
A hybrid recommender system for
usage within e-commerce
Content-boosted, context-aware, and collaborative
filtering-based tensor factorization recommender system for
targeted advertising within e-commerce.

DATX05

Marcus Lagerstedt
Marcus Olsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017





Master’s thesis 2017

A hybrid recommender system for usage within
e-commerce

Content-boosted, context-aware, and collaborative filtering-based
tensor factorization recommender system for targeted advertising

within e-commerce.

Marcus Lagerstedt
Marcus Olsson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2017



A hybrid recommender system for usage within e-commerce.

Content-boosted, context-aware, and collaborative filtering-based tensor
factorization recommender system for targeted advertising within e-commerce.

Marcus Lagerstedt
Marcus Olsson

© Marcus Lagerstedt, 2017.
© Marcus Olsson, 2017.

Supervisor: Christos Dimitrakakis,
Department of Computer Science and Engineering
Examiner: Richard Johansson,
Department of Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: A three-dimensional graphical space used to represent a 3rd order tensor,
modelling the idea of user-item-context relationships.

Typeset in LATEX
Gothenburg, Sweden 2017

iv



A hybrid recommender system for usage within e-commerce.
Content-boosted, context-aware, and collaborative filtering-based tensor
factorization recommender system for targeted advertising within e-commerce.

Marcus Lagerstedt
Marcus Olsson

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Recommender systems are information filtering systems that try to predict what
rating a user would give an item, usually with the goal of recommending, would be
high rated items to users. Today there exist recommender systems in most online
stores, in one form or another. The complexity of these systems varies greatly,
where the less complex ones might base their recommendations on similar
products, while others are much more complex, utilizing user modeling etc.

This thesis describes changes made to a context-aware and collaborative
filtering-based tensor factorization recommender system, in order to adapt it to
perform better with the implicit-only data found in e-commerce, specifically
garment-based e-commerce.

Multiple contexts are evaluated in regard to a specific data set, and the
performance impact of the changes proposed are also measured. The evaluation is
carried out through use of self-implemented algorithms written in Python.

The project resulted in a content-boosted, context-aware, and collaborative
filtering-based tensor factorization recommender system made for implicit-only
e-commerce data.

The results show that the changes proposed in this thesis give a substantial
performance increase, while time-based contexts do not seem to increase
performance, in regard to the specific data set used for evaluation in this project.

The best result we got, with the specific data set tested, was about 9.26 % better
than that of a recommender system that always recommends the most popular items.

Keywords: recommender system, content-boosted, context-aware, collaborative
filtering, tensor factorization, e-commerce, machine learning.

v





Acknowledgements
We would like to thank the great company Consid AB in general, and our industry
supervisor Fredrik Ek in particular, for giving us the opportunity to perform this
master thesis with them and for providing us with the data set.

Furthermore we would like to thank our supervisor at Chalmers University of
Technology, Christos Dimitrakakis, for the help in finalizing the thesis proposal
and for the useful comments and remarks throughout the project.

We would also like to thank our examiner at Chalmers University of Technology,
Richard Johansson, for his help and feedback.

Marcus Lagerstedt and Marcus Olsson
Gothenburg, June 2017

vii





Contents

List of figures and plots xi

List of tables xiii

Notations xv

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The research question . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.5 Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.6 Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.7 Research contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.8 Outline of the report . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Recommender systems 5
2.1 Content-based filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Collaborative filtering . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2.1 User-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Item-based . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Matrix factorization . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Context-aware filtering . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.3.1 Tensor factorization . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4 Hybrid systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.5 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5.1 Data approximation . . . . . . . . . . . . . . . . . . . . . . . 9
2.5.2 Implicit feedback . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.5.3 Sparsity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.4 Cold start problem . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5.5 Computational performance for incremental updates . . . . . 13
2.5.6 Equal items with different names . . . . . . . . . . . . . . . . 13

3 Proposed work 15
3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1.1 Online updating of the model . . . . . . . . . . . . . . . . . . 17
3.1.2 Minimizing the effect of the cold start problem . . . . . . . . . 19

ix



Contents

4 Research methodology 21
4.1 Data set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.2 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.2.1 Date and time . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
4.2.2 User metadata . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.3 Evaluation metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.3.1 Baseline algorithms . . . . . . . . . . . . . . . . . . . . . . . . 25
4.3.2 Historical data . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5 Results 27
5.1 Algorithm parameters used in all tests . . . . . . . . . . . . . . . . . 27
5.2 Baseline results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.3 Contexts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

5.3.1 Date and time . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3.2 User metadata . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.4 Minimizing the effect of the cold start problem . . . . . . . . . . . . . 30
5.5 Combining context and minimizing the effect of the cold start problem 31
5.6 Online updating of the model . . . . . . . . . . . . . . . . . . . . . . 31

5.6.1 Different batch sizes . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.2 Computational performance difference . . . . . . . . . . . . . 32
5.6.3 Model approximation difference . . . . . . . . . . . . . . . . . 32

5.7 Online training with content and context . . . . . . . . . . . . . . . . 34

6 Discussion 35
6.1 Evaluating the results . . . . . . . . . . . . . . . . . . . . . . . . . . 35

6.1.1 The usage of additional contexts . . . . . . . . . . . . . . . . . 35
6.1.2 Tackling the cold start problem . . . . . . . . . . . . . . . . . 36
6.1.3 Online updating of the model . . . . . . . . . . . . . . . . . . 36
6.1.4 Other results and thoughts . . . . . . . . . . . . . . . . . . . . 36

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

7 Conclusion 39
7.1 The research question and hypothesis . . . . . . . . . . . . . . . . . . 39
7.2 Limitations of our research . . . . . . . . . . . . . . . . . . . . . . . . 40

Bibliography 41

x



List of figures and plots

2.1 A visual explanation of the low-rank matrices Pm×K and Qn×K and
their product R̂m×n ≈ Rm×n, where m is the number of users, n is
the number of items, and K is the rank used for the factorization. . . 6

2.2 A visual explanation of the difference of a two-dimensional matrix
and a three-dimensional tensor, where M is the number of users, N is
the number of items, and C is the number of dimensions of a context. 8

2.3 Overfitting represented by a function that correctly covers all known
points, but at the same time do not cover the general trend. . . . . . 10

2.4 Underfitting represented by a function on training data. The function
is far from every point. . . . . . . . . . . . . . . . . . . . . . . . . . 10

xi



List of figures and plots

xii



List of tables

4.1 Properties of entities in the data set . . . . . . . . . . . . . . . . . . . 21
4.2 Quantity of entities in the data set . . . . . . . . . . . . . . . . . . . 21

5.1 Algorithm parameters used in all tests . . . . . . . . . . . . . . . . . 27
5.2 Baseline results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.3 MPR of the different time and date contexts . . . . . . . . . . . . . . 28
5.4 Generated data, recommender system is not context-aware . . . . . . 29
5.5 Generated data, recommender system is context-aware . . . . . . . . 29
5.6 MPR of the different user metadata contexts . . . . . . . . . . . . . . 30
5.7 Comparison of MPR when using, and not using, the fix for the cold

start problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
5.8 Comparison of MPR when using the fix for the cold start problem . . 31
5.9 MPR when using multiple contexts and the fix for the cold start problem 31
5.10 MPR of the different batch sizes . . . . . . . . . . . . . . . . . . . . . 32
5.11 Difference of duration per epoch, learning 100 additional orders,

comparing online updating with re-training full model1 . . . . . . . . 32
5.12 Properties of M (i) in starting model . . . . . . . . . . . . . . . . . . . 33
5.13 Properties of M (i) after 100 additional orders, comparing online

updating with re-training full model . . . . . . . . . . . . . . . . . . . 33
5.14 Comparison of the different models (A and B), using the mean

absolute error as metric . . . . . . . . . . . . . . . . . . . . . . . . . 33
5.15 The best possible result and other results for comparison . . . . . . . 34

xiii



List of tables

xiv



Notations

Abbreviations
SGD Stochastic Gradient Descent
ALS Alternating Least Squares
MPR Mean Percentage Ranking
MAE Mean Absolute Error

Variables
A ◦B The element-wise product of matrices A and B
Ai The ith column of matrix A
K The number of features to use
D The number of dimensions of the tensor T
T A D-dimensional preference tensor that contains only 0:s and 1:s
W A weight tensor with the same size as T
Si The size of T in the ith dimension
M (i) A K × Si sized matrix. Its columns are the feature vectors

for the entities in the ith dimension
Aj1,··· ,ji−1,j,ji+1,··· ,jD

Denotes an element of tensor A where the index in the
ith dimension is fixed to j, and other indices are arbitrary

R The matrix/tensor of known, real, ratings
R̂ The matrix/tensor of predicted ratings

xv



List of tables

xvi



1
Introduction

A recommender system is an information filtering system that tries to predict what
rating a user would give an item, usually with the goal of recommending would be
high rated items to users. Lacking research into how well a context-aware tensor
factorization-based recommender system work with implicit-only garment-based e-
commerce data, there is a need for new research addressing this situation.

