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Abstract

The aim of this master’s thesis is to investigate the applicability of the slip surface optimisation
function in the software SLOPE/W, which generates composite slip surfaces through mathematical
minimisation. The results obtained, when applying the Optimise function, are analysed with respect
to the computed factor of safety as well as to the shape and position of the slip surface. The
methodology consists of a literature survey, selection of slope models and calculations including
evaluation and verification of the results. The study is limited to clay slopes with strength
properties typical for western Sweden. Initially, the case of a load of the same magnitude as the
cohesion, applied on a horizontal ground surface, is investigated. This is followed by the analyses of
three characteristic geometries: one horizontal, one elongated and one steep slope, with the load
applied on embankments. The models are altered with regard to the load and the drainage
conditions. A case of a steep, layered slope with a stiff dry crust is also analysed, as well as the
effect of changing selected settings for the Optimise function for all of the modelled slopes. The
results are compared to the results of models created in the finite element software PLAXIS 2D.
The results indicate that the Optimise function is applicable for the simple case of an elongated
slope, but not for the case of a horizontal or steep slope. The conclusion is that, since the Optimise
function only considers the mathematical convergence and not kinematic admissibility, the Optimise
function should merely be used as a tool for investigating composite slip surfaces.

KEYWORDS: Slope stability analysis, SLOPE/W, optimised slip surfaces, composite slip surfaces,
Optimise function, clay slopes
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Tillämpbarhet av optimerade glidytor
Utvärdering av en programvaras optimeringsfunktion för generering av sammansatta glidytor
vid stabilitetsutredning av lerslänter

Examensarbete inom masterprogrammet Infrastructure and Environmetal Engineering
JENNY GUSTAFSSON, MATILDA LINDSTRÖM
Institutionen för bygg- och miljöteknik
Avdelningen för geologi och geoteknik
Chalmers tekniska högskola

Sammanfattning

Syftet med examensarbetet är att utreda tillämpbarheten av optimeringsfunktionen i programvaran
SLOPE/W, vilken genererar sammansatta glidytor genom en matematisk minimeringsprocess.
Resultatet som f̊as genom att använda optimeringsfunktionen analyseras med hänsyn till värdet p̊a
den beräknade säkerhetsfaktorn samt till glidytans form och position. Metoden för denna studie
best̊ar utav en litteraturstudie, val av släntmodeller och beräkningsmetoder, samt hur resulatet ska
utvärderas och presenteras. Studien behandlar endast lerslänter med egenskaper typiska för
västsvenska förh̊allanden. Inledningsvis undersöks en modell där ett horisontellt lerlager utsätts för
en last, där lasten har samma magnitud som lerans kohesion. Därefter analyseras tre typslänter; en
horisontell, en l̊angsträckt slänt samt en brant slänt, som alla utsätts för en last som verkar p̊a en
bank. Flera olika anlayser görs för typslänterna där lasten och dräneringsförh̊allandena varieras.
Slutsligen studeras en brant slänt med en h̊ard torrskorpa. Vidare undersöks hur inställningarna för
optimeringsfunktionen p̊averkar resultatet för samtliga slänter. Resultaten fr̊an SLOPE/W jämförs
sedan med beräkningar gjorda i det finita element programmet PLAXIS 2D. Resultatet av studien
visar att att optimeringsfunktionen är tillämpbar p̊a den l̊angsträckta slänten. Slutsatsen är att
eftersom optimeringsfunktionen endast tar hänsyn till matematisk konvergens och inte till
kinematisk korrakta glidytor, bör optimeringsfunktionen endast användas som ett verktyg för att
undersöka sammansatta glidytor.

NYCKELORD: Släntstabilitetsutredning, SLOPE/W, optimerade glidytor, sammansatta glidytor,
optimeringsfunktionen, lerslänter
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Notations

ROMAN

E Interslice normal force [kN]

EY Young’s modulus [kPa]

F Factor of safety [-]

Fcirc Factor of safety for a circular slip surface [-]

Ff Factor of safety with respect to force equilibrium [-]

Fm Factor of safety with respect to moment equilibrium [-]

Fopt Factor of safety for an optimised slip surface [-]

F JG Factor of safety obtained using Janbu’s Generalised calculation
method

[-]

FMP Factor of safety obtained using Morgenstern-Price calculation
method

[-]

FPLAXIS Factor of safety obtained from PLAXIS 2D [-]

N Bearing capacity factor [-]

R Radius [m]

X Interslice shear force [kN]

W Weight of a slice [kN]

c Cohesion [kPa]

c′ Apparent cohesion [kPa]

cu Undrained cohesion [kPa]

wL Liquid limit [-]

qb Surrounding surcharge load [kPa]

GREEK

α Angle of a circle sector [◦]

γ Unit weight [kN/m3]

ν Poission’s ratio [-]

φ Friction angle [◦]

φ′ Effective friction angle [◦]

σ′ Effective stress [kPa]

σ′c Preconsolidation pressure [kPa]

τf Shear strength at failure [kPa]

τfd Shear strength at failure, drained condition [kPa]

τfu Shear strength at failure, undrained condition [kPa]

τmob Mobilised shear stress [kPa]

ψ Dilatancy angle [◦]
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1 Introduction

This chapter introduces the background, aim and limitations of this master’s thesis study. The aim
is elaborated and clarified by the objectives.

1.1 Background

The theories which modern, computer aided, slope stability analysis rely on were developed when
only manual calculation methods were available. The Ordinary Method of Slices, for example, was
introduced by Fellenius in 1936 (Krahn, 2003). Since then, the calculation methods have been
refined and the benefits of today’s modelling tools include the possibility of calculating the factor of
safety for a large number of slip surfaces, and performing a large number of iterations for each of
those. Finding the critical slip surface has become easier and faster, but perhaps for the price of
loosing the fundamental understanding of the very basic statics that these calculation methods
consist of. And without this knowledge, how can we determine whether these easily produced
results are reasonable or not? Are we at risk of ignoring vital limitations of these, by today’s
standard, crude methods in the translation process into user interface via software code?

The commercial software SLOPE/W is a commonly used computational tool for slope stability
analyses, and has been on the market since 1977 (GEO-SLOPE International Ltd., 2008). With
iterative calculations, using limit equilibrium equations, SLOPE/W identifies the critical slip surface
and the corresponding factor of safety. Recent versions of SLOPE/W include an optimisation
function which refines the critical slip surface further, leading to a lower value of the computed
factor of safety (GEO-SLOPE International Ltd., 2008). As lower factors of safety result in more
extensive measures to increase stability, and subsequently more expensive projects, concerns have
been expressed about the optimisation function being used too casually. The question has been
raised whether or not the optimised factor of safety is reliable enough, to be deemed decisive with
the associated cost in mind. The idea of this thesis is therefore to investigate the limitations of the
Optimise function, and for what cases it should be utilised.

1.2 Aim

The aim of this master’s thesis is to investigate the applicability of the slip surface optimisation
function in the software SLOPE/W. The results obtained, when applying the Optimise function, are
analysed with regard to the computed factor of safety as well as to the shape and position of the slip
surface.

1.3 Objectives

Two main problems with the Optimise function have been observed, and can be summarised as
follows:

• The optimised slip surface derives strongly from the critical circular slip surface, with a ”strange”
and physically inadmissible shape.

• The optimised slip surface is very similar to the critical circular slip surface in shape and
position, but with a relatively large and seemingly inexplicable difference in the value of the
factor of safety.
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CHAPTER 1. INTRODUCTION

In order to fulfil the aim, the below stated questions should be answered:

1. For which typical slope stability modelling scenarios can the Optimise function be considered
reliable and for which scenarios should it be used with caution, presuming that sound
geotechnical engineering judgement is applied?

2. What are the limitations of the Optimise function and how should it be used with those
limitations in mind?

1.4 Limitations

This master’s thesis is conducted in collaboration with the geotechnical division of the consultant
company Golder Associates in Gothenburg. The aspects of slope stability analysis accounted for in
the thesis are such that coincide with real stability problems within the region of western Sweden.
As this is closely associated with massive clay layers, this master’s thesis focuses on slopes within
cohesive soils.

The extent of the thesis is primarily limited by the scenarios to be investigated. The characteristic
slopes are mainly distinguished through their geometry; the height and width of the slope and the
corresponding inclination. All modelled slopes are thought to have similar conditions with respect
to pore water pressures and soil properties. The effect, on the result of using the Optimise function,
of altering these parameters is not investigated. Therefore, the soil parameters are not changed
within the analysis of a slope, and neither are the water conditions.

Although no slopes of purely frictional soil are included, and thus no strictly drained conditions, the
thesis will include combined analysis. The calculations in PLAXIS 2D are limited to undrained
analysis, since this is the main focus of the thesis. This means that the combined analyses of the
characteristic slopes, performed in SLOPE/W, do not have any PLAXIS 2D counterparts for
comparison.

Hydrostatic pore water pressure is assumed for all slopes, and the water level of open surface water
is considered constant. The possibility of anisotropic strength conditions is neglected as well as the
effect of tension cracks. Reinforcements as a measure for increased stability are not considered.
The Mohr-Coulomb failure criteria, and thereby a perfectly plastic behaviour of the soil, is assumed.

The thesis is focused on using the Optimise function for obtaining a composite slip surface from the
critical circular slip surface generated with the Grid and Radius method. The Fully Specified slip
surface method is used to reproduce and recalculate optimised slip surfaces. None of the remaining
slip surface generation methods available in SLOPE/W are utilised in this thesis. Likewise, in
SLOPE/W, the Morgenstern-Price calculation method and Janbu’s Generalised calculation method
are the only calculation methods out of the available that are included in the calculations.

The theoretical background include a few additional calculation models from which
Morgenstern-Price and Janbu’s Generalised calculation methods were developed, although focus lies
on the Morgenstern-Price calculation method. Within the Morgenstern-Price calculation method,
the interslice shear stress function of half-sinus is considered exclusively.

Although modern safety philosophy is moving towards a different approach, namely that of partial
safety factors, this thesis will be limited to computing and evaluating global factors of safety. This
is consistent with the general practise, within industry and research, regarding stability analysis of

2



CHAPTER 1. INTRODUCTION

existing slopes. Therefore, partial factors of safety are excluded.

Ultimately, this thesis does not aim to compare SLOPE/W to other computational software
available for slope stability analysis. Neither does it aim to challenge the theory or the
mathematical algorithms on which the programming of the Optimise function relies, nor to compare
the different Monte Carlo methods developed for slip surface optimisation. The theoretical section
devoted to this subject is simply included for the purpose of investigating the inherit limitations of
the mathematical formulations. This is done with the objective of evaluating the applicability of the
Optimise function for the slopes selected for this thesis.
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2 Method
This chapter aims to thoroughly declare the methodology used to conduct this master’s thesis.
The work is divided into the following phases: a literature survey combined with field and laboratory
observations, selection of slopes for which to perform the calculations and finally calculations including
evaluation and verification of the results.

2.1 Literature Survey

The literature survey covers the foundations of slope stability theory required for conducting this
thesis. The relevant information gathered through the literature study can be found in Chapter 3.
It includes soil mechanic theory regarding shear strength and the governing soil parameters, the
derivation of the bearing capacity factors for different slip surface shapes, a brief summary of the
relevant features of the software SLOPE/W and ultimately the necessary theory for modelling with
the software PLAXIS 2D.

The literature survey is complemented with participation in field and laboratory work. Additional
sources of information included in the literature survey are conversations with the supervisors of
the thesis and an e-mail conversation with technical support of GEO-SLOPE International Ltd, the
creator and owner of the software SLOPE/W.

2.2 Selection of Modelled Slopes

In order to demonstrate the two main problems that have previously been observed when using the
Optimise function, which are stated in Chapter 1.3, five slopes are created. These slopes aim to
represent frequently occurring slope stability cases, and they are simplified with regard to the
intended focus of the thesis.

Initially, a bearing capacity test is conducted for a horizontal surface with an applied surcharge load
of the same magnitude as the cohesive strength of the soil. This test is performed in order to
investigate how the Optimise function treats a simple bearing capacity problem. The resulting
factor of safety and the shape of the corresponding slip surface are compared to the bearing
capacity factors for different slip surface shapes, derived in Chapter 3.3. The geometry of the slope
and the calculation input data are described in Chapter 4.1.

Three characteristic slopes are created, whereof the first one has a horizontal geometry with
horizontal soil layers, the second slope is an elongated slope and the third is a steep slope. The
characteristic slopes consist of one or two different layers of homogeneous clay with properties that
are typical for west Swedish conditions. All characteristic slopes include embankments with an
applied traffic load, which in SLOPE/W is modelled as a surcharge load. Two different loading
scenarios are applied to the characteristic slopes to represent road and railroad traffic respectively.
A more detailed description of the characteristic slopes is presented in Chapter 4.2.

A steep slope with a stiff dry crust is included with the purpose of exemplifying a more complex
case. Hydrostatic conditions are assumed for all slopes, and the elongated slope, the steep slope
and the steep slope with dry crust include open surface water. The expectation is that the selected
slopes, which have similar material properties and applied loads but different geometries, will give

4



CHAPTER 2. METHOD

an indication of which slope geometries it is suitable to apply the Optimise function when analysing
slopes in clay soils.

2.3 Calculations

The calculations of the modelled slopes are mainly performed in SLOPE/W using the rigorous
Morgenstern-Price calculation method, as this method is regularly used by consultants performing
slope stability analyses. For the characteristic slopes, the slip surfaces obtained with the
Morgenstern-Price calculation method are also calculated with Janbu’s Generalised calculation
method as comparative calculations of the results. The 2012 version of SLOPE/W is used.

Selected SLOPE/W models are recreated in PLAXIS 2D as an additional measure of comparing the
SLOPE/W results. Unlike the calculations with Janbu’s Generalised method, the PLAXIS 2D models
are not controlled in order to recreate a specific slip surface. The 2012 version of PLAXIS 2D is
used. A schematic overview of the performed calculations for each model can be seen in Table 2.1.
The calculation procedures in SLOPE/W and PLAXIS 2D are explained in detail in this chapter, as
well as the method for interpretation of the results.

Table 2.1: Schematic view of which scenarios that are modelled for the different slopes, in the different
software.

Bearing capacity Characteristic Steep slope

test slopes with dry crust

SLOPE/W

Undrained analysis, load 15 kPa X

Undrained analysis, load 20 kPa X X

Undrained analysis, load 43 kPa X

Combined analysis, load 20 kPa X

Optimise settings: starting-ending X X

Optimise settings: concave angles X X X

PLAXIS 2D

Undrained analysis, load 15 kPa X

Undrained analysis, load 20 kPa X X

Undrained analysis, load 43 kPa X

2.3.1 Calculations in SLOPE/W
The critical circular slip surface and the corresponding factor of safety are computed in SLOPE/W
using the Morgenstern-Price calculation method, described in Chapter 3.5.2. To generate the
critical circular slip surface and the corresponding factor of safety FMP

circ , the Grid and Radius
method is used, which is described in Chapter 3.4.1. To ensure that the critical circular slip surface
is obtained, the search area of the grid and radius are refined until the minimum obtainable value of
the factors of safety is found.

The Optimise function is applied to the critical slip surface, i.e. the circular slip surface that
corresponds to the lowest factor of safety. The Optimise function is activated by ticking a box in
the project settings. When it is activated it automatically generates one optimised slip surface,

5



CHAPTER 2. METHOD

based on the critical circular slip surface, at the end of the iterative slip surface search. This
optimisation process results in a composite slip surface shape with a corresponding value for the
factor of safety, FMP

opt , that is always lower than the value of FMP
circ . A description of the

optimisation procedure in SLOPE/W can be found in Chapter 3.6.

When performing undrained analysis in SLOPE/W, the cohesive soils are modelled with the
material models S=f(depth) or S=f(datum). This enables specification of an increase of shear
strength with depth, starting at the top of the layer or at a specified depth. The same principle is
applied when performing combined analysis, in which the cohesive soils are modelled with the
material model Combined, S=f(depth) or Combined, S=f(datum). The friction material of the
embankments are modelled with the Mohr-Coulomb material model.

The main case investigated for the characteristic slopes is the undrained analysis of the slopes when
submitted to a surcharge load of 20 kPa, as described in Chapter 4.2. Further, the characteristic
slopes are investigated for undrained analysis with a surcharge load of 43 kPa and combined
analysis for a surcharge load of 20 kPa which is explained in Chapter 4.2. In the calculations
performed within this thesis, all surcharge loads are entered as the desired value in kPa, in the
vertical direction and with the assigned the height of 1 m.

In addition, all slopes are investigated for the case of undrained analysis with an applied surcharge
load of 20 kPa, but with altered Optimise settings; the number of vertices and the maximum
concave angles which are described in Chapter 4.5. The purpose of these calculations is to
investigate how the factor of safety and the corresponding shape of the slip surface behaves when
the default values of the Optimise settings are changed within the permitted limits.

To summarise, the following types of models are created in SLOPE/W for each characteristic slope:

• Undrained analysis, surcharge load of 20 kPa

• Changed optimised settings

- Number of starting and ending points

- Maximum concave angles, for the driving and the resisting side

• Undrained analysis, surcharge load of 43 kPa

• Combined analysis, surcharge load of 20 kPa

Janbu’s Generalised calculation method, described in Chapter 3.5.1, is used as a comparison to the
Morgenstern-Price calculations that corresponds to the optimised slip surface. This factor of safety
is denoted F JGopt . Since these are two different methods, the exact same value of the factors of
safety should not be expected. To assess and account for this expected difference between the two
calculation models, the factor of safety corresponding to the circular slip surface is also recalculated
with Janbu’s Generalised calculation method. This factor of safety is denoted F JGcirc and is included
to give an indication of the expected difference between the results of the two methods and to
ensure that the computed factors of safety are within the same range regardless of which
calculation method that is used.

If the exact same slope is calculated with both the Morgenstern-Price method and Janbu’s
Generalised method, they might not identify the same critical circular nor optimised slip surface.
When using Janbu’s Generalised method for calculating F JGcirc, the position of the grid and radius
are therefore specified as a single rotation point and a single radius line, i.e. the rotation point and
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radius obtained from the critical slip surface of the Morgenstern-Price calculation. The
characteristic slopes are the most thoroughly investigated slopes, out of the slopes included in this
thesis, and the comparative calculations with Janbu’s Generalised method are only performed for
those. Likewise, the alternative loading case as well as combined analysis is only included for the
characteristic slopes.

To enable SLOPE/W to calculate the exact same optimised slip surface as obtained with the
Morgenstern-Price calculation method with Janbu’s Generalised method, and not optimise a new
circular slip surface, the slip surface is defined using the Fully Specified slip surface generation
method which is described in Chapter 3.4.2. In cases where it is not possible to compute the factor
of safety with Janbu’s Generalised calculation method, i.e. the factor of safety results in an error
code, the convergence tolerance for the factor of safety is decreased. The relevant error codes are
explained in the results as they occur, in Chapter 5.

