
Mathematical representation for the rule
of the production rule system Drools
Master’s thesis in engineering mathematics and computational science

AMIEL POUZAT

Department of mathematical sciences
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

CHALMERS UNIVERSITY OF TECHNOLOGY

MASTER THESIS

Mathematical representation for rule of
the business rule management system

Drools

Author:
Pouzat AMIEL

Supervisor:
Casalino MATTEO

Examiner:
Sagitov SERIK

June 12, 2019

https://www.chalmers.se/en/Pages/default.aspx
https://pouzat.fr
https://www.linkedin.com/in/matteocasalino/?originalSubdomain=fr
http://www.math.chalmers.se/~serik/

ii

CHALMERS UNIVERSITY OF TECHNOLOGY

Abstract
Mathematical representation for rule of the business rule management system

Drools

by Pouzat AMIEL

Computational science is a source of many technological paradigms as declarative
programming. Declarative programming is used in industries that want to reach
optimal processing. Drools is a rule engine allowing this declarative programming.

For classical programs (imperative programming), many verifying programs exist
to check the behavior of these programs, depending only on the code. For a program
based on declarative programming, the technics of verification are not common.

This thesis purposes a mathematical representation for the rule of the business rule
management system: Drools. This representation is used to define two main errors
for a set of rules: overlap and subsumption. Then, a presentation of the program
developed is done.

HTTPS://WWW.CHALMERS.SE/EN/PAGES/DEFAULT.ASPX

iii

Acknowledgements

I would like to thanks the BZR team for welcoming me for this 6 months. Spe-
cial thanks to Matteo Casalino, which was my supervior, and showed me what is
expected from an engineer.

Thanks to Florian and Matthieu, who helped me throughout the thesis to find and
learn the technical specifics of java. I would like to thanks Florian Janel, without
him, I couldn’t make this thesis.

Moreover, I thanks a lot Serik Sagitov, my examiner, I owe him a big-time, and I
enjoy taking his courses at Chalmers. I would like to thanks him for the time he took
for me, to try to understand my project and to prepare my oral presentation. Thanks
you Serik.

iv

Contents

Abstract ii

Acknowledgements iii

1 Introduction 2
1.1 Background . 2
1.2 Problem and aim . 2
1.3 Related work : result . 3
1.4 Thesis outline . 3

2 Business Rules and Drools 4
2.1 Production Rule Systems . 4
2.2 Drools Rule language (DRL) . 5

2.2.1 File . 5
2.2.2 Basic syntax . 6

Rule . 6
Facts . 6

2.2.3 Left Hand Side (LHS) . 6
2.3 Business example . 7

3 Mathematics representation 10
3.1 Set and Space . 10

3.1.1 Attribute definition set . 10
3.1.2 Totally ordered set . 10
3.1.3 Comparable attribute . 10
3.1.4 Interval . 11
3.1.5 Attribute set . 11
3.1.6 Operator : Attribute . 12
3.1.7 Pattern (effective) set . 12
3.1.8 Operator : Pattern and attribute 14
3.1.9 Rule (effective) set . 15
3.1.10 Rule set : conjunctive form . 16
3.1.11 Important remarks . 17
3.1.12 Operator : Conjunctive rule . 18

3.2 Overlap and Subsumption . 20
3.2.1 Subsumption . 21
3.2.2 Overlap . 22

4 Implementation 24
4.1 Goals . 24
4.2 Field : Set . 26
4.3 Pattern : SetWrapper . 28
4.4 SubRule : SubRuleSet . 29

v

4.5 Verify Rules . 32
4.5.1 Drools-Verifier to mathematics representation 32
4.5.2 Formal verification . 32

5 Conclusion 33
5.1 Discussion . 33
5.2 Future works . 33

2

Chapter 1

Introduction

1.1 Background

IT has emerged in the industry as an essential tool for the development of tomor-
row’s world. Many programming languages were created, allowing the develop-
ment of innovative applications.

"Business Rules" is a very intuitive programming technique. A business rule, in-
dividually, can be seen as a method that takes into variable a set of objects which
respect certain conditions inherent to the rule. The rule returns another set of object
resulting from the action of the rule on the set taken as variable. Very simply, a busi-
ness rule represents an action to be executed for a given situation.
This principle is extremely general. The implementation of this principle will set a
context in which the rules will be evaluated. This context is the rule engine.
Several rule engine implementations exist, based on pattern-matching algorithms, or
from scratch. This thesis is based on the Business Rule Management System, Drools
A Business Rule Management System, BRMS, is a software allowing to manage busi-
ness rules outside the application in which they apply. This externalization of the
rules with respect to the app makes it possible to modify, add and remove rules ac-
cording to the business knowledge. A BRMS provides an implementation of a rule
engine.
The rule engine is the implementation of the Business Rules approach. For Drools, it
corresponds to the implementation of PHREAK, a pattern-matching algorithm de-
rived from RETE, another algorithm. This implementation was done in Java, by
RED HAT teams, an open source company. The principle of Drools is, therefore, the
principle of pattern-matching. The user defines the ’Facts’ which are Java objects
and confronts them to the conditions of his set of rules. If the facts’ attributes respect
conditions of a rule, and that rule has priority on other rules, then this rule ’fire,’
which triggers its actions. In Drools, actions can be any java code.
Drools also provide a programming language to define rules and facts. (i.e. Chap.2).

1.2 Problem and aim

Drools is a pretty intuitive rule engine, but the size of the set of rules can lead to
difficulty in ensuring its behavior. Drools does not provide tools to analyze the rules
produced, especially to compare them. However, Drools is used in sensitive indus-
tries, where the slightest mistake can lead to significant economic losses.

1.3. Related work : result 3

Problem : For Drools, how to ensure the behavior of a set of rule ; to know, to
compare and to check the situations in which a rule can fire or not.

Remark. "Fire" a rule is an action from the rule engine. A rule "fires" when the state
of the working memory respects the condition related to these rules, and these rules
have the priority. (i.e. Chap.2).

Aim: The objective of this thesis is to purpose a mathematical representation of
business rules. This formalization, based on the Drools rule language, will be used to
define semantic’s errors of a set of rules by focusing on Overlaps and Subsumptions,
two specific semantic’s errors. Then, an implementation in Java will be carried out.

