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Prototyping a network traffic tester using a distributed system of single board com-
puters.
SIMON DIRNBERGER
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Network traffic testers are integral to developing and evaluating hardware that is
used for the ever-increasing demand for faster, better and more covering data net-
works. However the testers typically used come with a hefty price tag and are
sold by companies that specialise in the field. This paper tries to prove whether a
distributed system of smaller and cheaper single-board computers can be built to
function as a high-performant network traffic tester. We look at similar solutions
for network traffic testers, both proprietary and non-proprietary. We formulate a
set of requirements, both hardware and software, and in this paper suggest a design,
implementation and evaluation of such a system. The result of our findings is a
working traffic tester built from single-board computers running Linux and using
the the kernel module pktgen for traffic generation, netsniff-ng for capturing traf-
fic and the framework MPICH for communication. The test results are promising
when it comes to traffic rate and accuracy, given certain limitations in the system.
However the increased complexity in its usage makes it unwieldy to use and requires
more work in order for it to be a viable option. However, given enough time for it to
become more user-friendly we believe that this solution can compete with the more
expensive alternatives.

Keywords: single-board computers, traffic generator, data network, distributed
systems, OSI
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1
Introduction

1.1 Motivation

Single-board computers (SBC), such as Raspberry Pi, BeagleBone and ODROID,
are increasing in popularity as new ideas and projects are shared in the thriving
SBC communities. Systems such as simple web servers, media centers, monitoring
systems [1] and even super computers [2] have been implemented with the popular
tiny computers. The SBCs display high versatility despite their limited hardware.

Layer 10 is a company that use proprietary hardware Ethernet testing products,
hereby referred to as testers, for testing microwave radio products. The tester gener-
ates and analyses network traffic at high transfer rates. A typical test case would be
to define a stream of packets that contain specific data. The data is then sent with
different intervals from one port of the tester, through the microwave radio unit and
further into the other port of the tester where it is made sure that all packets sent
are also received and in no way corrupt or altered. The analysis consists of checking
that all the fields set in receiving end coincide with the packets that were sent from
the transmitting side.

The problem is that the testers are typically very expensive. As of late there
is also an increase in demand for the testers as other projects have started that are
in need of performing the same kind of tests. However instead of spending a lot
of resources on new hardware, the company nurtured the idea of trying to design
and implement a new cost-efficient tester that is based on open source software and
cheaper hardware.

This is where the company wants to put SBCs to use. As the requirements
of the transfer rates are high (up to 1 Gbps) typically a single SBC is not enough.
However if the combined performance of a distributed system of SBCs, supported
with open source software, could match the functionality of a proprietary tester it
would be of high interest to use this kind of system alongside, or instead of, the
proprietary testers. If we can utilise the scalability of a distributed system, we can
theoretically increase the performance indefinitely, given that performance increase
linearly with the number of nodes added to the system. For instance, let us say we
reach a traffic rate of 1 Gbps at five nodes. It would then be interesting to explore
whether we can achieve 2 Gbps by adding five more nodes to the system. Then the
distributed system of SBCs becomes very attractive as the cost of another node is
typically way cheaper than another proprietary tester. Thus the problem becomes
how to design and implement a distributed system of SBCs that can generate and
analyse network traffic at high speeds.
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1. Introduction

1.2 Problem formulation
The thesis can be split up into several problems or issues that need to be investigated.
The following list summarises these problems.

• Investigate the testing suites of the proprietary systems and pinpointing which
aspects of the traffic generation and analyses are the most important.

• Evaluation of which hardware that suits the system best. The evaluation is
made of weighing the different hardware’s performance against its price.

• Evaluation of which open source software for packet generation and analysis
that meet the requirements of Layer 10’s testing suites. In the evaluation it
is also important to investigate which software utilises the limited hardware
performance of the SBCs the best.

• Designing and implementing a distributed system that distributes the task of
packet generation and analysis among the participating nodes of the system
in a synchronised manner.

• Evaluating the performance of the system and compare it to the proprietary
products.

1.3 Thesis outline
The thesis is split up into several chapters. Chapter 2 presents the background of
which this thesis is based on. It goes through the concepts and details of the work
that this thesis uses as its foundation. Reading through this chapter is optional, it
might be of interest if some concepts of the thesis are unfamiliar or does not make
any sense. Chapter 3 summarises the work that is related to this thesis. It is split
into several sections of proprietary, non-proprietary, distributed and non-distributed
solutions of packet generators and analysers that does similar things to what the
work of this thesis is trying to achieve. Chapter 4 goes into detail of designing the
system. It covers how the packet generation and analysis is defined as distributed
tasks. We introduce the concepts of receiving and transmitting groups of nodes, and
the master node that works as the handler of the system. Chapter 5 consists of the
actual implementation of the system. That is how the system is interacted with and
presents details of how the software is built together to form the distributed packet
generator and analyser. Chapter 6 exhibits the evaluation results of the system.
It covers the most important evaluations made in establishing how good, or bad,
different aspects of the system worked. These evaluations include everything from
which SBC would suit best for the thesis to how the final system stood against the
proprietary tester. In Chapter 7 we present the conclusions that could be drawn
from the work and results of the evaluations. The chapter also presents thoughts
about what improvements and changes that could be done in the future.
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2
Background

In this chapter we look into the background material that lay as a foundation for
the thesis. We go into detail of the established concepts and methods that are used
within the thesis work, i.e. the work which the thesis is based upon. The chapter
is split into sections where we present information related to the basic problems of
a distributed system. In Section 2.1 we look at common difficulties when building a
distributed system. Each subsection details a specific problem. Section 2.2 describes
how the Linux kernel handles network packets, as this is of importance when we want
to utilise as much as possible from the limited hardware. Section 2.3 describes how
the communication is handled between the nodes and how MPI is used to pass
information between the participating nodes of the distributed system.

2.1 The difficulties of a distributed system
This section touches upon three major problems related to implementing distributed
systems. In the Section 2.1.1 we go through how causality is an issue in distributed
systems. In Section 2.1.2 the implications of consistency between the nodes is ex-
plained and why it is important that every node that share data should have a
common view of the system. Section 2.1.3 shines light on the problem of timing,
why each node needs to be synchronised.

2.1.1 Causality
Causality is one of the challenges in modelling distributed systems. The problem
stems from a property that comes with every distributed system. The property is
that in distributed systems there is no way of being sure when messages arrive at
participating nodes, or even if they arrive at all. Because of this property there is
no safe way for participants of a distributed system to agree on what, or in what
order, events happen. Since distributed systems do not share clocks there is no way
to agree on a time, and then there is no possibility to agree on when events happen.

The solution for this problem is to not use time as a means for knowing when
events happen, but instead using logical time. At every event we increase our logical
clock by one step. The problem comes when we want to know if one event on one
participating node happened before another event on another node. This is where
causal ordering comes in. The only way to know for sure if one event on one node
happened before another event on another node is to find an instance where these
two events are connected to each other.

3



2. Background

On a set of machines we have two different types of events, events that only
occur on a single machine and events that occur between machines. There are three
rules that describe how causal ordering works.

1. If event A happens before B on a local machine then A also happens before B
in the global order. Notated like this A→ B.

2. Sending a message m always happens before receiving that message, notation
is send(m)→ recv(m).

3. Causal event ordering is also transitive, if A → B and B → C then it is also
true that A→ C.

2.1.2 Consistency
In a distributed system where we share a common mutable state one of the main
problems is keeping that state consistent over all different participating machines.
When that state is replicated over all machines we have an issue where different
updates can happen on different machines at different times. We can only define a
distributed system as consistent when this replicated state only exists in one form.
In other words, there can never be a replicated state that looks different depending
on from which participating machine you access this state from.

To solve this issue there are different consistency models that can be imple-
mented in a distributed system. They all balance between delivering a loose con-
sistency or a strict consistency in a distributed system. Loose consistency means
that the system will be effective but the state might not be updated at all machines.
Strict consistency is inefficient but ensures that the state is always up-to-date at all
machines.

In this thesis work the problem is avoided because the system is modeled so that
data sent from each node is unique to that node. Furthermore the task of sending
and receiving data is isolated. No operations or states are really shared between the
nodes. Thus there is no real need for a consistency model. Each node operates on
its own state.

2.1.3 Timing
In addition to keeping track of logical clocks and event ordering we also need to keep
track of the actual time in a distributed system. We need to keep a consistent time
of day across the whole system. In other words we need a way to synchronise timing
between machines in a distributed system. To put it in context for this thesis we
need to find a way for the processes to agree on when to start sending data, otherwise
we have no way of ensuring a packet rate or when and how the data will be sent.

As [3] discusses there are a few synchronisation algorithms in distributed sys-
tems for machines to agree on a common time. Some of them rely on synchronising
clocks from another machine that has a reliable time, a master node so to speak.
The algorithm then also takes delay into consideration by using error bounds. In
this thesis we rely on a construct called synchronisation barrier, it is one of the col-
lective calls specified in the Message Passing Interface (MPI) that will be discussed
in detail in a Section 2.3.1. In this call the master node initiates a barrier and does

4



2. Background

not let the state machine to continue executing before all participating nodes have
reached this barrier. This is another way of synchronising the timing between the
nodes and the method is relied upon in the work of this thesis.

2.2 Network packets handled in the Linux kernel
This section touches upon why it is important how the Linux kernel handles network
traffic. Trying to limit the overhead and getting as close to the hardware as possible
can significantly increase the performance and make the system more accurate. This
section features explanations and figures to describe the working of the network data
handling of the Linux kernel.

We will focus on the communication layers which are relevant for this thesis.
This means that we will limit the network data handling up to what is called the
session layer in the OSI model, which is the entry level for user space over to kernel
space. It makes sense to do this explanation through the transmission of a packet,
from user space to kernel space and then to the actual network interface card (NIC).

The transmission of an Ethernet packet over IPv4, that is not the configuring
or creating of it, starts at Layer 5 - the session layer. In the session layer there
are three system calls that can be used to send data over the network. They are
called write, sendto and sendmsg. The write call sends memory data to a file
descriptor, sendto sends memory data to a socket and sendmsg takes a composite
message and sends it to a socket. Note that each of these are system calls, or kernel
entry points, which means that they are interrupts to the kernel. What this means
is that data must be copied back and forth between user and kernel space when
these system calls are made, wasting processor cycles on simply copying data. This
because kernel space and user space are running on separate address spaces.

In Layer 4, called the transport layer, there is a function called tcp_sendmsg
that is used for sending each segment of a message. Before we delve into the details
of how that function operates let us take a look at what an sk_buff, socket buffer,
is and what it does. An sk_buff is simply a data structure that the kernel uses for
all network-related queues or buffers. It is implemented as a doubly linked list and
the structure contains all control information required for a packet. The network
data is managed through the sk_buff data structure. The tcp_sendmsg uses
this data structure in its operations which is why some basic explanation is needed.
Now the tcp_sendmsg function operates in four steps.

1. Find an sk_buff with space available.
2. Copy data from user space to the sk_buff data space, notice that this is

again a call from user to kernel space. As [4] discusses the data duplication
between kernel and user buffer is not really necessary, some of it can be deleted
to decrease overhead.

• In this step the buffer space for the sk_buff is pre-allocated. If it ever
runs out of space the communication will stop and the data will stay in
the user space until sk_buff data space is available again.

• The size of an sk_buff is the same as the Maximum Segment Space
(MSS) + header length.

5



2. Background

• This is where the TCP segments are defined, all data that ends up in the
same sk_buff becomes a TCP segment.

3. The TCP queue is activated and function tcp_transmit_skb is called to
send the packets. Note that skb stands for sk_buff.

4. tcp_transmit_skb builds the TCP header and then clones the sk_buff
to send it all to the network layer where the kernel will continue process-
ing the packet. The network layer is called through a virtual function called
queue_xmit.

At Layer 3 - the network layer, the process continues with the following steps:
5. queue_xmit does any necessary routing and then creates the IP header.
6. At this point there are a series of kernel space methods that are called in order

to handle problems such as network filtering, outputting data in accordance
with destination ip address and fragmentation.

7. The most important virtual method at this stage is the ip_output that takes
care of finally sending it to the output device. In other words which entry in
the network devices that shall be used.

8. To perform network filtering, e.g. NAT and firewalls a hook named nf_hook
is called to modify or discard the packet accordingly.

9. The previous routing decisions gives us a destination object. In this ob-
ject a model of the reciever’s IP address is stored. A virtual method called
dst_entry is used to to perform the output of the data.
When the packet finally arrives at Layer 2 the kernel’s work is to schedule the

packets that shall be sent. It puts the sk_buff on the device queue with a virtual
method called dev_queue_xmit and eventually the sk_buff is sent and removed
from the queue, if the sending fails it will be queued again. The device driver talks to
the network device, the virtual method dev_hard_start_xmit is responsible for
talking to the device, for scheduling transfer of the sk_buff and when the network
device replies that it is done the buffer will be freed.To help us understand this flow
we can look at a limited figure of the kernel network flow presented in Figure 2.1.