The notations used for the different factors of safety calculated in SLOPE/W are summarised in
Table 2.2, along with the respective calculation and slip surface generation methods.

Table 2.2: Summation of how the different factors of safety are calculated and denoted, and how the
corresponding slip surfaces are generated in SLOPE/W.

Calculation method Slip surface generation method Notation

Morgenstern-Price Grid and Radius - critical circular slip surface FMP
circ

Morgenstern-Price Grid and Radius - optimised slip surface FMP
opt

Janbu’s Generalised Grid and Radius - single point and radius line from FMP
circ F JGcirc

Janbu’s Generalised Fully Specified - same slip surface shape as for FMP
opt F JGopt

2.3.2 Calculations in PLAXIS 2D
The recalculations in SLOPE/W with Janbu’s Generalised calculation method can only be used as a
comparison to the values of the factors of safety, and not the shape and position of the
corresponding slip surface, as they are deliberately fixed to the slip surfaces obtained with the
Morgenstern-Price calculation method. The shape and position of the slip surface for the undrained
analysis of each characteristic slope for the two loading scenarios, as well as the bearing capacity
test and the steep slope with a dry crust, are compared to the slip surface generated in the finite
element software PLAXIS 2D.

The slip surface obtained in PLAXIS 2D serves, by the means of ocular inspection, as a verification
tool. The purpose of performing the PLAXIS 2D calculations is to enable evaluation of the shape
of the two slip surfaces obtained for each slope with SLOPE/W; the critical circular slip surface and
the optimised slip surface. For example, if the slip surface obtained with PLAXIS 2D is more similar
to the optimised slip surface in SLOPE/W than to the circular slip surface, the calculation for
verification will be considered as an indication that the Optimise function is applicable when
modelling this specific case using SLOPE/W. The values of the factor of safety obtained with
PLAXIS 2D are used as an additional comparison of the factor of safety obtained with SLOPE/W.

PLAXIS 2D models are not created for each case modelled in SLOPE/W. Focus lies on the
characteristic slopes and only undrained analyses are performed in PLAXIS 2D. The remaining
slopes are modelled once in PLAXIS 2D, as they are only subjected to one loading case each.
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To summarise, the following types of models are created in PLAXIS 2D for each characteristic slope:

• Undrained analysis, surcharge load of 20 kPa

• Undrained analysis, surcharge load of 43 kPa

In PLAXIS 2D, the slopes are modelled in using the Classical mode which is the default calculation
mode. The slopes are defined with the same geometry and soil properties as in SLOPE/W, and the
material model Mohr-Coulomb, based on the Mohr-Coulomb failure criterion described in Chapter
3.2, is used for all soils. Drainage conditions needs to be defined for each soil. The clays are
modelled as undrained using the drainage condition Undrained(C), whereas embankments are
modelled as drained using drainage condition Drained. The material model Mohr-Coulomb in
PLAXIS 2D requires values for Young’s modulus, E, Poission’s ratio, ν and dilatancy angle, ψ. The
values of these parameters are assumed by consulting literature.

The input parameters are presented in Chapter 3.7. The mesh is consistently set to the default
coarseness; medium, and no refinement is made. The calculations are performed in three phases;
Gravity loading, Plastic and Safety, described in Chapter 3.7. The factor of safety obtained with
PLAXIS 2D is denoted FPLAXIS .

2.3.3 Interpretation of the Results
The values of the factor of safety, in the calculations result, are not to be evaluated with regard to
the demands set by the Swedish Commission of Slope Stability. Instead, focus lies on the
magnitude of difference between the values of the factors of safety corresponding to the circular
and the optimised slip surfaces for each case of each slope. However, the demands provide some
guidelines for what magnitude of differences that should be accounted for when calculating a global
factor of safety with regard to slope stability. The range of the required factors of safety, stated in
Chapter 3.1.2, may also give some direction of what differences that are to be expected when
comparing a circular and a composite slip surface within the same slope, for both undrained and
combined analyses.

The main result is the comparison of the factors of safety corresponding to the circular and the
optimised slip surface obtained with the Morgenstern-Price calculation method. The difference in
the factors of safety, ∆F1, is consistently expressed as the percentage of decrease of the optimised
factor of safety compared to the factor of safety of the circular slip surface, see Equation 2.1.

∆F1 =
FMP
circ − FMP

opt

FMP
circ

(2.1)

The same principal is applied when comparing the factor of safety for the circular slip surface and
the optimised factor of safety respectively with the calculations performed with Janbu’s Generalised
calculation method, as in Equations 2.2 and 2.3. By this definition, a negative value of ∆F2 or ∆F3

expresses an increase in the factor of safety for the calculations performed with Janbu’s Generalised
calculation method, compared to those performed with the Morgenstern-Price calculation method.

∆F2 =
FMP
circ − F JGcirc
FMP
circ

(2.2)

∆F3 =
FMP
opt − F JGopt
FMP
opt

(2.3)
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When comparing the factor of safety obtained with PLAXIS 2D, with the Morgenstern-Price
calculations in SLOPE/W, the percental difference is expressed as in Equations 2.4 and 2.5. As an
example; a positive value of ∆F4 and a negative value for ∆F5 means that FPLAXIS is lower than
FMP
circ but higher than FMP

opt .

∆F4 =
FMP
circ − FPLAXIS

FMP
circ

(2.4)

∆F5 =
FMP
opt − FPLAXIS

FMP
opt

(2.5)

The results of altering the settings for the Optimise function are presented in tables which include
the total volume and weight of the potentially sliding soil mass which can be used as an indication
of relevant changes in the shape and position of the slip surfaces. Selected results are presented as
figures which can be compared to the results of the calculations performed with the default settings
and the results from PLAXIS 2D.
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3 Theoretical Background
This chapter presents the result of the literature survey, and contains a brief summary of the
theoretical background considered relevant for evaluating the Optimise function in the software
SLOPE/W. This begins with the general definition of the factor of safety with respect to slope
stability, and the required values for such according to Swedish practise. This is followed by a sub
chapter devoted to the concept of shear strength, and its dependency on the drainage relationship,
which includes the relevant soil parameters and the assessment of those. The third sub chapter
aims to explain the connection between the shape of the slip surface and the factor of safety. The
theorem of bearing capacity is used to introduce the concept of kinematics related to the slip
surface of a potentially moving soil mass.

In the second part of this chapter, Chapter 3.4-3.6, focus is shifted from general slope stability theory
to the specific theory implemented in SLOPE/W. The slip surface generation methods used in the
calculations are explained, followed by the relevant calculation methods. It should be noted that
the calculation methods are explained as they are programmed in this specific software, and that
this may vary from the original methods as well as from implementations of the same methods in
other software. Thereafter, the Optimise function in SLOPE/W is explained. The final sub chapter
contains a brief summary of the theory of the software PLAXIS 2D.

3.1 Factor of Safety

In western Sweden, the soil masses that are susceptible to instability are mainly constituted by
declining areas of clay soil since such slopes may be subjected to elevated pore water pressures and
shear stresses. Generally, for natural slopes without any altering constructions, only slopes with an
inclination larger than 1:10 are considered at risk of land sliding (Skredkommissionen, 1995).

For soils consisting of granular materials such as silt and sand, a steeper inclination is usually required
for sliding to occur. Slopes that are in contact with rivers or streams are considered extra susceptible
to sliding, since the water causes erosion on the resisting masses of the slope. To assess the risk of
instability a factor of safety is used.

3.1.1 Definition of the Factor of Safety
The factor of safety, with regard to slope stability, is commonly defined as the ratio between average
shear strength, τf , of the soil along a possible slip surface and the corresponding mobilised shear
stress, τmob, as seen in Equation 3.1 (Sällfors, 2009).

F =
τf
τmob

(3.1)

The factor of safety can equivalently be described in terms of either forces or moments acting on
the soil mass, as seen in Equation 3.2, where the driving forces consist of the gravity loads of the
landslide mass including any external loads, and the resisting forces consist of the shear strength of
the soil (Cornforth, 2005).

F =
Resisting forces

Driving forces
=
Resisting moments

Driving moments
(3.2)
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The mathematical solution for a stability problem is therefore to calculate the driving and resisting
moments of the soil mass. Figure 3.1 illustrates a simple slope without any external load or water.
The corresponding formulation for the factor of safety can be seen in Equation 3.3 where R is the
radius, α is the angle of the circle sector, W is the weight of the soil mass and τmob is the
mobilised shear strength. The length of the slip surface arc is equal to αR.

Figure 3.1: A slope with a potentially moving circular slip surface.

F =
Resisting moments

Driving moments
=
τmobαR

Wx
(3.3)

According to these definitions, a factor of safety equal to 1 indicates that the slope is at limit
equilibrium. A factor of safety below 1 indicates an unstable slope that theoretically already should
have failed, and consequently a factor of safety greater than 1 indicates stability.

This definition of the factor of safety refers to the concept of global factors of safety
(Skredkommissionen, 1995). It infers that the safety margin that is expressed by factors of safety
greater than 1, should account for all of the uncertainties inherently associated with the
calculations. This is the traditional approach to safety assessment with regard to slope stability.

3.1.2 Required Factor of Safety
In Sweden, the Commission of Application of European Standards for Geotechnics, IEG, provides
the recommendations for the demands of the required factor of safety for different types of analyses
and for different levels of detail within those analyses (Hultén et al., 2011). The general idea is that
calculations performed with more extensive in-data, and thereby containing less uncertainty, should
require lower values for the factor of safety. This is due to the fact that the safety margin of F − 1
is thought to account for these same uncertainties, and thus the requirements for the factor of
safety should descend with increased level of detail.

The required factor of safety varies depending on what type of investigation that is to be executed,
if it concerns a new exploitation of land or an existing construction, as well as with regard to the
consequences of a landslide at a specific site (Hultén et al., 2011). As this thesis focuses on
existing constructions, only such cases will be described in this chapter.

IEG, as well as the industry, distinguish between three phases of investigations that are different in
level of detail of the calculations and the extent of the necessary input data. The phases are known
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as pre-investigation, detailed investigation and in-depth investigation (Hultén et al., 2011). Within
these phases, the requirements may vary between an undrained and a combined analysis. IEG also
state that, for cohesive soils, a combined analysis must be performed in addition to the undrained
analysis and that the required factors of safety for both these analyses must be satisfied. The
importance of the drainage conditions and their significant differences are explained in Chapter
3.2.1.

For the rough calculations of the pre-investigation, the required factors of safety should exceed 2.0
and 1.5 for the undrained and combined analyses respectively (Hultén et al., 2011). For the
detailed investigation, the stability is deemed satisfactory when the factor of safety has a value
equal to or greater than 1.5-1.3 for combined analyses and 1.7-1.5 for undrained analyses. For sand
slopes however, the value of the factor of safety for the undrained analysis should have a minimum
value of 1.3.

For the in-depth investigation, the value of the factor of safety should be equal to or greater than
1.4-1.3 for undrained analyses, and 1.3-1.2 for the combined analyses (Hultén et al., 2011). For
sand slopes the value for the factor of safety for an undrained analysis should again be greater than
1.3. Exceptions from these requirements can be permitted in cases where they can be adequately
justified, for example when the calculated value is close to satisfy the minimum and the measures
necessary for raising the value would be disproportionate to the monetary consequences.

3.2 Shear Strength

According to the Mohr-Coulomb failure criterion for soil, the shear strength of a soil at failure, τf ,
can be described by Equation 3.4, where c′ is the effective cohesion, σ′ is the effective stress and φ′

is the effective friction angle (Knappett and Craig, 2012). Graphically, the stress states in the soil
can be illustrated as in Figure 3.2.

τf = c′ + σ′tan(φ′) (3.4)

Figure 3.2: The Mohr-Coulomb failure envelope.

The Mohr’s circle represents all possible stress states on all planes within a soil element (Knappett
and Craig, 2012). Failure occurs when the soil is subjected to any critical combination of shear
strength and effective normal stress, which is illustrated by the straight line known as the failure
envelope. The points below the failure envelope are in equilibrium which entails that only elastic
deformations, and thus no failure, will occur.
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3.2.1 Drainage Conditions
When determining the shear strength of a soil, the drainage conditions are of great importance as
they largely influence the behaviour of the soil (Skredkommissionen, 1995). Slope stability is
therefore divided into drained and undrained analyses. For many real cases both the drained and
the undrained shear strengths need to be evaluated, which is referred to as combined analysis.

Undrained conditions refer to a stage where the excess pore water pressure is at its initial conditions,
i.e. before the consolidation process has started (Knappett and Craig, 2012). For saturated cohesive
soils the friction angle is zero which makes the undrained shear strength independent of effective
stress (Skredkommissionen, 1995), see Figure 3.3, and the undrained shear strength at failure, τfu,
can therefore be expressed as in Equation 3.5.

τfu = cu (3.5)

Figure 3.3: The Mohr-Coulomb failure envelope in undrained conditions (Knappett and Craig, 2012)
(modified by the authors).

Drained conditions refer to a stage where the consolidation is completed, meaning that the
reduction of excess pore water pressure has started and finished (Knappett and Craig, 2012). This
state is primarily associated with friction soils, although some important exceptions exist. The
drained shear strength can be of relevance for cohesive soils subjected to extremely rapid loading as
well as for overconsolidated cohesive soils, namely those with an overconsolidation ratio greater
than 2 (Larsson, 2008).

The drained shear strength at failure, τfd, is directly dependent on the friction angle of the soil and
can be expressed by Equation 3.6, where c′ is the effective drained cohesion, σ′ is the effective stress
and φ′ is the effective friction angle (Skredkommissionen, 1995).

τfd = c′ + σ′tan(φ′) (3.6)

Overconsolidated fine grained soils and soil profiles containing high pore water pressures should be
evaluated with regard to drained shear strength (Skredkommissionen, 1995). The more
overconsolidated the soil is, the more misleading is the undrained shear strength. Moreover, the
occurrence of draining layers of silt or other more granular materials as well as tension cracks
providing drainage may strongly progress the consolidation process, giving relevance to the drained
shear strength.
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As opposed to a normally consolidated cohesive soil, an overconsolidated cohesive soil is a dilatant
material and thus strives towards a volume increase when subjected to shear stress (Larsson, 2008).
Since no instantaneous volume change is possible for a cohesive soil, there will instead be a
decrease in pore water pressure, why it within slope stability analysis should be evaluated for
drained shear strength.

In order to acknowledge the risk of the drained shear strength being decisive at any part of the
possible slip surface, a combined analysis can be performed (Larsson et al., 2007). In the combined
analysis both drained and undrained shear strength is evaluated for each slice throughout the possible
slip surface. The critical value of the two is selected for each slice and thereby the factor of safety
of the combined analysis is always the lowest, which also can be illustrated with the Mohr-Coulomb
failure criterion for a combined analysis as in Figure 3.4.

Figure 3.4: The Mohr-Coulomb failure envelope in a combined analysis.

Combined analysis should be performed for slopes in fine grained and intermediate soils, where it is
not obvious what drainage condition that applies, as demanded by IEG (Hultén et al., 2011). The
main reason for combined analysis being implemented in Sweden is that landslides often occur in
autumn when the pore water pressures are relatively elevated, compared to the rest of the year.

3.2.2 Assessment of Soil Parameters
According to the Mohr-Coulomb failure criterion, the same soil sample will exhibit different
strengths depending on if a drained or an undrained test is performed (Knappett and Craig, 2012).
It is crucial to determine the shear strength of the soil with adequate methods. In addition to the
method of investigation, the method for selecting the characteristic values, the anisotropy of the
soil and the pore water pressures also affect the result.

The determination of the values of the undrained shear strength is to a large extent based on in
situ vane shear tests and laboratory tests such as fall cone tests and direct shear tests
(Skredkommissionen, 1995). Values obtained from vane shear tests and fall cone tests need to be
adjusted with a factor based on the liquid limit, wL, while values obtained from direct shear tests
can be used directly.

Empirically known relationships of the undrained shear strength suggest that it is primarily a
function of the preconsolidation pressure and the liquid limit (Skredkommissionen, 1995).
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Anisotropic effects make these relationships dependent on the specific loading cases, and it
becomes necessary to distinguish between active shearing, direct shearing and passive shearing, as
illustrated in Figure 3.5. The corresponding laboratory tests are active (increasing the vertical
stress) triaxial test for the active zone, direct shear test for the direct shear zone and passive
(increasing the vertical strain) triaxial test for the passive zone respectively. The active shearing
zone occurs on what is also known as the driving side of the slope, whereas the passive shearing
zone occurs on the resisting side.

Figure 3.5: The different shearing zones of a slope; passive shearing (strain), direct shearing and active
shearing (stress) (Westerberg et al., 2012) (modified by the authors).

As previously mentioned in Chapter 3.2.1, a drained analysis may be of importance particularly in
the case of overconsolidated cohesive soils. The overconsolidation ratio can be determined through
constant rate of strain, CRS, test in laboratory (Skredkommissionen, 1995).

For overconsolidated cohesive soils, the cohesion and the friction angle can be assessed by
empirically known correlations to the undrained parameters. The apparent cohesion, c′, is typically
set to ten percent of the undrained cohesion, cu, or to three percent of the preconsolidation
pressure, σ′c (Larsson et al., 2007). The effective friction angle, φ′, is usually set to 30◦.

Anisotropy can have a notable effect on the stability in steep slopes where the active zone is
considerably bigger than the passive zone, creating a relatively large direct shear zone
(Skredkommissionen, 1995). Taking the anisotropy into account always raises the calculated factor
of safety in cohesive soils. For steep slopes and soils with a lower liquid limit the effects of
anisotropy is especially evident. Effects of anisotropy can be verified through triaxial tests on
undisturbed samples that have been reconsolidated to the in situ stresses.

Measurements of the pore water pressures are important since hydrostatical conditions in slopes are
rare (Skredkommissionen, 1995). In pervasive layers, an open measurement system should be used,
while for low permeable layers it is recommended to use a closed measurement system. Seasonal
changes must be taken into account and thought should be given to which extremes of the water
levels that, in combination with the other conditions, would cause the worst case scenarios.

In stability calculation for slopes in cohesive soil, the lowest water level of the open surface water if
such exists, in combination with the highest pore water pressure, is normally the critical state. If the
cohesive soil is overconsolidated, as well as for friction soil or combinations of soil layers, the critical
combination of water level and pore pressure gives the design values.
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3.3 Slip Surface Shape and Bearing Capacity

When determining the factor of safety through the formulation of a statically correct slip surface,
the true solution is approached from the safe side and the value of the factor of safety will be lower
than the real value. This is because the statically correct slip surface does not account for the work
required for a rotational movement to occur. With a kinetically correct slip surface on the other
hand, one approaches the true solution from the unsafe side, and the value of the factor of safety is
higher than the true value. To obtain a solution as close as possible to the true factor of safety, the
formulation should account for both static and kinematic moment equilibrium.