1.3 Related work : result

The work done is divided into two parts.

On the one hand, the mathematical representation of Business rules.
For the mathematical representation, the work focuses on the conditions of the rules
and the interactions between the rules. Based on sets of set, the intersections and
unions between rules will be defined. Then, this representation will be used to for-
malize overlaps and subsumptions.

On the other hand, the implementation of this representation.
The implementation makes it possible to test the mathematical representation in real
cases. The implementation is done in Java, the same language used for the develop-
ment of Drools and for its use.

1.4 Thesis outline

At first, we will introduce the different concepts related to Business Rules, based on
Drools.
Then, we will see the proposed mathematical representation, and define the seman-
tic errors using this formalization.
Finally, we will present the implementation done.

4

Chapter 2

Business Rules and Drools

Drools is a production rules system for writing "DRL" files that define the rules of our
business model. These files are written using Drools’ own programming language,
the Drools Rule Language. A presentation of this language will be made focusing
on the Left Hand Side of the Drools Business Rules. The Left Hand Side (LHS) of the
rules corresponds to the conditions to be respected to be able to "fire" the rule, either
to execute the actions which are associated with the rule. The LHS of a rule defines
the situation in which a rule can "fire". The Left Hand Side is the main subject of this
thesis.
This chapter is based on the documentation of [1] Drools

2.1 Production Rule Systems

In any business model, whatever it may be, there are explicitly or implicitly business
rules. These business rules are the rules that manage the business, which regulates
it. More generally, in a given situation, the business rules represent the desired be-
havior and characterize the evolution of the studied system. Each rule reacts to a
certain situation, but the interaction between them can produce a multitude of re-
sults.

Drools is a rule engine called "Production Rule Systems". A production rule sys-
tems is a computer program giving access to a form of artificial intelligence . This
artificial intelligence consists of the behavior of a set of rules confronted with a set
of facts called "working memory".
The rules of this system are called Production Rules, or simply Rules. As part of
Drools, we also talk about Business Rules.

A production rule is basically composed of two parts.

• Event(s): On one hand, the conditions of the rule, grouping the conditions to
respect to be able to "fire" this rule. The conditions of the rules are associated
with the modeling of the objects of our sample space. Thus, in the example
presented at the end of this chapter, the conditions of the two rules are related
to the attributes of the class "Personne".

• Action(s): On the other hand, the actions to be performed when the rule "fire".
In Drools, the actions performed can be any java code. However, the evolution
of the state of working memory is not done under any circumstances. Thus,
to notify the Drools rule engine of the state of the working memory, the rules
include key-words that aim to insert, modify or delete facts in the working
memory.

2.2. Drools Rule language (DRL) 5

Working Memory The working memory is the set of objects used to react with the
rules. Once placed in the working memory, the objects are then called facts.
Thus, two sets are fundamental to use Business Rules, on the one hand the working
memory, on the other hand the set of rules.

2.2 Drools Rule language (DRL)

Drools provides a programming language: Drools Rule Language (DRL).

2.2.1 File

The rules are declaring in their own files. These files have a ".drl" extension. The
"DRL" files are written using the programming language provided by Drools, the
DRL.

A DRL file consists of several distinct components:

• package: the package name

• import: Class and functions necessary for the rules

• global: Global variables, variables outside the working memory

• queries: functions equivalent to a Left Hand Side (conditions of a rule).

• rule: the rules defined in the file

It is possible to declare a class in DRL files via the keyword: declare. Similarly, it is
possible to define functions directly in a DRL, with the keyword: function.

Example : a DRL file

package rules.verifier.compute

import java.util.TreeMap;
import java.util.Map.Entry;
import java.util.ArrayList;

import com.amadeus.drools.verifier.ruleEngine.EngineReport;
global EngineReport engineReport;

import com.amadeus.drools.verifier.set.SubRuleSet;

declare wrap1
key : String
set : SubRuleSet

end

rule "Insert SubRuleSet"
salience -20

when

then

6 Chapter 2. Business Rules and Drools

TreeMap <String , Object > map = (TreeMap)
engineReport.getObject("Rules");

engineReport.log("The map is :\n" + map);
for(Entry <String ,Object > i : map.entrySet ()){

insert(new wrap1(i.getKey (),
(SubRuleSet) i.getValue ()));

}
end

Here, there is no condition (LHS empty), for the rule "Insert SubRuleSet". This is
equivalent to a LHS always true, whatever the facts present in working memory.
The file starts with the package, then, the imports, globals and declarations neces-
sary to the rules and finally the rules of the file, for this example there is only one
rule, "Insert SubRuleSet".

2.2.2 Basic syntax

Rule

A Drools rules is composed of three main parts:

• The attributes of the rule: whose name

• The Left Hand Side (LHS) of the rule, the conditions.

• The Right Hand Side (RHS) of the rule, the actions.

The name of the rule must be unique per package. Thus, a rule is identifying by
its name, and the package with it is associated. NewL The LHS of a rule is the set of
conditions to respect to be able to "fire" the rule, to be able to trigger the associated
RHS.

The RHS of a rule is the set of actions to be performed when the LHS is respected.
These actions can be related to the objects of the working memory that triggered the
rule, or to the entire working memory itself.
For Drools, the RHS of a rule is java code.

Facts

The facts are the objects present in the working memory.
Each fact is then characterizing by its Java class, where its attributes are defined.
Attributes are used in the LHS of the rules. Then, if necessary, can be modified in
the RHS.

2.2.3 Left Hand Side (LHS)

The LHS of a rule corresponds to the set of conditions that must be respected to be
able to trigger the associated actions (RHS). These conditions are related to the facts
of the working memory.
Example :

2.3. Business example 7

rule "example patterns"
when

Pattern1(attribut1 == 0, attribut2)
Pattern2(attribut1 == "String")

then
end

Here, two facts are necessary to trigger the rule :

• "Pattern1": a fact whose class is "Pattern1", whose "attribute1" is a number
equal to 1, and whose "attribute2" is a true boolean.

• "Pattern2" : a fact whose Class is "Pattern2", whose "attribute1" is a String (a
word) equal to "String".

