

Disc filter facility at Gryaab [photograph, by Emelie Asplund, 2021].

A Comparative Life Cycle Assessment of Advanced Processes for the Removal of Pharmaceutical Residues in Wastewater

A Detailed Analysis Based on a Pre-study by Gryaab at Rya Wastewater Treatment Plant Master's thesis in Industrial Ecology

Sara Andersson Maria Karlsson

DEPARTMENT OF TECHNOLOGY MANAGEMENT AND ECONOMICS DIVISION OF ENVIRONMENTAL SYSTEMS ANALYSIS

CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2022 www.chalmers.se Report No. E2022:015

REPORT NO. E2022:015

A Comparative Life Cycle Assessment of Advanced Processes for the Removal of Pharmaceutical Residues in Wastewater

A Detailed Analysis Based on a Pre-study by Gryaab at Rya Wastewater Treatment Plant

> Sara Andersson Maria Karlsson

Department of Technology Management and Economics Division of Environmental Systems Analysis CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2022

A Comparative Life Cycle Assessment of Advanced Processes for the Removal of Pharmaceutical Residues in Wastewater

A Detailed Analysis Based on a Pre-study by Gryaab at Rya Wastewater Treatment Plant Sara Andersson Maria Karlsson

© Sara Andersson, 2022. © Maria Karlsson, 2022.

Report No. E2022:015 Department of Technology Management and Economics Chalmers University of Technology SE-412 96 Gothenburg Sweden Telephone: +46 (0)31-772 1000

Cover: The disc filter facility at Gryaab and basins for wastewater treatment.

Gothenburg, Sweden 2022

A Comparative Life Cycle Assessment of Advanced Processes for the Removal of Pharmaceutical Residues in Wastewater. A Detailed Analysis Based on a Pre-study by Gryaab at Rya Wastewater Treatment Plant

SARA ANDERSSON MARIA KARLSSON

Department of Technology Management and Economics Chalmers University of Technology

Abstract

There are no requirements for wastewater treatment plants to treat pharmaceutical residues today. However, the Swedish Environmental Protection Agency has distributed grants to investigate solutions for improving the aquatic environment. Gryaab received grants in 2019 to examine processes for the removal of pharmaceutical residues. A pre-study including a multicriteria-analysis was conducted where three processes were investigated: ozonation, Pulverized Activated Carbon (PAC), and Granular Activated Carbon (GAC). The result showed the importance of further studies on the processes' environmental impact, leading to this life cycle assessment (LCA) study.

This LCA study analysed the processes from five midpoint impact categories: global warming potential, fossil depletion, energy use, eutrophication potential, and acidification potential. The aim was to provide Gryaab with useful data regarding which of the three processes is the environmentally preferable choice and regarding the major environmental impacts of each advanced process. Furthermore, several sensitivity analyses were made to depict what parts of the advanced processes are most crucial for the total environmental impact.

This study included two functional units to enable comparisons with both the pre-study and with other LCA studies. They were: the treatment of Gryaab's wastewater for the removal of pharmaceutical residues for one year; and the treatment of one m³ of wastewater to this end. The calculations in this LCA were made in the software GaBi 9.2.1 Education, where the three processes and the existing sludge treatment were modelled separately. All flows were added in GaBi per m³ of wastewater and then scaled up for the yearly functional unit.

According to the results, ozonation with wind power and the GAC process with renewable GAC, wind power, the largest possible bed volumes, and a regeneration plant at Rya wastewater treatment plant were considered the two most preferable alternatives in terms of environmental impact. Ozonation contributed the most to the midpoint impact category energy use. The PAC process contributed the most to global warming and acidification, while global warming was most significant for the GAC process. The value of using renewable alternatives where it is possible was thus strengthened. However, the environmental benefit of advanced wastewater treatment in comparison to its environmental burden must be further analysed to conclude if an implementation is environmentally advantageous.

Keywords: Gryaab, Rya WWTP, Advanced wastewater treatment, Life Cycle Assessment, Ozonation, PAC, GAC

Acknowledgements

It has been a pleasure to perform our master's thesis at Gryaab and evaluate the area of advanced wastewater treatment processes. Besides, it has been exciting to develop the results in the prestudy, conducted by Gryaab, and compare them with the results from this LCA study.

We would like to thank our supervisor Maria Neth, industrial PhD student at Gryaab, for making it possible for us to write this master's thesis at Gryaab, and for introducing us to valuable contact persons. Moreover, we would also like to thank our examiner Gregory Peters for being a part of our master's thesis and for his help likewise guidance throughout this project. Lastly, we would like to thank everyone at Gryaab for their generosity and valuable competence in wastewater treatment.

Sara Andersson, Maria Karlsson, Gothenburg, June, 2022

Content

1. Introduction	2
2. Background	
2.1. Pharmaceutical Residues	
2.2. Gryaab	4
2.3. Life Cycle Assessment	5
2.4. Processes for the Reduction of Pharmaceutical Residues	6
2.4.1. Ozonation	6
2.4.2. Activated Carbon Adsorption	7
2.4.2.1. PAC Process	8
2.4.2.2. GAC Process	8
3. Literature Study	
3.1. Previous Studies	
3.2. Previous LCA-Studies	
3.3. Implemented Advanced WWT Processes and Pilot Studies	
3.4. The Flows Entering WWTPs	
4. Goal and Scope	
4.1. Goal of the Study	
4.2. Functional Units	
4.3. System Boundaries	
4.4. Flowchart	
4.4.1. Ozonation	
4.4.2. PAC Process	
4.4.3. GAC Process	
4.5. Midpoint Impact Categories	
4.6. Actors	
4.7. Data Quality Requirements	
5. Method	
5.1. Delimitations	
5.2. Conduct of Study	
6. Life Cycle Inventory Analysis	
6.1. System Description	
6.1.1. System Description of the Ozonation Process	
6.1.2. System Description of the PAC Process	
6.1.3. System Description of the GAC Process	

6.1.4. System Description of the Existing Sludge Treatment	34
6.2. Emissions and Energy Use	35
7. Results and Interpretation	37
7.1. Total Environmental Impact of All Including Processes	37
7.1.1. Treatment of a Yearly Flow of Wastewater	37
7.1.2. Treatment of 1 m ³ of Wastewater	39
7.2. Ozonation with Sensitivity Analysis	40
7.3. PAC Process with Sensitivity Analyses	45
7.4. GAC Process with Sensitivity Analyses	50
8. Discussion	56
8.1. Which of the Three Advanced Processes is the Environmentally Preferable	
Choice?	56
8.1.1. I reatment of a Yearly Flow of Wastewater	56
8.1.2. I reatment of 1 m ⁵ of wastewater	39
8.2. What are the Major Environmental Impacts Considering the Selected Midp Impact Categories, of Each Advanced Process?	oint
8.3. What Parts of the Advanced Processes are Most Crucial for the Total	
Environmental Impact?	62
8.3.1. Ozonation	62
8.3.2. PAC Process	62
8.3.3. GAC Process	62
8.4. Impact on Actors	63
8.5. The Recipient of Rya WWTP	64
8.6. Ethical Aspects	65
8.7. Source of Errors and Improvements	66
9. Conclusions and Recommendations	68
10. References	69
Appendix 1 – LCIA Methods	i
Appendix 2 – Concentrations of Pharmaceutical Residues in Effluent Treated	
Appendix 2 Chasen Eleves in CoBi	11
Appendix J - Unosen Flows III Gabi	111 vii
Appendix 4 – Inventory Data	All vli
Appendix 6 – GaBi Modelling	xlii
Appendix 7 – Results	xlvi

List of Abbreviations

AP	Acidification Potential [g SO ₂ -eq.]
BOD	Biochemical Oxygen Demand
DOC	Dissolved Organic Carbon
EP	Eutrophication Potential [g PO ₄ ³⁻ -eq.]
GAC	Granular Activated Carbon
GWP	Global Warming Potential [kg CO2-eq.]
ISO	International Organization for Standardization
LCA	Life Cycle Assessment
LCI	Life Cycle Inventory
LCIA	Life Cycle Inventory Analysis
PAC	Pulverized Activated Carbon
PNEC	Predicted No-Effect Concentration
SEPA	Swedish Environmental Protection Agency
WWT	Wastewater Treatment
WWTP	Wastewater Treatment Plant

1. Introduction

In Sweden, over 1000 different active substances are used in approximately 7600 pharmaceuticals. The possible effects of the residues on organisms and plants are uncertain, leading to many unanswered questions regarding the spreading of pharmaceutical residues in the outgoing water and sludge from wastewater treatment plants (WWTPs) (Naturvårdsverket, n.d.a). In general, Swedish WWTPs are not designed to treat pharmaceutical residues. The removal of pharmaceutical residues is therefore often incomplete. However, pharmaceutical residues in wastewater have become an issue of increasing concern (Hoff, 2020), and the Swedish Environmental Protection Agency (SEPA) states the need to introduce advanced treatment of pharmaceutical residues in wastewater (Naturvårdsverket, 2017). American Institute of Chemical Engineers (AIChE, n.d) defines advanced wastewater treatment (WWT) as "any process which reduces the level of impurities in a wastewater below that attainable through conventional secondary or biological treatment".

Several of Sweden's environmental goals are affected by the potential effects of pharmaceutical residues in the environment. Therefore, SEPA (2021) has established an intermediate target to minimize pharmaceutical residues in the environment. The implementation of advanced WWT processes is among the measures that can contribute to achieving the goals. Moreover, regulations and other measures for minimizing potential environmental burdens should be in place in Sweden, in the EU, or internationally by the latest 2030. Research and experimental studies are important for achieving the intermediate target and the goal by 2030 (Naturvårdsverket, 2021).

At the request of the Swedish government, SEPA was commissioned to distribute grants to implement measures aimed at improving the aquatic environment (Hoff, 2020). Gryaab, the company that owns and operates the Rya WWTP, received grants to investigate processes for the removal of pharmaceutical residues in wastewater in the year 2019. Therefore, Gryaab conducted a pre-study that included a sustainability analysis in terms of a multicriteria-analysis, where all dimensions of sustainability were present, i.e., ecological, social, and economic. The results showed the importance of further studies concerning the environmental impact of the three advanced analysed processes: ozonation, Pulverized Activated Carbon (PAC), and Granular Activated Carbon (GAC) (Ernst et al., 2020).

A detailed study regarding a potential implementation of a process for the removal of pharmaceutical residues is thereby of high concern for Gryaab. This study, therefore, includes a Life Cycle Assessment (LCA), to compare and evaluate the environmental burden of each advanced process. For this study, the same assumptions and data are used to the largest degree as possible as for the pre-study, to make the two analyses comparable. However, as a first part, a literature study is made to gain knowledge on previously made LCAs on the topic. In the end, the results of the study are expected to serve as a basis for decision-makers at Gryaab on which of the three processes is the environmentally preferable choice, and if an implementation at Rya WWTP is necessary.

2. Background

This section presents a description of pharmaceutical residues and the background to the problem of spreading them. The company Gryaab is introduced as well as the existing wastewater treatment at Rya WWTP. Furthermore, the procedure of doing an LCA followed by the investigated processes is described.

2.1. Pharmaceutical Residues

In general, WWTPs are designed for the removal of oxygen-consuming substances as well as nitrogen and phosphorus (Westling, 2021a). The technical solutions at WWTPs can vary to a high degree, but all WWTPs include a chemical-, mechanical-, and biological treatment in different steps (Svenskt Vatten, 2016). However, as mentioned in Section 1, the WWTPs are not designed to reduce pharmaceutical residues or other micropollutants, which to a relatively large extent pass through the WWTP (Westling, 2021a).

Pharmaceutical residues are chemically stable and can, therefore, accumulate in the environment. In Sweden, current measurements have so far demonstrated low concentrations of pharmaceutical residues in nature (Naturvårdsverket, n.d.a). However, low concentrations of residues can affect nature and organisms since the substances can bioaccumulate and accumulate in the food chain. It has been reported that pharmaceutical residues can cause optically observable adverse effects in organisms (Björlenius, 2018). Though, SEPA points out a lack of knowledge concerning the potential effects of several substances on nature, humans and organisms via soil and water in the environment (Naturvårdsverket, n.d.a).

Oxazepam, an anti-anxiety drug, has been shown to alter the behaviour and feeding rate of wild European perch, which can result in ecological and evolutionary consequences (Björlenius, 2018). The substance is also included in the list of SEPA which contains substances considered important to analyse in wastewater (Naturvårdsverket, n.d.b). Diclofenac, a common analgesic, is another substance included in the list of SEPA that has shown effects on organisms (Björlenius, 2018; Naturvårdsverket, n.d.b). Moreover, Baresel et al., (2017) convey that antibiotics are of particular concern since antibiotic residues in the environment can be linked to increased antibiotic resistance.