In summary the transmission of a packet is typically initiated by a system call
where there is a lot of moving of data between user and kernel space. It then uses
a set of kernel methods to deal with the packet down through the communication
layers and eventually speaks with the device driver to send the packet out on the
network device.

2.3 Communication between the nodes, message
passing is our virtue

This section explains the practice of message passing and why it is important for
this thesis work. We also take a look at the Message Passing Interface (MPI) and
how it defines a solid specification of how message passing should be implemented.
Furthermore the section details the different constructs that are defined within MPI
that the developed system uses to function properly.

One way of explaining message passing is done through looking at why it is
needed. Traditional computing involves a single processor handling all calculations

6
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Figure 2.1: A limited figure of the Linux kernel network flow.

and operations using a single address space. It has no one to care about except for
itself and its own state. However in this thesis we are looking at how to distribute
the tasks over several processors - distributed processing. We are executing con-
current calculations on different processors, each processors has its own state and
calculations. The processors do not share a common address space so they cannot
communicate via shared variables. This is where message passing comes in, it is used
for the communication by sending and receiving messages between the participating
processors to achieve the results of the distributed calculations.

2.3.1 The Message Passing Interface
MPI is not an implementation, it is a library interface specification for message pass-
ing. MPI defines a model for message-passing parallel programming. The model, or
standard, was defined by a collective of parallel computing vendors, computer scien-
tists and application vendors [5]. The model specifies how data is moved from one
process to another and the cooperative operations that are needed for each process
to accomplish this. In addition to the plain message-passing between processes other
functions are also provided such as collective operations, remote access operations,
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dynamic process creation and parallell I/O.
All these operations are expressed as functions or methods according to the

appropriate language bindings. Again, MPI is not an implementation it is a spec-
ification on which methods and operations are needed to provide a solid working
message-passing standard. The goal of MPI is to develop a well-defined standard
to write message-passing programs. It should be efficient, portable, practical and
flexible to make it widely used to writing message-passing programs.

There are quite a few different approaches when using message passing as a
means of communication. There are different ways of addressing participators, dif-
ferent ways of how the communication flow is handled and also different ways of
how the communication is done. In the following subsections we will look at each
approach and also which approach that was used for this thesis work. In subsection
2.3.1.1 the different approaches on how to handle addressing of participating nodes
is explained. Subsection 2.3.1.2 presents the different flows of communication that
can be utilised in a message passing context. In the final subsection 2.3.1.3 we look
at the two preferred ways of how the communication is done between the nodes.

2.3.1.1 Addressing in message passing

When addressing nodes there are mainly two approaches, direct and indirect ad-
dressing. Direct addressing lets each processor have its own address, or name, and
thus a message is directly sent, or received, by one processor. Indirect addressing
names instead a channel, or a group, that is addressed for receiving or sending mes-
sages. Every processor that is participating in the channel receives every message
that is sent to it. Indirect addressing is also the solution that was used for this thesis
work.

In the context of this thesis this essentially means that each SBC that partic-
ipates in sending, or receiving, of data traffic belongs to a group. In MPI terms
this is called a communicator. So the group of receiving SBCs shares a communi-
cator that lets the receiving SBCs message each other. Respectively, the group of
sending SBCs has another communicator that handles the communication between
the nodes. Furthermore each SBC is uniquely identified within each communica-
tor by a rank. The rank is simply a unique number, however that number is only
unique within each communicator. Applied to our scenario this means that ranks
can uniquely identify senders within the sender communicator but does not carry
over to the receivers because they belong to another communicator.

2.3.1.2 Communication flow

When it comes to handling communication flow in a message passing system there
are a few different ways of doing it. A communication flow can either be bidirectional
or unidirectional. When it is unidirectional messages only travel in one direction at
a given time. If it is bidirectional messages can travel in either direction at a given
time.

In addition to these flows MPI also defines something called collective calls.
They are specific calls that makes it easier to handle the communication flow in a
group by letting the communicator handle the flow. In the work of this thesis these
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collective calls were used to establish a unidirectional communication flow between
the SBCs.

2.3.1.3 How to communicate between participants

Lastly a communication between processors can be based upon yet another two
different principles. Either it can be based upon synchronous or asynchronous com-
munication. In asynchronous messaging a message can be sent and then the proces-
sor can continue executing, the send operations are non-blocking. Essentially this
means that the sending processor can execute for an arbitrary amount of time and
message delivery is not guaranteed. In synchronous messaging the sender blocks un-
til the message has been received. In this thesis the communication is synchronous,
even additional constructs are used to make sure that every receiving processor has
reached a certain state before every processor can start executing again.

2.3.2 MPICH - an MPI implementation
In this section we present one of the actual implementations of MPI. This imple-
mentation is called MPICH and it is this framework that is used for calling all the
functions specified in MPI. With this section we look at what MPICH is and its
usages.

MPICH is a high-performance and widely portable open-source implementation
of MPI[6]. In addition to providing implementations for all MPI calls it is also used
to compile and execute MPI programs. Executing MPI programs with MPICH lets
you define how many processes should be run and on what nodes they should be run
on. In this thesis work MPICH has been used to distribute the tasks of transmitting
and receiving network traffic.

2.3.2.1 MPI4Py - A Python package for MPI

MPI4Py is a package for Python that enables us to develop code that integrates
towards MPI implementations. Python is a programming language that allows us
to use efficient data structures to develop high-level solutions [7]. MPI4Py links up
the code to the MPICH libraries and helps in not having to develop any parts of the
solution in C. By keeping the program code in a high-level language we can limit
the scope of the thesis and avoid potential complications. However it is important
to be aware of the consequences this might have on the low-level kernel operations,
e.g. avoiding high-cost function calls in Python and try and separating the code
that is calling on the kernel space applications.
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3
Related work

In this chapter we look at similar work and solutions that are related to what
this thesis aims to achieve. The chapter is divided into four sections where each
section describes related work out of four different categories. The four categories
are distributed and non-distributed proprietary packet generators and analysers and
corresponding open-source alternatives.

3.1 Open source

This section describes the open-source packet generator and analysers. These are
all software that can be installed on any PC that fulfills the prerequisites. As such
they are often general purpose testers and thus are not as highly performant as
the proprietary solutions. The functionality is built by software and often relies on
the libpcap library for Linux. The functionality is built above the hardware and
not dependent on what kind of hardware that runs the kernel, this is also why the
performance is limited.

3.1.1 Non-distributed

Tcpdump

tcpdump is a terminal-based packet analyser. It uses the libpcap library to capture
packets that are transmitted or received via the network interface. It prints the
contents of the packets captured according to the filter that is supplied to the appli-
cation at start [8]. It is a versatile tool for analysing TCP/IP network traffic that
comes through the host which tcpdump is running on.

Tcpreplay

Tcpreplay is a suite of tools for replaying packets that have been previously captured
and, usually, stored in a pcap file. A pcap file is simply a file format for storing
packet data from a network. It is also possible to rewrite Layer 2, 3 and 4 headers of
the captured packet and then send the altered packet. According to the application’s
website the goal of the tool is to enable reliable and repeatable means for testing
the functionality of network devices [9].
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Iperf

Iperf is a tool to measure the performance of a network. It creates traffic streams
and do performance measurements with these streams. It is first and foremost a
performance measuring tool that can detect packet loss. However it can only be
used to measure TCP/UDP traffic and the protocols at these layers [10]. For the
master thesis the traffic needs to be measured and analysed at lower levels in the
OSI model, already in Layer 2.

Ostinato

Ostinato is an open-source software application that can craft and analyse packets
[11]. It can be installed on both Windows, Linux, BSD and Mac OS X and features
a GUI for crafting and sending packets. It is also possible to configure several
streams with different protocols and different speeds. It supports most standard
protocols and the user can modify any field of any protocol, it is also possible to
craft malformed packets which is of relevance to testing the radio products. The
streams can be configured to send in different patterns according to a specified rate,
bursts or number of packets. At the time of writing this thesis it does not have an
API for extending or using the software programmatically. However according to
their website they plan to implement this.

3.1.2 Distributed

D-ITG

Distributed Internet Traffic Generator (D-ITG) is a platform that is developed by
a group belonging to the Department of Electrical Engineering and Information
Technologies at the University of Napoli Federico II [12]. It can simulate IPv4
and IPv6 traffic by replicating workload of Internet applications. In addition it
can perform measurement tests of throughput, delay, jitter, and packet loss. By
being of a multi-threaded design it is possible to set up multiple parallel traffic flows
going from sources to destinations, similar to what this thesis wants to achieve.
The platform has many features which are listed on the website. However it is not
possible to craft packets of any form, but rather of the forms supported by D-ITG.
The platform does not provide any fault tolerance or any form of synchronisation.

DiCAP

DiCAP, or Distributed Packet Capturing, is a scalable architecture and implemen-
tation for distributing packet capturing proposed by a group of researchers at the
University of Zürich [13]. In the paper an evaluation is made of the DiCAP im-
plementation and shows that it can perform loss-less IP packet header capture at
high speeds. However the architecture is only for packet capturing and not packet
crafting or packet generation.
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3.2 Proprietary
This section describes the different proprietary packet generators and analysers.
What characterises these hardware proprietary solutions is that they are usually
very expensive, a result of the products being meticulously developed for a specific
purpose. In this case being end-to-end Ethernet testing. What the companies that
produce these products can do is to place the functionality close to the hardware
and thus obtain highly performant and deterministic products.

3.2.1 Non-distributed
These traffic testers are all built into a piece of hardware that is sold by the compa-
nies. Some offer distributed solutions but these are used for very specific purposes
and not for the general case. What unites each company is that most of their prod-
ucts are hardware instruments that provide high performance testing through the
instrument.

Anritsu

Anritsu [14] is a company that produces many different types of analysers and gen-
erators. Layer 10 has one of Anritsu’s Ethernet/IP network data analysers which is
used in testing the radio products today. The analysers provide wire speed perfor-
mance analysis and packet generation within the same product. Multiple protocols
can be decoded and displayed for captured data up to 10 Gbps, and it is also pos-
sible to do so simultaneously on multiple channels containing different streams of
data. It uses modular plug-in units to support performance, jitter, and EoS (Eth-
ernet over SDH/Sonet) measurements of networks. Supporting both Ethernet and
IP technologies various applications such as QoS and IPTV streaming services can
be tested.

The tester that is used in the Layer 10 lab is the MP1590B which is capable of
measuring IP networks up to 10 Gbit. The product comes with a customised Win-
dows installation for control of the instrument. It can be both controlled remotely
or through a small screen on the actual instrument. The instrument supports many
types of functions. However many of the functions are not included in the instru-
ment but need separate modules that is installed to the instrument. For example to
measure traffic up to 10 Gbit a special module is needed that is sold separately. The
instrument supports multichannel measurement which means it can parallelise both
generating and capturing traffic, however not indefinitely as it can only be done
over the number of physical ports on the instrument. Both packet contents and
the packet stream are fully customisable. The user has many different options and
settings to utilise and almost any IP protocol can be tested with this instrument.

Spirent

Spirent [15] is another company that much like Anritsu delivers Ethernet testing
solutions. They deliver many kinds of products and have different solutions de-
pending on what the customer intends to test. They supply both hardware and
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software for testing Ethernet networks up to 400 Gb/s. Spirent also offers solutions
to achieve many different kinds of validations. For example Layer 1-7 validation on
both Ethernet and optics medium, IP/MPLS protocol validation, Carrier Ethernet
meaning validation of fault and performance procedures, mobile backhaul timing
and synchronisation and many other features.

Spirent TestCenter is an end-to-end product that provides measurement solu-
tions for several types of testing, most importantly performance testing. The Test-
Center supports stateful Layer 2-7 traffic generation and analysis up to 100Gbit/s
Ethernet and fibre channels. Through the TestCenter’s software it is possible to
use wizards to configure any type of packet and interface settings. There are also
pre-defined test cases for testing specific protocols and functions. It features com-
prehensive logging, frame analysis, HyperFilters for isolating traffic up to 10Gbit/s
and intelligent streams that lets the users create search criterias for frame loss, rate,
latency, jitter and other kinds of combinations of measurements to identify problems
in the system.

3.2.2 Distributed
This section goes through the related work that are proprietary which has imple-
mented a similar distributed solution for generating and analysing packets.

Codemint Raspberry Wall

Codemint is a company where a developer, Erik Wramner, put together a couple
of Raspberry Pis to implement a platform for performance testing web servers with
affordable and realistic test cases [16]. During JFokus 2014 Erik presented this
work and seems not to be a commercial product. It is specifically designed to do
performance tests for web servers and is limited in that way. However it raises some
of the questions this thesis aim to answer.