This chapter introduces the theory behind bearing capacity for shallow foundations in a
two-dimensional analysis. The expression and value for the bearing capacity factors, N , are
mathematically derived for four different slip surface shapes. The first case is a statically correct
slip surface, the second case is a kinematically correct slip surface, the third case is the
kinematically correct slip surface with a minimised factor of safety and the fourth case represents a
slip surface that is both statically and kinematically correct. The last sub chapter contains a
summary of the obtained bearing capacity factors, as well as a brief explanation of the connection
between the bearing capacity factor and the factor of safety.

The following mathematical formulations rely on a number of assumptions; the foundation has
a constant width, b, and is placed directly on a horizontal ground surface (Sällfors, 2009). The
foundation is submitted to a centric, vertical load, Q, per meter and is surrounded by a surcharge
load q0. The soil below the foundation is homogeneous and isotropic with constant soil properties,
c′ and φ′ or cu, and constant effective unit weight, γ. With these assumptions, the general equation
for the bearing capacity can be expressed as seen in Equation 3.7. The factor of safety is assumed
to be 1, as the bearing capacity can only be derived from loading cases at moment equilibrium.

qb = τfNc + q0Nq0 + 0.5γbNγ (3.7)

For undrained conditions i.e. φ′ is zero, which are considered in this chapter, the bearing capacity
factor Nγ is equal to zero and Nq is equal to 1 (Sällfors, 2009). The surrounding surcharge load,
q0, is in this case set to zero, meaning that the shear strength of the soil is the only force resisting
the failure. With these assumptions, Equation 3.8 represents the general equation for the bearing
capacity factor for undrained conditions.

qb = τfNc ⇒ Nc =
qb
τf

(3.8)

For undrained conditions the failure mechanism within the soil mass consists of slip lines that are
either straight lines, circular arcs or a combination of the two (Knappett and Craig, 2012).The
bearing capacity factor, for the undrained case, expresses the ratio of qb over τf necessary for moment
equilibrium for the different types of slip lines.

3.3.1 Statically Correct Slip Surface
A statically correct slip surface consists of two straight slip lines, illustrated in Figure 3.6, where the
entry and exit angles are 45◦+φ′/2 and 45◦−φ′/2 respectively (Terzaghi, 1959). Since φ′ is zero for
undrained conditions, both angles are 45◦. By assuming moment equilibrium moment around point
A, as in Equation 3.9, the obtained value of Nc is 4.00.
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Figure 3.6: A statically correct slip surface shape consisting of two straight lines.

MA : qbb
b

2
− 2(τfb

√
2
b√
2

) = 0 (3.9)

⇔ qb
b2

2
= 2τfb

2 ⇔ qb = 4τf ⇒ Nc = 4

3.3.2 Kinematically Correct Slip Surface
A kinematically correct slip surface consists of a circular slip line (University of the West of England,
2001), as seen in Figure 3.7. By calculating moment equilibrium around point A, as in Equation
3.10, the obtained value of Nc is 6.28.

Figure 3.7: A kinematically correct slip surface shape, consisting of a half circle.

MA : qbb
b

2
− τfπbb = 0 (3.10)

⇔ qb
b2

2
= τfπb

2 ⇔ qb = 2πτf = 6.28τf ⇒ Nc = 6.28
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By searching for the location of the centre of the circle resulting in the lowest factor of safety, a
minimum Nc can be obtained. This can be done by introducing the angle α as unknown and
deriving the factor of safety with respect to α (University of the West of England, 2001).

By moving up the centre of the circle, the rotation point A, as seen in Figure 3.8, the expression
in Equation 3.10 can be minimised. The radius, R, depending on α, then becomes unknown. By
calculating the derivative of the expression for the factor of safety, F , and solving for zero the value
of α that results in the lowest F can be obtained.

Figure 3.8: A critical kinematically correct slip surface shape, consisting of a shallow circular arc.

The equilibrium equation for the counter-clockwise moment around point A, in Figure 3.8, is set up
as in Equation 3.11.

MA : qbb
b

2
− lτfR = 0 (3.11)

Using the geometric relationships in Figure 3.8, the unknown length of the circular slip line is
expressed in terms of α and R as in Equation 3.12. With trigonometric relationships, an expression
for R as a function of α is obtained, see Equation 3.13.

l = R2α (3.12)

sinα =
b

R
⇒ R =

b

sinα
(3.13)

As stated in Chapter 3.1.1, the factor of safety can be defined as the ratio between the resisting
moments and the driving moments as in Equation 3.2. In the case of the critical kinematically correct
slip surface, this ratio can be expressed as in Equation 3.14.

F =
lτfR

qbb(b/2)
(3.14)

⇒ F =
2αRτfR

qbb2/2
=

4R2ατf
qbb2
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⇔ F =
4 b2

sin 2α
ατf

qbb2
=

4b2ατf
qb(sin 2α)b2

=
4ατf

qb(sin 2α)
=

4τf
qb

( α

sin 2α

)

Differentiating the expression in Equation 3.14, with respect to α, and solving Equation 3.15 for
Fmin(α) gives the critical value of α.

dF

dα
= 0 (3.15)

⇒ dF

dα
=

4τf
qb

(
sin 2α− 2α sinα cosα

sin 4α

)
=

4τf
qb

(
sinα− 2α cosα

sin 3α

)
= 0

⇒ sinα− 2α cosα = 0 ⇔ 2α cosα = sinα ⇔ 2α =
sinα

cosα
= tanα

⇒ 2α = tanα ⇒ α = 1.166rad = 66.8◦

Finally, the calculated value of α is inserted to the equation for the factor of safety, Equation 3.14.
Equation 3.16 expresses the critical factor of safety for a kinematically correct slip surface.

F =
4τf
qb

( α

sin 2α

)
=

4τf
qb

(
1.166

sin 21.166

)
=

5.52τf
qb

(3.16)

Since moment equilibrium is assumed, F equals 1 and, the bearing capacity for the critical
kinematically slip surface has a value of 5.52 as seen in Equation 3.17.

F = 1 ⇒ qb = 5.52τf ⇒ Nc = 5.52 (3.17)

3.3.3 Statically and Kinematically Correct Slip Surface
A slip surface that is both statically and kinematically correct has a combination of straight and
circular slip lines, as seen in Figure 3.9. Moment equilibrium around point A results in a bearing
capacity factor with the value 5.14, see Equation 3.18.
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Figure 3.9: A statically and kinematically correct slip surface shape for cohesive soils according to
Prandtl’s theorem.

MA : qbb
b

2
− 2(τf

b√
2

b√
2

)− τfπ
b√
2

b√
2

= 0 (3.18)

⇔ qb
b2

2
= 2τf

b2

2
+ τfπ

b2

2

⇒ qb = (2 + π)τf ⇒ qb = 5.14τf ⇒ Nc = 5.14

3.3.4 Bearing Capacity Factors
The results from the derivations of the four different slip surface shapes are summarised in Table 3.1.

Table 3.1: Summary of the bearing capacity factors for the different slip surface shapes.

Slip surface shape Nc

Statically correct 4.00

Kinematically correct 6.28

Critical kinematically correct 5.52

Statically and kinematically correct 5.14

The bearing capacity factor can be directly compared to the factor of safety when performing
calculations of slope stability analysis. If a safety margin is included in the surcharge load qb in
terms of a factor of safety, qb is equal to qF as in Equation 3.19. By setting the value of q equal to
the value of τf , Nc is equal to F .

Nc =
qb
τf

(3.19)

qb = qF

⇒ Nc =
qF

τf
, q = τf ⇒ Nc = F
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3.4 Slip Surface Generation Methods in SLOPE/W

Determining the shape and position of the critical slip surface is a crucial step in executing a slope
stability analysis. In SLOPE/W, the critical slip surface is located through the calculation of several
trial slip surfaces that can be more or less controlled by the user. The software computes the factor
of safety for the trial slip surfaces whereupon the slip surface generating the minimum factor of
safety is considered as the critical.

In SLOPE/W it is possible to display all of the computed factors of safety and their respective slip
surfaces. This allows the user to evaluate the plausibility of the various slip surfaces with regard to
the information available about the specific slope. It is important that the SLOPE/W user
understands the physics behind the computed factor of safety in order to disregard unreasonable
results (GEO-SLOPE International Ltd., 2008).

Although physically inadmissible slip surfaces may obstruct the software from computing the factor
of safety, this is simply due to poor mathematical convergence of the solving algorithm
(GEO-SLOPE International Ltd., 2008). SLOPE/W then displays one of several error codes in
place of the factor of safety. The error codes are easily distinguished from the factors of safety by
that they are within the interval of E983 to E999. Nonetheless, the risk remains of obtaining other
types of physically invalid slip surfaces, which are still mathematically possible within the
computational algorithms of the software.

The number of vertical slices that the slip surface is divided into can be specified by the user, although
this may be overridden by the software. The minimum slip surface depth can be adjusted in order to
force the software to penetrate a certain layer. The default convergence settings in SLOPE/W are
listed in Table 3.2.

Table 3.2: Default values of the convergence settings in SLOPE/W (GEO-SLOPE International Ltd.,
2008).

Convergence settings Default value

Number of slices 30

Minimum slip surface depth 0.1 m

Maximum number of iterations 100

Factor of safety tolerance 0.001

The shape and position of the critical slip surface depend on the loading case, the generated pore
water pressures, the layering of the soil and the soil strength parameters. In order for SLOPE/W to
identify the most critical slip surface it is required by the user to choose an, for the specific
conditions of the examined slope, appropriate method for generating the trial slip surfaces.

There are several methods for generating the trial slip surfaces in SLOPE/W; Grid and Radius for
circular slip surfaces, Grid and Radius combined with an impermeable layer for composite slip
surfaces, Fully Specified slip surfaces through a series of coordinates, Block Specific slip surfaces
and Entry and Exit specification (GEO-SLOPE International Ltd., 2008). The user is required to
specify which part of the slope profile that should be considered the driving side i.e. if the slip
surface should run from left to right or from right to left.
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Additionally, the Optimise function can be applied to all of these slip surface generation methods,
whereupon the optimised slip surfaces is stored as the last slip surface. The Optimise function is
described in detail in Chapter 3.6. This chapter is focused on the two slip surface generation methods
used in this thesis, namely the Grid and Radius method and the Fully Specified method.

3.4.1 Grid and Radius
The variables in a perfectly circular slip surface are, as seen in Chapter 3.3.2, the radius of the circle
arc and the location of the point around which to calculate moments. By altering these variables,
endless variations of the circular slip surface could theoretically be calculated, and a large number of
these can be computed in SLOPE/W by using the Grid and Radius slip surface generation method.

The Grid and Radius method generates a number of circular slip surfaces and identifies the critical
one. In this method the user defines the location, shape, size and coarseness of the search grid above
the slope for locating the point around which the slip surface is assumed to rotate in the event of
land sliding (GEO-SLOPE International Ltd., 2008). The grid is coupled with a search area for the
slip surface radius tangent line, as illustrated in Figure 3.10.

Figure 3.10: A circular slip surface obtained with the Grid and Radius method (GEO-SLOPE International
Ltd., 2008).

The coarseness of the search areas determine how many circular slip surfaces that are to be
computed (GEO-SLOPE International Ltd., 2008). For example, a grid of 5x5 rotation points and 5
tangent lines generates 5x5x5 = 125 slip surfaces. A good practise is to refine the coarseness of the
search area, both the rotational point and the tangent lines, until no apparent changes in the value
of the factor of safety occur.

The search area can preferably be extensive to begin with, to get an indication of where the critical
rotation point and tangent line is located. The user should make sure that, if possible, the critical
rotation point and tangent line are located well within the borders of the search areas. If they are
located on the edge of the search area, this indicates that there might exist a critical slip surface
outside of the search area that will not be computed by the software.
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If calculating a known circular slip surface, for example when performing back- or recalculations, it
is possible to generate this specific slip surface by entering one single rotational point and tangent
line respectively. If a composite slip surface is known, the Fully Specified method, described below,
may be the favourable. However, when little is known about the location of the slip surface, a great
advantage of the Grid and Radius method is that it enables searching through the entire slope.
When combined with the Optimise function, it can also be a suitable method for identifying
composite slip surfaces.

In the case of a surcharge load on a horizontal ground surface, as in a bearing capacity problem, the
exit angle for the slip surface is known from theory as 45◦ − φ/2 and the entry angle is known as
45◦ + φ/2 (Terzaghi, 1959), as illustrated in Figure 3.11. This leads to a slip surface shape that is
not circular but composite. With the Grid and Radius method, the projection angle can be specified
(GEO-SLOPE International Ltd., 2012). Moreover, as the slip surface should include the bottom
left corner of the footing, the radius should be defined as a single point located in this corner.

Figure 3.11: A circular slip surface with a specified projection exit angle.(GEO-SLOPE International
Ltd., 2012) (modified by the authors).

3.4.2 Fully Specified
The Fully Specified method allows the user to define a slip surface with specified points as can be
seen in Figure 3.12 (GEO-SLOPE International Ltd., 2008). It is recommended that the starting
and ending points are set outside the geometry in order to allow the software to compute the
intersection points. This is preferable in order to avoid numerical misperception.

Figure 3.12: A fully specified slip surface (GEO-SLOPE International Ltd., 2008).
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An axis point should also be defined, around which to take moments when performing the
calculations. If this point is not specified by the user, SLOPE/W estimates the axis point by taking
into account the geometry of the slope and the specified slip surface (GEO-SLOPE International
Ltd., 2008). When using rigorous calculation methods that satisfies both moment and force
equilibrium, such as the Morgenstern-Price calculation method, the calculations are not sensitive to
the position of the axis point. When using a calculation method that does not take both moment
and force equilibrium into account, the position of the axis point is of greater importance.

When using the Fully Specified method, a single factor of safety is computed. If the Optimise function
is activated this slip surface is optimised leading to one additional factor of safety. The method is
therefore useful when investigating a specific slip surface; however it is not suitable when searching
for a large number of critical slip surfaces (GEO-SLOPE International Ltd., 2008) as they all have to
be defined individually by the user. It should be noted that, if the Fully Specified method is used to
recreate a circular slip surface, the computed factor of safety would be similar, presuming that the
same calculation method is used.

3.5 Calculation Methods in SLOPE/W

There are several different methods available in SLOPE/W for computing the factor of safety. All
of these calculation methods, except for one using a finite element method, are based on limit
equilibrium formulations (GEO-SLOPE International Ltd., 2008). Except for the basic principle of
limit equilibrium and the Ordinary Method of Slices, from which these methods derive, this chapter
only describes the methods that are used for the calculations in this thesis.

As stated in Chapter 3.1.1, the factor of safety regarding slope stability is equal to the ratio of the
driving forces over the resisting forces of a potentially moving soil mass usually calculated in two
dimensional analysis. In 1936, Fellenius introduced the Ordinary Method of Slices (GEO-SLOPE
International Ltd., 2008), in which the circular slip surfaces is divided into vertical slices with bases
that are assumed to be straight lines. The normal force acting on each slice can be calculated, and
thereby also the available shear strength as it is the perpendicular counterpart.

The simplest formulation of the Ordinary Method of Slices, for a circular slip surface without any
pore-water pressures, can be seen in Equation 3.20 (GEO-SLOPE International Ltd., 2008). Force
equilibrium is calculated by adding all of the resisting and the driving forces respectively, and interslice
forces are ignored. This calculation can be executed by hand or in a spread sheet, but it is also included
in SLOPE/W.

F =

∑
(cβ +Ntanφ)∑

Wsinα
(3.20)

The variables in Equation 3.20 are defined as follows:

c = cohesion

β = slice base length

N = base normal (W cosα)

φ = friction angle

W = slice weight

α = slice base inclination
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Since the introduction of the Ordinary Method of Slices, a number of limit equilibrium methods
have been developed. The differences between the methods lies within which equations that are
used, if the interslice normal and shear forces are included and if so, what relationship that is
assumed between them (GEO-SLOPE International Ltd., 2008). Different methods will compute
different factors of safety, although they may coincide for many cases.

A free body diagram of a typical slice in a potential sliding mass is illustrated in Figure 3.13, where
the interslice normal force E and shear force X are acting on the sides of the slice and W is the
weight of the slice.

Figure 3.13: A circular slip surfaces and the interslice forces of a selected slice together with a free body
diagram (GEO-SLOPE International Ltd., 2008).

The interslice shear force, X, is a function of the interslice normal force, E, the specified force
function, f(x), and the percentage of that function that is used, λ, as seen in Equation 3.21 (GEO-
SLOPE International Ltd., 2008). Arc tan of X/100 is the inclination, in degrees from the horizontal,
of the resultant interslice force. Figure 3.14 illustrate how the lambda value may vary along the slices.

X = Eλf(x) (3.21)

Figure 3.14: Illustration of λ for a half-sine interslice function, and the variation along the slices of a
slope (GEO-SLOPE International Ltd., 2008).
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The significance of the interslice force function depends mainly on the amount of contortion that
the potential sliding mass must be submitted to in order for movement to occur (GEO-SLOPE
International Ltd., 2008). In the case of a perfectly circular slip surface, the moment equilibrium is
independent of the interslice shear forces as the sliding mass body can rotate without any relative
movement between the slices. This is illustrated in by the moment equilibrium plot in Figure 3.15.

Figure 3.15: A circular slip surface and the corresponding F -λ-plot. Not that the factor of safety with
respect to moment equilibrium is constant (GEO-SLOPE International Ltd., 2008).

On the contrary, for the same slip surface, the horizontal force equilibrium is sensitive to interslice
shear forces as substantial relative slippage between the slices is inevitable in the occurrence of
lateral movement (GEO-SLOPE International Ltd., 2008). For planar slip surfaces, the relationships
are the opposite; force equilibrium is dependent of interslice shear while moment equilibrium is not.
This can be seen in Figure 3.16.

Figure 3.16: A planar slip surface and the corresponding F -λ-plot. Not that the factor of safety with
respect to force equilibrium is constant (GEO-SLOPE International Ltd., 2008).

In the case of a composite slip surface, which essentially is a slip surface composed by both circular
and planar line segments, both force and moment equilibrium are dependent of the interslice forces.
This is illustrated in Figure 3.17.
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Figure 3.17: A composite slip surface and the corresponding F -λ-plot (GEO-SLOPE International Ltd.,
2008).

3.5.1 Janbu’s Generalised
Janbu’s Generalised calculation method is a development of Janbu’s Simplified calculation method,
which in turn is developed from the Ordinary Method of Slices. Janbu’s Simplified method
considers the interslice normal forces but not the interslice shear forces and λ, in Equation 3.21, is
set to zero (GEO-SLOPE International Ltd., 2008). Horizontal equilibrium is satisfied in Janbu’s
Simplified calculation method, whereas moment force equilibrium is not. For circular slip surfaces,
which are more sensitive to horizontal equilibrium than to moment equilibrium this method results
in an overly conservative value for the factor of safety (GEO-SLOPE International Ltd., 2008).

