes the conservation of mass for a compressible fluid. If the fluid is
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incompressible the density will be constant and the expression is simplified into
∂

∂xi
ui = 0. (2.2)

2.1.2 Conservation of Momentum

The conservation of momentum for a control volume is defined as [3]
∂

∂t
ui + ∂

∂xj
(ρujui) = − ∂

∂xi
(δijp) + ∂

∂xj
τij − ρbi, (2.3)

where τij is the stress tensor and bi represents the body forces applied to the control
volume. The stress tensor for Newtonian fluids can be written as [3]

τij = 2µDij −
2
3µδij

∂

∂xi
ui, (2.4)

where Dij is the deformation vector defined as

Dij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
. (2.5)

The constant µ represents the dynamic viscosity.

2.1.3 Conservation of Energy

The conservation of energy implies that the rate of change of energy inside the system
must be equal to the sum of heat added to the system and total work exerted by the
fluid. The contribution to the energy equation will come from the internal (thermal)
energy, kinetic energy and external body forces. The total energy inside the system
can be written as etot = e + K where e is the internal energy and K is the kinetic
energy defined as K = 1

2uiui. From the general transport equation [4] one can derive
the governing equation for internal energy

∂

∂t
(ρe) + ∂

∂xj
(ρeuj) = ∂

∂xi
qi + Sq (2.6)

where q is the heat flux and Sq is a heat source.

The kinetic energy equation can also be derived from the general transport equation
∂

∂t
(ρK) + ∂

∂xj
(ρujK) = ∂

∂xj
(ujp) + ∂

∂xj
(uiτij)− ρuibi (2.7)

and if we add the internal energy with kinetic energy the conservation equation for
total energy is obtained
∂

∂t
(ρe)+ ∂

∂xj
(ρeuj)+

∂

∂t
(ρK)+ ∂

∂xj
(ρujK) = ∂

∂xj
(ujp)+

∂

∂xi
qi+

∂

∂xj
(uiτij)+Sq−ρuibi.

(2.8)
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It can often be beneficial to write the conservation of energy in the form of enthalpy.
The enthalpy of the system can be written as the sum of total energy in the system
and kinematic pressure

h = etot + p

ρ
. (2.9)

The terms containing internal energy in equation (2.6) can then be rewritten as

∂

∂t
(ρe) = ∂

∂t

[
ρ

(
h− p

ρ

)]
= ∂

∂t
(ρh)− ∂

∂t
p,

∂

∂xj
(ρeuj) = ∂

∂xj

[
ujρ

(
h− p

ρ

)]
= ∂

∂xj
(ρhuj)−

∂

∂xj
(ujp),

(2.10)

leading to the governing equation for enthalpy

∂

∂t
(ρh)+ ∂

∂xj
(ρhuj)+ ∂

∂t
(ρK)+ ∂

∂xj
(ρujK)− ∂

∂t
p = ∂

∂xi
qi+

∂

∂xj
(uiτij)+Sq−ρuibi.

(2.11)

2.1.4 Incompressible Navier-Stokes Equations

For many applications of fluid flow the incompressible Navier-Stokes equations can
be used. An incompressible flow can be defined as a flow where the divergence of
the velocity is zero [1]. The Navier-Stokes equations for incompressible fluid can be
derived from the conservation of mass (2.1) and momentum (2.3)

∂

∂xi
u = 0

∂

∂t
ui + uj

∂

∂xj
ui = − ∂

∂xi
(δijp) + ∂

∂xj∂xj
ui − ρgi,

(2.12)

where the stress tensor τij has been rewritten since the viscosity is constant and the
effect from the bulk viscosity is zero [1]. The term associated with body forces has
been approximated to gi which represents the external acceleration applied on the
fluid due to gravitational forces.

2.1.5 Compressible Navier-Stokes

The Navier-Stokes equations for compressible flow that are implemented in Open-
FOAM can be defined from the governing equations for mass, momentum and en-
thalpy which are written above (2.1), (2.3), (2.11). If we neglect body sources except
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the gravitational acceleration the Navier Stokes equations will be

∂

∂t
ρ+ ∂

∂xi
(ρui) = 0

∂

∂t
ui + ∂

∂xj
(ρujui) = − ∂

∂xi
(δijp) + ∂

∂xj
τij − ρgi

∂

∂t
(ρh) + ∂

∂xj
(ρhuj) + ∂

∂t
(ρK) + ∂

∂xj
(ρujK)− ∂

∂t
p = ∂

∂xi
qi + ∂

∂xj
(uiτij) + Sq − ρuigi

(2.13)

where the stress tensor is defined as

τij = 2µDij −
2
3µδij

∂

∂xi
ui

Dij = 1
2

(
∂ui
∂xj

+ ∂uj
∂xi

)
.

(2.14)

2.1.6 Turbulence modelling

Turbulence can be defined as chaotic and unpredictable changes in the flow pattern
of moving fluids [5]. In order to try and describe a turbulent flow the governing
variables are often divided into one time- (RANS) or spatial (LES) averaged part φ
and one fluctuating part φ′ according to

φ = φ+ φ′. (2.15)

If we insert this decomposition of the velocity into the NS equations for incompress-
ible flow (2.12) and perform an average w.r.t space or time for each term we obtain
[1]

∂

∂xi
u = 0

∂

∂t
ui + uj

∂

∂xj
ui = −1

ρ

∂

∂xi
(δijp) + ∂

∂xj∂xj
ui + 1

ρ

∂

∂xj
(ρu′iu′j)− ρgi,

(2.16)

where a new term u′iu
′
j representing the Reynolds stresses is present. This term will

represent the correlation between the fluctuating velocities within the turbulent flow
[5]. One way to resolve this term is by applying a model which will try to predict the
fluctuating velocities within the flow. There are a wide variety of different models
that can be applied [5]. The models which will be used for this work are based on
two different methods, Reynolds Averaged Navier-Stokes (RANS) and Large-Eddy
Simulations (LES).

The RANS models are based on a time average of the fluctuating velocity terms
(2.16). The model used within this work is the standard k − ε model. This model
uses the turbulent kinetic energy k and the rate of viscous dissipation ε to resolve
the Reynolds stresses present during turbulent flow [1]. One disadvantage of the
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RANS models comes from problems that occur when it tries to model all turbulent
eddies of the flow with the same model. The characteristics of large eddies are very
different from the very small eddies. Small eddies most often behave in an isotropic
manner while the larger eddies will behave very anisotropicially due the interaction
with other properties of the flow. This is one of the reasons one might use the
more computational heavy LES-model. Large-eddy simulations puts an emphasis
on the large eddies and their interaction with the surrounding fluid while the small
eddies are modeled by a more simple sub-grid-scale model. In order to separate
the interaction of small and large eddies a spatial filter function is applied to the
unsteady NS equations (2.16). The filter function used within this thesis is based
on the cubic root of the cell volume [5].

2.1.7 Thermophysical models

There is a wide variety of thermophysical models available for simulations within
OpenFOAM. The definition of the thermo physical model is a combination of transport-
, thermodynamic- and equation of state models which are used to describe the phys-
ical properties of the fluid and close the system of governing equations.

The transport model is used to determine fluid properties such as dynamic viscosity
µ, thermal conductivity κ and thermal diffusivity α. For this work the quantities
have been defined by two different models. The most simple model requires constant
values for the dynamic viscosity and Prandtl number [6] which can be used to
calculate all relevant properties since the Pr number is defined as

Pr = cpµ

κ
. (2.17)

For a simulation where large temperature fluctuations are present the properties of
the flow might be temperature dependent. A model where the dynamic viscosity
and thermal conductivity is defined from a polynomial function of temperature can
then be used

µ =
N−1∑
i=0

aiT
i, (2.18)

where the polynomial is of order N .

