(N - M “y an T

&L 6L GLY, %) L1 ~1 L™

A A A A A A A

IMPLEMENTING AN OPEN SOURCE AMHARIC
RESOURCE GRAMMAR IN GF

Master of Science Thesis in Intelligent Systems Design

MARKOS KASSA GOBENA

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
Goteborg, Sweden, November 2010

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.

The Author warrants that he/she is the author to the Work, and warrants that the Work does
not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

IMPLEMENTING AN OPEN SOURCE AMHARIC RESOURCE GRAMMAR IN GF
MARKOS KASSA GOBENA
© MARKOS KASSA GOBENA November 2010.

Examiner: AARNE RANTA (Prof.)
Supervisor: RAMONA ENACHE

Chalmers University of Technology

University of Gothenburg

Department of Computer Science and Engineering
SE-412 96 Goteborg

Sweden

Telephone + 46 (0)31-772 1000

Cover:
Ambharic Fidél and the GF official logo marking the implementation of Amharic resource
grammar in GF

Department of Computer Science and Engineering
Goteborg, Sweden November 2010

Abstract

Developing language applications or localization of software is a resource intensive task that
requires the active participation of stakeholders with various backgrounds. With a constant
increase in the amounts of electronic information and the diversity of languages which are used
to produce them, these challenges get compounded. Various researches in the fields of
computational linguistics and computer science have been carried out while still many more are
on their way to alleviate such problems. Grammatical Framework (GF) is one potential
candidate to this. GF is a grammar formalism designed for multilingual grammars. A
multilingual grammar has a shared representation, called abstract syntax, and a set of concrete
syntaxes that map the abstract syntax to different languages. In this thesis, we describe an
implementation of Amharic, a Semitic language spoken in Ethiopia, as a resource grammar in
GF and we deal with orthography, morphology and syntax of the language. The work contributes
to the reduction of the amount of time and energy spent while developing language-related
applications using Amharic.

This report is written in English.

Acknowledgement

I am humbly grateful to my Lord for guiding me and helping me all the way through. My
heartfelt thanks goes to my examiner and father of GF Aarne Ranta, for letting me undertake this
project and showing me lots of kindness whenever | visited his office. Ramona Enache, you
have always been brilliant and attentive. | sincerely thank you very much for the supervision and
creating a friendly environment whenever we sit for discussions. | love my mom so | can't thank
her enough for everything. Thank you brothers and sisters for all the support and love I got while
trying to make it on a foreign soil. There were times when | was flying in the air without my
compasses set, thank you Selam for showing me the directions, MLL. Dear friends; thanks for
making my life so rich. Gunilla, you have all been a God-sent. Gossish & family, it always felt
like home-away-from-home whenever | visited your place. The Ethiopian community at St.
Gabriel Ethiopian Orthodox Church, my indebtedness goes to you for the love and support you
gave me, may God bless our gathering forever and ever amen!

Contents

N o - Vo PRSPPI 3
ACKNOWIBAGEMENT ...ttt ettt ettt be e ennee s 4
IS 0] N o] o] €AV - 4T PRSP 7
(O g =T (=] o TSP U R UPPPRT PP 9
L1 (o 0ot A T o OSSPSR 9
0] €AY 4 o o PSPPSRI 10
Organization 0f the REPOIT ..o 11
CRAPTET 2 ..ttt 12
GrammatiCal FraMEWOTKcoiiieeiiieeiiie e e e e e s et e e s a e et e e nrae e e raeeesnsaeenneeeeanes 12
2.1 MURHIINQUAT GrammMarsSooiiiiiiiiie et 12
2.2 Translation @nd GFoooiiii e 13
2.3 Application Grammars and ReSOUICEe GrammMarS.........cueiureruiereesiieesieesieesnieesree e anns 13
2.4 The Resource Grammar LIDFaryccccooviiiiii i 13
(04T o] T g SRR 15
BACKGIOUNG ... eeieiiiie et e e e e e et e e et e e et e e e tae e e snteeesnteeeantneeanneeeas 15
TN Y111 - L o TSP UPR PP 15
3.2 “The boy loves this beautiful girl” in GEcccooiiiiiiiiiiiiiii e 17

(O 4T o) 1 7 SRR 22
SYSIEM OVEIVIBW ...ttt ettt et e et e et e e e et e e et e e et e e e atbeeeasaeeesneeeeanseeeanes 22
4.1 Grammar FIlES ... 22
R @ L g oo =T o] VUSSR PSSPRRTI 22
o Y/ o o] oo oo |V USSR PRROPRROTIS 22
G T) Y] -V U TP PPPPPRPT 23
4.1.4 RESOUICTE LEXICON ...iiuiiiiiiieiiie et site ettt ettt sttt ettt et et e b e e teeanteeaneeenree s 23

O | - 1 [(=] =V [0 K PP P TP 23
(08T o) 1 L SRR 25
Implementation of AMhAriC IN GFoooiiiii e 25
5.1 OrthOgraPNYccieeee e aara e 25
5.2 Verbal MOrpholOgycccueeiiiii e 26
5.2.1 Introduction to Non-Concatenative Morphologycccoviiiiiiiiiiic e 26

5.2.2 Survey of the AMRNAric VBIDcc.oiiiiiiei e 28

5.2.3 Implementation of Verbal Morphology ... 31

5.3 MOrphology Of NOUNSoiiiie et e e sneeeeenes 34
5.3.1 NUMDBEK Of the NOUN.....coiiiiiiiie e e 35
5.3.2 Species / Definiteness of the NOUN...........cooviiiiiiicii e 35
5.3.3 Gender OF the NOUN.......ccuiiiiiie et e e e e snnee e e 36
5.3.4 CaSES OF ThE NOUN.......viieiiiie et e et e e sree e et eeanneeeanes 36

5.4 Morphology Of the AQJECTIVES.ooiiiiiieii s 39
5.4 ThE NUMETAIS ...ttt e e et e et e e e s e e nnteeeansee e e 40
5.5 SWAAESN LEXICON ...ttt e e e e et e e et e e e rae e e nneeeeenneeeanes 44
5.0 SYMEBX. .ttt 45
(O g o101 (=] o R USROS UPROURTPPRPPROTS 53
Related WOTK ... e e e e e e e e e s et aa e e e e e e e annneees 53
(O g1 1 (=] S APPSR OURPPRPPRTS 55
(0700 163 10 13 1o) s ISR 55
(O gF:T0 1 (=] o TP P TR UPPOURPPRPPROTS 56
FUTUTE WOOT K Lotiiiiiiiiiiiiiitiitiiiitieeeeeaa e e e e e e saaaaaaaaaaba s ssssssassssssssssasasssssssssssssassnnnsnnnsnnnnnnn 56
RETEIENCES ... ettt h bbbt e bt b bt et et e e e bb e te e 58
N o] 1= o= USSP 60

List of Abbreviations

API
DEF
EU
FEM
GF
GNU
GPL
LGPL
MASC
MOLTO
NLP
NP
PGF
RGL
SERA
SOV
TAM
UTF-8
VP

Application Programmers Interface
Defininte

European Union

Feminine

Grammatical Framework

GNU is Not Unix

General Public License

Lesser General Public License
Masculine

Multilingual Online Translation
Natural Language Processing

Noun Phrase

Portable Grammar Format

Resource Grammar Library

System for Ethiopic Representation in ASCII
Subject-Object-Verb
Tense-Aspect-Mood

8-bit Unicode Transformation Format
\erb Phrase

Chapter 1

Introduction

One of the fundamental features of human behavior is the natural language. It is a vital
component through which we communicate about the world that affects our daily lives. Most
human knowledge is recorded using natural languages, therefore, only computers that have the
capability to understand natural language can access the information contained in the natural
language efficiently.

Natural language processing (NLP) can be described as the ability of computers to generate and
interpret natural languages. NLP is also a major subfield of study in computer science. The
applications that will be possible when NLP capabilities are fully realized are impressive as
computers would be able to understand and process natural language, translate languages
accurately and in real time, or extract and summarize information from a variety of data sources,
depending on the users' requests. (Grishman, 1994)

Language engineering is another topic that has attracted the attention of both linguists and
computer scientists who are involved in NLP. This venture effort aspires to bring a computation
based representation of human language enabling further processing. One feasible approach to
this is the formalization of linguistic knowledge into some form of grammatical rules. The
appropriate term to describe such an approach is called grammar formalism.

Grammatical Framework (GF)* is one such grammar formalism which is based on constructive
type theory to express the semantics of natural languages for multilingual grammar applications.
(Ranta, 2004)

This framework (GF) has a language library known as the ‘GF Resource Grammar Library’
which is constituted of resource grammars implemented using the GF programming language
(Ranta, 2009) for various languages. The resource grammar for each language defines a
complete set of morphological paradigms and a syntax fragment. It is composed of a common

! http://www.grammaticalframework.org

http://www.grammaticalframework.org/

representation, called abstract syntax, and a set of concrete syntaxes. These two are distinctly
identified in GF. The first represents the structure or meaning of values in the language while the
later describes their appearance. The idea is that the abstract syntax is kept off from irrelevant
details and concentrates on the structure of the common features. The concrete syntaxes, on the
other hand, handle the details of language specific decisions and are written as linearization rules
for the abstract terms. Therefore, in GF context, compilation is nothing but parsing with the
concrete syntax of source language and linearizing the resulting tree into the target language.
The advantage of such a design is that the abstract syntax can have several concrete
linearizations allowing it to work like an interlingua between the concrete syntaxes.

These modules also have the capabilities of sharing code through inheritance while still
abstracting information. The inclusion of such important software engineering concepts in GF
grammars proves an increasing work efficiency as labor would be divided between grammarians
working on different modules. This effect is specially magnified while implementing natural
languages of similar family, such as a Romance or Scandinavian that could share nearly three-
fourth of their implementation code.

The application grammarians make use of the resource grammars through application
programming interfaces (API's) included as abstract syntaxes in the GF library. Therefore, the
overall aim of such a library based design is to make it possible for linguistically untrained
application programmers to write linguistically correct application grammars encoding the
semantics of special domain as stated by Ranta in (Ranta, 2009)

The ongoing GF resource grammar project provides resource grammars for seventeen languages,
Ambharic being the eighteenth. More languages are also under construction when we write this
report. Currently there are also a good number of applications that use GF which include the
verification tool KeY?, the dialogue system research project TALK? and the educational project
WebALT? are major ones. The GF inspired EU project, MOLTO" is another ambitious initiative
that develops a set of tools for translating texts between multiple languages in real time with
high quality. Moreover, the availability of such a library as open-source software under the GNU
LGPL helps the aspirations being made to bring less recognized and NLP wise under resourced
languages, such as Amharic, to the world of computation.

Motivation

Amharic (A77C% amarofifa) is a Semitic language spoken in North and Central Ethiopia. It is the
second most-spoken Semitic language in the world, after Arabic, and the official working

! http://www.key-project.org
2 http://www.talk-project.org
® http://webalt.math.helsinki.fi
* http://www.molto-project.eu

10

language of the Federal Democratic Republic of Ethiopia®. Currently, there is almost no software
or web-services that are used for implementing language specific features such as spell checking,
grammar, translation etc for Amharic. Amharic is not even part of the free online translator from
Google™, Google-Translate™. The availability of Google™ search and G-mail™ electronic
mail software in Amharic are the two recent progresses of the language in the cyber world. It can
therefore be concluded that there is only little work done on computational resources for
Ambharic and its use for parsing and generation. In addition we strongly share the conclusion by
Gasser (Gasser, 2010) that within the current explosion in the quantity of information and in the
means to access it, much of the world has been left behind because the information is not in a
language that they understand. This fact, of all the rest, motivated us to contribute to the research
in NLP of Amharic by implementing a computational grammar as a resource in the GF library.
By doing so, we believe, our work gives yet another perspective for current research and
strengthens the attempts already made on the NLP of Amharic.

Organization of the Report

The next chapter discusses the grammatical framework and some important aspects of the
formalism. The third chapter describes the Amharic grammar. Included in the discussion are
highlights of the different word classes, phrase structures and sentence structures of the language
which we provide through an example. The chapter that follows details the main product of this
thesis: the implementation of Amharic in the GF library and the various decisions taken while
designing the modules. The final chapters deal with related and future works plus conclusions
and recommendations we have made with regard to our work.

! http://mww.en.wikipedia.org/wiki/Amharic

11

Chapter 2

Grammatical Framework

This chapter gives a thumbnail introduction to GF and discusses some of the points that are
crucial in resource grammar engineering.

2.1 Multilingual Grammars

Simply defined, a ‘multilingual grammar’ is a grammar that describes multiple languages that
share a common representation. (Ranta, 2009) Various translation and localization applications
between languages make use of multilingual grammars. The common feature, which is shared by
the languages under question, alleviates the load of work needed to implement another new
language.

To better show the concepts lying behind multilingual grammars with a shared representation,
we give the following explanation by Ranta in his description of multilingual grammar
engineering (Ranta, 2009).

‘Formally, a multilingual grammar in GF is a pair

G=<a4, {Cl, . . . ,Cn} >

where A is an abstract syntax and Ci are concrete syntaxes for A. The abstract syntax is a collection of
categories and functions. It defines a tree language, which is a common representation of the string
languages defined by the concrete Syntaxes. A concrete syntax is given by a method of linearization,
which translates abstract syntax trees into strings (more generally, into records of strings and
features). A multilingual grammar thereby defines a system of multilingual generation from the
shared abstract syntax.

Ranta goes on to explain the important property of GF grammars that emanates from the fact of
the generations being the primary directions of grammatical description, a different feature from
other formalisms. Furthermore the parser can independently map strings directly into abstract
syntax trees making the linearization inevitable.

12

2.2 Translation and GF

From the forgoing explanation it is logical to deduce that, in the context of multilingual
grammars, translation is nothing but the parsing from one language followed by linearization
into another. Transfer functions need not be required between the two languages under
translation question; instead, the abstract syntax takes care of the interlingua burden doing the
magic work.

It would of course be unrealistic of us if we claimed that GF already has a unique single
interlingua to get the translation work done. Rather, the matter worth noting is that GF is just a
framework for giving interlinguas i.e. language-independent abstract syntaxes that deal with
pure tree structures and the set of language-dependent concrete syntaxes that specify how the
interlinguas are rendered in different languages.

In addition, the interlingua assumes various semantic descriptions according to the application
domain it is built for, this eventually provides a meaning-wise-intact translation in that specific
domain.