The factor of safety for Janbu’s Generalised methods is calculated in an iterative process, where the
vertical forces on each slice are a function of the factor of safety. As a consequence of this, the
base normal also becomes a function of the factor of safety, leading to that the factor of safety
becomes a nonlinear equation, and an iterative procedure is required to compute the factor of
safety. Moreover, the variable mα, which is a function of the inclination of the base of a slice, α,
and the relation between the friction angle and the factor of safety, tanφ′/F , is included in the
equation for the factor of safety.

As a result the shape of the slip surface will affect the computed value of the factor of safety. An
initial value for the factor of safety needs to be assumed in order to start the iteration process
(GEO-SLOPE International Ltd., 2008). With this assumed value, mα can be calculated which
results in a new value for the factor of safety. The new value for the factor of safety is compared
with the assumed value, and the iteration is continued until the two values converge.

Janbu’s Generalised method, as opposed to Janbu’s Simplified method, does account for interslice
shear forces as well as interslice normal forces (GEO-SLOPE International Ltd., 2008). The main
difference between Janbu’s Generalised method and other limit equilibrium methods, for example
the Morgenstern-Price method, is that the stress distribution in between the slices is defined by a
line of thrust. The interslice shear forces are modelled by a line of thrust which typically intersects
the slices at approximately the lower third.

In the SLOPE/W implementation of this method, the line of thrust is fixed to this position, whereas
when performing hand calculation it is possible to alter it for the different slices, as one believes that
the real line of thrust would occur in the slope. The method thereby satisfies moment equilibrium
on slice level, but not for the overall factor of safety. By fixating the line of thrust to the lower third
of the slices, accurate results of the Janbu’s Generalised method as implemented in SLOPE/W is
limited to cases where it is reasonable to assume that the interslice shear forces are actually acting
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at this position. For simple cases, with no sharp corners along the slip surface or high concentrated
loads, this method will compute a factor of safety with a value similar to those of rigorous methods.

3.5.2 Morgenstern-Price
The Morgenstern-Price method is a rigorous method also based on limit equilibrium formulation
(GEO-SLOPE International Ltd., 2008). The method considers both shear normal interslice forces
and satisfies both moment and force equilibrium. Two equations are used for calculating the factor
of safety; one with respect to moment equilibrium, Fm, and the other with respect to horizontal
force equilibrium, Ff , see Equation 3.22 and 3.23. All input parameters described below and also
illustrated in Figure 3.18.

Fm =

∑
(c′βR+ (N − uβ)R tanφ′)∑

Wx−
∑
Nf +

∑
kWe±

∑
Dd±

∑
Aa

(3.22)

Ff =

∑
(c′β cosα+ (N − uβ) tanφ′ cosα)∑
N sinα+

∑
kW −

∑
D cosω ±

∑
A

(3.23)

The variables are defined as follows:

c′ = effective cohesion

φ′ = effective friction angle

u = pore water pressure

W = the total weight of a slice

N = the total normal force on the base of a slice

D = an external point load

kW = the horizontal seismic load applied through the centroid of each slice

R = the radius for a circular slip surface

f = the perpendicular offset of the normal force from the centre of rotation

x = the horizontal distance from the centerline of each slice to the centre of rotation

e = the vertical distance from the centroid of each slice to the centre of rotation

d = the perpendicular distance from a point load to the centre of rotation

a = the perpendicular distance from the resultant water force to the centre of rotation

A = the resultant external water forces

ω = the angle of the point load from the horizontal

α = the angle between the tangent to the centre of the base of each slice and the horizontal

β = the base length of each slice
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Figure 3.18: The forces acting on a slice for a circular slip surface. (GEO-SLOPE International Ltd.,
2008).

The ratio between the interslice forces is iterated until the two factors of safety, Fm and Ff , are
equal (GEO-SLOPE International Ltd., 2008). In the case of composite slip surface, a rigorous
method generally produce more accurate results that also err on the safe side. This is illustrated in
Figure 3.19, which shows a slice force polygon with good closure.

Figure 3.19: A free body diagram of a slice and, to the right, the corresponding force polygon (GEO-
SLOPE International Ltd., 2008) (modified by the authors).

The Morgenstern-Price method allows for the user to select the interslice force function (GEO-SLOPE
International Ltd., 2008). There are five different interslice force functions available in SLOPE/W:
the constant function, the half-sine function, the clipped-sine function, the trapezoidal function and
the data-point specified function. As stated in Chapter 1.4, only the half-sine function is considered
in this thesis.

3.6 The Optimise Function in SLOPE/W

For cases such as elongated slopes, stratified slopes and slopes in heterogeneous soils, a composite
slip surface may describe the possible slip surface more realistically. Instead of for example using a
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fully specified slip surface, and thereby lose the part of the circular slip surface that seems
reasonable, the critical slip surface can be refined by iteratively altering parts of it. This is referred
to as an optimisation of the slip surface, and is possible in SLOPE/W with the Optimise function
(GEO-SLOPE International Ltd., 2008).

If initially, as in this thesis, a circular trial slip surface is utilised, the software searches for any local
conditions in the slope that would cause the slip surface to derive from its initial perfect circular
shape and result in a lower factor of safety. If the Optimise function does not find any altered slip
surface with a lower factor of safety than the critical trial slip surface, and Fopt ≥ Fcirc, then no
optimised slip surface is stored.

The optimised, composite, slip surface is obtained by minimising the mathematical function that
computes the factor of safety. This is essentially the same that is done for the both statically and
kinematically correct slip surface in Chapter 3.3.3, although it is more complex with regard to both
the mathematical expression itself and the degree of freedom of the slip surface line. Whereas said
slip surface consists of three slip surface lines that are all functions of one angle, the optimised slip
surface in SLOPE/W consists of an unlimited number of line segments that can move relative to
each other in several directions.

The optimisation function implemented in SLOPE/W is based on two theories developed by Greco
(1996) and Husein Malkawi et al. (2001), in which a Monte Carlo method with a statistical random
walking procedure is used to optimise the critical slip surface (GEO-SLOPE International Ltd., 2008).
These two methods differ slightly in the mathematical formulation of the solution but the formulation
of the problem, i.e. the position of the critical slip surface, is the same for both methods. The
formulation of the factor of safety within the Optimise function is always identical to the chosen
calculation method that generates the trial slip surface i.e. the critical circular slip surface (Support,
GEO-SLOPE International Ltd. 2014, pers.comm., 26 February).

3.6.1 Description of the Optimisation Process
The optimisation process in SLOPE/W is initiated by dividing the critical trial slip surface into a
number of straight line segments, as illustrated in Figure 3.20. The number of line segments is
controlled by the number of ending points, which has the default value of 16, see Table 3.3. The
vertices of each of these line segments are then relocated in a Monte Carlo based statistically random
routine within an adjacent elliptical search area, also seen in Figure 3.20, to search for a potentially
existing lower factor of safety (GEO-SLOPE International Ltd., 2008).

Figure 3.20: The elliptical search areas around the vertices of the broken line that compose the slip
surface at the beginning of the optimisation procedure (GEO-SLOPE International Ltd., 2008).
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As the user also specifies the number of starting points, or use the default value of 8, this setting
combined with the number of ending points control to what extent the optimised slip surface is able
to deviate from the circular slip surface from which it is constructed. A high value of the number of
starting points results in the starting slip surface, made out of the straight line segments, that is
more similar to the circular slip surface since it is allowed to more closely follow the circular arc.

Table 3.3: Default and limit values of the controlling parameters for the Optimise function in SLOPE/W.

Parameter Default value Limits

Maximum numbers of iterations 2 000 -

Convergence tolerance for the factor of safety 10−7 -

Number of starting points on slip surface 8 > 0

Number of ending points on slip surface 16 ≥ starting points

Number of complete passes per point insertion 1 -

Slip surface maximum concave angle on the driving
side, βd

5◦ 0◦ <βd ≤ 30◦

Slip surface maximum concave angle on the resisting
side, βr

1◦ 0◦ <βr ≤ 10◦

The first vertex to be relocated is the one in which the slip surface enters the ground surface
(GEO-SLOPE International Ltd., 2008). This point is moved randomly along the ground surface,
and not in an elliptical search area as the ground surface is one of the defined fixities described in
Chapter 3.6.2, until the minimum local factor of safety is found. Next, the vertices along the slip
surface are successively moved within an elliptical search area until the coordinates that correspond
to the lowest factor of safety is found for each vertex. Finally, the exit point is moved randomly
along the ground surface.

When all of the vertices have been potentially relocated, the longest line segment is subdivided into
two parts which creates a new vertex to be randomly moved until finding the critical location
(GEO-SLOPE International Ltd., 2008). As stated above, the number of starting and ending points
i.e. the vertices can be defined by the user, the default values set by SLOPE/W are specified in
Table 3.3. If the value is the same for both the starting and ending points, then the movement
within the search area is the only manner in which the slip surface is altered. In the case of the
default settings the number of straight line segments is doubled.

The setting Number of complete passes per point insertion controls how many random walks that
are generated for each vertex (Support, GEO-SLOPE International Ltd. 2014, pers.comm., 26
February). The iterative optimisation procedure is repeated until changes in the factor of safety do
not exceed a specified tolerance interval or until the process reaches the maximum number of
optimisation trials (GEO-SLOPE International Ltd., 2008). The default values set by in SLOPE/W
are specified in Table 3.3. The Optimise function is purely a minimisation process, and does not
put any constraints on the slip surface, apart from those stated in Table 3.3.

As always, when using computing software such as SLOPE/W, the physical plausibility of the
obtained slip surface must be evaluated by the user. In SLOPE/W it is possible to specify the
maximum concave angles that the software should allow for the driving and resisting masses
respectively (GEO-SLOPE International Ltd., 2008). The default values are specified in Table 3.3.
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This setting is the only known limitation to what shape the optimised slip surface will obtain. It is
not unheard of composite slip surfaces with some concave angles, which is indicated by the
limitations of this setting i.e. that the maximum concave angles cannot be set to 0◦, but most slip
surface with distinct concave angles look peculiar and kinematically incorrect.

Figure 3.21 illustrates an example of a composite slip surface obtained by optimising a circular slip
surface. By performing the optimisation process, SLOPE/W may detect and adjust for weak layers
in the slope which usually result in a lower value of the factor of safety (GEO-SLOPE International
Ltd., 2008). However, the prosperity of the Optimise function depends to some extent on how well
the trial slip surface is selected. Furthermore, even with a suitable choice of trial slip surface, the
optimisation may result in a physically inadmissible slip surface.

Figure 3.21: Illustration of a circular slip surface (left) and the composite slip surface obtained when
applying the Optimise function (right) (GEO-SLOPE International Ltd., 2008).

When using the Fully Specified slip surface generation method for creating the trial slip surface, there
is the option of specifying one or several points as fixed (GEO-SLOPE International Ltd., 2008). The
software will then simply skip the relocation of these points when running the optimisation procedure.
This is useful when the user has sufficient information about the soil properties, in certain points or
layers, to determine that certain points ought to be included in the final critical slip surface.

3.6.2 Mathematical Formulation
As previously mentioned, the mathematical formulation of the Optimise function is based on two
articles written by Greco (1996) and Husein Malkawi et al. (2001) on the subject of locating
composite slip surfaces. However, these articles describe the process of locating a composite slip
surface without starting from a circular nor any other type of trial slip surface. The information
about the exact implementation of these articles in the programming of the Optimise function in
SLOPE/W, except that there are no additional constraints other than the settings mentioned above
(Support, GEO-SLOPE International Ltd. 2014, pers. comm., 26 February), is not available as it is
protected by the creator of the software. Below, the optimising procedure suggested by Greco
(1996) and Husein Malkawi et al. (2001) are summarised.

To formulate the problem, mathematical functions are used in the xy-plane to describe the topography
of the soil layers, the slip surface and the water table as seen in Figure 3.22. Both Greco (1996) and
Husein Malkawi et al. (2001) use the same functions to describe the geometrical boundaries, however
the notations from Husein Malkawi et al. are used in this chapter. Equations 3.24, 3.25, 3.26, 3.27
and 3.28 describe the geometrical boundaries that can be seen in Figure 3.22: the topographic profile
of the soil, the discontinuity surface in a layered soil, the lower boundary, the slip surface and the
water table (Husein Malkawi et al., 2001).
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Figure 3.22: Geometrical boundaris expressed by functions and the slip surface line expressed by its
vertices (Husein Malkawi et al., 2001) (modified by the authors).

Y = g(x) (3.24)

Y = L(x) (3.25)

Y = r(x) (3.26)

Y = s(x) (3.27)

Y = w(x) (3.28)

The search for the critical slip surface can be divided into two phases; the exploration phase and
the extrapolation phase. As mentioned in Chapter 3.6.1, the slip surface is divided into n − 1
straight line segments, as illustrated in Figure 3.20, and represented by n vertices [V1, V2, . . . , Vn]
with coordinates (x1, y1), (x2, y2), . . . , (xn, yn) (Husein Malkawi et al., 2001). The coordinates are
the unknown variables of the function describing the slip surface and the optimisation consists in
searching, by using Monte Carlo random walking displacement, for the coordinates that corresponds
to the minimum value of that same function (Greco, 1996). As also stated in Chapter 3.6.1, the
number of vertices can be controlled, which in term control the degree of approximation of a slip
surface as it increases with the number of vertices (Greco, 1996).

The random walking method generates a random slip surface based on the previous; the ith slip
surface is modified and used as a base for the i+ 1 slip surface (Husein Malkawi et al., 2001). The
slip surface is mathematically expressed by coordinates in a 2n-dimensional array in the xy-plane,
s(x), as in Equation 3.29.

S = [x1, y1, x2, y2, . . . , xn, yn]T (3.29)
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As previously mentioned, the optimisation consists of minimising the factor of safety that corresponds
to the vector S, i.e. the function F (S), as in Equation 3.30. As the problem is solved iteratively,
the optimisation process follows the pattern expressed in Equation 3.31 (Greco, 1996).

min F (S) (3.30)

F (S0) > F (S1) > ... > F (Sk) > F (Sk+1) > ... (3.31)

To ensure a geometrically feasible result, three constraints are implemented on the coordinates of the
above stated functions for the geometrical boundaries (Husein Malkawi et al., 2001). The constraint
expressed in Equation 3.32 ensures that the vertices remain ordered, and the constrains expressed
in Equation 3.33 and 3.34 guarantee that the entering and exiting vertices stay along the ground
surface while all of the remaining vertices stay below it.

xi < xi+1 (3.32)

for i = 1 to n− 1

yi = g(xi) (3.33)

for i = 1 and i = n

r(xi) < s(xi) < g(xi) (3.34)

for i = 2 to n− 1

In the exploration phase, each vertex of the slip surface S is randomly moved, starting with the
vertex furthest on the driving side where the slip surface enters the ground surface (Greco, 1996).
The vertex i in point (xki , y

k
i ) is moved to point (xk+1

i , yk+1
i ), and the new coordinates of the vertex

are obtained as expressed in Equations 3.35, 3.36 and 3.37.

xk+1
i = xki + ξki (3.35)

yk+1
1 = g(xk+1) (3.36)

for i = 1 and i = n

yk+1
1 = yki + ηki (3.37)

for i = 2 to n− 1

Here, ξki and ηki are the random displacements of vertex i in directions x and y respectively (Greco,
1996). The displacements are given by the expressions 3.38 and 3.39, creating an elliptical search
area around the vertex, as seen in Figure 3.23.

ξki = NxRxDx
k
i (3.38)

ηki = NyRyDy
k
i (3.39)
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In the equations above, Rx and Ry are numbers randomly extracted from a uniformly distributed
population in the range [-0.5, 0.5] (Greco, 1996). Dxki and Dyki are the witdhs of the search steps in
directions x and y for vertex i at stage k and Nx and Ny are defined numbers whose combinations
generates various displacements of vertex i for the same pair of random numbers Rx and Ry.

Figure 3.23: The elliptical search area for a vertex i (Greco, 1996).

If one of these trial displacements generate a lower factor of safety, no further trials are made for
this vertex, and the width of the search step is increased as expressed in Equations 3.40 and 3.41
(Greco, 1996).

Dxk+1
i = Dxki + |xk+1

i − xki | (3.40)

Dyk+1
i = Dyki + |yk+1

i − yki | (3.41)

If no trial is successful for vertex i, then the width of the search step for the next step k+1 is reduced
as expressed in Equations 3.42 and 3.43 (Greco, 1996).

Dxk+1
i = Dxki (1− ε) (3.42)

Dyk+1
i = Dyki (1− ε) (3.43)

In the equations above, ε is a number between 0 and 1 that should be chosen with regard to the
corresponding computational time (Greco, 1996). The exploration phase is followed by the
extrapolation phase in which a new slip surface, with the total displacements obtained in the
exploration phase, is generated as expressed in Equations 3.44, 3.45 and 3.46.

xei = 2xk+1
i − xki (3.44)

for i = 1 to n

yei = 2yk+1
i − yki (3.45)

for i = 2,..., n− 1

yei = g(xei ) (3.46)

for i = 1 or i = n
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This iterative procedure is repeated until the current vector Sk+1 simultaneous fulfils the two criteria
expressed in Equations 3.47 and 3.48 (Greco, 1996), where ∆ is the lowest admissible width for the
search area and δ is the tolerance value for the factors of safety (Greco, 1996).

Dxk+1
i < ∆ (3.47)

and

Dyk+1
i < ∆

∀ i : i = 1 to n

|F (Sk)− F (Sk+1)| ≤ δ (3.48)

Again, it should be remembered that it is not known exactly how the Optimise function in SLOPE/W
is implemented, only that the mathematical formulation is based on the two articles by Greco (1996)
and Husein Malkawi et al. (2001). Also, the mathematical formulation described here is a summary
of the two articles and not a complete declaration.

3.7 Slope Stability in PLAXIS 2D

PLAXIS 2D is a two-dimensional finite element software for geotechnical applications such as
stability analysis (PLAXIS 2D Reference manual, 2012). Since PLAXIS 2D is used as a tool for
comparison of the results obtained with SLOPE/W, the theory behind the software will only be
briefly described.

When performing a safety calculation in PLAXIS 2D, also known as a phi/c reduction, the strength
parameters φ and c are reduced until failure occur (PLAXIS 2D Reference manual, 2012). The factor
of safety for stability analysis in PLAXIS 2D is defined as the ratio of the available strength over the
strength at failure, and is denoted

∑
Msf , see Equation 3.49.

FPLAXIS =
∑

Msf =
Available strength

Strength at failure
(3.49)

After defining the geometry of the model and all material properties, the geometry is divided into
finite element nodes, also known as a mesh (PLAXIS 2D Reference manual, 2012). Different
phases are then used to define the calculation procedure. In this thesis, three different phases are
used. In phase 1, Gravity loading, the initial stresses are generated, in phase 2, Plastic, the load is
applied and in phase 3, Safety, the factor of safety is calculated as described above.