1.1 Background

Recommender systems have been around for a long time, and the use of them is
more widespread now than ever. Movie recommendations in video-on-demand
services, e.g. Netflix, and targeted advertising online, e.g. Google Adwords, are
some examples of areas using recommender systems.

Today there exist recommender systems in most online stores, in one form or
another. The complexity of these systems varies greatly, where the less complex
ones might base their recommendations on similar products or frequently
purchased items within the same category as the one being viewed. More complex
systems might, however, incorporate factors like the user’s purchase history or
their demographics.

Research on the topic is still ongoing, with big players such as Google and Netflix
[1] doing active research. As an example, recent studies has shown that the
performance of recommender systems can be increased using context-aware
approaches [2]. Instead of the usual user-item relations, the relations become
user-item-context, where context may be other information, such as time of rating
or the demographics of the users.

The benefits for online stores to deploy a recommender system are many, with
targeted advertising resulting in users buying products they would otherwise not
have purchased, generating increasing sales, as arguably the most obvious one.

A limitation with the data available in e-commerce is that it often only consists of
implicit data in the form of purchase history, compared to most previous studies of
tensor factorization-based recommendation algorithms which have been with explicit
data, such as user ratings, e.g. 1-10, of items.

1



1. Introduction

1.2 Related work

A popular context-aware tensor factorization-based recommender system is an
algorithm proposed by A. Karatzoglou et al. [2]. However, their algorithm can not
be used if the data is implicit, e.g. if the ratings are unary.

Another popular recommender system, which works well with implicit data, is an
algorithm proposed by Y. Hu et al. [3]. Their recommender system is, however,
matrix factorization-based, and does not take context into consideration.

A context-aware tensor factorization-based recommender system algorithm for
implicit data is proposed by B. Hidasi et al. [4]. This algorithm is also used as the
basis for the work conducted in this project.

1.3 The research question

The research question can be split into two parts: Given the limitations of the
implicit-only data available for recommender systems in e-commerce, how well does
a tensor factorization-based recommendation algorithm work? Also, how does it
compare with the performance of other recommender systems in the same setting,
e.g. matrix factorization-based recommender systems, without context-awareness?

1.4 Hypothesis

The hypothesis is that a context-aware recommender system works better than a
recommender system without context-awareness. Further, it is expected that the
use of available information that does not belong to any specific user or item, i.e.
time of purchase, increases the quality of the recommendations. This information
cannot be incorporated into the standard form of matrix factorization, thereof the
use of tensor factorization.

1.5 Scope

While recommender systems can be used in many areas, this project is delimited
to the research of the usage of such systems for targeted advertising within
garment-based e-commerce.

The implemented recommender system is not tested in a real live setting, and the
evaluation of the performance of the system is limited to offline evaluation using
historical data.

2



1. Introduction

1.6 Goals
The goal of this project is to evaluate what performance can be achieved using a
content-boosted, context-aware, and collaborative filtering-based tensor
factorization recommender system when working with implicit-only e-commerce
data.

Another goal of this project is to determine what context information. e.g. time of
purchase and age of the user, is relevant and useful, and how this affect the quality
of the recommendations.

1.7 Research contribution
There have been numerous studies on collaborative filtering-based recommender
systems, such as matrix factorization, using explicit data. However, research using
implicit data, such as purchase information, has received less attention. Further,
context-aware recommender systems based on tensor factorization has received
even less attention, especially regarding implicit data. In the specific case of
implicit-only garment-based e-commerce data, there has, to our knowledge, been
very little or no research into how well a context-aware tensor factorization-based
recommender system work.

We also investigate how the recommender system proposed by B. Hidasi et al. [4]
can be extended upon to allow for online updating of the model. The significance
of an up-to-date model is also evaluated.

Further, a strategy for minimizing the effect of the cold start problem is proposed
and tested.

Finally, how well time-based context information works, in a domain where the
lifespan of the products is short, is evaluated.

1.8 Outline of the report
The next chapter will give some background on the field of recommender systems
and the challenges of developing such systems. After that, a chapter describing
the main research contributions of this thesis will follow. The chapter after that
gives information into what experiments have been conducted, as well as how the
performance of the developed algorithm was measured. Following that is a chapter
presenting the results of the project, followed by a chapter discussing the results.
Finally, a conclusion of the project is briefly described and disclosed.

3



1. Introduction

4



2
Recommender systems

To understand the work that has been conducted during this thesis, it is important
to have a general understanding of what a recommender system is, what different
categories of recommender systems there are, and the challenges such systems face.
This chapter will elaborate on these parts.

2.1 Content-based filtering

Recommender systems using content-based filtering recommend items to a user that
are considered similar to what the user is known to have liked in the past. In
more detail, all items are described using a set of keywords, which can be assigned
manually or automatically by the system. For all users, a profile is constructed
indicating what type of items each user likes. These user profiles contain weights
for all keywords, denoting the importance of each keyword to the user. The weights
are computed by analyzing the items which the user is known to have liked in the
past. When recommending items to a user, their user profile is compared to all item
descriptions, and the best-matching items are selected [5].

2.2 Collaborative filtering

Recommender systems using collaborative filtering makes use of ratings provided
by multiple users, thereof the name collaborative filtering. The method works by
analyzing a large amount of data on user-item interactions, such as ratings
(explicit feedback) or purchases (implicit feedback).

An interesting property of collaborative filtering is that the system does not know
the properties of neither the users nor the items; only the interactions between
them are known. This property makes the technique a good choice for
recommendations of complex items, without obvious descriptive keywords [6].

Collaborative filtering is one of the most widely used recommendation techniques
and has been shown to generate high-quality recommendations in many settings.
One such setting, relevant to this project, is e-commerce, where Amazon popularized
an algorithm for item-to-item collaborative filtering [7].

5



2. Recommender systems

2.2.1 User-based

The idea with user-based collaborative filtering is to recommend items to a user
based on the ratings provided by similar users. The main assumption made is that
users that have had similar tastes in the past will continue to have so in the future.
As an example, when predicting user u’s rating on item i, find users that rated items
similarly to user u in the past, that also have rated item i, and use their ratings
when predicting user u’s rating of item i [8].

2.2.2 Item-based

With item-based collaborative filtering, the idea is to recommend items to a user
that are similar to items previously rated by the user. As an example, given a user
u and an item i, collect a set S of items that are both similar to i and that the user
u has previously rated. The set S is then used to predict user u’s rating of item i
[8]. The similarities between the columns in the matrix, which represent the items,
are computed to find similarities between items.

2.2.3 Matrix factorization

A widely used method for collaborative filtering is matrix factorization [1], [8], [9].
This method uses rank factorization to factorize a user-item matrix of known
ratings, Rm×n, into low-rank matrices Pm×K and Qn×K , whose product PQT = R̂
approximates R, where m is the number of users, n is the number of items and K
is the rank used for the factorization. Using R̂, it is then possible to approximate
the missing ratings of R [9].

Figure 2.1: A visual explanation of the low-rank matrices Pm×K and Qn×K and
their product R̂m×n ≈ Rm×n, where m is the number of users, n is the number of
items, and K is the rank used for the factorization.

≈ R

In its most basic form, the method tries to simplify both items and users into
vectors of length K. A vector qi ∈ RK is constructed for every item i, and a vector
pu ∈ RK is constructed for every user u. These vectors contain information on the
item’s features as well as the user’s interest in those features. The value of K, the
number of features, or latent factors, to use, is found from testing different values,
with 20-200 often being used. An approximate user rating (e.g. 1-10) for item i by
user u is calculated using the dot product of those vectors, r̂ui = puq

T
i [9].