By default, the LHS is pattern conjunction. Here, the notion of pattern refers to the
PHREAK algorithm, derived from RETE and used to match the working memory
with the rules.
Each pattern has a set of literals that apply to the attributes of the class in question.
Like the conjunctive form between the different patterns, the conditions inherent to
the attributes of a fact is conjunction (of literals). It is possible to use disjunctive
forms in the LHS. Either using the keyword "or" and correctly partitioning the pat-
terns and the literals. Either, using the negative conjunctive form, using the keyword
"not".

2.3 Business example

For example : An airline company, on the advice of its engineers, wants to set up
a rule engine for its business. Initially, the role of this rule engine will be to issue
promotions according to the customer and his previous flights with the company.
The company will ask its business experts to issue two rules to give promotions
based on the number of kilometers traveled on the company, and the total amount
of purchases made by the customer.
The business expert will issue two simple rules:

• When the customer has traveled more than 500,000 km then offer a discount of
50 % for the rest of the year

• When the customer has made more than 500 000 $ purchase, then offer a dis-
count of 50% for the rest of the year

Once the rules wrote, the business expert sends them to the development team to
implement them. The team will implement a ’Fact’ person with four attributes.

• unique identifier of the customer

• number of kilometers traveled

• total amount of purchases

• discount allowed between 0 and 1.

In Java, a developer creates a class ’Personne’ with four corresponding attributes.

8 Chapter 2. Business Rules and Drools

public static class Personne{
public Personne(int id){

this.id = id;
}

int id;
Double km = 0.0;
Double spent = 0.0;
Double promotion = 0.0;

public int getId(){return id;}

public void setId(int id){ this.id = id;}

public Double getKm(){return km;}

public void setKm(Double km){this.km += km};

public Double getSpent (){ return spent;}

public void setSpent (){this.spent += spent;}

public Double getPromo (){ return promotion ;}

public void setPromo(Double promo){promotion +=
promo;}

}
}

This class will serve as a fact type. Rule conditions will relate to the attributes
of this class. Then, two rules will be written using the proper Drools rule language,
using the class created.

rule "Promo km"
when

$personne : Personne(km >= 500000)
then

modify($personne){setPromo (0.5) ;};
end

rule "Promo spent"
when

$personne : Personne(spent >= 500000)
then

modify($personne){setPromo (0.5) ;};
end

In this example, the Business Rules interest will be to manage these rules indepen-
dently from other applications. Therefore it is simple to change a rule or to add one.
In that case, after a while, the company realizes that some customers travel for free.
This because the promotion given to some clients is 100%.
For customers who have traveled more than 500 000 km and have spent more than

2.3. Business example 9

500 000 $, the promotion will accumulate, and therefore reach 100%. This error hap-
pens when the conditions of the two issued rules are satisfied for the same customer.
A fact "Person" will respect both of rules if it attributes:

{km ∈ [500000;+∞)} and { spent ∈ [500000;+∞)}

Once the situation identified, the purposed solution is to add a condition to get a
promotion. The rules will be modifying: if the client has a higher or equals promo-
tion from 0.5, then the rules can not fire. The rules then become:

rule "Promo km"
when

$personne : Personne(km >= 500000 , promo < 0.5)
then

modify($personne){setPromo (0.5) ;};
end

rule "Promo spent"
when

$personne : Personne(spent >= 500000 , promo < 0.5)
then

modify($personne){setPromo (0.5) ;};
end

Here, this set of rules has not anymore the error giving a promotion of 100% to
some clients. If one of the two rules fire, then the second one will not be able to fire
since the promoted discount is already superior to that proposed.

10

Chapter 3

Mathematics representation

The purpose of this chapter is to give a mathematical representation to the LHS
of a rule. The LHS of a rule represents the event that must occur to trigger rule
actions (RHS). This event is a conjunction of pattern and may be represented as a
mathematical set. Then, the intersection of two of these sets is a conjunction, and the
union: a disjunction. NewL

3.1 Set and Space

3.1.1 Attribute definition set

The definition set of an attribute is all possible value for this attribute. We denote F
this set. An attribute is also referred as a field. Then, element in F are denoted f .

Definition 3.1.
{ f , f ∈ F}

3.1.2 Totally ordered set

A set provided with a binary relation is a partially ordered set if the provided rela-
tion satisfies the reflexivity, antisymmetry and transitivity properties on this set. A
totally ordered set is a partially ordered set if, and only if, the codomain of the binary
relation is equal to this set it-self. All elements on this set, all attribute instances are
comparable between each other.

3.1.3 Comparable attribute

An attribute is comparable if and only if the definition set of this attribute is a totally
ordered set. In Java, we define the binary relation of this set as compareTo with the
fundamental axioms :

• Reflexivity : ∀ f ∈ F, f .compareTo(f) = 0

• Antisymmetry : ∀ f1, f2 ∈ F, f1.compareTo(f2) ≤ 0⇔ f2.compareTo(f1) ≥ 0

if ∃ f1, f2 ∈ F, { f1.compareTo(f2) ≤ 0} ∩ { f2.compareTo(f1) ≤ 0}
then f1.compareTo(f2) = 0

• Transitivity ∀ f1, f2, f3 ∈ F,

f1.compareTo(f2) ≤ 0 and f2.compareTo(f3) ≤ 0⇒ f1.compareTo(f3) ≤ 0

3.1. Set and Space 11

Notation f1.compareTo(f2) ≤ 0 will be note f1 ≤ f2

3.1.4 Interval

An interval is a subset of a comparable attribute definition set. We denote I this set.
I has the properties :

• I ⊂ F

Definition 3.2.

∃imax, imin ∈ F , such that

∀ f ∈ I, f ≥ imin and f ≤ imax and
∀g 6∈ I, g ≤ imin or g ≥ imax

In this case, we can note I as I =
[
imin; imax

]
Remark. If ∀ f ∈ I, { f > imin} then
I =

(
imin; imax

]
Remark. If ∀ f ∈ I, { f < imax} then
I =

[
imin; imax

)
We denote IF all possible interval on F.

Disjoint interval Two intervals I, J are disjoint if and only if

I ∩ J = {∅}

Set of disjoint interval For a set a disjoint interval, we can associate to this set a
binary relation respecting the axioms: reflexivity, antisymmetry, and transitivity.