In the calculation phase Safety, PLAXIS 2D uses the reduction of shear strength method i.e.
reducing the friction angle and the cohesion until failure occur. A potential slip surface is shown in
PLAXIS 2D by the deformation within the soil when failure occurs (PLAXIS 2D Reference manual,
2012), in this thesis by using a plot of the incremental displacements. As opposed to SLOPE/W,
where the slip surface direction is defined by the user, PLAXIS 2D may show displacements
anywhere in the mesh. For horizontal geometries PLAXIS 2D will generate symmetric
displacements on both sides of an applied load.

There are several different material models available in PLAXIS 2D out of which Mohr-Coulomb
model, described in Chapter 3.2, is selected. This material model requires five input parameters;
Young’s modulus, EY , and Poission’s ratio, ν, for elasticity, the friction angle, φ, and the cohesion,
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c, for soil plasticity, and the dilatancy angle, ψ (PLAXIS 2D Material Models Manual, 2012).

Undrained conditions of a soil can be modelled in PLAXIS 2D with three different kinds of
modelling schemes; Undrained (A), Undrained (B) and Undrained (C) (PLAXIS 2D Reference
manual, 2012). The main differences between these modelling schemes are that Undrained (A) uses
the effective parameters for stiffness and strength whereas Undrained (B) uses effective parameters
for stiffness but undrained strength parameters, and both models generates pore pressures. The
model Undrained (C) however simulates the undrained behaviour by using a total stress analysis
with undrained parameters and pore pressures are not generated.

For soils that are completely undrained, ν is by definition equal to 0.5 as no volume change can
occur when the soil is exposed to stresses (Knappett and Craig, 2012). Thereby, drainage condition
Undrained (C) is used for all of the clays. However, it is not possible to use the value of exactly 0.5
in PLAXIS 2D, and instead ν is set to 0.4990 (PLAXIS 2D Reference manual, 2012). When using
Undrained (C), ψ is automatically set to 0. Embankments are modelled as Drained.
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4 Calculation Input
This chapter describes all of the studied models, starting with the bearing capacity test, followed by
the characteristic slopes and lastly the steep slope with a dry crust. The geometry, soil properties and
applied loads of the models are stated and illustrated in figures. The models recreated in PLAXIS
2D are also displayed in this chapter, and the alterations made of the optimise settings are explained.
The calculation procedures are previously explained in Chapter 2.

4.1 Bearing Capacity Test

The bearing capacity test demonstrates bearing capacity in relation to the slip surface shape,
previously described in Chapter 3.3. It consists of a surcharge load of 20 kPa, acting on 5 m and
applied directly on a single horizontal clay layer, Clay 1 ud, which has a cohesive strength of 20
kPa, a unit weight of 16 kN/m3 and a depth of 8 m. The surcharge load is intentionally set to the
same value as the cohesive strength of the clay. The analysis is performed for undrained conditions
exclusively, and the water table is situated 0.5 m below the ground surface.

The critical circular slip surface and the corresponding factor of safety, FMP
circ is calculated with the

Grid and Radius slip surface generation method, using the Morgenstern-Price calculation method.
The Optimise function is applied for the critical circular slip surface, and an optimised slip surface
with corresponding factor of safety, FMP

opt , is thereby obtained.

Figure 4.1: Geometry of the bearing capacity test in SLOPE/W.

4.2 Characteristic Slopes

The three characteristic slopes selected for this thesis, seen in Figure 4.2, are chosen to represent
real, but slightly simplified, recurring situations encountered within stability investigations in
western Sweden. The possible features of the characteristic slopes include; one or two different soil
regions, open surface water and surcharge loads applied on an embankment. Two different
surcharge loads are applied; 20 kPa and 43 kPa that represents traffic and railway load respectively
(Trafikverket, 2011). Undrained analysis is carried out for all the different cases, and for the cases
with surcharge load of 20 kPa combined analysis is also executed. The pore water pressures are
generated by a piezometric line and hence hydrostatic conditions are assumed for all slopes.
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(a) CS1 Horizontal Geometry (b) CS2 Elongated Slope (c) CS3 Steep Slope

Figure 4.2: The three characteristic slopes to be modelled in SLOPE/W.

The characteristic slopes are developed to resemble typical slopes encountered in western Sweden.
All of the soil layers, except for the embankment fill, are clays with a unit weight, γ, of 16 kN/m3

and an undrained shear strength, cu, of 20 kPa. The effective cohesion, c′, is consistently set to
10 % of the undrained shear strength. The effective friction angle, φ′, of all clays is 30◦. The upper
clay layer, Clay 1, has a thickness in the range of six to eight meters. The underlying clay layer,
Clay 2, has an increase in cu of 2 kPa per vertical meter. The embankment fill material has a γ of
18 kN/m3 and a φ′ of 35◦. All material properties are listed in Table 4.1.

Table 4.1: Material properties for the characteristic slopes in SLOPE/W.

Material Clay 1 ud Clay 2 ud Clay 1 comb Clay 2 comb Embankment

γ [kN/m3] 16 16 16 16 18

cu [kPa] 20 20+2z 20 20+2z 0

c′ [kPa] - - 0.1(20) 0.1(20+2z) 0

φ′ [◦] - - 30 30 35

4.2.1 Characteristic Slope 1: Horizontal Geometry
Characteristic slope 1, CS1, consists of a horizontal clay layers that stretches 55 m in the x-direction
and 23 m in the y-direction as illustrated in Figure 4.3. The slope consists of two clay layers, Clay 1
and Clay 2, with thicknesses of 8 m and 15 m respectively. The material models used in SLOPE/W
for the two clays are the models S=F(depth) for the undrained analyses and Comb, S=F(depth)
for the combined analysis. The groundwater table is situated 0.5 m below the ground surface. An
embankment with traffic load is applied on the soil surface. The embankment has a height of 2 m
and a base of 20 m and the material model Mohr-Coulomb was used. The surcharge load is acting
on a width of 16 m.
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Figure 4.3: Illustration of CS1: Horizontal geometry, as defined in SLOPE/W.

4.2.2 Characteristic Slope 2: Elongated Slope
Characteristic slope 2, CS2, is an elongated slope with geometry properties as illustrated in Figure
4.3. The inclination of the slope is approximately 11◦. CS2 consists of two clay layers, Clay 1 and
Clay 2, with thicknesses of 6.5 m and 22 m respectively. The material models used in SLOPE/W
for the two clays are the models S=F(depth) for the undrained analyses and Comb, S=F(depth) for
the combined analysis. The groundwater table is situated 1.5 m below the ground surface, and flows
out into open surface water region, with a depth of 3 m, at the toe of the slope.

Figure 4.4: Illustration of CS2: Elongated slope, as defined in SLOPE/W.

At the crest of the slope, traffic load is applied on an embankment. The embankment is 1.5 m high
and has a base of approximately 40 m, the material model used in SLOPE/W for the embankment
is the model Mohr-Coulomb. The traffic load is modelled as two surcharge loads acting on 14 m
each. The geometry for the embankment and the loads are based on a real example given by the
geotechnical division at Golder Associates in Gothenburg.
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4.2.3 Characteristic Slope 3: Steep Slope
Characteristic slope 3, CS3, illustrated in Figure 4.5, is a steep slope, with an inclination of
approximately 27◦. CS3 consists of a 15 m deep clay layer, Clay 2. For this case, the material
models used in SLOPE/W for the clay are the model S=F(datum) for the undrained analyses and
Comb, S=F(datum) for the combined analysis. These models were chosen to be able to recreate
the same material behaviour in PLAXIS 2D. An embankment with applied surcharge load is acting
at the crest of the slope. The embankment is 1 m high and has a base of 10 m and it is modelled
with the material model Mohr-Coulomb in SLOPE/W. The surcharge load is acting on a width of 8
m. The groundwater table is situated approximately 1.5 m below ground surface and follows the
geometry of the slope. The groundwater flows out into a open surface water region at the toe of
the slope.

Figure 4.5: Illustration of CS3: Steep slope, as defined in SLOPE/W.

4.3 Steep Slope with Dry Crust

This slope, illustrated in Figure 4.6, is a version of CS3 prior to simplification that more accurately
resemble the real case out of which CS3 was constructed. Similar to CS3, this slope has an inclination
of approximately 31◦ but it is subjected to a surcharge load of 15 kPa acting on 8 m.
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Figure 4.6: Illustration of the steep slope with a dry crust, as defined in SLOPE/W.

The upper layer of the slope is a dry crust with an approximate depth of 3 m, cu of 50 kPa and γ
equal to 19. The slope has two different clay layers, Clay 3 and Clay 4, with γ of 19 and 19.5
kN/m3 respectively. The value of cu is 22 kPa for both clays, but with an increase of 2 kPa per
vertical m for Clay 4. The material properties for the different layers can be seen in Table 4.2. The
groundwater table is situated in the lower part of the dry crust and flows out into open surface
water at the toe of the slope. Undrained analysis is considered exclusively.

Table 4.2: Material properties for steep slope with dry crust

Material Clay 3 Clay 4 Dry crust Bedrock

Material model S=f(depth) S=f(depth) Undrained (Phi=0) Bedrock (Impenetrable)

γ [kN/m3] 19 19.5 19 -

cu [kPa] 22 22+2z 50 -

The model is submitted to same procedure, of altering the maximum allowed concave angles on the
driving and resiting side of the slope, as the bearing capacity test and the characteristic slopes. The
maximum concave angles are schematically altered according to Table 4.5 in Chapter 4.5.

4.4 Models in PLAXIS 2D

The undrained analyses of all slopes are recreated in PLAXIS 2D, primarily for a verification of the
slip surfaces shape, but also to compare the obtained values for the factors of safety. The
characteristic slopes are modelled with both surcharge loads of 20 and 43 kPa. The PLAXIS 2D
models are schematically shown in Figure 4.7. As can be seen in Figure 4.7 (e) and (f), the steep
slope with dry crust is modelled with two slightly different geometries. This is a rationalisation
made in order to obtain a more defined slip surface shape in PLAXIS 2D.
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(a) Bearing capacity test

(b) CS1 Horizontal Geometry (c) CS2 Elongated Slope (d) CS3 Steep Slope

(e) Steep slope with dry crust 1 (f) Steep slope with dry crust 2

Figure 4.7: Overview of the slopes as defined in PLAXIS 2D.

The material model used in PLAXIS 2D is Mohr-Coulomb, which except from the input parameters
used in SLOPE/W requires values of Young’s modulus, EY , Poission’s ratio, ν and dilatancy angle,
ψ. According to Knappett and Craig (2012) ν is equal to 0.5 for undrained conditions and, with
this assumption, drainage type Undrained(C) is chosen for all clays as described in Chapter 3.7. ψ
is automatically set to zero when using Undrained(C). EY are set to 10·103 kN/m3 and 10·103

kN/m3 with an increase with depth of 2·103 kN/m3 per m for Clay 1 and Clay 2 respectively. For
Clay 3 and Clay 4 EY are set to 20·103 kN/m3 and 20·103 kN/m3 with an increase of 2·103 kN/m3

per m to represent a stiffer clay. For the dry crust EY is also set to 20·103 kN/m3. The values for
soil unit weight, γ, cohesion, cref , and friction angle, φ, are for the clays the same as in SLOPE/W.
The input parameters used in PLAXIS 2D for the different clays are in Table 4.3, and the remaining
input values are default values.

The embankment is modelled as a drained material with drainage type Drained. According to
Knappett and Craig (2012), the value of ν is normally between 0.2 and 0.4 for soils under fully
drained conditions. In this case, ν is set to 0.3 for the embankment. Also for the embankment ψ is
set to zero. EY is set to 50·103 kN/m3 (Stanford University, 2010). To obtain a result in PLAXIS
2D, with a distinct slip surface and a corresponding factor of safety, the embankment needs to be
defined with cohesion greater than zero to avoid soil collapse. To resemble the model in
SLOPE/W, where cohesion for the embankments are equal to zero, as low a value as possible is
chosen to avoid a slip surface in the embankment itself. For CS1 the cohesion is set to 5 kN/m2,
for CS2 10 kN/m2 and for CS3 the cohesion is set to 2 kN/m3. The most relevant input values for
the embankment are listed in Table 4.3, the remaining input values are default values.
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Table 4.3: Material properties in PLAXIS 2D for the modelled slopes.

Material Clay 1 Clay 2 Clay 3 Clay 4 Dry crust Embankment

Material model M-C M-C M-C M-C M-C M-C

Drainage type UD(C) UD(C) UD(C) UD(C) UD(C) Drained

γunsat [kN/m3] 16 16 19 19.5 19 18

γsat [kN/m3] 16 16 19 19.5 19 20

cref [kN/m2] 20 20+2z 22 22+2z 50 2 - 10

φ [◦] 0 0 0 0 0 35

EY [kN/m2] 20·103 (20+2z)·103 20·103 (20+2z)·103 20·103 50·103

ν [-] 0.4990 0.4990 0.4990 0.4990 0.4990 0.3

ψ [◦] 0 0 0 0 0 0

4.5 Optimise Settings

In these calculations, the models are modified by changing two selected settings for the Optimise
function: the number of starting and ending points and the maximum allowed concave angles on
the driving and resisting side. The remaining settings concern the iteration process and are not
considered vital for what slip surface shape that is generated by the Optimise function.

The starting and ending points control the number of vertices to relocate in the optimising process,
and influence the optimised slip surface, as described in Chapter 3.6.1. To investigate the visible
effect of changing this setting, as well as any notable changes of the resulting factor of safety, the
number of starting and ending points are altered differently in Cases (a) through (g) according to
the schematic pattern stated in Table 4.4.

Table 4.4: The investigated cases of altering the number of starting and ending points.

Number of starting and ending points

Case Description Starting Ending

Default Default settings 8 16

a Increase starting points 16 16

b Decrease starting points 1 16

c Increase ending points 8 30

d Decrease ending points 8 8

e Increase starting and ending points 30 30

f Decrease starting and ending points 1 1

g Decrease starting points, increase ending points 1 30

The setting for changing the maximum allowed concave angles, for the driving and resisting side of
the optimised slip surface, is a mean of avoiding rare and unreasonable shapes. To investigate the
visible effect of changing this setting, as well as any notable changes of the resulting factor of
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safety, the maximum allowed concave angles are altered in Cases (a) through (h) according to the
scheme stated in Table 4.5.

Unlike the number of starting and ending points, the concave angles are not specified as a singular
value but as a maximum value. This means that concave angles are allowed to vary in the range of
zero to the specified value. Consequently, if the shape of optimised slip surface generated with the
default values do not consist of any notable concave angles, changing these settings may have little
to no effect.

Table 4.5: The investigated cases of altering the maximum concave angles of the driving and resisting
side of the slope.

Driving and resisting maximum concave angles

Case Description Driving [◦] Resisting [◦]

Default Default settings 5 1

h Increase on driving side 30 1

i Decrease on driving side 0.001 1

j Increase on resisting side 5 10

k Decrease on resisting side 5 0.001

l Increase on driving and resisting side 30 10

m Decrease on driving and resisting side 0.001 0.001

n Decrease on driving side, increase on resisting side 0.001 10

o Increase on driving side, decrease on resisting side 30 0.001

The remaining setting for the Optimise function; the maximum numbers of iterations, the convergence
tolerance for the factor of safety and the number of complete passes per point, do not directly control
the shape of the slip surface but instead concern the extent of the iterations and the convergence.
Therefore, the effects of altering these settings were not considered vital to investigate.
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5 Calculation Result

In this chapter the results of the calculations stated in Chapter 4 are presented. The results are
interpreted by reviewing the percental differences between the factors of safety corresponding to
the different calculations, as explained in Chapter 2.3.3. Results from altering the settings for the
Optimise function are presented in tables and selected figures.

5.1 Bearing Capacity Test

The following results for the bearing capacity test are presented in this chapter: the undrained analyses
performed in SLOPE/W and PLAXIS 2D together with a comparison to the bearing capacity theory,
and the results when altering the optimise settings in SLOPE/W.

Undrained Analysis, Load 20 kPa

The result from the bearing capacity test performed in SLOPE/W can be seen in Figure 5.1 and
Figure 5.2, showing the circular and the optimised slip surfaces. The circular slip surface corresponds
to a factor of safety, FMP

circ , of 5.52 whereas the optimised slip surface correspond to a factor of
safety, FMP

opt , with a value of 3.79.

Figure 5.1: The circular slip surface of the bearing capacity test, FMP
circ = 5.52. The shape of the

optimised slip surface is also marked. The dots above the slope represent the rotation points in the search
grid.
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Figure 5.2: The optimised slip surface of the bearing capacity test, FMP
opt = 3.79. The shape of the

circular slip surface is also marked. The dots above the slope represent the rotation points in the search
grid.

The calculation performed in PLAXIS 2D, corresponding to the undrained analysis in SLOPE/W,
results in a slip surface shape as shown in Figure 5.3. The factor of safety, FPLAXIS is calculated
to 5.15.

Figure 5.3: The slip surface obtained with PLAXIS 2D, FPLAXIS = 5.15.

According to Chapter 3.3, where statically and kinematically correct slip surfaces are derived from
theory, the resulting slip surfaces should have shapes as in Figure 5.4. Comparing this to the results
obtained from the bearing capacity test performed in SLOPE/W and PLAXIS 2D, it can be seen
that the critical circular slip surface shape from SLOPE/W has a shape that is similar to a critical
kinematically correct slip surface shape as in Figure 5.4 (b). The optimised slip surface obtained from
SLOPE/W has a shape that is comparable to a statically correct slip surface as in Figure 5.4 (a).
The slip surface shape obtained from PLAXIS 2D on the other hand, is more similar to a statically
and kinematically correct slip surface as in Figure 5.4 (c), consisting of both straight and circular
arcs.
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(a) Statically correct slip surface
shape

(b) Critical kinematically correct slip
surface shape

(c) Statically and kinematically
correct slip surface shape

Figure 5.4: Slip surface shapes according to the beraring capacity theory.

As stated in Chapter 3.3.4, the bearing capacity factor, Nc, can be directly compared to the factor
of safety, with the obtained values listed in Table 5.1. The factor of safety that corresponds to the
circular slip surface shape in SLOPE/W is identical to the bearing capacity factor for a critical
kinematically correct slip surface, both with a value of 5.52. The factor of safety that corresponds
to the optimised slip surface in SLOPE/W is most similar to the bearing capacity factor for a
statically correct slip surface, with values of 3.79 and 4.00 respectively. The factor of safety
obtained from PLAXIS 2D, with a value of 5.15 is similar to a the bearing capacity factor for a slip
surface that is both statically and kinematically correct, which has a value of 5.14.

Table 5.1: Summation of the factors of safety obtain in SLOPE/W and PLAXIS 2D for the bearing
capacity test, and bearing capacity factors derived from theory.

