

Challenges and Strategies for Balancing

Plan-Driven and Agile Requirement

Engineering

Master of Science Thesis in Software Engineering

Swathi Gopakumar

The Author grants to Chalmers University of Technology and University of Gothenburg the

non-exclusive right to publish the Work electronically and in a non-commercial purpose

make it accessible on the Internet.

Chalmers University of Technology
University of Gothenburg

Department of Computer Science and Engineering

Gothenburg, Sweden 2016

The Author warrants that he/she is the author to the Work, and warrants that the Work does

not contain text, pictures or other material that violates copyright law. The Author shall, when

transferring the rights of the Work to a third party (for example a publisher or a company),

acknowledge the third party about this agreement. If the Author has signed a copyright

agreement with a third party regarding the Work, the Author warrants hereby that he/she has

obtained any necessary permission from this third party to let Chalmers University of

Technology and University of Gothenburg store the Work electronically and make it accessible

on the Internet.

Challenges and Strategies for Balancing Plan-Driven

and Agile Requirement Engineering

SWATHI GOPAKUMAR

© SWATHI GOPAKUMAR, DECEMBER 2016.
Supervisor: Dr. ERIC KNAUSS
Examiner: Dr. REGINA HEBIG

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Gothenburg
Sweden
Telephone + 46 733595151

 Acknowledgements

Firstly, the author would like to thank Dr. Eric Knauss, the academic supervisor of this

study for his guidance and invaluable feedback throughout the study. The author would

also like to extend special thanks to the company contact, Lars Ljungberg for

collaboration, guidance and support throughout the study. Finally, the author would like to

thank the examiner Regina Hebig for agreeing to be the examiner of the study.

 Swathi Gopakumar, March to October 2016, Gothenburg

I dedicate this work to my loving husband, my adorable son, family and in-
laws, for their endless love, support and encouragement.

 Abstract

The main characteristic of traditional software methodologies is following a series of

sequential steps like requirement specification, design, development and testing and

deployment. Client requirements are documented to the maximum possible extent. This is

followed with visualising the general architecture of the software which is later followed by

coding. Then comes the different testing process and the final deployment. Basically,

there is deep planning and visualization of the project even before building the project,

and then working one’s way through to the planned finished structure. The agile method of

software development is a contrast to the former. The focus here is on iterative and

incremental development, where all the phases of the process are periodically revisited. A

lot of importance is given to adaptability. Agile Methods sprung up as a reaction to

traditional ways of developing software and acknowledge the need for alternative ways to

the old documentation driven, heavyweight software development processes.

Both traditional and agile approaches imply different ways of handling requirements. Each

of them have their specific benefits and challenges. Some of the challenges of traditional

RE are lengthy time consuming documentation, irrelevant requirements leading to

requirement waste, not accommodative of late requirement changes, minimalistic

customer interaction etc. While agile RE challenges are related to insufficient

documentation, lack of budget and schedule estimation, neglect of non-functional

requirements, no support for requirement traceability issues, requirements volatility etc.

With several challenges of traditional/ plan driven requirements and agile/ change driven

requirements mentioned in literature, it would be beneficial if organisations could find a

way to work with requirements by taking the best of both worlds. A good idea is to find a

balance in working with both forms of requirement engineering.

With software intensive industries gradually shifting from traditional software development

process to adopting several agile methods, it is important to explore how this balance can

be attained. To explore this balance, we conducted case study at a premium automotive

company that works with plan driven requirements as well as agile requirements or user

stories. The case company has been successful in gaining the benefits of both

requirement engineering forms by achieving to find balance in working with both traditional

and agile methods. For our case study, we conducted eleven semi-structured interviews

within this automotive company to explore how they worked together with both types of

requirements handling. After extracting the challenges found in the company’s

requirement model, we conducted a focus group discussion in order to validate our

findings. The focus group enabled us to gather insight on strategies that could be applied

to resolve the challenges found to a large extent. The focus group included faculty from

Chalmers and some of the employees from the automotive company.

This study can be replicated in other research settings to obtain ideas to strike balance

between plan driven requirements and agile user stories and dig out other complicated

challenges that could arise when trying to attain balance.

Contents

1 Introduction .. 1

2 Background ... 3

2.1 V Model ... 3

2.1.1 Left Hand side ... 3

2.1.2 Right Hand side .. 4

2.2 Requirements engineering in general .. 5

2.2.1 Requirement Documentation .. 6

2.2.2 Requirement Prioritization ... 6

2.2.3 Requirement Management .. 6

2.2.4 Requirement Communication .. 6

2.2.5 Requirement Tracing... 7

2.2.6 Requirement Validation ... 7

2.3 Agile/ Scrum Model ... 8

2.4 Agile Requirement Engineering/ User stories .. 9

2.5 Requirement Model at the Case Company .. 10

3 Related Work ... 12

4 Research Methodology .. 15

4.1 Research Question .. 15

4.2 Research Foundation .. 15

4.3 Research Methodology .. 17

4.3.1 Qualitative Research Approach .. 17

4.3.2 Case Study ... 17

4.4 Research Setting ... 17

4.5 Research Participants ... 18

4.6 Data Collection .. 18

4.6.1 Interview Question Content ... 18

4.6.2 Conducting the Interview ... 19

4.7 Data Analysis ... 19

4.7.1 Data Familiarization .. 20

4.7.2 Initial Code Generation ... 20

4.7.3 Looking for Themes .. 20

4.7.4 Review Themes .. 20

4.7.5 Define Themes .. 20

4.7.6 Stating Results .. 20

4.7.7 Research Validity .. 20

5 Research Findings ... 23

5.1 Requirement Model ... 23

5.1.1 The Narrow-V model ... 23

5.1.2 Plan Driven RE ... 25

5.1.3 Agile RE/ user stories.. 26

5.2 Challenges in the Requirement Model ... 28

5.2.1 Agile user story writing and refinement ... 28

5.2.2 Requirements and User-Story Traceability ... 29

5.2.3 Requirement Unawareness in Agile development team................................ 29

5.2.4 Regular Requirement Updates .. 30

5.2.5 Challenging the Function Owner ... 30

6 Discussion ... 32

6.1 Requirement Model to Minimise traditional RE and agile RE challenges 32

6.2 Challenges in the New Requirement Model .. 33

6.2.1 Agile user story writing and refinement ... 33

6.2.2 Requirements and User-Story Traceability ... 33

6.2.3 Requirement Unawareness in Agile development team................................ 34

6.2.4 Irregular Requirement Updates ... 34

6.2.5 Challenging the Function Owner ... 34

7 Conclusion and Future Work ... 36

Bibliography .. 37

Appendix – Interview related to plan driven requirements .. 41

Interview Questions ... 42

Appendix – Interview related to agile requirements .. 43

Interview Questions ... 44

1

1 Introduction

Earlier, the automotive industry was purely mechanical and hardware based. Lately

OEM’s have become more software focussed as they have begun to recognise the

opportunities provided by software. The software development is typically embedded into

a V model life cycle [1]. In the V model life cycle, different processes are executed in a

sequential way. Here, every new phase begins only after the completion of the old phase.

The traditional V model way of working offers some advantages and disadvantages. The

V model defines all steps and deliverables, making it an easy to follow model. Thus,

working in a V model seems to feel easy. An advantage of V model is that it gives a good

overview over complex development effort. Thus, it makes it relatively easy to synchronize

development of mechanic, electrical and software components. The major disadvantages

of this model are rigidity and low flexibility. Since the V model works in sequential steps, it

is difficult to go back to requirement analysis once past the requirement phase. If changes

have to be made mid-way, then both requirements and test documentation needs to be

updated. Due to this, defects have to be found at the early stages itself in the V model

[60]. With respect to Requirement Engineering (RE) in the V model, Salim et al. [2]

highlight some of the challenges with this model as extensive documentation that

increases lead time, unnecessary requirements leading to requirement waste, inability to

address late requirement changes, minimum customer interaction etc.

Moraes et al. [3] state that, in recent times, many software organizations are employing

agile methodologies. Unlike the traditional V model, agile methods offer flexibility by

allowing changes in requirements at a later stage of the development cycle. It also offers

dynamicity by satisfying customer needs in less time and even enables continuous

delivery of useful working software [3]. There is close cooperation between business

people and developers when working with this model. Additionally, there is close

interaction between customers, developers and testers as well. However in this

methodology, it is difficult to predict the efforts required in large projects beforehand as

much emphasis is not laid on necessary design and documentation processes [2].

According to Daneva et al. [2], some of the challenges associated with agile RE are

insufficient documentation, lack of budget and schedule estimation, neglect of non-

functional requirements, no support for requirement traceability issues, requirements

volatility etc.

Studies from Inayat et al. [3] emphasize that agile methods have been able to solve

several problems of traditional software development methods because of its flexibility and

emergent nature. However there is not much knowledge available about the solutions that

agile RE have brought to traditional RE problems. Again, little is known about the

possibility of agile RE opening up new challenges while bringing solutions on traditional

RE challenges [3]. Considering the above facts, it can be said that both plan driven RE

and agile RE have their own set of benefits and challenges. This motivates the need for a

new way of working that incorporates the best of both traditional RE and agile RE

methods when working with requirements. For this reason in the case study, we chose to

investigate this topic

The purpose of our study is to explore new methods and processes of working with

requirements which will bring out the benefits of both traditional RE and agile RE practices

while also compensating their challenges. Further, we aimed to understand out how plan

2

driven RE and agile RE can be made to coexist together in large scale software intensive

automotive sector.

For our case study, we chose a reputed automotive company, based in Sweden, as our

research setting because they were working with a requirement model that

accommodates aspects of both traditional RE and agile RE methods. We wanted to

determine how the model was accommodating both requirement engineering forms and

whether it was able to bring in the benefits of both traditional RE and agile RE practices

and reduce their individual challenges.

We expect, our study to address the research gap in academia by overcoming the

challenges of different requirements engineering practices related to plan driven model

like V model and agile software development framework. Specifically, we have addressed

this gap by analysing the requirement model and RE practices in the case company. Also,

our analysis of the case company’s RE practices have identified their current existing

challenges related to RE. We have also come up with possible strategies for overcoming

the mentioned RE challenges.

This remainder of this paper is structured as follows: Chapter 2 presents background on

software development lifecycle models like V model, agile software development

framework, requirement model at the case company and requirements engineering

methods adopted by V model and agile software development framework. Chapter 3

presents related work on challenges of different requirement engineering practices and

challenges in automotive software engineering. Chapter 4 presents research

methodology. In Chapter 5, we present the research findings while in Chapter 6, we

provide discussions. Conclusion and possibilities for future work are stated in Chapter 7.

3

2 Background

In this chapter, we present the background on Software development lifecycle models like

V model and agile software development model, and some of the Requirements

Engineering methods adopted by them. We will also be very briefly describing the

requirement model at the case company in this chapter.

2.1 V Model

Figure 1: V model (Image Courtesy: http://crackmba.com/v-shaped-model)

The V model shown in Figure 1, represents development process in software

development. It is an SDLC model where in processes are sequentially executed. Also

known as the verification and validation model, it is an extension of the waterfall model

where each development phase is associated with a corresponding testing phase. As

mentioned by Andreas et al. [62], other models for planning and realisation of projects for

software development include V Modell and V Modell XT, which provide flexibility and

support agility in software process. The different phases of software V model along with

the relationship between each development phase and its corresponding testing phase is

illustrated below.