The thermodynamic model is used to determine the specific heat capacity cp (cv for
internal energy) which is later used to calculate the temperature from the enthalpy
within the system. Just as for the transport model the value of cp can be provided
as a constant or as a polynomial function of order N

cp =
N−1∑
i=0

aiT
i. (2.19)

The equation of state is used to determine the density of the fluid. Several models
are available [6] but only the models based on the ideal gas law and temperature
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dependent polynomial are used for this thesis. The perfectGas model will relate
density to the pressure and temperature according to

ρ = p

RsT
, (2.20)

where Rs is the specific gas constant. For an incompressible fluid the density can
be defined from a temperature dependent polynomial just as the specific heat, see
Equation (2.19).

2.2 Verification

The term software verification can be defined in many different ways, generally de-
pendent on what type of software that is to be verified. When verification is used
within scientific computing i.e. modelling or computer simulation the focus on veri-
fication is to evaluate the correctness and accuracy of a mathematical model [7]. An
example of a very general term of the verification procedure for scientific software can
be stated as: “Solve the equations right.” [8]. The goal is often to ensure accurate
numerical solutions to the various mathematical models used within the scientific
software. Therefore the focus of the verification procedure should be to identify,
quantify and reduce the error in the computer code and the numerical simulation
[7]. The verification of scientific computer software can further be divided into two
different categories, code verification and solution (or calculation) verification [7].

Solution verification is defined as the process to determine the correctness of input-
and output data and numerical accuracy of the end result [7]. This numerical
accuracy will include iterative and numerical errors that arises when solving system
of equations on a digital computer.

The code verification evaluates if the code is a good representation of the mathe-
matical model that is used to solve the governing equations. This model includes
the discretisation of governing equations and the implementation of various initial
and boundary conditions that is used to solve the equations. In order to evaluate
a code the solution must be compared to some criteria in order to determine the
accuracy of the mathematical model. These various criteria can be divided into a
few sub-categories with various degrees of stringency [7]. From the most simple to
most rigorous these tests are; simple-test, code-to-code comparison, discretisation
error and order of accuracy-tests.

Simple tests includes scenarios where an exact solution is not necessary. These
include symmetry tests where a symmetrical problem is modeled from symmetrical
boundary and initial conditions. The final result should be a symmetrical solution
for the whole geometry. This means that the model can be evaluated from just a
simple geometry and boundary conditions. Another simple test for verification is
to check the conservation of various quantities in the mathematical model. If we
take a look at the conservation equation (2.1) one can compare the total flow of
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mass into a domain with the total flow going out of it. Another test which does not
require an exact solution to the problem is code-to-code verification. By taking an
already verified solution to a specific problem and compare it to the model that is
to be evaluated. This test assumes that the mathematical models are the same for
both cases and that the code that is used as a benchmark has been verified in some
manner. The problem with this type of verification is that the exact same models
and algorithms must be used in order to produce the same results [7].

The tests that evaluates discretization error and order of accuracy will require an
exact solution to be available in order to perform the verification. This can be
achieved by having an analytic solution to a particular problem that is used for
verification of the model. If an analytic solution is available it is possible to compare
the results from the simulation with the exact solution to the problem. However it
may be very difficult to find an exact solution for some types of problems. Examples
of this can be found for CFD simulations where complex geometries, multiple non-
linear coupled and sub-models are present.

2.2.1 Method of Manufactured Solutions

As mentioned earlier many of the tests used for verification requires an exact solution
to the mathematical model that is to be solved and for problems where complex
partial differential equations are included an exact solution can be very difficult to
obtain. The method of manufactured solutions (MMS) can be used to construct an
exact analytic solution from the governing equations of the mathematical model. As
the name suggests a solution is manufactured and the equations are solved backwards
from this solution by adding a source term to the equations. Since the goal of the
verification procedure is to verify the mathematical correctness of a model an exact
solution with realistic physical properties is not required [7]. However one must
take care so that conditions used for the model to be valid must be met. One
such example could be the requirement of a divergence free velocity field (∇ · ~u =
0) for an incompressible model. Another potential problem may arise within an
application where the transfer of heat can be evaluated. If a manufactured solution
for temperature is defined it is important that the value is positive within the whole
domain if the unit Kelvin is used.

The procedure to create a manufactured solution starts with the governing equations
for the mathematical model. For partial differential equations the derivatives can
be represented by a linear operator L(). Say that we want to create a solution for
the variable φ, the governing equation can now be represented as

L(φ) = 0. (2.21)

A manufactured solution φm is chosen, however this solution will not solve the
system of equations since L(φm) 6= 0. We can now implement a source term Sφ
which is defined as the result of the manufactured solution L(φm) = Sφ. By adding
this source to the governing equations used in the mathematical model the equation
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to be solved will be
L(φ) = Sφ, (2.22)

which should return the simulated results of the actual manufactured solution φm.
The solution obtained from the simulation φ can now be compared to the exact
solution that was constructed φm.

Another feature of the manufactured solutions is that a certain criteria for the
boundary conditions can be applied to the solution. The boundary can be described
by a spatial function F (~r) = C where C is the constant value of a physical quantity
at he boundary. By multiplying the spatially dependent terms of the manufactured
solution with a the difference (C − F (~r))m one can set the boundary condition to
fulfill a desired criteria [9].

2.2.2 Truncation error

The truncation error is defined as the difference between an exact integral or dif-
ferential equation and the implemented discretised equation used in a computer
simulation. Discretization of an equation is the process of transforming a continu-
ous mathematical expression into a discrete representation for spatial and transient
variables which can be solved numerically [3]. The discretization is not an exact
representation of the continuous expression which means an error has been intro-
duced into the solution. The truncation error can be evaluated by applying a Taylor
series expansion on each variable and insert them into the discretized equations. As
an example we can produce a simple discretization of the derivative of φ. From the
expansion of φ(x) we can rearrange the terms into an expression for the truncation
error

φ(x) = φ(x0) + (x− x0) ∂φ
∂x

∣∣∣∣∣
x0

+ (x− x0)2

2
∂2φ

∂x2

∣∣∣∣∣
x0

+O[(x− x0)3]

φ(x)− φ(x0) = (x− x0) ∂φ
∂x

∣∣∣∣∣
x0

+ (x− x0)2

2
∂2φ

∂x2

∣∣∣∣∣
x0

+O[(x− x0)3]

φ(x)− φ(x0)
x− x0

= ∂φ

∂x

∣∣∣∣∣
x0

+ (x− x0)
2

∂2φ

∂x2

∣∣∣∣∣
x0

+O[(x− x0)2],

(2.23)

where the left hand side represents the discretised solution and the second- and
third term on the right hand side is the truncation error. By defining L() as a
vector containing each operation made on the mathematical model, we can write a
general expression for truncation as

Lr(φ) = L(φ) + TEr(φ) (2.24)

where TE is the truncation error and r is the spatial and temporal refinement
parameter of the system.
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2.2.3 Discretization Error

The discretisation error can be derived from the numerical solution of a system if
the exact solution to the problem is known. It is a scalar that can be evaluated
locally or for the entire domain [3]. If an exact solution φ is known and the result
from a numerical simulation φ̂ has been obtained the continuous disretization error
is defined as

‖φ̂− φ‖1 = 1
Ω

∫
Ω
|φ̂− φ|dω, (2.25)

where the L1-norm of the error has been evaluated. For finite-volume simulations
there is no continuous solution to the problem which means a discrete error must
be evaluated

‖φ̂− φ‖1 = 1
Ω

N∑
n=1

an|φ̂n − φn|, (2.26)

where n represents a cell in the domain, N is the total number of cells and an in
the size of each cell. For a uniform mesh the size of each cell will be identical which
means the expression can be simplified into

‖φ̂− φ‖1 = 1
N

N∑
n=1
|φ̂n − φn|. (2.27)

Another representation of the error is the root mean square (RMS) error which
is simply obtained from the L2 norm of the error. For a discrete solution with a
uniform grid this can be written as

‖φ̂− φ‖2 =
(

1
N

N∑
n=1
|φ̂n − φn|2

)1/2

. (2.28)

Finally one can define the absolute maximum value of the error by taking the infinity
norm

‖φ̂− φ‖∞ = max(|φ̂n − φn|). (2.29)

From equation (2.28) it is clear that discretisation error has a direct relation to the
size of the mesh. A finer mesh with more cells will reduce the error of the simulated
solution. However the size and quality of the mesh is often a limiting factor when
using CFD since a larger mesh will contribute to a longer computational time.
Therefore the error cannot be made insignificant without drastically increasing the
amount of memory and computational time needed to solve a particular problem
[1].