Software calculation F Slip surface shapes from theory Nc

SLOPE/W, Circular 5.52 Statically correct 4.00

SLOPE/W, Optimised 3.79 Critical kinematically correct 5.52

PLAXIS 2D 5.15 Statically and kinematically correct 5.14

Altered Optimise Settings

The resulting value of the factor of safety, as well as the volume and the weight of the slip surface,
when altering the starting and ending points are presented in Table 5.2. The critical circular slip
surface is included as a comparison. For Cases (b), (f) and (g), no optimisation of the slip surface
was generated and the critical circular slip surface was the one with the lowest factor of safety.

For Case (c), with the resulting slip surface shape illustrated in Figure 5.5, the factor of safety is
closer to 4.00, which according to the theory should be the correct value for a statically correct slip
surface. The slip surface shape is only slightly changed from the default optimised slip surface
shape, as seen in Figure 5.2.

Case (e), illustrated in Figure 5.6, results in a factor of safety of 5.12, which is the case that is
closest to the bearing capacity factor for a statically and kinematically correct slip surface. The
shape of the slip surface for Case (e) is also similar to the circular slip surface.
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Table 5.2: The results of changing the number of starting and ending points for the Optimise function,
within the Bearing capacity test.

Bearing capacity test - Number of starting and ending points

Case Starting Ending FMP Volume [m3] Weigth [kN]

Circular - - 5.52 19 309

Default optimised 8 16 3.79 15 237

a 16 16 4.51 16 246

b 1 16 5.52 19 309

c 8 30 3.91 15 242

d 8 8 3.83 13 206

e 30 30 5.12 18 293

f 1 1 5.52 19 309

g 1 30 5.52 19 309

Figure 5.5: Case (c) - The optimised slip surface of the bearing capacity test, generated with 8 starting
points and 30 ending points, FMP = 3.91. The shape of the circular slip surface is also marked.

Figure 5.6: Case (e) - The optimised slip surface of the bearing capacity test, generated with 30 starting
points and 30 ending points, FMP = 5.12. The shape of the default optimised slip surface and the
circular slip surface are also marked.
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The resulting value for the factor of safety, as well as the volume and the weight of the slip surface,
when altering the maximum concave angles on the driving and resisting sides are presented in Table
5.3. All different Cases resulted in optimised slip surfaces, but the slip surface shapes only change
slightly from the default optimised slip surface. However, the factor of safety varies from 2.83 (Case
(l) to 4.38 (Case (m). In Figure 5.7 the slip surface shape from Case (m) can be seen. The value of
the factor of safety is still closest to a statically correct slip surface shape with regards to both
shape and factor of safety.

Table 5.3: Results of changing, within the bearing capacity test, the driving and resisting maximum
concave angles.

Bearing capcity test - Driving and resisting maximum concave angles

Case Driving [◦] Resisting [◦] FMP Volume [m3] Weigth [kN]

Circular - - 5.52 19 309

Default optimised 5 1 3.79 15 237

h 30 1 3.93 15 245

i 0.001 1 4.33 16 253

j 5 10 3.58 15 239

k 5 0.001 4.12 15 424

l 30 10 2.83 14 232

m 0.001 0.001 4.83 16 262

n 0.001 10 4.17 15 244

o 30 0.001 3.85 13 215

Figure 5.7: Case (m) - The optimised slip surface for the bearing capacity test, with maximum concave
angles set to 0.001 for both the driving and resisting side, FMP = 4.38. The shape of the circular slip
surface is also marked with aline.
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5.2 Characteristic Slopes

The results presented below correspond to the calculations decribed in Chapter 4.2. The differences
in the values of the factors of safety are presented as explained in Chapter 2.3.3. The shape and
position of the optimised slip surfaces are evaluated by comparing them to the results from the
calculations performed in PLAXIS 2D calculations, described in Chapter 4.4. Further, the results
from altering the settings for the Optimise function are included for each characteristic slope.

5.2.1 Characteristic Slope 1: Horizontal
The following results for CS1 are presented in this chapter: the undrained analyses performed in
SLOPE/W and PLAXIS 2D with a surcharge load of 20 kPa, the results when altering the optimise
settings in SLOPE/W, the undrained analysis with a surcharge load of 43 kPa performed in SLOPE/W
and PLAXIS 2D, and the combined analysis with a surcharge load of 20 kPa performed in SLOPE/W.

Undrained Analysis, Load 20 kPa

The results for the undrained analysis of CS1, submitted to a surcharge load of 20 kPa, are presented
in Table 5.4. The value of FMP

circ was calculated to 1.91, which corresponds to the circular slip surface
in Figure 5.8. The value of FMP

opt was calculated to 1.68, giving a ∆F1 of 12%. The corresponding
optimised slip surface can be seen in Figure 5.9. The circular and the optimised slip surface from
SLOPE/W can be compared to Figure 5.10, which illustrates the slip surface generated in PLAXIS
2D. This slip surface corresponds to FPLAXIS which has a value of 1.87, giving a ∆F4 of 2% and
a ∆F5 of -11%.

Table 5.4: Results for CS1, undrained analysis, submitted to a surcharge load of 20 kPa.

CS1 - Undrained analysis - Load 20 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.91 0.001 ∆F1

1.91−1.68
1.91 = 12%

FMP
opt 1.68 0.001 ∆F2

1.91−1.77
1.91 = 7%

F JGcirc 1.77 0.06 ∆F3
1.68−0.25

1.68 = 85%

F JGopt 0.25 0.006 ∆F4
1.91−1.87

1.91 = 2%

FPLAXIS 1.87 - ∆F5
1.68−1.87

1.68 = −11%

The calculations with Janbu’s Generalised method both generated an error code; E999, which
occurs when the slip surface does not have a converged solution (GEO-SLOPE International Ltd.,
2008). Converged solutions for F JGcirc and F JGopt were obtained with the convergence tolerance set to

0.06 and 0.006 respectively. The value of F JGcirc was then calculated to 1.77, giving a ∆F2 of 7%.
The value of F JGopt was calculated to 0.25, giving a ∆F3 of 85%.
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Figure 5.8: The circular slip surface of the undrained analysis of CS1, with a surcharge load of 20 kPa,
FMP
circ = 1.91. The shape of the optimised slip surface is also marked. The dots above the slope represent

the rotation points in the search grid.

Figure 5.9: The optimised slip surface of the undrained analysis of CS1, with a surcharge load of 20 kPa,
FMP
opt = 1.68. The shape of the circular slip surface is also marked. The dots above the slope represent

the rotation points in the search grid.
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Figure 5.10: The slip surface obtained in PLAXIS 2D, when applying a surcharge load of 20 kPa to CS1,
FPLAXIS = 1.87. The optimised slip surface obtained with SLOPE/W is marked as a dotted line.

Altered Optimise Settings

The results of the changed settings for the number of starting and ending points, within the CS1
model for undrained conditions and with the applied surcharge load of 20 KPa, are presented in
Table 5.5.

Table 5.5: The results of changing the number of starting and ending points for the Optimise function,
within the undrained analysis of CS1 when applying a surcharge load of 20 kPa.

CS1 - Number of starting and ending points

Case Starting Ending FMP Volume [m3] Weigth [kN]

Circular - - 1.91 59 969

Default optimised 8 16 1.69 57 953

a 16 16 1.71 59 972

b 1 16 1.91 59 969

c 8 30 1.68 57 948

d 8 8 1.66 74 1 225

e 30 30 1.80 50 959

f 1 1 1.91 59 969

g 1 30 1.91 59 969
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In Case (d), the value of factor of safety is 1.66 and the corresponding slip surface is seen in Figure
5.11. In Case (e), the factor of safety was calculated to 1.80 and the corresponding slip surface can
be seen in 5.12. In Cases (b), (f) and (g), SLOPE/W did not generate any optimised slip surface.
In Case (a) and (c), the factor safety was calculated to 1.71 and 1.69 respectively.

Figure 5.11: Case (d) - The optimised slip surface in the undrained analysis of CS2, generated with 8
starting points and 8 ending points, resulting in FMP = 1.66. Both the circular and default optimised
slip surfaces are marked.

Figure 5.12: Case (e) - The optimised slip surface of the undrained analysis of CS2, optimised with 30
starting points and 30 ending points, resulting in FMP = 1.80. Both the circular and default optimised
slip surfaces are marked.

The results of the changed settings for the maximum concave angles, within the CS1 model for
undrained conditions and with the applied surcharge load of 20 KPa, are presented in Table 5.6.
The factors of safety vary in the range of 1.67, as for Case (l), and 1.69, as for Cases (k) and (n).
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Cases (h), (i), (j), (m) and (o), all have a value of the factor of safety of 1.68 which is the same as
for the case of the default settings.

Table 5.6: Results of changing, within the undrained CS1 model with an applied surcharge load of 20
kPa, the driving and resisting maximum concave angles in the Optimise settings.

CS1 - Driving and resisting maximum concave angles

Case Driving [◦] Resisting [◦] FMP Volume [m3] Weigth [kN]

Circular - - 1.91 59 969

Default optimised 5 1 1.68 57 953

h 30 1 1.68 60 999

i 0.001 1 1.68 61 1 006

j 5 10 1.68 58 960

k 5 0.001 1.69 57 943

l 30 10 1.67 61 1 008

m 0.001 0.001 1.68 58 957

n 0.001 10 1.69 58 957

o 30 0.001 1.68 62 1 019

Undrained Analysis, Load 43 kPa

The results for the undrained analysis of CS1, here submitted to a surcharge load of 43 kPa, are
presented in Table 5.7. The value of FMP

circ was calculated to 1.37, which corresponds to the circular
slip surface in Figure 5.13. The value of FMP

opt was calculated to 1.15, giving a ∆F1 of 16%. The
corresponding optimised slip surface can be seen in Figure 5.14. The circular and the optimised slip
surface from SLOPE/W can be compared to Figure 5.15, which illustrates the slip surface generated
in PLAXIS 2D. This slip surface corresponds to FPLAXIS which has a value of 1.33, which gives a
∆F4 of 3% and a ∆F5 of -16%.
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Table 5.7: Results for CS1, undrained analysis, submitted to a surcharge load of 43 kPa.

CS1 - Undrained analysis - Load 43 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.37 0.001 ∆F1

1.37−1.15
1.37 = 16%

FMP
opt 1.15 0.001 ∆F2

1.37−1.24
1.37 = 9%

F JGcirc 1.24 0.008 ∆F3
1.15−0.11

1.15 = 90%

F JGopt 0.11 0.09 ∆F4
1.37−1.33

1.37 = 3%

FPLAXIS 1.33 - ∆F5
1.15−1.33

1.15 = −16%

The calculations with Janbu’s Generalised method both generated error code E999; which occurs
when the slip surface does not have a converged solution (GEO-SLOPE International Ltd., 2008).
Converged solutions for F JGcirc and F JGopt were obtained with the convergence tolerance set the to

0.008 and 0.09 respectively. The value of F JGcirc was then calculated to 1.24, giving a ∆F2 of 9%.
The value of F JGopt was calculated to 0.11, giving a ∆F3 of 90%.

Figure 5.13: The circular slip surface of the undrained analysis of CS1, with a surcharge load of 43 kPa,
FMP
circ = 1.37. The default optimised slip surface is also marked. The dots above the slope represent the

rotation points in the search grid.
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Figure 5.14: The optimised slip surface of the undrained analysis of CS1, with a surcharge load of 43
kPa, FMP

opt = 1.15. The default optimised slip surface is also marked. The dots above the slope represent
the rotation points in the search grid.

Figure 5.15: The slip surface obtained in PLAXIS 2D, when applying a surcharge load of 43 kPa to CS1,
FPLAXIS = 1.33. The optimised slip surface obtained with SLOPE/W is marked as a dotted line.

Combined Analysis, Load 20 kPa

The results for the combined analysis of CS1, submitted to a surcharge load of 20 kPa, are presented
in Table 5.8. To avoid the slip surface to only intersect in the embankment, the maximum slip surface
depth was changed to 4 m. For the combined analysis, the value of FMP

circ was calculated to 1.69 and
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the corresponding circular slip surface can be seen in Figure 5.16. The value of FMP
opt was calculated

to 1.59, with a corresponding optimised slip surface seen in Figure 5.17.

Table 5.8: Results for CS1, combined analysis, submitted to a surcharge load of 20 kPa.

CS1 - Combined analysis - Load 20 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.69 0.001 ∆F1

1.69−1.59
1.69 = 6%

FMP
opt 1.59 0.001 ∆F2

1.69−1.45
1.69 = 14%

F JGcirc 1.45 0.008 ∆F3
1.59−0.93

1.59 = 42%

F JGopt 0.93 0.08

To enable calculation of F JGopt the convergence tolerance needed to be changed to 0.08, in order to

avoid error code E999, resulting in factor of safety of 0.93 and a ∆F3 of 42%. F JGcirc displayed error
code E997 for the default convergence settings, which indicates that the slip surface exit angle is too
steep (GEO-SLOPE International Ltd., 2008). When changing the convergence tolerance to 0.008,
F JGcirc was calculated to 1.45, giving a ∆F2 of 14%.

Figure 5.16: The circular slip surface of the combined analysis of CS1, with a surcharge load of 20 kPa,
FMP
circ = 1.69. The optimised slip surface is also marked. The dots above the slope represent the rotation

points in the search grid.
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Figure 5.17: The optimised slip surface of the combined analysis of CS1, with a surcharge load of 20
kPa, FMP

opt = 1.59. The circular slip surface is also marked. The dots above the slope represent the
rotation points in the search grid.

5.2.2 Characteristic Slope 2: Elongated
The following results for CS2 are presented in this chapter: the undrained analyses performed in
SLOPE/W and PLAXIS 2D with a surcharge load of 20 kPa, the results when altering the optimise
settings in SLOPE/W, the undrained analysis with a surcharge load of 43 kPa performed in SLOPE/W
and PLAXIS 2D, and the combined analysis with a surcharge load of 20 kPa performed in SLOPE/W.

Undrained Analysis, Load 20 kPa

The calculated results for the undrained analysis of CS2, submitted to a surcharge load of 20 kPa,
can be seen in Table 5.9. The value of FMP

circ was calculated to 1.39, which corresponds to the circular
slip surface in Figure 5.18. The value of FMP

opt was calculated to 1.34, giving a ∆F1 of 4%. The
corresponding optimised slip surface can be seen in Figure 5.19. The circular and the optimised slip
surface from SLOPE/W can be compared to Figure 5.20, which illustrates the slip surface generated
in PLAXIS 2D. This slip surface corresponds to FPLAXIS which has a value of 1.35, giving a ∆F4

of 3% and a ∆F5 of 0%.
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Table 5.9: Results for CS2, undrained analysis, submitted to a surcharge load of 20 kPa.

CS2 - Undrained analysis - Load 20 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.39 0.001 ∆F1

1.39−1.34
1.39 = 4%

FMP
opt 1.34 0.001 ∆F2

1.39−1.39
1.39 = 0%

F JGcirc 1.39 0.05 ∆F3
1.34−1.30

1.34 = 3%

F JGopt 1.30 0.07 ∆F4
1.39−1.35

1.39 = 3%

FPLAXIS 1.35 - ∆F5
1.34−1.35

1.34 = 0%

The calculations with Janbu’s Generalised method both generated an error code; E999, which
occurs when the slip surface does not have a converged solution (GEO-SLOPE International Ltd.,
2008). Converged solutions for F JGcirc and F JGopt were obtained with the convergence tolerance set

the to 0.05 and 0.07 respectively. The value of F JGcirc was then calculated to 1.39, giving a ∆F2 of
0%. The value of F JGopt was calculated to 1.30, giving a ∆F3 of 3%.

Figure 5.18: The circular slip surface of the undrained analysis of CS2, surcharge load of 20 kPa, FMP
circ

= 1.39. The optimised slip surface is also marked.
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Figure 5.19: The optimised slip surface of the undrained analysis of CS2, with an applied surcharge load
of 20 kPa, FMP

opt = 1.34. The circular slip surface is also marked.

Figure 5.20: The slip surface obtained in PLAXIS 2D, when applying a surcharge load of 20 kPa to CS2,
FPLAXIS = 1.35. The optimised slip surface obtained with SLOPE/W is marked as a dotted line.

Altered Optimise Settings

The results of the changed settings for the number of starting and ending points, within the CS2
model for undrained conditions and with the applied surcharge load of 20 KPa, are presented in
Table 5.10.
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Table 5.10: The results of changing the number of starting and ending points for the Optimise function,
within the undrained analysis of CS2 when applying a surcharge load of 20 kPa.

CS2 - Number of starting and ending points

Case Starting Ending FMP Volume [m3] Weigth [kN]

Circular - - 1.39 842 13 523

Default optimised 8 16 1.34 802 12 870

a 16 16 1.34 830 13 327

b 1 16 1.38 608 9 766

c 8 30 1.34 802 12 885

d 8 8 1.35 793 12 727

e 30 30 1.36 840 13 482

f 1 1 1.39 842 13 523

g 1 30 1.39 596 9 586

The values of FMP vary in the range of 1.34 and 1.39, which coincides with the values of FMP for
the default settings for the Optimise function and the circular slip surface. In Case (b), the value of
the factor of safety is 1.38 and the corresponding slip surface is seen in Figure 5.21. In Case (d), the
factor of safety was calculated to 1.35 and the corresponding slip surface can be seen in Figure 5.22.
In Case (e), the value of the factor of safety is 1.36, with a slip surface as seen in Figure 5.23. In
Case (f), SLOPE/W did not generate any optimised slip surface. In Cases (a) and (c), the factors
safety was calculated to 1.34 and in Case (g) to 1.39.

Figure 5.21: Case (b) - The optimised slip surface in the undrained analysis of CS2, generated with 1
starting point and 16 ending points, resulting in FMP = 1.38. The circular and the default optimised
slip surfaces are also marked.
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Figure 5.22: Case (d) - The optimised slip surface in the undrained analysis of CS2, generated with 8
starting points and 8 ending points, resulting in FMP = 1.35. The circular and the default optimised slip
surfaces are also marked.

Figure 5.23: Case (e) - The optimised slip surface in the undrained analysis of CS2, generated with 30
starting points and 30 ending points, resulting in FMP = 1.36. The circular and the default optimised
slip surfaces are also marked.

The results of the changed settings for the maximum concave angles, within the C21 model for
undrained conditions and with the applied surcharge load of 20 KPa, are presented in Table 5.11.
The factors of safety for all cases, (h) through (o), is calculated to 1.34, despite changing the
settings for the maximum concave angles.
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Table 5.11: Results of changing, within the undrained CS2 model with an applied surcharge load of 20
kPa, the driving and resisting maximum concave angles in the Optimise settings.