2.1.1 Left Hand side

In the following, we discuss the Left Hand side of the V model.

 Requirement analysis: The needs of users are analysed to collect requirements of

the system. After the elicitation process is completed, user requirements document

is generated. Business analysts use the requirement specification document as a

means to communicate what they understand of the system to the users. The

4

specification document is later carefully reviewed by the users. This phase is

usually concerned with determining what the ideal system will do and does not

relate to software design or built.

 System design: Once the requirement specification document is ready, it’s time to

design the system. By studying the user requirements documented, system

engineers understand the business of the intended system. The possibilities of

whether all user requirements can be implemented are discussed here. The user is

informed in case any of the requirements are not possible. Certain negotiations are

reached and the requirement documents are edited. The software specification

document generated in this phase guide the development phase.

Based on the system design, system test plans are developed.

 Architecture design: As the name suggests, architecture specification are

understood and designed here. Of the several technical approaches proposed, the

most feasible one is selected. System design is broken further into modules of

different functionality. The designed architecture should realise the list of modules,

functionality of each module, interface relationships, dependencies, databases,

architecture diagrams etc. Communication and data transfer between internal

modules and with other systems is understood and defined here.

With the information from architecture design, integration tests are documented.

 Module design: The already designed system is broken further into smaller

modules. Also referred to as the low level design, the detailed internal design for all

the system modules are specified here. It is necessary that the design is

compatible with other modules of system architecture and also with external

systems. The low level design document contains functional logic of the module in

detail (pseudocode). The programmer uses this for coding purposes.

Based on the internal module designs, unit tests are designed.

 Implementation Phase: Coding is done in the implementation phase. Developers

convert module design to code here. After the completion of coding, the right hand

side of the V model starts. The test plans that were written earlier are now

executed.

2.1.2 Right Hand side

In the following, we discuss the Right Hand side of the V model.

 Unit testing: In the verification phase of the V model, during module design, several

unit test plans are developed. During the corresponding validation phase, these unit

tests are executed on code which help to remove bugs at the code level. It verifies

whether smallest units like a program module are correctly functioning when in

isolation with rest of the code/ units.

 Integration testing: In the verification phase of the V model, during architectural

design phase, integration test plans are developed. Integration tests verify if all the

5

units that were tested independently can communicate and coexist together.

Customer gets to see the test results.

 System testing: In the verification phase of the V model, during system design

phase, system test plans are developed. System test plan tests the whole system

for functionality, and checks the communication and interdependency of the system

under development with external systems. It also verifies if both functional and non-

functional requirements are met.

 User acceptance testing: In the verification phase of the V model, during

requirements analysis, test plans are developed by business users. It is performed

using real data in a user environment closely resembling the production

environment. Compatibility issues with other systems in user environment can be

found with these tests. The tests verify if the system meets the user's requirements.

2.2 Requirements engineering in general

Software development process is a collection of several phases. Requirement

engineering, one of the phases in this process, plays an important role for every software

product, as Shukla [5] mention. As reported by Pohl [6], the area of requirements

engineering is gaining lot of attention owing to its area of growing importance.

According to Pohl [7], RE is the process of eliciting individual stakeholder requirements to

later develop them into detailed, agreed requirements documented and specified in a way

that can serve as the basis for all other system development activities. Requirements are

attributes or something, which is discovered before building products. It is a condition that

must be met by a system to satisfy a contract, standard, or other formal documents [1]

As stated by Sawyer [8], the goal of requirements engineering is to produce a set of

system requirements which, as far as possible, is complete, relevant, and consistent and

reflects on what actually the customer needs.

In accordance with Inayat et al. [3], in traditional requirements engineering, the elicitation

process includes users getting involved in gathering requirements. During the elicitation

process, users try to understand business needs, stakeholder needs, domain, system

constraints, and the problems the system is supposed to solve. After the completion of

elicitation process, requirement analysis is performed to check for necessity, consistency,

completeness, and feasibility of requirements. The selected necessary requirements is

written as a requirements specification document to communicate with stakeholders and

developers. The next step in the process is requirements validation. Requirement

validation is important for confirming customers’ real needs to avoid errors in requirements

specification document which could result in expensive rework if discovered late during

development. The last phase is the requirement management phase where requirement

changes are dealt with. These changes originate from changes that come from

stakeholder’s understanding of what the system is expected to do during the development

process. Requirement changes are often not welcome as it involves lots of rework, costs

and sometimes customer dissatisfaction.

The major requirement engineering activities include requirement elicitation,

documentation, analysis, prioritisation, tracing, verification, validation and management

6

[11]. In what follows, we elaborate on some of the above traditional requirement

engineering practices namely:

2.2.1 Requirement Documentation

As Paetsch et al. [12] highlight, requirement documentation serves as a way of

communication between stakeholders and developers. It acts as baseline for evaluating

product and processes like design, verification and validation activities, testing and for

change control. Some of the features of a good requirements specification document are

namely:

 Completeness

 Correctness

 Unambiguous

 Understand ability

 Consistence

 Concise

 Feasible

2.2.2 Requirement Prioritization

As put by Paetsch et al. [12], “It is absolutely essential that the most valuable features are

delivered at the earliest especially when the project is running on a tight schedule with

limited resources and high customer expectations”. Though the customer does the

requirement prioritization, both customer and developer can provide inputs for the same.

While customer points out features which provide most benefit to users, developers point

technical risks and costs involved. With further inputs from developers, customer might

adjust some of the priority of features. Requirements can be prioritised using several

prioritisation techniques.

2.2.3 Requirement Management

According to Lauesen [11], despite all the attempts made to specify requirements right the

first time, requirements keeping changing during the software development process.

Therefore, it should be possible to do addition of new requirements, updating of

requirement specification, and assessing the consequences of change in requirements.

As Pandey et al. [13] reports, requirements management is performed continuously both

after development and during maintenance because requirements usually always change.

Considered as the most complex requirements engineering process, it involves keeping

control and track of the following:

 Changes of agreed requirements.

 Relationships between requirements, dependencies between requirement

documents and other documents produced during system and software

engineering process.

2.2.4 Requirement Communication

According to Wnuk [14], efficient communication throughout a project’s lifecycle plays a

key role in development and release of successful software products to the market.

7

Berry [15] explains that the process of requirement communication starts with the

customer and later involves people from different roles throughout the development

project. Initially, requirements elicited are communicated, then changes made to those

requirements are negotiated and communicated between all possibly affected roles like

requirements engineers, developers, and testers. Since requirement change is constant

throughout the project, requirements communication must also continue during the entire

project life cycle.

2.2.5 Requirement Tracing

Requirement tracing refers to following the life of a requirement. Tracing is done to

establish relations with respect to the development artefacts [16, 17]. According to

Lauesen [83], requirement tracing is of four types and happens in two directions:

2.2.5.1 Forward Tracing:

 Tracing from requirements to program to ensure all requirements are dealt with.

 Tracing from demands to requirements to check if all demands are fulfilled by

requirements.

2.2.5.2 Backward Tracing:

 Tracing from requirements to demands to know if requirements serve the purpose.

 Tracing from program to requirements to realise whether all parts of program are

needed.

2.2.6 Requirement Validation

According to Paetsch et al. [12], the purpose of requirements validation is to certify that

requirements are an acceptable description of the system to be implemented. This means

that requirement specification is validated by the customer to ensure that his needs are

met. The customer reads and approves the specification if it meets his needs. The end

result of requirements validation is a list of reported problems with the requirements

document and the actions to correct or cope with the reported problems.

8

2.3 Agile/ Scrum Model

Figure 2: Agile/ Scrum Model (Image Courtesy: https://www.mountaingoatsoftware.com/agile/scrum/images)

As Beck [18] stated, “Agile Methods are a reaction to traditional ways of developing

software and acknowledge the need for an alternative to documentation driven,

heavyweight software development processes”. As Abrahamsson and colleagues [19]

highlight, agile software development are incremental, straightforward, cooperative, and

adaptive. According to Cohen et al. [20], being agile means to deliver fast, and to respond

quickly and frequently to change. Leffingwell [21] identifies the business benefits of

software agility as increase in productivity, team morale, job satisfaction, faster time to

market, and better quality. As Cockburn [22] highlights, most of the agile practices are not

new concepts. Instead, it is the focus and values behind agile Methods which

differentiates them from the more traditional methods.

As explained by Beck [18], the Agile Manifesto reads as follows:

 “Individuals and interaction over process and tools”.

 “Working software over comprehensive documentation”.

 “Customer collaboration over contract negotiation”.

 “Responding to change over following a plan”.

The Agile Manifesto is an important part of the Agile Movement which characterizes the

values of agile methods and how Agile distinguishes itself from traditional methods [18].

Agile Methods favour common values, but differ in the suggested practices. Some of the

followed agile Methods are: Extreme Programming, Scrum, Crystal Methods, Feature

Driven Development, Lean Development, and Dynamic Systems Development

Methodology. Scrum (as shown in Figure 2) and Extreme programming are the most

common agile methods [20]. In what follows, we elaborate on Scrum as the studied

company uses Scrum for software implementation.

9

As described by Schwaber [23], in 1996, scrum as a process accepts that the

development process is unpredictable. Scrum projects are split over several iterations

called sprints. The sprints consist of pre-sprint planning, sprint, post-sprint meetings, team

size, iteration length, support for distributed teams and system criticality. Some of the

practices of Scrum as Leffingwell [21] reports are:

 Sprints are iteration of a fixed duration.

 All work to be developed is characterized as a product backlog, which includes
requirements to be delivered, defect workload, as well as infrastructure and design
activities.

 Sprint backlog is written for a sprint. Work within a sprint is fixed. Once the scope of
a sprint is committed, no changes can be added to the sprint backlog during a
sprint.

 Scrum master mentors and manages the empowered, self-organizing, and self-
accountable teams that are responsible for delivery of successful outcome at each
sprint.

 A daily stand-up meeting is a primary communication method.

2.4 Agile Requirement Engineering/ User stories

As put by Sillitti [26], agile methodologies do not rely on standards of traditional

development requirement processes [24, 25] but have adopted some of the ideas on

requirement elicitation and management from it.

Beedle [45] explains that in agile software development, the customer and the entire

development team is involved in requirement elicitation and management. Teams

engaged with agile development capture high level requirements, just-in-time for feature

development. Agile requirements are brief and written just sufficiently enough, to enable

development and testing process with efficiency. The rationale behind this is to minimise

spending time on activities like documentation that don’t actually form part of the final

product. Usually, the agile teams capture these high level requirements by working

together in a collaborative manner so that the team members understand the

requirements as well as each other. Unlike traditional projects, where Business Analyst

independently gather and write requirements; it is the joint team activity that allows

everyone to understand and contribute to what’s needed.

According to the Agile Manifesto by Beck [27], collaboration between development team

and customer is maintained through involvement of customer in the development process

instead of fixed contracts. Agile practices emphasize on continuous interaction with the

customer to address requirement elicitation, specification, documentation, prioritisation,

changes and delivering most valuable functionalities first.