The effects in nature of pharmaceutical residues from WWTPs depend on the sensitivity of the recipient, the concentration of pharmaceutical residues, the dilution factor, and the turnover in the recipient (Lüdtke, 2019). The receiver of raw or purified wastewater is called the recipient, for instance, watercourses, a lake, or the sea (Avloppsguiden, n.d.). A low dilution factor and a low turnover mean a greater risk of reaching harmful concentrations in the recipient (Lüdtke, 2019). When the recipient is the sea, this results in a higher dilution factor and turnover, which entails larger dispersion of pharmaceutical residues. Similarly, a small lake recipient offers less dilution and turnover which can lead to a greater risk of reaching harmful concentrations in the recipient (Čelić et al., 2019). These aspects make the analysis considering the removal of pharmaceutical residues from wastewater more difficult, since it can be problematic to measure the persistent substances in the effluent treated wastewater from the WWTP.

Another risk regarding pharmaceutical residues is the tendency for bioaccumulation in animals. Martínez Bueno et al., (2014) analysed residues of venlafaxine and found trace levels of it in marine mussels. Additionally, Álvarez-Muñoz et al., (2015) studied the occurrence of pharmaceutical residues in macroalgae, bivalves, and fish from different coastal areas in Europe. The result showed the presence of pharmaceutical compounds in varying amounts in each analysed organism. This means a risk of pharmaceutical residues being introduced into the human food chain.

2.2. Gryaab

Gryaab is located in Gothenburg, Sweden, and the company is responsible for the WWT from seven different municipalities in the nearby region: Ale, Gothenburg, Härryda, Kungälv, Lerum, Mölndal, and Partille. As mentioned in Section 1, the company owns and operates Rya WWTP and based on data from 2018, the inflow to the plant was on average 13 990 m³/h (3.9 m³/s) (Ernst et al., 2020). Moreover, due to a rather small available area at Gryaab, the retention time at Rya WWTP is relatively low. The effluent treated wastewater is released into the estuary of Göta Älv and part of the energy and nutrients are returned into the cycle as biogas or sludge (Gryaab, n.d.d). Moreover, the discharge point of effluent treated wastewater in Göta Älv is close to the ocean Kattegatt. Göta Älv is, therefore, the primary recipient and Kattegatt the secondary recipient at Rya WWTP. Since the effluent treated wastewater is released close to the ocean Kattegatt, the dilution factor is probably high leading to quick spreading of eventual residues.

Gryaab meets today's emission requirements of nitrogen and phosphorus, and the company is certified according to the International Organisation for Standardization (ISO) standard 14 001. Still, it continuously works on how to improve and meet future demands for WWT, Gryaab is expanding (Gryaab, n.d.a). The expansion started in 2020 with the planning of what new treatment processes to evaluate further, and the expansion is planned to be finished in 2036 (Gryaab, n.d.b). Figure 1 presents the existing WWT process without any removal of pharmaceutical residues, which is divided into three main types of treatment: mechanical, chemical, and biological.

The mechanical step is the first part of the WWT process, and it consists of a coarse bar screen where larger waste material is being separated, a sand trap where heavy solid particles are separated followed by a fine bar screen. The mechanical step also includes the primary settling (PS) where solid particles are separated as sludge. Furthermore, in the chemical step, different chemicals are used to remove phosphorous. For instance, iron sulphate reacts with phosphorous forming a precipitate that sediments to sludge. The sludge can then be used for producing biogas and used as fertilizer on agricultural land (Gryaab, n.d.a). The amount of sludge used as fertilizer on agricultural land meets the requirements of Revaq, which is a certification system ensuring sludge of good quality (Ernst et al., 2020). The chemical step is present in the activated sludge (AS) basins where iron sulphate is dosed to the wastewater.

In the biological treatment steps, bacteria and microorganisms are used to decompose organic material and to release nitrogen into the air instead of into the water (Gryaab, n.d.a). The biological step consists of AS basins with a following secondary settling (SS), nitrifying trickling filters (TF), and nitrifying and denitrifying Moving Bed Biological Reactor (MBBR)-

basins. Aeration is present in the nitrifying MBBR to enable oxidation in the chemical step. The TF work as a process for recirculation back to AS since all water must pass the nitrifying MBBR. However, the nitrifying MBBR has a limiting maximum flow of 4.5 m^3/s , which explains the reason for the recirculation through the TF. The recycling loop from the SS to AS is present since sludge is the working material in AS. Though, due to a continuous inflow of sludge, not everything can be saved. Therefore, some sludge is returned to the PS where it is passed on to the sludge treatment to be used as biogas or on agricultural land. Lastly, some sludge is also recycled from the disc filter (DF), back to the PS for the same reason.

During large influent of wastewater to Rya WWTP, the Direct Precipitation (DP) is used, where the influent is divided into two separate flows. One flow continues to PS, and thereby to the complete purification, whilst the other flow continues to DP. A more efficient precipitating chemical and polymer is added to the wastewater in DP, whereafter the effluent wastewater is released into the primary recipient.

Figure 1. The existing WWT at Rya WWTP without any process for the removal of pharmaceutical residues. Abbreviations: PS=Primary Settling, AS=Activated Sludge, SS=Secondary Settling, TF=Nitrifying Trickling Filter, DF=Disc Filter, DP=Direct Precipitation

2.3. Life Cycle Assessment

LCA is a tool that calculates and describes a product or a process's environmental performance. The analysis can focus on the whole life cycle, i.e., from "cradle", where raw materials are extracted, to "grave", the waste management, or only on specific parts in the life cycle. ISO 14 044 is the provided standard that obtains specific requirements and guidelines to follow when doing an LCA. The procedure starts with defining the goal and scope of the study. Here, questions like "why", "who", and "what" are answered, and the purpose of the study is described. To continue, the scope is defined by deciding on a functional unit, a reference flow, system boundaries, and impact categories. Midpoint impact categories and endpoint impact categories. Affected actors are also presented and an initial flowchart for the product or process is created.

The next step is the inventory analysis where all data are collected, and the initial flowchart is developed. With all data gathered, calculations are made over the life cycle in relation to the functional unit. The continuing step in the LCA procedure is the impact assessment where emissions first are classified according to which of the chosen impact category they contribute to. A categorization is then made which calculates each emission's impact in the specific category with the help of characterization factors. The final step in the LCA is the interpretation where the results from the impact assessment are analysed and compared. An overview of the LCA framework is presented in Figure 2. As can be seen, it is an iterative process and hence the reverse arrows, making it possible to do changes as the study progresses.

Figure 2. An overview of the LCA framework.

2.4. Processes for the Reduction of Pharmaceutical Residues

Efficiency, energy demand, and costs are three examples of factors that can be significantly different among processes for the reduction of pharmaceutical residues. In comparison to the existing WWTPs, advanced WWT processes can result in up to ten times higher energy use (Finnson, 2019). Therefore, it is of importance to weigh treatment efforts against additional environmental burdens caused by the advanced WWT processes.

Moreover, there is a lack of studies concerning environmental impacts, in terms of LCAs, of advanced WWT processes. Therefore, there is a need for further LCA studies to investigate unknown environmental effects caused by energy- and material consumption for advanced WWT processes (Li et al., 2019).

The following sections describe the three investigated advanced WWT processes and the suggested implementation at Rya WWTP.

2.4.1. Ozonation

Ozonation is an oxidizing method (Wahlberg et al., n.d.), where ozone is mixed into the wastewater. Ozone gas can be used to destroy organic molecules, such as pharmaceutical residues, and the design enables a high reaction rate (Tekniska verken, n.d). In the process, ozone reacts with organic molecules and generates new smaller molecules from the parent

substance. A disadvantage with the ozonation process is that the process is resource-intense regarding electricity use (Ernst et al., 2020). Another disadvantage of ozonation is the risk for the production of by-products and transformation products, which occurs in the presence of non-organic molecules in the wastewater (Clerc et al., 2021). The formation of bromate from bromide, which is present in varying degrees in wastewater, is especially problematic since bromate is carcinogenic. The potential formation of bromate from bromide at Rya WWTP was evaluated in the pre-study, which presented concentrations of bromate below reporting limits. Therefore, bromate formation was not considered a reason to exclude ozonation as a potential technical solution for reducing pharmaceutical residues at Rya WWTP (Ernst et al., 2020).

Moreover, ozonation requires that ozone must be produced locally since it is not a stable compound. Therefore, the production of ozone for the ozonation must take place on-site at Rya WWTP (Ernst et al., 2020). In general, power consumption to produce ozone is proportional to the mass of ozone generated (Baresel et al., 2020). Oxygen will be produced at the site as well, in a Vacuum Pressure Swing Adsorption (VPSA) facility, and used in the production of ozone. Production of oxygen at the site does not require any external chemicals, which is beneficial (Ernst et al., 2020).

2.4.2. Activated Carbon Adsorption

Activated carbon adsorption is a commonly used method for removing, inter alia, organic compounds in WWTPs (Bui et al., 2016). The origin of the carbon can be from both fossil- and renewable resources. Carbon has a large surface area per unit weight, which entails high adsorption (Ernst et al., 2020). An advantage of activated carbon is that no by-products are produced that may be harmful to organisms or humans (Baresel et al., 2015). The adsorption occurs either by charges, by the formation of covalent bonds between hydrocarbons in the aqueous solution and hydrocarbons from the surface, or by physical adsorption by Van der Waals forces (Ernst et al., 2020). Moreover, the adsorption is proportional to temperature and pressure ("Kolrester från industrier", n.d.).

Hydrochars, a compound of carbon and hydrogen, generally have low surface areas but the properties can be improved by a chemical- or physical activation process. In these processes, activated carbon is generated from a carbon source and the porosity is increased, specific surface functionalities can be created, or the pore size of materials adjusted. Chemical activation requires a chemical reagent, such as KOH, ZnCl₂, NaOH and H₃PO₄, to impregnate the material. Thermal treatment in an inert atmosphere is then followed to generate activated carbon. Moreover, physical activation means that the material is heated to a high temperature of 700-900 degrees Celsius in the presence of a controlled amount of air, steam, or CO₂. Bituminous coal, charcoal, coconut shell and lignite are generally activated by physical activation. On the other hand, wood and peat are generally activated with phosphoric acid via chemical activation. In comparison to physical activation, chemical activation entails better control of the material porosity through variations in chemical reagents and/or reagent concentrations. However, industrial production prefers physical activation due to the lack of chemical reagents and its technical viability (Niinipuu, 2019).

There are two types of processes for activated carbon adsorption, the PAC process and the GAC process, which are further described in Section 2.4.2.1 and Section 2.4.2.2.

2.4.2.1. PAC Process

In water purification with PAC, pulverized activated carbon is used as an adsorbent. Large organic molecules and charged molecules can be separated in the process since they adsorb to the carbon surface (Ernst et al., 2020). For PAC, the adsorption process is controlled by contact time (Bui et al., 2016). In the pre-study at Rya WWTP, the result showed a high variation in the degree of adsorption in the interval of 30 minutes to six hours. However, adsorption could be observed in the interval of six hours to 24 hours (Ernst et al., 2020). Disadvantages of this process are a large consumption of carbon, the potential usage of fossil-based carbon, and that PAC cannot be recycled (Bailey, 2020). PAC is classified as a dust-explosive substance, and it is therefore important to handle it carefully. On the other hand, an advantage of using PAC and to applicate it directly to an already existing MBBR is that it reduces the need for new areas and basins. It also makes it possible to handle the activated carbon separately which means that most of the sludge from the WWTP can continue to be returned to agricultural land (Ernst et al., 2020).

There are multiple ways to integrate the PAC process into an existing WWTP. The dosing of PAC can, for instance, take place in the influent, the biological treatment, or in the secondary effluent. The different alternatives have varied benefits and drawbacks, generating diverse results. For instance, depending on the process design, the sludge can be contaminated which leads to that the sludge cannot be used on agricultural land (Krahnstöver, 2018). However, there are no facilities to use as a reference for the intended design of the PAC process at Rya WWTP, which complicates the investigation.

2.4.2.2. GAC Process

In the process of GAC, a filter with granular activated carbon is used as an adsorbent (Ernst et al., 2020). GAC has a high adsorption capacity and efficiently adsorbs and removes various organic contaminants (Xing et al., 2020), and the adsorption process is controlled by the empty bed contact time (EBCT) (Bui et al., 2016). In the pre-study, 20 minutes was decided as the contact time (Ernst et al., 2020), even though the recommended time varied from 12-14 minutes (Baresel et al., 2015) to 20-40 minutes (Mulder et al., 2015). Similar to PAC, the disadvantages of the GAC process are the consumption of carbon and the potential usage of fossil-based carbon. However, GAC can be regenerated through a thermal process which means that the adsorbed micropollutants decompose, and the activated carbon can be reused. This procedure is done approximately 12 times in a ten-year period, but a negative aspect is that the regeneration currently is managed in Belgium (Ernst et al., 2020).