CS2 - Driving and resisting maximum concave angles

Case Driving [◦] Resisting [◦] FMP Volume [m3] Weigth [kN]

Circular - - 1.39 842 13 523

Default optimised 5 1 1.34 802 12 870

h 30 1 1.34 802 12 870

i 0.001 1 1.34 828 13 292

j 5 10 1.34 802 12 870

k 5 0.001 1.34 802 12 870

l 30 10 1.34 802 12 870

m 0.001 0.001 1.34 828 13 292

n 0.001 10 1.34 828 13 292

o 30 0.001 1.34 802 12 870

Undrained Analysis, Load 43 kPa

The results for the undrained analyisis of CS2 when submitted to a surcharge load of 43 kPa can
be seen in Table 5.12. The value of FMP

circ was calculated to 1.28, which corresponds to the circular
slip surface in Figure 5.24. The value of FMP

opt was calculated to 1.20, giving a ∆F1 of 6%. The
corresponding optimised slip surface can be seen in Figure 5.25. The circular and the optimised slip
surface from SLOPE/W can be compared to Figure5.26, which illustrates the slip surface generated
in PLAXIS 2D. This slip surface corresponds to FPLAXIS which has a value of 1.22, which gives a
∆F4 of 5% and a ∆F5 of -2%.

Table 5.12: Results for CS2, undrained analysis, submitted to a surcharge load of 43kPa.

CS2 - Undrained analysis - Load 43 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.28 0.001 ∆F1

1.28−1.20
1.28 = 6%

FMP
opt 1.20 0.001 ∆F2

1.28−1.26
1.28 = 2%

F JGcirc 1.26 0.06 ∆F3
1.20−1.14

1.20 = 5%

F JGopt 1.14 0.07 ∆F4
1.28−1.22

1.28 = 5%

FPLAXIS 1.22 - ∆F5
1.20−1.22

1.20 = −2%
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The calculations with Janbu’s Generalised method both generated an error code; E999, which
occurs when the slip surface does not have a converged solution (GEO-SLOPE International Ltd.,
2008). Converged solutions for F JGcirc and F JGopt were obtained with the convergence tolerance set

the to 0.06 and 0.07 respectively. The value of F JGcirc was then calculated to 1.26, giving a ∆F2 of
2%. The value of F JGopt was calculated to 1.14, giving a ∆F3 of 5%.

Figure 5.24: The circular slip surface of the undrained analysis of CS2, with a surcharge load of 43 kPa,
FMP
circ = 1.28. The shape of the optimised slip surface is also marked.

Figure 5.25: The optimised slip surface of the undrained analysis of CS2, with a surcharge load of 43
kPa, FMP

opt = 1.20. The shape of the circular slip surface is also marked.

Figure 5.26: The slip surface obtained in PLAXIS 2D, when applying a surcharge load of 43 kPa to
CS2, FPLAXIS = 1.22. The shape of the optimised slip surface, obtained with SLOPE/W, is marked as
a dotted line.
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Combined Analysis, Load 20 kPa

The results for the combined analysis of CS2, submitted to a surcharge load of 20 kPa, are
presented in Table 5.13. For the combined analysis, the value of FMP

circ was calculated to 1.35 and
the corresponding circular slip surface can be seen in Figure 5.27. The value of FMP

opt was
calculated to 1.31, with a corresponding optimised slip surface seen in Figure 5.28.

Table 5.13: Results for CS2, combined analysis, submitted to a surcharge load of 20 kPa.

CS2 - Combined analysis - Load 20 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.35 0.001 ∆F1

1.35−1.31
1.35 = 3%

FMP
opt 1.31 0.001 ∆F2

1.35−1.31
1.35 = 3%

F JGcirc 1.31 0.004 ∆F3
1.31−1.22

1.31 = 7%

F JGopt 1.22 0.002

The calculations with Janbu’s Generalised method both generated an error code; E999, which
occurs when the slip surface does not have a converged solution (GEO-SLOPE International Ltd.,
2008). Converged solutions for F JGcirc and F JGopt were obtained with the convergence tolerance set to

0.004 and 0.002 respectively. The value of F JGcirc was then calculated to 1.31, giving a ∆F2 of 3%.
The value of F JGopt was calculated to 1.22, giving a ∆F3 of 7%.

Figure 5.27: The circular slip surface of the combined analysis of CS2, with a surcharge load of 20 kPa,
FMP
circ = 1.35. The shape of the optimised slip surface is also marked.
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Figure 5.28: The optimised slip surface of the combined analysis of CS2, with a surcharge load of 20
kPa, FMP

opt = 1.31. The shape of the circular slip surface is also marked.

5.2.3 Characteristic Slope 3: Steep
The following results for CS3 are presented in this chapter: the undrained analyses performed in
SLOPE/W and PLAXIS 2D with a surcharge load of 20 kPa, the results when altering the optimise
settings in SLOPE/W, the undrained analysis with a surcharge load of 43 kPa performed in SLOPE/W
and PLAXIS 2D, and the combined analysis with a surcharge load of 20 kPa performed in SLOPE/W.

Undrained Analysis, Load 20 kPa

The results for the undrained analysis of CS3, submitted to a surcharge load of 20 kPa, are
presented in Table 5.14. The value of FMP

circ was calculated to 1.40, which corresponds to the
circular slip surface in Figure 5.29. The value of FMP

opt was calculated to 1.38, giving a ∆F1 of 1%.
The corresponding optimised slip surface can be seen in Figure 5.30. The circular and the
optimised slip surface from SLOPE/W can be compared to Figure 5.31, which illustrates the slip
surface generated in PLAXIS 2D. This slip surface corresponds to FPLAXIS which has a value of
1.41, giving a ∆F4 of -1% and a ∆F5 of -2%.

Table 5.14: Results for CS3, undrained analysis, submitted to a surcharge load of 20 kPa.

CS3 - Undrained analysis - Load 20 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.40 0.001 ∆F1

1.40−1.38
1.40 = 1%

FMP
opt 1.38 0.001 ∆F2

1.40−1.32
1.40 = 6%

F JGcirc 1.32 0.09 ∆F3
1.38−1.43

1.38 = −4%

F JGopt 1.43 0.03 ∆F4
1.40−1.41

1.40 = −1%

FPLAXIS 1.41 - ∆F5
1.38−1.41

1.38 = −2%

The calculations with Janbu’s Generalised method both generated an error code; E999, which
occurs when the slip surface does not have a converged solution (GEO-SLOPE International Ltd.,
2008). Converged solutions for F JGcirc and F JGopt were obtained with the convergence tolerance set to

0.09 and 0.03 respectively. The value of F JGcirc was then calculated to 1.32, giving a ∆F2 of 6%.
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The value of F JGopt was calculated to 1.43, giving a ∆F3 of -4%.

Figure 5.29: The circular slip surface of the undrained analysis of CS3, with a surcharge load of 20 kPa,
FMP
circ = 1.40. The shape of the optimised slip surface is also marked. The dots above the slope represent

the rotation points in the search grid.

Figure 5.30: The optimised slip surface of the undrained analysis of CS3, with a surcharge load of 20
kPa, FMP

opt = 1.38. The shape of the circular slip surface is also marked. The dots above the slope
represent the rotation points in the search grid.
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Figure 5.31: The slip surface obtained in PLAXIS 2D, when applying a surcharge load of 20 kPa to
CS3, FPLAXIS = 1.41. The shape of the optimised slip surface, obtained with SLOPE/W, is marked as
a dotted line.

Altered Optimise Settings

The results of the changed settings for the number of starting and ending points, within the CS3
model for undrained conditions and with the applied surcharge load of 20 kPa, are presented in Table
5.15.

Table 5.15: The results of changing the number of starting and ending points for the Optimise function,
within the undrained analysis of CS3 when applying a surcharge load of 20 kPa.

CS3 - Number of starting and ending points

Case Starting Ending FMP Volume [m3] Weigth [kN]

Circular - - 1.40 108 1 748

Default optimised 8 16 1.38 111 1 798

a 16 16 1.37 112 1 807

b 1 16 1.38 106 1 707

c 8 30 1.37 111 1 795

d 8 8 1.39 113 1 823

e 30 30 1.39 109 1 754

f 1 1 1.40 108 1 748

g 1 30 1.38 106 1 707

Case (b) and Case (g) both results in a value of the factor of safety of 1.38, which is equal to the
factor of safety for the default settings. The corresponding slip surfaces have however a slightly
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different shape as seen in Figure 5.32. In Cases (a) and (c) the factor of safety also has a value of
1.37 but the slip surface shape is very similar to the default slip surface shape. For Cases (d), (e)
and (f) the factors of safety increases compared to the default value, but the slip surface shapes are
also for these cases more or less identical to the default shape.

Figure 5.32: Case (b) and Case (g) - The optimised slip surface in the undrained analysis of CS2,
generated with 1 starting point and 16 ending points for Case (b) and 1 starting point and 30 ending
points for Case (g), resulting in FMP = 1.38. Both the circular and the default optimised slip surfaces
are marked.

The results of the changed settings for the maximum concave angles, within the CS1 model for
undrained conditions and with the applied surcharge load of 20 kPa, are presented in Table 5.16.
The factors of safety for all cases, (h) through (o), is calculated to 1.38, despite changing the
settings for the maximum concave angles.
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Table 5.16: Results of changing, within the undrained CS3 model with an applied surcharge load of 20
kPa, the driving and resisting maximum concave angles in the Optimise settings.

CS3 - Driving and resisting maximum concave angles

Case Driving [◦] Resisting [◦] FMP Volume [m3] Weigth [kN]

Circular - - 1.40 108 1 748

Default optimised 5 1 1.38 111 1 798

h 30 1 1.38 111 1 798

i 0.001 1 1.38 114 1 840

j 5 10 1.38 111 1 798

k 5 0.001 1.38 111 1 798

l 30 10 1.38 111 1 798

m 0.001 0.001 1.38 114 1 840

n 0.001 10 1.38 114 1 840

o 30 0.001 1.38 111 1 798

Undrained Analysis, Load 43 kPa

The results for the undrained analysis of CS3, here submitted to a surcharge load of 43 kPa, are
presented in Table 5.17. The value of FMP

circ was calculated to 1.20, which corresponds to the circular
slip surface in Figure 5.33. The value of FMP

opt was calculated to 1.18, giving a ∆F1 of 2%. The
corresponding optimised slip surface can be seen in Figure 5.34. The circular and the optimised slip
surface from SLOPE/W can be compared to Figure 5.35, which illustrates the slip surface generated
in PLAXIS 2D. This slip surface corresponds to FPLAXIS which has a value of 1.20, which gives a
∆F4 of 0% and a ∆F5 of -2%.

Table 5.17: Results for CS3, undrained analysis, submitted to a surcharge of 43 kPa.

CS3 - Undrained analysis - Load 43 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.20 0.001 ∆F1

1.20−1.18
1.20 = 2%

FMP
opt 1.18 0.001 ∆F2

1.20−1.14
1.20 = 5%

F JGcirc 1.14 0.08 ∆F3
1.18−1.05

1.18 = 11%

F JGopt 1.05 0.09 ∆F4
1.20−1.20

1.20 = 0%

FPLAXIS 1.20 - ∆F5
1.18−1.20

1.18 = −2%
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The calculations with Janbu’s Generalised method both generated an error code; E999, which
occurs when the slip surface does not have a converged solution (GEO-SLOPE International Ltd.,
2008). Converged solutions for F JGcirc and F JGopt were obtained with the convergence tolerance set to

0.08 and 0.09 respectively. The value of F JGcirc was then calculated to 1.14, giving a ∆F2 of 5%.
The value of F JGopt was calculated to 1.05, giving a ∆F3 of 11%.

Figure 5.33: The circular slip surface of the undrained analysis of CS3, with a surcharge load of 43 kPa,
FMP
circ = 1.20. The shape of the optimised slip surface is also marked. The dots above the slope represent

the rotation points in the search grid.

Figure 5.34: The optimised slip surface of the undrained analysis of CS3, with a surcharge load of 43
kPa, FMP

opt = 1.18. The shape of the circular slip surface is also marked. The dots above the slope
represent the rotation points in the search grid.
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Figure 5.35: The slip surface obtained in PLAXIS 2D, when applying a surcharge load of 43 kPa to
CS3, FPLAXIS = 1.20. The shape of the optimised slip surface, obtained with SLOPE/W, is marked as
a dotted line.

Combined Analysis, Load 20 kPa

The results for the combined analysis of CS3, submitted to a surcharge load of 20 kPa, are
presented in Table 5.18. The inclination of the slope required that the minimum allowed slip surface
depth was changed to 4 m, in order to avoid a slip surface that did not intersect the embankment.

Table 5.18: Results for CS3, combined analysis, submitted to a surcharge load of 20 kPa.

CS3 - Combined analysis - Load 20 kPa

F Value Conv. tol. ∆F Value

FMP
circ 1.00 0.001 ∆F1

1.00−0.99
1.00 = 1%

FMP
opt 0.99 0.001 ∆F2

1.00−0.98
1.00 = 2%

F JGcirc 0.98 0.001 ∆F3
0.99−0.90

0.99 = 9%

F JGopt 0.90 0.02

For the combined analysis, the value of FMP
circ was calculated to 1.00 and the corresponding circular slip

surface can be seen in Figure 5.36. The value of FMP
opt was calculated to 0.99, with a corresponding

optimised slip surface seen in Figure 5.37. F JGcirc could be calculated with the default value of
0.001, resulting in av value of 0.98 and a ∆F2 of 2%. F JGopt displayed error code E999, meaning
that the calculation did not converge (GEO-SLOPE International Ltd., 2008). When changing the
convergence tolerance to 0.02, F JGcirc was calculated to 0.90, giving a ∆F3 of 9%.
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Figure 5.36: The circular slip surface of the combined analysis of CS3, with a surcharge load of 20 kPa,
FMP
circ = 1.00. The shape of the optimised slip surface is also marked. The dots above the slope represent

the rotation points in the search grid.

Figure 5.37: The optimised slip surface of the combined analysis of CS3, with a surcharge load of 20
kPa, FMP

opt = 0.99. The shape of the circular slip surface is also marked. The dots above the slope
represent the rotation points in the search grid.

5.3 Steep Slope with Dry Crust

The results for the steep slope with a dry crust is presented in Table 5.19. The circular slip surface
shape for the slope with the dry crust is illustrated in Figure 5.38, with a corresponding value
for FMP

circ of 1.34. With the default settings for the maximum concave angles for the driving and
resisting side, the optimised slip surface result in a slip surface shape as illustrated in Figure 5.39,
with a corresponding FMP

opt of 1.15. For the optimised case, it can be seen that the slip surface has
a distinct concave shape at its deepest part. The value of ∆F1 is calculated to 14%.
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Table 5.19: Results for steep slope with dry crust, undrained analysis with an applied surcharge load of
15 kPa.

Steep slope with dry crust

F Value ∆F Value

FMP
circ 1.34 ∆F1

1.34−1.15
1.34 = 14%

FMP
opt 1.15 ∆F4

1.34−1.31
1.34 = 2%

FPLAXIS 1.31 ∆F5
1.15−1.31

1.15 = −14%

Figure 5.38: The circular slip surface of the steep slope with a dry crust, with a corresponding factor of
safety of 1.34. The optimised slip surface is also marked.
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Figure 5.39: The optimised slip surface of the steep slope with a dry crust, using the default settings
for the concave angles, with a factor of safety of 1.15. The circular slip surface is also marked.

The resulting slip surface, when modelling the slope in PLAXIS 2D, is illustrated in Figure 5.40. As
the figure shows, the slip surface reaches over a greater area than it does in SLOPE/W. Therefore,
the geometry was modified where the ground surface was made horizontal. Figure 5.41 shows the
slip surface shape for this case. The resulting FPLAXIS is computed to 1.31 for both cases, and
no concave slip surface shape was obtain in either of the two models in PLAXIS 2D. DeltaF4 and
DeltaF5 are calculated to 2% and -14% respectively.

Figure 5.40: The slip surface obtained for the steep slope with a dry crust in PLAXIS 2D, the obtained
factor of safety is 1.31.
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Figure 5.41: The slip surface obtained for the steep slope with a dry crust in PLAXIS 2D with a modified
geometry, the obtained factor of safety is 1.31.

The results, in terms of values of factors of safety and volume and weight of slip surfaces, when
altering the maximum angles for the driving and resisting sides are presented in Table 5.20. As can
be seen, the values of the factors of safety vary between 1.15 (Case (k)) and 1.22 (Cases (i) and
(n)). The volumes and the weights for the different cases indicates only small variations of the slip
surface.

Table 5.20: Results of changing the driving and resisting maximum concave angles.

Steep slope dry crust - Driving and resisting maximum concave angles

Case Driving [◦] Resisting [◦] FMP Volume [m3] Weigth [kN]

Circular - - 1.34 76 1 443

Default optimised 5 1 1.15 75 1 425

h 30 1 1.16 74 1 413

i 0.001 1 1.22 75 1 419

j 5 10 1.19 74 1 404

k 5 0.001 1.15 75 1 424

l 30 10 1.17 74 1 410

m 0.001 0.001 1.20 76 1 438

n 0.001 10 1.22 75 1 429

o 30 0.001 1.16 74 1 413

When lowering the value for the maximum value on the driving side, as in Case (i), illustrated in
Figure 5.42, no concave shape is obtained and the factor of safety, with a value of 1.22, is higher
than for the default optimised slip surface. If instead lowering the value for the maximum concave
angle on the resisting side, as in Case (k), the concave shape of the slip surface appears again as can
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be seen in Figure 5.43, and the factor of safety is computed to 1.15. If lowering the concave angle
on both the driving and resisting side, as in Case (m), the slip surface obtains a shape that is not
concave, as in Figure 5.44, and the factor of safety is computed to 1.20.

Figure 5.42: Case (i) - The optimised slip surface of the steep slope with dry crust, generated with the
maximum concave angles set to 0.001◦ and 1◦ for the driving and resisting side respectively, FMP =
1.22.

Figure 5.43: Case (k) - The optimised slip surface of the steep slope with dry crust, generated with the
maximum concave angles set to 5◦ and 0.001◦ for the driving and resisting side respectively, FMP =
1.15.
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Figure 5.44: Case (m) - The optimised slip surface of the steep slope with dry crust, generated with the
maximum concave angles set to 0.001◦ and 0.001◦ for the driving and resisting side respectively, FMP

= 1.20.

When lowering the concave angle on the driving side and set the concave angle on the driving side
to its maximum, as in Case (g), no concave shape occurs as can be seen in Figure 5.45. The factor
of safety is for this case 1.22. When doing the opposite, as for Case (h), the slip surface adopts an
uneven concave shape as illustrated in Figure 5.46 and the factor of safety decreases to a value of
1.16.

Figure 5.45: Case (n) - The optimised slip surface of the steep slope with dry crust, generated with the
maximum concave angles set to 0.001◦ and 10◦ for the driving and resisting side respectively, FMP =
1.22.
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Figure 5.46: Case (o) - The optimised slip surface of the steep slope with dry crust, generated with the
maximum concave angles set to 30◦ and 0.001◦ for the driving and resisting side respectively, FMP =
1.16.