Maurer [28] states that, in agile software development, complete requirement specification

document is seen as infeasible. Since there is direct interaction between the development

team and the customer in agile software development, number of documents and its

usage to share knowledge is reduced. Also misunderstanding is lessened among team

members because of the missing unnecessary communication layers. An important thing

10

to note by Sillitti [26] is, since, the documentation is reduced to minimum, there is often a

need for clarification of requirements. The presence of onsite customer helps replace the

documentation of requirements in details. In case, a requirement is considered complex,

the customer splits the requirement. Splitting of requirement helps developers to better

understand the functionality. Requirements are collected in customer language and do not

follow any formal language for requirement specification.

As per Succi [26], waste requirements can include both wrong and useless requirements.
AM focus on avoiding wasteful requirements and only delivering value to the customer.
For this, the development team produces only those features what the customer needs
and perceives as useful, thus, eliminating requirement wastage. In order to avoid
requirement wastage, the development team and customer team assign priorities to
individual requirements to identify features of most priority. The highest priority features
are implemented first so that the most important business value is delivered first. Leite [29]
states that prioritisation is repeated over the entire development process to keep priorities
updated. According to Succi [26], prioritization is done in four steps:

 Estimation of time for functionality implementation is determined by the
development team. Requirements requiring high efforts are split into simpler ones
requiring less effort for implementation.

 Business priority is allotted to each functionality by the customer.

 Risk factor is assigned to functionalities by the development team. This is done on
the basis of business priority.

 In the next step, functionalities to implement in the iteration are identified. Both the
customer and the development team is involved in this process.

.
Succi [26] goes on to add, that an important feature of agile methodology is that while time
period is fixed, the features are variable. Also the AM accept and expect changes since
they are aware that requirement variability is a common problem in almost all software
projects. In this case, future changes are not forecasted, as focus is only on features
which are paid by customer, thus, avoiding wastage of time and energy that comes with
developing a general architecture.

As Eberlein et al. [29] say, it is tricky working on non-functional requirements with
customers. Cysneiros [30] has reported numerous problems when eliciting non-functional
requirements from customers. Sillitti [26] highlight that in AM, non-functional requirements
are not explicitly specified. At every iteration, the customer gets to test the product. If
problems related to non-functional qualities are found, the team tries to meet these NFR in
the subsequent iteration.

2.5 Requirement Model at the Case Company

The case study was conducted at a reputed automotive company in Sweden. From the

data gathered from the interviews, we were able to obtain information on the software

development process model, plan driven RE and agile RE practices followed in the

company.

In the department, new hardware platforms are integrated with sensors to get a view of

the environment. The features and functions developed here are integrated into these

11

hardware platforms. The department uses system supplier to develop the sensor platform

and their own software is integrated into that processing hardware so that the component

developed includes one part which takes care of the sensor while the other is a general

purpose microprocessor.

The department follows a requirement model which supports requirements and agile user

stories to coexist together. Very high level requirements for each project came from

outside the department. These very high level requirements are also called attribute

requirements. Inside the department, the Function Owner writes high level requirements in

the System Weaver tool. These high level requirements are broken into parts and

assigned to the person responsible, for the functions that are affected. The assigned

employee further breaks down the requirement into very detailed requirements at the

component level. In the next step, the component requirement specification is used for in

house development or handed over as contractual document to external suppliers.

As soon as the requirements are broken down, the departments test division start to write

test cases. The tests are developed independently of the source code for the actual

software.

Currently, the software implementation works in an agile way, specifically scrum model in

three week sprints. The agile team works with user stories in JIRA.

As Figure 3 illustrates, the requirement model at the case company allows requirements

and agile user stories to coexist together. While requirements are practised and followed

on the left hand side of the requirement model, agile user stories are practised at the

bottom i.e. implementation phase of requirement model. Details on how the model

enables coexistence of requirements and user stories are explained in Chapter 5, Section

5.1

 Reduced Time

Gap

 Figure 3: Requirement Model

Create HW &
SW Solution

Design
Component
 HW, SW

Design
System

 Design
Architecture

Design
Function

 Verify

Component
HW, SW

Verify
System

 Verify

 Architecture

Verify
Function

Agile user stories

12

3 Related Work

OEM’s have begun to focus more on software in recent times as they have started

realising importance of software like better management and shorter time to market,

mention Knauss [1]. As highlighted by Broy [58], increasing size and complexity of

software project results in several challenges in the automotive industry. Braun et al. [59]

states inappropriate requirement engineering as the major challenge in the automotive

domain. According to Amrit [4], many software organisations are now preferring agile

methodologies and management practices. Many automotive companies have started

accepting agile methods due to its flexible nature, mention Moraes et al. [3]. The software

development community is unfamiliar with the role of requirements engineering in agile

methods, highlights Inayat et al [2]. Salim [2] has done a systematic literature review to

identify adopted requirements engineering practices and also understand if agile

requirements engineering can solve traditional requirements engineering issues. The

adoption of agile methods could impact the manner in which RE activities are conducted

and pose newer challenges towards their realisation [2].

Also, software is embedded in a V model process. While taking advantage of these

opportunities, organisations struggle with the formal process imposed on software

development. This resulted in emergence of new ways of working with requirements; they

are partly not supported, partly hindered by old tooling and processes for requirements

engineering.

Firesmith [46] states that there are several drawbacks with the traditional RE process. The

elicited requirements may be ambiguous, incomplete, incorrect, inconsistent and outdated.

Improving the quality of requirements is important because bad quality requirement leads

to increased development costs and results in time delay and stretching the schedule.

Also, the customer can never elicit 100% of what he expects from the system to be

developed beforehand as he is usually not fully aware of the system before development

[46]. Large systems end up with several thousands of requirements which are derived into

several subsystems. Spotting missing requirements is often difficult and their absence is

not found until when the system integration, testing or deployment happens [46].

As stated by Wora [48], during the elicitation process, requirements elicited from

stakeholders could include some unnecessary requirements. There could be serious

consequences if irrelevant requirements are elicited. Detection and elimination of

unnecessary requirements is painfully time taking, which means avoiding requirement

wastage with traditional RE process is crucial.

In the traditional RE process, after the elicitation and analysis process, requirements are

extensively documented into a requirement specification document. This requirement

specification document written is often complex and lengthy. A lot of time and effort is put

into writing lengthy requirement specification document. Also the technical language used

in the document is difficult for non-technical customers to understand [3]. Customers are

involved in limited ways during elicitation and specification phase. The creative

functionalities of the system that are acquired from customers are not accommodated

during intermediate development phase. Less customer involvement is often seen as

reason for problem creation during requirement negotiation and validation in traditional

RE, as Patel [49] mention.

13

In the V model, requirements are tried to get right at the first attempt. After all the

stakeholders agree upon what will be the requirements of the system to be developed, the

requirements are locked. But the customer could try to bring requirement changes at any

time during the development phase [49]. However, introducing requirement changes is

difficult with traditional RE process. Still, requirement changes coming from customer end

need to be addressed at times though it is difficult. Since requirement change is inevitable

in the software development process, requirement management is an important part of

traditional RE. As per Suman [13], requirement management involves tracking changes of

agreed requirements, and relationship between requirements, and dependencies between

requirement documents and other produced documents. Often requirements are stored

and managed either in paper documents or spreadsheets with dissimilar formats and are

managed by various different individual groups. This individual management of scattered

and distributed requirements makes it tough to authorize and assign people to do

operations on requirements. Requirement management is often a problem with traditional

requirement engineering process.

Just like requirements change and evolve throughout software development process, the

stakeholder’s mind fluctuates with regards to priority of the requirements. As Shah [49]

mentions, in the traditional RE process, it is difficult to change the priority of requirements

once the initial priority has been allocated to all the requirements in the specification

document.

As Damian [47] highlights, communication gap between RE team and the customer is a

major disadvantage with the traditional RE process. The RE team and customer hardly

communicate after the initial elicitation and validation process. This gap in communication

results in generation of serious problems as you move towards design, modelling and

implementation [47].

According to Marczak [2], agile RE practices are able to resolve some of the established

challenges brought upon by traditional RE like extensive requirements documentation,

over scoping of requirements, communication gap, requirement validation problems and

less customer involvement. Communication problems that arise with traditional RE

practices can be tackled by agile RE practices like frequent face to face meetings,

collocated teams, onsite customer, alternate customer representations and integrated RE

process. Meanwhile, over scoping requirements in traditional RE can be compensated

through agile practices like gradual detailing and cross-functional teams. While

requirement validation problems can be fixed with requirement prioritisation agile practice,

lengthy requirement documentation issue can be overcome with writing user stories, an

important feature of agile methodologies. Customer involvement which is very rare in

traditional RE practices can be overcome by having onsite customer which is again an

agile RE feature [2].

However it is unclear whether agile RE can solve all traditional RE problems [3]. As

described in [3], it is also possible that agile methodologies have brought up new

problems when bringing solutions to traditional RE problems. Some of the challenges

brought upon by agile RE include minimalistic documentation, customer availability,

budget and time estimation, incorrect requirement prioritisation, neglecting non-functional

requirements, lack of requirement traceability, customer inability and agreement, customer

contractual issues, requirements change and its evaluation [3].

Minimal documentation is one of the basic features of agile RE, as stated by Beck [27]. It

is written as user stories. User stories are a list of features written in product and team

14

backlogs. Most of the knowledge is acquired through knowledge transfer between

customer and agile teams during meetings. This results in accumulation of a lot of tacit

knowledge within agile teams [4]. All this tacit knowledge remains undocumented,

meaning a lot of this knowledge could get lost for future reference.

Customer availability is often assumed for all agile meetings [27]. However lack of time

from customer’s side pushes the need to compensate their availability with proxy

customers. Sometimes customers/ proxy customers have insufficient domain knowledge,

disagree to agree on certain issues and are unable to make correct decisions, all this

resulting in problems within the project, mention Wnuk [50].

As stated by Regnell et al. and Boness et al., in agile RE, user story prioritisation is mostly

performed by clients based on the business value [51] [52]. User stories are prioritised

before the sprint development work begins [53]. According to Farid [54], prioritization

needs to be done correctly because incorrect prioritisation causes loss of time, effort,

money along with lot of rework that needs to be done following this.

 Another issue with agile methods is requirement traceability. Also, known as following the

life of a requirement. Since documentation is kept to minimum in agile RE, it is difficult to

maintain traceability [3]. Also NFRs or quality requirements like usability, performance and

security of the system are sometimes neglected in agile methods, as Bang [55] mention.

Booch [61] describes that modified ways of working with requirements are coming up and

these are obstructed by old development processes and tools of requirements

engineering. This made us realise that every new development and need in the

organisation triggers changes in the organisation and development process, and tool

support. In other words a versatile and adaptable tool is necessary to support new ways of

working in an organisation like a new development process [61]. Further development

process and tools for requirement/ user stories could help to erase the challenges offered

by traditional RE and agile RE by allowing to adopt both traditional and agile RE in the

right balance.

15

4 Research Methodology

In this chapter, we first present the reason for choosing our research question. Next, we

discuss in detail about research methodology. Later, we present the research setting and

research participants. Finally we present the data collection and the data analysis.

4.1 Research Question

Most of the prior work listed in the related work which is relevant to our study focus on the

advantages and short comings of different requirement engineering practices. While some

papers mention agile RE could help to overcome challenges of traditional RE, some

mention they could also bring in some obstacles along the way. There is very limited study

available in areas of how both forms of RE can work together. We think a lot of research

needs to go into this area.