A frequently used concept considering GAC is bed volumes, which implies how much wastewater can flow through the filter before it stops adsorbing the micropollutants, i.e., the adsorption capacity. Often, it is referred to as "spent carbon", meaning that the activated carbon is saturated and thus has an insufficient adsorption capacity left for the intended application (Bailey, 2020). Based on the water content of suspended substances and dissolved organic carbon (DOC), the bed volume was defined as 20 000 in the pre-study (Ernst et al., 2020).

A challenge with the GAC process at Rya WWTP is the required area for the GAC process in comparison to the available area. The most realistic place to build the GAC process is in the Rya forest, which includes areas that are nature reserves. The proposed part to place the GAC

facility is not classified as a nature reserve, but Gryaab must ensure that they are allowed to build on that specific area (Ernst et al., 2020).

An advantage of the GAC process is its capability to reduce the amount of organic material in the wastewater. Biochemical oxygen demand (BOD) is a measure of the organic material that is biodegradable. In biological WWT, bacteria can degrade soluble BOD in wastewater. The bacteria require oxygen for the degradation, leading to a lower concentration of oxygen in the wastewater. However, the bacteria cannot degrade BOD in particulate form which can lead to that particulate BOD being released to the recipient where it eventually will degrade, resulting in a lower concentration of oxygen in the recipient. This is an issue since an oxygen-poor environment can result in the death of ecosystems. Therefore, it is of importance to reduce the release of BOD into the recipient (Neth at Gryaab, 2022).

3. Literature Study

A literature study was performed to gain deeper knowledge within the field of wastewater treatment and to increase the relevance likewise credibility of the report. The results and discussions in this study become more relevant by comparing them to previous studies and results, since it indicates if the result from this study differs significantly or follows the same path as previous studies. A literature study also reveals the degree of research in the area, which is important for further development in the research field.

Moreover, a literature study was also conducted to collect data not available in the pre-study. The data was gathered from internal sources at Gryaab, independent sources, and sources specific to Gryaab, such as chemical suppliers. The following data was collected:

- Facility specific data at Gryaab (Operating data Gryaab, 2020; Reports from Sweco to Gryaab, 2020)
- Alternative country for activation of active carbon (Zhulincarbon, n.d.)
- Distance with a ship from China to Sweden (Aho Vanhatapio & Wensing, 2021)
- Distance with a ship from China to Belgium (Ports.com, n.d.)
- Origin of hard coal and coconut shells (DESOTEC through Seiler, 2022)
- Polymer and polymerization (Supplier of polymer, 2022)

The following sections summarize results from previous environmental studies and LCA studies, where differences likewise similarities in the results and assumptions are described. Locations of full-scale implementations and pilot studies of advanced WWT processes are also presented.

3.1. Previous Studies

Research within the field of current WWT processes shows that out of 62 identified pharmaceutical residues, around 25 percent are removed completely. This means that 75 percent of the 62 identified substances remain when the wastewater leaves the WWTP (Hörsing et al., 2014). In recent years, more studies have been made in the investigated area of processes for the removal of pharmaceutical residues at WWTPs. Baresel et al. (2020) claim that there are many aspects to take into consideration before deciding on which process to focus on, such as specific conditions and limitations at the WWTP. Besides, it can differ what type of micropollutants enter the plant, which also matters in the decision. Moreover, the study also points out that it is important to carefully consider where to place the advanced WWT in the existing system since it can affect the entire WWTP.

Advanced WWT processes can also be combined in the system. An investigation of a pilot study in Tierp WWTP showed that the ozonation removed pharmaceutical residues completely, but had a large energy consumption (Tierps Energi & Miljö AB [TEMAB], 2020). By combining the ozonation with a following GAC process, the study demonstrated a lower energy consumption for the ozonation. Moreover, a combination of the two processes also resulted in the most effective reduction of pharmaceutical residues, since potential by-products and transformation products from the ozonation were removed by the GAC process. The investigation also revealed potential seasonal variations in levels of pharmaceutical residues.

The variations are important to be aware of and to consider in future facilities, to achieve the highest possible efficiency. In the final report of investigations in Simrishamn at WWTP Stengården, the combination of ozonation and a GAC process were likewise presented as working more effective than only the process of GAC (Baresel et al., 2020). The evaluation from WWTP Stengården showed that the combination of microfiltration, ozonation, and a GAC process, in comparison to only the GAC process, significantly reduced 20 out of 21 investigated pharmaceuticals. This result was obtained at an ozone dose of four mg/l. The evaluation in Simrishamn did not investigate the ozonation process separately, but only in a combination.

The use of ozonation upstream from the GAC-filter increases the biological activity in the GAC-filter via the addition of dissolved oxygen gas (Baresel et al., 2020). Furthermore, the combination of ozonation results in a longer lifetime of the filters in GAC. Longer durability of the filter is beneficial due to the large operational cost of filter change. It is also environmentally preferable with longer durability of the filters (TEMAB, 2020).

At Swedish WWTPs, sludge is treated to make it useful in agriculture (Baresel et al., 2017). By using sludge as a fertilizer, natural recycling of nutrients occurs. At the same time, the sludge contains minerals and organic material that are beneficial for the soil quality and the mull structure. Baresel et al. (2017) describe that the majority of existing WWTPs do not include any removal of pharmaceutical residues, meaning that these enter the agricultural land along with the sludge. The authors present that approximately 25 percent of the pharmaceutical residues are removed from the wastewater, either by degradation or by transferring to the sludge. Moreover, around 50 percent of the pharmaceutical residues cannot be removed by WWTPs without an advanced process. Therefore, approximately 50 percent of the pharmaceutical residues follow the effluent treated wastewater to the recipient.

There have been discussions regarding the treatment of sludge, where one suggestion was to forbid the spreading of sludge on agricultural land to reduce the dispersion of pharmaceutical residues (Walldén, 2020). The author presents a second suggestion: to only allow the spreading of sludge on cropping land, meaning agricultural land where crops must be harvested and the vegetation renewed (Länsstyrelsen Jämtlands län, 2014). This second suggestion makes it possible to recycle nutrients from the sludge that otherwise are lost during combustion when phosphorous is recycled from ashes (Walldén, 2020). The article presents the importance of reusing nutrients and resources from the wastewater, making the second alternative favourable from a circular point of view. Therefore, it is vital to develop the treatment of wastewater, enabling continuing use of sludge on agricultural land.

A disadvantage of advanced WWT processes, such as the PAC process, is that they will increase the contaminant levels in the sludge. This means that such processes are difficult to consider as realistic in Sweden. However, Baresel et al., (2017) claim that alternative methods for sludge treatment before spreading could open for the use of advanced WWT processes that may adversely affect the sludge. The report describes that sludge conditioning and thermal treatment, including physical or chemical treatment with for instance varying temperature and pressure, are possible alternative methods.

3.2. Previous LCA-Studies

There are several previously made LCA studies on processes for the removal of pharmaceutical residues at WWTPs (Azapagic &Tarpani, 2018; Rahman et al., 2018). Pesqueira et al. (2020) reviewed 18 LCA studies on processes for the treatment of micropollutants and discovered that many of them concern ozonation and the GAC process, while studies on the PAC process are less frequent. One important aspect of those studies is the importance of considering resources and energy consumed when implementing these processes in the existing WWT, and thus the added environmental burden. Not all studies found an environmental benefit with implementing the processes in the existing WWT, but it is vital to have in mind the lack of information on how the pharmaceutical residues impact living organisms (Pesqueira et al., 2020).

A typical functional unit is a certain volume of wastewater to be treated or a certain percentage of removal of pharmaceutical residues from the wastewater. Different LCA studies can only be compared if they address an object that shares the same function. Also, system boundaries are similar for many studies, including energy and resources needed and the emissions. The treated effluent is also a common flow to include within the system boundary. However, varying among the studies is the size of the LCA, for instance, if the construction phase and end-of-life are included (Pesqueira et al., 2020). The investigated impact categories vary, but common is that most studies consider rather many impact categories. Frequently investigated are, for instance, Acidification Potential (AP), Eutrophication Potential (EP), Global Warming Potential (GWP), Ozone Depletion Potential (ODP) at steady state, ecotoxicity, and human health (Rahman et al., 2018; Arena et al., 2016), where the normal time horizon for global warming potential is 100 years (Muñoz et al., 2009).

Pesqueira et al. (2020) showed that the GAC process performed environmentally better than ozonation. In addition, the authors claim that the choice of energy is most essential when considering the processes' environmental burden, followed by chemical use. Furthermore, the result also concludes that processes for the removal of pharmaceutical residues have a high energy demand, where ozonation has two to four times higher demand than the GAC process and the PAC process. Also, the ozone dosage is a critical aspect of the electrical demand for ozonation (Mousel et al., 2017). Therefore, an environmentally beneficial energy favours ozonation. In addition, ozonation in combination with other processes is concluded as being one of the most efficient processes when studying the reduction of pharmaceutical residues (Pesqueira et al., 2020). Considering the GAC process, the result showed that the use of reactivated GAC saves energy in comparison to the use of virgin GAC or PAC (Mousel et al., 2017).

Li et al., (2019) studied 126 pharmaceuticals and personal care products by doing an LCA of three advanced WWT processes. The authors lacked studies focusing on and including the environmental impact caused by organic micropollutants. Since long-term exposure to the micropollutants can cause potential hazards to both the aquatic environment and human health, it seemed vital to include micropollutants in an LCA. Also, the lack of characterization factors for pharmaceutical residues and personal care increased the importance of including them in a study to develop available data. By including these 126 pharmaceutical and personal care products in the Life Cycle Inventory (LCI), a significant increase in the ecotoxicity impact was

noticed. The result showed that it is necessary to include the effects of micropollutants in LCA studies of advanced WWT processes, since the outcome can differ compared to an LCA that only considers the impact of the processes for the removal of micropollutants.

3.3. Implemented Advanced WWT Processes and Pilot Studies

Advanced WWT processes have been implemented in some countries, inter alia in Switzerland, Sweden, Denmark, and Germany. Switzerland has been at the forefront of research concerning advanced WWT processes (Westling, 2021a), and was the first country to introduce a legislation for the expansion of WWTPs (Cimbritz & Mattsson, 2018). The legislation was introduced in 2016 and included an expansion of 100 out of 700 WWTPs within 25 years, to reduce micropollutants, and protect sensitive plants and organisms as well as drinking water sources (Westling, 2021a). Processes using activated carbon, especially the PAC process, and ozonation are considered the most suitable process in Switzerland for the reduction of pharmaceutical residues (Edefell et al., 2019).

In Sweden, Knivsta municipality was the first municipality to introduce a full-scale advanced WWT process. The plant consists of an ozonation process and was commissioned in 2015 (Eskebaek, 2016). Moreover, in 2014, a pilot study in Linköping demonstrated a significant reduction of pharmaceutical residues by the implementation of the advanced WWT process ozonation. The pilot study resulted in an expansion to a full-scale ozonation plant at Nykvarnsverket WWTP in Linköping and was inaugurated by the minister of environment in Sweden in 2017 (Sehlén et al., 2020).

Moreover, in 2020 Tierp municipality became the third municipality in Sweden to have a fullscale advanced WWT process. The system consists of ozonation as the main process for removal of pharmaceutical residues, supplemented with a GAC-filter downstream- and sand filters upstream from the ozonation. The advanced WWT process in Tierp entails a reduction of pharmaceutical residues of 90 percent (TEMAB, 2020).

In addition to the full-scale advanced WWT processes in Sweden, several pilot plants have been introduced. Between 2019-2022, governmental grants distributed by SEPA have resulted in 36 studies in different Swedish municipalities. They all investigated measures aimed at improving the aquatic environment (Westling, 2021b).

In 2020, a pilot plant using activated carbon in Degerberga, in Kristianstad municipality, was ready to bring into operation. Preliminary results indicated a high degree of reduction of pharmaceutical residues (Kristianstads kommun, 2020). A pilot plant in Kalmarsundsverket, in Kalmar, is another project that has demonstrated good results in the reduction of pharmaceutical residues. This pilot study investigated the effects of an implementation of an ultrafilter and a subsequent filter of GAC (Edefell et al., 2019).

Several pilot studies for advanced WWT processes are also present in Denmark (Karlstads Kommun, 2020). The country has likewise one full-scale plant for the reduction of pharmaceutical residues in hospital wastewater ("New standard", 2015). Furthermore, a report from Karlstad municipality (Karlstad Kommun, 2020) presents that Germany is another country with implemented advanced WWT processes. Karlstad Kommun (2020) describes that the implementation was initiated early and already in 2015, 17 plants were present. Germany has

continued the development and has today 22 WWTPs with advanced WWT processes implemented for the reduction of pharmaceutical residues. The PAC process is popular in the country and is used in 13 plants, whereas the GAC process is used in five plants, and ozonation in four plants.