2.3 Application Grammars and Resource Grammars

The narrower the scope of the domain that we consider for translation, the better the semantics
of the translation becomes. But this can be a resource intensive operation requiring the
attendance of domain experts and linguists alike. The knowledge of the domain experts that is
required for the translation work varies according to the domain under consideration while the
same linguistic expertise is needed for each domain. However, it is often very rare and resource
demanding per se, to bring the two kind of expertise around the same table. This is when GF
comes to the rescue by providing a division of labor in grammar engineering between domain
experts and linguistic experts. Such a fine division is brought about by the distinctions made
between application grammars and resource grammars.

Ranta in the same document goes on to state that an application grammar has an abstract syntax
expressing the semantics of an application domain. A resource grammar has an abstract syntax
expressing linguistic structures. The concrete syntax of an application grammar can be defined as a
mapping to the abstract syntax of the resource grammar: it tells what structures are used for
expressing semantic object, instead of telling what strings are used.’

2.4 The Resource Grammar Library

As we tried to highlight in the first chapter of the report, resource grammars in GF technically
serve as standard software engineering libraries like those found in main stream programming
languages such as Java and C. The abstract syntax of the resource grammar is the API of the

13

library through which application grammarians can access it. The rest of the concrete syntax is
abstracted away from the application grammarian and is the duty of the resource grammarian.

Orchestrating the design into standard libraries can save the man-power required for coding and
betters the quality of work by allocating different subtasks of grammar writing to different
grammarians. Such shared representations of the resource library are crucial for the application
grammarians too as it makes their life easier while they port applications from one language to
another.

14

Chapter 3

Background

In this chapter we summarize the main features of the Amharic language. The majority of the
concepts are adopted from a grammar book written in Amharic (Yimam, 1987). Our intention is
neither to give the details of the grammar nor provide a crash course of the language. The works
by Atalech (Argaw, 2002) and Abiyot (Bayou, 2000) discuss such concise introduction to the
grammar of Amharic.

3.1 Amharic

Amharic /A°T% is a member of the Semitic branch of the Afro-Asiatic language family. It is
spoken by over twenty five millions people and is the working language of the government of
Ethiopia.’

The language has its alphabet, .24/ fidal, inherited from the Geez (Ethiopic) language. Geez is
an ancient South Semitic language which now serves only as the liturgical language of the
Ethiopian Orthodox Tewahedo Church. Fidal is a syllabary writing system where the consonants
and vowels co-exist within each graphic symbol. Unlike majority of its Semitic scripts, such as
Arabic and Hebrew, fidal is written from left to right. The writing system consists of 33
consonants, each having seven ‘orders’ or shapes depending on the vowel with which a given
consonant is combined. The alphabet in the traditional order is given in Appendix C. It is
necessary to have a Unicode infrastructure set before one attempts to make use of the fidal.
Because of the syllabary features, due consideration must also be given while dealing with the
Ambharic strings. There is no standard way to transliterate Amharic into the Latin alphabet.

Having said this much about the fiddl alphabet, let’s give a thumbnail summary of the
morphology of Amharic words. Nouns in Amharic decline for number (singular/plural), species
(definite/indefinite) and case (nominative/accusative/genitive/dative). Unlike these variable
features, the nouns exhibit an inherent behavior towards gender, that is, a given Amharic noun is
either masculine or feminine. These declensions are usually achieved through affixation. Suffixal
affixations are predominant while there are also a good number of prefixings. The above order as
well shows the way in which these nominal affixes appear. We show this by giving an example
‘the houses’ (definite, plural noun phrase used as a direct object) from the sentence ‘I sold the
houses.” and show the Amharic counterpart as follows,

! http://en.wikipedia.org/wiki/Amharic_language
15

the houses-Acc - (-7 - bet-occ-u-n

Here the suffixes (‘-occ’, ‘-u’ and ‘-n”) are added to the head noun ‘bet’, which means house, to
mark declensions for number (Pl), definiteness (Def) and case (Acc) to get the required form —
the houses - betoccun ((LFE7).

The pronouns in Amharic can be put into three persons as in English, but there are some unique
features such as the second person 'you' which may take different agreements when referring
‘plural’, 'respected (politeness)’,'singular-female’ or 'singular-male' nouns as shown below.

You (Masc. Sg.) : A7t - anta
You (Fem. Sg.) : AL - anci
You (Pl.) : A9 7t- onantd
You (Politeness) : ACOP- orswo

Adjectives come before nouns in a sentence to modify them. In a sentence ‘antd bdTam gobaz
tamari nédh’ — ‘you are a very clever student’ there are two adjectives ‘bdTam’ - very and ‘gobéz’
— clever. ‘bdaTam’- very modifies ‘gobdz’ - clever , and ‘gobdz’ modifies the noun ‘tamari’ —
student.

Unlike majority of the languages in the GF library that construct words by linearly concatenating
morphemes, Semitic languages have unique non-concatenative properties in addition to the
conventional concatenative modifications. Therefore, in Amharic a verb, which is the most
complex category of words, is created generally from consonantal radicals which are inflected
by a process of merging with vocalic components based on various patterns. The majority of
roots, like other Semitic languages, have three radicals. However, there are also a significant
number of verbs that are multi-radical and bi-radical. A verb takes various forms depending on
the tense-aspect-mood, voice and root structure while inflecting for person gender and number.
This is done through the addition of affixes at both ends and even between the roots of a stem.

The numerals in Amharic can assume a cardinal or ordinal form. The ordinals are all the times
achieved by adding the prefix driia on the ordinals.

Cardinal Ordinal
vt hulat / two U\t -RT -> 0TS hulat-dnna/ second

The prepositions appear as simple prepositions that are stand alone or as separate entities coming
both at pre and post positions.

To — you A- W7t - 14 antd (pre)
On -you Art - 46 - anta lay (post)
With —you #&- a7t - 2C- ke anté gar (both pre and post)

16

The word order in Amharic clauses is generally SOV. Verbs agree with their subjects in number
gender and person and objects precede verbs within the verb phrase

In Amharic comparison, both comparative and superlative forms exist nearly following the same
trend of formation. The superlative form is like a comparative between the whole and the one in
question. This means that the Amharic equivalent of, for example, ‘I am the best’ will be
equivalently translated as ‘I am better than the rest’.

There are also other syntactic considerations that need to be made while studying the Amharic
grammar. For instance, the definite article in Amharic is a morphologically bound element and
its treatment has been a point of discussion for many linguists.

3.2 “The boy loves this beautiful girl ” in GF

To help us better explain GF's way of grammar engineering; let's take a simple Amharic sentence
as an example — The boy loves this beautiful girl'. To further clarify our purpose for the wider
audience, we translate this to English using our system.

OB eUT 28 AB1LT LO8/N
[Oju yOhOc gonjo [Ojagdirddon yowdddal
boy-DEF this-FEM beautiful girl-FEM loves

“The boy loves this beautiful girl.

The parsing tree representation of the above sentence is given in fig.1 below. To give a summary,
the purpose of the whole work is to enable the user of the library to obtain Amharic concrete
sentences like the above just from descriptions made in the abstract syntax. This abstract syntax,
as we tried to note out earlier, is shared by all the languages while the rules governing the
concrete syntax vary in accordance with the morphosyntatic properties and lexicon of the
language under implementation. This means that each branch of the tree describing some form
of syntactic rules is implemented for Amharic. The related morphological rules and lexicon
selections together provide the equivalents of the nodes. Let us emphasize more on this using
our example.

17

S

r_l\l Vp
Det
The N \/Iz\l\l
boy NP
loves

D;\J\l
this CN
AI\\I

CN
girl

beauf,'ful

Fig 1: A tree structure representing ‘The boy loves this beautiful girl’

Considering the left branch in the tree which represents the rule in the abstract syntax that takes
a determiner and noun to give a noun phrase has the following type signature.

fun
DetCN: Det -> CN -> NP; (3.1)
Where
DetCN: the name of the syntax rule
Det: the types for the determiner and
CN: the noun component.

For the case of our example Det is -A- / -u and the CN is [9j /&% -boy. But these separate entities
10j and -u are combined to form 10ju / &%.- the boy showing the definite marker in Amharic is a
morphologically bound element. One must be watchful while making such selections as the
gender of the determiner which actually comes from the noun. In our example &%14£/I0jagdrdd/
-girl is a feminine noun and this is the reason why v/ yohoc- this is selected instead of gv/yoh
— (masculine counterpart for this). In the same fashion the number and definiteness features of
the noun come from the determiner while case remains usually nominative.

18

What we have tried to discuss above is rather a simplified presentation that merely handles a part
of the example we picked at the beginning of the section. So as to better understand the
generalizations that can be made with these rules and appreciate the way GF deals with such
grammatical decisions, we first identify the types of the categories involved and forward the
variable and inherent features. The two features are later on connected with the mechanism of
agreement where a variable feature of one entity is determined by the inherent feature of the
other. For the categories we have in our rule 3.1.

lincat
Det = { Gender => Case => Str ;
Species;

Number

L= B ONN()]

CN

Il
—
0

Number => Species => Case => Str ;
Gender} ;

Q

NP

Il
—_

Case => Str ;
Number ;
Gender ;
Person

T Q S5 w

}os

As can be seen the types are put in the form of a GF record
where

is the string

0

is the number (Sg or P1)

3

(o}

is the species that signifies the definitiveness (Def or Indef)

is the gender (Masc or Fem)

Q

p isthe person (Perl, Per2,or Per3)

From the above for instance the type representation for NP states that noun phrases in Amharic
have an inherent gender, number and person while they vary in case. The => is the table
operator in GF, so having a single input to NP table means that a NP in Amharic is inflected for
only this attribute. A complete description of how such multi dimensional table representations
work is given in (Ranta, 2010)

However, it is worth noting at this moment that while designing such features we have come to
notice a significant amount of similarity with other languages in the library such as Arabic

19

hinting the framework's capacity of serving as a platform for investigating structural
similarities between the languages that are implemented in the library.

Coming back to the story with the boy and the girl, an implementation of the abstract syntax rule
in 3.1 can be given for Amharic in the Noun2mh module as:

Lin

DetCN det cn = {
s = \\ ¢c =>
det.s ! cn.g ! ¢
++ cn.s ! det.n! det.d ! Nom ;
n = det.n;
cn.g;
= Per3;

T «Q
(!

}s

The above concrete syntax rule for Amharic has a lot of abstractions in it. First of all the rule
accepts a case argument ¢ because the NP declines only for case as mentioned above. Of course
the roles played by the NP in a given context vary in accordance with the case types. In Amharic
these values for case can assume an accusative, nominative, genitive or dative form. The rule
goes on to state that the string of the determiner is directly brought from its own inflection table
once we have the gender of the noun and case of the noun phrase. Extending the same pattern,
the string of the noun is selected by making use of the number and definiteness of the determiner
while the case remains nominative.

After we choose those Det and CN strings, we concatenate them using the concatenation
operator ++ to form the NP's string. It would be an error to leave this operator out and use a
simple juxtaposition as GF is a functional programming language and juxtaposition is used as a
notation for function application. Having done the string part further consideration is given for
agreement features where the noun phrase receives its number from the determiner and its
gender from the noun. This is how the elements formally complete each other to support what
we descriptively explained about g-vT #7%8 &8148-7 | yohdc qonjo l0jagdrddon at the beginning
of the section.

We have been so far discussing the abstract morphosyntatic features of the API and how they
work underneath through an example. This will, of course, not be complete without the lexical
entries of normal and structural words that the user requires. This means that the Amharic
application programmer expects to get the necessary word entries. If this is not available, taking
the case of our example, entries can be made a follows

boy N = mkN "A&";

20

girl N = mkN "AF2&" feminine;
beautiful A = mkA "&1E";
love V2 = mkV3gdl "wdd";

Where mkN, mkA and mkV3gdl respectively specify the lexical paradigms for regular nouns,
the lexical paradigms for regular adjectives, and triradical verb of the gdl (724) family

The feminine entry after the second mkN signifies the fact that &%722/1 0 jagarad - girl
is a feminine noun. There are very few nouns that follow this paradigm while the default gender
of a noun is taken to be masculine. Given, for instance the three roots 'wdd, our system is
capable of generating most Amharic stems with minimal error in inflection and orthography.

In this chapter we have tried to give a brief introduction to the Amharic language and the GF
formalism we have used to implement it and how it works. We also picked an example and
operated on it to see how it can be generated in GF and explained the works that happen behind
the scenes while doing so. The next chapter emphasizes more the overview of the system by
describing the modules and components it is made of. We do so to lay the ground work for the
implementation we show in chapter 5.

21

Chapter 4

System QOverview

Having justified the importance of such a work in the Amharic NLP, discussing the important
features of the language and showing how these features are implemented in the GF formalism,
we now lay the grounds for our work by giving an overview the modules and components from
which our system is made of. It is also our intention to sometimes give the reader only the
references to the grammar files (*.gf) where the details are found rather than discuss the whole
code in this report.

4.1 Grammar Files

GF adopts a module system which is useful for software engineering and separate compilation.
The two major GF modules are the abstract and concrete syntax modules. These two are used at
run time while parsing and generating. They are arranged into hierarchies in similar fashion as
object oriented programs whereby grammar sharing is enabled at top-level grammars. Resource
module is a channel module for sharing code across other concrete modules independently. Here,
we rather give the system overview of the grammar files that we covered ranging from such
linguistic features as the morphology, syntax and lexicon. We also introduce the transliteration
technique adopted to handle the need for Unicode infrastructure by Amharic orthography.

4.1.1 Orthography

Ambharic has its own syllabic alphabet that requires close orthographic treatment when forming
words. For example, the operations that must be considered while inflecting for definiteness and
number, palatalization rules where dental sounds get changed to plate sounds, and the various
conjugations of verbs all need due orthographic consideration when they are written down.

4.1.2 Morphology

Morphology in a resource encompasses the sets of operators that help transform one entity into
another with the required morph or form. For instance, the resource morphology of Amharic
consists of verb conjugations that are expressed as operation and paradigms used to handle the
declensions of nouns and adjectives. This includes different files in the modules that cover parts

22

of the complex Amharic morphology. We first present the types that are needed in the resource
module ResAmh, thereby discussing the roots and patterns feature and how they help in verbal
morphology. We take into consideration radicals that range from two to four to show our
purpose. In PatternsAmh we try to give the major patterns that the Amharic verbs take. We
do not dare to claim that we have covered every possible pattern of the language, rather the
majority of bi, tri and quadriradical verbs can be formed using the patterns. In addition to the
definition of tables for the nominal morphologies in the ResAmh module, a set of paradigms
which are used while building the lexicon are given in the ParadigmsAmh module. We did
this to increase the loading efficiency during compilation.