3.1.5 Attribute set

An attribute set represents a restriction on F, the definition set of the attribute. We
denote E the effective set associated. If this attribute is comparable, then E is a count-
able union of disjoint interval I on F.

Definition 3.3.

E = ∪n
i=0 Ii (3.1)

∀i, j, i 6= j⇒ Ii ∩ Ij = {∅} (3.2)

The effective attribute space will represent all possible value for an attribute to match
a given rule. For example : Given an object ’Fact’ with an integer attribute ’value’.
Let’s have a rule:

12 Chapter 3. Mathematics representation

FIGURE 3.1: Attribute space target

declare Fact
value : int

end

rule "Rule sup to 0"
when

Fact(value > 0)
then

System.out.println("The value is superior to 0");
end

Then for ’value’ the definiton set without user’s constraint is : F = Z

The attribute effective set associated with "Rule sup to 0" is : E = N+∗

So, the attribute set represent the literal "value > 0" as :

{value ∈ Z, such that : value ∈N+∗}

3.1.6 Operator : Attribute

An attribute set is a one-dimensional space. An attribute set is associated with the
standard operator of intersection (∩) and union (∪).

3.1.7 Pattern (effective) set

A pattern effective set is a set of attribute set. This set regroups the different attribute
space given by the related pattern. It is a conjunction of attribute space.

3.1. Set and Space 13

FIGURE 3.2: Pattern set target

We denote P this set. For example :

declare Fact
value : int
name : String

end

rule "Sample pattern"
when

Fact(value == 42, name == "Doe")
then

System.out.println("Where is Jhon ?");
end

The rule "Sample pattern" gives one pattern set. This set is :

P0 = {{value = 42}} and {name = ”Doe”}}

The imprecisely notation ’value = 42’ is related to the precisely one : ’ value ∈
[42; 42]’.

Remark. A pattern set represent a conjunction. It is a conjunction of literal applying
on each attribute into the fact.

Definition 3.4.

A pattern set P is a conjunction of literal, representing by a composition of
attribute set, with an index ’n’.

P = ∏
n∈N

An

14 Chapter 3. Mathematics representation

The index is essential here. The attribute space index is, in reality, the attribute name.
Then, we should note Aφ(n) and not An, with φ a function returning the attribute
name associated.

A pattern set is conjunction but with an index constraint (pattern index is different
from the attribute index). Then, two pattern sets, into the same rule, are comparable
if and only if their index is the same, so their ’position’ into the rule. This possibility
can happen when rules include a disjunction (a or). For example :

declare Fact
value : int
name : String

end

rule "Sample disjunction"
when

Fact(value == 42 || value == 0, name == "Doe")
then

System.out.println("Where is Jhon ?");
end

In this situation, rule produces two pattern set, one with ’value == 42’ and another
with ’value == 0’.

P0 = {{value = 42}} ∩ {name = ”Doe”}}
P1 = {{value = 0}} ∩ {name = ”Doe”}}

Comparable pattern set

Definition 3.5. Two pattern set P1 and P2 are comparable if and only if their defini-
tion set are equals, P1 = P2

This definition is saying two pattern sets are comparable if and only if the related
fact type is the same. This definition is general and doesn’t concern a pattern set
inside the same rule. In this case, we have to take care of the index position.

3.1.8 Operator : Pattern and attribute

A pattern set is a conjunction of attribute effective space. An intersection or union of
pattern set not related to the same fact type has no meaning. We have the property
P = ∏i∈N Ai. Index here is, in reality, the attribute name.

3.1. Set and Space 15

Intersection For two pattern set related two the same fact type target (P1, P2 ∈
Ptarget)

P1 ∩ P2 = (
m

∏
i=0

A(target,1,i)) ∩ (
m

∏
i=0

A(target,2,i))

Definition 3.6.

P1 ∩ P2 =
m

∏
i=0

(A(target,1,i) ∩ A(target,2,i))

If one attribute set into the resulting pattern set is empty, then the pattern set is
considered as empty, and so the operator returns an empty pattern set. This can
happen when an intersection of two attribute sets is empty.

Respect

Definition 3.7. Respect
A pattern set P1 respect an other pattern set P2 if and only if

P1 ∩ P2 6= {∅}

Union For two pattern set related two the same fact (P1, P2 ∈ Ptarget)

P1 ∪ P2 = (
m

∏
i=0

A(target,1,i)) ∪ (
m

∏
i=0

A(target,2,i))

P1 ∪ P2 =
m

∏
i=0

(A(target,1,i) ∪ A(target,2,i))

However, a union may also respect the conjunctive property. So if an intersection of
the two patterns set is empty, then, union operator returns an empty pattern set.

Contains A pattern set P1 contains an other pattern set P2 if

Definition 3.8. Contains

• P1 and P2 are comparable

• ∀i, A(target,1,i)) contains A(target,2,i))

3.1.9 Rule (effective) set

As for the pattern set, the rule set is a set of pattern set given by the rule. We denote
R this set.

16 Chapter 3. Mathematics representation

declare Fact
value : int
name : String

end

rule "Or clause"
when

or(
Fact(name == "Doe"),
Fact(value == 42)

)
then

System.out.println("Where is Jhon ?");
end

The set regroups the both pattern set of the last example. The set is :

R = {{P0} ∪ {P1}}

3.1.10 Rule set : conjunctive form

FIGURE 3.3: Conjunctive Rule set target

The previously defined rule set R is subject to a disjunction. However, Drools is
oriented conjunction, the default operator between two patterns are an "and". From
a given disjunction, we will create an element corresponding to each conjunction in-
side the disjunction. We denote CR this set, for conjunctive rule.
From the rule ’Or clause’, we can create two subrules corresponding to:

CR0 = {P0}

3.1. Set and Space 17

CR1 = {P1}

Such that we can note R = { CR0 ∪ CR1 }
And ∀R ∈ R, R = ∪n

i=0CRi, n + 1 number of conjunction forming the rule.

Definition 3.9.

A conjunctive rule set CR is a conjunction of pattern, representing by pattern set,
with an index of order ’n’.