There are some disadvantages that must be considered when evaluating a mathemat-
ical model from the discetization error. The first problem is that an exact solution to
the problem must be available. As mentioned earlier there are numerous problems
where an exact solution to a problem can be very difficult to obtain. One example
is the Navier-Stokes equations for compressible flow defined in equation (2.1), (2.3)
and (2.11). Another disadvantage comes from the fact that the error must undergo
an evaluation to determine if it is sufficiently small. There is no obvious answer to
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how small the error is supposed to be for an accurate model. A subjective analysis
based on the working parameters, numerical values and application of the model
must be considered in order to evaluate if a given error is sufficiently small.

2.2.4 Order of accuracy

The order of accuracy criteria for code verification combines a convergence test
of the numerical simulation and the reduction of the discretisation error as the
mesh is refined. One can divide the test into a theoretical accuracy called formal
order of accuracy and the observed order of accuracy obtained from tests on the
mathematical model. For an accurate model the discretization error should decrease
at the same rate as the formal order of accuracy.

The formal order of accuracy is the theoretical rate at which the simulated solution
converges towards the exact solution of the model. As shown earlier there is a direct
connection between the size of the numerical grid and the discretisation error. If the
mesh discretization parameter r is reduced the discretization error of the solution
should also decrease (2.28). By inserting the solution to the discrete equation, φ̂, in
the expression for truncation error (2.24) we get the expression

L(φ̂) + TEr(φ̂) = 0, (2.30)

since the term Lr(φ̂) = 0 [7]. From here one can subtract the solution for the exact
mathematical model L(φ) from the expression and rewrite it once again to obtain

L(φ̂)− L(φ) + TEr(φ̂) = 0. (2.31)

If L is a linear operator this can be written as [7]

L(φ̂− φ) = −TEr(φ̂). (2.32)

Note that the right hand side of the expression is the previously defined truncation
error of the discretized solution. This means that we can use the truncation error
of a numerical scheme to calculate the formal order of accuracy.

The observed order of accuracy is the actual order of accuracy for the mathematical
model that is to be verified. The discretized equation φr can be expanded in terms
of the mesh spacing (size of each cell) h to obtain [7]

φh = φh=0 + h
∂φ

∂h

∣∣∣∣∣
h=0

+ h2

2
∂2φ

∂h2

∣∣∣∣∣
h=0

+ ...+O(hn), (2.33)

if we let h→ 0. For a numerical scheme that is p:th order accurate the terms of order
p− 1 will be equal to zero, see definition of truncation error (2.24). The expression
can therefore be written as

φh = φh=0 + hp

p!
∂pφ

∂hp

∣∣∣∣∣
h=0

+O(hp+1), (2.34)
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and since we let the mesh parameter h → 0 the term φh=0 can be approximated
to the exact solution to the problem φ. This means the equations can be rewritten
once again to obtain

εh = fph
p +O(hp+1), (2.35)

where εh is the difference between the discretized- and exact solution for a scheme
with order of accuracy p. The coefficient fp is only dependent of spatial or temporal
parameters fp(x, y, z, t) [3].

Since we assumed the parameter h is small the higher order terms than p can also
be neglected. This implies that for two different mesh spacing h and rh the error
can be written as

εh = fph
p̂

εrh = fp(rh)p̂,
(2.36)

where p̂ is the formal order of accuracy, r is the refinement factor and p is the formal
order of accuracy of the numerical scheme. Combining these into a single equation
yields and expression for the observed order of accuracy

p̂ =
ln
(
||εrh||
||εh||

)
ln(r) , (2.37)

where the norm of the discretization errors has been used to obtain an observed order
of accuracy for the whole domain. Note that this expression is only accurate if the
lowest order terms for both discretization error and truncation error are dominant for
both expressions [7]. This is called the asymptotic range and the order of accuracy
will only be equal to the formal order of accuracy within this asymptotic region.

2.3 Validation

Validation is used to estimate the accuracy of a computational model when it is
compared to a real physical application. This is different from the verification pro-
cedure where the focus was to evaluate the accuracy of the mathematical operations
used in the model. The most common method for validation is to compare sim-
ulated results with data taken from an experiment[7]. This means that either an
experiment must be designed for the validation of a certain numerical model or an
existing experiment for some application is used as a design basis for the simulation.

When comparing the model that is to be validated against the experimental results
there are several considerations to be made. First one must consider what applica-
tion the model to be validated will be used for. For many research and scientific
applications the validation is used as a tool to evaluate theoretical models with the
help of experimental data. For engineering applications the goal of the validation
is often more focused on the accuracy of the model and whether it can be used to
gain information about a certain application [7].
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Other considerations to be made during assessment is how the data from simulation
and experiments can be compared. Transient simulations of turbulent flow will have
very large fluctuations of the result which is dependent on time. One solution to
this problem is to calculate a mean value for each quantity which is used to describe
the properties of the system. If the mean value is taken over a long enough time
interval the fluctuating parts of the solution can be estimated as zero [5].

2.3.1 Validation Metric

The accuracy of a model can be estimated by a validation metric which compares
the results from simulation and experiments for various input parameters. A metric
can be defined in a number of different ways. There are several considerations that
can be taken when evaluating what metric to use. Some of these are the overall
goal of the validation, availability of experimental data, uncertainties and number
of experimental or simulated results [7]. For this work the goal was to use data
from one experiment and compare with the results from a simulation. Due to the
transient nature of the results and the chaotic flow pattern present within turbulent
flow the results from both experiment and simulation must be comparable in some
form. The validation for this thesis will use a metric that compare estimated mean
values of available quantities from both experiment and simulation.

The estimated error of the simulation can be defined as the difference between the
simulated mean value φ and experimental measurement φe

ε̃ = φ− φe. (2.38)

The mean values are taken for each point of measurement available from the experi-
mental data. The result from the simulation will be interpolated to the measurement
point used in the experiment from the closest available cell points. This means that
the data from the experiment will not be modified for the validation of the simu-
lation. From the estimated error between simulation and experiment a total error
for all available data points can be estimated by taking the norm of the difference.
Both the L2- and infinity norm (2.28) (2.29) will be calculated for each spatial region
where measurements was taken during the experiment, see Figure 4.1.
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Chapter 3

Verification of Numerical Schemes
and Solvers in OpenFOAM

The beginning of this chapter will give a brief overview of the test suite which is
used to execute each test. The focus of the test suite is to run a number of test cases
and report the results to the user. Each case is prepared and ready to be executed
individually, in groups according to type of test or as one test where all cases are
executed. In order to keep the runtime within a reasonable limit the test cases are
limited to a few number of variations with different schemes and mesh resolution.

The first set of tests have been designed to evaluate the discretization of some of the
mathematical operators used by the solvers in OpenFOAM. These cases will evaluate
how well the numerical schemes can discretize some of the differential operators used
when performing CFD simulations.

Due to the difficulty of obtaining exact analytic solutions to the governing equations
some verification cases have been evaluated with the MMS. A few solvers used for
incompressible and compressible flow were evaluated by manufacturing a solution to
the governing equations and calculate a source term which is implemented into the
solver. Since the result of the simulation should correspond to the manufactured
solutions the discretization error and order of accuracy can be evaluated.