4.1.3 Syntax

The implementation of the basic syntax rules is distributed across various modules complying
with the requirements of the resource grammar API. These modules include the various phrase
categories that describe the phrase construction in that specific category such as noun, verb,
adjective, sentence, etc.

4.1.4 Resource Lexicon

A resource lexicon is a set of words paired with paradigms. In the system there are two
independent lexical modules: the StructuralAmh and the LexiconAmh. The first contains
sets of structural words such as (determiners, prepositions, etc) while the later is the main
module where a list of few hundred words (nouns, verbs, adjectives etc) from the Swadesh list —
which is a list of basic lexical terms compiled by Morris Swadesh', is included. It is a general
trend that lexica of a language keep evolving all the time, either with the addition of newer
words or inflection of older words with newer paradigms; hence, the inflection of these words
only represents the features of the present day Ambharic.

4.2 Transliterations

Strings in the GF grammar files are built from Unicode characters internally. This makes it easy
to handle languages such as Amharic which use their own set of writing system. We had
difficulty in writing Ambharic characters in iso-latin-1 as the latest of everything with Amharic
keyboards is Unicode, plus trying to save the grammar file in any other format but Unicode or
UTF-8 creates series of '?" instead of the Amharic characters we wanted to see. So we have
defined our own non-ASCII character sets through transliteration. Amharic characters are

! The Swadesh list is one of several lists of vocabulary with basic meanings, developed by Morris Swadesh.
http://en.wikipedia.org/wiki/Swadesh_list

23

represented in the range from 1200 to 137F in the Unicode range. This makes the language the
largest set in the world with 384 unique characters, including the reserved codes. Fid&l contains
some characters which are identical and thus could be used interchangeably in modern Amharic.
In old days Amharic, as in the case of Geez, the cases of using these similar sounding letters was
given due attention but we do not consider all of that here. We make the decision not based on
any linguistic fact but for the mere sake of brevity. This leaves the transliterated table with only
344 characters as shall be seen in the appendix section. The rules that we followed while
defining our transliteration table were already predefined so we had to stick to them. These rules
stated that: the transliteration should be a letter or a letter character and non letter character, in
addition capital and small letters should be treated separately. These have restricted us from
using an already existing, but not officially standard, phonetic transliteration scheme for
Amharic known as SERA'.We have given in appendix A the transliterations for our 344
characters that span from 0x1200 to 0x1357 in the Unicode range .

L http:/www.geez.org/IM/
24

Chapter 5

Implementation of Amharic in GF

In the previous chapters of this report we have been trying to lay the foundation of our work by
describing the Amharic language through examples and introducing the major components that
our system is made of. We now start with the implementation of these components in the order
that they appear in the specification.

5.1 Orthography

The fidal', Amharic's alphabet, is written from left to right and is composed of thirty three
consonants and seven vowels. These are arranged into seven houses (orders) according to the
kind of each vowel that the consonants associate themselves with, i.e., the consonant-vowel
(CV) combinations. Consider for instance the following individual symbols:

n (t (L. i (8 y(n

ba bu bi ba be bo bo
+ - T Ea + + A
ta tu ti ta te to to

However, if a string begins with a vowel then the vowel is written independently; which means,
there are no symbols added to the individual vowels.

In such cases as affixation, a vowel may come in contact with a consonant on its left side.
During such cases the vowel will no longer be considered independently but together with the
immediate preceding consonant forming a new unique symbol. We can better clarify this by

! A complete list of the Amharic fidél is given in Appendix C
25

taking a case for the declension of a noun for number by adding -occ / -a+ at the end of the
noun. As can be seen in the example below the combination of -+ and & results in -

0+ - = AT

0T
bet + -occ = betocc
house houses

Below we give the implementation of such changes by defining an operation that takes a word as
an input and gives an orthographically sound word. The GF's regular expression is such a handy
method to do this as can be seen in replaceLastLet6_7. The operation helps to change the
sixth orders to the seventh while declining for number, and hence the nomenclature. The key
word oper, that denotes operation, is placed at the beginning to convey the fact that
replacelLastLet6_7 isa function.

oper
replacelLastLet6 7 : Str -> Str = word ->
let y = last word in
case y of {

IIUII =>||U,:Fu ’
uAll => llﬁo:'l:n ’
u;hu => llrh:rl:n ’
"9‘0" => llq-D:_Fll ,
ll/u)u => lly,:_fl:ll ’
ll,‘_’_‘ll => llr?‘:_fl:ll;
_ =>yword+" P

b

In addition to such cases which happen during pluralization, similar trends of transformation
may occur in the declension for definiteness. For instance, if the noun in question ends in the
sixth order and its gender is masculine, then it only changes this ending letter to the second order
during the declension for species (definiteness). Otherwise, it always takes -wu/ @. at the end.
Similarly for feminine nouns the same trend of order change holds but they instead add -wa/ ¢
at the end and so on.

5.2 Verbal Morphology

5.2.1 Introduction to Non-Concatenative Morphology

Unlike majority of the languages in the GF library that construct words by linearly concatenating
morphemes, Semitic languages have unigue non-concatenative properties in addition to the

26

conventional concatenative modifications. Therefore in Amharic, verbs are created mostly from
consonantal radicals or roots which are inflected by a process of merging with vocalic
components based on the various patterns which are sequences of vowels and consonants into
which root consonants are inserted. In Amharic, even if majority of the verbs are triradical (three
consonantal roots), the number of these radicals may range from two to five and more. In our
implementation we have only considered those between two and four radicals. We define these
by using record types that help to represent words as data structure as follows:

Root2 : Type = {Cl,C2: Str};
Root3 : Type = Root2 ** {C3 : Str};
Root4 : Type = Root3 ** {C4 : Str};

Pattern?2 : Type = {Cl1l,ClC2,C2: Str};
Pattern3 : Type {C1,C1C2,C2C3,C3 : Str};
Patternd4d : Type = {C1l,ClC2,C2C3,C3C4,C4 : Str};

where C1, C2 ,C3 and c4 stand for the consonantal radicals while, for instance in Pattern2
C1l,c1c2 and C3 represent the head, the middle and the tail of the pattern. The ** operator in
GF is used to add an additional field into a record and hence, Root2 is biradical while Root3
has an additional one consonant making it a triradical and similarly Root4 is quadriradical.

The root itself has no definite pronunciation until combined with the appropriate pattern. Such
combinations are non-linear making them rely on two independent root and pattern. In Amharic
there are different ways in how templates modify the root consonants: doubling the middle
consonants, inserting vowels between consonants, adding consonantal affixes, etc.

We do such interwinings of roots and patterns by implementing two functions that help
extracting each root from a given root-string and applying a selected pattern on the extracted
roots to make the final form. We show how these two work flows are applied by considering
triradicals :

getRoot3 : Str -> Root3 = \s -> case s of {
Cl@? + C2@? + C3 => {C1 =Cl1l ; C2 =C2 ; C3 = C3} ;

=> Predef.error ("cannot get root from" ++ s)

}s

appPattern3 : Root3 -> Pattern3 -> Str = \r,p ->

p-Cl + r.Cl + p.C1C2 + r.C2 + p.C2C3 + r.C3 + p.C3 ;

27

The operation getRoot3 associates every consonant in the input string Str with a variable.
This is achieved by using the operation C@ which binds each consonant in the strings to a
variable, e.g. C1, C2 and C3. These variables are then coded into patterns using the operation
appPattern3 which specifies how the root’s consonants should be inserted into a pattern, i.e.,
given a root and a pattern. The final output is just a concatenation of the seven strings , without
dropping any. We can take example patterns to demonstrate our purpose. These patterns
specify the consonant slots and morphological forms as shown below

ClaC2aC3a {C1L = "" ; Cclcz="a"; C2C3 ="a"; Cc3="a"};

meClC2acC3 {C1 ="ma"; clcz="" ; C2C3 ="a"; Cc3="" };

For example, when the root sbr is applied to the first pattern C1aC2aC3a, it forms the perfect
stem A< /sadbara (he broke) while when applied to the second pattern it forms an Amharic
infinitive eeqinc/ méasbar (to break). Of course these examples do not show gemination as the
Fidal alphabet does not indicate the same and therefore our Amharic outputs do not provide this.
However such properties play a significant role while classifying the verb conjugations. In
addition, marking gemination in some format is of course useful when developing speech
applications using the language and we leave that as a future work. We now proceed to our
survey of Amharic verbs and later on show how these root-pattern combinations are
implemented for their morphology.

5.2.2 Survey of the Amharic Verb

As we stated earlier, Amharic verb forms are derived by applying various templates (vowel and
affix patterns) to a set of roots consisting of between two to five consonants. The prefixes and
suffixes are all grammatical morphemes that are added to the stem while the stem remains the
lexical part of the verb and also the source of most of its complexity. Verbs in Amharic are
marked for person, number, and gender and the different forms can be described as varying
along the following grammatical dimensions:

Tense/Aspect/Mood

Tense/aspect/mood (TAM) is signaled mainly by the prefixes and suffixes that indicate the
subject of the verb but is also reflected in the stem template.

Traditionally the four main TAM's: perfective (or perfect), imperfective (or imperfect), jussive
/imperative (the imperative is just another form of the jussive when applied on the second-
person), and gerundive (or gerund) are usually given by scholars. We have extended this with the
four ‘extra’ forms: infinitive, participle, compound-perfect and the contingent that form verbs
with auxiliaries. Appendix B shows the various verb forms.

28

Here are non-geminated examples of each of the main TAM’s when considered for the third
person singular masculine (Per3 Sg Masc), active (Act) voice. The root of the verb is shr —
to break.

* Perfective: WL sabara / he broke
* Imperfective: L Ig6 yo-sabr-al / he breaks /he will break
* Jussive: £r0C yo-sbar / let him break
* Imperative: #0C sbar / break!
* Gerundive: WA sabr-o/ having broken
Voice

For the verb forms we considered above, the voice is signaled by the stem prefixes ta as well as
particular patterns of vowels between the root consonants. The first example below shows the
first case by taking ta as a prefix on the stem sdbara (to break) while the second one takes 'a" in
between the second and third roots (bear in mind that sbr is the root form).

Passive: +anes ta-sabaré (he is broken) £ANe-é yo-sabar-al (he will be broken)

The stem-internal aspect does also give yet another dimension of the templates in addition to the
values of the TAM and voice features. This can assume the normal or simple form and two other
forms (reciprocal and internal). We only take the normal form in our implementation as almost
all of the API rules ask for the same.

Stems: roots

The majority of roots in Amharic, like other Semitic languages, have three radicals. However,
there are also a significant number of verbs that are multiradical and biradical.

Example with two, three, four, and five radicals is given below:

1. a9 sama ‘he heard’,
2. 184 gadala ‘he killed’,
3. aoanhd masakara ‘he testified’ and
4. +0cheh (t&)brékéraka‘he got trembled’

Considering the vocalic structure and the germination or non germination of the 2nd radical in
the triradical, the verb has three types: types A, B and C. Regardless of the type , the 2nd radical
is always geminated in the perfect. The reader of this report should note that we have come up
with the derivational root patterns and only briefly adopted the verb classification from previous
scholars to fit our purpose.(Leslau 1969). We now describe these commonly occurring root
patterns of the bi, tri and quadri radicals.

29

BIRADICALs

In the biradical, the 2nd consonant is geminated in the perfect only if it is the 2nd radical of
the root.

Class mkv2bl

Type A: mkV2bl nA/ balla ‘eat’
Type B: mkV2TT m /tatta ‘drink’
Type C: mkV2qT ¢ /qatta ‘punish’

Class mkV2sT

Type A: mkV2sT am /saTTa ‘give’
Type B: mkV2ly a? /layya ‘distinguish’
Type C: mkV2wN ¢7 /waNN& ‘swim’.

The other biradicals considered in the implementation have only one type. These classes are
Class mkV2yz #H /yaza ‘hold/capture’

Class mkV2nr ¢ [nora ‘live’

Class mkV2hd %2 /heda ‘go’

Aspecial verb Aa / ald ‘say’ is also implemented independently.

TRIRADICALs

mkV3gdl: 724 gaddala, characterized by lack of germination of the 2nd radical in the verb forms
other than the perfect.

mkV3mls: avAq, mallasa, characterized by the germination of the 2nd radical in all the verb
forms.

mkV3brk: azh barraka, characterized by the vowel a after the 1st radical for the germination or
non germination of the 2nd radical. mkV3tTb : >mQ tattaba is yet another variation of such
triradical classes having differences in the imperative/ jussive forms.

The above first three forms for triradicals mkV3gdl, mkV3mls and mkV3brk from now on called
TYPEA, TYPEB and TYPEC respectively, do usually lay foundation work for the variation of
the rest of the other classes. In other words, it is usual that the others (including bi, tri, ...) can
inherit these basic forms and then add their unique features.

The other triradical verbal classes considered include those that have initial labiavelerals 4 /'0' or
&/ 'U' after the initial radical.

mkV3qTl: #md qoTTarg, count
mkV3qfr: #4.¢ qoffara, dig
mkVqTr: £md quaTTara, tie

A special class for the triradical is one that accounts for the verbs beginning with & /a, which is

a vowel itself. This puts extra challenges in the orthographic and phonetic analysis of the
gemination process.

30

mkV3asr: A0 assara ‘pass’ which
mkV3ash: AdN assaba ‘think’

QUADRIRADICALs

In the quadriradical, the 3rd radical is geminated in the perfect. The quadriradical have two

types:

mkV4dbdb: 20Ln / dabaddaba ‘kick’

mkV4qlgl 2: +A®A/ galaggala ‘mix’ characterized by the vowel a after 2nd radical. The
gemination or the non gemination of the 3rd radical in the verb form other than the perfect is the
same in both types.

5.2.3 Implementation of Verbal Morphology

In section 5.2.1 we have shown that, for example, typical triradical root operations include,
pattern - which is a string consisting of a four position pattern slots and root - which is a string
consisting of three consonant roots. Furthermore we have given the analysis of a triradical root
showing the mechanism for achieving this non- concatenative inflection.