3.4. The Flows Entering WWTPs

Wastewater is a collective name for water that in some way has been affected by society, but the origin and area of use differ. The influent wastewater to WWTPs can be divided into, inter alia, sewage water, stormwater, infiltration and inflow (I/I), and industrial water. Water from households, such as water for showering, flushing the toilet, and washing, can be classified as sewage water. Stormwater consists of rain, snow, and meltwater. In urban areas, stormwater flows down into street wells and is discharged in own pipes to the nearest watercourse or collected in combined wastewater systems. In a combined system, stormwater and sewage water are linked to the same pipes to the WWTP. Furthermore, water used in manufacturing and industry is classified as industrial water. The field of application and the content of this water varies greatly. Moreover, I/I is a collective name for the water entering a WWTP in addition to sewage water tunnels. Depending on the sewer system, large amounts of I/I can come to the WWTP during heavy rainfalls and high sea levels, which is the case in Gothenburg (Gryaab, n.d.e).

The influent wastewater to Rya WWTP consists of 40 percent sewage water and 60 percent I/I. Beyond sewage water from households, Rya WWTP also receives sewage water from schools, hospitals, companies, and industries. However, this sewage water is only accepted if it does not contain other substances or more pollutants than the sewage water from households. Moreover, Gryaab strives to reduce the amount of infiltration and inflow since it dilutes the sewage water and complicates the purification (Gryaab, n.d.e).

Climate change is an aspect which may influence the WWTPs. A higher frequency of heavy rainfall events can result in more untreated wastewater directly to the recipient, since the WWTP has an inlet capacity limit. Another consequence of heavy rainfalls is the leaching of nutrients and humus, which implies higher demands on the treatment of wastewater. Furthermore, climate change may lead to a new spreading of microorganisms and, in turn, new health risks. Today's WWTPs are not built to take care of viruses and parasites. Measures where all these risks are in mind are therefore of importance, where infrastructure planning is an essential aspect. One possible measure is to separate and redirect the stormwater during heavy rainfalls, to minimize the risk of damage (Klimatanpassning.se, 2020).

4. Goal and Scope

This section covers the goal and scope of the study, including why the study is relevant, the aim of the study, a description of the two functional units, system boundaries and a flowchart of each advanced WWT process. It also introduces the chosen impact categories and why these are relevant. Additionally, relevant actors and data quality requirements are presented.

4.1. Goal of the Study

There are no current legal requirements for the removal of pharmaceutical residues in Sweden. However, as described in Section 1, regulations, and other measures for minimizing potential environmental burdens should be in place in Sweden, in the EU, or internationally by the latest 2030 (Naturvårdsverket, 2021). Moreover, processes for the removal of pharmaceutical residues are acknowledged as resource-intensive (Li et al., 2019). It is therefore of importance to investigate the implementation and potential environmental burden of advanced WWT processes. This study evaluates the environmental impact of three potential advanced WWT processes at Rya WWTP. The study aims to investigate the most environmentally preferable choice of the three processes: ozonation, PAC, and GAC, for the removal of pharmaceutical residues in wastewater. Also, possible improvements of the processes and a comparison to previous LCA studies are investigated. The analysed design of each process is equal to the one defined in the pre-study (Ernst et al., 2020). The expectation is to provide useful data for Gryaab regarding a possible implementation of an advanced WWT process at Rya WWTP.

This study should answer to the following research questions:

- 1. Based on an LCA study, which of the three advanced WWT processes is the environmentally preferable choice?
- 2. What are the major environmental impacts considering the selected midpoint impact categories, of each advanced WWT process?
- 3. What parts of the advanced WWT processes are most crucial for the total environmental impact?

4.2. Functional Units

This study includes two functional units that are based on the function of the system, which is to treat wastewater to reduce its content of pharmaceutical residues. The first functional unit is to treat the influent wastewater at Rya WWTP for the removal of pharmaceutical residues for one year. This functional unit provides a result showing the environmental impact with the specific conditions at Rya WWTP of the investigated processes in this study. The second functional unit is to treat one m³ of wastewater for the removal of pharmaceutical residues. As described in Section 3.2, this is a common functional unit in previous LCA studies and enables a comparison of this result to other LCA studies. Moreover, this functional unit also entails that the results from this study can be compared to other WWTPs with a different yearly flow. Furthermore, the reference flow for both functional units is the effluent from the SS process. To compare the environmental impact of each process, the reference flow is based on a common point for each advanced WWT process. An indication, which is marked in red, presents where the reference flow is placed in Figure 3.

Figure 3. The existing WWT at Rya WWTP including an indication in red of where the reference flow is placed. Abbreviations: PS=Primary Settling, AS=Activated Sludge, SS=Secondary Settling, TF=Nitrifying Trickling Filter, DF=Disc Filter, DP=Direct Precipitation

4.3. System Boundaries

This LCA evaluates the operational phase of the three different processes, and the system boundary is therefore gate-to-gate. The system boundary for each process is illustrated in Section 4.4. As mentioned in Section 4.2, the function of the system is to treat wastewater for the removal of pharmaceutical residues, which means that the material used for achieving the function is within the system boundary, i.e., ozone, PAC, and GAC. Since the process is active all the time, it is assumed that material is added continuously. Therefore, the production of the materials, as well as the regeneration of GAC, are included within the system boundary. The analysis is a comparative attributional LCA, focusing on establishing the environmental impact of each advanced process.

A simplified illustration of the system boundary is presented in Figure 4. The three processes for the reduction of pharmaceutical residues are within the system boundaries with consideration to transportation, chemicals, energy, electricity, heat production, and emissions. The existing WWT process is not included within the system boundary. However, the existing sludge treatment is within the system boundary. Pharmaceutical residues still left in the effluent treated wastewater leaving the WWTP are not considered in the study, and hence not its eventual impact on the aquatic environment. Eventual impacts on the recipient are not considered since the concentration of pharmaceutical residues in the effluent treated wastewater is low, and thereby difficult to measure. Moreover, the content of pharmaceutical residues in the influent wastewater cannot be affected. Further explanations of assumptions and limitations within the study are presented in Section 5.1.

Figure 4. A simplified illustration of the system boundary including the existing WWT with dashed lines.

As mentioned in Section 2.2, Rya WWTP is located in Gothenburg, but the geographical boundaries are expanded to also include locations where transportations and production of chemicals occur. Furthermore, local effects in the recipient are taken into consideration where the potential environmental benefit is compared to the environmental burden of the advanced WWT processes. Moreover, the expected time horizon for the LCI analysis is set to 15 years based on the depreciation period for the processes. Also, it is believed that the decision will have an impact during the whole depreciation period since the outcome of this LCA can serve as a basis for decision-makers at Gryaab on which of the three advanced WWT processes to potentially implement. No allocation is made in the calculations, though it may be present in background systems in GaBi, for instance, energy and chemical supplies.

4.4. Flowchart

The following section presents the studied flowchart for the processes ozonation, PAC, and GAC, respectively.

4.4.1. Ozonation

To utilize the benefit that the nitrifying MBBR and the denitrifying MBBR potentially could have an effect on the degradation of by-products and transformation products from the ozonation, the ozonation process is intended to be placed in-between the SS and the nitrifying MBBR. The investigated process design for a possible implementation of ozonation can be seen in Figure 5. The intended position entails a large concentration of oxygen in the outflow from the ozonation, which can be used in the nitrifying MBBR and reduces the need for aeration. However, there are also drawbacks with the intended position of the ozonation process, and with the process in general. For instance, the content of suspended material in the influent wastewater to the ozonation is usually rather high, which may result in ozone being consumed

for non-pharmaceutical residues. There is also a risk that a high content of suspended material can cause disturbances in the cooling process if the facility is to be cooled with wastewater (Ernst et al., 2020). The system boundary refers to the studied part, i.e., the ozonation, while the existing system is included to indicate where in the existing WWT the ozonation process is expected to be placed. General inflows and outflows are presented, but a more detailed presentation can be seen in Section 6.

Figure 5. Flowchart presenting the intended position of the ozonation process. The system boundary refers to the studied part, i.e., the ozonation, while the existing system is included to indicate where in the existing wastewater treatment the ozonation is expected to be placed. General inflows and outflows are presented. Abbreviations: PS=Primary Settling, AS=Activated Sludge, SS=Secondary Settling, DF=Disc Filter

4.4.2. PAC Process

As presented in Figure 6, the intended position of the PAC process means that PAC is dosed to the nitrifying MBBR to maximize the hydraulic retention time. Also, it is here the adsorption of the pharmaceutical residues occurs. Another possible design would be to dose PAC to the AS, but it was considered an inferior alternative since it would have contaminated all sludge, and thus no sludge could have been used as fertilizer for agricultural land. For the chosen design of the PAC process, the PAC sludge is separated from the wastewater through DF and the sludge is handled individually. In the end, sludge containing activated carbon is incinerated. This means a lower amount of sludge that can be used as fertilizer for agricultural land or biogas production in comparison to the ozonation and the GAC process. On the other hand, the heat emitted from incineration can possibly be used as district heating.

A precipitating polymer called polyacrylamide is used twice with the PAC alternative and the polymer is produced from the two monomers acrylic acid and acrylonitrile (Supplier of polymer, 2022). The system boundary refers to the studied part, i.e., the PAC process and the new sludge treatment, while the existing system is included to indicate where in the existing system the PAC process and the new sludge treatment would be placed. General inflows and outflows are presented, but a more detailed presentation can be seen in Section 6.

Figure 6. Flowchart presenting the intended position of the PAC process. The system boundary refers to the studied part, i.e., the PAC process and treatment of the sludge, while the existing system is included to indicate where in the existing wastewater treatment the PAC process and treatment of the sludge are expected to be placed. General inflows and outflows are presented. Abbreviations: PS=Primary Settling, AS=Activated Sludge, SS=Secondary Settling, DF=Disc Filter

4.4.3. GAC Process

The intended position of the GAC process is presented in Figure 7. The filtration through GAC occurs in concrete basins where the wastewater flows with gravitation by downstream filtration. The filters are back-washed every other day with effluent treated wastewater. The used wastewater is pumped back to the inflow of the WWTP, according to Figure 7. When the GAC-filter has lost its potential for adsorption, it is transported to Belgium for regeneration. During the regeneration, some GAC is lost and therefore approximately 10 percent of the annual consumption is virgin GAC. Regenerated GAC corresponds to 80 percent of the purchase price for virgin GAC. The system boundary refers to the studied part, i.e., the GAC process and the regeneration, while the existing system is included to indicate where in the existing WWT the GAC process is expected to be placed. General inflows and outflows are presented, but a more detailed presentation can be seen in Section 6.

Figure 7. Flowchart presenting the intended position of the GAC process. The system boundary refers to the studied part, i.e., the GAC process and the regeneration, while the existing system is included to indicate where in the existing wastewater treatment the GAC process is expected to be placed. General inflows and outflows are presented. Abbreviations: PS=Primary Settling, AS=Activated Sludge, SS=Secondary Settling, DF=Disc Filter

4.5. Midpoint Impact Categories

This study aggregates emissions from the inventory results into characterisation results. The study aims to provide a more detailed result of the environmental impact, in comparison to the pre-study. Therefore, the degree of aggregation is chosen to include midpoint impact categories, where each midpoint result shows the impact of various environmental aspects, such as global warming. The study addresses the following midpoint impact categories: *Global Warming Potential (GWP)* for 100 years [kg CO₂-eq.], *Fossil depletion* [kg oil-eq.], *Total use of non-renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PENRT)* [MJ], *Total use of renewable primary energy resources (PERT)* [MJ], *Eutrophication Potential (EP)* [kg PO4³⁻-eq.], and *Acidification Potential (AP)* [kg SO₂-eq.]. *GWP, EP, AP,* and *fossil depletion* were selected based on the emissions from the operation phase of the three different studied processes. Also, emissions from the production of oxygen, ozone, and activated carbon, as well as from transports, were considered when choosing the impact categories. Moreover, as mentioned in Section 3.2, contribution to global warming, eutrophication, and acidification is often evaluated in similar LCA studies.

As mentioned in Section 2.4.1, the ozonation process is an electricity demanding process. Therefore, a midpoint impact category presenting the total energy use is of interest to include in this LCA analysis. It is also of interest to include a midpoint impact category depicting the renewable- and non-renewable use of energy, since a large use of renewable energy also affects the environment. Although the energy is renewable, a large use results in a lower total supply of renewable energy which should cover many areas. Therefore, it is of importance to use resources efficiently whether they are of a renewable origin or not. The two midpoint impact

categories, PERT and PNERT, were assessed to cover this aspect and thus selected in this LCA analysis.

Table 1 presents the six selected midpoint impact categories and a description of each category. A description of which substances contribute to which midpoint impact category is presented in Section 6.2, in Table 9.