3.1 Automatic test harness

The main feature of the software used for the verification and validation tests is to
execute each simulation and report the results. Each test case will be initiated by
a script which starts the pre process, simulation and post-process utilities needed
for each test. Pre processing utilities will be generating the mesh and prepare
initial and boundary conditions for each case. The necessary settings for the actual
simulation is already prepared for each test case. All of the solvers used for the tests
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will be standard solvers and the settings are chosen from recommendations within
the OpenFOAM user guide [6] or available tutorial cases. After the simulation is
performed the utilities available in OpenFOAM will be used for most of the post
processing of the data.

In order for a test to be successful a test criteria must be defined which will check if
the simulation has passed or failed the test. This criteria will check if the simulation
was able to execute and finish all of the specified utilities for each case. The data
obtained from the applications used from the post processing tools in OpenFOAM
will be compared to an expected value, e.g. max discretization error and order of
accuracy evaluation. In order to calculate the order of accuracy a very small script
is used to compare the resulting discretization error from two different simulations.
A special script was also made specifically for interpolation of some of the results
for the validation case of a t-junction. In order to compare the simulation with the
experimental data the difference in velocity must be evaluated at a point specified
by the experimental data.

3.1.1 CMake & CTest

The software which is used to initiate the tests is called CTest. It is an open source
tool mainly used for the execution of fast and simple unit tests which is included
into the system software managing tool CMake. The actual execution of each test
will be performed with simple scripts present within each of the OpenFOAM cases.
Each test will consist of a pre processing step where boundary conditions are set
and the mesh is prepared. The next step is to perform the numerical simulation and
report whether the simulation was successful or failed for some reason. The final
step for each case is to check the calculated values for discretization error or order
of accuracy and compare them to the previous test run.

In order to present the results another tool from CMake is used, the web based
server tool CDash. The results are uploaded to a server and the result from each
test can be evaluated. The result from each test, pass or fail, is reported and the
result is easy to identify. In order to compare the results between two test runs the
important evaluation data is stored after each test has been completed. This data
can then be used for the future simulation to evaluate if the results between two
tests have changed since last time the test was performed.

3.1.2 OpenFOAM file structure

All numerical simulations in OpenFOAM will have a similar file structure. There
are three main directories which are used when running an application; constant,
system and time directories.

The constant directory contains files for all physical properties used in the simulation
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and all information regarding the computational mesh. The physical properties to
be defined will vary depending on the solver that is used to run a simulation, more
information can be found in the user guide [6]. The computational mesh can be
generated from various applications contained within OpenFOAM or from other
external applications.

Files contained in the system directory are used to set parameters used by Open-
FOAM while running the simulation. Apart from various files used for optional func-
tions, mesh generation information and post processing utilities the system directory
contains the required files controlDict, fvSchemes and fvSolutions. The controlDict
file is used to set running parameters such as simulation time, time step and data
output parameters. It is also used to specify what utilities are to be used for data
output and post process. Selection of solvers used to solve the discretized equations
and the criteria for tolerances are defined in fvSolution. Here the algorithm control
for various pressure correction algorithms can also be defined. Finally the numerical
discretization schemes used in the simulation will be set in the fvSchemes file.

The final type of directory in the OpenFOAM structure is the time directories. For
a given time of the simulations the previously defined fields will be written in a
corresponding time directory, the interval between each directory is defined in the
controlDict. The initial conditions for the simulation is defined in a time directory
corresponding to the start time of the simulation. Initial conditions are required
before a simulation can be executed.

3.2 Test cases

There are a vast number of tests that can be set up for evaluation of a numerical
simulation. The design of a test case will depend on what application the software is
used for. The aim of this work was to evaluate and set up a test structure which can
be further built upon by adding test cases or modify existing ones. A few different
types of tests have been designed to test some of the solvers that are typically used for
nuclear applications. The tests will focus on velocity and temperature distribution
for an incompressible liquid solvers where special thermophysical models for high
pressure environments can be used.

3.3 Test of Various Differential Operators

There are a vast variety of smaller tests that can be defined for any numerical cal-
culation OpenFOAM performs while running a simulation. These tests can be very
easy to set up by constructing a custom solver which specifically evaluates the de-
sired operation of the code. In order to test some of the more common discretization
schemes an application which defines a specific field on which a mathematical opera-

CHALMERS, Applied Mechanics, Master’s Thesis 2017:59 19



tion can be performed. The operators that are evaluated for this thesis are gradient,
divergence and laplacian.

To achieve this a field has to be specified on which to apply each operator. Two
important factors to consider are continuity and the derivatives of the field. Since
the goal of the test is to evaluate differential operators it is important to define a field
which is differentiable. A differential field will ensure that each differential operation
will be defined for all points of the whole domain. By defining a dimensionless field
which consists of various exponential and trigonometric terms these criteria will be
fulfilled. A scalar field and a vector field is defined from two simple expressions

f(x, y) = a0 exp
(
−a1

(x− a2)
L

2)
+ b0 sin

(
−b1π

xy

L

2)

~g(x, y, z) =
(
a0 exp

[
−a1

(x− a2)
L

2]
, b0 sin

[
−b1π

xy

L

2]
, 0
) (3.1)

where the values for constants a, bx and L can be found in Table 3.1. The coefficients
for the fields where chosen so that the gradients at some positions are fairly large,
see Figures 3.1a 3.1b. This was performed since many of the discretization schemes
perform some sort of linear interpolation to discretize the solution of a differential
operation. For a very rough mesh this might cause substantial errors in the numerical
calculation.
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(a) Scalar field used to calculate the or-
der of accuracy for numerical schemes in
OpenFOAM.

Vector field used for verification

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

x

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

y

0.2

0.4

0.6

0.8

1

1.2

(b) magnitude of the two dimensional vec-
tor field used for the verification of the
discretization of divergence.

In order to implement this test an application was written where the field defined
in equation (3.1) was defined over in a very simple geometry. The computational
domain is two dimensional with equal sides and one cell size thick. After the field
is defined for the whole domain the mathematical operation is executed for all cells
in the domain. The result is compared to the analytic solution calculated directly
from the equations defined in (3.1). The differential operations that are performed
is the divergence of a vector field ∇·~g, gradient of the scalar field ∇f and laplacian
of the scalar field ∇2f .
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In order to evaluate the order of accuracy of the numerical schemes used to discretize
the solutions the operations are performed for a range of varying mesh sizes starting
from a size of 20 × 20 up to 320 × 320. The discretization error will be evaluated
from the L2-norm (2.28) and the order of accuracy is calculated with the previously
defined equation (2.37).

Table 3.1: Coefficients used for verification of differential operators.

a0 a1 a2 b0 b1 L
Scalar field 1 15 0.7 0.9 1 1
Vector field 1 15 0.7 0.9 0.5 0.7

3.4 Evaluation with Method of Manufactured So-
lution

When designing a test based on the method of manufactured solution some prop-
erties of the applied solution must be taken into consideration. The function that
describes the solution should be analytic and all of the derivatives should be smooth
[7]. Care must also be taken when performing the derivatives present in the gov-
erning equations so that no terms in the equations disappear. By constructing a
solution based on exponential and trigonometric functions all of these considerations
will be fulfilled.

Another important aspect of the method is to make sure all of the physical quantities
can handle restriction from the model that is to be verified. One such example that
need to be considered for solutions designed for OpenFOAM is valid for temperature.
The standard solvers in OpenFOAM uses the unit Kelvin (K) for temperature data,
therefore it is important that the solution strictly larger than zero for all points
within the domain.

The benefit of MMS means that any of the governing equations used in the math-
ematical model of the simulation can be evaluated. The first case to be evaluated
is the incompressible Navier Stokes equations. There are a variety of solvers for
incompressible flow available in OpenFOAM for both steady state and transient
analysis of the flow. Two solvers are selected for evaluation with MMS; simpleFoam
which is a steady state turbulent solver based on the PISO algorithm for pressure
correction [1] and pimpleFoam which is a transient solver for turbulent flow based
on the combined PISO-SIMPLE algorithm.