Based on the gap in existing research work and according to the thesis objective at the

case company we formulated the following research questions:

RQ1: How are plan driven RE and agile RE co-existing in the current way of working?

RQ2: What challenges exist when combining both plan driven and agile paradigms in
systems engineering?

The aim of the study is to explore a new way of working which can compensate the

challenges of both traditional RE and agile RE practices. In addition, we aim to identify

strategies to support plan driven RE and agile RE to coexist together.

To answer our research questions, we have prepared an interview guide to gather

necessary data from our case company. The interview guide is listed in the appendix.

4.2 Research Foundation

Crotty’s model [31] was conceptualized by Creswell [32] to formulate three basic

questions that are central to Research Design. They are:

1. What knowledge claims are being made by the researcher?

2. What strategies of enquiry will inform the procedures?

3. What methods of data collection and analysis will be used?

The answers to the above questions provide rationale for choosing a particular research

design.

As Creswell describes [32], researchers begin project with certain assumptions as to what

and how they will learn. The claims can be called as knowledge claims. Four different

thoughts on knowledge claims as described by Creswell [32] are:

 Postpositivism

16

 Constructivism

 Advocacy/ Participatory

 Pragmatism

Postpositivism knowledge claims: The other names for this position are science research,

postpositivism approach, quantitative research, postpositivist approach. This approach

does not recognise the traditional notion of absolute truth of knowledge. Postpositivist

researchers assume knowledge to be conjectural [33]. Established evidence in research is

considered imperfect here.

Constructivism knowledge claims: In this case, knowledge is claimed through alternative

process and assumptions. Here, it is assumed human beings construct meanings as they

engage with the world [31].

Advocacy/ Participatory knowledge claims: Kemmis and Wilkinson [34] have summarised

this research enquiry as focussing on agendas for change, addressing problems in society

and creating political debates to bring in changes.

Pragmatism knowledge claims: As per Cherryholmes [35], researchers are not confined to

committing to any one single system of philosophy here. They have the freedom to

choose methods and procedures that best suit their purpose for research.

Runeson and Höst [36] agree with the general definitions of case study term provided by

Robson [37], Yin [38], and Benbasat et al. [39]. Case study is an empirical methodology

aimed at investigating contemporary phenomena in their context [36.

Mentioned below are some of the other different research methodologies:

 Action Research

 Survey

 Experiment

 Design Science

Action research: Robson [37] describe the purpose of Action research is to influence or

change some aspect of whatever is the focus of the research. As Avison et al. [40] state,

action research is a qualitative research method emphasizing on researchers and

practitioner’s collaboration. Another definition by Rapoport [41] state, action research aims

to contribute both to the practical concerns of people in an immediate problematic

situation and to the goals of social science by joint collaboration within a mutually

acceptable ethical framework. Action research is commonly used as research method for

software process improvement, technology transfer studies and information systems.

Survey: According to definition by Robson [37], survey is a collection of standardized

information from a specific population, or some sample from one, usually, but not

necessarily by means of a questionnaire or interview.

Experiment: Robson [37] and Wohlin [42] define experiment as measuring the effects of

manipulating one variable on another variable and that subjects will be assigned to

treatments by random.

Design Science: Design science is a problem solving process. Understanding a design

problem and its specific solution are acquired through building and application of an

artifact.

17

4.3 Research Methodology

The research methodology used in our case was Qualitative Research approach. Also we

preferred to do a case study. In what follows, we provide the rationale behind opting for

Qualitative Research and conducting a case study.

4.3.1 Qualitative Research Approach

In quantitative approaches, the inquirer uses postpositivist knowledge claims i.e., cause

and effect thinking, measurement and observation, hypotheses, reduction to specific

variables and hypotheses and questions, test theories etc. Inquiries include experiments

and data collection using instruments that yield statistical data. While in qualitative

approach, the inquirer often makes constructivist knowledge claims (i.e., the different

meanings of individual experiences, socially and historically constructed meanings and

developing a theory or pattern.) or advocacy/participatory knowledge claims (i.e., political,

collaborative, or change oriented). The strategies of inquiry used here are narratives,

ethnographies, phenomenologies, case studies etc. Pragmatism allows choosing over

multiple methods, assumptions and worldviews and various data collection, so it supports

mixed method strategies.

Based on our research questions and research purpose (see Section 4.1), we found

Constructivism world view the most apt, as for us, taking the view of participants, their

experiences, is crucial for understanding a particular phenomenon. Therefore, we decided

to follow a qualitative approach.

4.3.2 Case Study

The aim of our study is to observe, study and investigate the software development

process at the case company, to understand how they work together with plan driven RE

and agile RE /user stories. We think our research can offer some new insights to the

Company and others on working with RE and agile user stories. Therefore, case study

method was found most well suited in our research as it is about observing and

investigating a contemporary phenomenon.

We do not plan to affect the case company by making any changes in the studied

company within the scope of this study. We only plan to observe and investigate the

current working process involving plan driven RE and agile RE/ user stories. However, the

results of our study could be used to bring about few changes. Thus, Action Research can

be related to our case study and we would like to see this case study as part of a larger

Action Research in future. Similarly, the results obtained from researching and exploring

strategies to balance plan driven RE and agile RE in our work could be used to do design

science in future.

Defining variables and conducting experiments requires excellent understanding of the

domain. Since, in this study, we are still exploring the domain, it was not possible to run

experiments in order to provide input to our research questions. However, future research

could aim at experimenting with some of our identified strategies.

4.4 Research Setting

18

The research setting for our study is a premium automotive company based in Sweden.

As previously mentioned in Chapter 1, the company works with a requirement model that

accommodates aspects of both traditional and agile requirement engineering methods.

For this reason, it was the perfect company to conduct case study for investigating our

research questions.

4.5 Research Participants

For the case study, we chose 11 participants as the sample size. The participants were

selected by Lars Ljungberg, my contact person, who is also an employee at the company.

Participants were selected based on the following criteria. The first criteria was that the

interviewees should belong to different roles in the software development cycle .i.e.

different phases of the V model. The second criterion was that the chosen interviewees

should be able to accurately answer all the interview questions listed in the interview

guide.

4.6 Data Collection

The data was collected solely through interviews conducted at the case company. For this

study, we included, semi-structured interviews with open-ended questions. According to

Runeson and Höst [36], in a semi-structured interview, the planned interview questions

were not necessarily asked in the order in which they were listed, but should be followed

based on the development of the conversation between the interviewer and the

interviewees. For a fully structured interview, interview questions are prepared beforehand

and are asked in the order of listing [36]. Since we didn’t wish to ask the prepared

interview questions in any particular order, we chose to conduct semi structured interviews

over unstructured and fully structured interviews.

4.6.1 Interview Question Content

The interview questions try to cover all aspects of requirements engineering like elicitation,

documentation, prioritization, updating, communication, validation etc. Questions covering

aspects of agile methodologies like agile RE/ user stories were also included. In addition,

there were questions related to software development lifecycle process and tools as well.

All interviewers were asked almost the same questions. However, for interviewees

involved in working with agile methodologies, the questions were slightly altered. For

example, RE was replaced with user stories, and other small changes were made to the

questions.

 Initially, we had a lot of interview questions. To shorten the interview guide, we decided to

strike off few questions of slightly lower priority. This was to ensure that we finished the

interview in the allotted time slot i.e. one hour. The most significant and relevant questions

were retained while the less important ones were taken off the list.

The interview guide begins with open questions on the interviewee background and

knowledge about the software development process at their division. To address the

research questions, the guide further proceed with questions about the participant’s

understanding of requirements engineering and how it was conducted in their division.

19

Questions that followed next were related to realising what challenges and benefits the

participants faced with current RE practices and tools and if they could offer suggestions

for overcoming the same. The guide also contains questions related to how the division

worked together with requirements and user stories and, benefits and challenges of doing

the same. Later, the guide proceeds with questions about realising participant’s thoughts

on user stories taking over plan driven RE. All our interviewees were asked this question

in the end of the interviews: Is there something you would like to add to what you spoke so

far in the interview? Something you forgot to mention? This last question was included in

case our interviewees forgot to mention something or want to add certain information that

could be critical to our study. The designed interview questions can be found in the

Appendix A and B of the report.

4.6.2 Conducting the Interview

In accordance with Van Teijlingen and Hundley [43], before going ahead with the

interviews, we decided to pilot test the interviews. Before starting off with the interviews at

company, we did mock interviews with people who were well acquainted in this topic. The

purpose of the mock interview was to realise if we had the right questions for the interview

and to check if the interviews could be finished on time. My contact person, supervisor

and I decided it was best to conduct the first interview in a friendly environment before

going ahead with the rest of the interviews. The interviews were arranged by the contact

person at the company. In the first week of May, we performed the first interview with

Peter Gergely in a friendly environment. The interviewee is a design engineer and has

been part of the team doing development for five years. He has recently also taken up the

role of a scrum master for the software development team and has worked extensively

with System Weaver for ten years now. In overall, he has 21 years of experience in

working with the company for system development.

All the rest of the ten interviews were conducted in the month of May and June 2016. The

interviews for the study were performed at the research setting. The interviews were

planned and booked in advance through mails. As suggested by Jacob and Furgerson

[44], scripts were used both during the beginning and closing of the interview. The script

provided notes for introducing the interviewer, sharing important details about the study

like research purpose, providing informed consent, alleviating concerns of anonymity and

confidentiality, obtaining permission for recording the interview, and also for asking the

interviewee about the possibility of interview follow ups in near future.

Since interviews are semi-structured, the designed interview questions were not asked in

the order in which they are listed, but asked based on the development of the

conversation between the interviewer and the interviewees. At the end of every interview,

we summarised the important points and took feedback on the same from the interviewee

to avoid any misunderstandings later.

As Runeson and Host [36] mentioned, all interviews were recorded and transcribed later

for data analysis.

4.7 Data Analysis

20

We used the Thematic Analysis technique [56] to analyse the interview data iteratively. All

the six steps of the Thematic Analysis technique used for data analysis is explained in the

following:

4.7.1 Data Familiarization

After conducting each interview, we transcribed the interview and studied the content of

the interview transcription. Additionally, after every interview, we also revisited and

reviewed previous interview transcriptions to better understand the process in the case

company.

4.7.2 Initial Code Generation

After reviewing every interview transcription, we went through the transcribed data once

again to look for all those parts of the transcription that were related and relevant to our

research questions. The identified related parts were given appropriate labels. In what

follows, are our sub-codes: “Software Lifecycle model”, “Requirement Flow”, “User Story

Flow”, “Supporting tools”, “Requirement unawareness”, “too many User Stories” and

“Requirement-User Story traceability problem”, ”Requirement Updating issue” and

“Changing Requirements”.

4.7.3 Looking for Themes

We went through all the initial codes and identified common themes among them. In what

follows are our common themes: “Narrow-V Model”, “Software Process for plan driven

RE”, “Supporting tool for plan driven RE”, “Software Process for agile RE”, and

“Challenges in Narrow-V model”.

4.7.4 Review Themes

In this step, we went through all the earlier identified themes to ascertain if the themes

needed modification or if there was a need to include new themes. We grouped some

themes into more abstract themes. For example, “Narrow-V model”, “Software Process for

plan driven RE”, “Supporting tool for plan driven RE”, “Software Process for agile RE”

were grouped into “Requirement model”.