In the resource grammar, the verb is represented as

param
Number = Sg | P1l;
Gender = Masc | Fem;
Voice = Act|Pas;
VForm = Perf|Imperf |Jus Imperat|Gerund|Infinitive|
Parti |CompPerf|Cont;
PerNumGen = Perl Number
| Per2 Number Gender
| Per3 Number Gender;
oper

Verb = {s: VForm =>Voice=> PerNumGen => Str }

The first parameter VForm details the TAM constructors of the verb forms, while the additional
parameter Pe rNumGen provides a detailed description of how verbs are inflected with regard to
person, number and gender. The three constructors of the PerNumGen indicate: first person
singular/plural, second and third person singular/plural and masculine/feminine showing that
Verb lexemes are inflected for person, number, gender, voice and form. Parameter types are
similar to algebraic data types in functional programming languages. Such a representation
avoids considering the cross products of the atomic members like person, number and gender.
For instance, PerNumGen gives a more compact representation (2+4+4 =10) than listing all the
constructors (3x2x2 = 12). The above three dimensions (Mood, Aspect (TAM)-(8) and Voice-
(2)) when applied to the 10 possible combinations of person-number-gender give a crude table

31

with 160 forms. We tagged them as being 'crude' because such forms as 'participles’ and
"infinitives' show the same trend of variation for every person, gender and number and thus
should be counted as unit.

Following the discussion and example in section 5.2.1 a triradical verb-inflecting-operation
such as mkV3gdl defines regular verb paradigms for each form and agreement features shown
above as follows :
mkVvV3gdl : Str -> Verb = \v ->
let root = getRoot3 v
in {
s = table {
Perf => table {
Perl Sg => appPattern3 root ClaC2aC3ku ;
Perl P1 => appPattern3 root ClaC2aC3n ;
Per2 Sg Masc => appPattern3 root ClaC2aC3k ;
Per2 Sg Fem => appPattern3 root ClaC2aC3sh ;
Per2 P1 => appPattern3 root ClaC2aC3achehu ;

Imperf => table { ... }

}
}s

The original patterns that signify the consonant slots and morphological forms have a
transliterated version of the vocalic patterns as described in section TO DO:

ClaC2aC3ku = { Cl ="" ; ClC2="'"; C2C3 ="'"; C3="k&"};
ClaC2aC3n = { Cl = "" ; ClC2="'"; C2C3 ="'"; C3="n"};
ClaC2aC3k = { ClL = "" ; ClC2="'"; C2C3 ="'"; C3="k"};
ClaC2aC3sh = { Cl = "" ; ClC2="'"; C2C3 ="'"; C3="x"};

Here below we summarize the results of how the parameters mentioned can be used . This very
much attests to the fact the GF formalism is indeed carefully engineered to parallel the way
grammarians think of languages. This is shown by taking the root form 'sbr' — to break and
inflecting it with the conjugating operation mkV3gdl described above (i.e. by executing
mkV3gdl against "sbr). We only show the perfective verb forms in an active voice while the
details of the rest can be seen in Appendix B:

Perf Act (Perl Sg) @ wach- sabbarku — I broke

Perf Act (Perl P1l) @ wNC% sébbarn— e broke

Perf Act (Per2 Sg Masc): wNch sabbark — You broke (for Masc)

Perf Act (Per2 Sg Fem) @ wOCa sdbbarx —You brike (for Fem)

Perf Act (Per2 Pl Masc):@ wiétv- sdbbarachu Your broke (for plurals of any gender
)—same for : s Perf- Act (Per2 Pl Fem)

32

Perf Act (Per3 Sg Masc): w0é sabbard — He broke
Perf Act (Per3 Sg Fem) @ wnét sdbbarac — She broke

Perf Act (Per3 Pl Masc):@ w04 sabbaru — They broke — same for : Perf Act
(Per3 Pl Fem)

It can be noted from here that the perfect form is made by inserting vocalic elements and adding
suffixes to identify the Person Number and Gender combinations except in cases of second and
third person plural that remain the same for both genders. Such situations in GF, like other
functional programming languages such as Haskell, are handled by a wild card patterns ' '. The
rest of the verb forms can be handled in similar fashions as variations in the type of vocalic
patterns, the position of the vocalic pattern’s insertion, the kinds of affixes that can be added and
S0 on.

The transliterated intermediate form of the above result looks like this :*

Perf Act (Perl Sg) s'b'rk&
Perf Act (Perl P1) : s'b'rn
Perf Act (Per2 Sg Masc) : sb'rk
Perf Act (Per2 Sg Fem) : s'b'rx
Perf Act (Per2 Pl Masc) s'b'rlch&
Perf Act (Per2 Pl Fem) s'b'rich&
Perf Act (Per3 Sg Masc) sb'r'
Perf Act (Per3 Sg Fem) : s'b'r'c
Perf Act (Per3 Pl Masc) sb'r&
Perf Act (Per3 Pl Fem) sb'r&
Perf Pas (Perl Sg) t's'b'rk&
Perf Pas (Perl P1) : t's'’b'rn

We note from this transliterated result that an outstanding achievement can be found by treating
the inflection this way as the vocalic patterns can easily get concatenated with the roots and the
inflected stem is displayed back into Amharic. One such orthographic error could happen when
the final vowel of the Singular - Second Person — Feminine verb is of the third order (ends with
-1'). This brings about the palatalization of any dental, or sibilant where the vowel 'i" is absorbed
by the palatal sound. This happens while making such verb forms as imperative, imperfect and
participle. So as to handle such a phenomenon we define an operation that can manage to change
the graphic symbols whenever they happen as follows:

oper

pallatalize : Str -> Str = \c—>

! The reader can refer to Appendix A for a transliteration table.

33

case ¢ of {

g o=> "yn;
"t => e
"o o=> "C";
"n" => "N";
"no=> "y";
"s"o=> "x";
"z o=> "z";
"s"to=> "C";
=> ¢

o

This is then implemented in the following operation to bring the effect that we want by using it
instead of appPattern3 whenever appropriate.

appPattern3pal : Root3 -> Pattern3 -> Str = \r,p ->
p.Cl + r.Cl + p.ClC2 + r.C2 + p.C2C3 + pallatalize (r.C3) +
p.C3;

Below we give two imperative examples for a third person female to show results before and
after we introduced palatalization.

Before correction | After Correction

gdl - kill (Fem) gdl- kill (Fem)
gd'l# gd'y#

qea. (?) 920,

lbs - dress (Fem) lbs- dress (Fem)
1b's# 1b'x#

anv, (?) ANTL

This template based approach has even given us the possibility of handling verb roots like A%%
adn — to save that start with a vowel 4 /a easily, we first get rid of the vowel 'root’ (i.e leaving
'r.C1") to get dn which we treat as a normal triradical. The vowel is then added in place of
the removed root.
appPatternRemove : Root3 -> Pattern3 -> Str = \r,p ->
p.Cl + a + p.ClC2 + r.C2 + p.C2C3 + r.C3 + p.C3;

5.3 Morphology of Nouns

In our implementation of the Amharic resource grammar, the noun is represented as follows:
Param

Number = Sg | P1l;
Species = Def | Indef;
Case = Nom | Acc | Gen| Dat;

34

Masc| Fem;

Gender
oper

Noun : Type = { s : Number => Species => Case => Str;
g : Gender
b

The GF syntax of the noun type and parameters it depends on follow the same trend as the
verbs in section 5.2.3 but here it states that nouns (N) inflect in number (singular or plural),
species (definite or indefinite) and case (Nominative, Accusative, Genitive or Dative) while a
given noun has an inherent gender, that is, no noun is both feminine and masculine at the same
time. This record representation of the noun has an s field as multidimensional table storing the
(2 x 2 x 4 = 16) forms of the noun.

5.3.1 Number of the Noun

In Amharic, the nouns have both the singular and the plural forms. The plural suffix added on
all nouns is either /-4 /-occ or /-® /-wocc, the former for nouns ending in a consonant and the
latter for nouns ending in a vowel. There are some additional ways of inflecting some nouns for
number, especially those inherited from Geez, but they will not be considered here as equivalent
forms can easily be formed this way.

5.3.2 Species / Definiteness of the Noun

The Amharic definite article is a suffixed element and has different realizations depending on
whether the noun to which it is attached ends in a consonant or a vowel, singular or plural, and
masculine or feminine. If the noun to which it is attached is masculine singular and ends in a
consonant, the suffix added to mark definiteness is /A/- u as in /0F/ - bet ‘house’, which
becomes /(t-A = (L bet-u ‘the house’. If the masculine singular ends in a vowel, the definite
suffix will be /-@+/-w as in /&4/ - resa ‘corpse’, which becomes /&A@+/resa-w ‘the corpse’. It is
worth mentioning the fact that this definite article homonyms with the possessive marker for
third person masculine singular that is bet-u can also mean 'his house' and so on.

On the other hand, if the noun to which the definite suffix is attached is feminine singular and
ends in a consonant, the marker is realized as /-P/-wa, /-Ack/-itu, or /-a4P/-itwa (twa) used
interchangeably as in &%-+-[0jot “girl” which becomes [0jotwal [0jotu/ 10jtitu ‘the maid’. If the
noun is feminine singular and ends in a vowel, the suffixed element is /-P/ -wa, /-&&/ - yitu (-ytu)
or /-&-+P/-ytwa, again used interchangeably, as in &¢- doro ‘hen’, which become dorowa/ doroy-
tu/ doro- ytwa all meaning ‘the hen’. In this library implementation the first of the three is
adopted as it is common in present day spoken Amharic and it avoids considering the
vowelness/consonantness of the last leter of the nound in question making it less laborious to
implement.

35

The definite suffix added to plural nouns ,regardless of gender of the noun, is -u. For example, in
the masculine, as in /710 nogusocc ‘kings’ (the plural of nogus ‘king’), the definite form
becomes /rrtvE/nogusocc-u ‘the kings’. In the feminine, as in /790-tF/ndgostocc ‘queens’ (the
plural of nogost ‘queen’), the definite form becomes /790t -AF - A = 10#El ndgdstocc-u ‘the
queens’.

5.3.3 Gender of the Noun

Some nouns take a feminine marker -it /-A71: 10j /&g ['child, boy' vs. [0j-it [6&- A4 =
A% girl’. But there are ample other masculine nouns that end with -it /-A.7/. The feminine
gender is not only used to indicate biological gender, but may also be used to express
diminutiveness, e.g. bet-it-u 'the little house' (lit. house-FEM-DEF). The feminine marker can also
serve to admire beauty or express sympathy. This makes it almost impossible to automatically
infer the gender of a noun from its structure and construct a smart paradigm function that could
infer the gender of the noun from the last letter of the singular form. Majority of the nouns in
Amharic take the masculine gender. In the GF Lexicon for Amharic there are more than 175
nouns considered of which only less than 10% are inherently feminine attesting to this fact.

5.3.4 Cases of the noun

The declension of nouns is very simple and uniform. Nouns are inflected through four cases,
equally in the singular and the plural,i.e., the nominative, the genitive, dative and accusative.

One example may suffice to show the while mode of proceeding

Singular Plural
Nom: (-F-bEt - a house 07 /bEt-occ - houses
Gen: P0.F-ya-bEt - of a house, a house's P0-7-F/ya-bEt-occ - of houses
Dat: ANF-18-bEt - to a house ANF/1a-bEt-occ - to houses
Acc: (7 bEt-n- a house (717/bEt-occ-n - houses

As can be seen from above the nominative is characterized by the total absence of outward
indicators. It can also be generalized that accusative endings comes after all other noun formats
i.e. at first is added the number indicator then comes the accusative case. The meanings of the
noun's genitive and dative cases are conveyed by the possessive prefixes -¢ /-ya : and -a /-1a
respectively.

The following operation defines the affixes that attach to strings to inflect them for case. Given
an input string the above declensions for case can clearly be coded as shown below.

oper affix : Str -> Case => Str = \str->
table {
Gen => "?" + str;
Dat => "A" + str;
Acc => str + "7 ;

36

Nom => str

}s

When it comes to accounting for the above inflections we define an inflection table that
internally represents all the sixteen cases we outlined at the beginning of this section.

mkNoun : (x1, , , , , , , + o+ 4+ _+_+_+_r_,%X16 : Str) -> Gender -> Noun =
\sdn, sda, sdg, sdd, sin, sia,sig, sid, pdn, pda, pdg, pdd, pin,pia,pig,pid,g -> {
s = table {
Sg => table {
Def => table
{
Nom => sdn ;
Acc => sda ;
Gen => sdg ;
Dat => sdd
bi
Indef => table
{
Nom => sin ;
Acc => sia ;
Gen => sig ;
Dat => sid

b
Pl => table {
Def=> table

Nom => pdn ;
Acc => pda ;
Gen => pdg ;
Dat => pdd

}i
Indef => table
{

Nom => pin ;
Acc => pia ;
Gen => pig ;
Dat => pid

The table serves as a template to form other paradigms that account for the 16 forms (sdn or
(Sg,Def,Nom), sda or (Sg,Def,Acc), etc). The details of orthographic changes
we discussed in section 5.1 are now used here. In addition it gives the possibility of handling
cases of the inherent features g as shown below.

regN2 : Str -> Gender -> Noun = \root,g ->
case root of {

37

Masc => mkNoun

Fem

(roo
(roo

+ +

=> mkNoun
(roo
(roo

+ +

roo + t@? => table {

replacelastlLet6t 2 M
replacelastlLet6t 2 M

replacelastlLet6 2 F
replacelastlLet6 2 F

(t))
(t) +ll’}")

(t))
(t) +"'}")

Depending on the gender of the noun in question, analysis is made on its last character by
making use of the othographic operations for the 16 cases discussed earlier. Below is shown an

example obtained from such analysis we made for the Amharic noun for *house’ bet/0.
: (VE
: 07
: 0k
: Ak
: Ok
: 07
: POt
: AT
: L~E
: (LEY
: POAE
: ALPE
: AT
: 7
(%
D AT

Sg
Sg
Sg
Sg
Sg
Sg
Sg
Sg
Pl
Pl
Pl
Pl
Pl
Pl
Pl
Pl

Def Nom
Def Acc
Def Gen
Def Dat
Indef Nom
Indef Acc
Indef Gen
Indef Dat
Def Nom
Def Acc
Def Gen
Def Dat
Indef Nom
Indef Acc
Indef Gen
Indef Dat

Before concluding our report on the works done with Amharic nouns, let’s mention one special
case of compound nouns. In Amharic two nouns may combine to form another noun such as
TIPVCT OF - tamaharat bet ‘school’ which is formed by two nouns +9°UCt- tamaharat- 'school’
and (. - bet ' house'. Here inflection for a dative or genitive case is added on the first element
while accusative case and the plural markers are suffixed on the second noun. compN is special
function that can handle such variations as shown below. It takes two nouns and forms a
compound noun with the correct inflections.

compN : Noun -> Noun -> Noun

compN x vy

{

4

s = \\N,S,C => case C of

{

38

Gen|Dat => x.s ! Sg ! Indef!C ++ y.s ! N ! S ! Nom ;

=> x.s ! Sg ! Indef!Nom ++ y.s ! N ! S IC
i

g = Y-9s

o

A GF output for such an analysis can be shown here for the noun school +9°uCt (vt - tamahat bet
'school’

Sg Def Nom : TPUCT bk
Sg Def Acc : TPUCT L E7
Sg Def Gen : PFPUCT Ok
Sg Def Dat : AFPUCT (WE
Sg Indef Nom : TPUCT bt
Sg Indef Acc : TPUCT W7
Sg Indef Gen : PPV Ok
Sg Indef Dat : AFPUCT (b
Pl Def Nom : TPUCT (E
Pl Def Acc : TPUCTE (LET
Pl Def Gen : OTPUCT OLE
P1 Def Dat : AFPPUCT (E
Pl Indef Nom : FPUCT T
Pl Indef Acc : FPUCT T
Pl Indef Gen : PrPUCT O
Pl Indef Dat : AFPUCT (LT

5.4 Morphology of the Adjectives

As we mentioned in chapter three of this report adjectives in Amharic precede the nouns that
they modify.