CR = ∏
n∈N

Pn

Also here, the index is essential. Two patterns are comparable if the fact type
related to is the same. Then we compare attribute space into pattern set. However, a
common error can be to compare only literal without taking care of the index. (Even
if to fact include an attribute id, this doesn’t imply their fact types are equals)

declare Fact
value : int
name : String

end

rule "And clause"
when

Fact(name == "Doe")
Fact(value == 42)

then
System.out.println("Where is Jhon ?");

end

In this rule, if the working memory includes a fact ’Fact’, with an attribute ’name’
equals to "Doe", and an attribute ’value’ equals to 42

(Fact["Doe", 42])

, then the rule will fire, even with only one fact.
But, the rule includes two different pattern, and in this situation, two fact :

(Fact["Doe", 0] and Fact["Serik", 42])

may fire the rule also. A conjunctive rule set is a composition of pattern set, keeping
index order.

3.1.11 Important remarks

We will define an operator of intersection and union, which will be different from a
composition of attribute or pattern set. The operator ∩mean "and". For example :

18 Chapter 3. Mathematics representation

rule "I- Remarks"
when

Fact(name == "Doe")
Fact(value == 42)

then
System.out.println("Where is Jhon ?");

end

This rule give a conjunctive rule set

CR = Fact0(name ∈ [”Doe”]) and Fact1(value ∈ [42])

Which is different from

Fact(name ∈ [”Doe”])∩ Fact(value ∈ [42]) = Fact(name ∈ [”Doe”] and value ∈ [42])

This second equation is equivalent to

Fact0 ∩ Fact0

3.1.12 Operator : Conjunctive rule

A conjunctive rule set is a conjunction of pattern effective set. The difficulty in op-
erating on this set is to take care of fact type and pattern positions. Pattern position
may be different for two comparable patterns when working on two different rules,.

First, we will define an intersection operator. An intersection between two sets is
the common element of these sets. However, for two conjunctive rule sets, many
conjunctive rule set may respect this definition, more than one. So we should return
a rule set (under the disjunctive shape) for an intersection of two conjunctive rule
set.

.∩ . : CRxCR → R

But to stay under a conjunctive shape, intersection and union operator should return
set into the same definition set.

.∩ . : CRxCR → CR

To keep the conjunctive properties, we return the first conjunctive rule set respecting
intersection properties (’common set’).

Let’s start by an intersection and union with a pattern set.

Weak/Strong intersection For a conjunctive rule set (CR1) with a pattern set (
Pfact). Denoting Pf the first pattern set into CR1, such that Pf and Pfact are compara-
ble.

3.1. Set and Space 19

Definition 3.10. Weak/Strong intersection

CR1 ∩ Pfact = ∏
n≥0,n 6= f

Pn ∗ (Pfact ∩ Pf)

If Pfact ∩ Pf = {∅}, operator will search for the next comparable pattern into CR1.

Strong If there exists no more comparable set into CR1, then operator return an
empty set.

Weak If there exists no more comparable set into CR1, then operator add pattern
set into it.Weak intersection is used to construct conjunctive rule set.

Strong Respect

Definition 3.11. Strong respect
A pattern effective set Pfact strong respects a conjunctive rule CR1 if

CR1 ∩ Pfact 6= {∅}

with strong intersection

Then, we define respect between pattern set and conjunctive rule set. Under a weak
intersection, the operator returns an empty set if he finds no comparable pattern
which respects the given pattern set.

Weak Respect

Definition 3.12. Weak respect
A pattern effective set Pfact weak respect a conjunctive rule CR1 if

∃P ∈ CR1 such that P and Pfact are comparable

Moreover, if a pattern strong respectsa conjunctive rule, then this pattern weak re-
spect this conjunctive rule.

Strong Union For union between a conjunctive rule set and pattern set, same idea,
find the first comparable and try to make a union with this given pattern set, else
find the next comparable pattern. As union operator should return a conjunctive
rule set and not a rule set, we may be to take care than a union returns a conjunctive
rule set or an empty set if it is not possible.

Definition 3.13. Strong union

CR1 ∪ Pfact = ∏
n≥0,n 6= f

Pn ∗ (Pfact ∪ Pf)

If there exist no comparable set into CR1, then operator returns an empty set.
If Pfact ∩ Pf = {∅}, operator will search for the next comparable pattern into CR1.
If intersection is empty for each comparable pattern into CR1, the conjunctive prop-
erty is not longer respected, and so union may return an empty set.

20 Chapter 3. Mathematics representation

The weak intersection is used to construct the set. We continue with the strong op-
erator to operate on two conjunctive rule set.

Intersection Now we got an operator to operate on a conjunctive rule set and a
pattern set, let’s construct operator for two conjunctive rule set. We got the constraint
to stay on the same definition set. An intersection of two conjunctive rule set, which
returns the common set between both, return a conjunctive rule set, even if more
than one conjunctive rule set respects definition.
For two conjunctive rule sets CR1 and CR2

Definition 3.14. Intersection between two conjunctive rule set, CR1 ∩ CR2
CRc = CR2
for each pattern P1,i in CR1 :
- CRc = CRc ∩ P1,i
return CRc

This operator is not symmetric. It returns the "first result" found, the first conjunc-
tive rule set which is common to CR1 and CR2, starting by CR2. This definition can
be confusing. CR1 ∩ CR2 will be note CR1 ’under’ CR2. This because we start from
the CR2 set, and then we try to compute an intersection with each CR1’s patterns.
If CR1 under CR2 is empty, then intersection is empty starting by CR2. But oper-
ator is not symmetric. Then, CR2 under CR1 may be not empty. This is related to
"subsumption".

Strong Respect

Definition 3.15. Strong Respect
A conjunctive rule set CR2 strong respects a conjunctive rule CR1 if

CR2 ∩ CR1 6= {∅}

Remark. Strong respect, or simply respect between two conjunctive rule set is not
symmetric, because intersection between two conjunctive rule set is not symmetric.

Union Union operator is defined into a similar way. With same notation.

Definition 3.16. Union between two conjunctive rule set CR1 ∪ CR2
CRc = CR2
for each pattern P1,i in CR1 :
- CRc = CRc ∪ P1,i
return CRc

3.2 Overlap and Subsumption

Let’s define overlap and subsumption.

3.2. Overlap and Subsumption 21

3.2.1 Subsumption

Definition 3.17. For two rule "rule 1" and "rule 2" which we associate two rule sets
R1 and R2.