4.7.5 Define Themes

At this step, we tried to determine relation between the identified themes and our research

questions. Based on our research questions, we placed the themes into two categories:

“A Requirement model for requirements”, and “Challenges existing in the Requirement

model”.

4.7.6 Stating Results

We present results in Chapter 5.

4.7.7 Research Validity

21

Shenton [57] describes four trustworthiness criteria to qualitative researchers namely

credibility, dependability, transferability and confirmability; for performing quality academic

research. To ensure validity aspects of our research, we used all of these four

trustworthiness factors.

4.7.7.1 Research Credibility

We followed Shenton’s guidelines to increase the credibility of our research. In what

follows, we describe these strategies:

 We visited the company several times prior to interviews to get acquainted with

some of the employees and also receive relevant documents briefing about the

department, products and development process.

 With the help of our contact person at the company, we ensured that our

interviewee subjects belonged to different roles in the software development cycle.

We also enquired if the selected interviewees had good knowledge about the

requirement engineering practices of the company.

 At the beginning of every interview, all interview subjects were informed that their

voice would be recorded and the data obtained from them would be used

anonymously. All the subjects were comfortable with recording the data and using it

for the case study as the data would be anonymously used.

 We arranged for several meetings with the experts in this area for making

improvements in the interview guide and also took suggestions on our approach of

analyzing the collected data.

4.7.7.2 Research Transferability

Since the findings of a qualitative project are specific to a small number of particular

environments and individuals, it is impossible to demonstrate that the findings and

conclusions are applicable to other situations and populations [57]. Even if each case is

unique, it is also an example within a broader group and, as a result, the prospect of

transferability should not be immediately rejected [57]. So, if practitioners believe their

situations to be similar to that described in the study, they may relate the findings to their

own positions [57]. We have tried our best to provide elaborate description of the

phenomenon under investigation as we believe this will allow future researchers to relate

to our work and be able to use it in their research.

4.7.7.3 Research Dependability

To address research dependability, we have presented the processes within our case

study in detail, which can be used by other researchers in future for repeating the work.

22

Also, we have extensively covered our research design steps, and data gathering which

might enable the reader in evaluating to what extent correct research practices were

followed.

4.7.7.4 Research Confirmability

Shenton [57] says that objectivity in science is associated with the use of instruments that

are not dependent on human skill and perception. However, it is difficult to ensure real

objectivity, as even the tests and questionnaires are designed by humans, therefore, the

intrusion of the researcher’s biases is inevitable [57]. But we believe, our detailed research

methodological description contributes to the research confirmability.

23

5 Research Findings

In this chapter, we present our findings for the two research questions mentioned in

Section 4.1 of the report. Section 5.1 presents a new kind of software development

process and also tools that allows plan driven and agile requirement engineering process

to co-exist together. Section 5.2 presents challenges and discrepancies that exist when

working together with plan driven RE and agile RE.

5.1 Requirement Model

In this section, we present our findings for the first research question:

RQ1: How are plan driven RE and agile RE co-existing in the current way of

working?

5.1.1 The Narrow-V model

The company follows the Narrow-V model. The Narrow-V model consists of the following

phases on the left hand side: Design Function, Design Architecture, Design System, and

Design Component. At the bottom of the model, software solution is developed. For each

of these phases on the left hand side, there is a corresponding verification phase on the

right hand side of the Narrow-V model as shown in Figure 4.

The general development processes within the company states the kind of deliveries that

are expected at the end of each phase.

Create HW &
SW Solution

Design
Component
 HW, SW

Design
System

 Design
Architecture

Design
Function

 Verify

Component
HW, SW

Verify
System

 Verify

Architecture

Verify
Function

Iterative
Process

Agile user stories

 Figure 4: Narrow-V model

24

The Narrow-V model is quite different from the traditional V model. In the traditional V

model, the traversal of information and data is one directional. Information flow starts from

the top left hand side of the V model and flows all the way to the top right hand side of the

V model. While, as Figure 4 illustrates, the Narrow-V model works with iterations.

Traversal through this Narrow-V model happens not once but in several iterations. For

example, in the first iteration, guess work on the possible properties or features of the

product, the system solution and components are made. By the end of the first iteration,

guesses are made. Then a second iteration is done. In the second iteration, the product

properties, features, system solution and components solution become clearer. Then in

the third stage iteration, there is more clarity in the product features that are going to be

put in production along with the system solution for production and also on the

requirements and solutions on the detailed components.

There are different waves of maturity in the information flow in this Narrow-V model. As an

interviewee stated:

“The model is sort of abstraction to say that first you think about properties, then

you think about what should the feature look like, how should I make this structure

to get system design to realise this, then how should I create components to realise

the system that I have specified and that goes down in the V model and the same

pops up back again so that you test them on the same level.”

The Figure 5 illustrated below shows how the Narrow-V model accommodates both plan

driven RE and agile RE., and allows them to coexist together, which will be discussed in

detail in the ensuing sections. As it can be made out from Figure 4, on the left hand side,

plan driven RE is followed. At the bottom of this model, i.e. implementation phase, agile

software development process specifically scrum is practised meaning agile RE/ user

stories are used in this phase here.

5.1.1.1 System Weaver

The Narrow-V model is supported by the System Weaver tool. The company has put in a

lot of energy into using System Weaver tool. It is also referred to as information database

or information platform. Information is put into it so that the necessary documents required

by the process are generated. The documents are created by reusing as much of the

detailed information as possible or by just adding new information where it is found that

the old information is obsolete. There is a lot of reuse involved. As one of the interviewee

subjects stated:

“We try to do it a way that we create a new structure for each generation we

develop and within that generation we reuse the information leaves sort to say from

the old generation. So they are same items or objects which are also linked into this

new work. For each generation we have had so far, we always end up with little bit

more information we had from the previous generation.”

So far, the company has made five generations of systems. The first one was put in

production in 2006, while the latest was put in 2015. This means that within ten years,

they have put five generations in the market. As an automotive department developing

systems, the company has been doing this with three times the frequency when compared

to other automotive companies.

25

5.1.2 Plan Driven RE

As it can be made out from Figure 5, on the left hand side, in the first phase, plan driven

RE is followed with slight differences with respect to traditional RE practices. The Function

Owner writes the high level requirements in the System Weaver tool. Information

processes and requirements associated with the previous generation of the products are

available in System Weaver. For instance, in an earlier version, initial features and

requirements related to autonomous parking included automatic parallel parking only. In a

later version, features and requirements related to perpendicular parking were added to

the already existing features. Thus, in the later versions, it sufficed to add the

requirements for the new features, as the base requirements were already in place. As

one of the Function Owner’s stated:

”I would say for the next projects, we use maybe 99.5 percent of the old

requirements. The requirements are still applicable. You just need to do some

additional work on them. System Weaver has all the old information. That’s how the

tool helps with requirement writing. Yeah, so you spend very less time on

documentation.”

However, the Function Owner continuously reviews the already existing requirements in

order to ensure their clarity and relevance. Sometimes, the existing requirements need to

be updated as the old requirements may not be reusable. Nevertheless, in most cases,

the existing requirements are valid and relevant, and can be reused.

After the Function Owner writes high level requirements for the function, these

requirements move to the next level in the Narrow-V model, which corresponds to the

Function Realization level as illustrated in Figure 5. The Function Realization determines

what kind of sensor system needs to be used, and chooses the most appropriate sensor

as per the vehicle’s requirements stated in the requirement specification. Sometimes, the

Function Realization works with the same requirements that come from the level above,

while at other times, Function Realization may break down the requirements into more

granular ones. While the Function Owner has an abstracted view of how the function

should act, the Function Realization takes into account the vehicle architecture, the

platform, how the different functionalities are distributed and then puts requirements on

the different subsystems of the vehicle. Then at the subsystem level, requirements are

further broken down. The different subsystems have one or several nodes comprising of

hardware components with corresponding software components. Requirements are then

distributed from the subsystem level to the nodes. Each node can have hardware

requirements and software requirements.

As previously mentioned in Section 5.1.1, the company follows the Narrow-V model which

is an iterative version of the traditional V model. For every iteration, at each level,

feedback from the level below with respect to requirements is taken into account. This

also applies to the requirements defined at each level as well.

The Function Realization reviews the function requirement specification document, and

provides feedback to the Function Owner in case some requirements are difficult to

understand, forgotten, irrelevant or not feasible. The Function Owner receives this sort of

input not only from Function Realization, but also from other levels below the Function

Realization in the Narrow-V model, and incorporates necessary changes to the high level

requirements. It can be said that requirements are created as you move along the Narrow-

V model. Similar process is followed with requirement formulation and requirement

refining at each phase of Narrow-V model. In this way, the Narrow-V model allows

26

requirements to be more flexible. Requirements are open to change and evolve in this

iterative Narrow-V model. As one of the Function Owner’s stated:

“Most of the prediction of the requirements you do in the beginning is always right.

However as you go down the Narrow-V model, you realise it is not feasible to attain

as per that requirement.”

Since there are inputs and suggestions on requirements going back and forth,

communication remains high between the various phases of the Narrow-V model.

Communication happens both formally through tools used for working with requirements,

and also through informal means like discussions, meetings and emails. After the initial

informal communication, updates are made to the requirements in System Weaver.

5.1.3 Agile RE/ user stories

As can be seen in Figure 5, at the bottom of the Narrow-V model, i.e., in the

implementation phase, agile software development process, specifically scrum is

practised implying that agile RE/ user stories are used. The Product Owner reads the

requirement specification document in the System Weaver tool, which is written by the

Function Owner, and writes corresponding user stories in the JIRA Tool. The JIRA tool is

used by the agile team for writing user stories. All the details of user stories can be found

in this tool. Once the stories are written in Jira, the Product Owner always discusses them

with the team. If the Product Owner does not approve of the requirements found in

System Weaver, he discusses with the Function Owner and gets the requirements

changed.

Create HW & SW
Solution

Design
Component
 HW, SW

Design
System

Design
Architecture

Design
Function

 Verify

Component
HW, SW

 Verify
System

 Verify
Architecture

Verify
Function

Iterative
Process

Agile RE
team

Function
Owner

User
Stories

Stakeholder

 Figure 5: Requirements and user story coexistence

27

User stories originate not just from requirements but also from other sources. For

instance, when agile team members discover aspects that need to be fixed, they write

user stories into the product backlog in Jira. Product Owner also writes user stories based

on tasks that he feels needs to be done. Also, the stakeholders (the Function Owner,

integration team, Project leader, management team, members from other agile teams

etc.,) approach the Product Owner or the team in order to formulate user stories. The

Product Owner is responsible for managing the product backlog, and also for prioritising

user stories. Usually, he takes input from those who have written stories, and also from

the team, as the team usually has a good idea about what they should be doing next.

Figure 5 illustrates the origin of user stories.

Basically, anybody can put user stories in the backlog. But, the stories need to be marked

as a flag, and put at the bottom of the backlog. When the Product Owner sees the flag, he

identifies it as a new user story, which is then inspected and prioritized. If any of the

stakeholders, outside the team, wants the agile team to do something, they can write a

user story, put it in the backlog, but cannot prioritise for the team. The stakeholders are

asked to come to the weekly refinement meetings where they discuss about the user story

to make sure it is well understood. As mentioned previously, whenever a story is added, a

flag is added to it. After the team says they have understood the story, the flag is

removed. In Jira, there is a flag for every story that is unclear. The user story is then

refined and rewritten together. But the prioritisation of the user story happens afterwards.