Another test is performed on a compressible solver where there are no demands
on the solutions to be incompressible, see Section 2.1.4. Since the transfer of heat
within the fluid for liquid flow in high pressure environments is of interest for the
applications at Forsmark a transient solver for heat transfer is selected; buoyant-
PimpleFoam which is based on the pimpleFoam algorithm for buoyant flow [6].
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3.4.1 MMS for Incompressible flow

The solvers for incompressible flows demand that the solution that is used to calcu-
late the sources for the governing equations are incompressible. For an incompress-
ible flow the divergence of the velocity field must be equal to zero

∇ · ~u = 0, (3.2)

see Equation (2.12). The computation will be performed for a simple two-dimensional
domain since the goal of the verification is to evaluate the mathematical model. The
solutions that are used for the governing equations are

u(x, y) = u0 + uxyx sin
(
aπxy

L2

)
v(x, y) = v0 + vxyx sin

(
bπxy

L2

)
,

(3.3)

where the values for the coefficients can be found in Table 3.2. In order for the flow
to be defined as incompressible the coefficients a and b must be equal while uxy and
vxy must be of equal size but with different signs.

In order to evaluate the pressure correction of the solver the system of equations will
be closed by submitting a solution for the pressure. For an incompressible solver it
is possible to choose a reference pressure as the initial condition. For simpleFoam
and pimpleFoam this would normally be set to zero, however for the terms in the
governing equations related to pressure to be non-zero a trigonometric function has
been constructed

p(x, y) = p0 + py cos
(
cπy

L2

)
. (3.4)

The trigonometric term in the pressure equation will also be multiplied by (xy(x0−
x)(y0 − y))m where the values for x0 and y0 are determined by the coordinates for
the two boundaries where x, y 6= 0. This ensures that the gradient normal to the
boundary is zero in addition to a Neumann boundary condition at all boundaries of
the domain if m = 2. The fields for the magnitude of the velocity and the pressure
can be seen in figure 3.2a 3.2b.

By inserting the manufactured solutions (3.3) and (3.4) into the momentum equation
for incompressible flow (2.12) with an added source term

∂~U

∂t
+ (~U · ∇)~U = −∇p+ ν∇2~U + SU , (3.5)

the source term SU for the manufactured solution can be calculated. Note that the
terms for external body forces has been neglected. If we look at each individual
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component of the velocity each source term can be written as

Su = ∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ∂p

∂x
− ν

(
∂2u

∂x2 + ∂2u

∂y2

)

Sv = ∂v

∂t
+ v

∂u

∂x
+ v

∂v

∂y
+ ∂p

∂y
− ν

(
∂2v

∂x2 + ∂2v

∂y2

)
.

(3.6)

Since these expressions are fairly long it might be beneficial to use a symbolic soft-
ware to solve each system of equations. For this thesis the open source software
sageMath has been used.

In order to ensure that all terms are of similar sizes the value of the viscosity ν will
be set to a very high value. Since only the mathematical model is to be evaluated
there are some benefits to be gained by making sure all terms are of equal size [10].
If the physical value of ν is selected the diffusive terms of the manufactured solution
will be very small, a factor of 10−3 smaller than the convective terms. The value of
ν has been set to 1 and can also be seen in table 3.2.

Table 3.2: Value of each coefficient used for manufactured solutions in compressible
solvers

Constant Value
a 0.8
b 0.8
c 0.7
u0 1
uxy 2
v0 0.6
vxy -2
p0 2
py 50
ν 1
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Manufactured solution of U
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Figure 3.2: Manufactured solutions used for the incompressible solvers

3.4.2 MMS for Compressible flow

The setup of MMS for compressible flow will be very similar to the procedure used
for the incompressible solvers. Since heat transfer within the fluid will be present for
the compressible solvers a solution must be manufactured for the mass, momentum
and energy equations. Since OpenFOAM uses temperature as the initial condition
for the thermal conditions of the fluid the solution for the energy equation will be
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based on a temperature field. Manufactured solutions to the governing equations
are constructed with trigonometric terms according to

ρ(x, y) = ρ0 + ρx cos
(
axπx

L

)
+ ρy sin

(
ayπy

L

)
u(x, y) = u0 + ux cos

(
bxπx

L

)
+ uy sin

(
byπy

L

)
+ uxy sin

(
bxyπxy

L2

)

v(x, y) = v0 + vx cos
(
cxπx

L

)
+ vy sin

(
cyπy

L

)
+ vxy sin

(
cxyπxy

L2

)
T (x, y) = T0 + Tx cos

(
dxπx

L

)
+ Ty sin

(
dyπy

L

)
+ Txy sin

(
dxyπxy

L2

)
,

(3.7)

where the value of each constant parameter can be found in Table 3.3. The field for
each manufactured solution can be seen in Figures 3.3, 3.4 and 3.5. As can be seen
in these figures the boundary condition for density and temperature has been set to
a Neumann boundary condition. The same procedure as earlier has also been used
to ensure that the gradient normal to the boundary is zero. The reason for this is
to ensure that the boundary condition for pressure, which is calculated from ρ and
T , could be defined as zeroGradient in the boundary file.

Manufactured solution for Density
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Figure 3.3: Manufactured solution for density used for verification of buoyant
solver.

In order to close the system of equations a relationship for pressure must be im-
plemented. If the thermophysical model based on the ideal gas law is selected the
pressure can be derived from the ideal gas law. It is possible to write a relationship
between the pressure and density according to

ρ = p

RsT
, (3.8)

where Rs is the specific gas constant.
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Manufactured solution for Velocity
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Figure 3.4: Velocity field used for MMS of buoyantPimpleFOAM

A relationship between the temperature and enthalpy must also be established in
order to implement a source term for the energy equation. In order to evaluate the
temperature from the enthalpy OpenFOAM solves the thermodynamic equation

cp = dh

dT
, (3.9)

with the Newton-Raphson method. This means that the temperature for a given
cell can be evaluated from the specific heat capacity and enthalpy in that cell. Due
to this we can simply write the manufactured solution for temperature as enthalpy
with the expression

h = cpT. (3.10)

One must also consider the buoyant pressure term used in the pressure correction
algorithm for buoyant solvers. This pressure term is defined as

prgh = p− ρ~g · ~r, (3.11)

where ~g is the gravitational acceleration vector and ~r is the position vector. By
inserting this into the momentum equation (2.3) one can rearrange the terms for
pressure gradient and external force applied from the gravitational acceleration

−∇p+ ρ~g = −∇prgh − (~g · ~r)∇ρ. (3.12)

If we insert the manufactured solutions (3.7) into the governing equations used in
OpenFOAM and close the system of equations with (3.8), (3.10) and (3.11) the
sources for each solution Sρ, Su, Sv and Sh can be determined just as for the in-
compressible case. Due to the size of the resulting expressions a software with a
symbolic equation solver is recommended.
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Manufactured solution for Temperature
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Figure 3.5: Manufactured solution of temperature used for order of accuracy as-
sessment of numerical schemes.

For the selection of physical parameters linked to the properties of the fluid they will
not be set to real physical values. In order for each source terms to to be of similar
sizes the values used in the thermophysical model for dynamic viscosity µ, Prandtl
number Pr and thermal diffusivity α will be set to unity. All data for physical and
thermophysical constants can be found in table 3.4

Table 3.3: Values for each of the coefficients used for the manufactured solutions of
compressible flow.

Index, i ai bi ci di ρi ui vi Ti
0 - - - - 1 1.5 1 300
x 0.3 0.9 0.7 0.8 2 0.5 0.5 -100
y 1 0.5 0.8 0.5 -2 1.2 -1 200
xy 0.3 0.8 0.8 0.9 3 -1 0.5 -100

Table 3.4: Value of physical constants used for MMS.