"rule 1" subsumes a rule "rule 2" if and only if R2 strongly respects R1.

Example

declare Fact
value : int

end

rule "Rule 1"
when

Fact(value > 0)
then
end

rule "Rule 2"
when

Fact()
then
end

In this simple example, the rule "Rule 1" subsumes the rules "Rule 2" on the pat-
tern set P = Fact(value ∈N+∗)

To compute this set, first we compute the conjunctive rule set for "Rule 1" :

P1 = Fact(value ∈N+∗)

R1 = {P1}

Then, for the second rule "Rule 2", there is no condition about attribute, so :

P2 = Fact(value ∈ Z)

R2 = {P2}

We will check if "Rule 2" subsumes "Rule 1". Here, let find a counterexample : −1 6∈
Z, so "Rule 2" does not subsume "Rule 1".
Then, regarding if "Rule 1" subsumes "Rule 2". We have to check if P2 contains P1.

∀value ∈N+∗, value ∈ Z

22 Chapter 3. Mathematics representation

3.2.2 Overlap

Definition 3.18. For two rule "rule 1" and "rule 2" which we associate two rule set
R1 and R2.

There is an overlap between "rule 1" associated to the rule set R1 and "rule
2" associated to R2 if and only if

∃P ∈ R2 such that P strong respect R1

This characterizes the definition of an intersection between two sets. There is an
overlap if there is a common set, no empty, between both rules. So for these common
sets, rules can both fire and create a no desired situation.

Remark. An overlap is symmetric.

Example

declare Fact
value : int
id : int

end

rule "Rule 1"
when

Fact(value > 0, id == 0)
Fact(id == 11)

then
end

rule "Rule 2"
when

Fact(value > 0, id == 0)
Fact(id == 10)

then
end

First, there is no subsumption between this two rules. The second pattern inside
both rule does not respect the other rule.

R1 = {Fact(value ∈N+∗ and id = 0) and Fact(value ∈ Z and id = 11)}

R2 = {Fact(value ∈N+∗ and id = 0) and Fact(value ∈ Z and id = 10)}

Trying to match Fact(value ∈ Z and id = 11) with R2 is not possible. Same,
Fact(value ∈ Z and id = 10) does not match R1.
But, there is an overlap for

P = Fact(value ∈N+∗ and id = 0)

3.2. Overlap and Subsumption 23

which represent the common facts between both rules.

Remark. An subsumption is not symmetric.

24

Chapter 4

Implementation

4.1 Goals

Goals of implementation are to provide a java program, to process to static analysis
of DRL files.
To start, we have to create a wrapper for Drools. This wrapper is a Java package,
regrouping some class to manipulate Drools and Maven easily.
For example, by defining a DRL "autoFocus.drl", which is put into the resources
folder of the maven project (see Maven Documentation for more). Then, the soft-
ware calls the ’engine’ and fires the session exactly as it fires a KIE session.

RuleEngine session = new RuleEngine ();

session.addEngineResources("autoFocus.drl");

session.insert(new AnInt (0));

session.fire();

The "insert method" insert to working memory a fact ’AnInt’, which is an object
with one integer attribute, ’value’. The "fire" method matches working memory and
rules.

With this wrapper, we extend it to create the ’verifier engine’. This verifier engine is
composing in two part :

• Parse DRLs into some facts

• Check DRLs with Drools rules

Using Drools-Verifier, we recover the resulting objects from its parser (facts), and we
put them into working memory. Then, we apply the rules to create the different sets.

The verifying rules will check for two given conjunctive rule sets, if one subsumes
the other, and if they overlap each other.

4.1. Goals 25

FIGURE 4.1: Drools wrapper : basic UML

FIGURE 4.2: Basic UML : Drools wrapper

The method "addDRLToVerify" parses the given DRL into components. The verifier
uses theses components as facts. You can have some console logs for these compo-
nents using "showComponents". For example, using the DRL file "autoFocus.drl"
:

VerifierEngine session = new VerifierEngine ();

session.addDRLToVerify("autoFocus.drl");

session.showComponents ();

Resulting to the log :

26 Chapter 4. Implementation

[Engine] INFO Components number - 52

[Engine] INFO TextConsequence: {
engineReport.log("");

[Engine] INFO Field 'bool' from object type
'com.amadeus.drools.verifier.ruleEngine.EngineReport '

[Engine] INFO Field 'child ' from object type
'com.amadeus.drools.verifier.ruleEngine.EngineReport '

[Engine] INFO Field 'classId ' from object type
'com.amadeus.drools.verifier.ruleEngine.EngineReport '

... etc

Moreover, you can use the method "addEngineRessources" to add a verifying set
of rule.
For now, there is two main DRL file for the project, into folder "src/main/resources/rules/ver-
ifier/compute/" :

• "compute.drl"

• "overlap3.drl"

The first file is the set of rules which computes the rule sets (’SubRuleSet’) asso-
ciated with each conjunctive rule. Drools-Verifier parses DRL into some java object.
For each rule, Drools-Verifier creates some ’SubRule’ objects, a Java object corre-
sponding to a conjunctive rule. The file associate one ’SubRuleSet’ for each ’Sub-
Rule’ created by Drools-Verifier.
The second file checks if there are some subsumptions on a given set of rules, using
the ’SubRuleSet’ computed by the previous file.

4.2 Field : Set

We associate an attribute set for each literal into rules we analyze. Space is program-
ming as ’Set’. ’Set’ can be directly construct using a literal. The operator and value
have to be separated into two variables. The supported operators are :

• Equals "=="

• Different " 6="

• Inferior "<"

• Inferior or equals "≤"

• Superior ">"

• Superior or equals "≥"

For example :

4.2. Field : Set 27

Set <Double > S9 = new Set <>(">", 9.0);

Set <Double > I20 = new Set <>("<", 20.0);

Set <Double > E15 = new Set <>("==", 15.0);

log.log("The set Superior to 9 is : " +
S9.toString ());

log.log("The set Inferior to 20 is : " +
I20.toString ());

log.log("The set Equals to 15 is : " +
E15.toString ());

log.log(" x > 9 and x < 20 : " + S9.cap(I20));

log.log("x <= 9 or x == 15 or x >= 20" +
S9.complemetaire ().cup(E15).cup(I20.complemetaire ()));

log.log(" Empty : " +
E15.complemetaire ().cap(E15).set);

log.log(" Full : " +
E15.cup(E15.complemetaire ()).getInterval (0));

result to :