Case (l), seen in Figure 5.47, illustrates the shape of the optimised slip surface when the maximum
concave angles are raised to the maximum permitted values. The corresponding factor of safety is
calculated to 1.17.

Figure 5.47: Case (l) - The optimised slip surface of the steep slope with dry crust, generated with the
maximum concave angles set to 30◦ and 10◦ for the driving and resisting side respectively, FMP = 1.17.
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6 Discussion

In this chapter, the results of each modelled slope are discussed following the same order as in
Chapter 5. The general applicability of the Optimise function is then discussed based on the overall
observations. This is followed by a discussion about the uncertainties within the study and the
potential sources of error and, lastly, suggestions for further investigations on this subject.

6.1 Bearing Capacity Test

The bearing capacity test corresponds to the derivation of the bearing capacity for undrained
analysis, and the calculated factor of safety is compared to the bearing capacity factor. The results
show that, for the circular slip surface, SLOPE/W successfully identifies the critical kinematically
correct slip surface for both the shape and the value of the corresponding factor of safety. For the
optimised slip surface however, the result corresponds to a statically correct slip surface with a
value for the factor of safety even lower than the value for a slip surface with that shape according
to the bearing capacity theory.

These results demonstrate the main weakness of the Optimise function; that it does not take
kinematics or any other physical limitations into account. This explains the overly conservative
results that the Optimise function sometimes produces. Instead of this behaviour, it would be
desirable that the Optimise function, for this geometry and loading case, would identify the both
static and kinematic correct slip surface and calculate a factor of safety close to the derived value
of 5.14. This is supported by the calculation of verification of the shape of the slip surface in
PLAXIS 2D, which computes a factor of safety of 5.15.

When systematically changing the number of starting and ending points in the Optimise function
settings, the results show that all of the alterations generate a higher value of FMP than for
optimising with the default settings. Case (e) generates the value closest to the both statically and
kinematically correct bearing capacity factor, with a FMP of 5.12. In this case, both the number of
starting and ending points is set to 30 which makes the shape of the optimised slip surface more
fixed to the shape of the circular slip surface. Therefore, the resulting slip surface lacks the correct
entry and exit angles that it should have according to the bearing capacity theory and is instead
more circular in its shape. As it was known what the correct value for the factor of safety is for this
case, it was possible to change the optimise settings to obtain that value. Such adjustments are
however difficult to make when the value of the correct factor of safety, as in most cases, is
unknown.

The slip surface obtained with the default settings for the Optimise function has a distinct concave
shape on the driving side, and a slightly convex shape on the resisting side. By controlling the
maximum concave angles, this shape disappears and the factor of safety can be raised to some
extent. It is however not possible to obtain the desired value of FMP of 5.14.

6.2 CS1 Horizontal Geometry

CS1, the horizontal slope, can be seen as an extended version of the bearing capacity test, where
an embankment is added to the horizontal ground surface. This slope represents a more commonly
performed stability analysis as embankments on a horizontal ground surface are often occurring
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stability problem within the design of roads and railways.

The undrained analysis of CS1, with a surcharge load of 20 kPa, performed in SLOPE/W shows
similar results as obtained for the bearing capacity test. The optimised slip surface for CS1 has a
shape that recalls of a statically correct shape, however it consists of a circular arc at the deepest
part. The difference in value of the factor of safety for the circular and optimised slip surface, ∆F1,
is 12%, which can be regarded as a significant difference. When calculating F for the two slip
surfaces shape with Janbu’s Generalised calculation method, two different types of situations occur.
For F JGcirc the convergence tolerance has to be changed to 0.06 to obtain a result. However, for
F JGopt , the calculation converge at 0.006 but the obtained value is only 0.25, with ∆F3 of 85%. This
can be seen as an indication of that the optimised slip surface shape is incorrect for this case.
Furthermore, the convergence difficulty itself indicate that calculations performed with the
Morgenstern-Price method are mathematically correct, but not necessarily physically plausible.

The same analysis performed in PLAXIS 2D results in a slip surface shape that lies somewhere
between the two shapes from SLOPE/W; the slip surface is almost circular but the exit part consist
of an almost straight line. It can be noted that the slip surface obtained in PLAXIS 2D is deeper
than the slip surfaces in SLOPE/W. FPLAXIS is computed to 1.87, which is closer to FMP

circ than
to FMP

opt . This indicates that the optimisation in SLOPE/W is not reliable in this case; it is rather a
statically than a kinematically correct slip surface shape, but also that there might exist a critical
composite slip surface.

Altering the number of starting and ending points for the optimise settings within the same
scenario does not generate any notable results in terms of a more kinematically correct slip surface
shape. For Case (d), the resulting slip surface has a very similar shape as for the default case, but it
is deeper and the factor of safety becomes slightly lower. For Case (e), the slip surface is locked to
the circular shape as the starting and ending points are set to the maximum value of 30. With
these adjustments, it can be seen that the ending and exiting corners gets a more straight shape,
which is more similar to the slip surface obtained in PLAXIS 2D, but most interesting is that the
factor of safety is calculated to 1.80, which almost exactly halfway between FMP

circ and FMP
opt .

Altering the driving and resisting maximum concave angles did not result in any notable changes,
which were expected as the default slip surface shape does not demonstrate any concave angles.

When increasing the surcharge load to 43 kPa, both slip surfaces expand in volume while
maintaining the same shapes as for the lower load. The optimised slip surface is then deeper and
intersects the second clay layer. This intersection is notable since this clay has higher shear strength
than the overlying clay and a real composite slip surface probably would not penetrate this layer,
which is also supported by the slip surface obtained in PLAXIS 2D.

The calculated factors of safety have similar differences as for the lower load, with a ∆F1 of 16%
and a FPLAXIS again closer to FMP

circ than to FMP
opt . The calculations performed with Janbu’s

Generalised method show similar values in terms of ∆F2 and ∆F3, but the convergence tolerance
needed to be changed to 0.008 and 0.09 for F JGcirc and F JGopt respectively, which is the opposite
behaviour as for the case with the lower load. There is no obvious explanation for this, except that
the value for F JGopt is too low and clearly incorrect.

The combined analysis for CS1 performed in SLOPE/W, with a surcharge load of 20 kPa, resulted in
a slip surface that only intersects the embankment by the default value of the minimum slip surface
depth. To obtain a deeper slip surface, the minimum slip surface depth was set to 4 m. This resulted
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in an optimised slip surface shape that visibly seems realistic, with a ∆F1 of 6%. The calculations
performed with Janbu’s Generalised calculation method did not converge with the default settings.
With the convergence tolerance changed F JGcirc and F JGopt is lower than when using Morgernstern-Price
calculation method, with ∆F2 and ∆F3 of 14% and 42%. The result of error code E997 for the
circular slip surface, which indicates that the slip surface exit angle is too steep, is unexpected as the
angle does not look very steep.

6.3 CS2 Elongated Slope

For the elongated slope, CS2, the results for the undrained analysis, with a surcharge load of 20
kPa, shows that the Optimise function in this case gives a reasonable value for FMP

opt when

comparing to FMP
circ with a value for ∆F1 of 4%. The optimised slip surface shape is seemingly

realistic, as an elongated slope is presumed to have a composite slip surface shape rather than a
circular. The shape of the optimised slip surface is also seems kinematically correct. The
calculations performed with Janbu’s Generalised method resulted in an identical value for the factor
of safety for the circular slip surface shape, with a ∆F2 of 0%, and a value for the optimised slip
surface within the same range with a ∆F1 of 3%.

In the analysis performed in PLAXIS 2D for this case, with FPLAXIS calculated to 1.35, results in
a ∆F5 of 0%. The slip surface shape obtained in PLAXIS 2D is also very similar to the optimised
slip surface shape in SLOPE/W and is clearly a composite slip surface shape. The results indicate
that the Optimise function manages to identify an accurate composite slip surface shape and a
correct value for the factor of safety for this elongated slope.

Altering the starting and ending points in, in the optimise settings, results in a few cases of
questionable slip surface shapes. For Cases (b) and (g), which are the same types of situations
where the starting points are decreased to 1 and the ending points are set to the default value of 16
and increased to 30 respectively, result in a factor of safety that is close or equal to the default
calculation of FMP

opt . The shapes of the slip surfaces are similar to the optimised slip surface but
significantly shallower. Altering the maximum concave angles on the driving and resisting side
resulted in a factor of safety equal to FMP

opt for all cases, with only slightly differences in volume and
weights.

When increasing the load within the undrained analysis to 43 kPa, the differences in terms of ∆F
are only slightly changed when comparing this to the results of the previous loading case of 20 kPa.
As for the case with a lower load, the optimised slip surface shape and factor of safety seems reliable.
Also for the combined analysis the result for the optimise function appear reasonable, and the factors
of safety are as expected lower than for the undrained analysis.

6.4 CS3 Steep Slope

The steep slope, CS3, shows a seemingly reasonable result for the optimised slip surface, within the
undrained analysis of applying a surcharge load of 20 kPa, as ∆F1 is only 1%. Although the overall
shape is expected, the slip surface would probably be smoother in a real case of failure. When
calculating the two slip surfaces with Janbu’s Generalised method, the convergence tolerance had
to be increased after which F JGopt was calculated to 1.43 which is a higher value than for FMP

circ of

1.32. This is notable, but also possible since F JGopt is not actually an optimisation of F JGcirc, but a

recalculation of FMP
opt .
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When comparing the optimised and the circular slip surfaces to the slip surface obtained in PLAXIS
2D, it seems as if the circular slip surface more accurately capture the resisting side of the slip
surface while the optimised capture the entry angle on the driving side. The result from PLAXIS 2D
shows, besides a steep entry angle, a concave shape on the driving side which might be due to the
coarseness of the mesh. The fact that the value of FPLAXIS is higher than both FMP

circ and FMP
opt ,

with a ∆F4 of -1% and ∆F5 of -2%, indicates that there does not exist any critical composite slip
surface in reality. Altering the optimise settings did not result in any significant changes neither for
altering the number of starting and ending points nor changing the maximum concave angles.

When applying a surcharge load of 43 kPa within the undrained analysis, the results follow a similar
pattern as for loading with 20 kPa. The combined analysis results in more shallow slip surfaces,
due to the inclination of the slope, since the shear strength in this case is partly dependent on the
friction angle. ∆F1 is only 1%, and it is not possible nor a priority, to deem either slip surface as the
more accurate. The overall conclusion from CS3 is that the Optimise function is not applicable, nor
necessary, for this case.

6.5 Steep Slope with Dry Crust

This slope was created to investigate how the settings of the Optimise function, that control the
maximum concave angles of the driving and resisting side, influence the result of the optimisation.
The slip surface obtained with the default optimise settings shows a distinct concave shape at the
bottom, which strongly compromises kinematics. The result from altering the concave angles shows
that this unreasonable shape could be managed to some extent by changing the angles to the value
of 0.001◦ on the driving side as in Cases (i) and (l) sides, or which results in the smoothest slip
surface shape, use the value of 0.001◦ on both the driving and resisting sides as in Case (m).

The obtained value of FMP
opt , with the default values for the angles, can also be considered as too

conservative as the value of ∆F1 is 14%, which is a significantly high difference. If changing the
settings for the Optimise function, the factors of safety are for all cases slightly higher than FMP

opt

with the default settings but still notably low.

The result obtained from PLAXIS 2D confirms that the Optimise function is not applicable for this
slope. The slip surface shape is similar to the circular slip surface shape in SLOPE/W, and the
value of FPLAXIS indicates that FMP

opt is too low as ∆F5 is -14% whereas ∆F4 is only 2%. The
adjustments made for Case (m) generates a slip surface visibly closest to the result from PLAXIS
2D, with an almost circular slip surface shape except for the slightly steeper entry angle, however
the resulting value of the factor of safety of 1.20 is still low.

When the maximum concave angles are permitted to reach the maximum value of 30◦ and 10◦ on the
driving and resisting side respectively, as in Case (l), the result further indicates that these settings
can have a significant effect and that altering them can be useful.

6.6 General Applicability of the Optimise Function

The inconsistency of the values of ∆F1 are to be expected since it is known that the need to
analyse composite slip surfaces, i.e. to optimise the slip surfaces, vary for different types of slopes.
For example, for a slope in a deep homogeneous clay layer, the critical slip surface would be
expected to be more or less circular and analysis of a composite slip surface should not be
considered required.
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As a software based on limit equilibrium, SLOPE/W does not account for physical admissibility.
The algorithm simply concerns convergence of the mathematical expression for force equilibrium
and/or moment. When using the Grid and Radius slip surface generation method, this is not a
problem as the user already knows and approves of the shape of slip surfaces to be computed.
These two components; the mathematics and physics, together form a method that generates
reasonable results.

When using the Optimise function, no further constraints are put on the slip surface and the shape
is allowed to take any, mathematically converging, shape. Therefore the Optimise function in
SLOPE/W cannot, and is neither supposed to, be regarded as a method for slip surface generation
as it only satisfies the mathematical aspect of the moment of the slip slice and not the physical i.e.
the kinematic aspect. However, the Optimise function should be regarded as a tool. Further, when
using this tool, it might actually be preferable that the Optimise function generates unreasonable
results that the user can disregard than that the user misses a real slip surface because of
constraints.

The bearing capacity test clearly shows, that even if a composite slip surface is known and
expected, one cannot rely on the Optimise function to identify this particular slip surface but may
surpass it if a mathematically more critical slip surfaces exists. As mentioned above, this is an
inherit limitation of the Optimise function.

The only case where the Optimise function seems directly applicable is for the elongated slope,
CS2. However, as the Optimise function is not applicable to horizontal ground surfaces with
embankments as in CS1 nor for steep slopes such as CS3, it is still undetermined at which
inclination the Optimise function becomes feasible.

When increasing the load, as done for the characteristic slopes, the results follow the same pattern
of slightly higher ∆F1 except for the steep slope where ∆F1 remain the same for the two loading
cases. The shape of the optimised slip surface, except for as expected being deeper for the greater
load, are essentially the same. This indicates that the loading case have less influence on the
applicability of the Optimise function than the geometry of the slopes. The same can be said for
the combined analyses.

Altering the optimise settings of the maximum concave angles can have an improving effect on the
slip surface shape and corresponding factor safety, in cases where optimising with the default
settings generate a questionable slip surface shape. The greatest challenge however, as for all
stability modelling, is the evaluation of the plausibility of the generated slip surfaces. Subsequently,
evaluating the effects of the setting alterations is equally or even more difficult. With that said, the
programming of the Optimise function certainly leaves room for experimenting with the settings.
As mentioned above, the Optimise function is primarily a tool for experimenting with composite slip
surfaces, in cases where such may be expected. Besides the attention to unreasonable results that
is always required, when applying the optimise function, extra focus should be directed to kinematic
admissibility.

Altering the starting and ending points for the optimise settings for the different models does not
demonstrate any consistent pattern for the results. The different cases for the selected slopes
behave contrarily; the value for factor of safety increase and decrease rather depending on the
geometry conditions than the number of starting and ending points.

The current, limited transparency of how the Optimise function is programmed can cause difficulty
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for the user to evaluate the results. The Optimise function could be a more powerful, effective and
reliable tool for detecting critical composite slip surfaces if additional guidance for its application
was available. It is therefore suggested to raise the question to GEO-SLOPE International Ltd. of
more extensive user guidance specific to the Optimise function.

It would be inconsistent to expect the Optimise function to be completely reliable i.e. to never
generate questionable slip surface shapes and values for the factor of safety. The optimise function
has potential of being, and is already being used as, a useful tool for identifying composite slip surface
where such are expected to be critical. However, as it does not consider kinematics, it lacks the
ability of disregarding unreasonable results and should therefore be used with great caution.

6.7 Uncertainties and Potential Sources of Error

The fact that the results of the calculations of verification, ∆F2 and ∆F3, also vary significantly is
less expected. It is known that the two calculation methods, the Morgenstern-Price method and
the Janbu’s Generalised method, produce slightly different results. However, these differences were
expected to be more consistent in their magnitude. The results from this study are not sufficient to
draw such conclusions but the convergence difficulties, when recreating the slip surfaces obtained
with the Morgenstern-price calculations method with Janbu’s Generalised calculation method, may
indicate that. If that is the case, this has a greater influence on the optimised slip surface than the
circular, as ∆F3 is consequently larger than ∆F2. More likely however, is that the Janbu’s
Generalised calculation method struggles with the convergence because the line of thrust is fixated
to the lower thirds of the slices in combination with forcing the method to calculate the exact same
shapes as obtained with the Morgenstern-Price method. For complicated cases such as composite
slip surface, it is unlikely that the line of thrust acts at that point for all slices.

Using Janbu’s Generalised calculation method for comparison was not ideal, as Janbu’s Generalised
calculation method often had problems converging when recalculating the slip surfaces obtained
with the Morgenstern-Price calculation method. The comparison between the two methods
contributed less than desired to the study. However, no better measure for verification was found.

When using the Grid and Radius method in SLOPE/W, the position and coarseness of the inserted
grid and radius tangent line search areas largely influence the result of the calculation. Even with
the method used for refinement of the search areas, errors with effect on the shape and position of
the slip surface and the corresponding factor of safety might occur. A related observation is that
the factor of safety corresponding to the optimised slip surface seems to vary more than the circular
slip surface, for the same changes of grid and the radius tangent lines. This was unexpected since
the optimised slip surface

PLAXIS 2D generates slip surface shapes that in most cases lie somewhere in between the circular
and the optimised slip surface shapes, also with respect to the corresponding factor of safety. When
defining the material properties in the PLAXIS 2D models, more input parameters are required than
for the SLOPE/W models. As PLAXIS 2D is a more complex software than SLOPE/W, a direct
comparison entails many uncertainties. No mesh refinements were made in the PLAXIS 2D models,
which further induce uncertainties in the results.

6.8 Suggestions for Further Investigation

It would have been desirable to perform further tests that did not change settings, loads, geometries
and soil properties for all the analysed slopes. The results from this thesis indicate that it is feasible
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to study the applicability of the Optimise function for certain geometries. For example, it could
be useful to investigate for what range of inclinations that the Optimise function is reliable and to
include a more extensive investigation of the Optimise functions behaviour in combined analyses.
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7 Conclusion

The greatest, and so far the only indisputable, advantage of using the Optimise function is that it can
give an indication of if a composite slip surface should be considered within a specific stability analysis.
As the results of the bearing capacity test show, the Optimise function only concerns the mathematical
convergence and does not consider kinematic admissibility. When applying the Optimise function
great caution must therefore be taken with overly conservative results, that corresponds to statically
correct slip surfaces. However, as the results for the elongated slope show, it do serve its purpose
in regard to this uncomplicated case of an elongated slope. The Optimise function should merely be
used as a tool, and not a complete method, for generating and investigating composite slip surfaces.
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