3.3 Summary
Demonstrably there are a lot of different software and products for generating and
analysing network traffic. However these are all either too expensive or have a
lack in functionality for what is needed for this thesis work. Many thoughts and
ideas can be reused but no solution offers a cheap and also distributed system that
theoretically can generate and analyse traffic indefinitely.
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Design

In this chapter we present the design of the solution. We look at the problem at
hand and then look at what parts we need and draw up a design from that. We go
into detail of each part and how they interact with each other. We also go through
what requirements that each part needs to fulfill and how these requirements are
seen to in the design. The chapter consists of multiple sections where we in each
section go through the details of each part of the system.

4.1 Design requirements
We start by looking at what we need the system to do. In cooperation with the
supervisor at Layer 10 we establish a set of design requirements. With the help of
these requirements we get an idea of what it is we want to achieve, and we can then
evaluate the solution and compare it to other traffic testers. This section summarises
these requirements.

Stream configuration

• The system should be able to send traffic up to a rate of 1 Gbps.
• The system should be able to configure traffic streams, one or multiple, that

consists of custom configured network traffic. Different streams should be able
to send different kinds of packets.

Packet configuration

• It should be possible to configure all fields of the relevant layers of the TCP/IP
stack. The relevant layers are the Data Link, Network and Transport layer.

• The packet size should be configurable.

Traffic capture/counting

• The system should be able to count all sent packets with a 0% drop rate at
rates up to 1 Gbps.

• The system should be able to inform of what the current incoming rate is, in
a unit of bits per second or frames per second.

• The system should be able to capture packets for deeper inspection, not nec-
essarily at the highest rates as this amounts to very heavy work loads.
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• The system should be able to define filters that count only packets that match
the filters.

4.2 System overview
With the requirements presented in the previous section we need to design a solution
that gives us the tools we need in order to achieve this. In this section we present an
overview of what the system should contain in order to emulate a traffic generator.
For this we use a distributed system of nodes that are, in a synchronised manner,
sending and receiving network traffic through a device that is under test. We need
to be able to control and communicate with these systems without disturbing the
traffic flow that is used for testing the device.

We look at what parts the distributed system consists of and how those parts
interact with each other to achieve a solution to the problem. To our help we have
Figure 4.1 that depicts the overview of the design. As can be noted in the picture
the system consists of the following parts:

• Two different traffic flows - one for test traffic and one for control messages.
• One master node for control and communication.
• Two groups of nodes. One side for transmitting traffic and one side for receiv-

ing traffic.
• The device under test. Not really a part of the designed solution. However it

is included for clarity.
Using this picture and bullet list we will present each part shortly and then in

the following sections go through the details of each part. The first thing to notice
in Figure 4.1 is that we have two flows of traffic. One flow of traffic where all control
and communication messages are being sent and received between the nodes. Then
one other flow where the actual test traffic flows through, this flow is separated from
the control and communication network. The next thing to notice are the different
groups of nodes. We have one master node that handles the communication and
synchronisation of the system. Then there is one side of nodes that transmits the
test traffic through the system and one side that receives all traffic and reports the
results back to the master node. Lastly we have the device under test. It is not an
actual part of the test system but showing where it is situated helps in giving clarity
to how the solution is supposed to work.

In summary the system is made of two sets of an arbitrary number of nodes
where one side is transmitting test traffic and the other is receiving test traffic.
These are controlled by a master node that communicates with each side through
a TCP/IP network, separated from the test traffic network. The test traffic is sent
through the nodes that are connected to the device under test through another
TCP/IP network.

4.3 The two traffic flows
The system has two different traffic flows, one for test traffic and one for communi-
cation. To ensure a stable stream of test traffic we want to separate these two traffic
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Figure 4.1: An overview of the system design.

flows. In order to separate test traffic from control and communication messages
between the nodes we want to design the system to have separate networks. By
separating the traffic flows we avoid problems such as filtering out communication
messages from the test traffic so they are not mistaken for actual test traffic. If they
are not even being received on the same interface, we do not need to worry about
them mistakenly being treated as test traffic.

In this section we go through how these networks are designed and what re-
quirements they have. Much like how the networks are split up we split this section
into two subsections where each subsection looks at one network each. Subsection
4.3.1 presents the details of how the control network should work. In subsection
4.3.2 we look at how the traffic network is set up and how the traffic should flow
through the system.

4.3.1 Control and communication network
To enable control and communication between the master node and the groups of
transmitting and receiving nodes we need a network that enables communication
over TCP/IP protocols. For this we need a set of requirements:

• Reliable communication between the nodes.
• Every node has a unique address, enabling communication.
• Separate control traffic from the test traffic, to avoid control traffic mistakenly

being accounted for as test traffic.
• Communication has two flows. One flow between the master node and the

transmitting side and one flow between the master node and the receiving
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side.
These requirements put together are what make up the means of communication

between the nodes. This network only contains the participating SBCs and not the
device under test. In summary the network should enable communication in both
directions between master node and each side respectively. Communication between
transmitting and receiving side is not necessary. The master node initiates and
handle all communication. Figure 4.2 depicts how the communication flows within
the control network.

Figure 4.2: An overview of how the control traffic and communication flow
between master node and the groups of transmitting and receiving nodes.

4.3.2 Traffic network

The traffic network is the network that contains the device under test, the switches
and the transmitting and receiving nodes. This network should only handle the
traffic flow which is used to test the device under test. Much like the communication
network we set up a few requirements for the traffic network:

• The network needs to be able to reliably transfer high-speed Ethernet traffic
without dropping packets on the medium.

• The network should be isolated to the test traffic so that no other traffic
disturbs the testing.

• Each node in the traffic network needs to have a unique address so that the
traffic can be routed correctly from one transmitting node to one receiving
node.

The test traffic flows through the network from the transmitting nodes through the
network into the device under test and is then forwarded by the device under test
and finally arrives at the receiving nodes. This flow can be viewed in Figure 4.1.
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4.4 The master node
In order to achieve a distributed system in which we have a group of nodes that
transmit test traffic and a group that receives that traffic we need to be able to
control when the nodes shall be transmitting and receiving. We need to synchronise
these groups within and towards each other so that we are sure that when the
transmitting side starts sending traffic all the participating nodes start sending at
the same time. We also need to make sure that the receiving side is ready to receive
the traffic when it starts flowing through the system. In addition to just transmitting
and receiving we also need to distribute these tasks to the groups. One solution to
this problem is to have a designated handler. A controller that can communicate
with each group separately and synchronise them respectively. This is where the
notion of a master node is introduced.

To control and monitor the system we need a master node that is dedicated to
this task. The master node handles the communication with the groups of trans-
mitting and receiving nodes. It is the master node that distributes the tasks, starts
and stops the test traffic and collects the results. The master node’s tasks can be
summed up in the following list.

• Create the corresponding transmitting and receiving groups of nodes.
• Distribute the tasks of transmitting and receiving traffic respectively.
• Synchronise the groups.
• Collect the results of the sent traffic.

We can split the design of the master node into two components. One software
component and one hardware component. The software component is the program
that executes the master node’s tasks. The hardware component is what the master
node requires hardware-wise to be able to execute its program. In the following two
subsections we will look at each component separately.

4.4.1 Software component
In the previous section we established the concept of a master node and why it is
needed. However we have not yet stated how it should function, only that it is
required. The master node is comprised of two components, one software and one
hardware. The software component is the instructions that execute on the master
node to allow it to fulfill its tasks. In this subsection we look at the design of the
software component and how it functions. This subsection is split into four smaller
sections where each section corresponds to one of the master node’s tasks. Each
such section go into detail of how the software enables the master node to execute
its tasks.

4.4.1.1 Grouping into transmitting and receiving nodes

To be able to send the correct tasks to the correct nodes the master node needs to
be able to divide the nodes into groups according to their roles. To know each node
and contact them the master node also needs to be able to reach them through an
address. According to one of the previous design requirements the control network
needs to provide a unique address to each participating node, so we can use these
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addresses for grouping. Given that the master node knows each address of the par-
ticipating nodes in the control network it is just a matter of dividing these addresses
into respective transmitting and receiving groups.

Dividing these addresses, or nodes, into the groups needs to be done equally.
For every node in the transmitting group we need a node in the receiving group.
Meaning that for n number of traffic flows we need 2 ∗ n number of nodes. Looking
at Figure 4.3 we can see how the software should split the addresses.

Figure 4.3: An overview of how the master node splits the provided node
addresses into each transmitting and receiving group respectively.

When this is done, the master node has created two groups of nodes using their
addresses. One is dedicated to sending traffic and the other group is dedicated to re-
ceiving it. The master node can use these two communication groups for controlling
and communicating with each node knowing which group it belongs to.

4.4.1.2 Distributing the tasks of sending and receiving traffic

We have two different groups of nodes, one that should transmit test traffic and
one that should receive. However, no one has told these nodes that they should be
doing this yet. They are not aware of their current roles. As the master node is the
handler of the system it needs to spawn and distribute each groups’ task so that the
participating nodes can carry out what they are intended to do.

So the tasks of sending and receiving need to be two well-defined processes, or
software components, Pt and Pr where Pt is the process that is sending traffic and
Pr is the process that is receiving traffic. They need to have well-defined starts and
finishes and it is also necessary that the nodes still can communicate with the master
node as these tasks are executed. We will go through these software components in
detail in Section 4.5.

Given that the master node can acquire these two software components the task
of distributing them is simple. The master node communicates with each group. It
tells every participating node in the transmitting group to run process Pt and it tells
every node in in the receiving group to run process Pr.
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4.4.1.3 Synchronising the groups

We want to design a system that can send traffic from one group of nodes to another
group of nodes that receives that traffic. In order to ensure a stable traffic stream
and no packet losses we need to think about synchronisation. Not only stability but
also ensuring that the contents of a packet stream at time t does not deviate when
the same packet stream is started at another time t′. There are two scenarios that
result in packet losses if we ignore synchronising the groups.

• Traffic loss if a transmitting node starts sending traffic before its corresponding
receiving node has not yet started its receiving task.

• Traffic loss if the receiving nodes stop its receiving task before the correspond-
ing transmitting node has finished sending traffic.
To achieve synchronisation between the nodes a construct called barrier syn-

chronisation is relied upon. Barrier synchronisation is a simple concept. As the
name implies a barrier is set up that does not let any process execute until all
participating processes has reached this barrier. We can use the master node as a
handler to accomplish this. The problem we need to solve is to make sure that no
node in the transmitting group starts before the receiving nodes have started their
receiving tasks. Furthermore we also need to make sure that the receiving nodes do
not stop their receiving task before the transmitting nodes are finished with sending
traffic. To accomplish this we can use barriers at two levels. The top level where
barrier synchronisation happens between the master node and either receiving or
transmitting group. The bottom level is where the barrier synchronisation happens
between the nodes of a group, making sure they all start at the same time. There
are in total four barriers in the system, three located at the top level and one located
at the bottom level. Explaining these barriers is easiest done by going through how
they are started in relation to each other.

1. The first barrier is done at the top level between the root node and the receiving
group, it is there to make sure that each node is ready to receive traffic.

2. The second barrier is a bottom level one which is done between all transmitting
nodes, making sure they start at the same time.

3. The third barrier is another top level barrier that is done between the root
node and the transmitting nodes.

4. The final barrier is a top level barrier between the root node and the receiving
nodes. It is started by the receiving nodes after they have reached the first
barrier and is only finished when the root node has reached and passed the
third barrier.
To further illustrate how this should work we introduce Figure 4.4 that depicts

a flow chart of how the master node synchronises the group towards each other.
In Figure 4.4 we can observe that the synchronisation starts with the master

node synchronising the group of receiving nodes to start their receiving tasks. When
all receiving nodes are finished with starting their receiving tasks, the master node
can go ahead and do the same with the transmitting nodes. Through this synchro-
nisation between the master node, the receiving nodes and the transmitting nodes
we can ensure a stable traffic flow without any lost traffic due to any node starting
or finishing before they should have.

Then when the transmission should end the process is reversed. The transmit-
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1. Distribute receiving task
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node

2. When all receiving task started, 
reply synchronisation done
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3. Distribute transmitting task
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Transmitting
group T0...n

Figure 4.4: Process of synchronising the start of a transmission.

ting nodes all synchronise the stopping of the traffic and tells the master node when
it is done. The master node then tells the receiving nodes to stop their receiving
task. First when the receiving tasks are done and stopped their receiving tasks in
a synchronised manner, the results can be extracted. This flow can be viewed in
Figure 4.5

3. Distribute stop command

Master
node

4. When all receiving task has stopped, 
reply synchronisation done

R0

Receiving
group R0...n

1. Distribute stop command

2. When all transmitting tasks has stopped 
reply synchronisation done

T0

Transmitting
group T0...n

Figure 4.5: Process of synchronising the end of a transmission.