Constant Value
Rs 287.10
gy -9.81
cp 1010.1
µ 1
Pr 1
α 1
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3.4.3 Implementation of sources with fvOptions

In order to implement the sources in OpenFOAM the already existing utility fvOp-
tions is used. Within this utility it is possible to define a coded source where the
equations for the sources can be directly implemented. The code will define all con-
stant and look up the spatial coordinates which in turn is used to determine the
value of the source in each cell.

As a final note it is important for the sources to be properly scaled and linearised.
When discretizing each source the spatial parameters for each cell will be included
in the equation [1], leading to multiplication with the volume of each cell. Therefore
each source will be implemented according to

Sφ,i = −S(~r)Vi, (3.13)

where the index i represents the cell index. Also note the negative sign which comes
from the implementation of the source terms in the OpenFOAM solver. Exam-
ples of sources implemented in fvOptions can be found in the source code files of
OpenFOAM [11].

3.5 Order of accuracy for Differential Operators

One of the tests defined in chapter 3.3 was designed to assess some of the deriva-
tive operators in OpenFOAM. Two fields with quite large variations in amplitude
over a two dimensional domain were constructed (3.1). In order to evaluate the
discretization of the differential operators a small application was created. The ap-
plication calculated the field, evaluated the theoretical values in each cell, calculated
a discretized solution and evaluated the discretization error over the whole domain
(2.28). The test was performed for the gradient, divergence and laplacian of the
appropriate field which can be seen in section 3.3. The results for the divergence
of the vector field ~g can be seen in Figure 3.6. The numerical scheme used for the
divergence was Gauss linear which uses Gauss integration with linear interpolation
to discretize the divergence of the field [6]. It is expected that a large variation over
a short spatial distance will cause an error when using linear interpolation. The
order of accuracy for the divergence can be seen in Figure 3.7. We can see that for
all but the first refinement of the mesh the change in discretization error follows the
formal order of accuracy for the numerical scheme which is equal to 2.

The results from the discretization using the gradient scheme Gauss Linear can be
seen in Figure 3.8. The majority of the contribution to the error over the whole
domain defined as the discretization error will be present where the gradient varies
over a short distance. Once again the order of accuracy follows the expected results
as the mesh is refined, see Figure 3.7.

Finally the results from the discretized laplacian of the scalar field f can be seen
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in Figure 3.9. The error for the laplacian is quite large since the values of the field
will have a very large variation in amplitude over a short distance. The numerical
scheme used for the discretization was once again based on linear interpolation. The
order of accuracy results can be seen in Figure 3.7. The accuracy for the laplacian is
somewhat lower than the expected values compared to the results from divergence
and gradient. However the observed order of accuracy is again very close to the
expected values once a few refinements have been performed.

Figure 3.6: Divergence of the vector field ~g.
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Figure 3.7: Observed order of accuracy for the discretization of various differential
operators. The formal order of accuracy for the numerical schemes is equal to 2.
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Figure 3.8: Gradient of the scalar field f defined for the test of discretization
schemes for gradient operator.

Figure 3.9: Discretized solution for the laplacian of field f .

From the results of the discretization error for each differential operator a good
criteria for the pass and fail of a test should be defined for a refinement where
the observed order of accuracy corresponds to the formal order of accuracy. The
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criteria for pass and fail of the test will check the order of accuracy for a refinement
in two steps. If the result is within a certain distance from the formal order of
accuracy the test will pass, this limit has been defined as ±10% of the formal order
of accuracy. Note that each of the simulations have only been evaluated in a 2-
dimensional geometry. An evaluation in three dimensions might be an addition
that could be added to the test harness in the future, it might also be beneficial
to add tests of more mathematical operators. The test can easily be expanded into
3-dimensions by simply adding a number of cells in the z-direction of the mesh and
by supplying a component for the vector field ~g.

3.6 Numerical Simulations with MMS

The MMS has been used to verify the mathematical model for three different solvers
and a few common numerical schemes [6]. Two incompressible solvers where evalu-
ated; simpleFoam and pimpleFoam along with a solver used for the transfer of heat
within the fluid, buoyantPimpleFoam.

3.6.1 MMS and simpleFoam

In order to calculate the discretization error and order of accuracy for simulations
based on the Navier-Stokes equations (2.12) an analytic solution to the governing
equations must be available. The MMS discussed in section 3.4 is used to add a
source term to the equations which will lead to a known solution. The manufactured
solution used in the simulation can be seen in Equation (3.3). Note that the solutions
used to derive the sources had to be that of an incompressible flow. If the flow is
not incompressible the continuity of the mass flux inside the domain would not be
conserved. The difference in mass flux going into the domain would not be equal to
the outgoing flux.

The results for one of the simulations performed for an incompressible flow can be
seen in Figures 3.11 where both the calculated error for velocity and pressure can
be seen for the linear upwind scheme. Observed order of accuracy for mesh sizes
ranging from 10× 10 up to 160× 160 cells was used for some of the more commonly
used schemes. The accuracy is calculated from the discretization error taken for the
whole domain, see Section 2.2.4. The schemes that where varied during the order
of accuracy test was the divergence schemes for velocity. As expected the error is
reduced for each refinement of the mesh, however one must take into consideration
the runtime for each of the results. Due to the increased number of cells both the
time of each iteration and the number of iterations is increased each time the mesh
is refined. The order of accuracy results varies between the velocity components and
the pressure. For the coarse meshes the observed order of accuracy is very close to
the formal order of accuracy for all second order accurate schemes used during the
simulation, the first order accurate upwind scheme seems to reach the formal order
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of accuracy for the very fine meshes. Note that the L2-norm was used to provided
a value for the observed order of accuracy for the velocity and pressure.

The order of accuracy for pressure is somewhat lower than the order of accuracy
for velocity. The order of the change tends to be higher for a larger mesh for all
types of divergence schemes. The discretization error for pressure is mainly present
at two small regions close to the boundary for all types of divergence schemes.
Usually the pressure is defined at the outlet of a domain during a simulation. Some
problems might have been introduced when the boundaries for pressure was all set
to zeroGradient in order to simplify the equations for the velocity.
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(a) Order of accuracy, velocity.

1 2 3 4 5 6 7 8

r

0

0.5

1

1.5

2

2.5
O

b
s
e
rv

e
d
 O

rd
e
r 

o
f 
A

c
c
.

Observed order of accuracy, P

upwind
linear
linearLimited
linearUpwind

(b) Order of accuracy, pressure.

Figure 3.10: Comparison between observed order of accuracy and formal order of
accuracy for various numerical schemes. The formal order of accuracy for linear
schemes are equal to 2, while the accuracy for upwind should be equal to 1.
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(a) Error for magnitude of velocity U.

(b) Error for pressure p.

Figure 3.11: Results for verification of simpleFoam-solver. The error is used to
calculate a discretization error which can be used to calculate order of accuracy.
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3.6.2 MMS and pimpleFOAM

The merged PISO-SIMPLE pressure algorithm will also be evaluated for an incom-
pressible flow. The same solutions to the equations will be used as for the simple-
FOAM case, see 3.4. The pimpleFOAM solver is a transient solver which means
special care must be taken into consideration when choosing a time step. In order
to have a stable simulation the Courant number (Co) should not be higher than 0.5
[6].

The results including the difference between manufactured solution and simulation
are very close to the case for simpleFOAM. However the error distribution inside the
domain has slightly better results for the lower left part of the domain, see Figure
3.13. The discretization error is once again used to calculate the order of accuracy
for both the velocity and pressure. The observed order of accuracy can be viewed in
Figure 3.12. Observed order of accuracy for the values of velocity is once again fairly
close to the expected theoretical values of the second order accurate schemes. The
accuracy for pressure is below the formal order except for the first order accurate
linear upwind scheme. A further refinement of meshes for the second order schemes
could be necessary in order for the accuracy of pressure to be closer to formal values.
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Figure 3.12: Comparison between observed order of accuracy and formal order of
accuracy for the transient solver pimpleFoam. The formal order of accuracy is for
linear schemes is equal to 2, accuracy for upwind scheme is 1.
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(a) Error for magnitude of velocity.