[main] / The set Superior to 9 is : Set :]9.0 ; +Inf[

[main] / The set Inferior to 20 is : Set :]-Inf ; 20.0[

[main] / The set Equals to 15 is : Set : [15.0]

[main] / x > 9 and x < 20 : Set :]9.0 ; 20.0[

[main] / x <= 9 or x == 15 or x >= 20Set : {]-Inf ; 9.0] or
[15.0] or [20.0 ; +Inf[}

[main] / Empty : []

[main] / Full : Interval :]-Inf ; +Inf[

Methods ’cap’ represents an intersection operator, and methods ’cup’ a union oper-
ator. The method ’isUndefined’ return true is the ’Set’ is undefined. There is more
method to manipulate a ’Set’ or an ’Interval’. For example, ’Set’ can be used as a
collection, with the method ’add, remove, size, contains, ...’.

28 Chapter 4. Implementation

FIGURE 4.3: Basic UML : Set and Interval

Moreover, some different indexes are managing with this class. For example, to
manage pattern orders inside a conjunctive rule, we use a set of String (’Set<String>’)
to know the fact name, and an integer to see the order.

4.3 Pattern : SetWrapper

SetWrapper represents a pattern effective set. A pattern set is a conjunction of literal
on the attributes associated to the pattern. A ’SetWrapper’ regroups this literals
into one object, but doesn’t keep information about pattern fact type. This role is
assumed by ’SubRuleSet’.

FIGURE 4.4: Basic UML : SetWrapper (pattern set)

’SetWrapper’ is using a map associating a key ’Set<String>’ to a value ’Set’. The
key represents the attribute name.
For example :

Set <Double > S9 = new Set <>(">", 9.0);

Set <Double > I20 = new Set <>("<", 20.0);

Set <Double > E15 = new Set <>("==", 15.0);

Set <Double > C0 =
S9.complemetaire ().cup(E15).cup(I20.complemetaire ());

4.4. SubRule : SubRuleSet 29

SetWrapper P0 = new SetWrapper ();

P0.addOrCap("v1", S9);
P0.addOrCap("v2", I20);

SetWrapper P1 = P0.copy();

P1 = P1.cap("v1", I20).cap("v2", C0);

SetWrapper P2 = P1.cup(P0);

log.log("P0 : " + P0);

log.log("P1 : " + P1);

log.log("P2 equals P0 ? " + P2.equals(P0));

Resulting to the log :

[main] / P0 : Map -Set :
{ {["v1"] in]9.0 ; +Inf[} and {["v2"] in]-Inf ; 20.0[} }

[main] / P1 : Map -Set :
{ {["v2"] in]-Inf ; 9.0]} and {["v1"] in]9.0 ; 20.0[} }

[main] / P2 equals P0 ? true

Morever, ’SetWrapper’ can be use as a ’Map’. ’SetWrapper’ doesn’t implements
’Map’ but contains methods "put, remove, contains". You can get a value associating
to a key using "getValue" and the key.

4.4 SubRule : SubRuleSet

SubRuleSet’ represents a conjunctive rule set. It was named like this because Drools-
Verifier used a ’SubRule’ object to describe conjunctive rule set. However, goals are
to identify overlap and subsumption and gives back a corresponding conjunctive
rule set.
To check if a SubRuleSet A subsumes a SubRuleSet B, we have to use "under" method.’
A "under" B ’ return a conjunctive rule set, which matches A and B. With specificity
to try to fire the rule B using all pattern in A.

To check if a SubRuleSet A and B overlap each other, you have to find all pattern
which strong respect the other conjunctive rule. This verification is done by, first,
checking pattern index (fact name) and then if the intersection is not empty. (Strong
respect).

30 Chapter 4. Implementation

FIGURE 4.5: Basic UML : SubRuleSet

For example :

Set <Double > S9 = new Set <>(">", 9.0);

Set <Double > I20 = new Set <>("<", 20.0);

Set <Double > E15 = new Set <>("==", 15.0);

Set <Double > C0 =
S9.complemetaire ().cup(E15).cup(I20.complemetaire ());

SetWrapper P0 = new SetWrapper ();

P0.addOrCap("v1", S9);
P0.addOrCap("v2", I20);

SetWrapper P1 = P0.copy();

P1 = P1.cap("v1", I20).cap("v2", C0);

SetWrapper P2 = P1.cup(P0);

SubRuleSet R1 = new SubRuleSet ();
SubRuleSet R2 = new SubRuleSet ();

R1.cap("Pat", 0, P0).cap("Pat", 1, P1);
R2.cap("Pat",0, P2).cap("Pat",1, P0);

log.log("LHS 1 : " + R1.asLHS());

log.log("LHS 2 : " + R2.asLHS());

log.log("1 subsumes 2 ? " + !R1.under(R2).isEmpty ());
log.log("on ? " + R1.under(R2).reduce ().asLHS());

4.4. SubRule : SubRuleSet 31

log.log("2 subsumes 1 ? " + !R2.under(R1).isEmpty ());
log.log("on ? " + R2.under(R1).reduce ().asLHS());

which gives back the log :

[main] / LHS 1 : ...
when

Pat(v1 in]9.0 ; +Inf[, v2 in]-Inf ; 20.0[)
Pat(v2 in]-Inf ; 9.0], v1 in]9.0 ; 20.0[)

then
...

[main] / LHS 2 : ...
when

Pat(v2 in]-Inf ; 20.0[, v1 in]9.0 ; +Inf[)
Pat(v1 in]9.0 ; +Inf[, v2 in]-Inf ; 20.0[)

then
...

[main] / 1 subsumes 2 ? true

[main] / on ? ...
when

Pat(v2 in]-Inf ; 9.0], v1 in]9.0 ; 20.0[)
then
...

[main] / 2 subsumes 1 ? true

[main] / on ? ...
when

Pat(v2 in]-Inf ; 9.0], v1 in]9.0 ; 20.0[)
then
...