6



2. Recommender systems

Finding the values for the matrices P and Q is done by minimizing the squared error
on the set of known ratings (R):

min
∑

(u,i)∈R

(rui − puq
T
i )2 (2.1)

To avoid overfitting the observed data, see section 2.5.1, regularizing is used for
the learned parameters, whose magnitudes are penalized, making the complete
minimization function more like this:

min
∑

(u,i)∈R

(rui − puq
T
i )2 + λ(‖pu‖2 + ‖qi‖2) (2.2)

Multiple methods for minimizing the function above exists, with stochastic
gradient descent (SGD) and alternating least squares (ALS) being commonly used.

Stochastic gradient descent (SGD)

Stochastic gradient descent, in the setting of matrix factorization, computes the
squared errors between the predicted and observed ratings and uses these values
when updating the matrices P and Q, aiming to find a minimum of the difference
between the ratings.

The error eui between a predicted rating r̂ui and the observed rating rui, by user u
on item i, is calculated using the following equation [10]:

e2
ui = (rui − r̂ui)2 = (rui −

K∑
k=1

pukqik)2 (2.3)

where K is the number of features. In order to know in which direction to update
the weights puk and qik, the gradients of e2

ui is calculated:

∂

∂puk

e2
ui = −2euiqik

∂

∂pik

e2
ui = −2euipuk (2.4)

Using the opposite of the gradients, the update rules for puk and qik become [10]:

p′uk = puk + α(2euiqik) q′ik = qik + α(2euipuk) (2.5)

where α is the learning rate used. With the usage of regularization, the final update
rules look like this:

p′uk = puk + α(2euiqik − λpuk) q′ik = qik + α(2euipuk − λqik) (2.6)

where λ is the regularization value.

Alternating least squares (ALS)

Alternating least squares, in the setting of matrix factorization, finds P and Q by
fixing one of them and optimizing on the other. This is done in iterations by

7



2. Recommender systems

assuming that P̂ = P and optimizing Q̂ to fit P̂ Q̂T ≈ R, followed by assuming
that Q̂ = Q and optimizing on P̂ . This reduces the problem to a problem of linear
regression [11].

Computing P by fixing Q. Let p(u) ∈ Rn be a vector containing the known
binary preferences of user u on the items. Also, denote Cu a matrix of size n × n,
where Cu

ii denotes the confidence that user u likes item i.

The update rule looks like this:

pu = (QTCuQ+ λI)−1QTCup(u) (2.7)

Computing Q by fixing P. Let p(i) ∈ Rm be a vector containing the known
binary preferences of the users on item i. Also, denote Ci a matrix of size m ×m,
where Ci

uu denotes the confidence that user u likes item i.

The update rule looks like this:

qi = (P TCiP + λI)−1P TCip(i) (2.8)

2.3 Context-aware filtering
It has been shown in recent research that the performance of recommender systems
can be increased using context-aware approaches [2]. Instead of the usual user-
item relations, the relations become user-item-context, where context may be other
information such as time of rating or demographics.

2.3.1 Tensor factorization

One way of incorporating such extra information into recommender systems is to
generalize the concept of matrix factorization. The two-dimensional matrices in
matrix factorization-based algorithms instead become D-dimensional tensors in
tensor factorization-based algorithms [2].

Figure 2.2: A visual explanation of the difference of a two-dimensional matrix and
a three-dimensional tensor, where M is the number of users, N is the number of
items, and C is the number of dimensions of a context.

C

8



2. Recommender systems

2.4 Hybrid systems
A hybrid recommender system is a combination of multiple types of machine
learning algorithms, e.g. collaborative filtering combined with content- or
context-aware filtering, or both of them, in order to create a more robust model [8].

Hybrid recommender systems can be constructed as either a parallel or a
sequential construction. In a parallel design, several algorithms would get the same
data and produce a result Pi, i∈{1..n}, where n is the number of algorithms. All
results would in the next step be combined into a single result P . A sequential
construction, given a set of algorithms, would instead be: for every ith algorithm,
the result Pi, i∈{1..n} is given as input to the next (i+ 1)th algorithm in line [8].

A hybrid recommender system has the potential to make use of the strengths of
multiple algorithms, while at the same time minimize the effect of their weaknesses.
Collaborative filtering, as an example, with its cold start problem, see section 2.5.4,
can be combined with content-based filtering to minimize the cold start problem.

2.5 Challenges
As stated previously, constructing good recommender systems is no easy task. This
section describes some of the challenges such systems face.

2.5.1 Data approximation

A challenge for recommender systems is data approximation. This is a well-known
problem in mathematics that also applies here. A summary of the main challenges
of data approximation is provided below.

Overfitting

It is easy to assume that any P and Q such that PQT ≈ R are good, but that is
not the case. There exist matrices P and Q that would make the model match the
known values of R very closely, but be very bad at predicting the missing values.

This is known as overfitting and happens when the model learns details, noise, and
randomness in the existing data, as concepts of the model [12]. Overfitting will have
good performance on training data, but have poor generalization, resulting in bad
predictions. An example of overfitting can be seen in figure 2.3.

9



2. Recommender systems

Figure 2.3: Overfitting represented by a function that correctly covers all known
points, but at the same time do not cover the general trend.

1 2 3 4 5 6
4

6

8

10

12

14

16

Underfitting

The opposite to overfitting is called underfitting, and it will result in a model that
can not represent the training data in a good way nor make good predictions of
the missing data. Underfitting happens when the model does not have sufficient
accuracy to preserve patterns in the data. A representation of underfitting is shown
in figure 2.4.

Figure 2.4: Underfitting represented by a function on training data. The function
is far from every point.

1 2 3 4 5 6
4

6

8

10

12

14

16

10



2. Recommender systems

Regularization

A way of preventing overfitting is by using regularization. In short, regularization
works by introducing a penalty for overly complex solutions. The magnitude of the
penalty is often determined by a variable denoted λ. In matrix factorization
specifically, regularization is used to keep the values of P and Q reasonably small.
The goal is to achieve a better generalization of the model, favoring better
predictive performance over known ratings matching.

Two commonly used regularization techniques are L1 and L2 regularization, and the
difference between the two can be described with an example. Let A be a matrix, and
b be a vector, both known, in the linear equations problem of finding the unknown
vector x so that:

Ax = b (2.9)

A solution can be found using the following loss function:

min ‖ Ax− b ‖2 (2.10)

In the case of using L1 regularization, the loss function looks like this:

min ‖ Ax− b ‖2 +λ ‖ x ‖1 (2.11)

While in the case of using L2 regularization, the loss function looks like this:

min ‖ Ax− b ‖2 +λ2 ‖ x ‖
2
2 (2.12)

As can be seen, when comparing the two loss functions, the difference is that L1
uses the sum, or least absolute deviations, while L2 uses the squared sum, or least
squares error.

Dimension reduction

As previously described in section 2.2.3, matrix factorization tries to simplify both
items and users into vectors of length K. This is called dimension reduction, and
finding an optimal K is important in order to achieve good performance. The goal
is to find a value of K large enough to preserve the patterns in the data, while at
the same time small enough not to suffer from overfitting [13]. Finding a good value
of K is done by trial and error [13].

2.5.2 Implicit feedback

Implicit feedback, like purchases, page views or clicks, is used to indirectly infer a
user’s preferences.

An overview of the difficulties with working with implicit feedback is provided by
Hu et al. [3]. Some of the challenges they describe are listed and described below.

11



2. Recommender systems

Lack of negative feedback

The challenge with not having explicit data is that with implicit data, an user-item
interaction, e.g. a purchase, does not guarantee user satisfaction, and the absence of
an user-item interaction does not imply that the user is not interested in the item.

Noise in the data

In an implicit data set, an observed purchase does not guarantee user satisfaction.
An item may have been purchased as a gift, or the user may not like what they
purchased. These false positives may lead a recommender system into learning false
patterns, resulting in worse performance.

Confidence vs. preference

In explicit feedback, a high numeric value means that a user gave an item a high
rating, indicating a high preference, and the opposite for a low numeric value. In
implicit feedback though, a high numeric value do not indicate a high preference, but
rather, for example, how many times a user purchased an item, instead indicating
a high confidence that the user likes the item. The number of times a user has
purchased an item does not necessarily correspond to how much the user likes the
item.