4.4.1.4 Collect the results of the sent traffic

When the traffic scenario has been concluded and all the participating nodes have,
in a synchronised manner, finished their respective tasks and reported back to the
master node, we want to be able to fetch the results of the captured traffic.

Since the capturing task is split up evenly between the receiving nodes, and
each node only receives at most one packet stream, we need a way of obtaining each
node’s result back to the master node. The master node is how we interact with
the system so this is where we would like to present the result of a traffic scenario.
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If we can obtain each node’s captured result, let us call the result of node x Capx,
we can aggregate all receiving nodes’ results to get a complete view of the captured
traffic result. We can call that Captot.

In addition to the packet capturing results we also need to obtain the informa-
tion of how much traffic that was sent from the transmitting nodes. For transmitting
node y we can call it Transy. In the same way we get Captot we should be able to
aggregate all the transmitted data and get Transtot. This is required for us in order
to determine that no packets were lost during the traffic scenario. In other words
Transtot = Captot. We can then formulate following requirements on the master’s
node collection of captured traffic:

• We need a way to obtain each receiving node’s captured traffic, Cap0...n, and
aggregate all of them to Captot.

• We need a way to obtain each transmitting node’s sent traffic, Trans0...n, and
aggregate all of it to Transtot.

• When the system has finished sending traffic Transtot should be equal to Captot

i.e. Transtot = Captot

• This obtained data need to be presented in some form to the user of the system.

4.4.2 Hardware component
The hardware requirements on the master node are not as strict as for the receiving
and transmitting nodes. This is simply because of the fact that the master node
is not sending or receiving any traffic. It is only handling the communication and
control of the system. Thus we can limit the hardware requirements to following
list:

• Standard network interface, either wired or wireless, to communicate over
TCP/IP protocols.

• Processor with chipset able to run Linux.
• Some sort of operating system where so that the user can interact with the

system.
• A persistant storage, for example a hard drive, where results can be stored,

collected and inspected.

4.5 The transmitting nodes
The transmitting side of the system is responsible for outputting the network traffic
out into the network and the device under test. Each node in the transmitting group
is given a defined transmitting task. The transmitting task is interpreted, and the
transmitting node should then be able to start and stop the traffic on command and
then somehow save the result of how much traffic that was sent. The transmitting
nodes should synchronise before traffic is started, and then again when traffic is
ended. We can sum up the tasks of the transmitting nodes in the following list:

• Given a transmission task, interpret it and execute it.
• Synchronise start and stop of transmission.
• Save the result of the sent data.
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Again we can split up the design of the transmitting side into a software and
hardware component.

4.5.1 Software component
The software component for the transmitting group is not as complex as for the
master node. The configuration for the transmission needs to be distributed within
the group. Where each node can execute the task individually, and on command
start and stop it. In this section we will look at the software component in detail

The transmission task should be a predefined set of instructions that each trans-
mitting node, node x is notated as Tx, can then execute to start generating network
traffic. The configuration of each task, i.e the specifics of what the network traffic
should look like and which receiving node should have it, should be spread evenly
among the transmitting nodes. Each node should have at most one traffic stream
and one receiver, receiving node y is notated as Ry. When the configuration has
been distributed the transmitting nodes should synchronise the start of the traffic.
After this when either a stop command has been received, or the configured traffic
flow has ended, the nodes shall stop the transmission in a synchronised manner and
save the statistics of how much traffic was sent. We can describe the flow by using
a scenario:

1. Given a total of four nodes, two transmitting (T0, T1) and two receiving (R0, R1).
2. Given one transmission task P .
3. The transmission task is then distributed to the transmitting nodes. T0 re-

ceives task P denoted PT 0 and T1 as PT 1
4. When P has been distributed, each node has to synchronise within the group

to each other and first after this the traffic can be started.
5. When all transmitting nodes, T0 and T1, have started their task PT 0 and PT 1

the transmission of the network has started. The traffic flow should be as
following PT 0 → R0 and PT 1 → R1

6. When either a stop command has been received or the requirements of the
traffic configuration has been met, nodes T0 and T1 synchronise towards the
master node to inform it that traffic is done transmitting.

7. After synchronisation has been established, each node save the statistics of the
transmitted traffic for later inspection.

4.5.2 Hardware component
The hardware component of the transmitting nodes are a bit more strict than for
the master node. The reason is because these nodes will actually be working hard
to send as much traffic as they possibly can. We can summarise the requirements
of the transmitting nodes in the following list:

• A network interface for the controlling traffic, i.e. the communication with the
master node.

• A separate network interface for the transmitting network traffic. Preferably
a high-speed Gigabit Ethernet one.

• A processor with chipset capable of running Linux.
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4.6 The receiving nodes
The receiving side is responsible for capturing and counting all the network traf-
fic that the transmitting side has sent. You could see it as the antithesis of the
transmitting side. Much like each node in the transmitting side, every node on the
receiving side is given a predefined receiving task. The task should contain all the
necessary configuration for a single node to start capturing traffic on its assigned
network interface, the interface that is coupled with the transmitting side. There
are more similarities in that when a task is given to a node the task is interpreted
and the receiving group synchronises among each node and then tells the master
node they are done. The capturing is stopped only when the master node tells the
receiving group that it should stop. The results are then saved somehow, either on
disk or messaged back to the master node for later inspection. We can summarise
the tasks of the receiving nodes in the following list:

• Given a receiving task, interpret it and execute it.
• Synchronise start of capturing, stop only when master tells the group it is safe

to do so.
• Save the result of the captured data.

Much like the previous sections we can split up the design of the receiving side into
a software component and a hardware component.

4.6.1 Software component
In this section we will look at the software component of the receiving side in de-
tail. The software component of the receiving side consists of a receiving task that
each receiving node should execute individually, after the task has been distributed
within the receiving group. When the master node tells the receiving group to stop
capturing, only then should the nodes stop their capture and save the result.

The receiving task should be a predefined set of instructions, including config-
uration of what sort of network traffic that should be captured. When this task,
task R has been distributed to a receiving node y, notated as Ry, node y should
then synchronise within the receiving group and then start executing that task. Af-
ter this when a stop command has been received from the master node, and not
before, the capturing should be stopped and the results be somehow persisted for
later inspection. We can again describe this by using a scenario:

1. Given a total of four nodes, two transmitting (T0, T1) and two receiving (R0, R1).
2. Given one capturing task task C.
3. The capturing task is distributed to the receiving nodes. R0 receives task C

denoted CR0 and R1 as CR1
4. When C has been distributed, each receiving node has to synchronise towards

the master node, telling that they are ready for capturing traffic.
5. When the capturing process has started, the capturing nodes goes into a new

barrier synchronisation towards the master node.
6. First when the traffic scenario is done and the network traffic has been stopped,

the master node will synchronise toward the receiving group, telling them it
is fine to close down the capture.
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7. After synchronisations has been established, each node saves the captured
result somehow for later inspection.

4.6.2 Hardware component
The hardware component of the receiving nodes are very similar to the transmitting
nodes. The receiving group need to be as fast as the transmitting nodes or even
faster. We can explain this by the fact that the receiving nodes are always reacting
to new packets coming in. The transmitting nodes are sending predefined network
packets. We can summarise the requirements of the receiving nodes in the following
list:

• A network interface for the controlling traffic, i.e. the communication with the
master node.

• A separate network interface for the receiving network traffic. Preferably a
high-speed Gigabit Ethernet one.

• A processor with chipset capable of running Linux.

4.7 Packet generation - the transmitting task
In this section we look at what the transmitting task, that gets distributed between
the transmitting nodes, looks like. In the previous section we have established that
in order to reach higher packet rates for packet generation the task of transmitting
packets must be distributed between the nodes. The point of the system model is to
share the burden of packet generation between the distributed nodes and combine
the performance in order to achieve better rates of packet generation. To distribute
a task the task must have a clear definition. For this system it makes sense to define
the task as a configuration of a packet stream that each node can then start sending.
The configurations defines the specifics of how the stream will send the packets. That
is which rate each individual node will send in, if there are any delays between each
sent packet or if the stream should send in bursts. To have a stream of packets you
also need the actual packets. So in addition to a packet stream configuration, we
also need a configuration for what the packets in that stream should look like. The
contents of the packets should ideally be defined by the user. So the distributed
task can be defined as:

• A packet configuration, what the packets will consist of.
• A stream configuration, how the packets will be sent.
The configuration is done by providing the master node with the configuration

details for the packet contents and the stream. When the configuration is done it
is distributed by the master node to the participating nodes. Each participating
node replies to the master node’s barrier synchronisation when the configuration
is finished, and the master node keeps track of each answer and does not continue
executing until every node has replied. When every node has replied the master
node continues with distributing the capturing task among the receiving nodes, and
ensures in a similar way that the system does not continue until each node is done
with the configuration. More about the packet capturing in Section 4.8. When
the capturing nodes are ready, the transmission can start. However it is important
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that the transmitting nodes start at the same time. Otherwise there might be
inconsistencies between tests as the aggregated stream will vary in size if not all
nodes transmit at the same time.

When every node is synchronised, each transmitting node will start its trans-
mission to its assigned receiving node. The switch aggregates the traffic and the
total output from the switch to the device-under-test should be equal to the sum of
the individual capacities of every participating node. Equation 4.1 presents a simple
mathematical model to express the total output from the system.

Ptot =
( n∑

i=1
pi

)
∗ k (4.1)

Where:
• Ptot: is the aggregated packet rate of the system.
• n: is equal to the amount of participating nodes.
• pi: is the individual packet rate of node i.
• k : 0 ≤ k ≤ 1: is a degradation factor.
Hopefully k should be equal to 1, however it is possible when the amount of

nodes reach a high enough number this factor might play a bigger role. For example
the switch might not have enough performance to handle every node’s packet stream
when the number of nodes increases and thus the resulting output will be limited
to the switch’s performance. If the switch only has a capacity of 80% compared to
the aggregated performance of the transmitting nodes then k = 0, 8.

4.8 Packet capturing - the receiving task

In this section we present what the receiving task, the task that is distributed
between the receiving nodes, should consist of. By distributing the task between
the nodes we can share the load and achieve higher rates of packet capturing. To
be able to distribute the packet capturing it needs to be defined as a clear and
consistent task, so that each node will execute the same thing. There are several
ways to define a packet capturing but for this system it makes sense to limit it to
three different items. A packet capturing task is defined by:

• The packet filter, whether the node should filter on specific packets.
• Counting or capturing mode, whether the packets should be discarded after

arrival or if it should somehow be persisted for later inspection.
• Which interface that should be used for capturing. This should be the corre-

sponding Ethernet interface.
The configuration is done in the same way as for the packet generation. User

connects to the master node and provides it with the necessary configuration ac-
cording to the three previous points. The task is then distributed by the master
node between the receiving nodes and after synchronisation has been achieved, each
node executes its receiving task.
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4.9 Summary
In this chapter we have presented a suggestion to a solution for this system. We
started by looking at what minimum requirements we had for the system to be
viable. We then presented a system overview of what components the system should
include in order to function as a network tester. We then started looking at each
component in detail. Beginning with the two traffic flows, or networks, and what
their functions are and why we need to split the network into two. In the section
following this we presented the master node and its tasks, how it communicates and
synchronises with the receiving and transmitting nodes and what sort of minimum
hardware requirements it had. We then looked at the transmitting group and the
receiving group, their tasks and how they function in relation to each other. Finally
we looked into the two different tasks that the transmitting and the receiving group
shall execute. We defined these two tasks of what they should do and how the
groups should execute them.
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Implementation

This chapter aims to present the details regarding the actual implementation that
resulted in the prototype for this system. In this chapter we will go through each
part of the system in detail. The chapter will be split up much like Chapter 4, so
that we can easily connect the actual implementation to the suggested solution. The
chapter is split into three bigger areas. In the first part we will look at a system
overview of the developed solution and also present the operation of the system in
order to get a bird’s eye view of how the system works. In the second part we will
look at the actual implementation of the different parts of the system and go into
detail of each one of them. In the last part we will look at the hardware that was
chosen for the system. The reason to why its all presented by itself is because the
transmitting group, the receiving group and the master node all ended up using the
same hardware.

5.1 System overview
The resulting solution consists of a total of seven single-board computers of the
brand ODROID-C1, one Ericsson Ethernet switch, a wireless router and a lot of
RJ45 cables. Out of the seven SBC, three boards are assigned to the receiving
group and three boards are assigned to the transmitting group. The final SBC
acted as the master node, that handled the interaction with the user and the overall
operation of how the system transmitted and received data.

The transmitting group generates packets where each node transmits to at
most one receiving node each. The traffic goes through the Ericsson switch and is
delivered to each receiving node by MAC address.