[main] / -- end --

The method ’subsumes’ check if a ’SubRuleSet’ under another one isn’t empty. The
method ’reduce’ is the method ’under’ applying to the same ’SubRuleSet’.
To build a ’SubRuleSet’, we use the method ’cap’. The method ’cap’ corresponds to
an intersection. So when adding a pattern into the conjunctive rule set is the same to
make: "this conjunctive rule set AND (∩) this pattern.", so: "this ’SubRuleSet’ AND
(∩) this ’SetWrapper’".

32 Chapter 4. Implementation

4.5 Verify Rules

4.5.1 Drools-Verifier to mathematics representation

Drools-Verifier provides us some java objects. These objects are not the set we im-
plemented. To compute to this set, we use Drools rules. Into file "compute.drl", we
associate different object to ’SubRuleSet’.

4.5.2 Formal verification

We have to use a method to check overlap and subsumption. This is done into ’over-
lap3.drl’. We recover the computed ’SubRuleSet’, and we compare them together
using rules.
Then, if we find overlap or subsumption, we create an engine message and keep
it into a global variable. Users can get this message using the rule engine (verifier
engine).

session.logResult ();
SubRuleSet A0 = ((SubRuleSet) ((TreeMap <String , Object >)

session.getReport ().getObject("Rules")).get("A(0)"))

Moreover, user can recover the computed ’SubRuleSet’ using ’getReport().getObject("Rules"))’
and the rule name.
In "A(0)", the number "0" correspond to the first conjunctive rule set computed for
the rule "A", the first "SubRule" computed by Drools-Verifier.

33

Chapter 5

Conclusion

5.1 Discussion

Declarative languages, as Drools provides with the DRL, can handle large amounts
of data, basing their complexity on the number of rules in the system, and not on the
number of objects, or facts. The use of computer programs based on its declarative
languages saves time and money by allowing quick processing and easy mainte-
nance. However, there is almost no solution to directly manipulate the rules of a
program and thus ensure the behavior of it.
The mathematical representation proposed in this thesis is then a formalization of
the computer definition of a Drools rules. This formalization is both simple, for the
conditions of rules, and complex, for the actions of rules. However, when we want to
check a set of rules, the actions of rules are much less important than the conditions
of them. The actions of rules are summarily a change into the working memory.
Considering only this, to ensure that two rules do not subsume, we only must com-
pare the conditions of these rules, and not their actions.
An advantage in the program is the use of DRL file for the verification. The user of
the program can use the model and the method to create his errors and check them
with a simple DRL file.

5.2 Future works

Drools-Verifier uses the package descriptor to create its owns objects. However, the
Package Descriptor is already a java representation of the DRL file. But this is not
sufficient for many cases like to check the behavior of a whole session. Start from a
Kie Session can be more exact.
Then, define generics semantic’s errors and use the mathematics representation to
solve it. By it, I mean to create a UI to create verifying rules. User should not write a
DRL but should be able to verify his rules using the verifier.
Rule attributes are not managed. But attribute can add special behavior. Into this
project, rules are comparing two by two. Manage attribute need to manage rule n
by n, because each rule can infer it.
Moreover, this is also because we don’t manage the working memory. We manage
rules, and if there an object into the working memory related to zero rule, we can
not see it. But how to? This problem is related to the completeness: each fact should
participate in firing at least one rule and was not a goal of these project
The developed program doesn’t handle the actions of rules (RHS). However, even
if to check all possible actions is too complicated, the parts particular to Drools is
verifiable. Drools provide three main key-words for the RHS: insert, modify, and
delete. Parsing the actions correctly, using the general shape of this key-word is

34 Chapter 5. Conclusion

possible. Then, we can check some other errors, as the coherence of the rule, for
example. Moreover, the program is base on Drools-Verifier, a Drools-components.
Unfortunately, this component has been abandoned for many years. Many upgrades
of these components are possible, as the addition of the notion of ’template’ in Java,
which will simplify many facts created by Drools-Verifier.

35

Bibliography

[1] Red Hat (2018), Drools documentation 7.7

[2] A. Awad, G. Decker, M. Weske (2008),
Efficient Compliance Checking Using BPMN-Q and Temporal Logic

[3] V. Y. Lee, Y. Liu (June 2012),
ACARP: Auto Correct Activity Recognition Rules Using Process Analysis Toolkit
(PAT)

[4] G. J. Nalepa, S. Bobek, A. Ligeza, K. Kaczor (2011),
HalVA - Rule Analysis Framework for XTT2 Rules

[5] P. Wolper (1983),
Temporal Logic Can Be More Expressive

[6] S. Lukichev (2014),
The Declarative Approach for Anomaly Detection in Production Rule Bases with
Semantic Constraints

[7] M. Dohring, S. Heublein (2012),
Anomalies in Rule-Adapted Workflows - A Taxonomy and Solutions for vBPMN

[8] Tony Rikkola (2012),
Drools-Verifier (Drools components)

[9] Bruno Berstel-Da Silva (2014),
Verification of Business Rules Programs

[10] Lucas Amador (2012),
Drools Developer’s Cookbook

[11] Esteban Aliverti,
Mariano De Maio, Mauricio Salatino (2016), Mastering JBoss Drools 6

[12] Von Halle, Barbara. Wiley (2001),
Business Rules Applied [electronic resource]: Building Better Systems Using the
Business Rules Approach.

https:/docs.jboss.org/drools/release/7.7.0.Final/drools-docs/html_single/index.html

	Abstract
	Acknowledgements
	Introduction
	Background
	Problem and aim
	Related work : result
	Thesis outline

	Business Rules and Drools
	Production Rule Systems
	Drools Rule language (DRL)
	File
	Basic syntax
	Rule
	Facts

	Left Hand Side (LHS)

	Business example

	Mathematics representation
	Set and Space
	Attribute definition set
	Totally ordered set
	Comparable attribute
	Interval
	Attribute set
	Operator : Attribute
	Pattern (effective) set
	Operator : Pattern and attribute
	Rule (effective) set
	Rule set : conjunctive form
	Important remarks
	Operator : Conjunctive rule

	Overlap and Subsumption
	Subsumption
	Overlap

	Implementation
	Goals
	Field : Set
	Pattern : SetWrapper
	SubRule : SubRuleSet
	Verify Rules
	Drools-Verifier to mathematics representation
	Formal verification

	Conclusion
	Discussion
	Future works