Midpoint impact categories					
Name	Description				
Global warming	A measure of the total amount of greenhouse gases, which				
	affect the radiation in the atmosphere. Emissions of greenhouse				
	gases contribute to the heating of the earth and thus climate				
	change.				
Fossil depletion	A measure of the extraction of fossil resources from the				
	geosphere, which contains energy.				
Total use of non-	The total use of non-renewable energy, including for instance				
renewable primary	electricity and fuels.				
energy resources					
Total use of renewable	The total use of renewable energy, including for instance				
primary energy resources	electricity and fuels.				
Eutrophication	Eutrophication is the enrichment of nutrients in soils or				
	watercourses. The enrichment can lead to the vigorous growth				
	of organisms, such as algae, which in turn can result in a lack				
	of oxygen in watercourses. Moreover, the enrichment of				
	nutrients in soils can disturb the balance in the ecosystems.				
Acidification	Acidification is the change in H ⁺ -balance caused by an acid				
	solution, which acidifies land and water. The acid solution is				
	formed when emitted oxides react with water drops in the air.				

Table 1. The selected midpoint impact categories and a description of each category.

4.6. Actors

The study includes aspects that are of high importance for Gryaab and, as mentioned in Section 4.1, aims to provide useful data to the company. Gryaab is therefore the commissioner, i.e., the main actor of this study. The authors of this LCA are the analysts and perform additional calculations and data collection not provided in the pre-study, whilst the project group of the pre-study are the main data collectors. As described in Section 1, regulations, and other measures for minimizing potential environmental burdens should be in place in Sweden, in the EU, or internationally by the latest 2030. Therefore, the Swedish government and SEPA can also be seen as actors in this study. Furthermore, this study contributes to the research field of reducing pharmaceutical residues in wastewater. Other WWTPs are, therefore, actors in this study since it is of their interest to follow the development of processes for the reduction of pharmaceutical residues. Moreover, citizens being environmentally conscious can also be considered actors in this study.

4.7. Data Quality Requirements

The quality of an LCA study depends on the included data. This study, therefore, includes literature that is reviewed, scientific, and up to date. Calculations for the LCA are done in the software GaBi 9.2.1 Education. GaBi guarantees that their data is up to date and reliable (Sphera, n.d.a), which also increases the reliability of the study. Recent data and data from full-scale plants in operation are highlighted and considered more consistent with the current development within the field of advanced WWT processes. However, site-specific data from Gryaab and data from the pre-study is prioritised to facilitate a comparison of the results in the pre-study, and since the main geographical boundary is set to the Rya WWTP. In addition, more profound data is provided from consulting reports that were performed for the pre-study. Though, the pre-study and the consulting reports lack detailed data for, inter alia, the polymer used in the sludge treatment and in the PAC process. As mentioned in Section 3, data for polymer. Some activities occur in other areas and countries, such as Sävenäs in Sweden and Belgium. Resource flows in other areas than Rya WWTP, such as electricity and the production of activated carbon, are therefore included within the system boundary.

5. Method

The following section presents delimitations and assumptions made in the study, followed by a description of how the study was conducted.

5.1. Delimitations

The influent wastewater was assumed to contain a certain amount of pharmaceutical residues and that all three advanced processes have the same effect on the reduction of pharmaceutical residues. The concentration of pharmaceutical residues in the effluent wastewater from the existing WWT at Rya WWTP is presented in Table B.1 in Appendix 2. An additional removal of pharmaceutical residues entailed by advanced WWT processes was estimated to be 80-90 percent, in accordance with recommendations of Naturvårdsverket for substances of high concern (n.d.c). Therefore, the focus of this thesis was on the processes' environmental impact, and thus not on possible ecotoxicological effects in nature caused by pharmaceutical residues. Also, the LCA only compared the three investigated processes and not the existing WWT. In comparison to the pre-study, this LCA study primarily evaluated the operational phase, i.e. gate to gate. The analysis was mainly based on data from the pre-study conducted by Gryaab and secondly on literature studies, and thus no laboratory work was made.

The influent wastewater flowrate to the PAC process and ozonation is limited by the capacity of the nitrifying- and denitrifying MBBR. Therefore, the maximum influent flowrate was defined as $4.5 \text{ m}^3/\text{s}$ for all three processes (Ernst et al., 2020). Moreover, due to the lack of recipe specific data, a ratio of 50 percent acrylic acid and 50 percent acrylonitrile was assumed for polyacrylamide production in this study.

A general limitation of LCA is that it does not consider all environmental impacts, for example, biodiversity and the effects in various ecosystems. Also, even though the effects of emissions can differ depending on geographical position, LCA only summarizes the total impact. Therefore, local effects could not be investigated quantitatively. However, as described in Section 4.3, qualitatively reasoning concerning local effects was performed, where the potential environmental benefit was compared to the environmental burden of the advanced WWT processes.

5.2. Conduct of Study

The initial step of the study was the literature study, where databases such as ScienceDirect and SpringerLink were used to find relevant literature and previous studies. Examples of initial search words were *pharmaceutical residues in WWTPs*, *technologies for pharmaceutical residues in WWTPs*, *technologies for pharmaceutical residues in WWTPs*, *JCA wastewater treatment processes, ozonation in WWTPs*, *GAC in WWTPs*, *PAC in WWTPs*, *LCA ozonation WWTP*, *LCA GAC WWTP*, *LCA PAC WWTP*, *effects of pharmaceuticals residues from wastewater in recipients*. The literature was reviewed to find relevant and scientific sources.

In the following step, an initial flowchart was constructed for each of the three advanced WWT processes based on the description in the pre-study. The flowcharts were then developed to the final versions, which can be seen in Section 4.4. The software GaBi 9.2.1 Education was used for modelling the processes. A plan was created for each of the three processes in GaBi, where the existing sludge treatment was in a separate plan in the software. When all plans, including

activities, were created and all flows specified, the flows were expressed per the functional unit. To express the flows per functional unit, the scaling factor in GaBi was set to one and then fixed for the activities *ozonation and other installations*, the *addition of PAC to nitrifying MBBR and other installations*, the *GAC process and other installations*, and the *primary settling*. All flows were first specified per m³ and then scaled up to the yearly flow of influent wastewater for the removal of pharmaceutical residues (128 666 880 m³), which corresponds to 80 percent of the influent wastewater to Rya WWTP. The yearly flow was calculated based on an average influent of 4.08 m³/s which was assumed in the pre-study. Moreover, all added activities were renamed to the associated processes to distinguish them from each other. The size of all flows added in GaBi are presented in Tables D.1, D.3, D.5, D.7, D.8, D.9, and D.10 in Appendix 4, and the corresponding yearly flows are presented in Section 6.

When all activities and flows were added in GaBi, the result of the impact on each midpoint impact category was transferred to Excel. CML2001 (updated 2016), EN 15804 + A1 (updated 2013), and ReCiPe (updated 2016) were selected to cover the chosen midpoint impact categories. The Life Cycle Inventory Analysis (LCIA) methods were selected based on which categories they covered and their relevance in time. Information about the three different LCIA methods is presented in Table A.1 in Appendix 1. Characterisation factors from CML2001 were selected for GWP, EP and AP, while factors for PERT, and PNERT were selected from EN 15804 + A1. Factors for *Fossil depletion* were selected from ReCiPe. Figures presenting the total environmental impact of each process for all studied midpoint impact categories were created. Also, figures presenting detailed information of the environmental impact of all activities within each process were made. Moreover, the result from the midpoint impact categories *PERT*, and *PNERT* are presented as a sum and named *Energy use*. Since the numbers for PERT and PNERT come in MJ, it was converted to kWh to make the comparison with the pre-study easier. The conversion was made by multiplying the value in MJ with 0.2778. Due to the large electricity consumption for the ozonation process, electricity was separated from energy use and presented separately.

Furthermore, several sensitivity analyses were performed for a deeper understanding of how the results depend on different choices within the systems. For each process, a hot spot analysis was also conducted to visualize the most crucial parts considering the total environmental impact. Since some sensitivity analyses accounted for credited heat, its effect on the result was subtracted from the associated activity's environmental impact. In this way, the total environmental impact of each activity was achieved and presented in each figure.

6. Life Cycle Inventory Analysis

The following section presents a system description of each advanced WWT process and the existing sludge treatment, including data for inflows and outflows. It also covers a presentation of emissions contributing to each midpoint impact category.

6.1. System Description

A system description of each advanced WWT process is presented in the following section. To make the calculations easier to follow, the flows were named by a letter for each process as presented in Figure 8-10.

6.1.1. System Description of the Ozonation Process

The flowchart for the ozonation process including flows named by letters is presented in Figure 8. For the ozonation process, air is used to produce oxygen and as mentioned in Section 2.4.1, the reaction occurs in a VPSA oxygen generator. The process requires electricity, and heat is generated as a by-product. In ozone production, three oxygen molecules react to produce two ozone molecules. Similar to oxygen production, ozone production consumes energy with heat generated as a by-product. There are also other installations present at different stages in the process, for instance, pumps and ventilation. These activities require energy, but they are handled as one activity called other installations.

Figure 8. The flowchart for ozonation including letters as names for the flows.

Table C.1 in Appendix 3 presents the chosen flows and activities in GaBi for each activity within the system boundary for the ozonation process. As described in Section 2.4.1, all activities within the system boundary for the ozonation process occur in Sweden. Flows of electricity were therefore added as *SE: electricity, production mix Sweden*. Moreover, the produced heat from the oxygen- and the ozone production was added as a negative inflow to each activity and then linked to *EU-28 Heat ts*. GaBi interprets the negative inflow as a produced heat, which is credited to the activity. To calculate the environmental burden of the activity other installations, the electricity demand was added as an inflow to the ozonation

process. This was possible since the ozonation process itself does not require any electricity, and the flow of other installations was then not mixed up with the flows of the ozonation process.

Furthermore, a sensitivity analysis was performed for the ozonation process by using wind power instead of Swedish electricity mix. *Electricity from wind power [System-dependent]* then linked to the activity *SE: Electricity from wind power ts.* Figures for all midpoint impact categories were created visualizing the total environmental impact for each activity within the ozonation process: *Electricity of other installations, Electricity of oxygen production*, and *Electricity of ozone production*. Values for the sensitivity analysis are presented in Table D.2 in Appendix 4.

Table 2 presents the inflows and outflows for all activities included within the system boundary for the ozonation process, i.e., oxygen production, ozone production, ozonation, and other installations. As can be seen in Table 2, ozone production stands out for being a very energy-intense activity. However, also oxygen production and other installations have a large energy consumption.

Table 2. The inflows and outflows upscaled to one year for all activities within the system boundary for the ozonation process, *i.e.*, oxygen production, ozone production, ozonation, and other installations.

Flow		Electricity	Oxygen	Ozone	Heat	Wastewater
Activity		(kWh/year)	(kg/year)	(kg/year)	(kWh/year)	(m ³ /year)
Oxygen	Inflow	7 750 000 ^A	-	-		-
production	Outflow	-	12 807 120 ^A	-	1 076 000 ^B	-
(VPSA)						
Ozone	Inflow	10 940 000 ^A	12 807 120 ^A	-	-	-
production	Outflow	-	-	1 287 720 ^A	10 354 000 ^в	-
Ozonation	Inflow	-	-	1 287 720 ^A	-	128 666 880 ^C
	Outflow	-	-	-	-	128 666 880 ^C
Other	Inflow	3 510 000 ^A	-	-	-	-
installations	Outflow	-	-	-	-	-

References: A: (Ozonation report from Sweco to Gryaab, 2020), B: (Neth at Gryaab, 2022), C: (Gryaab, 2020)

6.1.2. System Description of the PAC Process

The flowchart for the PAC process including flows named by letters is presented in Figure 9. Hard coal is used to produce virgin PAC, which is manufactured in China and then transported to Belgium by ship as presented in flow b and c. The production of virgin PAC occurs in an industrial furnace and the procedure consumes natural gas, electricity, and softened water which in turn generates emissions. PAC is stocked and purchased from Belgium. Therefore, the activated carbon is transported from Belgium to Rya WWTP according to flow d and e. At Rya WWTP, PAC is applied to the nitrifying MBBR and mixed with the wastewater in flow a.

The activity other installations is also included in the PAC process, consisting of for instance pumps. To simplify, other installations is added to the step where PAC is dosed to the nitrifying MBBR according to flow f in Figure 9. Furthermore, a flocculant polymer called polyacrylamide is applied to the PAC treated wastewater in flow g. This polymer is produced

in Italy, and the production requires electricity. Thereafter, the polymer is transported to Rya WWTP according to flow h and i. Sludge containing PAC is generated at the end of the process and treated separately in accordance with flow k. The treatment of PAC sludge consumes electricity and an additional amount of polyacrylamide that is transported to Rya WWTP in flow l and m. Thereafter, the treated sludge is transported to incineration as stated in flow o and p. In the incineration, a specified amount of heat is produced.

Figure 9. The flowchart for the PAC process including letters as names for the flows.