5.2 Operation
To control the system the user connects to the master node, either directly via a
monitor and keyboard or remotely using e.g. SSH. The master node contains a
set of instructions that is used for configuring the specifics for transmitting and
receiving. When configuring a test scenario the user needs to supply the system
with an instruction that specifies which nodes that should be used in the test.
When configuration is done the master node distributes the configuration among
the partaking nodes and wait for the system to synchronise. When each node has
synchronised the master node will start the test. During the transmission the user
can also send commands to the master node for status information, such as what
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the current packet rate is. The master node then prompts each receiving node of
what its current packet rate is and then aggregates each reported packet rate and
presents it to the user. When the transmitting nodes have finished transmitting
they inform the master node that the transmission is done. The master node then
stops the receiving nodes, collects the results and presents it to the user. Figure 5.1
displays a sequence diagram of how a test is typically done.

Figure 5.1: Sequence diagram of a typical system execution.

5.3 Master node
The implementation of the master node is built in Python and uses a framework
called mpi4py that is a framework for using MPI calls within Python. This also
requires a working MPI implementation, we use an implementation called MPICH
[6]. We also considered using dispy [17], but it was harder to use and implement
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towards. For the hardware we used the single-board computer ODROID-C1, the
specifics of the ODROID can be read about in Section 5.6. Before we go into the
implementation of the master node we recap the main tasks of the master node in
the following list.

• Create the corresponding transmitting and receiving groups of nodes.
• Distribute the tasks of transmitting and receiving traffic respectively.
• Synchronise the groups.
• Collect the results of the sent traffic.

We want the software of the master node to create the communication group, then
distribute the respective task to each group, synchronise them and then collect the
results. In Appendix A we present the software implementation of the master node
in Listing A.1. In Figure 5.2 we present the software implementation execution from
the master node’s point of view.

master node

MPI.Info.Create()

MPI.COMM_WORLD.Spawn(
args=capture_node.py,
 info=capture_comm,

maxprocs=3)

capture_comm.Barrier()

MPI.COMM_WORLD.Spawn(
args=transmit_node.py,
 info=transmit_comm,

maxprocs=3)

Blocking

capture node y

idle

master_node=
MPI.Comm.Get_parent()

master_node.Barrier()

Blocking

master_node.Barrier()

transmit node x

idle

master_node=
MPI.Comm.Get_parent()

master_node.Barrier()

Blocking

Figure 5.2: Software execution flow from master node’s point of view

The master node starts with fetching the addresses for the receiving nodes by
reading the predefined capturing host file. It uses the call MPI.Info.Create() to
create a key-value pair that can be passed around to different messaging groups. It
uses this key-value pair to store the predefined addresses for the capturing nodes. It
should be stored in a file called caphosts in the directory hosts. It then continues
with creating the communicator object for the capturing group. This is how we
communicate with the receiving nodes. So the call MPI.COMM_WORLD.Spawn()
spawns our receiving group and uses the capture_info to figure out which hosts
to spawn the process of the capture_args. It spawns at most 3 processes, which
is the number of the receiving nodes, according to maxprocs=3.
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We then reach the first barrier. And as can be viewed in A.1 it is made on the
communicator to the receiving group. This ensures that the master node’s program
does not continue to execute until all of the children nodes in the communicator
have reached the respective barrier in their program. When the receiving nodes
are finished synchronising we continue with setting up the transmitting group’s
communicator much in the same way that we did for the receiving group. It is
identical, with the difference that we use another host file that instead lists the
addresses of the nodes that should be transmitting traffic rather than receiving it.
After this we have a synchronisation on the transmitting nodes that are the final
synchronisation the transmitting group does when they have finished transmitting.
The master node will wait here until all transmitting nodes has reached this point.
When they are all finished we continue with synchronising towards the receiving
group as now we know that they can stop capturing traffic as well. After this, the
master node’s program is finished and we can extract the result from the receiving
group.

In summary with the help of the master node’s program we have created the
transmitting and receiving group of nodes. We then distribute the tasks of trans-
mitting and receiving task respectively. Throughout the program we synchronise
the groups at critical moments in order to ensure traffic consistency. Finally we do
not collect the results from the master node. The reasoning behind this decision is
that the project ran out of time and this feature was not prioritised as the results
could just as easily be extracted from the receiving nodes manually.

5.4 Receiving nodes
The receiving nodes’ capturing task are much like the master node built in Python,
and uses mpi4py for the MPI calls and functions. On the nodes MPICH, the im-
plementation of MPI, is also installed because it is what mpi4py uses under the
hood to execute the calls. For the actual capturing of network traffic we use the
software netsniff-ng. It is a highly performant packet sniffer that use zero-copy
mechanisms so that the kernel does not need to copy packets from kernel space to
user space and vice versa [18]. It is extra beneficial when you are using the lim-
ited hardware of a single-board computer. We use the same single-board computer
ODROID-C1 for the receiving group as for the master node. Let us recap the tasks
of the receiving group before we present the software implementation.

• Given a receiving task, interpret it and execute it.
• Synchronise start of capturing, stop only when master tells the group it is safe

to do so.
• Save the result of the captured data.

In Appendix A Listing A.2 we present the software implementation of the receiving
nodes. In addition to the listing we visualize the flow of a receiving node in Figure
5.3.

A member of the receiving group starts with establishing a connection to the
master node with the use of the MPI call MPI.Comm.Get_parent()We then
define the capturing task with a class wrapper for netsniff-ng called PacketCapturer.
We set up the parameters to netsniff-ng by telling it should listen to interface eth0,
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Capturing node y

No

YesPacketCapturer 
== running? recv_comm.Barrier()

PacketCapturer(config).start()

master_node.Barrier()

First master barrier is  
telling the master node  
that all receiving nodes  

are capturing traffic

master_node.Barrier()
Second barrier is waiting 

on the master node 
to inform that the  
transmitting nodes 

are done transmitting

PacketCapturer.stop()

Figure 5.3: Flow chart of a receiving node.

run in silent mode, run in high-priority mode in order to achieve a higher scheduling
rate and finally to set the RX ring size of 500 MiB. The incoming packets are stored
in the RX ring until the device driver can process them. Which is why if we increase
it we can reduce the amount of lost packets due to the RX ring being overfull. After
the PacketCapturer has been configured we start the netsniff-ng process by issuing a
start command. After this we enter a while-loop that breaks only when we have made
sure that the netsniff-ng process is ready by capturing its command output. After
this we put up a barrier synchronisation within the receiving group and only continue
once every node has reached this barrier. Meaning that all the receiving nodes have
started their respective capturing processes. When the packet capture process has
started we enter the barrier synchronisation with the master node, and we do not
continue executing until the parent also has reached this barrier. This happens only
after the transmitting nodes have finished their sending and the master node has
synchronised this. First after this the master node enters the barrier, ensuring that
no traffic is lost due to the receiving nodes stopping their packet capture before the
transmitting nodes have finished their sending. We finish by adding a small sleep
timer so that the netsniff-ng process has enough time to finish any eventual writing
to disk from the packet capturing.

In summary we have presented the software implementation for the receiving
group. It ensures that a receiving task is distributed to each node and then is
executed. We have shown how it handles the synchronisation both between the
nodes of the receiving groups and towards the master node to ensure no packets
are lost. The result of the packet capturing is saved to disk by netsniff-ng for later
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inspection.

5.5 Transmitting nodes
The implementation of the transmitting nodes is also built in Python with the same
framework of mpi4py to utilize MPI calls. The implementation for MPI, MPICH,
is again installed, as it is this implementation that mpi4py is making its calls to. In
addition the transmitting nodes also use the kernel module pktgen for sending the
actual network traffic. The kernel module is included in the Linux kernel, however it
is not enabled by default. For the transmitting nodes this is done when compiling the
Linux kernel. When the module is enabled and running pktgen creates a thread for
each CPU core, monitoring and controlling is done via the proc files. The strength
of pktgen is that it bypasses most of the network stack and is thus a very efficient
access to the NIC driver [19]. This helps us in squeezing more performance out of the
limited hardware. The hardware is the same as for the master node, an ODROID-
C1. More can be read in Section 5.6. Before we look into how the transmitting
group is implemented we recap the tasks that was established in Section 4.5:

• Given a transmission task, interpret it and execute it.
• Synchronise start and stop of transmission.
• Save the result of the sent data.

With these requirements in mind we go through the algorithm for the transmitting
nodes. The software implementation is presented in Appendix A in Listing A.3. To
further visualize the flow of a transmitting node we present a flow chart in Figure
5.4.

The algorithm for a transmitting node starts with establishing a connection to
the master node through the MPI.Comm.Get_parent() call. We also establish a
connection to the communication group of transmitting nodes with MPI.COMM_WORLD.
Each transmitting node receives a unique id, called rank, with the comm.Get_rank()
call. We also save the number of nodes within the transmitting group in a variable
called size. The rank is used to make only one node do the actual configuration for
the packet transmitting, it is then this configuration that is spread to each partici-
pating node.

Each node gets a unique rank and there it is only one node that does the
actual configuration. The node with the id, or rank, 0 is the one who sets up the
configuration and saves it in a configuration array that is later distributed to each
node. In the specific scenario presented in Listing A.3 the following configuration
for the packet of stream is:

• A packet size of 64 bytes (pkt_size)
• Destination IP of 192.168.0.1 (dst)
• Destination MAC address of 00:1e:06:c2:11:13 (dst_mac)
• A total packet amount of 100 000 (count)
• Packet is stored in one sk_buffer that is cloned 100 000 times (clone_skb)
• A send rate of 50 000 packets per second (ratep)
The reason to why the configuration setting of clone_skb is used is because

of increasing performance [19]. This setting offers the possibility to instead define
the network packet once, in one sk_buffer, and then clone it. Rather than creating
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Transmit node x
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rank == 0? i = 0

configs = [] 
size=transmit_comm.Get_size() 
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config[i] = new_conf
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PacketGenerator.start(config)

transmit_comm.Barrier()

master_node.Barrier()

Figure 5.4: Flow chart of a transmit node.

the same packet several times. This is useful for this specific packet stream where we
are sending an identical packet many times. We can increase the sending rate perfo-
mance significantly by using this method. If we wanted a packet stream consisting of
different packets, we would not be able to use this configuration setting. The configu-
ration is then scattered with the MPI call comm.scatter(configs, root=0).

We then use a class wrapper of pktgen called PacketGenerator to set the con-
figuration. After this we set up a barrier synchronisation in the transmitting group,
ensuring every node has finished configuring before we continue executing. When
synchronisation has been achieved we start the transmission of the packet stream.
This call is blocking until all the 100 000 packets have been sent. We then enter a
new barrier synchronisation, this time with the master node. When every transmit-
ting node has finished sending and reached this barrier the master node knows that
the traffic scenario is over and it can safely tell the receiving nodes to stop capturing
traffic. After the synchronisation with the master node is finished, the software is
done executing and the connection is closed.

In summary we define a transmission configuration. The configuration is dis-
tributed to each participating node. We then synchronise each node toward each
other within the group. The configuration is then executed by each node running
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pktgen until the traffic is finished. We then synchronise towards the master node,
making sure each node has finished sending traffic, and then we disconnect and the
program is finished.

With all the details presented, in Figure 5.5 we present a simple relations dia-
gram how all the Python scripts and classes relate to each other.

master_node.py

MPI_Comm capture_comm

MPI_Comm transmit_comm

PacketGenerator.py

string kernel_thread

string controller

string interface

transmit_node.py

MPI_Comm parent_comm
MPI_Comm transmit_group_comm
int rank
int size
PacketGenerator pg

capture_node.py

MPI_Comm parent_comm

MPI_Comm capture_group_comm

PacketCapturer pc

PacketCapturer.py

subprocess capture_process

file capture_results

string command

Figure 5.5: A relations diagram.

5.6 The hardware

In this section we present the hardware we use for the implemented solution. We
look at the design requirements and then present the hardware that was chosen. In
the first section we go through the hardware choice for the master node, receiving
group and transmitting group, i.e. the single-board computers. They all use the
same board even though the requirements for the different groups was not necessarily
the same. However it made it easy for us in utilising the same board for all of them.
After this we also present the switch that is used as an aggregating device into the
device under test. The switch was not really a part of the thesis work, however still
an integral part in the resulting system.
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5.6.1 The single-board computer - ODROID-C1
When looking at what sort of hardware we wanted to use for the system we used the
design requirements as guidelines. A small pre-study was made looking at different
boards that is presented in detail in Section 5.6.3. Looking from a hardware perspec-
tive the requirement regarding being able to send in 1 Gbps packet rates was a key
requirement. In order to make it easy for us and without the risk of any node not
being able to handle the traffic stream we decided to primarily look at single-board
computers that could handle 1 Gbps traffic rate. It was also important that the cost
should be kept low, otherwise we would defeat the purpose of the system, which is
to build a network traffic generator that is cheaper than the proprietary ones.