KGO N1 1916 10

Orsu sandf tamari naw

He lazy student is

“He is a lazy student.”

In this example, the adjective sénaf “lazy” precedes the noun tdmari “student” which it
modifies.
Adjectives (A) are represented in our resource grammar as

A = {s : Gender => Number => Species => Case => Str} ;

This builds the representation table of an adjectives, consisting of 32 (2x2x2x4) forms. There is
a great deal of similarity between nouns and adjectives when it comes to inflection except that
the gender is no longer treated as an inherent feature in the adjectives. This means that one form
of adjective can be used to describe both masculine and feminine nouns in some of the cases.

39

This representation table is also so uniform among adjectives that a single paradigm mkA is
used to build the whole representation of the more than 50 regular adjectives in our Swadesh
Lexicon list. A lexicographer can, for example, enter a new adjective in this list as shown below:

beautiful A = mkA "$#7&" ; where mkA is an operation that transfers a
given string to an adjective table (mk2A : Str -> A) inflecting it along the way to give a
tabular output such as:

Masc Sg Def Nom 5 X))

Masc Sg Def Acc D@8y
Masc Pl Def Acc D PIEPETY
Masc Pl Indef Nom D BIEPT
Fem Sg Def Dat D ASTEP

5.4 The Numerals

Now we forward the explanation of our implementation of the numeral system of Amharic. We
consider both the cardinals and ordinals while doing so. Our work on the numerals is basically
an extension of a previous work for defining number systems of various languages using GF. We
gradually give the governing grammar rules along with their formal description in GF.

Before diving into the library implementations, let’s discuss some peculiar features of Amharic
numerals. In Amharic, the ordinal numbers are formed from the cardinal numbers by adding the
suffix A &/ -dnna after the stem consonant.

Example Cardinal Ordinal
vtk U\t SRS > UAHE
hulat / two hulét-dgnna/ second

The compound numerals, like English are put separately.

Example U\t aof QA AT
hulat mato séalasa and / two hundred thirty one

Ut gt AAd RTRE
hulat mato salasa and-drizia /| two hundred thirty first

In addition to species and case, both the ordinals and cardinals inflect in gender and number very
much following the pattern of adjectives that modify nouns. This leaves 40 distinct ways of
inflecting both cardinal and ordinals when accounting gender (2), number (2), definiteness (2)

40

and case (4) for each of them. The rest 24 are common cases for plural numbers and singular
indefinites. Our system gives this for both the text numerals and digits. Below in the table are
shown parts of the the text and digit ordinals for threehundred - ot aot ~“sost meto” - 300.

Masc Sg Def Nom : 3 0 05a. Masc Sg Def Nom : aart evf5a.
Masc Sg Def Acc : 3 0 0Fa.7 Masc Sg Def Acc : otk oo @y
Masc Sg Def Gen : 3 0 0Fa@. Masc Sg Def Gen : etk avG .
Masc Sg Def Dat : a3 0 0Fa. Masc Sg Def Dat : aodvt evpa.

The numerals are basically implemented in the NumeralsaAmh module. An inflection table of
numerals has the following type together with the attributes that a number can inflect in:

param
CardOrd = NCard | NOrd ;

oper

Numeral = {
s:CardOrd=>Gender=>Number=>Species=>Case=>Str

}i

Because of the uniformity of inflectional forms across all ranges of numbers, in Amharic, we do
not need to consider special sizes to implement the rules governing their inflections. This
uniformity makes syntactic formations using the numerals, such as noun phrases, a lot easier. We
do, however, handle the orthographic changes that occur while adding affixes during inflection.

One such function can be :

oper
regOrd : Str -> Str = \number ->
case last number of {

"&" => init number + "&§" ;
"' => init number + "F§" ;
™" => init number + "I ;
"C" => init number + "§" ;

=> number + "¢

b
The function helps to handle the formation of ordinal numerals from their cardinal counterparts

accounting for the orthographic changes. It describes that whenever the last character of a string
'number' ends in the shown letters it takes the initials of the 'number' without the last

41

character and adds the respective suffixes, otherwise, it just adds "§" /za on the original
number. If we make use of such a function on strings such as A47%€ ,u-At , and oo, the results are
A7L%, vatgand oo% which are equivalents to the English first, second and hundredth
respectively.

The abstract syntax in the library details the categories and functions governing the numbers. We
show these for numbers less than ten below:

cat
Digit ; -- 2..9
Subl0 ; --1..9

fun
n2, n3, n4, n5, n6, n7, n8, nY% : Digit ;
pot0l : SublO ; -—- 1
potO : Digit -> SublO ; --—d *1

As can be seen the number 1 is treated separately from the remaining digits . In our concrete
module, the following is the type of the categories above in Amharic (the concrete syntax):
param

DForm = unit | ten ;

lincat
Digit =

{s : DForm => CardOrd => Gender=>Number=>Species=>Case=> Str} ;
Subl0 =

{s : DForm => CardOrd =>Gender=>Number=>Species=>Case=> Str } ;

The inflection table shows what we discussed earlier, that Amharic numbers (both numerals and
ordinals) inflect in gender, number, species (definiteness), and case. The DForm is given so as
to implement a digit with its multiples of ten. The function below forms the inflection table of
the digits by taking the unit, its multiple of ten and the ordinal forms:

oper

mkNum : Str -> Str -> Str -> {s : DForm =>
CardOrd=>Gender=>Number=>Species=>Case=> Str} =
\hulet, haya, huleteNa ->
{
s = table {
unit => table {
NCard => adjaffix hulet ;

42

NOrd => adjaffix huleteNa
b
ten => \\c => mkCard ¢ haya
}
b

The adjaffix isthe main inflecting function that takes a string to give the 64 possible tabular
outputs, while the other operation mkCard considers cardinality and a string to make the
correct inflections. At this stage we refrain from going into the details of such implementation
operation but rather show how such helping functions are finally put to use.

lin n2 = mkNum "v:AF" "Y' "U-ATE"
lin n3 = mkNum "0t "aAq" "OAatg
lin n4 = mkNum "AF" "ACQ" "hHT";
lin n5 = mkNum "A%°0F" "Y9°Q" "APAE;
lin n6 = mkNum "0gat" "0La" "0&aTE";
lin n7 = mkNum "aQ+" "aq" "aqQ+g";
lin n8 = mkNum "a%°%7F" "0997%€" "O9°rtg",
1lin n9 = mkNum "Hm™" "HMS" "HM15";

lin pot0l = mkNum "A%&" "AOC" "A785"
lin pot0 d = d

Of course the above does not account for the variations that could arise due to the possibilities of
using more than one symbolic character to write the same number. For instance if we are to write
‘twenty’ in Amharic, 72/chf/v€/>¢ (all of which are read as ‘haya’) can be used. This is because
the first letters 7, v, «h and > (all of which are read as ‘ha’) are given in the fidél in four different
positions with their distinct shapes, even though all sound the same.

The abstract syntax divides the categories based on the decimal system. If we consider the last
function in the linearization, pot0, is used to transfer the Digit into Sub10 so that it can be
used as any numeral less than ten later. The linearization of the rest of the categories from the
abstract syntax and their implementation in Amharic follows similar trend as the above. We
conclude the section by giving examples of two ordinal forms with similar paramours but
gender. We try to clarify this by using an example sentence generated by our system.

Inflection form of the ordinal: sMasc Sg Def Nom:aat evtga. /the three hundredth+masc

Usage:preceeds a masculine noun while forming phrases such as noun phrases. A digital form
of the same is also possible in our system:s Masc Sg Def Nom:3005d/ the 300™+Masc

Example: ook aop5@- A8 NAME? NAx= [the three hundredth boy ate the apples

sost mitonnaw 10j béldsoccun bila

43

Inflection form of the ordinal: s Fem Sg Def Nom : otk @259 / the three hundredth+fem

Usage: preceeds a feminine noun while forming phrases such as noun phrases. The digital
take this form: s Fem Sg Def Nom : 3005 /the 300" +fem

Example: aat oo AB148 NAGET NATF = / The three hundredth girl ate the apples.

sost mitonnawa l0jagérad bildsoccun bélacc

55 Swadesh1 Lexicon

The test lexicon we have uses is in LexiconAmh module. Below are given examples from the
main word types that show how a lexicographer can use this to enter them:

Verbs
Bi-radical
break V2 = mkV3gdl "sbr" ;
sing V = mkV3mls "zmr";
Tri-radical

sew V = mkV2bl "sf"

stand V = mkV2nr "gm";

give V3 = mkV3 (mkV2sT "sT") (mkPrep "a" "" True);
Quadri-radical

freeze V = mkV4dbdb "gzgz";

throw V2 mkV4dbdb "wrwr'";

Nouns
ship N = mkN® "epch1" feminine ;
church N = mkN (mkN "0+") (mkN "hCOte?" feminine) ;
ceiling N = mkN "M

Adjectives

full A = mkA "@>)"]
heavy A = mkA "hag" ;

We also provide additional list of structural words in the StructuralAmh module for
instance,

we Pron = pronNP "AF" "AT7Y" "PAT" "AAS" (Perl P1);

! The Swadesh list is one of several lists of vocabulary with basic meanings, developed by Morris Swadesh.

“This single wrapper function mkN is overloaded with the various forms of nominal declension to make it ‘smart'
enough to guess the outputs for the different input signatures. Such functions in GF are called smart paradigms.

44

where the helping function pronNP is defined in ResAmh to take four strings and person-
number-gender agreement feature, to build a noun phrase with the proper cases,i.e., nominative,
accusative ,genitive and dative. This can be shown below.

pronNP (N,A,G,D : Str) -> PerNumGen -> NP = \N,A,G,D,png-> {
s = table {

Nom => N ;

Acc => A ;

Gen => G ;

Dat => D

o

a = Agr

}s

Similarly, the rest of the structural words which includes, prepositions, conjunctions, adverbs,
quantifiers and so on are constructed by making use of the proper functions we provide in the
ResAmh module.

5.6 Syntax

The final part of the grammar that we have implemented is a set of syntactic rules such as the
one we described in section in chapter 3.2. A complete description of the language independent
API rules in the abstract resource grammar,i.e., the syntactic structures of the abstract API is
given by Ranta in his description of the resource library (Ranta, 2004), so we do not discuss
them here. We give two examples, one noun determination and another verb predication, to show
the expressive power of the formalism. We as well forward some points with regard to the
VPSlash (a verb phrase without an object / complement) and verb complementation issues, at
last the uses of conjunction in order to coordinate the semantic flow of two or more list of
expressions in the same category is given.

Example 1:

The example we give hereunder is the formation of Amharic determiner using quantifiers and
numerals to show the concepts of definite and indefinite articles and they are implemented. First
let’s give the abstract categories (cat) and functions (fun). Our goal is to linearize the rules,
both categories (using l1incat) and functions (using 1in) into Amharic according to the
grammar.

cat
Det;
Quant;
Num;
fun

45

lincat

1lin

DetQuant : Quant -> Num -> Det ;

IndefArt : Quant ;
DefArt : Quant ;

NumSg : Num ;

NumP1 : Num ;
Quant =

{
s : Number => Gender => Case => Str;
d : Species;

isNum : Bool;

isPron: Bool

b

s : Gender => Case => Str ;
d : Species;
n : Number;

isNum : Bool;

isPron : Bool

b

Num = { s : Species=>Case => Str ;
n : Number ;
hasCard : Bool
b

DetQuant quant num = {

s = \\g,c => guant.s!num.n!g'!c ++ num.s!quant.d!c ;

d = quant.d;

n = num.n;

isNum = True;

isPron = quant.isPron

}os

DefArt = {

S = _I_I_ => [];

d = Def ;

isNum, isPron = False

}os

IndefArt = {
s = \\nrgr_ =>

case <n,g> of {
<Sg,Masc> => "KWI&" ++ [];
{Sg, Fem> => "AM% 1" ++ [];
<Pl, > = [] };

46

d = Indef ;
isNum, isPron = False

o

One way of making determiners such as these five, is by making use of quantifiers and numerals
as given by DetQuant. It can be seen from the same linearization that the inherent number of
the determiner comes from the numeral while the definiteness is decided by the quantifier. Our
interest is to show the extra things that come with Amharic definite and indefinite articles and
how they could be captured by the Quant category. From DefArt it can be seen that the
definite article in Amharic has no explicit word corresponding to it making its implementation
look more complex. But there is another way out of this, i.e., treating the quantifier's inherent
species as definite regardless of the number, gender and case. This better explains the situation
with Amharic definiteness — a point of discussion amongst scholars (Beermann and Ephrem,
2007). The other feature could be the case of the indefinite article for singular quantifiers.
Indefinite nouns are normally not marked with determiners and hence we could leave the
nucleus quantifier the same as definite article while only marking the species with Indef. But
occasionally the cardinal numeral and/ A7& (‘one’) is used to indicate the meaning of
indefiniteness and that is what we have shown in IndefArt. It is further to be noted that the
indefinite article takes two different forms depending on the gender. For instance, in Amharic,
we say 478 &2 and 10j | a boy and A8t &§14& andit [0jagdrdd to mean ‘a girl”.

To summarize this, we show two sentences that make use of verb phrase from the verb 'love' (we
shall give the verb predication implementation in our next example) and a noun phrase which in
turn is made by such determiners as the one shown in the previous example and nouns (boy and
girl).