(b) Error for pressure field.

Figure 3.13: Results for verification of pimpleFoam-solver. The error is the differ-
ence between simulated result and manufactured solution
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3.6.3 MMS and buoyantPimpleFoam

The compressible solver which also simulates the transfer of heat inside the system
for buoyant flow was also evaluated with the method of manufactured solution. Since
a compressible flow is to be simulated a variation in density will be manufactured
together with a solution for the velocity and temperature. The solutions that are
implemented in order to calculate the source terms and the relationship between
pressure, temperature and enthalpy can be seen in section 3.4.2. The field for
enthalpy will have the same shape as the result for temperature since the calculation
of the temperature is based on the enthalpy values in each cell.

The fields for density, velocity and temperature obtained from the simulation are
compared to the manufactured solutions. The resulting error for density can be
seen in Figure 3.14. The difference between simulation and manufactured solution
for velocity can be found in Figure 3.15, finally the result for specific enthalpy (or
temperature) can be found in Figure 3.16. Due to some problems with the imple-
mentation only the order of accuracy for velocity and enthalpy will be calculated,
which can be found in Figure 3.17. The order of accuracy for velocity will follow
the formal order of accuracy for the chosen numerical scheme, upwind biased linear
interpolation. Order of accuracy for specific enthalpy is lower than the expected
value of 2 for the limited linear scheme. The discretization error for density seems
to be independent of the mesh refinement.

The main problem with the compressible case seems to be the implementation of the
equation of state. The density is calculated from the pressure and temperature which
seem to give the same error and is not dependent on the mesh size. For future work;
one solution to this problem might be to implement another thermophysical model
and equation of state only based on temperature values. The system of equations
would then be closed with a manufactured solution for pressure.
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Figure 3.14: Error for density.

Figure 3.15: Error for magnitude of velocity field.
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Figure 3.16: Error for temperature.
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Figure 3.17: Observed order of accuracy for the second order numerical schemes
used to calculate velocity and temperature with MMS for compressible NS-
equations.
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Chapter 4

Validation

The case for validation has been designed from an experiment used to benchmark
various CFD simulations in the past. The experiment was performed at Vatten-
fall Research and Development and has later been used as a blind benchmark by
OECD/NEA [12]. The case has been split into two different simulations where the
size of the computational domain has been varied. Due to the amount of computa-
tional time needed to evaluate a case with a large number of cells the meshes used
for validation will be limited to a few hundred thousand cells.

4.1 T-junction

The setup is based on a t-junction that connects two incoming flows and mixes
the fluid into single outlet. The incoming fluid will be liquid water with different
temperatures, one cold inlet and one hot inlet. Due to the difference in temperature
of the incoming fluids thermal mixing will be present after the junction. An overview
of the setup can be seen in Figure 4.1. The figure also shows the distance from the
junction to each point where the temperature is being measured. At each location
from x = 2D up to x = 8D four points where used to measured the temperature at
a distance of 1mm from the wall. The four points are located at the top of the pipe
(0◦) right wall when facing the flow direction (90◦), bottom wall (180◦) and left wall
(270◦). The locations for data acquisition of velocity will also be located at various
points after the fluids have mixed. The velocity profiles for both the horizontal- and
vertical directions will be saved at a distance of 1.6D, 2.6D, 3.6D and 4.6D from
the junction. In order to generate output files for both temperature and velocity
data at the specified locations the OpenFOAM utility for probes will be used. The
probes store the value of selected fields at a specified time interval. All of the data
can then be used during the post process to generate mean values used to calculate
the validation metric.

The computational mesh was generated by cfMesh which is a mesh generating tool
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Figure 4.1: Overview of the t-junction used as a validation case. The figure also
shows the location of measurements for incoming velocity profiles and temperature
measurements.

implemented in OpenFOAM. The geometry surface files was generated with the open
source tool SALOME [13], the geometry files are then imported into OpenFOAM and
used to generate the mesh. For simplicity the mesh was generated with the Cartesian
mesh application available within OpenFOAM. In order to achieve a reasonable
runtime for a validation simulation the size of the meshes to be evaluated are ∼ 200k
and ∼ 400k cells. From the concluding report of the blind benchmark [12] of the
same experiment it was clear that a rather coarse mesh can give results accurate
enough for a validation test case such as this.

4.1.1 Boundary Conditions

The incoming flow for both the hot- and cold inlet is a fully developed turbulent
flow. A fully developed turbulent flow is defined so that the mean velocity profile
will have the same amplitude as you move downstream of the flow [1]. To achieve
this the experiment used a very long channel with no obstacles before the junction.
This process would demand a very large domain if the same procedure is used for
the simulation, which is not suitable due to the very long computational time. In
order to achieve a fully developed turbulent flow a special boundary condition is used
to add a random noise to the velocity which represents the fluctuating part of the
turbulent flow. The velocity profiles from the experiment is interpolated onto the
circular boundary patch by modifying the turbulentInlet boundary condition. The
modified boundary condition will read the velocity data as a function of r from the
case directory and interpolate the data onto any point on the boundary. The only
input needed for the interpolation is the center position of the boundary, velocity
data as a function of radius and fluctuation parameters used to simulate turbulence
within the flow. The experimental velocity profiles for both hot- and cold inlet
can be seen in Figure 4.2. These profiles have been measured perpendicular to the
flow direction for both incoming flows at a distance of −3D2 and −3.1D1 along the
y- and z-axis, see 4.1. The data for all boundary conditions can be found in the
summary of benchmarks performed at the t-junction [12]. The boundary conditions
for temperature can be found in Table 4.1. This table also lists the diameter of each
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pipe and the volumetric flow rates used to calculate the bulk velocity which is used
to scale the velocity profiles.
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(a) Cold inlet.
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Figure 4.2: Velocity profiles used to generate the fully developed turbulent flow at
both inlets.

Table 4.1: Inlet data for validation case.

Inlet Temp. [C◦] Vol. flow rate [l/s] Bulk velocity [m/s] Pipe Diameter [m]
coldInlet 19 9 0.59 0.14
hotInlet 36 6 0.77 0.10

4.1.2 Discretization Schemes

The discretization schemes that are used for each of the terms in the governing
equations can be found in Table 4.2. The chosen schemes were based on the recom-
mendations found in the OpenFOAM guide and tutorial cases for LES simulations
[6], only second order accurate schemes where chosen.

Table 4.2: Numerical schemes used for the simulation of a t-junction.

Term Numerical Scheme
ddtScheme backward

grad linear
div(phi,U) linearUpwind
div(phi,k) limitedLinear
div(phi,h) limitedLinear
div(phi,K) limitedLinear

div((rho*nuEff)*dev2(T(grad(U)))) linear
laplacian linear corrected

interpolation linear
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4.1.3 Turbulence model

In order to resolve both large and small eddies in the turbulent flow a LES turbulence
model is used. The specific model used in the dynamic one-equation eddy-viscosity
model dynamicKEqn [1]. The specific coefficients for the spatial filter function will be
left as the standard inputs. The filter parameters are represented by the deltaModel
which is set by cubeRootVolDelta which is a simple model that uses the cell volume
as filter parameter [11].

4.1.4 Thermophysical model

The thermophysical model that is used is based on temperature dependent proper-
ties of the fluid. Properties related to the transport of the fluid will be determined
from the polynomial-model. This model will determine the values of dynamic vis-
cosity µ and thermal conductivity κ from a polynomial function of the temperature,
see Section 2.1.7. The polynomial function has been calculated from thermo physi-
cal data provided by the ASME steam tables [14]. The thermodynamic model used
for this case is hPolynomial, this is also based on a temperature dependent poly-
nomial. The heat capacity cp which is used to calculate the temperature from the
energy equation (2.11) is defined from (2.19). Finally the equation of state that is
used by the model will also be defined by a polynomial function of temperature,
icoPolynomial. A polynomial function for ρ(T ) is defined just as for the previous
quantities.