With the requirement of 1 Gbps in mind we looked at three key components
when deciding on the candidate for a SBC. These were the processor, the network
interface and the RAM. It is important to find a good quality, performant processor
that can handle processing as many packets as possible. The reasoning being because
out of all the single-board computers that were taken into account, none of them
had network a network interface with any advanced features such as Direct Memory
Access (DMA). DMA is good for network oriented systems because it helps in putting
off load from the CPU by being able to access the memory directly and move data
from the NIC to the memory. So when we realised we would not be able to find
a single-board computer, at the time, with this feature we had to try and find a
better CPU that can somewhat balance out the loss of such features. The RAM,
and amount of RAM, is important to take into account because this is where the
packets get stored temporarily waiting for the CPU to handle them, specifically in
the RX/TX rings. So with a limited hardware where the CPU will for many cases
not be fast enough we need to be able to buffer up network packets in the RAM
memory, the larger the better.

In addition to the hard requirement on the speed of the network interface card
we also had requirements regarding the possibility of having two separate network
interfaces, one for the testing traffic and one for the communication traffic, and a
kernel that can run Linux. With all these features in mind we decided on choosing
the ODROID-C1. In Section 5.6.3 an evaluation is presented between the different
platforms that were considered. The ODROID-C1’s key features are the following:

• 1.5 GHz Amlogic S805 Quad Core Cortex A5 processor.
• Integrated Gigabit Ethernet transceiver called Realtek RTL8221F.
• Samsung K4B4G1646D : 1GB DDR3 32bit RAM.
The ODROID met all the requirements we needed. It also came with a WiFi

adapter which enabled us to have two separate network interfaces. The integrated
network interface did not have any DMA, multi queues or any other more advanced
features which means that it is up to the CPU to handle all incoming and outgoing
network traffic. For single-board computers the processor featured in the ODROID-
C1 is luckily relatively performant. The 1 GB RAM also helps to buffer the packets
the CPU does not have time to handle right away. When the work was carried out
this SBC was one of top contesters for all-purpose single-board computers.

In summary we made sure to choose a single-board computer that was not the
most expensive one there was to find. However we made sure to select one that still
met all the requirements, even if it was cheaper than the more performant models.
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5.6.2 The aggregating switch - Ericsson SP 210
The switch that ties the system together is one provided by Ericsson. The SP 210 is
a packet aggregation node optimised for packet networks with routing and switching
functionality at line rate of 36 Gbps, which is more than enough for the nodes used
in this thesis work. It has 8 RJ45 ports and also additional 8 SFP ports if the system
needs to be extended. It supports the Layer 2 protocols that were needed according
to the design requirements, such as 802.1Q VLAN tagging. It guarantees line rate
from 64 byte to 9600 byte MTU, which is necessary since the packet streams can
consist of any MTU in that span.

5.6.3 Pre-study of the hardware
This section presents the small pre-study that was carried out in order to find which
platform would fit the application best, i.e. which SBC that would make out the
core of the system. The guidelines were simple in that it should not be too expensive
and it should be easy to obtain. The two main factors in choosing a SBC were the
network interface and the CPU that was going to be able to handle all the data
that was coming from the network interface. In Table 5.1 the different boards that
were considered can be seen and what properties of the boards that were the most
relevant for the application.

Name Processor Memory Network Storage
Banana Pi ARM Cortex-A7 1 GB DDR3 1 Gb Ethernet SD, SATA
Banana Pro ARM Cortex-A7 1 GB DDR3 1 Gb Ethernet, 602.11n microSD, SATA
Raspberry Pi B+ BCM2835 ARM11 512 MB SDRAM 100 Mb Ethernet microSD
BeagleBone Black ARM Cortex-A8 512 MB DDR3 100 Mb Ethernet Internal 2 GB, microSD
Miniand Hackberry ARM Cortex-A8 512 MB DDR3 100 Mb Ethernet, 602.11n Internal 4 GB
Cubieboard ARM Cortex-A7 1 GB DDR3 100 Mb Ethernet Internal 4 GB, microSD
ODROID-C1 Cortex-A5 ARMv7 1 GB DDR3 1 Gb Ethernet microSD

Table 5.1: Comparison of different single-board computers.

The boards that are marked in bold are the ones that were chosen for testing if
they could work in this system the system. Mainly because of the 1 Gigabit Ethernet
interface, the cheap prices and the community’s recommendations. The reason to
why the Raspberry Pi was chosen as well, even though it only had a 100 Megabit
Ethernet interface, is because the Raspberry Pi is very cheap and very popular so
it is not hard to get a hold of. It was also interesting to have a Raspberry Pi for
comparison, if it made a big difference to have access to 1 Gigabit Ethernet.
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In this chapter we present the evaluation of the proposed solution. We split the
chapter up in the different parts of the system. First we evaluate the packet gen-
eration of the system. We also present an evaluation of the hardware in a packet
generating sense. In addition to this we also evaluate different software for the
packet generation task. In the section after this we do the same with the packet
receiving side. We then also discuss different versions of the packet generation task,
and the pros and cons of it.

6.1 Packet generation
In this section we set up a test scenario and look at how well the system performs
from a pure performance standpoint. We begin by setting up the test methodology,
we continue with presenting the results. Finally we analyse the results and discuss
benefits and drawbacks of the implementation.

6.1.1 Test methodology
The methodology is simple. We want to be able to find the hard limits of the
system’s transmitting capabilities. In order to do this we need to send traffic as
fast as we can and see if can find the sweet spot where the degradation factor k
presented in Section 4.7 starts playing a bigger role. To do this we use in total
seven nodes. We set up three nodes as transmitting and we set up three nodes as
receiving, and one node as master node. In between we use the actual proprietary
tester, an Anritsu MP1590B, that can give real-time traffic statistics. How much
traffic it is receiving, what sort of traffic that is currently being sent through it. The
Anritsu will act as the device under test. Figure 6.1 displays what the setup looks
like. We summarise the test steps in the following list:

1. One packet stream per node.
2. Run traffic for ten seconds.
3. Observe live packet rate through the Anritsu.

6.1.2 The test scenarios
For evaluating the system we have used a few different scenarios. By testing a few
different sized packets at different traffic rates we are trying different extremities of
the traffic characteristics. What we are hoping to observe is that the system reaches
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Transmitting
group

Receiving 
 group

Master node

Anritsu MP1590B

Figure 6.1: The test setup.

the given traffic rate within a plausible time frame, around one second. In order
to pressure the system we chose traffic characteristics that we thought would be
taxing for the CPU and the network interface card. We tried using a small, medium
and large sized packet at different packet rates. We believe sending these packets
as fast as we can to try and overwhelm the system, much like a denial-of-service
attack, will help us in finding the bottlenecks. In Table 6.1 we present the different
traffic scenarios we executed on the system. These scenarios are split over three
different traffic rates. Where a traffic rate is how many packets are sent per second.
In addition we test each traffic rate with three different packet sizes, going from
smallest to largest. In total this gives us nine different test scenarios. What we
want to observe is that the system behaves according to the simple mathematical
model presented in Section 4.7. Which is that if we were to assign a traffic rate
of 30 000 packets per second per node, then we should see, if we do not have any
degradation, a total output of 90 000 packets per second, given that we are using
three nodes for generating traffic.

Scenario Size (bytes) Send rate (pkts/s)
1 64 30 000
2 512 30 000
3 1500 30 000
4 64 60 000
5 512 60 000
6 1500 60 000
7 64 110 000
8 512 110 000
9 1500 110 000

Table 6.1: Different test scenarios

The results were extracted from the Anritsu after the test was finished. The
results are split up into three graphs, one graph per packet rate. Each plot represent
one packet size each, depicted in the legend. The graphs are plotted from the data
extracted by the Anritsu where the Anritsu reports a packet rate every second. In
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Figure 6.2: Plotted traffic results from scenario 1 to 3

Figure 6.2 traffic scenario one to three is presented where we used a traffic rate of
30 000 packets per second.

As we can see in the graph there is a small ramp up until the system reaches
the designated packet rate of 30 000 packets per second per node. However once it
is reached it is stable for the rest of the test. If we apply the mathematical model in
Equation 6.1 that we originally presented in Section 4.7, we can observe promising
results.

Ptot =
( n∑

i=1
pi

)
∗ k (6.1)

In Table 6.2 we can view the result of applying the mathematical model to the
results of the tests. We find that the degrading factor k in the scenario when we
have a packet rate of 30 000 packets per second is equal to 1. Meaning that there
is no degrading factor of the system at all. The given packet rate provided by the
user is what the system then performs.

Size Ptot n pi k
64 90 000 3 30 000 1
512 90 000 3 30 000 1
1500 90 000 3 30 000 1

Table 6.2: Finding the k with 30 000 pkts/s

In Figure 6.3 we present the test scenario where we increased the packet rate
to 60 000 per node. In Figure 6.3 we see the respective plots for the different packet
sizes with a packet rate of 60 000 per node. Already at this packet rate we can
observe a severe degradation in one of the scenarios. When we are using 1500 bytes
for the packets we see we are already getting almost exactly half of the performance.
The reported packet rates from the Anritsu flutter between rates of 97 000 to 99
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Figure 6.3: Plotted traffic results from scenario 4 to 6

000 packets per second. It seems to also be affecting all three nodes equally, in a
stable way. We can look at the degradation factor in Table 6.3

Size Ptot n pi k
64 180 000 3 60 000 1
512 180 000 3 60 000 1
1500 ≈ 98 000 3 60 000 0.54

Table 6.3: Finding the k with 60 000 pkts/s

By solving for k we can establish that we get a degradation factor of 0.54 when
we are running with a packet rate of 60 000 packets per second and with a 1500 bytes
packet size. The system is running only at a 54% efficiency, a huge degradation. To
further investigate this we look at the last traffic scenario as well.

The final three traffic scenarios is presented in Figure 6.4. For this scenario we
are trying to run the same scenarios as before but with a packet rate of 110 000
packets per second. Now we see a degradation even with packet size of 512 bytes,
and the degradation is even worse for the traffic scenario with 1500 bytes. In Table
6.4 we present the calculations of the degradation factor k for the final three traffic
scenarios.

Size Ptot n pi k
64 330 000 3 110 000 1
512 ≈ 287 000 3 110 000 0.87
1500 ≈ 98 000 3 110 000 0.30

Table 6.4: Finding the k with 110 000 pkts/s

As can be noted the degradation factor now even seems to affect the lower packet
sizes. What is interesting is that the packet rate has stayed the same for the traffic
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Figure 6.4: Plotted traffic results from scenario 7 to 9

Size Packet rate (pps) Throughput (Mbps)
64 110 000 56.32
512 ≈ 96 000 393.216
1500 ≈ 33 000 396

Table 6.5: Conversion to Mpbs

scenario featuring packet sizes of 1500 bytes. This suggests a hard limit somewhere
in the system. If we convert the packets per second and packet sizes to another unit
we can get a clue to where that limit is. If we calculate the throughput of each node
to bytes per second instead by multiplying the packet size with the packet rate and
then converting it to megabit per second we observe something interesting. In Table
6.5 we present these calculations for the last three traffic scenarios. Note that the
throughput is given per node instead of the aggregate. These numbers suggest that
we get a hard limit at pretty close to 400 Mbit, half of the ODROID’s 1 Gbit.

To investigate this further and to eliminate the system as a potential source
of error we performed a quick evaluation of all the different single-board comput-
ers’ capabilities to generate traffic. The findings of our evaluation show that the
ODROID-C1 has a flaw in that it only has 2 TX queues. It has 4 RX queues so
it can receive traffic up to 1 Gbps without any issue. Which is probably why its
sellers are marketing it as such. However its capabilities in generating traffic is cut
in half by the lower amount of TX queues. This is the reason to why the degrada-
tion factor k goes up when we reach higher throughput, the hardware is simply not
designed for it, even though the design specifications told otherwise. The details of
our evaluation is presented in Section 6.1.3

In summary we can see through the test scenarios that the system performs
really well until we reach a threshold. That threshold is due to a design flaw in the
chosen hardware. An interesting thought would then be to see if we could reach the
designated packet rate by just doubling the amount of nodes. However since we are
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already using all the nodes that was bought for the thesis this could not be tested.
Even if it were to work it would make the system cumbersome to use. The test user
expects to receive the throughput that is provided to the system, not half of it.

6.1.3 SBC hardware evaluation - finding the hard limit
To get some insight into what each single-board computer actually could perform,
and for troubleshooting the solution, a small comparison was made on the hardware.
The tests were made using tcpreplay, which is why the numbers are fluctuating
as tcpreplay is a user-level application. This results in a lot of overhead when
the packet size go down because there are so many interrupts and context switches.
The reason to why tcpreplay was used is out of comfort reasons. Since it takes
time to compile new kernels for each hardware just to enable pktgen.