AB. D % AV N VA o LDHA::

10ju andit 10jagidrddon yowédal

Theboy a girl loves : the boy loves a girl

AB1L, i ABT FOLANT:
10jagédradua and 10jon towédalicc
The girl a boy loves : the girl loves a boy

These two simple sentences could show how much Amharic deviates from English. English only
has to swap the nouns 'girl' and 'boy' to bring the required semantic difference while there is high
similarity between the structures for the two cases. Meanwhile, in Amharic we have to consider
lots of grammatical decisions almost on every word of the sentence. The way we explain
definiteness, the way we give indefiniteness, the way we decline for accusative cases and even
the way we inflect the verbs are all different between the two sentences.

Example 2:

47

As a second example let’s take the rule of verb predication where a verb phrase is formed from a
verb. In order to do so we need to decide the type of verb phrases (\VVP) first. A verb phrase in
Ambharic can be given in its compact form as:

param

lincat

Polarity = Pos |

VP = {

Neg;

s : TenseAmh=> Polarity =>PerNumGen => Str ;

compl : NP
b

TenseAmh=PresFut|SimplePast|PresPerf|PastPerf|PresCont|
PastCont;

In our implementation the VP takes several more inherent features, which we have summarized
and put just as an NP complement for the sake of brevity. It can also be seen from the table that
a VP inflects for tense, polarity (which is used when making either positive or negative
sentences) and agreement feature Pe rNumGen

The operation predv below takes a verb and makes a verb phrase. Most of the discussions we
had in the verb morphology are now implemented here (see that we have used the transliteration
we described earlier whose list can also be found in the appendix A):

predvV :V -> VP = \v ->

{
s = \\t,p,png =>
let

ketebku
eketbalehu
keteb
ketbie
mekteb
ketabi
ketbiealehu
eketib

in
case <t,p> of

{

<PresFut, Pos> =>

< S << <9< s <
nwnnnnn®on

eketbalehu

4

Perf

Impert
Jus Imperat
Gerund

lAct!

Infinitive

Parti

CompPerf

Cont

lAct!

IAct!

png

'Act! pn

lAc

!'Act! pn

lAct
png

lAct!

png

g
t!
g

png

! png

png

4

4

4

4

48

<PresFut, Neg> => "I" 44"e4+"4+4+ eketib ++"E+" +H4+"m"

<PresPerf, Pos> => ketbiealehu;

<PresPerf, Neg> => "11"++"e+"++ketebkut+t+"&+"++"m";
<PresCont, Pos> => "(y'"++ "&+"++ketebku ++"n'w" ;
<PresCont, Neg> =>"(y'""++ "&+"++ketebku ++"Ayd'l'm" ;

<SimplePast,Pos> => ketebku;
<SimplePast,Neg> => "!1"++"&+"++ketebkut+"&+"++"m";
<PastPerf, Pos> => ketbie++"n'b'r";

<PastPerf,Neg>=>"!1"++"&+"++ketebku++"&+"++"m"++"n'b'r";

<PastCont, Pos> => "(y'"++ "&+"++ketebku ++ "n'b'r" ;
<PastCont, Neg> => "(y'""++ "&+"++ketebku ++
"Alnlblrlm"
}i
comp = { s =_ =[] 1};

We want to mark at this point that verb phrases are primarily formed from a verb and its required
complements. But verbs can be of various categories corresponding to the possible complements
and their combinations. Such division of verbs by the complement is known as
subcategorization. (Ranta, 2009). The way such subcategorizations are handled is abstract in a
sense that it doesn’t distinguish prepositional phrase complements from noun phrases. This
means that the treatment given to the prepositional phrases is almost the same as noun phrases.
The case is a language-dependent concrete syntax feature, and complement cases are inherent
features of verbs. For instance, the linearization type of V3 is formed from the linearization type
of one-place verbs by adding two cases. In Amharic, these cases are simply prepositions, which
can be expressed as strings. Thus the verb ‘talk’ (to somebody about something) has the
following linearization

mkV3 (mkV3asr "'wr") (mkPrep "h" "2C" True) (mkPrep "aA"™ "" True);

At this point, we do not intend to explain the code and how it evolved to get to this form in this
report but merely mention the fact that the prepositional phrases are almost treated the same way
as noun phrase complements in GF.

49

Clauses and Sentences

A clause in GF, which is a syntactic category that has variable tense, polarity and order, can be
formed in various ways. Of such formations, predication of a NP and VP is one as shown below.

fun PredVP : NP -> VP -> C1
Where the clause is given by
lincat Cl1 : Type = { s : TenseAmh => Polarity => Str};

The GF tense system found in the common API, which is given as tense and anteriority, is a
simplified one. There are only four tenses named as present, past, future and conditional, and
two possibilities of anteriority (Simul, Anter) which leave the possibility of generating only 8
possible combinations. This coverage is not sufficient enough to handle all the tense forms of
Ambharic which we mentioned earlier, therefore, further coverage is given at the clause level to
address that.

Further explaining this problem, the above PredvP function creates clauses which can further
be fixed for tense and polarity to form sentences. One such sentence forming function that can
fix clauses for polarity and tense is:

fun UseCl : Temp -> Pol -> C1 -> S

While forming declarative sentences, the tense in the Temp category refers to abstract level tense
and we just map it to Amharic tenses by selecting the appropriate clause as shown below.
UseCl t ap cl =
let ss : Str = case t.t of

{

Pres => cl.s

Cond => cl.s

Past => cl.s ! SimplePast ! ap.p ;

Fut => cl.s

! PresFut ! ap.p ;
! PresFut ! ap.p ;

! PresFut ! ap.p

50

Here we may lose some semantic equivalence as, for example, there is no conditional tense in
Amharic and what we picked instead is the one that is ‘similar’ to this tense type, PresFut’
which may not be correct all the time.

Question Forms

Unlike some of the languages in the GF library, Amharic clauses do not vary in ‘order’ (direct or
question). We consider only direct clauses even when forming interrogative sentences. The way
the speaker says the sentence and the addition of tags like "A7&" - ‘dnde’ at the end of the
direct clause that was formed from the clause level helps to make questions. For examples a
simple way to create a question clause can be given in the abstract as:

fun QuestCl : Cl -> QC1 ;
which can be linearized as

QuestCl cl = {

s =
i

The tense and polarity of this clause will be fixed at the sentence level while forming question

sentences the same way we did with the normal clauses that use UseCl as described above.

There are also other forms of question clauses which include clauses made with interrogative

pronouns (IP), interrogative adverbs (IAdv), and interrogative determiners (IDet) which are

given as structural words.

\\t,p => cl.s! t! p ++ "AL&S"

Coordinating Conjunction

A coordinating conjunction can join lists of expression that a user of a language wants to
emphasize equally. The list can be composed of 2 (X and Y) or more (X, Y, Z and U). The GF
library allows coordination of five categories (Ranta, 2009)

adverbs (here or there),
adjectival phrases (cold and warm),

noun phrases (she or John),
relative clauses (who walks or whom she loves), and
sentences (he walks and she runs)

e e - e

The conjunctions are given as a structural word in the structuralAmh.gf module. These can
assume wither a simple (and, or) or discontinuous (both-and, either-or) forms. We show below
the implementation of coordination in the NP category eg. “she and we” .

! The present and future tenses are not separated in Amharic and we give them as PresFut.

51

fun ConijNP : Conj ->[NP]->NP;

Such a rule can be applied to lists of two or more elements as shown in the translation given by
our GF system.

Languages: LangAmh LangEng

Lang> p -lang=LangEng "*he , John and she eat red apple”| | -lang=LangAmh -treebank -
to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPres ASimul) PPos (PredVP (ConjNP
and_Conj (ConsNP (UsePron he_Pron) (BaseNP (UsePN john_PN) (UsePron she_Pron))))
(ComplSlash (SlashV2a eat_V2) (MassNP (AdjCN (PositA red_A) (UseN apple_N)))))))
NoVoc

LangAmh: AChr & 770 AT ACAH, $2 NAO S0AN

The “z” in the Ambharic translation by GF is an equivalent mark for “,” in English. It can also be
seen that the verb selection in the sentence smartly takes its agreement feature as third person
plural, i.e., as in ‘they eat red apple’.

A slash category CSlash is like the category C but "missing™ a noun phrase.(Ranta 2009). From
the bold written part of the parse tree structure provided by GF, the function SlashV2a is given in
the common API as:

fun: SlashV2a : V2 ->VPSlash

It takes a two place verb v2 (enAx -yobalalu eat-Per3Pl) to form a verb phrase known as
VPSlash which lacks a complement NP. At a later stage this VPSlash is converted to VP
through Comp1S1ash function which is given in abstract syntax as:

fun: ComplSlash : VPSlash -> NP -> VP ;

where as in this case the NP (¢2 A - qdy balés - red apple) is formed by MassNP that simple
takes a noun (CN) piped from Ad;jCN which takes Adj ¢2- qdy-red and another noun CN
0An - balas- apple as inputs as shown below.

fun MassNP : CN ->NP
fun AdjCN : AP -> CN -> CN

Furthermore, in Amharic the complement of a verb precedes the actual verb e.g (aca.

avi 8 FeAINT Orsua mahed tofalogalac “she wants to go”), where (tda2at - tofalogalac
“want”-Per3SgFem) is a complement of verb (ev%£-mahed “go”-inf).

52

Chapter 6

Related Work

Amharic is an under resourced language with regard to NLP. Therefore, works regarding the
computational aspect of the language are rather hard to come by. This being the general case,
there are initiatives by individual researchers whose theoretical works extend from machine
translation to speech recognition. Even if such islands of researches are still shy of coordination
and practicality to bring the language a step closer to the world of computation, we found the
following works worth mentioning as a related work.

6.1 Arabic Resource Grammar in Grammatical Framework

Our work on Amharic has benefited much from the work of Ali El Dada and Aarne Ranta on the
implementation of the other Semitic language in the library, Arabic. (El Dada and Ranta, 2007)
Their work deals with some of the problems in the NLP of Arabic and introduces natural
language constructs and rules implemented in libraries. This has considered rules that span from
orthography and morphology to syntax. Similarly, we revised another mini resource work on
Hebrew and Maltese (Dannells and Camiller, 2010).

6.2 HornMorpho Amharic Morphological Analyzer and Generator

HornMorpho! is a program that analyzes Amharic words into their constituent morphemes
(meaningful parts), returning, whenever possible, the stem or root of the word, along with a
representation of its grammatical structure. It is the first in a planned series of programs to
handle the morphology of Ethiopian and Eritrean languages.

The software is released as part of the L3 project ("Learning Lots of Languages™) which has a
long-term goal of developing a system to translate to and from many under-represented
languages and (less ambitiously) of creating tools to be used in information retrieval and
computer-assisted language learning with these languages.

The approach they implement is based on the Finite State Transducers weighted with feature
structures. The program is written in Python and the FST module they use is adapted from the
Natural Language Tool Kit (NLTK)? - an open-source suit of Python tools for computational
linguistics applications. The generator takes inputs both in Romans and Fidéal (UTF-8 encoding)

! https://www.cs.indiana.edu/~gasser/software.html
2 www.nltk.org

53

versions and the orthographic version of the analyzer romanizes the Fidal inputs using the SERA
transliteration convention.

Even if the morphology part of our study is limited to inflectional generations, there is a crossing
with FST approach they implemented in a way that we both adopt the root-pattern, where the
roots and patterns are explicitly separated for combining during processing. However, the FST
implementation of HornMorpho adds features such as weights on the transitions and uses multi
layered transducers to do the analysis and generation.(Gasser, 2009)

6.3 Syntax

Works on Amharic syntax, even at theoretical level, are rather rare to find than those on
morphology. Of the available works, we note Baye Yimam's work (Yimam, 1987) that gives a
formal description of the Amharic grammar in his book written in Amharic. His paper on the
interaction of tense, aspect, and agreement in Amharic syntax is another piece to mention
(Yimam, 2006). A thesis work by Atalech, presently a Phd student at Stockholm University,
(Argaw, 2002) describes a work on automatic sentence parsing for Amharic text. Finally, works
on dependency parsers for Amharic by Gasser (Gasser, 2010) where he introduces a grammar for
a fragment of Amharic within the Extensible Dependency Grammar (XDG) framework gives a
highlight into some of the morphological and syntactic complexities in the language and this,i.e
XDG, methodology to deal with them.

54

Chapter 7

Conclusion

We discussed in this report the implementation of Amharic as a resource grammar. The project
consists of 25 modules and more than 4,000 lines of GF code that cover orthographic, morpho-
logical and syntactical features of the language.

We took on the project from the zero-ground all the way up. Our work started with the morphol-
ogy where majority of the nominal declensions followed uniform and simple trends. The verbal
inflections, though not complete, required us to design unique patterns longer than 1,000 lines of
code. We approached such verbal analysis using transliterations, unlike nouns and adjectives that
use Amharic characters, as it gave us flexibility and lessened the burden of orthographic errors
dramatically. The numerals from a previous work had to get refurnished and can now be used
smoothly. At times we used near-meanings when we miss direct translations and when the rule
of the syntax is far too complex to implement. The compiling time is also reasonably good to
generate PGF files - portable grammar formats, which will be imported and processed by main
stream programming languages like Haskell and Java. (Angelov and Bringert, 2009)

Throughout the project we came to witness that GF indeed has lots of strengths when describing
rather complicated linguistic issues such as grammar rules and inflection tables. We note also the
extent of classiness in which formalism like GF enables us to represent linguistic rules and ab-
stractions.

Finally, the current grammar do not cover all aspect of Amharic and it does not be used to parse
arbitrary texts as we do in Google-Translator®; but with extended inclusion of more syntactic
rules and a multi-dimensional overhaul of morphology, we strongly assert that GF has all that it
takes to make Amharic be used in text generation applications and for software localization
works.

55

Chapter 8

Future Work

A language with morphosyntatic complexity like Amharic puts immense challenges during its
implementation as a resource grammar. We do not dare to claim that our work has covered
everything there is to know about Amharic at this stage. We rather aim to extend such an
initiative through open sharing of sources to linguists (computational and theoretical) and
anyone interested on Amharic NLP. Therefore, we site the following additions and completions

as future works:

A The level of coverage given to root-pattern classification of the verbs could

further be augmented to address various other derivational templates than we
could cover here. Especially verbs that start with a vowel and ’td’ behave in a
different way. Therefore they need further analysis than we could make in this
work. The implementation of verb ’to have’ is also over simplified and needs
detailed consideration like the verb to-be’s.