The team estimates the size of the user story based on the discussions that are had in the

refinement meetings. The agile team does handshake with the external stake holders after

they mutually agree on the scope in the refinement meetings. Handshakes are always

done so that the Product Owner can go ahead and prioritise. For the user story to come

into the sprint, the Product Owner also needs to do handshake with the team. The Product

Owner can neither estimate the size of the task, nor can he decide what should go into the

three week sprint. His main role is sorting and prioritising user stories. The task size is

always estimated by the team.

Once the scope of the sprint is decided, it is locked. However, at the refinement meetings,

though unusual, requests for changes in user stories in a sprint come up. If such a request

pops up, it is always discussed with the team. The team decides if they can accommodate

these changes into the current sprint. However, making changes to user stories in the

middle of the sprint are not encouraged. Unless urgent, the scope of sprint once decided

is locked.

In the sprints, the agile teams develop agile RE/ user stories. Product Backlog as well as

user stories for the sprint can be found in the Jira tool. Even with all the user stories

present in Jira, the tool is not used when working with user stories in the sprint. Jira is

used only to look at user stories and other details in it. During the sprint, a scrum board is

used. The scrum board is initially set up in the beginning of the sprint. The team doesn’t

spend as much time in Jira during the sprint. Once the user stories are developed, the

team writes unit tests to verify the code and to ensure that the user stories are met.

At the end of sprint, there are sprint review meetings, where the team informs the stake

holders about who wrote the user stories, how they have managed the sprint, and what

they have completed. At the sprint review meetings, the product that is delivered is talked

about. The current progress of the product and what has been done so far is discussed.

Then there are also retrospective meetings held at the end of the sprint which are

attended only by the Product Owner, scrum master and team. Here the team talks about

28

processes, how the work has been done, about tensions in the group, if there has been a

shortage of resources etc.

The Agile teams rely a lot on informal communication. Everyone knows where everybody

sits. So, they just walk over and talk to the concerned person as everyone knows who

wrote what user story and ask specific questions.

5.2 Challenges in the Requirement Model

In this section, we present our results for the second research question:

RQ2: What challenges exist when combining both plan driven and agile

requirement engineering in systems engineering?

5.2.1 Agile user story writing and refinement

Since the department has adopted Narrow-V model with agile software development for

software implementation, they work with both plan driven requirements, and agile software

development. The agile software development teams in the organisation receive user

stories from outside the agile teams as well. As mentioned previously, anybody can write

user stories into the backlog. New incoming user stories are put at the bottom of the

backlog and marked with a flag. New user stories are easily identified by the Product

Owner because of the flag. All the stakeholders, outside of the agile team, can write user

stories, into the bottom of the backlog. However they cannot prioritise user stories for the

team. The team themselves do the prioritisation. The stakeholders Sare invited to the

weekly refinement meetings where the user stories are discussed to make sure it is well

understood. After the user stories become clearer and well understood during these

refinement meetings, they are unflagged. Once a user story is unflagged, it is refined by

the stakeholders and agile teams together. The user stories are then prioritised by the

Product Owner.

Some of our interviewee subjects complained on how they are usually pressed for time

making it difficult for them to attend these meetings. From the interviewee data, we gather

that though a standard process is followed in the organisation for user stories after it

arrives into the backlog, there are no proper channels for screening user stories before it

hits the backlog as anybody is allowed to write user stories. This resulted in several

unimportant or wasteful user stories creeping into the backlog. Discussing such irrelevant

user stories during refinement meetings takes up a lot of unnecessary time.

Thus, measures should be incorporated to avoid such user stories from coming into the

backlog. Proper channels should be maintained for writing user stories. In addition to

maintaining proper channels, it is recommended to include representation from the

architecture and system design teams in the refinement meetings. This is crucial as some

of the newly formulated user stories can impose new structure/requirements on the

architecture and the system. Therefore, it is necessary to understand the impact and the

implications of the formulated user stories from a system and architecture point of view.

29

5.2.2 Requirements and User-Story Traceability

As mentioned previously, plan driven requirements are formulated by the Function Owner

in System Weaver tool. The Product Owner writes user stories based on these plan driven

requirements in the Jira tool. However, no traceability is maintained between requirements

and agile user stories. Apart from the Product Owner, nobody is aware of which user

stories originate from which requirement.

Due to the lack of traceability, there is lack of transparency in relation to the origin of user

stories, which can affect the interworking between the agile team and the plan driven RE

team. Traceability helps verify that the Product Owner has covered all the requirements

defined by the Function Owner. Also, there is a possibility that user stories can result in

new requirements that have not been covered by the Function Owner. Traceability covers

this possibility.

We asked the interview subjects, from agile team, why the traceability was not maintained.

All of them believed that documentation is not a feature of agile process, and instead of

spending time on documentation, preferred to spend time for actual implementation. As an

interviewee stated:

“I don’t think traceability is not required or something like that. It’s just that my focus

hasn’t been on documenting the function. I just focus on doing implementation and

developing the function.”

The interviewee subjects also mentioned that it is unclear as to whether it was the Product

Owner’s or the Function Owner’s responsibility to document this traceability. The interview

subjects, from the agile team suggested that Function Owner could probably take care of

the documentation aspect of requirement and user story traceability, as documentation is

a key feature of plan driven requirement engineering.

5.2.3 Requirement Unawareness in Agile development team

From the agile team, only the Product Owner has knowledge about the plan driven

requirements. The rest of the agile team is unaware about it. The team has access to

these requirements in system weaver. However they don’t look into these requirements as

they believe there is no need to since they work directly only with agile user stories and

not requirements.

The department has recently started integrating testers with the agile development team.

Earlier the testing team was considered as a separate entity. But in order to have the

product ready and verified by the delivery date, it was decided to try out introducing

testers into the agile development team. The testers look at requirements, check if the

requirements are testable, and then develop tests in relation to the requirements. The

tests might check implementations that have been done in several user stories.

Some of the interviewee subjects were of the opinion that this trial process of fusion of

developers and testers in a team will work better if the developers are aware of

requirements to a certain extent.

For the testers and agile development team members to work in a team, it is important for

the agile developers to remain aware of the requirements. If the agile development team

members continue to stay uninterested in requirements, it may become difficult to attain a

smooth working collaboration with testers, and this trial process of merging testers and

developers into a team might not work as well as expected.

30

5.2.4 Regular Requirement Updates

As one moves along the left hand side of the iterative Narrow-V model, at each phase,

requirements get broken down into more granular ones. As soon as the requirements are

broken down, the corresponding test departments in the right hand side of Narrow-V

model write test cases for these requirements. Later, after the product is implemented, the

testers validate the product against these test cases.

Some of the interviewees from System testing stated that they do receive all the

requirements from System Design, but then they don’t get any information on whether the

requirements were implemented or not. So, it is naturally assumed that for the product that

comes in for testing, all requirements were implemented. However, during product testing,

they discover that either many of the requirements haven’t been implemented or the

requirements don’t match the implementation. As an interviewee from System Testing

stated:

“If I have a requirement saying this thing should happen, when I test it, I find out

that what is supposed to happen doesn’t happen. So the requirement is not

validated. And then I find out the requirement wasn’t updated. So actually the

implementation was correct but the requirement isn’t matching the implementation.

Then they go back and change the requirement to match the implementation. So,

the major issue we have is that the requirement is not updated.”

Confusions arise during testing because system testers do not receive updated

requirements. The initial requirements were written way before product implementation.

For the actual implementation, agile software development process is followed where the

team works with user stories. The agile user stories and plan driven requirements

traceability is not maintained. Therefore, it is difficult to verify if user stories have covered

all requirements. Also, due to the lack of traceability, it is tough to trace those

requirements that were altered to write user stories. Furthermore, for the new user stories

which arise during implementation, the corresponding requirements have not been written.

All these issues arise due to the absence of traceability. And since traceability is lacking,

requirement updating does not happen.

The interviewees felt that they should receive requirements that are actually implemented.

They also feel that they should get different versions of the requirements so that they

know when they can expect the requirements to be implemented and not waste time

performing tests. Because as of now when they test a requirement and find that it has not

been implemented, a JIRA issue to report an error is raised that is assigned to the

implementation team. Later, the system testers receive information that the requirement

isn’t implemented and the requirement needs to be updated. So a lot of time is wasted.

The interviewees believe that instead of changing the requirements to match the

implementation in the end, if the agile implementation team could communicate updated

requirements to the System Design team earlier, the System testers will have to neither

face confusion nor have to waste time while validating the product against requirements. +

5.2.5 Challenging the Function Owner

As it has been stated earlier, the company follows the Narrow-V model, an iterative

version of the traditional V model. This iterative model supports a well organised and

structured software process while also providing flexibility and support for requirement

changes.

31

The Function Owners are met with requests for requirement changes from other

corresponding levels below in the left hand side of Narrow-V model. Based on the

feedback, necessary requirement changes are incorporated by the Function Owner.

However, some of the interviewees who work as Function Owner are of the opinion that

though it is a good practice that many people could read the plan driven requirements and

provide feedback, it could also be a disadvantage for the same reason. As stated by an

interviewee who is a Function Owner:

”The more people look into requirements, the more they read them, the more

iterations it will become. I would say it is a good thing that many people read the

requirements. But then it also means there is going to be more opinions, comments

and also more work. I think that is a disadvantage.”

As requirements are written on a very high level, it is easy to read and compare by just

looking at the requirement. Since it is easy for people to understand the requirement, it is

also easy for people to have an opinion on requirements leading to many requests for

changing requirements. This can be challenging to the Function Owner.

32

6 Discussion

In this chapter, we discuss the findings of our study. First, we will discuss the findings of

the case study by relating them to the presented related literature work in Chapter 3.

Specifically, on how individual challenges of traditional RE and agile RE are reduced by

working with the presented requirement model (Figure 5). Later, we will discuss on the

possible strategies to compensate the challenges in this requirement model (See Chapter

5, Section 5.2 for challenges).

6.1 Requirement Model to Minimise traditional RE and agile RE

challenges

The related work reports several drawbacks of traditional RE such as extensive

documentation, elicited requirements to be found as incomplete, inconsistent, and

incorrect; issues with requirement re prioritisation, not involving customer feedback, rigid

towards requirement changes etc. It also reports challenges brought upon by agile RE

which include minimalistic documentation, customer unavailability, lack of proper budget

and time estimation, incorrect requirement prioritisation, neglecting non-functional

requirements, lack of requirement traceability, customer inability and agreement etc.

However our results report that some of the major challenges of both requirement

engineering forms are over come in this requirement model along with the help of

supporting tools like System Weaver and Jira.

Coming to the high level requirements, they are written by the Function Owner in the

System Weaver tool. System Weaver contains all the base requirements associated with

the previous generation or version of the products. Therefore requirements needed to be

added only for the new features. Most of the times, existing requirements are valid and

relevant, and can be reused. However, sometimes the old existing requirements may not

be reusable and needs to be updated. However, in most cases, the existing requirements

are valid. Since 99.5% of requirements are mostly reused, documentation work is very

less. The Function Owner only documents the requirements and does not do prioritisation

of requirements. Requirements are later broken down into user stories by Product Owner

and later prioritised.