2.5.3 Sparsity

A challenge for matrix- or tensor factorization-based recommender system is that the
matrix or tensor to be factorized often is very sparse. As an example, in a system
that has 500 000 users, 50 000 items and 5 000 000 known ratings, a user-item
rating matrix would be 99.98 % empty, and a tensor with contextual information
would be empty to an even larger extent. This poses a difficult problem for a purely
mathematical approach to approximate the missing data.

2.5.4 Cold start problem

Recommender systems based on matrix- or tensor factorization in its most basic
form suffers from what is known as cold start problems. As only
user-item(-context(s)) interactions are used, recommendations for new users are
essentially random. This is because the latent factor vector for a not before seen
user has not been optimized to match the user’s ratings or interactions, as there
are none.

Minimizing the effects of the cold start problem are especially important in
e-commerce, as it is not uncommon for users to only purchase once, often forcing a
recommender system to give recommendations to new users.

12



2. Recommender systems

2.5.5 Computational performance for incremental updates

Another challenge for recommender systems is trends, items that were once
popular may not be popular some time later. This is extra challenging in the
setting of e-commerce, were short-lived trends in fashion dictate what people want
to, or even can, buy. Therefore, it is important that a recommender system in
e-commerce updates its model often, and that it can do so quickly and efficiently,
making computational performance an important thing to consider.

2.5.6 Equal items with different names

In systems with a lot of items, it is not uncommon that an item, or very similar items,
exist multiple times, but with different names. This may result in a recommender
system thinking they are different, which may lead to worse performance.

13



2. Recommender systems

14



3
Proposed work

This chapter describes the algorithm developed as a part of this thesis. It starts
with a description of the algorithm used as the basis for the work, and then goes
over the changes made in order to face some of the challenges described in section
2.5.

3.1 Algorithm
The algorithm proposed in this work is based on an algorithm by B. Hidasi et al.
[4], with the addition of using known user features to minimize the effect of the
cold start problem and the added possibility of fast online training by partial
updates of the model.

The algorithm proposed by B. Hidasi et al. [4] is also known as iTALS, where the i
stands for implicit, the T for tensor, and ALS for Alternating Least Squares.

iTALS is a general tensor factorization algorithm that scales linearly with the
number of non-zero elements of a tensor and works by using two tensors. The first
one, T , is a binary tensor where a cell Tu,i,c1,··· is 1 if the user u has at least one
interaction with item i while the state of the jth context dimension was cj, and 0
otherwise. This result in a very sparse tensor, where the proportion of 1:s is very
low. The second tensor is called W and contains the weights of all elements in T .
The weight of an element t in the tensor T is w0 if t is 0, and greater than w0
otherwise. Further, T is decomposed into D matrices, where D is the number of
dimensions of T . These matrices are called M (i) and have the size K × Si, where
K is the number of latent factors, Si is the size of the ith dimension, and
i ∈ {1, 2, ..., D}.

In this project, T will hold information of observed user-item(-context(s))
interactions, i.e. purchases. W will hold the assigned weights for the same
purchases. Also, if user u has bought item i under context c1 multiple times, the
weight of those purchases will stack and be assigned a higher weight when training
the model. The possibility to assign individual weights to purchases also provides
an easy way of having more recent purchases affect the model more than older
ones, this is, however, outside of the scope of this project.

15



3. Proposed work

The weights w0 and w1 denote the following:

• w0 is the weight of a non-existing interaction, in practice set to 1.
• w1 is the weight of an existing interaction, and it is much larger than w0.

The reasoning for w1 to be much larger than w0 is that observed interactions give
much more information than unobserved ones.

To avoid numerical instability and overfitting of the model, L2 regularization is
used, using Tikhonov regularization. The regularization value used is denoted λ.
See section 2.5.1 for more information regarding regularization in recommender
systems.

The model is trained using a number of iterations, or epochs. This number is in
practice set to 10, as models tend to hardly improve with more epochs than that.

Finding an approximate rating for a user-item-context(s) tuple means finding an
approximate value of the corresponding element in the tensor T . This is done using
the element-wise product of the relevant columns from the matrices M (i):

T̂i1,i2,··· ,iD
= 1TM

(1)
i1 ◦M

(2)
i2 ◦ · · · ◦M

(D)
iD

(3.1)

The loss function to minimize looks like this:

L(M (1), · · · ,M (D)) =
S1,··· ,SD∑

i1=1,··· ,iD=1
Wi1,··· ,iD

(T̂i1,··· ,iD
− Ti1,··· ,iD

)2 (3.2)

The loss function L is minimized using alternating least squares, that is, all but
one of the M (i) matrices are fixed. See section 2.2.3 for more information on
alternating least squares.

The pseudocode of the iTALS algorithm, as described in [4], is given in algorithm 1
below.

16



3. Proposed work

Algorithm 1: iTALS
input : T : a D dimensional S1 × · · · × SD sized tensor of zeroes and ones

W : a D dimensional S1× · · · ×SD sized tensor containing the weights
K: number of features
E: number of epochs
λ: regularization coefficient

Output: {M (i)}i=1,··· ,D K × Si sized low rank matrices
1 procedure iTALS(T , W , K, E, λ):
2 for i = 1, · · · , D do
3 M (i) ← K × Si sized random matrix
4 M(i) ←M (i)(M (i))T

5 end for
6 for e = 1, · · · , E do
7 for i = 1, · · · , D do
8 C(i) ← w0M(1) ◦ · · · ◦M(i−1) ◦M(i+1) ◦ · · · ◦M(D)

9 O(i) ← 0
10 for j = 1, ..., Si do
11 C(i,j) ← C(i)

12 O(i,j) ← O(i)

13 for all {t | t = Tj1,··· ,ji−1,j,ji+1,··· ,jD
, t 6= 0} do

14 Wt ← diag(Wj1,··· ,ji−1,j,ji+1,··· ,jD
− w0)

15 v ←M
(1)
j1 ◦ · · · ◦M

(i−1)
ji−1 ◦M

(i+1)
ji+1 ◦ · · · ◦M

(D)
jD

16 C(i,j) ← C(i,j) + vWtv
T

17 O(i,j) ← O(i,j) +Wtv

18 end for
19 M

(i)
j ← (C(i,j) + λI)−1O(i,j)

20 end for
21 M(i) ←M (i)(M (i))T

22 end for
23 end for
24 return {M (i)}i=1,··· ,D

25 end procedure

3.1.1 Online updating of the model

As explained in section 2.5.5, it is necessary for an online recommender system in
e-commerce to be able to learn from new data quickly.

The authors of iTALS do, however, not suggest a way of refreshing the model
when new interactions are available, besides re-training the whole model on all
historical data, together with the new interactions.

A way refreshing the model is by partial updates, only updating the parts of the
model that are directly affected by the new interactions.

17



3. Proposed work

Consider the new interaction (u, i, c1, · · · ). Instead of performing optimization
steps on the full matrices M (i), optimization steps are performed only on the
directly relevant vectors M (1)

u , M (2)
i , M (3)

c1 , ..., resulting in an approximate model
accounting for the new interaction.

The idea is that the model, from a global perspective, is not changed very much,
while the latent factors for user u, item i and context(s) c1, · · · , are.

A similar idea has been shown to perform well in matrix factorization-based
recommender systems [14].

The pseudocode of the online update procedure is given in algorithm 2 below.

Algorithm 2: Online incremental updates for iTALS
Input : M̂ : Previously learned model

T : a D dimensional S1 × · · · × SD sized tensor of zeroes and ones
W : a D dimensional S1× · · · ×SD sized tensor containing the weights
λ: regularization coefficient
interaction: new interaction (user, item, context1, · · · )

Output: Refreshed model {M (i)}i=1,··· ,D

1 procedure online_update(M̂ , T , W , λ, interaction):
2 M ← M̂
3 I ← interaction
4 update T with I
5 for i = 1, · · · , D do
6 M(i) ←M (i)(M (i))T

7 end for
8 for i = 1, · · · , D do
9 j ← Ii

10 C(i,j) ← w0M(1) ◦ · · · ◦M(i−1) ◦M(i+1) ◦ · · · ◦M(D)

11 O(i,j) ← 0
12 for all {t | t = Tj1,··· ,ji−1,j,ji+1,··· ,jD

, t 6= 0} do
13 Wt ← diag(Wj1,··· ,ji−1,j,ji+1,··· ,jD

− w0)
14 v ←M

(1)
j1 ◦ · · · ◦M

(i−1)
ji−1 ◦M

(i+1)
ji+1 ◦ · · · ◦M

(D)
jD

15 C(i,j) ← C(i,j) + vWtv
T

16 O(i,j) ← O(i,j) +Wtv

17 end for
18 M

(i)
j ← (C(i,j) + λI)−1O(i,j)

19 M(i) ←M (i)(M (i))T

20 end for
21 return {M (i)}i=1,··· ,D

22 end procedure

18



3. Proposed work

3.1.2 Minimizing the effect of the cold start problem

As previously explained in section 2.5.4, it is essential for a recommender system
in e-commerce to be able to give relevant recommendations to new users.
Therefore, a content-boosted pre-processing step before giving recommendations to
a new user u is proposed. Instead of using the latent factors of the new user u in
the calculations, the average of the latent factors of users considered similar to the
user u is used. User similarities are based on features that are known about the
user(s).