Improving the efficiency and broadening the coverage of the grammar can be
another direction for future work. Some forms are also left out for the sake of
time. These include the case of object suffixes, relative clauses and aspects such
as reciprocals and iteratives for the various TAM's and voices. These will require
redesigning some types and patterns. *

Steps towards a robust grammar cannot be attained without the inclusion of a
larger lexicon. Therefore, future work should consider more lexica to test the
various morphosyntactic properties of the language.

! There are also some feature of Amharic which are not yet given a coverage with the current API , such as extra
tense varieties and some pronoun forms, these features are implemented in the Ext raAmh module.

56

A~ Writing an application grammar of some kind (could be started from those that
have already used GF such as the phrase book in the MOLTO project!) in
Ambharic can also help test the practicalities of our approach.

A Finally, generation of sentences attained by our system so far should be extended
into texts. Such achievements, when implemented on a good amount of lexica,
may lead to the generation of a good amount of bi or multi-lingual corpora which
are missing in Amharic. These, eventually, could serve as an important input to
statistical technologies, such as machine translation, bringing the language into
the lights of computation faster.

! http://mww.molto-project.eu/demo/phrasebook

57

References

Angelov, Krasimir, Bringert, Bjorn. and Ranta, Aarne. PGF: A Portable Run-Time Format for
Type-Theoretical Grammars. Journal of Logic, Language and Information. 2009

Angelov, Krasimir. Type-Theoretical Bulgarian Grammar. Proceedings of the 6th international
conference on Advances in Natural Language Processing, 2008

Argaw, Atalech. Automatic Sentence Parsing for Amharic Text: An Experiment Using
Probabilistic Context Free Grammars. Addis Ababa: Addis Ababa University Press. 2002

Bayou, Abiyot. Design and Development if a Word Parser for Amharic Language: Master's
Thesis. Addis Ababa: Addis Ababa University Press. 2000

Beermann, Dorothee and Ephrem, Binyam: The Definite Article and Possessive Marking in
Amharic. Texas Linguistics Society 9: Morphosyntax of Underrepresented Languages. CSLI
Publications. 2007

Dana Dannélls and John J. Camiller. Verb Morphology of Hebrew and Maltese: Towards an
Open Source Type Theoretical Resource Grammar in GF. Proceedings of LREC. 2010

El Dada, Ali and Ranta, Aarne. Implementing an Open Source Arabic Resource Grammar in GF.
In Perspectives on Arabic Linguistics XX. John Benjamins Publishing Company. 2007

Enache, Ramona; Ranta, Aarne and Angelov, Krasimir: An Open-Source Computational
Grammar for Romanian. In Computational Linguistics and Intelligent Text Processing 11th
International Conference, lasi, Romania 2010

Fisseha, Sissay and Haller, Johann. Amharic verb lexicon in the context of machine translation
.Saarbruicken: University of Saarland Press. 2003

Gasser, Michael. A dependency grammar for Amharic. Workshop on Language Resources and
Human Language Technologies for Semitic Languages. 2010

Gasser, Michael. Semitic morphological analysis and generation using finite state transducers

with feature structures. In Proceedings of the 12th Conference of the European Chapter of the
ACL, pages 309-317, Athens. 2009

58

Grishman, Ralph. Computational Linguistics: An Introduction. New York: Cambridge University
Press. 1994

Khegai, Janna. Language Engineering in Grammatical Framework (GF): Phd Thesis. Goteborg:
Chalmers University Press. 2006

Leslau, Wolf. Reference Grammar of Amharic. Wiesbaden: Otto Harrassowitz. 1995
Leslau, Wolf. An Amharic Reference Grammar. University of California: Los Angelese 1969

Ranta, Aarne. Grammatical Framework : A Type Theoretical Grammar Formalism. The Journal
of Functional Programming 14(2), 145-189 . 2004

Ranta, Aarne. The GF Resource Grammar Library. Linguistic Issues in Language Technology —
LiLT . 2009

Ranta, Aarne. GF: A Multilingual Grammar Formalism. Language and Linguistics Compass.
2009b

Ranta, Aarne. Grammatical Framework: A Programming Language for Multilingual Grammars
and Their Applications. Stanford: CSLI Publications, 2010 (to appear)

Yimam, Baye. The interaction of tense, aspect, and agreement in Amharic syntax . In Selected
Proceedings of the 35th Annual Conference on African Linguistics, pages 193-202, Somerville.

2006.

Yiman, Baye. PA“7C5 neiw- Addis Ababa: E.M.P.D.A Press. 1987

59

Appendices

60

Appendix - A- Transliteration Table for the Fidal as used in the project.

Format:

[1200 | v | h'|
1201	v~	h&
1202	7	h#
1203	7	h!
1204	%	h%
1205	v	h
1206	v	b/
1207	7	h7
[1208	a	I'
[1209	&	1&
120a	A.	H#
120b	A	1!
120c	&	1%
120d	&	1
120e	o	1/
120f	4.	17
1210	ch	H'
1211	b	H&
1212	ch.	H#
1213		H!
1214	h	H%
1215	¢h	H
1216	h	H/
1217	b	H7
1218	e	m'
1219	o>	m&
121a	o1	m#
121b	7	m!
121c	9%	m%
121d	9°	m
121e	9°	m/
121f	@9,	m7
1220	w	S
1221		S&
1222	=1	st
1223	¥	s!

| 1224 | v | s% |
| 1225 | 7| s |

1226	7	s/
1227	.	S7
1228	¢	

[1229 | 4 | r& |
122a	¢	r#
122D	¢	r!
122c	&	r%
[122d	c	r
122e	c	1/

| 122f | & | 17 |
[1238 | @ | X' |

1239	@	X&
123a	@	x#
123b	&	x!
123c	1	x%
123d	0	x

123e	&	X/
123f	a4,	X7
1240	+	q'
1241	¢	q&
1242	&	o
1243	&	q!
1244	¢	q%
1245]%	q	

| 1246 | 4 | o/ |
| 1247 | #|q7 |
1260 |0 | b’ |

1261	(+	b&
1262	(.	b#
1263		b!
1264	0,	b%
1265		b

| 1266 | 0| b/ |
| 1267 | a.| b7 |

1268	6	V'
1269	o	v&
126a	a.	v#
126b	a	v!
126¢	0	v%
126d		V

| 126e | 0| V/ |
| 126f | a. | v7 |
| 1270 |+ | t']

| 1271 |+ | t& |
| 1272 | | t#]
| 1273 | 2 | t!]
| 1274 |+ | 1% |
| 1275 |+ | t|

| 1276 |+ |t/ |

1277	4	17
1278	F	c'
1279	%	c&
127a	E	c#
127b	#	c!
127¢		c%
127d	+	c

127e	¥	c/
127f	i	c7
1280	1	X"
1281		X&
1282	1	X#
1283	2	X!
1284	4	X%
1285 |4 | X |

| 1286 | & | X/ |
| 128b | | X7 |
[1290 | 7| n'|
1291	¥	n&
1292	%	n#
1293	6	n!

| 1294 | 2| n% |
| 1295 |7 |n|

1296	S	n/
1297	&	n7
1298	7	N'
1299	7	N&
129a	"7	N#
129b	&	N!
129¢	%	N%
129d	7	N
129¢	%	N/
129f	&	N7
12a0	&	!]
12al	&	&
1282	A	#
12a3	A	A

| 1284 | & | % |
| 12a5 4| (|

| 1286 | & |/ |

| 12a7 |A|" |

12a8	n	K'
1289	b+	k&
12aa	.	k#
12ab	h	k!
12ac		k%
12ad	h	K

12ae	0	K/
12b3	'	K7
12c8	@	W'
12¢9	@.	W&
12ca	€	w#
12cb	P	w!
12cc	B	W%
12cd	@	w
12ce		w/
12¢f	'@	W7

| UTF code no | fidal character |transliteration in the system |

12d0	0	&'
12d1	0~	&
1202	9	&#
12d3	4	&!
12d4	%	&%
12d5	o	&
12d6	#	&/
12d8	1	Z'
12d9	H	z&
12da	H.	z#
12db	1	2!
12dc	B	2%
12dd	H	z
12de	v	Z/
12df	K.	z7
12e0	1	Z'
12el	1	Z&
12e2	1t	Z#
12e3		Z!
12e4	15	Z%
12e5	7	Z
126	1	2/
12e7		Z7
12e8]	y	
12€9	&	y&
12ea	&	y#
12eb	2	y!
12ec	&	y%
12ed	&	y
12ee	¢	y/
12ef	£	y7
12f0	&	d'
121	4.	d&
122	4.	d#
12f3	4	d!
12f4	&	d%

| 12f5 | & | d|

| 12f6 | & | d/ |

| 12f7 | £.]d7 |
| 1300 [%[]|

1301	&	j&
1302	&	j#
1303	%	j!
1304	€	j%
1305 []		

| 1306 | & | j/|

| 1307 | %, |7
| 1308 |7] g’ |

1309		0&
130a	1.	g#
130b	2	g!
130c	2	9%
130d []9		

| 130e | 7|9/ |

| 1313 |2 | g7 |
| 1320 |m | T'|
1321 | m< | T&
| 1322 | . | T# |
| 1323 | @ | T!|
| 1324 | m, | T%
| 1325 |+ | T|

1326		T/
1327	,	T7
1328	em.	C'
1329	e	C&
132a	en.	C#
132b	ew	C!
132¢	ep	C%
132d	2	C
132¢e	¢	C/
132f	em,	C7
1330	&	P'

11331 | 4 | P& |
11332 | & | P#|
11333 |4 | P! |
11334 | % | P% |
11335 | % | P|
11336 | 2| P/ |
11337 | & | P7 |
113382 S|
11339 | 2 | S& |
|133a | &. | S#|
1133b || S! |
|133¢ | % | S% |
1133d | & | S|
|133¢|2 | S/ |

| 133F| .| S7 |
11348 | & | |

1349	4	f&
134a	&	f#
134b	4	f!
134c	¢,	1%
134d	&	f

| 134e | & | /|

| 134f | 4: | 7 |
| 1350 | T | p'|
11351 | % | p& |
11352 | T | p# |
11353 | 7 | p! |
| 1354 | | p% |
| 1355 |T|p|
11356 | 7 | p/ |
| 1357 | I | p7 |

61

Appendix — B1 - Simple inflection table of the verb sbr (break)
Format : \erb form Voice (Person Number Gender) : Verb in Amharic

Perf Act (Perl Sg) : wnch

Perf Act (Perl PI) : wacC?

Perf Act (Per2 Sg Masc) : wach

Perf Act (Per2 Sg Fem) : waci

Perf Act (Per2 Pl Masc) : wn¢-Tu-

Perf Act (Per2 Pl Fem) : w(¢-Fu-

Perf Act (Per3 Sg Masc) : wid

Perf Act (Per3 Sg Fem) : wae+

Perf Act (Per3 Pl Masc) : w4

Perf Act (Per3 Pl Fem) : w04

Perf Pas(Perl Sg) : +wnch-

Perf Pas(Perl PI) : +wnC?%

Perf Pas(Per2 Sg Masc) : +wach

Perf Pas(Per2 Sg Fem) : +wncCil

Perf Pas(Per2 Pl Masc) : +w(é-Fu-
Perf Pas(Per2 Pl Fem) : +wie-Fu-

Perf Pas(Per3 Sg Masc) : +wnés

Perf Pas(Per3 Sg Fem) : +wns-t

Perf Pas(Per3 Pl Masc) : w4

Perf Pas(Per3 Pl Fem) : w4

Imperf Act (Perl Sg) : ow-ié-av-
Imperf Act (Perl PI) : 070607
Imperf Act (Per2 Sg Masc) : twic-u
Imperf Act (Per2 Sg Fem) : twNceat
Imperf Act (Per2 Pl Masc) : twg-AFu-
Imperf Act (Per2 Pl Fem) : twg-AFu-
Imperf Act (Per3 Sg Masc) : gwicéh
Imperf Act (Per3 Sg Fem) : twcat
Imperf Act (Per3 Pl Masc) : w1t
Imperf Act (Per3 Pl Fem) : ew-igt
Imperf Pas(Perl Sg) : éwné-auv-

Imperf Pas(Perl PI) : 87w0éA7

Imperf Pas(Per2 Sg Masc) : twNéav
Imperf Pas(Per2 Sg Fem) : twacead
Imperf Pas(Per2 Pl Masc) : twig-adu-
Imperf Pas(Per2 Pl Fem) : twng-Atu-
Imperf Pas(Per3 Sg Masc) : ewica
Imperf Pas(Per3 Sg Fem) : +twac-aF
Imperf Pas(Per3 Pl Masc) : gwiéte
Imperf Pas(Per3 Pl Fem) : gwic
Jus_Imperat Act (Perl Sg) : a#~0c
Jus_Imperat Act (Perl PI) : 67°0C
Jus_Imperat Act (Per2 Sg Masc) : #0c
Jus_Imperat Act (Per2 Sg Fem) : #né
Jus_Imperat Act (Per2 Pl Masc) : /04
Jus_Imperat Act (Per2 Pl Fem) : 204
Jus_Imperat Act (Per3 Sg Masc) : g#0C
Jus_Imperat Act (Per3 Sg Fem) : +#nc
Jus_Imperat Act (Per3 Pl Masc) : 2”04
Jus_Imperat Act (Per3 Pl Fem) : 2”04
Jus_Imperat Pas(Perl Sg) : awnc

Jus_Imperat Pas(Perl PI) : ow0C
Jus_Imperat Pas(Per2 Sg Masc) : +wc
Jus_Imperat Pas(Per2 Sg Fem) : +w(s
Jus_Imperat Pas(Per2 Pl Masc) : +w(4-
Jus_Imperat Pas(Per2 Pl Fem) : +w(4
Jus_Imperat Pas(Per3 Sg Masc) : ewnc
Jus_Imperat Pas(Per3 Sg Fem) : +w(c
Jus_Imperat Pas(Per3 Pl Masc) : gw(4-
Jus_Imperat Pas(Per3 Pl Fem) : &4
Gerund Act (Perl Sg) : w0

Gerund Act (Perl Pl) : w027

Gerund Act (Per2 Sg Masc) : wZh
Gerund Act (Per2 Sg Fem) : w21
Gerund Act (Per2 Pl Masc) : w0 u-
Gerund Act (Per2 Pl Fem) : wg-Fu-
Gerund Act (Per3 Sg Masc) : w1
Gerund Act (Per3 Sg Fem) : w¢
Gerund Act (Per3 Pl Masc) : wZo-
Gerund Act (Per3 Pl Fem) : wiZo-
Gerund Pas(Perl Sg) : +wé

Gerund Pas(Perl Pl) : w047

Gerund Pas(Per2 Sg Masc) : twzh
Gerund Pas(Per2 Sg Fem) : +wZad
Gerund Pas(Per2 Pl Masc) : +ws-Fu-
Gerund Pas(Per2 Pl Fem) : +wc-fu-
Gerund Pas(Per3 Sg Masc) : +w¢
Gerund Pas(Per3 Sg Fem) : +w-1¢-
Gerund Pas(Per3 Pl Masc) : +w-.o-
Gerund Pas(Per3 Pl Fem) : +w- .o
Infinitive Act (Perl Sg) : ev/”nC
Infinitive Act (Perl PI) : ao20C
Infinitive Act (Per2 Sg Masc) : ee~0C
Infinitive Act (Per2 Sg Fem) : ev~0C
Infinitive Act (Per2 Pl Masc) : ev£”0C
Infinitive Act (Per2 Pl Fem) : ev20C
Infinitive Act (Per3 Sg Masc) : ee~0C
Infinitive Act (Per3 Sg Fem) : ev~0C
Infinitive Act (Per3 Pl Masc) : av20C
Infinitive Act (Per3 Pl Fem) : ao20C
Infinitive Pas(Perl Sg) : aownC
Infinitive Pas(Perl PI) : eow(C
Infinitive Pas(Per2 Sg Masc) : aow(C
Infinitive Pas(Per2 Sg Fem) : aow(C
Infinitive Pas(Per2 Pl Masc) : eow(C
Infinitive Pas(Per2 Pl Fem) : aow(C
Infinitive Pas(Per3 Sg Masc) : aow(C
Infinitive Pas(Per3 Sg Fem) : aow(C
Infinitive Pas(Per3 Pl Masc) : eow(C
Infinitive Pas(Per3 Pl Fem) : aow(C
Parti Act (Perl Sg) : was

Parti Act (Perl PI) : wag

Eg: Perf Act (Perl Sg): wnch- - 1 broke .