The first comparison between the Banana Pro (BPro) and the Raspberry Pi
(RPi) can be found in Table 6.6 and it can easily be concluded that the RPi is inferior
when looking at the packet rate. It is not a surprise since the RPi’s network interface
only supports 100 Mbit when the BPro supports 1000 Mbit. As [20] tests in their
paper, the most interesting comparison vectors are the results of using the lowest
packet size at the highest requested packet rate. This results in the network interface
transmitting packets as fast as it possibly can, since with the smallest permitted size
it takes much less time to process the packet. In other words these results are the
fastest packet rate the board can produce packets when using tcpreplay.

Platform Packet size Number of packets Megabit per second (Mbps) Packets per second (pps)
RPi 1500 100 000 93 8100

1500 10 000 85 7407
1500 1000 46 4000

64 100 000 4 8643
64 10 000 4 7813
64 1000 2 4167

BPro 1500 100 000 865 74 873
1500 10 000 608 59 643
1500 1000 51 3846

64 100 000 20 to 50 42 000 to 100 000
64 10 000 18 to 37 37 000 to 77 000
64 1000 16 to 27 33 000 to 50 000

Table 6.6: Performance test, comparison between Raspberry Pi and Banana Pro.

As was discovered in Section 6.1.2 we saw a severe degradation when using the
ODROID as hardware for the nodes. Therefore we also did a quick evaluation and
compared it to the other 1000 Mbit single-board computer we had, the BPro. In
Table 6.7 we can see the same behaviour as was observed during the evaluation of
the system. The ODROID is actually slower when using large sized packets even
though according to the specifications it should support 1000 Mbit. According to
the user support forums this is a design decision in the hardware where the TX
queues for the network interface are only 2 in comparison to the RX queues where
it has 4. The NIC and CPU can handle the high packet rate. However it does not
have the physical space for the bigger packets. This was not in the original technical
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specification. So the Odroid can actually receive data up to 1000 Mbit but it cannot
generate data up to 1000 Mbit because of the hardware limitation.

We then raise the question if we should change the hardware for the solution to
the BPro. When inspecting the figures for the packet rates we can establish that the
ODROID can keep a similar packet rate to the BPro when the packet sizes are small.
The BPro can be concluded to be the absolutely fastest card, however since some
of the kernel drivers seems to be sloppily written, the network interface sometimes
go up and down for no apparent reason, the Odroid was chosen to use for the core
of the system. It was the most stable platform and the fastest when stability was
taken into account.

Platform Packet size Number of packets Megabit per second (Mbps) Packets per second (pps)
Odroid 1500 100 000 360 33 100

1500 10 000 224 19 607
1500 1000 444 3846

64 100 000 47 96 000
64 10 000 15 32 258
64 1000 2 4500

BPro 1500 100 000 867 75 757
1500 10 000 817 71 428
1500 1000 476 41 500

64 100 000 47 95 238
64 10 000 40 to 44 83 000 to 91 000
64 1000 12 to 16 25 000 to 33 000

Table 6.7: Performance test, comparison between Odroid and Banana Pro.

6.2 Traffic configuration
One of the design requirements in Section 4.1 was being able to configure all the
relevant layers of the TCP/IP stack. For the developed solution pktgen was finally
implemented as the underlying tool for generating traffic. However since it is a
software written mainly with performance in mind, its configuration options are
limited. With pktgen we can configure the fields that we need to set up basic tests.
However setting up more complex traffic scenarios proved to be a bit problematic
with the limited configuration options. To evaluate pktgen and see if we could
use any alternative option we instigated an evaluation on similar software. In this
section we go into detail how that evaluation was made and present graphs and
tables to further illustrate why the software for transmission of Ethernet traffic was
chosen.

6.2.1 Criterias
To be able to compare the software a set of criterias needs to be established. We
extended the initial criterias of the design requirements for the purpose of finding
a candidate. However during testing some other qualities were discovered that had
not been thought of at the time of when the design requirements were set. The
following list contains the criterias that were used for the comparison.
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• Packets should be configurable at relevant layers of the TCP/IP stack.
• It should be possible to create packet streams that contain one or several

packets.
• Streams need to be able to reach speeds of 1 Gbps.
• Given a packet rate the software should actually send in this rate.
• The software should be able to send packets from the minimum to maximum

permitted size, 64-1500 bytes per packet.
• Being able to set up complex traffic scenarios to simulate real traffic.

6.2.2 Scapy/tcpreplay
Scapy was the first software that was considered for the system. It is a packet crafting
software written in Python [21]. It is possible to create raw packets and configure
every option for each relevant layer and the packet size is configurable. It is limited
in its way to create streams, although it is possible to define how many packets that
should be sent, we cannot configure sending packets in bursts. For sending packets
at higher rates it starts tcpreplay as a subprocess to send the packets. Scapy is
not designed to support large amounts of data or sending data fast. That is why
tcpreplay is used under-the-hood. However tcpreplay is also a software that runs
in user-space and thus decreases performance. It generates too much overhead with
context switches and interrupts so it becomes taxing for the CPU to handle sending
packets at high rates. It is faster than Scapy, but not faster than pktgen.

In addition it does not seem to implement a good algorithm for sending packets.
The actual packet rate often differs quite much in comparison to what the user
would put in. We discovered this by doing a small test and comparing it to pktgen.
In Figure 6.5 we present the results that shows this behaviour. This behaviour
along with overall slow packets per second rate makes Scapy/tcpreplay unattractive.
However what Scapy does really well is its simplicity in configuring the contents of
the packets. It offers all kinds of customisation, even up to the application layer.
If more specific customisation for the contents of a packet is more important than
performance, then Scapy is a good choice.

6.2.3 Pktgen
Pktgen is a kernel module for Linux that is developed for performance. As [19] shows
it is a powerful packet generator that works in the kernel space and is directed
via the proc file system [19]. It is via the proc system we configure packets and
traffic streams. If we look at the design requirements in Section 4.1 we are able
to configure all the relevant fields of the Data Link, Network and Transport layer.
Mainly ip addresses, MAC addresses and VLAN tags, however not much more. The
streams can be configured to send in burst, to use delays, send both fixed number
of packets and sending indefinitely until interruption by the SIGINT signal. The
most interesting feature of pktgen is that it runs in kernel space, which means that
the overhead is significantly reduced, resulting in much higher packet rates and also
much more accuracy between the packet rate given by the user and the packet rate
that the system actually outputs. We present a small comparison between Scapy

46



6. Evaluation

10000User input
10000pktgen

8888Scapy

20000User input
20000pktgen

15974Scapy

30000User input
30000pktgen

21929Scapy

40000User input
40000pktgen

26595Scapy

50000User input
50000pktgen

31055Scapy

60000User input
60003pktgen

35335Scapy

70000User input
70004pktgen

37878Scapy

60000User input
60000pktgen

40650Scapy

0 10 20 30 40 50 60 70 80 90 100
Packet rate in packets per second

Figure 6.5: Actual outputs of the software with a given packet rate (pps).

and pktgen in Figure 6.5

In summary pktgen provides us with the tools we need both when it comes to
packet configuration but especially with the stream of packet configuration. Another
significant benefit is the pure performance of pktgen. It is not as easy-to-use as Scapy
and it does not cover as many configuration options for the contents of the packets.
However with the superior performance and the packet stream configuration it still
wins over Scapy. However if we would have gotten requirements of more detailed
packet configuration then the choice would not have been as simple.

6.2.4 tcpreplay

We considered using tcpreplay by itself since Scapy was using it under-the-hood.
However it is, as the name suggests, reliant on replaying pcap files. So we have
no ability in customising and configuring the contents of the traffic in an easy way.
The application is also run in user-space so we are missing out on the performance
brought by pktgen. It can generate packets at speeds higher than Scapy. However
it does not come close to pktgen. If we ever were to capture traffic and replay it
again, then tcpreplay would do a good job.
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6.3 Packet capturing
In this section we look at the packet capturing capabilities of the system. We set
up a test scenario and look at how high we can pressure the system before we see
packet loss. One of the hard requirements was that we could send traffic without
any packet loss at all, which is why we want to find this hard limit in the system.
We begin by presenting the test methodology, we look at the criterias on the system
and look at the results from the test. Finally we summarise and end the section
with thoughts on the solution.

6.3.1 Test methodology
For the packet capturing test we made the test method even simpler. The goal is
the same as for the evaluation of the transmitting side. We want to pressure the
system and see if we can find the bottleneck, or the hard limit of how fast we can
send packets and still capture them without any packet loss. We set up the test
with just one receiving node and two transmitting nodes. Because as we discovered
in Section 6.1.2 the ODROID only has 2 TX queues and thus only a 50% capacity
for generating traffic. However it still has 4 RX queues so it can receive traffic
much faster than it can generate. Therefore we used double the amount of nodes as
transmitters, to try and pressure the ODROID to the max. The reason to why we
need to find this hard limit, i.e. when the system starts dropping packets, is because
otherwise we cannot know if it was the device under test that had packet loss or the
system in itself. One extra node was setup as the master node to orchestrate the
tests. Figure 6.6 shows the setup. The test method we used can be summarised in
a list:

Transmitting
group

Receiving 
 node 

Master node

Ericsson SP210

Figure 6.6: The capturing test setup.

1. One packet stream per node
2. Run a total of 1 000 000 packets
3. Compare captured packets with how many that were sent.
4. If no packet loss was discovered repeat the test for 10 times to ensure no packet

loss.
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6.3.2 The test scenarios - finding the zero packet drop rate
In order to try and find the hard limit we focused on what we believed were the two
most taxing scenarios for the ODROID. Also taking inspiration from the testing in
[20].

1. Largest packet size to reach highest throughput.
2. Smallest packet size to reach highest packet rate.

We started by testing for the highest throughput and thus using 1500 bytes as the
packet size. To reach 1 Gbps, the maximum throughput, we need to send 1500 bytes
of packets up to around 83000 packets per second. To get a confidence for our test
results we repeated each test ten times. We summarise the test results in Table 6.8
As the results display we have on packet loss on two of the scenarios. It is a very

Test no. Rate (pps) Rate (Mbps) Size(Bytes) Packets sent Packets dropped Drop rate (%)
1 83000 1000 1500 1000000 0 0,00%
2 83000 1000 1500 1000000 0 0,00%
3 83000 1000 1500 1000000 0 0,00%
4 83000 1000 1500 1000000 0 0,00%
5 83000 1000 1500 1000000 214 0,02%
6 83000 1000 1500 1000000 0 0,00%
7 83000 1000 1500 1000000 0 0,00%
8 83000 1000 1500 1000000 614 0,06%
9 83000 1000 1500 1000000 0 0,00%
10 83000 1000 1500 1000000 0 0,00%

Table 6.8: Scenario 1: Large packet size - high throughput

small packet loss, but we still need to achieve the zero packet drop rate, it does not
matter even if it is a very small amount of the packets that are dropped.

The next test scenario we performed was to use the lowest packet size instead
and run the same test but with a higher packet rate. Hoping that we would achieve
zero packet rate by using a smaller packet size. The test results are displayed in
Table 6.9

Test no. Rate (pps) Rate (Mbps) Size(Bytes) Packets sent Packets dropped Drop rate (%)
1 90000 1000 64 1000000 0 0,00%
2 90000 1000 64 1000000 376 0,04%
3 90000 1000 64 1000000 0 0,00%
4 90000 1000 64 1000000 0 0,00%
5 90000 1000 64 1000000 114 0,01%
6 90000 1000 64 1000000 0 0,00%
7 90000 1000 64 1000000 445 0,05%
8 90000 1000 64 1000000 202 0,02%
9 90000 1000 64 1000000 362 0,04%
10 90000 1000 64 1000000 0 0,00%

Table 6.9: Scenario 2: Low packet size - high packet rate

To our big surprise we saw an even higher packet loss rate when using the
smaller size and a little bit higher packet rate. This seems to suggest that the
packet loss is not related to the packet size, but rather the packet rate. Thus we
continued lowering the packet rate in the following tests. We reduced the packet
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rate by 10000 packets per second for every scenario. The test results can be found
in Appendix A. However instead of presenting them in a long table we used the
results to produce a graph. Figure 6.7 presents our findings. The figure depicts a
graph that measures how likely the system is to drop packets given a packet rate.
Since a zero packet drop rate is required it does not matter how many packets were
dropped, more the fact that it actually happened. So the numbers are simply based
on how many tests of a given packet rate resulted in packet loss. Each packet rate
was tested 10 times, except for the latter packet rates that were tested up to 30 times
just to ensure there were no packet drops. The graph does not take into account
how many packets that were dropped. As can be noted in the graph, the system
seems to be able to capture all packets without drops when transmitting in 50 000
packets per second. This is a hard limitation of how fast packets can be sent when
using the same kind of hardware in both ends.

5060708090
·103

0

10

20

30

40

50

Packet rate (pps)

%
of

fa
ile
d
te
st
s

Figure 6.7: Packet rates and the percentage of failed tests.