Incorporating the known user features to minimize the effect of the cold start
problem is done using the following steps:

1. All users are categorized into a number of different user categories based on
their features:

user category(u) = (featureu
1 , ..., feature

u
f )

where featureu
i denotes the ith feature of user u, and f denotes the total

number of features. The number of different user categories is the product of
the number of values each feature can take:

number of different user categories = ∏f
i=1 cardinality of the ith feature

2. When recommendations for a new user should be made, the best matching
user category, which has users with purchase history in it, is found using the
Jaccard index, which measures the similarity between two sets, A and B. It
is defined as the size of the intersection of the sets, divided by the size of the
union of them:

J(A,B) = |A∩B|
|A∪B|

In the calculation of the recommendations for the new user, the average of
the user latent factors of the users in that category is then used instead of
the latent factors of the new user:

average of user latent factors of similar users =
∑

v∈V
M

(i)
v

|V |

where M (i) is the latent factor matrix for the users and V is the set of users
considered similar to the new user.

The final recommender system is a content-boosted, context-aware, and
collaborative filtering-based tensor factorization algorithm for implicit data.

19



3. Proposed work

20



4
Research methodology

This chapter will go into more detail as to what data was used during the project,
what experiments was conducted as well as how the results of these were measured
and how the system was evaluated.

4.1 Data set
The data set used in this work has been provided by the IT consultant company
Consid AB1 and consists of five years of live e-commerce data from one of their
clients, Junkyard2.

The data set contains a lot of data regarding each user and their purchases.
However, it has no data regarding click-sessions. Also, the data set does not
contain any explicit feedback from the users.

The following properties exist on the different entities used:

Table 4.1: Properties of entities in the data set

Entity Properties
Users year of birth, gender, country, zip code
Items category, price, gender
Orders user id, product id, date, time

Only users with all the properties above and less than 100 orders made were
extracted, making the size of the data set as follows:

Table 4.2: Quantity of entities in the data set

Entity Quantity
Users 357 696
Items 47 293
Purchases 2 785 390

1http://www.consid.se
2https://www.junkyard.se

21



4. Research methodology

This result in a sparsity of a user-item matrix of ≈ 99.98 %.

4.2 Contexts
Multiple contexts of two main categories, namely date and time and user metadata,
were identified and tested. These are described in more detail below.

4.2.1 Date and time

The main hypothesis for using date and time as contexts is that costumers may tend
to buy different products during different seasons, weeks or time of day. This has
been shown to be successful in previous research [15]. An example of when the time
of day affects consumption is what music plays on the radio; it is common for music
on the radio to be more gentle during the morning than during the evening hours.

Half-year

The hypothesis is that customers tend to buy different clothes in either the first or
second half of the year. An example of this can be that customers who purchase
their winter clothing during the autumn and their summer clothing during the
spring.

Description: January-June or July-December
Dimensions of context: 2

Season of year

The hypothesis is that customers tend to buy different clothes during different
seasons of the year. It may be that customers buy clothes for the current season or
that they purchase clothes for the next season.

Description:

December-February
March-May
June-August
September-November

Dimensions of context: 4

Clothing collections

The hypothesis is that customers tend to buy different clothes during different
clothing collection periods. Clothing manufacturers release new clothing
collections during specific times of the year, and that could affect what a customer
would like to purchase.

22



4. Research methodology

Description:

December, January
February, March
April-June
August
September, October
November

Dimensions of context: 6

Month of year

The hypothesis is that customers tend to buy different clothes during different
months, some clothes may only be purchased in a specific month and others may
be purchased every month.

Description: Month of year
Dimensions of context: 12

Day of week

The hypothesis is that customers tend to buy different clothes during different
days of the week. People may, for example, tend to buy shirts before the weekend.

Description: Day of week
Dimensions of context: 7

Time of day

The hypothesis is that customers tend to buy different clothes during different
times of the day, or that some items are purchased more often during certain times
of the day. E.g. people awake and purchasing clothes at 3 a.m. may be more alike
than other people, and also like the same clothes.

Description: 00-06, 06-12, 12-18, 18-24
Dimensions of context: 4

4.2.2 User metadata

In tensor factorization-based recommender systems, every user, item, and context
share the same latent factor space. What any given factor represent is unknown,
properties of the users are expected to be learned automatically if they give better
results.

Some of the factors may represent the location, gender and age of the users, and
the relevance of the same factors with respect to the items and context. However,

23



4. Research methodology

learning these things per user basis require a lot of interactions per user, and in
e-commerce most users have very few interactions, making learning these things
difficult.

The hypothesis is that if known user metadata are included as extra contexts, these
things may be learned on a per user metadata basis, as opposed to on a per user
basis. The number of interactions per given user metadata is a lot higher than per
user, and the performance of the system may reflect this.

Location

The hypothesis is that customers from the same area buy similar items. As an
example, people from cities may not buy the same type of clothing as people from
more rural areas.

Description: Country and first digit of the zip code
Dimensions of context: 260

Gender

The hypothesis is that men buy men’s clothing and women buy women’s clothing.

Description: Male or female
Dimensions of context: 2

Age

The hypothesis is that customers of different ages purchases clothing designed for
different ages. The age groups are constructed in such a way that each group
contains approximately one-third of all users.

Description: Age; < 22, 22-38 or 38+
Dimensions of context: 3

4.3 Evaluation metrics
Evaluation of implicit feedback recommender systems requires appropriate measures.
In the traditional setting where a user specifies an item rating using a numeric score,
there are clear metrics to measure the success of the predictions, such as the mean
squared error between R̂ and R. This section describes the evaluation strategy used.

24



4. Research methodology

4.3.1 Baseline algorithms

For comparison, two baseline algorithms, described below, are also tested.

Recommend the most popular items

A simple recommender system that always recommends the most popular items
has been shown to perform fairly good; people tend to buy the same items that
other customers purchases. Therefore this kind of algorithm makes a good
benchmark. If an algorithm can outperform this baseline algorithm, it is at least a
somewhat good algorithm.

A drawback of a system that always recommends the most popular items is that
it does not take time into consideration, it does not differentiate the most popular
item from last year from the most popular item this year. This can be improved
upon using time decay, this is, however, outside the scope of this project and is not
be tested.

Basic matrix factorization

In order to get insight into how well the extra contexts work, the performance of the
system will also be compared to a basic, context-unaware, matrix factorization-based
recommender system. See section 2.2.3 for more information.

4.3.2 Historical data

The historical data is, in chronological order, split into 60 parts, with each part
spanning about one month of time. The model is then trained on the first 36 of
these parts, spanning about three years of time. The evaluation is then conducted
on the remaining 24 parts of the data, spanning about two years of time.

The evaluation is conducted on one of the 24 test parts of the data at a time. After
the model has been evaluated using one part of the data, the model is trained on
the part on which it was just evaluated, after which the same procedure is repeated
on the next part of the data. This is repeated until the system has been evaluated
on all 24 test parts.

25



4. Research methodology

Mean Percentage Ranking (MPR)

Because of the nature of implicit data, a recall based evaluation metric that
evaluates a user’s satisfaction with an ordered list of recommended items is used,
known as Mean Percentage Ranking (MPR) [3].

Denote rankui the percentage ranking of item i in an ordered list of items
recommended for user u.

rankui = location of item i in recsu ×
100

length of recsu

(4.1)

where recsu denotes the ordered list of items recommended for user u. A rankui of
0 indicates that the item i is the most desired by user u, and a rankui of 100
indicates the opposite. For random predictions, the expected value of rankui is 50.