Parti Act (Per2 Sg Masc) : wng

Parti Act (Per2 Sg Fem) : wng

Parti Act (Per2 Pl Masc) : wag

Parti Act (Per2 Pl Fem) : wn¢g

Parti Act (Per3 Sg Masc) : was

Parti Act (Per3 Sg Fem) : wa4

Parti Act (Per3 Pl Masc) : wns

Parti Act (Per3 Pl Fem) : wng

Parti Pas(Perl Sg) : +wns

Parti Pas(Perl PI) : +wag

Parti Pas(Per2 Sg Masc) : +w0s

Parti Pas(Per2 Sg Fem) : +w0¢s

Parti Pas(Per2 Pl Masc) : +w0g

Parti Pas(Per2 Pl Fem) : +wag

Parti Pas(Per3 Sg Masc) : +wné

Parti Pas(Per3 Sg Fem) : +w0g

Parti Pas(Per3 Pl Masc) : +w0g

Parti Pas(Per3 Pl Fem) : +wag
CompPerf Act (Perl Sg) : wNafav-
CompPerf Act (Perl Pl) : w0254
CompPerf Act (Per2 Sg Masc) : wiZnhé
CompPerf Act (Per2 Sg Fem) : w0z
CompPerf Act (Per2 Pl Masc) : w5
CompPerf Act (Per2 Pl Fem) : w5
CompPerf Act (Per3 Sg Masc) : wzéd
CompPerf Act (Per3 Sg Fem) : waF
CompPerf Act (Per3 Pl Masc) : wZPa
CompPerf Act (Per3 Pl Fem) : wZPa
CompPerf Pas(Perl Sg) : +twN&fAu-
CompPerf Pas(Perl PI) : w54
CompPerf Pas(Per2 Sg Masc) : tw1Zha
CompPerf Pas(Per2 Sg Fem) : +w1ZdA
CompPerf Pas(Per2 Pl Masc) : +tw g1
CompPerf Pas(Per2 Pl Fem) : w4
CompPerf Pas(Per3 Sg Masc) : +w0zéh
CompPerf Pas(Per3 Sg Fem) : +wsaTF
CompPerf Pas(Per3 Pl Masc) : +w-4PA
CompPerf Pas(Per3 Pl Fem) : +w02PA
Cont Act (Perl Sg) : éwC

Cont Act (Perl PI) : o’o1C

Cont Act (Per2 Sg Masc) : twcC

Cont Act (Per2 Sg Fem) : twC

Cont Act (Per2 Pl Masc) : w14

Cont Act (Per2 Pl Fem) : w14

Cont Act (Per3 Sg Masc) : ewC

Cont Act (Per3 Sg Fem) : twC

Cont Act (Per3 Pl Masc) : ewi4-

Cont Act (Per3 Pl Fem) : ewi4-

Cont Pas(Perl Sg) : ownc

Cont Pas(Perl PI) : 67w0C

Cont Pas(Per2 Sg Masc) : +wac

Cont Pas(Per2 Sg Fem) : +wac
Cont Pas(Per2 Pl Masc) : w4
Cont Pas(Per2 Pl Fem) : w4
Cont Pas(Per3 Sg Masc) : gwac
Cont Pas(Per3 Sg Fem) : ‘twnc
Cont Pas(Per3 Pl Masc) : g4
Cont Pas(Per3 Pl Fem) : w4

62

Appendix- C - The Amharic Fidal

-
(8

o
5

$ <
S
& o
¥

U i o
5= i

Lt n
- 0
T 2T o7

G do o°

iy sl 2

"
.) -

A A A K2
A R AR AR

2.

N

S %

H.
1

- &
4.
o
1

@
)-
-
-
(3
7

I

e

{ o

.r;

3
| m = m, M m T m
6L 6LE 6L, F), Ly S1 (™

A A
A &

¥

X

'3
1

S N~

a
0
H

™ iaf 9 AN

< 2R
SCAM UCcKAFFF O SF

NECEPP N R PSR P aNLL 2R
cef T SeoerdocAR ALk oF

NI PN ¥ SR P ANL SR
Ledfive PRt ard g

v
A
h
o
b
0
N
&
n
,f.
¥

WMwWW%nw¢n+$ﬁswamﬁ

A&
£ oo &N

L4
L& E

AL gd

A N0 AT FESEHY L D R 4

63

D - Test Examples

The test examples are generated using the resource grammar library function as shown below
and are intended merely for proof-reading. They can also reflect, to some extent, the coverage of
the work done on Amharic resource library.

EX1 Lang> p -lang=LangEng "1 will kill him cleanly , cleverly and badly"|l -treebank -all -
to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePron i_Pron)
(AdvVP (ComplSlash (SlashV2a kill _\V2) (UsePron he_Pron)) (ConjAdv and_Conj (ConsAdv
(PositAdvAdj clean_A) (BaseAdv (PositAdvAdj clever_A) (PositAdvAdj bad_A)))))))) NoVoc

LangAmh: A% ACA7 O 780 v-3F T 0 NAY U-3 AG (| PP -3 H1&AAU-

EX2 Lang> p -cat=S -lang=LangEng "he , John and she will come"|l -treebank -all -
to_amharic

Lang: UseCl (TTAnt TFut ASimul) PPos (PredVP (ConjNP and_Conj (ConsNP (UsePron
he_Pron) (BaseNP (UsePN john_PN) (UsePron she_Pron)))) (UseV come_V))

LangAmh: ACa F 770 AT ACA, Lok

EX3 Lang> p -cat=S -lang=LangEng "John and | will come to you"|l -treebank -all -
to_amharic

Lang: UseCl (TTAnt TFut ASimul) PPos (PredVP (ConjNP and_Conj (BaseNP (UsePN
john_PN) (UsePron i_Pron))) (AdvVP (UseV come V) (PrepNP to Prep (UsePron
youPl_Pron))))

LangAmh: 770 A Ab ®L A7t 619NN

EX4 Lang> p -cat=S -lang=LangEng "this long girl is so clever and beautiful”|l -treebank -all -
to_amharic

Lang: UseCl (TTAnt TPres ASimul) PPos (PredVP (DetCN (DetQuant this_ Quant NumSg)
(AdjCN (PositA long_A) (UseN girl_N))) (UseComp (CompAP (AdAP so_AdA (ConjAP
and_Conj (BaseAP (PositA clever_A) (PositA beautiful _A)))))))

LangAmh: eut Z89° AB14& (M9° AV AT $7.8 1T

64

EX5 Lang> p -cat=S -lang=LangEng "the long girls are clever , young and beautiful”|l -
treebank -all -to_amharic

Lang: UseCl (TTAnt TPres ASimul) PPos (PredVP (DetCN (DetQuant DefArt NumPI) (AdjCN
(PositA long_A) (UseN girl_N))) (UseComp (CompAP (ConjAP and_Conj (ConsAP (PositA
clever_A) (BaseAP (PositA young_A) (PositA beautiful_A)))))))

LangAmh: ZEPE A51L8T NAUT F ONPF AG $7EPTF GF-

EX6 Lang> p -lang=LangEng "a boy hit a girl by the car" | | -lang=LangAmh -to_ambharic -
treebank

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (DetCN (DetQuant
IndefArt NumSg) (UseN boy_N)) (ComplSlash (SlashV2a hit_V2) (AdvNP (DetCN (DetQuant
IndefArt NumSg) (UseN girl_N)) (PrepNP by8agent_Prep (DetCN (DetQuant DefArt NumSg)
(UseN car_N)))))))) NoVoc

LangAmh: A7& AP A9+ AB14L7 avh S D av

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (DetCN (DetQuant
IndefArt NumSg) (UseN boy_N)) (ComplSlash (SlashV2a hit_V2) (AdvNP (DetCN (DetQuant
IndefArt NumSg) (UseN girl_N)) (PrepNP by8means_Prep (DetCN (DetQuant DefArt NumSg)
(UseN car_N)))))))) NoVoc

LangAmh: A7£ A% A4 T AB1427 I avh Sa. av

EX7 Lang> p -lang=LangEng "the girl was hit by the car" | | -lang=LangAmh -to_ambharic -
treebank

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (DetCN (DetQuant
DefArt NumSg) (UseN girl_N)) (AdvVP (PassV2 hit_V2) (PrepNP by8agent Prep (DetCN
(DetQuant DefArt NumSg) (UseN car_N))))))) NoVoc

LangAmh: &572L., eoh.Sa.) +aoJ~F

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (DetCN (DetQuant
DefArt NumSg) (UseN girl_N)) (AdvVP (PassV2 hit_V2) (PrepNP by8means Prep (DetCN
(DetQuant DefArt NumSg) (UseN car_N))))))) NoVoc

LangAmh: a%172£. 0 evh.Sa@. +av 3T

EX8 Lang> p -lang=LangEng "the young , red and beautiful boys come here or you will
come there" | | -lang=LangAmh -to_ambharic -treebank

Lang: PhrUtt NoPConj (UttS (ConjS or_Conj (BaseS (UseCl (TTAnt TPres ASimul) PPos
(PredVP (DetCN (DetQuant DefArt NumPl) (AdjCN (ConjAP and_Conj (ConsAP (PositA
young_A) (BaseAP (PositA red_A) (PositA beautiful_A)))) (UseN boy N))) (AdvVP (UseV
come_V) here_Adv))) (UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePron youPl Pron)
(AdvVP (UseV come_V) there7to_Adv)))))) NoVoc

65

LangAmh: @M-E eF AG $TELE AST ALY LarMy ORI° KG 7t OLH.L FapMATy-

Lang: PhrUtt NoPConj (UttS (ConjS or_Conj (BaseS (UseCl (TTAnt TPres ASimul) PPos
(PredVP (DetCN (DetQuant DefArt NumPl) (AdjCN (ConjAP and_Conj (ConsAP (PositA
young_A) (BaseAP (PositA red_A) (PositA beautiful _A)))) (UseN boy N))) (AdvVP (UseV
come_V) here_Adv))) (UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePron youPol Pron)
(AdvVP (UseV come_V) there7to_Adv)))))) NoVoc

LangAmh: @M @ ¢ AG $7EPE ABT ALY LarMi- ORI° ACAP DLH.L LavMfr

Lang: PhrUtt NoPConj (UttS (ConjS or_Conj (BaseS (UseCl (TTAnt TPres ASimul) PPos
(PredVP (DetCN (DetQuant DefArt NumPl) (AdjCN (ConjAP and_Conj (ConsAP (PositA
young_A) (BaseAP (PositA red_A) (PositA beautiful _A)))) (UseN boy _N))) (AdvVP (UseV
come_V) here_Adv))) (UseCl (TTAnt TFut ASimul) PPos (PredVP (UsePron youSg_Pron)
(AdvVP (UseV come_V) there7to_Adv)))))) NoVoc

LangAmh: @M @ ¢ AG STEPHE AET ALY LarMi ORI° Wt OLH.L TFarMAY

EX9 Lang> p -lang=LangEng "she didn't come to university before the industry” | | -
lang=LangAmh -treebank -to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PNeg (PredVP (UsePron she_Pron)
(AdvVP (AdvVP (UseV come_V) (PrepNP to_Prep (MassNP (UseN university N)))) (PrepNP
before_Prep (DetCN (DetQuant DefArt NumSg) (UseN industry_N))))))) NoVoc

LangAmh: ACA, h A7%0Fe@. (&t L e70CAt A &+ oo F &+ 9P
EX10 Lang> p -lang=LangEng "ash laughs on fire" | | -lang=LangAmh -treebank -to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTANnt TPres ASimul) PPos (PredVP (MassNP (UseN
ashes_N)) (AdvVP (UseV laugh_V) (PrepNP on_Prep (MassNP (UseN fire_N))))))) NoVoc

LangAmh: Agv8: (1 A0 AL 27PN

EX11 Lang> p -lang=LangEng "I bought 3 houses in Paris”| | -lang=LangAmh -treebank -
to_amharic

Lang: PhrUtt NoPConj (UttS (UseCl (TTAnt TPast ASimul) PPos (PredVP (UsePron i_Pron)
(AdvVP (ComplSlash (SlashV2a buy V2) (DetCN (DetQuant IndefArt (NumCard (NumDigits
(IDig D_3)))) (UseN house_N))) (PrepNP in_Prep (UsePN paris_PN)))))) NoVoc

LangAmh: A% 3 (7 7740 @-QT THY-

EX12 Lang> p -lang=LangEng "does he come today"| | -lang=LangAmbh -treebank -to_amharic
Lang: PhrUtt NoPConj (UttQS (UseQCI (TTANt TPres ASimul) PPos (QuestCl (PredVP
(UsePron he_Pron) (AdvVP (UseV come_V) today Adv))))) NoVoc

LangAmh: ACk- HG £aPMé K18

66

67