Table C.2 in Appendix 3 presents the chosen flows and activities in GaBi for each activity within the system boundary for the PAC process. For the activation of PAC, emissions were added manually to GaBi due to the lack of detailed data in GaBi. The emissions are presented in Table D.7 in Appendix 4. Furthermore, Table C.3 in Appendix 3 presents the change of flows and activities in GaBi for the sensitivity analyses of the PAC process, which are based on the primary flows and activities in Table C.2. Values for the sensitivity analyses are presented in Table D.4 in Appendix 4. For the PAC process, the following sensitivity analyses were performed: *Wind power, Activation in China, Activation in China with wind power, and Renewable PAC (coconut shells).*

Figures for all midpoint impact categories were created visualizing the total environmental impact of each activity within the PAC process. The activities were aggregated into four main activities: *Production of virgin PAC, Electricity of other installations, Polymer*, and *Treatment of PAC sludge*. The *Production of virgin PAC* includes production of hard coal in China, transportation to Belgium for activation of virgin PAC, and transportation of virgin PAC to Rya WWTP. *Electricity of other installations* includes the activity other installations. The main activity *Polymer* includes production and transportation of polymer for both the PAC process and treatment of PAC sludge. Lastly, the *Treatment of PAC sludge* includes treatment of PAC sludge from Rya WWTP to Sävenäs, and incineration. The partitioning was partly based on the partitioning made in the pre-study and partly to get the best overview of each activity.
Table 3 presents the inflows and outflows for all activities included in the system boundary for the PAC process. As described above and in Section 4.4.2, sludge containing activated carbon is incinerated and corresponds to a yearly amount of 21 000 tonnes PAC sludge. Moreover, in comparison to the process of GAC, the process of PAC requires a large amount of virgin material and is thereby more energy-intensive. However, incineration of PAC sludge contributes to a large amount of heat which can be credited to energy use. As previously described in Section 5.1, a 50 percent ratio of each monomer, acrylic acid and acrylonitrile, is assumed in the production of the polymer polyacrylamide.

Table 3. The inflows and outflows upscaled to one year for all activities within the system boundary for the PAC process, i.e., production of hard coal, production (activation) of virgin PAC, addition of PAC to nitrifying MBBR, other installations, production of polymer for the PAC process, addition of polymer to the PAC process, production of polymer for the sludge treatment, treatment of PAC sludge, and incineration.

Flow Activity		Electricity industrial furnace (kWh/year)	Hard coal (kg/year)	Natural gas (kWh/year)	Activated carbon (virgin PAC) (kg/year)	Acrylic acid (kg/year)	Acrylo- nitrile (kg/year)	Polymer (kg/year)	Softened water (kg/year)	Heat (kWh/year)	Wastewater (m ³ /year)	PAC sludge (tonnes/year)
Production of hard coal			5 799 000 ^D 5 799 000 ^D		-	-	-	-		-	-	-
Production	Inflow	3 556 720 ^D	5 799 000 ^D	7 141 932 ^D	_	-	-	_	24 027 190 ^D	-	-	-
(activation) of virgin PAC	Outflow	-	-	-	1 933 000 ^C	-	-	-	-	-	-	-
Addition of	Inflow	-	-	-	1 933 000 ^C	-	-	-	-	-	128 666 880 ^C	-
PAC to nitrifying MBBR	Outflow	-	-	-	1 933 000 ^C	-	-	-	-	-	128 666 880 ^C	-
Other installations	Inflow	1 000 000 ^C	-	-		-	-	-	-	-		-
	Outflow	-	-	-		-	-	-	-	-		-

Production of	Inflow	44 100 ^G	-	-	-	73 500 ^G	73 500 ^G		-	-	-	-
polymer for the PAC process	Outflow	-	-	-	-			147 000 ^C	-	-	-	-
Addition of	Inflow	_	-	_	1 933 000 ^C			147 000 ^C	-	-	128 666 880 ^C	-
polymer to the PAC process	Outflow	-	-	-	-	-	-	-	-	-	128 666 880 ^C	21 000 ^C
Production of polymer for sludge treatment	Inflow	60 165 ^G	-	-	-	100 275 ^G	100 275 ^G	-	-	-	-	-
	Outflow	-	-	-	-			200 550 ^E	-	-	-	-
Treatment of	Inflow	462 000 ^F	-	-	-	-	-	200 550 ^E	-		-	21 000 ^C
PAC sludge	Outflow	-	-	-	-	-	-	-	-	-	-	21 000 ^C
Incineration	Inflow	-	-	-	-	-	-	-	-	-	-	21 000 ^C
	Outflow	-	-	-	-	-	-	-	-	5 444 444 ^C	-	-

References: C: (Gryaab, 2020), D: (Contactica S.L & Emivasa, 2018), E: (Operating data Gryaab, chemicals and water, 2020), F: (Operating data Gryaab, energy, 2020), G: (Supplier of polymer, 2022)

In the pre-study, a truck with a payload of 40 tonnes that consumes 0.3 litre diesel/km was assumed in the calculations. Since GaBi contains limited options, a truck with a payload of 27 tonnes was chosen. Therefore, a re-calculation of the number of trips and the total distance was made to find the total diesel consumption. Also, the consumption of diesel/km is not specified in GaBi, but a calculation based on data from the pre-study and values in GaBi was made to find out the calculated fuel consumption in GaBi. Thereafter, a ratio with the assumed diesel consumption in the pre-study was obtained to calculate the driven distance in GaBi. By doing this, GaBi calculated for the same diesel consumption as in the pre-study. One example of how the fuel consumption was calculated is presented in Figure E.1 in Appendix 5. Table 4 presents the calculated number of trips and the distances based on calculations in GaBi for each transport within the PAC process.

Table 4. The calculated number of trips and the distances based on calculations in GaBi for each transport within the PAC process.

	Transport (b-c) ^H	Transport (d-e) ^C	Transport (h-i) ^C	Transport (1-m) ^C	Transport (o-p) ^C
	ship	truck	truck	truck	truck
Trips	1	72	6	8	778
Distance in	22054	690	1104	1104	17
GaBi (km)					

References: C: (Gryaab, 2020), H: (Ports.com, n.d.)

6.1.3. System Description of the GAC Process

The flowchart for the GAC process including flows named by letters is presented in Figure 10. As for the PAC process, the GAC process starts with the production of hard coal in China followed by a transport of hard coal from China to Belgium, as stated in flow b and c. Virgin GAC is thereby produced which stands for approximately 10 percent of the total consumption of GAC. The production occurs in an industrial furnace and electricity, natural gas, and softened water are consumed, and emissions are generated. The virgin GAC is transported to Rya WWTP from Belgium in accordance to flow d and e. In the GAC process, both virgin and regenerated GAC are added as inflows e and k. Furthermore, the influent wastewater from flow a passes the GAC-filters to then continue as effluent treated wastewater in flow 1.

The activity other installations is included in the GAC process, consisting of for instance pumps. To simplify, other installations is added to the GAC process according to flow f in Figure 10. When the adsorption of the GAC-filters has reached its full potential, GAC is transported to Belgium for regeneration as stated in flow g and h. The regeneration consumes natural gas, electricity, and softened water. During the reactivation, approximately 10 percent of GAC is lost as waste which explains the need for virgin GAC. Regenerated GAC is transported back to Rya WWTP in flow j and k.

Figure 10. The flowchart for the GAC process including letters as names for the flows.

Table C.4 in Appendix 3 presents the chosen flows and activities in GaBi for each activity within the system boundary for the GAC process. For the activation and the regeneration of GAC, emissions were added manually to GaBi due to the lack of detailed data for the affected activity in GaBi. The emissions are presented in Table D.7 and Table D.8 in Appendix 4. Table C.5 in Appendix 3 presents the change of flows and activities in GaBi for the sensitivity analyses of the GAC process, which are based on the primary flows and activities in Table C.5. Values for the sensitivity analyses are presented in Table D.6 in Appendix 4. For the GAC process, the following sensitivity analyses were performed: *Wind power, Activation in China, Activation in China with wind power, Main case accounting for credited heat from regeneration plant at Rya WWTP, Credited heat from regeneration plant at Rya WWTP, Credited heat from regeneration plant at Rya WWTP with natural gas, Renewable GAC (coconut shells), 30 000 bed volumes, and 10 000 bed volumes.*

For the three cases of *Regeneration plant at Rya WWT*, which are presented in Table C.5 in Appendix 3, the biogas or natural gas that is being used was replaced by diesel. The reason is that Rya WWTP produces biogas, which is supposed to be used as a fuel for the regeneration instead of natural gas that is used when regeneration takes place in Belgium, if Gryaab decides to implement a regeneration plant at Rya WWTP. Today, the produced biogas at Rya WWTP is upgraded and then used as a vehicle fuel, meaning that the amount of biogas for vehicle fuel will decrease in the mentioned cases of regeneration plant at Rya WWTP. Thus, more vehicles must be driven on diesel, which is the reason for the replacement of natural gas with diesel. Gryaab has already accounted for the credited emissions of producing biogas for the existing WWT. Therefore, the biogas was excluded from the calculations in this LCA study.

Figures for all midpoint impact categories were created visualizing the total environmental impact for each activity within the GAC process. The activities were aggregated into four main activities: *Production of virgin GAC, Electricity of other installations, Regeneration*, and

Transports regeneration. The *Production of virgin GAC* includes production of hard coal in China, transportation to Belgium for activation of virgin GAC, and transportation of virgin GAC to Rya WWTP. *Electricity of other installations* includes the activity other installations, and *Regeneration* only includes the regeneration. Lastly, *Transport regeneration* includes transportation of GAC to regeneration in Belgium and transportation of regenerated GAC back to Rya WWTP. The partitioning was partly based on the partitioning made in the pre-study and partly to get the best overview of each activity.

Table 5 presents the inflows and outflows for all activities included in the system boundary of the GAC process. As described above and in Section 4.4.3, approximately 10 percent of GAC is lost during regeneration, which corresponds to 322 000 kg/year. A large amount of GAC is thereby regenerated and corresponds to 2 878 000 kg/year, which reduces the need for virgin material. Wet GAC is transported for regeneration and the weight is thus higher than the weight of the dry GAC, after regeneration.

Table 5. The inflows and outflows upscaled to one year for all activities within the system boundary for the process of GAC, i.e., production of hard coal, production (activation) of virgin GAC, GAC process, other installations, and regeneration.

Flow Activity		Electricity industrial furnace (kWh/year)	Hard coal (kg/year)	Virgin GAC (kg/year)	Activated carbon (kg/year)	Natural gas (kWh/year)	Softened water (kg/year)	Loss of GAC (kg/year)	Regenerated GAC (kg/year)	Wastewater (m ³ /year)
Production of hard coal	Inflow		966 000 ^D					-	-	-
	Outflow		966 000 ^D					-	-	-
Production (activation) of	Inflow	592 480 ^D	966 000 ^D			1 189 706 ^D	4 002 460 ^D	-	-	-
virgin GAC	Outflow	-	-	322 000 ^C		-	-	-	-	-
GAC process	Inflow	-	-	322 000 ^C		-	-	-	2 878 000 ^I	128 666 880 ^C
	Outflow	-	-		5 800 000 ^C	-	-	-	-	128 666 880 ^C
Other installations	Inflow	3 000 000 ^C	-	-	-	-	-	-	-	-
	Outflow	-	-	-	-	-	-	-	-	-
Regeneration	Inflow	1 755 580 ^D	-	-	5 800 000 ^C	3 941 576 ^D	-	-		-
	Outflow	-	-	-	-	-	-	322 000 ^C	2 878 000 ^I	-

References: C: (Gryaab, 2020), D: (Contactica S.L & Emivasa, 2018), I: (Ernst et al., 2020)

Similar to the transports within the PAC process, calculations based on data from the pre-study and values in GaBi were made for each trip within the GAC process. Table 6 presents the calculated number of trips and the distances based on calculations in GaBi for each transport within the GAC process.

Table 6. The calculated number of trips and the distances based on calculations in GaBi for each transport within the GAC process.

	Transport (b-c) ^H	Transport (d-e) ^C	Transport (g-h) ^C	Transport (j-k) ^C
	ship	truck	truck	truck
Trip	1	12	215	107
Distance in	22054	690	690	690
GaBi (km)				

References: C: (Gryaab, 2020), H: (Ports.com, n.d.)

6.1.4. System Description of the Existing Sludge Treatment

Table C.6 in Appendix 3 presents the chosen flows and activities in GaBi for each activity within the system boundary for the existing sludge treatment, which produces sludge that can be applied on agricultural land. All activities within the existing sludge treatment are the same for the three processes, but the amount of sludge for the PAC process differs. With the PAC process, part of the sludge is contaminated, meaning a lower amount of sludge to agriculture. A lower amount of sludge to the existing sludge treatment for the PAC process results in less produced biogas and less consumed electricity. Calculations for the loss of biogas production and the less consumed electricity are presented in Figure E.2 in Appendix 5. Values for how the existing sludge treatment would be for the ozonation and the GAC process are presented in Table D.9 in Appendix 4. Moreover, values for how the existing sludge treatment would be for the PAC process are presented in Table D.10 in Appendix 4.

Table 7 presents the inflows and outflows for all activities included in the system boundary for the existing sludge treatment of the processes ozonation, PAC, and GAC.