6.4 Bottlenecks
In summary the developed solution is unwieldy to use. Designing precise, high-
performant testing tools with general-purpose single-board computers is difficult.
The technical specifications of the hardware does not live up to the actual perfor-
mance of the board. Something that was very disappointing to find, in addition
to finding the ODROID only had 2 TX queues, was the the 50 000 packet rate
limit. This becomes a bottleneck for the performance of both the transmitting and
receiving capabilities. This severely limits our ability to test high speed traffic. The
system however can still be used alongside the proprietary tester, doing simpler
tests. Replacing it fully though, that is not likely to happen.

Another bottleneck that was not really explored is the one of the Ericsson SP210
switch. During the work we never got the chance to use enough nodes to utilise all
of its ports. With enough nodes we reach another problem of not having enough
ports on the switch which forces us to either invest in more switch hardware or limit
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the performance of the system to that of the number of ports we have in the switch.
However the biggest bottleneck of the system still lies with the hardware flaw that
we found in the ODROID C1 single-board computer.
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Conclusion

In this thesis work we have designed and implemented a distributed traffic analyser
as an alternative solution for the company Layer 10’s traffic testers. The solution
consists of a transmitting and a receiving group of distributed nodes and a master
node that works like a handler for the system. The system is built using the MPI
framework for communication between nodes. Pktgen for transmitting traffic and
netsniff-ng for capturing traffic. Using these pieces in addition to the single-board
computer ODROID-C1 we could build a system that worked as a traffic tester.

By testing this system we proved that it can generate and capture traffic at
rates that fulfil the requirements of the company. However it is an unwieldy system
to use due to its lack of real user interaction. Another big issue was the lack of
full customization of the network traffic. Due to the limitations of pktgen, not that
many different traffic scenarios could be set up. If we were to use Scapy instead,
another software that comes with more customization options, we then get a serious
performance hit. This lead us to offering two different solutions to the testing
engineers. One that was performant but limited in its customization of traffic, or
one where you could customize almost any field but then not as reliable performance-
wise. However both these options were of interest to the test engineers as they could
carry out limited testing and not be solely reliant on the proprietary traffic tester
they already had.

Something to be noted is that we mostly evaluated the solution using traffic
characteristics that were extreme. Such as very low packet sizes at a really high
packet rate, or trying to achieve maximum wire speed. This in order to find the
hard limits, or bottlenecks, of the system. Instead one could evaluate the system
based on emulating real traffic characteristics. It was not considered since we realised
that if we find the hard limits we know that we can send any sort of traffic as long
as we stay within those limits. However if one were to evaluate the system based on
real traffic scenarios it would be interesting to emulate that. To list a few emulations
one could send traffic with an average packet size over a long period, or to emulate
a population’s use of Internet one could send more traffic during certain hours, the
hours people are awake, over the course of a day.

Given the hardware evolution and possibilities for single-board computers today,
a possible alternative to the ODROID-C1 could be any single-board computer that
supports DMA (Direct Memory Access). This really enhances the performance
of each individual card. We could also look at trying to evaluate the scalability
of the system more. At the time we were only able to order so many nodes so
we could not explore the scalability in a satisfying manner. We believe it would
have been much more interesting to look at the scalability when we would have
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reached an amount of nodes up towards twenty, or even higher. In addition a
possibility would be of deploying the solution into the cloud. It would make the
hardware configuration towards the physical radio unit a bit more complicated, but
from a research standpoint much more interesting. Imagine just ordering another
computing instance whenever you needed more performance in the packet generating
or capturing.

Further improvements for future research could be made to the user experience
of the system, making it easier to use. In addition to this, making the packet
generating and capturing task agnostic. In other words, develop a framework for
interpreting traffic configuration. Then translate that into configuration parameters
for the underlying software. This could enable us to still use the same solution but
under the hood use different software depending on what the user wanted to do. You
could then extend the system with other packet generator and capturing software
by writing integration APIs.
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A. Appendix A

1 from mpi4py import MPI
2 import sys
3

4 if __name__ == ’__main__’:
5 capture_args = [’capture_node.py’]
6 capture_info = MPI.Info.Create()
7 capture_info.Set(’hostfile’, ’hosts/caphosts’)
8 capture_comm = MPI.COMM_WORLD.Spawn(sys.executable, args=

↪→ capture_args, info=capture_info, maxprocs=3)
9

10 # First barrier for capturing, makes sure each node is ready to
↪→ capture.

11 capture_comm.Barrier()
12

13 transmit_args = [’transmit_node.py’]
14 transmit_info = MPI.Info.Create()
15 transmit_info.Set(’hostfile’, ’hosts/transmithosts’)
16 transmit_comm = MPI.COMM_WORLD.Spawn(sys.executable, args=

↪→ transmit_args, info=transmit_info, maxprocs=3)
17

18 # Make sure each transmitting node is done transmitting.
19 transmit_comm.Barrier()
20 # Release each capturing node from barrier synch since every

↪→ transmitting node is done.
21 capture_comm.Barrier()
22

Listing A.1: Master node algorithm

II



A. Appendix A

1 from mpi4py import MPI
2 import time
3

4 from gencapfw import PacketCapturer
5

6 if __name__ == ’__main__’:
7 master_node = MPI.Comm.Get_parent()
8 receiv_comm = MPI.COMM_WORLD()
9

10 pc = PacketCapturer("eth0")
11 pc.add_option("-s")
12 pc.add_option("-H")
13 pc.add_option("--ring-size", "500MiB")
14 pc.start()
15 while True:
16 if pc.capture.readline().startswith("Running!"):
17 receiv_comm.Barrier() # Barrier within recv group to make

↪→ sure all have started their packet capturers.
18 master_node.Barrier()
19 break
20

21 master_node.Barrier() # Wait for the sending nodes to finish,
↪→ Barriers with master node.

22 print("PC: Stopping packet capturer.")
23 time.sleep(4)
24 pc.stop()

Listing A.2: Receiving group software implementation
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1 from gencapfw import PacketGenerator
2 from mpi4py import MPI
3

4 if __name__ == ’__main__’:
5 master_node = MPI.Comm.Get_parent()
6 comm = MPI.COMM_WORLD()
7 rank = comm.Get_rank()
8 size = comm.Get_size()
9

10 if rank == 0:
11 configs = []
12 for i in range(size):
13 conf = ["pkt_size 64", "dst 192.168.0.1",
14 "dst_mac 00:1e:06:c2:11:13", "count 100000",
15 "clone_skb 100000", "ratep 50000"]
16 configs.append(conf)
17 else:
18 configs = []
19

20 recvmsg = comm.scatter(configs, root=0) # Scatter the config to
↪→ each node.

21 pg = PacketGenerator()
22 pg.loopset(recvmsg)
23

24 comm.Barrier() # Synchronise each node to start at the same time.
25 pg.start()
26 master_node.Barrier() # Make sure each node is done transmitting.
27 master_node.Disconnect() # Disconnect from master_node.

Listing A.3: Transmitting group algorithm
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Test no.
Rate
(pps)

Rate
(Mbps)

Size
(Bytes)

Packets
sent

Packets
dropped

Drop rate
(%)

1 83 000 1000 1500 1 000 000 0 0.00%
2 83 000 1000 1500 1 000 000 0 0.00%
3 83 000 1000 1500 1 000 000 0 0.00%
4 83 000 1000 1500 1 000 000 0 0.00%
5 83 000 1000 1500 1 000 000 214 0.02%
6 83 000 1000 1500 1 000 000 0 0.00%
7 83 000 1000 1500 1 000 000 0 0.00%
8 83 000 1000 1500 1 000 000 614 0.06%
9 83 000 1000 1500 1 000 000 0 0.00%

10 83 000 1000 1500 1 000 000 0 0.00%
11 90 000 43 64 1 000 000 0 0.00%
12 90 000 43 64 1 000 000 376 0.04%
13 90 000 43 64 1 000 000 0 0.00%
14 90 000 43 64 1 000 000 0 0.00%
15 90 000 43 64 1 000 000 114 0.01%
16 90 000 43 64 1 000 000 0 0.00%
17 90 000 43 64 1 000 000 445 0.05%
18 90 000 43 64 1 000 000 202 0.02%
19 90 000 43 64 1 000 000 362 0.04%
20 90 000 43 64 1 000 000 0 0.00%
21 80 000 38 64 1 000 000 0 0.00%
22 80 000 38 64 1 000 000 1546 0.16%
23 80 000 38 64 1 000 000 0 0.00%
24 80 000 38 64 1 000 000 0 0.00%
25 80 000 38 64 1 000 000 0 0.00%
26 80 000 38 64 1 000 000 0 0.00%
27 80 000 38 64 1 000 000 0 0.00%
28 80 000 38 64 1 000 000 848 0.09%
29 80 000 38 64 1 000 000 0 0.00%
30 80 000 38 64 1 000 000 6694 0.67%
31 70 000 33 64 1 000 000 312 0.03%
32 70 000 33 64 1 000 000 0 0.00%
33 70 000 33 64 1 000 000 0 0.00%
34 70 003 33 64 1 000 000 0 0.00%
35 70 003 33 64 1 000 000 0 0.00%
36 70 003 33 64 1 000 000 0 0.00%
37 70 003 33 64 1 000 000 0 0.00%
38 70 001 33 64 1 000 000 0 0.00%
39 70 000 33 64 1 000 000 0 0.00%
40 70 000 33 64 1 000 000 0 0.00%
41 70 000 33 64 1 000 000 0 0.00%
42 70 000 33 64 1 000 000 0 0.00%
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43 70 000 33 64 1 000 000 0 0.00%
44 70 000 33 64 1 000 000 0 0.00%
45 70 003 33 64 1 000 000 0 0.00%
46 70 000 33 64 1 000 000 268 0.03%
47 70 000 33 64 1 000 000 0 0.00%
48 70 000 33 64 1 000 000 0 0.00%
49 70 000 33 64 1 000 000 0 0.00%
50 70 000 33 64 1 000 000 188 0.02%
51 60 002 28 64 1 000 000 0 0.00%
52 60 002 28 64 1 000 000 0 0.00%
53 60 002 28 64 1 000 000 0 0.00%
54 60 002 28 64 1 000 000 0 0.00%
55 60 002 28 64 1 000 000 0 0.00%
56 60 002 28 64 1 000 000 0 0.00%
57 60 002 28 64 1 000 000 0 0.00%
58 60 002 28 64 1 000 000 0 0.00%
59 60 002 28 64 1 000 000 0 0.00%
60 60 002 28 64 1 000 000 0 0.00%
61 60 002 28 64 1 000 000 0 0.00%
62 60 002 28 64 1 000 000 0 0.00%
63 60 002 28 64 1 000 000 714 0.07%
64 60 002 28 64 1 000 000 0 0.00%
65 60 002 28 64 1 000 000 0 0.00%
66 60 002 28 64 1 000 000 0 0.00%
67 60 002 28 64 1 000 000 0 0.00%
68 60 002 28 64 1 000 000 0 0.00%
69 60 002 28 64 1 000 000 0 0.00%
70 60 002 28 64 1 000 000 0 0.00%
71 50 000 24 64 1 000 000 0 0.00%
72 50 000 24 64 1 000 000 0 0.00%
73 50 000 24 64 1 000 000 0 0.00%
74 50 000 24 64 1 000 000 0 0.00%
75 50 000 24 64 1 000 000 0 0.00%
76 50 000 24 64 1 000 000 0 0.00%
77 50 000 24 64 1 000 000 0 0.00%
78 50 000 24 64 1 000 000 0 0.00%
79 50 000 24 64 1 000 000 0 0.00%
80 50 000 24 64 1 000 000 0 0.00%
81 50 000 24 64 1 000 000 0 0.00%
82 50 000 24 64 1 000 000 0 0.00%
83 50 000 24 64 1 000 000 0 0.00%
84 50 000 24 64 1 000 000 0 0.00%
85 50 000 24 64 1 000 000 0 0.00%
86 50 000 24 64 1 000 000 0 0.00%
87 50 000 24 64 1 000 000 0 0.00%
88 50 000 24 64 1 000 000 0 0.00%
89 50 000 24 64 1 000 000 0 0.00%
90 50 000 24 64 1 000 000 0 0.00%
91 50 000 24 64 1 000 000 0 0.00%
92 50 000 24 64 1 000 000 0 0.00%
93 50 000 24 64 1 000 000 0 0.00%
94 50 000 24 64 1 000 000 0 0.00%
95 50 000 24 64 1 000 000 0 0.00%
96 50 000 24 64 1 000 000 0 0.00%
97 50 000 24 64 1 000 000 0 0.00%
98 50 000 24 64 1 000 000 0 0.00%
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99 50 000 24 64 1 000 000 0 0.00%
100 50 000 24 64 1 000 000 0 0.00%

Table B.1: Table showing all tests made to find the zero packet drop rate.
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