The company follows the Narrow-V model which as mentioned previously is an iterative

version of the traditional V model. In this requirement model, for every iteration, at each

level, feedback from the level below with respect to plan driven requirements is taken into

account. Requirement feedback usually comes in if the requirement is difficult to

understand, irrelevant, missed or if not feasible. This also applies to the requirements

defined at each level as well. The Function Owner receives this sort of input from other

levels below in the Narrow-V model, and makes necessary changes to the high level plan

driven requirements. Due to the iterative nature of the requirement model, it supports

customer involvement, getting feedback on requirements and is open to requirement

changes. Because of this, flow of feedback, there is active communication between the

various phases of the Narrow-V model.

33

Incorrect user story prioritisation which is usually a major problem with agile RE, is

avoided in this case. This is because, the agile team hold refinement meetings along with

stakeholders to discuss and prioritise user stories every week. With such meetings

happening every week, there is hardly much scope for incorrect prioritisation. The weekly

meetings also ensure that all stakeholders who have written user stories are present,

which solves the customer unavailability problem in agile RE. Also, with a requirement

model supporting plan driven RE and agile RE to coexist together, certain drawbacks of

agile RE are negated. For example, in agile teams, work is done in sprints. There is only

short term planning involved in agile style of working. No long term estimates are made for

budget, time, features or work. But when working in this requirement model, initial long

term planning and estimation which is led by the Function Owner is done first, before

moving to agile software implementation where short term planning for the sprints are

made.

Regarding traceability, all the agile user stories are documented and traceable in the JIRA

tool. However, documentation of traceability of user stories from requirements is not

covered. We will discuss this in detail in the subsequent following Section 6.2.

6.2 Challenges in the New Requirement Model

A focus group discussion was conducted in the company which was attended by faculty,

PhD student, interviewees and employees at the case company. The aim of conducting

the focus group was to validate the challenges we found in our research and get collective

opinions from the interviewees and employees on the possible strategies to overcome

these challenges. The case company has now very recently begun practising these

strategies to work against the challenges.

In this section, we throw light on the insights for handling RE challenges in the

requirement model. The summary of requirement model challenges and solutions can be

found in Table 1.

6.2.1 Agile user story writing and refinement

All can write user stories into the backlog. While this is good in terms of giving freedom in

writing user stories, it could result in too many user stories accumulating in the backlog

making it a hard task to keep an overview on them. Perhaps, there should be some kind of

proper channels for user story writing. This can be done by giving authority to limited

concerned people to write user stories.

6.2.2 Requirements and User-Story Traceability

User stories derive from two sources, from high level requirements written by Function

Owner and from user stories from external sources. Tracing user story to requirement

shouldn’t be very difficult. Once the responsibility of who needs to document traceability is

determined, this problem can be resolved.

However, for user stories originating from other stakeholders (See Figure 5), it is hard to

identify which user stories relate to requirements. Also, it can be challenging to trace them

back to requirements in case they are related to requirements. However, it will prove

useful to do this traceability, as new user stories can result in new requirements. One way

34

to tackle the above problem could be, while writing the user story, the writer can make

explicit whether the user story is relevant for tracing. Again this suggestion can be

challenging if the user story writers are not aware of requirements.

6.2.3 Requirement Unawareness in Agile development team

Fusing testers with agile team will work out successfully only if agile team members are as

aware of requirements as the testers are. One potential way to address this issue is to

force agile teams to create formal test report for every important release so that they know

how requirements are tested. This will force the team to read up on requirements which

will also create clear delivery with proper compliance to requirements.

6.2.4 Irregular Requirement Updates

System testers do not receive updated requirements. They work with the initial

requirements which were written way before product implementation. Therefore,

confusions happen during testing. For the software implementation, agile software

development process is followed where the team works with user stories. User stories are

implemented here. Owing to traceability issues between requirements and user stories,

mentioned in Section 6.2.2, requirements don’t get updated.

Additionally, too many user stories could deteriorate requirements quality (since much

effort is not put into maintaining the requirements). One way to handle this problem could

be that down to a certain level of requirements, all requirements have to be treated as

ASIL-D (max. safety criticality requirements) with respect to tracing from requirement to

test. A compromise could be made on agreeing on certain levels of requirements to which

complete tracing and test reporting should be provided while allowing the other lower level

requirements to fall away and get replaced by user stories within the agile way of working.

Fixing traceability between requirements and user stories should be the first step in

solving requirement updating issues. Also, if requirements are updated based on main

learnings from the sprint, it can help to document some of the tacit knowledge

accumulated in the agile teams.

6.2.5 Challenging the Function Owner

The iterative nature of Narrow-V model provides flexibility and support for requirement

changes. Based on the feedback received from corresponding levels below in the left

hand side of Narrow-V model, necessary requirement changes are incorporated by the

Function Owner. Because high level requirements are easy to understand, readers

generally have many opinions about it which makes the Function Owner get overexposed

to change requests on requirements. Sometimes, it also happens that people offer

suggestions to Function Owner without even reading the requirement specification first.

One way to deal with requirement changes could be to make sure that only those who

have read the requirements carefully are allowed to offer suggestions on requirements.

Requirements should be allowed to change or get updated based on main learnings from

the sprint. This can help to improve performance requirements with arbitrary performance

goals. Also, introducing some kind of semi-formal process like filling a form with

information like reasons for requirement change, can reduce unnecessary requirement

change requests.

35

Table 1: Summary of solutions for challenges in the requirement model.

 Requirement Model Challenges

 Possible Solutions

 1 Agile user story writing -Give authority to limited
people.

 2 Requirements-User Story Traceability

- User stories by Product Owner written
based on requirements.

- External user stories

-Assign responsibility/
decide who will document
traceability.

- User story writer make
explicit whether the user
story is relevant for tracing.

 3 Requirement awareness in agile team - Agile team to create formal
test reports for all important
releases.

 4 Irregular requirement updates -Improve traceability.

-Down to a certain level of
requirements, consider
them as safety critical
requirements with respect to
tracing from requirement to
test. The Lower level
requirements allowed to get
replaced by user stories.

-Update requirements
based on main learnings
from sprint.

 5 Challenging Function Owner - Only readers of
requirement specification
document to offer
suggestions on requirement
change to Function Owner.

-Introduce semi-formal
processes ex: like filling a
form to enter reason for
requirement change.

36

7 Conclusion and Future Work

From literature work, we gathered both traditional RE and agile RE have their own set of
disadvantages. This motivated us to research on new ways of working that incorporates
the best of both traditional RE and agile RE methods while lessening the challenges when
working with requirements. For our research purpose, we conducted a case study at a
premium automotive company based in Sweden. In this study, we contribute to a holistic
view of the company’s requirement model that allows to work with traditional requirements
and agile user stories together while alleviating their standalone challenges. We also
present knowledge about challenges in following this requirement model at the case
company. Semi-structured interviews were done on eleven participants for collecting data.
Data analysis on this collected data using Braun and Clarke [56] provided us with results
for our research. Later, we validated the results of our research by having a focus group
discussion at the case company. The focus group discussion also helped to get insights
into how to handle and resolve challenges to a large degree.

We have determined that there is a need for future research in this area as it’s a very
promising area in the area of requirement engineering and software engineering. First, the
software industry practiced just the traditional requirement engineering practices. Then
came the agile requirement engineering methods which is contrasting to the former in its
approach. Next in line, should be a requirement model which is a mix of both practices.
This will help the industry to overcome challenges it usually faces with respect to
requirement engineering in general. Performing research on this field and in this direction
will pave way for companies who are software focussed to experience better requirement
handling, thus, improving their software process.

This study was conducted as a qualitative research with interviews as the method of data

collection. It would be useful to follow-up this study by using any method of data collection

in the studied company or in other software intensive automotive companies that work

with a requirement model supporting traditional requirements and agile user stories to

coexist together. Researchers can perform similar studies at various appropriate research

settings to identify the different ways both requirement engineering forms can coexist

together and explore to what extent the challenges of traditional requirements and agile

user stories can be overcome with this kind of coexistence. Furthermore, they can

investigate other accompanying challenges associated, when traditional RE and agile RE

strive together. This study can also be replicated in other relevant research settings and

need not be restricted only to the automotive domain. Researchers may also use the data

and results of our study to perform action research, design science and experiments on

the same in future.

37

Bibliography

[1] U. Eliasson, R. Heldal, E. Knauss, P. Pelliccione, “The need of complementing plan-Driven

requirements engineering with emerging communication: experiences from volvo car group,” in 23rd

IEEE International Requirements Engineering Conference. IEEE, 2015.

[2] I. Inayat, S. Salim, S. Marczak, M. Daneva, and S. Shamshirband, “A systematic literature review

on agile requirements engineering practices and challenges”. Computers in Human Behaviour,

2014.

[3] I. Inayat, L. Moraes, M. Daneva, and S. Salim, “A reflection on agile requirements Engineering:

solutions brought and challenges posed,” in Proceedings of Scientific Workshop of the XP2015.

ACM, 2015

[4] M. Daneva, E. Van Der Veen, C. Amrit, S Ghaisas, K. Sikkel, R. Kumar, N. Ajmeri, U.

Ramteerthkar and R. Wieringa, “Agile requirements prioritization in large-scale outsourced system

projects: An empirical study,” Journal of systems and software, vol. 86, no. 5, 2013.

[5] V. Shukla, D. Pandey, and R. Shree, “Requirement Engineering, A survey,” Requirements
Engineering, vol.3, no.5, 2015.

[6] K. Pohl, “The three dimensions of requirements engineering," in Seminal Contributions to
Information Systems Engineering. Springer, 2013, pp. 63-80.

[7] K. Pohl, Requirements engineering: fundamentals, principles, and techniques. Springer
Publishing Company, Incorporated, 2010.

[8] I. Sommerville and P. Sawyer, Requirements Engineering: A Good Practice Guide. Wiley,
1997.

[11] S. Lauesen, Software requirements: styles and techniques. Pearson Education, 2002.

[12] F. Paetsch, A. Eberlein, and F. Maurer, “Requirements engineering and agile software
development," in 2012 IEEE 21st International Workshop on Enabling Technologies: Infrastructure
for Collaborative Enterprises. IEEE Computer Society, 2003, pp. 308-308.

[13] D. Pandey, U. Suman, and A. Ramani, “An effective requirement engineering process model
for software development and requirements management," in Advances in Recent Technologies in
Communication and Computing (ARTCom), 2010 International Conference. IEEE, 2010, pp. 287-
291.

[14] E. Bjarnason, K. Wnuk, B. Regnell , “Requirements are slipping through the gap- A case study

on causes and effects of communication gaps in large-scale software development,” in 19th IEEE

International Requirements Engineering Conference. IEEE Computer Society, 2011, pp. 37–46.

[15] D. M. Berry, K. Czarnecki, M. Antkiewicz, M. AbdElRazik, “Requirements Determination is

Unstoppable: An Experience Report,” in 18th IEEE International Requirements Engineering

Conference. IEEE, 2010, pp. 311-311.

[16] S. Lauesen, Software Requirements: Styles and Techniques. Addison-Wesley, 2002.

[17] H. Berlack, Software configuration management. John Wiley & Sons, 1992.