The final evaluation score is then the mean of all percentage rankings:

rank =
∑

u,i rankui

number of recommendations
(4.2)

A lower rank is more desirable. A rank of 0 indicates that the purchased products
always were the top recommended, a rank of 100 indicates the opposite.

Mean Absolute Error (MAE)

In order to determine the difference in the approximated model from online
updating, compared to the model from a full re-training, the metric mean absolute
error is used on the matrices M (i).

Consider two arrays of numbers, x and y, both of length n. The mean absolute error
is the average difference between each element pair (xi, yi) of the two arrays.

MAE =
∑n

i=1|yi − xi|
n

=
∑n

i=1 ei

n
(4.3)

The equation above can be generalized as follows to measure the difference between
two multidimensional tensors:

MAE =
∑n

i=1 · · ·
∑m

j=1|yi,··· ,j − xi,··· ,j|
n× · · · ×m

=
∑n

i=1 · · ·
∑m

j=1 ei,··· ,j

n× · · · ×m
(4.4)

26



5
Results

In this chapter, the results of the changes made to the algorithm described in chapter
3 as well as from the experiments of the various contexts described in section 4.2
are presented.

5.1 Algorithm parameters used in all tests

Different values of the parameters used by the algorithm were tested, and the
following were found to work best on the data set and were used in all tests:

Table 5.1: Algorithm parameters used in all tests

Parameter description Value of parameter
Regularization value λ 0.045
Number of epochs 10
Number of factors 40
w0 1
w1 100

The regularization value λ and the number of factors to use was found using trial
and error. The number of epochs to use and the values of w0 and w1 were set to the
suggestions from the authors of iTALS [4]. Other values were tested, but none were
found to perform better.

5.2 Baseline results

For comparison, two baseline algorithms were tested. The first was with a
recommender system that always recommends products based on their historical
popularity. The second was a run with the main recommender system, without
any context or other changes, e.g. minimization of the effect of the cold start
problem. Both are described in more detail in section 4.3.1.

The results of these tests were the following:

27



5. Results

Table 5.2: Baseline results

Recommender system MPR
Basic matrix factorization 38.51
Recommend the most popular items 21.28

As shown in the table 5.2 above, the recommender system that always recommends
the most popular items perform much better than the basic matrix factorization.

5.3 Contexts
In this section, the results of the experiments of the various contexts described in
section 4.2 are presented.

5.3.1 Date and time

The following tests were conducted with only one active context, and without other
changes, e.g. minimization of the effect of the cold start problem.

Table 5.3: MPR of the different time and date contexts

Context MPR Change compared to no context
None 38.51 -
Half-year 40.16 4.28 % worse
Season of year 41.31 7.27 % worse
Clothing collections 42.05 9.19 % worse
Month of year 44.18 14.72 % worse
Day of week 40.99 6.44 % worse
Time of day 39.90 3.48 % worse

As can be seen in table 5.3, no date and time context tested gave a better result
than the benchmarking test run without context.

Generated data to verify algorithm soundness regarding date and time

In order to make sure that the algorithm could find and make use of date and
time-based contexts, if they were present in the data set and relevant for what
purchases were made, the system was run on synthetic, generated, data. The tests
were also conducted to make sure that the algorithm does not perform
considerably worse if the context information is only noise, and not relevant for
what purchases were made.

Four different data sets were generated, where purchases depended or did not
depend on context, and where similar users did or did not buy similar stuff. In
order to have similar users, a set of user types were introduced, with users of the
same user type buying products from the same subset of products.

28



5. Results

The data set was generated as follows:

• 100 000 users
• 10 000 products
• 1 000 user types, users of the same user type buy products from the same

subset of products
• 1 000 000 orders ≈ 99.90 % sparsity of a user-item matrix

When generating an order:

• Pick a random user.
• Pick a random date, spanning 5 years.

When picking the product of the order:

• If no context and no user types: a random product from all products.
• If no context and user types: a random product from a subset of all

products, subset depends on the users’ user type.
• If context and no user types: a random product from a subset of all

products, subset depends on the context.
• If context and user types: a random product from a subset of a subset of

all products, the first subset depends on the users’ user type, the second
depends on the context.

The context used when generating the data was season of year.

The results of these tests were the following:

Table 5.4: Generated data, recommender system is not context-aware

Context No context
User types 0.56 0.6
No user types 50.28 50.01

Table 5.5: Generated data, recommender system is context-aware

Context No context
User types 0.4 0.6
No user types 38.11 49.98

As can be seen in table 5.4, when the recommender system is not context-aware,
the difference in MPR when the data is generated with and without context is very
low. In table 5.5, however, when the recommender system is context-aware, the
difference in MPR when the data is generated with and without context is
substantial (25-35 % increase in performance).

29



5. Results

Comparing the values of table 5.4 and 5.5 also shows what the context-aware
algorithm does not perform worse if the data set is generated without context.

5.3.2 User metadata

The following tests with different contexts were conducted with only one active
context, and without other changes, e.g. minimization of the effect of the cold start
problem.

Table 5.6: MPR of the different user metadata contexts

Context MPR Change compared to no context
None 38.51 -
Location 37.94 1.48 % better
Gender 37.81 1.82 % better
Age 37.01 3.90 % better

As can be seen in table 5.6, all user metadata contexts tested gave better results
than the benchmarking test run without context.

5.4 Minimizing the effect of the cold start
problem

Tests were conducted to measure the effects of the method for minimizing the
effect of the cold start problem described in section 3.1.2.

The results of these tests were the following:

Table 5.7: Comparison of MPR when using, and not using, the fix for the cold
start problem

Context MPR without the fix MPR with the fix Change
None 38.51 25.74 33.16 % better
Location 37.94 26.38 30.47 % better
Gender 37.81 25.22 33.30 % better
Age 37.01 24.49 35.45 % better

As can be seen in table 5.7, using the method described in section 3.1.2 to minimize
the effect of the cold start problem gives substantially better results for all contexts,
compared to when not using it.

30



5. Results

Table 5.8: Comparison of MPR when using the fix for the cold start problem

Context MPR with the fix Change compared to no context with the fix
None 25.74 -
Location 26.38 2.49 % worse
Gender 25.22 2.01 % better
Age 24.49 4.86 % better

As can be seen in table 5.8, location as context does not give any improvements in
performance, while both gender and age do.

5.5 Combining context and minimizing the effect
of the cold start problem

As the contexts gender and age work best in table 5.8, a test was conducted with
those two contexts combined, with the method for minimizing the effect of the cold
start problem also activated.

The result of this test was the following:

Table 5.9: MPR when using multiple contexts and the fix for the cold start problem

Context MPR with the fix Change compared to no context with the fix
None 25.74 -
Gender & Age 24.24 5.83 % better

As can be seen if comparing the results of the two context being active one at a
time (see table 5.8), and the result of the contexts combined (see table 5.9), the
combination of the two contexts outperforms any of the two being active one at a
time.

5.6 Online updating of the model
Tests were conducted to measure the effects of training the model at different
intervals, or batch sizes. The results of these tests are described in the sections
below.

5.6.1 Different batch sizes

The quality of the recommendations given by a model trained at different intervals
was measured. The test was run without any context, and without other changes,
e.g. minimization of the effect of the cold start problem.

The results were as follows:

31



5. Results

Table 5.10: MPR of the different batch sizes

Batch size MPR Change compared to biggest batch size
46 423 38.51 -
10 000 35.96 6.62 % better
1 000 34.24 11.09 % better
100 31.75 17.55 % better

The batch size of 46 423 is derived from the size of one 1/60 of the data set, that
batch size also re-trained the full mode after every batch. The other batch sizes
used online updating of the model after every batch and re-trained the full mode
after every 46 423th order. As can be seen in table 5.10, training the model more
often gives substantially better results, compared to training the model less often.

5.6.2 Computational performance difference

The difference in the computational performance using the online updating
method described in section 3.1.1, compared to re-training the whole model, was
also measured. The test started out with a model pre-trained on half of the data
and no context, and the difference was measured when training on 100 additional
orders.