 Table 7. The existing sludge treatment for the ozonation, the PAC process, and the GAC process, including the amount of sludge to agriculture as well as electricity and polymer consumed.

Activity		Flow	Sludge	Sludge	Sludge
			treatment	treatment PAC	treatment
			ozonation		GAC
Primary	Inflow	Wastewater	128 666 880 ^C	128 666 880 ^C	128 666 880 ^C
settling		(m ³ /year)			
	Outflow	Wastewater	128 666 880 ^C	128 666 880 ^C	128 666 880 ^C
		(m ³ /year)			
		Sludge	40 000 ^C	36 000 ^C	40 000 ^C
		(tonnes/year)			
Polymer	Inflow	Electricity	114 600 ^G	103 140 ^G	114 600 ^G
production		(kWh/year)			
		Acrylonitrile	191 000 ^G	171 900 ^G	191 000 ^G
		(kg/year)			

		Acrylic acid (kg/year)	191 000 ^G	171 900 ^G	191 000 ^G
	Outflow	Polyacrylamide (kg/year)	382 000 ^E	343 800 ^E	382 000 ^E
Sludge treatment	Inflow	Sludge (tonnes/year)	40 000 ^C	36 000 ^C	40 000 ^C
		Electricity (kWh/year)	2 340 000 ^F	2 105 072 ^F	2 340 000 ^F
		Polyacrylamide (kg/year)	382 000 ^E	343 800 ^E	382 000 ^E
	Outflow	Sludge to agriculture (tonnes/year)	40 000 ^C	36 000 ^C	40 000 ^C

References: C: (Gryaab, 2020), E: (Operating data Gryaab, chemicals and water, 2020), F: (Operating data Gryaab, energy, 2020), G: (Supplier of polymer, 2022)

Since the existing sludge treatment consumes polymer, it means transports of polymer to Rya WWTP. The calculations for the transports are made in the same way as for the PAC- and GAC process. Table 8 presents the calculated number of trips and the distance based on calculations in GaBi for the transports required in each sludge treatment.

Table 8. The calculated number of trips and the distance based on calculations in GaBi for the transports required in each sludge treatment.

	Transport (sludge	Transport (sludge	Transport (sludge
	treatment	treatment for the	treatment for the
	ozonation) ^C	PAC process) ^C	GAC process) ^C
Trip	15	13	15
Distance in GaBi	1104	1104	1104

References: C: (Gryaab, 2020)

6.2. Emissions and Energy Use

Depending on the strength of a substance, it contributes with a different potential to a midpoint impact category. Generally, a midpoint impact category includes many substances which contribute with an effect of varying degrees. In Table 9, a selection of the contributing substances to global warming, acidification, eutrophication, and fossil depletion are presented.

Table 9. A selection of the contributing substances to each chosen midpoint impact category, i.e., GWP, AP, EP, and Fossil depletion.

GWP (kg CO ₂ -eq)	AP (kg SO ₂ -eq)	EP (kg PO ₄ -eq)	Fossil depletion (kg oil-eq)
CO ₂	SO_2	PO ₄ ³⁻	Hard coal
CH ₄	HCI	H ₃ PO ₄	Crude oil
N ₂ O	HF	Р	Fossil energy
CCl ₄	NO _x	NO _x	Natural gas
SF ₆	NH ₃	NO ₂	Fe
CF ₄		NH ₃	Al

The amount of MJ for the midpoint impact categories *PERT* and *PNERT* depends on the type of energy utilised, and its efficiency. The efficiency of a process is the ratio between utilised and supplied energy in a system (NE, n.d.), where a low efficiency means a large proportion of losses. Table 10 presents which type of energy contributes to *PERT* and *PNERT*, where the former is solely of renewable origin and the latter of non-renewable origin. Nuclear power results in radioactive waste and therefore impacts PNERT in GaBi.

Table 10. A selection of which type of energy that contributes to the midpoint impact categories PERT and PNERT.

PERT (MJ)	PNERT (MJ)
Wind power	Diesel
Hydro power	Natural gas
Solar power	Nuclear power

The efficiency of wind power is low, meaning that more mechanical energy needs to be transformed into electrical energy to acquire the required amount of electricity, in comparison to a process with greater efficiency. Similarly, it implies that hydro power with great efficiency requires a lower share of mechanical energy to be transformed into electrical energy to acquire the required amount of electricity. Therefore, the contribution to PERT is larger for wind power than for hydro power since wind power has lower efficiency.

7. Results and Interpretation

Section 7 presents the total environmental impact of ozonation, the PAC process, and the GAC process, based on the treatment of both a yearly flow of wastewater and 1 m³ wastewater. Furthermore, sensitivity analyses for each process are presented separately to display crucial choices of activities and flows. More detailed results are presented in Tables G.1-G.21 in Appendix 7. The modelling in GaBi for the main case of each advanced WWT process and the existing sludge treatment are presented in Figures F.1-F.4 in Appendix 6.

7.1. Total Environmental Impact of All Including Processes

The following section presents the total environmental impact of all three processes included in the study, i.e., ozonation, PAC, and GAC. The two functional units are presented separately, and the processes are compared based on the five chosen impact categories.

7.1.1. Treatment of a Yearly Flow of Wastewater

Figure 11 presents the total environmental impact of the chosen midpoint impact categories for the treatment of a yearly flow of wastewater, including the ozonation process, the PAC process, and the GAC process. Electricity use is presented separately from energy use to show the impact of different types of electricity production, i.e., electricity mixes and wind power. The impact of the existing sludge treatment on Rya WWTP is included to depict how it would have been affected by the potential implementation of an advanced WWT process.

As can be seen in Figure 11, the PAC process contributes most to the different midpoint impact categories overall. The impact of the existing sludge treatment is a bit lower for the potential implementation of the PAC process than for the GAC process and the ozonation, due to lower inflows of resources, as presented in Table D.9 and Table D.10 in Appendix 4. However, the impact of the existing sludge treatment is very low in comparison to the impact of the three processes, meaning that the very small difference of impact from the existing sludge treatment for the PAC process is insignificant. Moreover, the impact of ozonation and the GAC process is similar in Fossil depletion and Energy use, while ozonation is the most preferable alternative based on GWP, EP, and AP. However, ozonation has the largest contribution to electricity use due to its high consumption, which is shown for both the renewable- and non-renewable alternative of electricity.

Figure 11. A comparison of the three studied processes; ozonation, the PAC process, and the GAC process, based on the five midpoint impact categories for treatment of a yearly flow of wastewater. Global Warming Potential is presented in kilo tonnes CO₂-eq/year, Fossil depletion is presented in kilo tonnes oil-eq/year, Eutrophication Potential is presented in tonnes PO₄-eq/year, Acidification Potential is presented in tonnes SO₂-eq/year, and Energy use is presented in GWh/year and includes both renewable and non-renewable energy, Electricity use is presented in GWh/year and compares the use of Swedish, Belgian, and Italian wind power for ozonation, the PAC process, and the GAC process, respectively.

7.1.2. Treatment of 1 m³ of Wastewater

Figure 12 presents the total environmental impact of the chosen midpoint impact categories for the treatment of 1 m^3 of wastewater, including the ozonation process, the PAC process, and the GAC process. The values in Figure 12 are down-scaled numbers of the ones presented in Figure 11, and the results are therefore equal.

Figure 12. A comparison of the three studied processes; ozonation, the PAC process, and the GAC process, based on the five midpoint impact categories for treatment of 1 m^3 of wastewater. Global Warming Potential is presented in g CO₂-eq/m³, Fossil depletion is presented in g oil-eq/m³, Eutrophication Potential is presented in mg SO₂-eq/m³, and Energy use is presented in Wh/m³ and includes both renewable and non-renewable energy.

7.2. Ozonation with Sensitivity Analysis

The following section presents the ozonation with the main case and one sensitivity analysis for all five midpoint impact categories. The main case includes Swedish electricity mix and the sensitivity analysis Swedish wind power. The effect of credited heat is included in Figures 13-17, as specified in Section 5.2. Therefore, this section presents detailed results for the environmental impact of the including activities within the ozonation: *Electricity of other installations, Electricity of oxygen production,* and *Electricity of ozone production.*

Figure 13 presents the yearly contribution to global warming in tonnes CO₂-eq for *Electricity of other installations, Electricity of oxygen production*, and *Electricity of ozone production* for the main case and the sensitivity analysis with wind power. For the main case, the yellow section representing the oxygen production, has the largest yearly contribution to global warming. Furthermore, the usage of wind power can reduce the impact on global warming for all three activities. There is no distinct difference between the impact of the oxygen production and other installations in either case and it is, therefore, difficult to determine which of the two activities contributes the most to global warming. Moreover, wind power results in negative CO₂-eq emissions which is caused by the "saved" amount of CO₂-eq that otherwise would have been emitted when producing residential heating from wood. Emissions related to residential heating systems from wood in GaBi are caused by activities, such as transportation and electricity. Therefore, it is not the combustion of wood that results in the emissions. Furthermore, Figure 13 conveys that the case with wind power leads to a much smaller yearly impact on global warming than the main case with Swedish electricity mix.

SE: Electricity of other installations SE: Electricity of oxygen production SE: Electricity of ozone production

Figure 13. The yearly contribution in tonnes CO₂-eq to global warming from Electricity of other installations, Electricity of oxygen production, and Electricity of ozone production included in the ozonation process with the use of Swedish electricity mix or Swedish wind power.

Figure 14 presents the yearly contribution to fossil depletion in tonnes oil-eq for *Electricity of other installations, Electricity of oxygen production*, and *Electricity of ozone production* for the main case and the sensitivity analysis with wind power. Ozone production contributes the most to the yearly impact in the main case. Moreover, the usage of wind power results in a much less yearly impact on fossil depletion than the main case with Swedish electricity mix.

SE: Electricity of other installations SE: Electricity of oxygen production SE: Electricity of ozone production

Figure 14. The yearly contribution in tonnes oil-eq to fossil depletion from Electricity of other installations, Electricity of oxygen production, and Electricity of ozone production included in the ozonation process with the use of Swedish electricity mix or with Swedish wind power.

Figure 15 presents the yearly contribution to energy use, including both renewable- and nonrenewable energy, for *Electricity of other installations, Electricity of oxygen production*, and *Electricity of ozone production* in the ozonation. Oxygen production represents the largest contributor to energy use in both the main case and the case with wind power. Furthermore, there is no distinct difference in the yearly contribution of GWh for other installations in the main case and the case with wind power. Moreover, the usage of wind power results in a larger yearly impact on energy use than the main case. As described in Section 6.2, wind power has a low efficiency meaning that a larger amount of mechanical energy is required to produce the prerequisite amount of electricity in comparison to the main case.

Ozonation, Energy use

SE: Electricity of other installations SE: Electricity of oxygen production SE: Electricity of ozone production

Figure 15. The yearly contribution in GWh to energy use from Electricity of other installations, Electricity of oxygen production, and Electricity of ozone production included in the ozonation process with the use of Swedish electricity mix or with Swedish wind power. The energy use includes both renewable- and non-renewable energy.

Figure 16 presents the yearly contribution to eutrophication in tonnes PO₄-eq for *Electricity of other installations, Electricity of oxygen production*, and *Electricity of ozone production* in the ozonation. For the main case, there is no distinct difference between the yearly contribution to eutrophication for other installations and oxygen production. In the case with wind power, the impact of all three activities is reduced. Moreover, wind power depicts a clearer difference in the yearly impact on eutrophication among the including activities. Both the main case and the sensitivity analysis result in a yearly total negative value of PO₄-eq, caused by the "saved" amount of PO₄-eq that otherwise would have been emitted when producing residential heat from wood. This demonstrates that both the main case and the case with wind power are advantageous in terms of effects on eutrophication.

Ozonation, Eutrophication Potential (EP)

SE: Electricity of other installations SE: Electricity of oxygen production SE: Electricity of ozone production

Figure 16. The yearly contribution in tonnes PO₄-eq to eutrophication from Electricity of other installations, Electricity of oxygen production, and Electricity of ozone production included in the ozonation process with the use of Swedish electricity mix or with Swedish wind power.

Figure 17 presents the yearly contribution to acidification in tonnes SO_2 -eq for *Electricity of other installations, Electricity of oxygen production*, and *Electricity of ozone production in the ozonation*. The oxygen production has the largest impact on acidification in the main case and other installations in the case with wind power. Moreover, both the main case and the case with wind power results in a total yearly negative value of SO_2 -eq caused by the "saved" amount of SO_2 -eq that otherwise would have been emitted when producing residential heat from wood. Therefore, both the main case and the case with wind power are advantageous in terms of effects on acidification.

Ozonation, Acidification Potential (AP)

SE: Electricity of other installations SE: Electricity of oxygen production SE: Electricity of ozone production

Figure 17. The yearly contribution in tonnes SO₂-eq to acidification from Electricity of other installations, Electricity of oxygen production, and Electricity of ozone production included in the ozonation process with the use of Swedish electricity mix and with Swedish wind power.