4.2 Validation of thermal mixing in t-junction

The results from the simulation of flow velocity will be represented with velocity
profiles taken at a certain distance from the junction. The magnitude of the velocity
will be divided with the bulk velocity Ubulk of the main channel. Each result is
calculated from a mean value gathered from velocity measurements with a frequency
of 1000 Hz. The temperature data is gathered for a few given points close to the wall
defined in Section 4.1. The time between each measurement is taken at the same
interval as for the velocity measurements. The results for temperature are presented
with a dimensionless unit T ∗ defined according to T ∗ = T−Thot

Thot−Tcold
where Thot is the

temperature of the hot inlet and Tcold in the temperature of the cold inlet. After
the flow has been fully developed the simulation was left to run for 25 s in order to
reduce the impact of fluctuating terms.

The velocity results for both horizontal- and vertical direction of the cross section
from the simulation can be seen in figures 4.3 to 4.6. The results are shown for
two different meshes with 200k and 400k cells, this ensured a rather quick runtime
for each validation test. The overall result for the simulation lies fairly close to the
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experimental data, especially for velocity profiles located further downstream from
the junction. A large part of the results lie within the estimated uncertainty of
the experimental values taken from [12]. The major outliers are an overestimated
velocity at the top of the pipe close to the junction, see Figure 4.3b and 4.4b.
Another noteworthy difference is the small dip in velocity close to the center of the
pipe for the horizontal profiles. It seems that a more refined mesh is needed to
capture this effect, however this was also the case for the benchmark results with a
low number of cells presented in [12].

The validation metric used for the test criteria was defined as the estimated error
between simulated values and experimental data at the location for experimental
measurements. The simulated result will be interpolated to the coordinates of the
experimental data and an estimated error for the whole profile will be evaluated with
the L2-norm (2.28). The estimated error will only be calculated at two positions,
the closest to the junction and the one furthest away from the junction. Only two
positions were chosen in order to limit the number of results to be handled, however
the option to include all results should be easy to implement since all data is stored
within the exact same format with the post-process utilities of OpenFOAM. The
criteria for a passed test of velocity parameters can be set to percent error based on
the bulk velocity for the main pipe.
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Figure 4.3: Velocity profiles measured at a distance of x = 1.6D from the junction.
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(a) Time averaged velocity, x=1.6D z=0.
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(b) Time averaged velocity, x=1.6D y=0.

Figure 4.4: Velocity profiles measured at a distance of x = 2.6D from the junction.
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Figure 4.5: Velocity profiles measured at a distance of x = 3.6D from the junction.
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(a) Time averaged velocity, x=4.6D z=0.
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Figure 4.6: Velocity profiles measured at a distance of x = 4.6D from the junction.

The overall shape of the temperature distribution at the end of the simulation can
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be seen in Figure 4.7. We can see that there are fairly large zones where the tem-
perature fluctuates by up to 10K. Results for temperature measurements close to
the wall at various locations can be found in Figures 4.8a-4.8d. The values for
temperature follow the same trend as the experimental data except for the tem-
perature measurements located at the top of the pipe. This might be explained
by the increased velocity which was measured for the top of the pipe close to the
junction. After the fluids have mixed the temperature may vary by quite a large
margin between two positions located close to each other. An increased velocity
should interfere with the temperature results since these fluctuating zones may be
moved slightly, which would change the temperature results that are only gathered
at a few selected points inside the pipe.

The test criteria used for temperature validation will be based on the same principle
as the data for velocity. The metric will be based on the difference between the
simulated results and the experimental data. Not all points had data available from
the experiments so these points will have to be omitted from the results. Once again
a single value for the whole domain is calculated from the norm in order to achieve
a very simple criteria for pass/fail.
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Figure 4.7: Visualization of the temperature distribution when the flow is fully
developed.
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(a) Time averaged T, z=D/2.
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(b) Time averaged T, y=D/2.
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(c) Time averaged T, z=-D/2.

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x/D

T
*

 

 

Exp. Data

Simulation, 400k

(d) Time averaged T, y=-D/2.

Figure 4.8: Mean temperature 1mm from the wall at specified locations after the
t-junction.
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Chapter 5

Conclusions

In order to ensure safe long term operation of a nuclear power plant the degradation
and change of material properties due to thermal transients must be evaluated. The
main process of the power plant is to generate thermal energy which then can be
converted into electrical energy. This may introduce large temperature fluctuations
which can generate thermal stress in various materials. Computational fluid dynam-
ics is one computational tool that can be used to estimate the fluid properties and
transient behavior of the flow, the result can then be used as a basis for thermal
transient evaluations. OpenFOAM is an open source CFD software that can be used
to simulate various properties of a flow.

A test suite for verification and validation of OpenFOAM was developed in order
to test some of the mathematical models and compare simulated results to existing
experimental data. The goal was to design a number of tests which can be used
to evaluate present and future releases of OpenFOAM. Another main future which
was emphasized was the ability to add new test cases or edit existing ones for future
work. Each test will be performed automatically after it has been initialized and
the results are presented to the user after each test has finished.

The verification procedure was designed to evaluate some aspects of the mathemat-
ical models used when performing a numerical calculation. To solve the governing
equations various numerical schemes are used to create discretized equations which
are solved for a specified control volume. In order to evaluate the performance of
each test a discretization error is evaluated over the whole computational domain.
Since it is difficult to obtain exact analytic expressions from the governing equations,
which is needed in order to evaluate the discretization error, the method of manu-
factured solutions is used. An exact solution to the problem is obtained and can be
used to calculate a source term which is implemented in OpenFOAM, the simulated
result should then be consistent with the manufactured solution. The method of
manufactured solution is used to evaluate two incompressible solvers, simpleFoam
and pimpleFoam, and one compressible solver, buoyantPimpleFoam.

One problem when using the discretization error is that a subjective analysis based
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on the numerical values and application of the model must be done. It can instead be
used to calculate the observed order of accuracy for a given simulation by subsequent
refinement of the computational mesh. The observed order of accuracy should be
consistent with the theoretical order of accuracy of the numerical scheme used to
solve the specified problem. Both discretization error and order of accuracy can be
used as a criteria for evaluating the verification tests. The order of accuracy may be
beneficial for verification tests since no further evaluation is needed if the result is
close to the formal order of accuracy of the numerical scheme. However care must
be taken to ensure that the accuracy is evaluated in the asymptotic region where a
refinement of the mesh represents a correct decrease in discretization error.

The validation test is based on an experiment of thermal mixing within a t-junction.
The experiment has been used to benchmark various CFD simulation in the past.
The main goal of the validation test was to perform a larger simulation based on
the LES-turbulence model, but still try to keep the computational time within a
reasonable limit. The validation was performed for two different meshes, the results
indicate that even a small number of cells, 200k, could be used as a suitable test
case. Due to the transient nature of the turbulent flow, the simulated data had to
be gathered until a mean values for velocity and temperature could be compared to
the experimental data. The validation metric used as a test criteria is based on the
same principle as for the verification tests. A discretization error is calculated for
the entire domain, this is then used to evaluate if the model is accurate enough for
a pass or fail.

5.1 Future Work

Future work that could be implemented is mostly related to the verification proce-
dure. When evaluating the order of accuracy the tests could be expanded into three
dimensions, the limitation of two dimensions should not be needed if the simulations
are rather simple and fast to execute. It would also be beneficial to put more work
into the cases where the method of manufactured solution is used, especially for
compressible solvers. It took quite some time to implement the manufactured solu-
tion, this limited the amount of time used to evaluate the results and improve the
implementation. Another question might be the impact on other types of meshes
for the method of manufactured solution cases. What is the result for unstructured
meshes where all cells have different volumes.

Some work may also have to be performed on the entire test suite. Future changes
of OpenFOAM might change how the input files and various settings are defined.
This would require some work in order to ensure each test is able to perform the
simulation.
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