The result of this test was the following:

Table 5.11: Difference of duration per epoch, learning 100 additional orders,
comparing online updating with re-training full model1

Duration per epoch
Re-training full model 39 seconds
Online updating of model 5 seconds (≈ 8x faster)

5.6.3 Model approximation difference

In order to determine the difference in the approximated model from online
updating, compared to the model from a full re-training, another test was
conducted. The test started out with a model pre-trained on half of the data and
no context or other changes, e.g. minimization of the effect of the cold start
problem. The difference was measured when training on 100 additional orders.

In the tables below M (1) is the latent factor matrix for the products and M (2) is the
latent factor matrix for the users.

1Measured on an Apple MacBook Pro "Core i5" 2.7 GHz 16 GB 13" Early 2015

32



5. Results

Table 5.12: Properties of M (i) in starting model

M (1) M (2)

Min value -11.294 -0.151
Max value 11.431 0.216
Average value 0.029 0.001

Table 5.13: Properties of M (i) after 100 additional orders, comparing online
updating with re-training full model

Online updating of model Re-training full model
M (1) M (2) M (1) M (2)

Min value -11.294 (0 %) -0.151 (0 %) -11.257 (-0.33 %) -0.150 (-0.66 %)
Max value 11.431 (0 %) 0.216 (0 %) 11.355 (-0.66 %) 0.218 (+0.93 %)
Average value 0.029 (0 %) 0.001 (0 %) 0.029 (0 %) 0.001 (0 %)

As can be seen, when comparing tables 5.12 and 5.13, the online update of the
model does not change the measured properties of the model. This is in line with
the assumption made in section 3.1.1, describing the method for online updating
the model. Also, when comparing the tables, differences of the measured properties
of the model when re-training the full model can be seen. The average values of
M (i) do not change, while the maximum value of M (2) sees an increase of almost
one percent.

Table 5.14: Comparison of the different models (A and B), using the mean absolute
error as metric

A B MAE for M (1) MAE for M (2)

Starting model Online updating of model 109.02 ×10−6 57.78 ×10−6

Starting model Re-training full model 3565.74 ×10−6 0.73 ×10−6

Online updating of model Re-training full model 3585.70 ×10−6 0.72 ×10−6

When using the mean absolute error as a metric for measuring the difference between
the models, the difference between the starting model and the model from online
updating of the model also shows only a small difference. The differences are largest
when comparing with the model from re-training the full model, with an MAE of
about 36 ×10−4 for M (1).

33



5. Results

5.7 Online training with content and context
In order to achieve the best possible result, a test was conducted with the best
combination of contexts, i.e. gender and age, with the fix for the cold start
problem, and with online updating of the model using a batch size of 100.

The result of this test was the following:

Table 5.15: The best possible result and other results for comparison

Context Fix for the cold start problem Online updating MPR
Gender & Age Yes Yes, a batch size of 100 19.31
None Yes No 25.74
None No Yes, a batch size of 100 31.75
None No No 38.51

The result is also 9.26 % better than that of the baseline result of a recommender
system always recommends the most popular items (21.28).

34



6
Discussion

In this chapter, the results presented in chapter 5 are discussed and put into the
context of the larger field of recommender systems research, together with thoughts
regarding possible future work.

6.1 Evaluating the results

In order to ease the discussion of the results regarding the various aspects in this
thesis, this section is divided into four parts.

6.1.1 The usage of additional contexts

In this thesis, two distinct categories of contextual information were tested and
evaluated, namely time and date and user metadata. The performance of these can
be found in sections 5.3.1 and 5.3.2, respectively.

As stated in section 1.4, the hypothesis was that the usage of time and date as
context would increase the quality of the recommendations. This was, however,
not backed up by the conducted experiments, as can be seen in table 5.3. In fact,
the opposite was observed; the quality of the recommendations got worse when
incorporating time and date as context, compared to not using any contexts at all.
This was unexpected, as the usage of time and date as context had previously been
shown to perform well in other settings [4]. As mentioned in section 2.5.5, it is
extra challenging for a recommender system in the setting of e-commerce, were
short-lived trends in fashion dictate what people want to, or even can, buy. This
might be why the time-based contexts performed poorly in the experiments.
Additional tests were also conducted that showed that the recommender system
does learn the patterns of time-based contexts if they exist and are relevant, see
section 5.3.1.

In addition to testing time-based contexts, contexts based on user metadata were
tested. The results of these tests indicate that user metadata-based contexts
correlate better to user purchases than time-based ones. All user metadata
contexts tested performed better in the tests, compared to when no context
information was used, see 5.3.2. The results indicate that customers of the same
age, gender, or living in the same location, tend to an extent purchase the same
items to a higher degree than customers with more diverse demographics. This

35



6. Discussion

agrees with results of previous research.

6.1.2 Tackling the cold start problem

In addition to evaluating the performance of various contexts, a method of
minimizing the effect of the cold start problem was proposed, see section 3.1.2. In
this project, this is what had the biggest measured impact on the performance of
the recommender system. The conducted experiments show improvements of
around 30 % when using the proposed method of minimizing the effect of the cold
start problem, compared to when not using it, as can be seen in table 5.7. It might
be the case that it is especially important to tackle the cold start problem in
e-commerce, as it is not uncommon for users to only purchase once, often forcing a
recommender system to give recommendations to new users.

6.1.3 Online updating of the model

As explained in section 2.5.5, it is important for an online recommender system in
e-commerce to be able to learn from new data quickly. With this as background, a
method of performing online updates of the model was proposed in section 3.1.1.
In the experiments, a clear correlation between an up-to-date model and an
increase in the quality of the recommendations was shown, as can be seen in table
5.10. The hypothesis is that an up-to-date model is able to better pick up on
short-lived trends, compared to a more infrequently updated model.

Another aspect of online updating of the model is that it becomes more feasible to
keep the model up-to-date. In an experiment, new data was incorporated into the
model ≈ 80x faster, as can be seen in table 5.11. This speed up is expected to
increase with even more data and a bigger model.

As the procedure of online updating of the model is approximate in nature, tests
were conducted to measure the difference between an online updated model and
a fully trained model. The results of an online update can be seen in tables 5.13
and 5.14. The experiments show that the model, from a global perspective, is not
changed very much, while they at the same time show a large effect on the directly
affected parts of the model. The results are in line with what was expected and
predicted in section 3.1.1, and also agree with those presented in previous research
[14].

6.1.4 Other results and thoughts

In order to achieve the best possible result, a test was conducted with the best
combination of contexts, i.e. gender and age, with the fix for the cold start
problem, and with online updating of the model using a batch size of 100. The
result of this test, which can be seen in table 5.15, was the only one what was
better than the result of the baseline algorithm that always recommends products
based on their historical popularity, see table 5.2. This fact is a strong indication
that tensor factorization-based recommender systems are a bad fit for usage in

36



6. Discussion

e-commerce.

As an extra note, in the clothing industry, sales and discounts are common, with
increased sales on selected products as the result. A recommending system
without the knowledge of such extra information is forced to only be reactive,
while a recommending system with that knowledge has the possibility to take such
information into consideration and be more proactive. The data set used in this
project did not contain such information, and it is expected that, had such
information been available, better performance of the recommender system could
have been achieved.

6.2 Future work
The best way of evaluating recommender systems is using real online testing, this,
however, was not a possibility during this project.

In a setting where items are rated by the users, recommendations may affect which
items are rated, but not how they are rated, which is what is recorded and
predicted. In a setting where users buy items, however, recommendations may
affect which items the users buy, which is directly what is recorded and predicted.

This means that evaluation of a recommender system in such a setting cannot be
done using historical data alone, as there exists no way of affecting what items are
bought. Evaluation on historical data only measures how well one predict the past
purchases, rather than whether a user is likely to buy an item based on the
recommendations provided [16].

We, therefore, propose that future work that follows up on our work extend the
evaluation of the recommender system into real online testing or with simulated
users. Evaluation with simulated users is not used very much in the research of
recommender systems, as the traditional setting does not require it as much as the
setting used in this work; it is, however, a recognized evaluation strategy [17].

37



6. Discussion

38



7
Conclusion

In this thesis, it was investigated how well a context-aware tensor
factorization-based recommender system algorithm for implicit data could be made
to work in a garment-based e-commerce environment. As can be seen in chapter 5,
the results were mixed. Additional contextual information based on the time and
date of the purchases does not seem to give an increase in the quality of the
recommendations, see section 5.3.1. However, contextual information based on
user metadata does seem to increase the quality of the recommendations, see
section 5.3.2.