[18] K. Beck, A. Cockburn, R. Jeffries, and J. Highsmith. “The Agile Manifesto,” Software

Development, vol. 9, no. 8, pp. 28–32, 2001.

38

[19] P. Abrahamsson, Outi Salo, J. Ronkainen and J. Warsta, Agile Software Development

Methods: Review and Analysis. VTT publications, pp.17-36, 2002.

[20] D. Cohen, M. Lindvall, and P. Costa, "Agile software development," DACS SOAR Report, pp.

1-15, 2003.

[21] D. Leffingwell, Scaling Software Agility: Best Practices for Large Enterprises, Addison-Wesley

Professional, 2011.

[22] A. Cockburn, and J. Highsmith, "Agile Software Development: The Business of Innovation," in

the Proceedings of the International Conference on Software Engineering. IEEE, 2001, pp. 120-

122.

[23] K. Schwaber, M. Beedle, Agile Software Development with SCRUM. Prentice-Hall, 2002.

[24] IEEE Standard 830 (1998) IEEE recommended practice for software requirements.

[25]. IEEE Standard 1233 (1998) IEEE guide for developing system requirements specifications.

[26] A. Sillitti and G. Succi, Engineering and Managing Software Requirements. Springer Berlin

Heidelberg, 2005.

[27] K. Beck, A. Cockburn, R. Jeffries, and J. Highsmith. “The Agile Manifesto,” Software
Development, vol. 9, no. 8, pp. 28–32, 2001.

[28] F. Paetsch, A. Eberlein, F. Maurer, “Requirements engineering and agile software

development”, in Proceedings of the 12th IEEE International Workshops on Enabling

Technologies. IEEE, 2003.

[29] A. Eberlein and J.C.S.D.P. Leite, “Agile Requirements Definition. A view from Requirements

Engineering,” in Proceedings of the International Workshop on Time-Constrained Requirements

Engineering (TCRE'02), 2002.

 [30] Cysneiros, L. Marcio, ”Requirements Engineering in Health Care Domain,” in Proceedings of

IEEE Joint International Conference on Requirements Engineering. IEEE, 2002.

[31] M. Crotty, The foundations of social research: Meaning and perspective in the research
process. Sage, 1998.

[32] J. W. Creswell, Research design: Qualitative, quantitative, and mixed methods approaches.
Sage publications, 2014.

[33] D. C. Phillips and N. C. Burbules, Postpositivism and educational research. Rowman
& Littlefield, 2000.

[34] S. Kemmis, M. Wilkinson, “Participatory action research and the study of practice,” Action

research in practice: Partnerships for social justice in education, Routledge, 1998, pp. 21-36.

[35] C. H. Cherryholmes, “Notes on pragmatism and scientific realism,” Educational Researcher,

vol. 21, no. 6, pp. 13-17, 1992.

[36] P. Runeson and M. Höst, "Guidelines for conducting and reporting case study research in

software engineering," Empirical Software Engineering, vol. 14, no.2, pp. 131-164, 2009.

[37] C. Robson, “Real world research. 2nd," Edition. Blackwell Publishing. Malden, 2002.

[38] R. K. Yin, Case study research: Design and methods. Sage publications, 2013.

[39] I. Benbasat, D. K. Goldstein, and M. Mead, “The case research strategy in studies of
information systems," MIS quarterly, pp. 369-386, 1987.

39

[40] D. Avison, R. Baskerville, M. Myers, “Controlling action research projects,” Information

Technology & People, vol. 14, Issue 1, pp. 28-45, 2001.

[41] R. Rapoport, “Three dilemmas of action research,” Human Relations, vol. 23, no. 6, pp. 499-

513, 1970.

[42] C. Wohlin, M. Höst, M. C. Ohlsson, B. Regnell, Runeson P, A. Wesslén. Experimentation in

software engineering, Springer-Verlag Berlin Heidelberg, 2000.

[43] E. V. Teijlingen and V. Hundley, "The importance of pilot studies," Social research update, pp.
1-4, 2001.

[44] S. A. Jacob and S. P. Furgerson, “Writing interview protocols and conducting interviews: Tips
for students new to the field of qualitative research," The Qualitative Report, vol. 17, no. 42, pp. 1-
10, 2012.

[45] Schwaber, K., and Beedle, M., Agile Software Development with Scrum, 2001, Prentice Hall.

[46] D. Firesmith, “Common requirements problems, their negative consequences, and the

industry best practices to help solve them,” Journal of Object Technology, vol. 6, no.1, 2007.

[47] D. E. Damian, D. Zowghi, “An insight into the interplay between culture, conflict and distance

in globally distributed requirements negotiations,” In Proceedings of the 36th Annual Hawaii

International Conference on System Sciences (HICSS). IEEE Computer Society, 2003.

[48] N. Nahar, P. Wora, S. Kumaresh, “Managing requirement elicitation issues using step-wise

refinement model,” International Journal of Advanced Studies in Computers, Science and

Engineering, vol. 2, issue 5, 2013.

[49] T. Shah, S. V. Patel, “A review of requirement engineering issues and challenges in various

software development methods,” International Journal of Computer Applications, vol. 99, no.15,

2014.

[50] M. Kumar, M. Shukla, and S. Agarwal, ”A hybrid approach of requirement engineering in agile
software development,” In Proceedings of the International Conference on Machine Intelligence
and Research Advancement. IEEE, 2013.

[51] E. Bjarnason, K. Wnuk, and B. Regnell, ”Requirements are slipping through the gaps-a case
study on causes & effects of communication gaps in large-scale software development,” In
Proceedings of the 19th International Requirements Engineering Conference. ACM, IEEE, 2011.

[52] K. Boness, and R. Harrison, “Goal sketching: towards agile requirements engineering,” In
Proceedings of the International Conference on Software Engineering Advances. IEEE, 2007.

[53] L. Cao, and B. Ramesh, “Agile Requirements Engineering Practices: An Empirical Study.”
IEEE Software, 2008, pp 60–67.

[54] W.M Farid, and F. J Mitropoulos, “Novel lightweight engineering artifacts for modeling non-
functional requirements in agile processes,” In the Proceedings of IEEE Southeastcon, 2012.

[55] T. J. Bang, “An agile approach to requirement specification,” in Agile Processes in Software
Engineering and Extreme Programming, Springer Berlin Heidelberg, 2007, pp. 193–197.

[56] V. Braun and V. Clarke, “Using thematic analysis in psychology," Qualitative research in
psychology, vol. 3, no. 2, pp. 77-101, 2006.

[57] A. K. Shenton, “Strategies for ensuring trustworthiness in qualitative research projects,"
Education for information, vol. 22, no. 2, pp. 63-75, 2004.

[58] M. Broy, “Challenges in automotive software engineering," in Proceedings of the 28th
international conference on Software engineering. ACM, 2006, pp. 33-42.

40

[59] P. Braun, M. Broy, F. Houdek, M. Kirchmayr, M. Muller, B. Penzenstadler, K. Pohl, and T.
Weyer, “Guiding requirements engineering for software-intensive embedded systems in the
automotive industry," Computer Science-Research and Development, vol. 29, no.1, pp. 21-43,
2014.

[60] S. Balaji, and M. Sundararajan Murugaiyan, "Waterfall vs. V-Model vs. Agile: A comparative
study on SDLC." International Journal of Information Technology and Business Management,
vol. 2, no. 1, pp. 26-30, 2012.

[61] I. Jacobson, G. Booch, and J. Rumbaugh, The unified software development process.
Addison-Wesley, 1999.

[62] R. Andreas, C. Bartelt, T. Ternité, and M. Kuhrmann, "The V-Modell XT Applied–Model-Driven
and Document-Centric Development," in 3rd World Congress for Software Quality, 2005.

41

Appendix – Interview related to plan driven requirements

The interview instrument provided in the coming page was used for the interview round

with interviewees involved with requirements usage at the case company. The questions

provided in the guide cover aspects about background, organizational software

development process, requirement process, requirement tools, and, balancing between

plan driven and agile RE.

42

Interview Questions

Demographic Questions

1. What is your role in the company? Could you briefly describe your role?

2. How long have you been working in this role at the company?

Department Questions

3. Could you briefly describe what the department does?(very briefly)

Development Process Questions

4. What development process do you follow?

Requirement Engineering

5. Based on the concepts described in the previous question, how do you think the process of RE

happens?

a. Where do requirements come from? What form?

b. What do you do with the requirements received? Refine / break them down?

c. Do you document the new requirements? What about prioritisation?

d. How is abstraction of requirements done? How are abstraction levels determined?

e. What is the next step in the requirement flow? Where/ to whom requirements go?

f. Do you reuse requirements? How?

g. How do you manage changes in requirements?

h. How do you manage unclear requirements? How is it clarified? Make assumptions?

i. How is requirement specification used throughout the process? Is it written from the

scratch?

j. How are requirements validated? Are requirements traceable? How is traceability ensured?

k. How much of informal communication do you rely on?

l. What challenges/ benefits do you encounter with the current requirement process? How do

you think the challenges could be overcome?

Connections between V model and agile team

6. How are requirements and user stories linked in your case?
7. How are requirements and user stories coexisting together?

8. What benefits and challenges exist while working together with requirements and user stories?

Tools

9. What tools do you use to facilitate requirements?

a. Does the adapted tool address everything you think is important to facilitate requirement

process? What will they be?

b. Do you think the tool fails to address few issues? What are they?

Forgot to add something?

10. Is there something you would like to add to what you spoke so far in the interview? Something you

forgot to mention?

43

Appendix – Interview related to agile requirements

The interview instrument provided in the coming page was used for the interview round

with interviewees involved with agile RE/ user stories usage at the case company. The

questions provided in the guide cover aspects about background, organizational software

development process, agile RE/ user stories process, tools supporting agile user stories,

and balancing between plan driven and agile RE.

44

Interview Questions

Demographic Questions

1. What is your role in the company? Could you briefly describe your role?

2. How long have you been working in this role at the company?

Department Questions

3. Could you briefly describe what the department does?(very briefly)

Development Process Questions

4. What development process do you follow?

Agile Questions

5. Based on the concepts described in the previous question, how do you think the process of agile

user stories happens?

a. What agile process do you follow?

b. Where do user stories come from? From whom?

c. What do you do with the user stories received? Refine / break them down?

d. Do you document the new user stories?

e. On what basis do you do prioritisation? When/who gets involved during prioritisation?

f. What is the next step in the user stories flow? Where/ to whom user stories go to?

g. What is the duration of the sprint? What happens at the end of the sprint?

h. How are user stories validated? Are user stories traceable? How is traceability ensured?

i. How do you manage changes in user stories?

j. How do you manage unclear user stories? How is it clarified? Make assumptions?

k. How do you handle non-functional requirements?

l. Where/ How much of informal communication do you rely on?

m. What challenges/ benefits do you encounter with the current agile process? How do you

think the challenges could be overcome?

Connections between V model and agile team

6. How are requirements and user stories linked in your case?
7. How are requirements and user stories coexisting together?

8. What benefits and challenges exist while working together with requirements and user stories?

Tools

9. What tools do you use to facilitate user stories?

a. Does the adapted tool address everything you think is important to facilitate agile user

stories process? What will they be?

b. Do you think the tool fails to address few issues? What are they?

Forgot to add something?

10. Is there something you would like to add to what you spoke so far in the interview? Something you

forgot to mention?