In addition to testing various additional contextual information, two changes to
the algorithm proposed by B. Hidasi et al. [4] were made, see section 3.

The first was the added possibility of online updating of the model, see section
3.1.1. This change makes the process of updating the model often with new data
much more efficient, see section 5.6.2, and make it more feasible to have the model
always being up-to-date. The importance of an up to date model was shown in
section 5.6, with 15 % improvements in the performance of the recommender
system being observed, compared to a less up to date model, see section 5.6.1.

The second change made was a proposed method for minimizing the effect of the
cold start problem, see section 3.1.2. With this fix, the improvement in the quality
of the recommendations was measured to over 30 %, see section 5.4.

Note: These results are specifically for the data set used in this thesis, and other
data set may give other results.

7.1 The research question and hypothesis

The first part of the research question stated in section 1.3 was given the
limitations of the implicit-only data available for recommender systems in
e-commerce, how well does a tensor factorization-based recommendation algorithm
work? The answer we have come up with is that it works okay. Our results
indicate that collaborative filtering-based recommender systems do not seem to
work very well in a setting with implicit-only data, and moreover where the
average user has very few interactions with items. However, if the correct
contextual information is identified and used, together with the changes proposed

39



7. Conclusion

in chapter 3 to the algorithm proposed by B. Hidasi et al. [4], a recommender
system performing better than an algorithm recommending the most popular
items can be archived, as can be seen in table 5.2. This fact, however, is a strong
indication that tensor factorization-based recommender systems are a bad fit for
usage in e-commerce, at least in the form tested in this thesis.

The second part of the question was how does it compare with the performance of
other recommender systems in the same setting, e.g. matrix factorization-based
recommender systems, without context-awareness? Our hypothesis, laid out in
section 1.4, was that it would perform better. The answer to this part is that
contextual information based on the time and date of the purchases does not seem
to give an increase in the quality of the recommendations, while contextual
information based on user metadata does seem to give an increase in the quality of
the recommendations.

Again, these results are specifically for the data set used in this thesis, and other
data set may give other results.

7.2 Limitations of our research
As stated in section 6.2, evaluation of the recommender system using real online
testing was not a possibility during this project, and this should be taken into
consideration when analyzing the results of this thesis. The limitation of the single
data set used should also be taken into consideration. The algorithm, contexts, and
proposed changes evaluated in this project might have performed better or worse if
tested with another data set.

40



Bibliography

[1] C. Gomez-Uribe and N. Hunt, “The netflix recommender system”, ACM
Transactions on Management Information Systems, vol. 6, no. 4, pp. 1–19,
2015.

[2] A. Karatzoglou, X. Amatriain, L. Baltrunas, and N. Oliver, “Multiverse
recommendation”, Proceedings of the fourth ACM conference on
Recommender systems - RecSys ’10, 2010.

[3] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit
feedback datasets”, in Data Mining, 2008. ICDM’08. Eighth IEEE
International Conference on, IEEE, 2008, pp. 263–272.

[4] B. Hidasi and D. Tikk, “Fast ALS-based tensor factorization for context-aware
recommendation from implicit feedback”, Machine Learning and Knowledge
Discovery in Databases, pp. 67–82, 2012.

[5] R. Van Meteren and M. Van Someren, “Using content-based filtering for
recommendation”, Proceedings of the Machine Learning in the New
Information Age: MLnet/ECML2000 Workshop, pp. 47–56, 2000.

[6] F. Ricci, L. Rokach, and B. Shapira, Recommender systems handbook, 1st ed.
Springer, 2015, pp. 1–35.

[7] G. Linden, B. Smith, and J. York, “Amazon.com recommendations: Item-to-
item collaborative filtering”, IEEE Internet Computing, vol. 7, no. 1, pp. 76–80,
2003.

[8] C. C. Aggarwal, Recommender Systems, 1st ed. Springer International
Publishing, 2016.

[9] Y. Koren, R. Bell, and C. Volinsky, “Matrix factorization techniques for
recommender systems”, Computer, vol. 42, no. 8, pp. 30–37, 2009. doi:
10.1109/mc.2009.263.

[10] G. Takács, I. Pilászy, B. Németh, and D. Tikk, “Matrix factorization and
neighbor based algorithms for the netflix prize problem”, Proceedings of the
2008 ACM conference on Recommender systems - RecSys ’08, 2008. doi: 10.
1145/1454008.1454049.

[11] Y. Hu, Y. Koren, and C. Volinsky, “Collaborative filtering for implicit feedback
datasets”, 2008 Eighth IEEE International Conference on Data Mining, 2008.
doi: 10.1109/icdm.2008.22.

[12] T. Dietterich, “Overfitting and undercomputing in machine learning”, ACM
Computing Surveys, vol. 27, no. 3, pp. 326–327, 1995. doi: 10.1145/212094.
212114.

[13] B. Sarwar, G. Karypis, J. Konstan, J. Riedl, and
M. U. M. D. of COMPUTER SCIENCE., Application of Dimensionality

41

http://dx.doi.org/10.1109/mc.2009.263
http://dx.doi.org/10.1145/1454008.1454049
http://dx.doi.org/10.1145/1454008.1454049
http://dx.doi.org/10.1109/icdm.2008.22
http://dx.doi.org/10.1145/212094.212114
http://dx.doi.org/10.1145/212094.212114


Bibliography

Reduction in Recommender System - A Case Study. Defense Technical
Information Center, 2000. [Online]. Available:
https://books.google.se/books?id=5k0NDQEACAAJ.

[14] X. He, H. Zhang, M.-Y. Kan, and T.-S. Chua, “Fast matrix factorization for
online recommendation with implicit feedback”, Proceedings of the 39th
International ACM SIGIR conference on Research and Development in
Information Retrieval - SIGIR ’16, 2016. doi: 10.1145/2911451.2911489.

[15] N. N. Liu, B. Cao, M. Zhao, and Q. Yang, “Adapting neighborhood and matrix
factorization models for context aware recommendation”, Proceedings of the
Workshop on Context-Aware Movie Recommendation - CAMRa ’10, 2010. doi:
10.1145/1869652.1869653.

[16] F. Garcin, B. Faltings, O. Donatsch, A. Alazzawi, C. Bruttin, and A. Huber,
“Offline and online evaluation of news recommender systems at swissinfo.ch”,
Proceedings of the 8th ACM Conference on Recommender systems - RecSys
’14, 2014. doi: 10.1145/2645710.2645745.

[17] G. Shani and A. Gunawardana, “Evaluating recommender systems”, Tech.
Rep., Nov. 2009. [Online]. Available: https://www.microsoft. com/en-
us/research/publication/evaluating-recommender-systems/.

42

https://books.google.se/books?id=5k0NDQEACAAJ
http://dx.doi.org/10.1145/2911451.2911489
http://dx.doi.org/10.1145/1869652.1869653
http://dx.doi.org/10.1145/2645710.2645745
https://www.microsoft.com/en-us/research/publication/evaluating-recommender-systems/
https://www.microsoft.com/en-us/research/publication/evaluating-recommender-systems/

	List of figures and plots
	List of tables
	Notations
	Introduction
	Background
	Related work
	The research question
	Hypothesis
	Scope
	Goals
	Research contribution
	Outline of the report

	Recommender systems
	Content-based filtering
	Collaborative filtering
	User-based
	Item-based
	Matrix factorization

	Context-aware filtering
	Tensor factorization

	Hybrid systems
	Challenges
	Data approximation
	Implicit feedback
	Sparsity
	Cold start problem
	Computational performance for incremental updates
	Equal items with different names


	Proposed work
	Algorithm
	Online updating of the model
	Minimizing the effect of the cold start problem


	Research methodology
	Data set
	Contexts
	Date and time
	User metadata

	Evaluation metrics
	Baseline algorithms
	Historical data


	Results
	Algorithm parameters used in all tests
	Baseline results
	Contexts
	Date and time
	User metadata

	Minimizing the effect of the cold start problem
	Combining context and minimizing the effect of the cold start problem
	Online updating of the model
	Different batch sizes
	Computational performance difference
	Model approximation difference

	Online training with content and context

	Discussion
	Evaluating the results
	The usage of additional contexts
	Tackling the cold start problem
	Online updating of the model
	Other results and thoughts

	Future work

	Conclusion
	The research question and hypothesis
	Limitations of our research

	Bibliography