7.3. PAC Process with Sensitivity Analyses

The following section presents the PAC process with four sensitivity analyses for all five midpoint impact categories. The included activities within the PAC process have been aggregated into four major activities: *Production of virgin PAC*, *Electricity of other installations*, *Polymer*, and *Treatment of PAC sludge*. The main case with Swedish, Italian, and Belgian electricity mix is abbreviated as β . The four sensitivity analyses then present different changes based on the main case. Different electricity mixes are used, and they are abbreviated as followed; γ represents Swedish, Italian, and Belgian wind power, δ represents Chinese, Italian, and Swedish electricity mix, and η represents Chinese, Italian, and Swedish wind power. The four different sensitivity analyses are named as followed; Main case with γ ; Activation in China with δ ; Activation of in China with η ; Renewable PAC (coconut shells) with δ . An extensive description of the sensitivity analyses is presented in Table C.3 in Appendix 3.

Figure 18 presents the yearly contribution to global warming in kilo tonnes CO_2 -eq for the main PAC process and the four different sensitivity analyses. The production of virgin PAC has the largest environmental impact on global warming, while electricity of other installations and treatment of PAC sludge have a low yearly contribution to CO_2 -eq. Moreover, the sensitivity analysis with coconut shells conveys that a renewable resource of activated carbon such as coconut shells has a great potential to reduce the contribution to global warming. Therefore, the case with coconut shells is most advantageous regarding the environmental impact of global warming. Furthermore, the environmental impact of the polymer is unchanged for all sensitivity analyses in comparison to the main case.

PAC, Global Warming Potential (GWP 100)

Abbreviations: β: Electricity (SE, IT & BE), γ: Wind power (SE, IT & BE), δ: Electricity (CN, IT & SE), η: Wind power (CN, IT & SE)

*Figure 18. The yearly contribution in kilo tonnes CO*₂*-eq to global warming for the main PAC process and the four sensitivity analyses.*

Figure 19 presents the yearly contribution to fossil depletion in kilo tonnes oil-eq for the main PAC process and the four different sensitivity analyses. As for global warming, the production of virgin PAC represents the largest environmental impact also for fossil depletion as demonstrated in Figure 19. The sensitivity analysis with coconut shells conveys that the usage of coconut shells for activated carbon has a great potential to reduce the contribution to fossil depletion.

Abbreviations: β : Electricity (SE, IT & BE), γ : Wind power (SE, IT & BE), δ : Electricity (CN, IT & SE), η : Wind power (CN, IT & SE) *Figure 19. The yearly contribution in kilo tonnes oil-eq to fossil depletion for the main PAC process and the four sensitivity analyses.*

Figure 20 presents the yearly contribution to energy use in GWh for the main PAC process and the four different sensitivity analyses. The total pressure on energy use for the PAC process is similar for all cases except the case with coconut shells. Moreover, the production of virgin PAC contributes the most to energy use in the main case and all sensitivity analyses. As for global warming and fossil depletion, the use of coconut shells as activated carbon is the most preferable choice regarding pressure on energy use.

Figure 20. The yearly contribution in GWh to energy use for the main PAC process and the four sensitivity analyses.

Figure 21 presents the yearly contribution to eutrophication in tonnes PO_4 -eq for the main PAC process and the four different sensitivity analyses. The production of virgin PAC has the largest environmental impact on eutrophication, while the treatment of PAC sludge in total has a negative contribution to eutrophication. Moreover, the use of coconut shells has the potential to reduce the environmental impact of eutrophication and is, therefore, the most advantageous option. However, all sensitivity analyses result in a decreased contribution to eutrophication in comparison to the main case.

Figure 21. The yearly contribution in tonnes PO₄-eq to eutrophication for the main PAC process and the four sensitivity analyses.

Figure 22 presents the yearly contribution to acidification in tonnes SO₂-eq for the main PAC process and the four different sensitivity analyses. As for the four other midpoint impact categories, the production of virgin PAC is the major contributor to acidification as well. The electricity of other installations, polymer, and treatment of PAC sludge all have a low environmental impact on acidification in comparison to the production of virgin PAC. Moreover, the case with coconut shells has the lowest yearly contribution and is, therefore, the most advantageous option regarding the impact on acidification. However, all sensitivity analyses result in a decreased contribution to acidification in comparison to the main case.

Figure 22. The yearly contribution in tonnes SO₂-eq to acidification for the main PAC process and the four sensitivity analyses.

7.4. GAC Process with Sensitivity Analyses

The following section presents the GAC process with sensitivity analyses for all five midpoint impact categories. The included activities within the GAC process have been aggregated into four major activities: *Production of virgin GAC*, *Electricity of other installations*, *Regeneration*, and *Transports regeneration*. The main case with Swedish and Belgian electricity mix is abbreviated as α . Furthermore, the ten sensitivity analyses present different changes based on the main case. Therefore, different electricity mixes are used, and are abbreviated as followed; μ is Swedish and Belgian wind power, ε is Chinese and Swedish electricity mix, and π is Chinese and Swedish wind power.

The ten different sensitivity analyses are named as followed; Main case with μ ; Activation in China with ϵ ; Activation of in China with π ; Main case accounting for credited heat from regeneration, with α ; Regeneration plant at Rya WWTP with α ; Regeneration plant at Rya WWTP accounting for credited heat, with α ; Regeneration plant with natural gas at Rya WWTP accounting for credited heat, with α ; Renewable GAC (coconut shells) with ϵ ; 30 000 bed volumes with α ; 10 000 bed volumes with α . An extensive description of the sensitivity analyses is presented in Table C.5 in Appendix 3. The effect of credited heat is included in the three cases: main case accounting for credited heat, and regeneration plant with natural gas at Rya WWTP accounting for credited heat, and regeneration plant with natural gas at Rya WWTP accounting for credited heat.

Figure 23 presents the yearly contribution to global warming in kilo tonnes CO₂-eq for the main GAC process and the ten different sensitivity analyses. The production of virgin GAC and regeneration are the two activities contributing the most to global warming for all ten cases. By varying the number of bed volumes and using a renewable resource in the production of virgin GAC, the largest alteration in global warming is achieved. However, the other sensitivity analyses do not indicate any large variations in their impact on global warming.

GAC, Global Warming Potential (GWP 100)

Figure 23. The yearly contribution in kilo tonnes CO_2 -eq to global warming for the main GAC process and the ten sensitivity analyses.

Figure 24 presents the yearly contribution to fossil depletion in kilo tonnes oil-eq for the main case of the GAC process and the ten different sensitivity analyses. For fossil depletion, there is a larger variation between the eleven different cases (Figure 24) than the variation between the cases for global warming (Figure 23). The use of wind power as electricity means a lower dependence on fossil resources and thus a reduced contribution to fossil depletion. Another part of the process resulting in a decreased dependence on fossil fuels is the use of coconut shells as a renewable resource in the production of virgin GAC. Also, 30 000 bed volumes results in a lower impact on fossil depletion than the main case, and here all included activities within the process are affected.

GAC, Fossil depletion

Figure 24. The yearly contribution in kilo tonnes oil-eq to fossil depletion for the main GAC process and the ten sensitivity analyses.

Figure 25 presents the yearly contribution to energy use in GWh for the main case of the GAC process and the ten different sensitivity analyses. In comparison to the main case, the three cases accounting for credited heat result in a lower pressure on energy use since the produced heat during regeneration can be utilised. A larger bed volume is beneficial as well as using a renewable resource for GAC instead of a fossil resource.

Abbreviations: α: Electricity (SE & BE), μ: Wind power (SE & BE), ε: Electricity (CN & SE), π: Wind power

Figure 25. The yearly contribution in GWh to energy use for the main GAC process and the ten sensitivity analyses.

Figure 26 presents the yearly contribution to eutrophication in tonnes PO_4 -eq for the main GAC process and the ten different sensitivity analyses. By studying the eutrophication for the eleven different cases, a variation in impact can be observed. Also in this case, the production of virgin GAC is the activity contributing the most overall. Transports regeneration is likewise an activity with a rather high impact on eutrophication, which is shown when fewer transports are needed for the cases of regeneration plant at Rya WWTP. No additional emissions are assumed for the activation and regeneration of coconut shells since it is classified as a renewable resource. Using coconut shells is, therefore, the most favourable alternative since it affects eutrophication less than the other alternatives.

GAC, Eutrophication Potential (EP)

■ Production of virgin GAC ■ Electricity of other installations ■ Regeneration ■ Transports regeneration

Abbreviations: α: Electricity (SE & BE), μ: Wind power (SE & BE), ε: Electricity (CN & SE), π: Wind power (CN & SE)

Figure 26. The yearly contribution in tonnes PO₄-eq to eutrophication for the main GAC process and the ten sensitivity analyses.

Figure 27 presents the yearly contribution to acidification in tonnes SO₂-eq for the main GAC process and the ten different sensitivity analyses. The production of virgin GAC and the regeneration are the two activities contributing the most to acidification. Most cases are rather similar in their impact except for coconut shells, 30 000 bed volumes, and 10 000 bed volumes. The use of coconut shells in the production of virgin GAC and 30 000 bed volumes has a lower impact on acidification than the other nine alternatives, while the case with 10 000 bed volumes results in a higher contribution to acidification.

GAC, Acidification Potential (AP)

■ Production of virgin GAC ■ Electricity of other installations ■ Regeneration ■ Transports regeneration

Figure 27. The yearly contribution in tonnes SO₂-eq to acidification for the main GAC process and the ten sensitivity analyses.

8. Discussion

Section 8 presents a comparison of the results in this study with the results from the pre-study. A reasoning of which of the three advanced WWT processes is the environmentally preferable choice is included. The results of this study are also compared to results from previous LCA studies. There is also a reasoning of the major environmental impacts for each of the three advanced WWT processes, and thus which of the five midpoint impact categories that is affected the most. Moreover, the most crucial parts of the total environmental impact of the three processes are also discussed.

Furthermore, potential impacts on actors are described based on the results. A discussion of the recipient of Rya WWTP is also presented, where questions regarding the environmental burden of advanced WWT processes are weighed towards the environmental benefit of removal of pharmaceutical residues. Moreover, ethical reasoning regarding the work environment and safety, and claims of the unexploited area in Rya forest, are presented. Lastly, the source of errors and improvements are discussed.

8.1. Which of the Three Advanced Processes is the Environmentally Preferable Choice?

The following section discusses which of the three advanced processes is the environmentally preferable choice. The reasoning involves the two functional units, separately.

8.1.1. Treatment of a Yearly Flow of Wastewater

As visualised in Figure 13, Figure 18, and Figure 23 the total contribution to global warming is 684 tonnes CO₂-eq/year for the ozonation, 18 142 tonnes CO₂-eq/year for the PAC process, and 10 216 tonnes CO₂-eq/year for the GAC process. These numbers can also be seen in Table 11, where the corresponding values from the pre-study are presented.

Table 11. A comparison of the total contribution to global warming in tonnes CO2-eq/year for the results in the LCA study a	ınd
the results from the pre-study.	

	Ozonation	PAC process	GAC process
Total contribution to global warming,			
this study (tonnes CO ₂ -eq/year)	684	18 142	10 216
Total contribution to global warming			
excluding the contribution of materials	186 ^C	25 263 ^C	8958 ^C
for construction, pre-study (tonnes CO ₂ -			
eq/year)			

Reference: C: (Gryaab, 2020)

The total contribution to global warming differs between this LCA study and the pre-study. The yearly amount of tonnes CO_2 -eq for ozonation is considerably larger in this LCA study and a probable cause for this is the selected credited heat in GaBi. The credited in this study corresponds to 347 tonnes CO_2 -eq, which is presented in Table G.1 in Appendix 7, and the credited heat in the pre-study amounted to 857 tonnes CO_2 -eq. As mentioned in Section 6.1.1, this LCA study includes heat from residential heating systems from wood. This heat was considered most likely in Sweden in comparison to the other two alternatives GaBi offered:

heat from residential heating systems from natural gas and heat from residential heating systems incinerating light fuel oil (low sulphur content). Since the credited heat in the pre-study results in larger "saved" emissions in comparison to producing the heat in question, it is probably heat for which the production has a greater environmental burden than residential heating systems from wood. This aspect complicates the comparison of the results from this LCA study and the pre-study, but it also demonstrates the benefits of conducting a comprehensive analysis such as an LCA since the results are more detailed.

The result for the PAC process from this LCA study and the pre-study is in the same order of magnitude. The yearly contribution of CO₂-eq from this LCA study is though lower than the results from the pre-study, where it is the production of virgin PAC and the production of polymer that differ the most (Ernst et al., 2020). The impact from the production of virgin PAC is in this LCA study lower than the impact in the pre-study, while the impact from the polymer is larger in the LCA study in comparison to the pre-study. Possible explanations for the difference are, partly, the lack of detail in how the environmental burden was calculated in Contactica S.L & Emivasa (2018), where the pre-study retrieved data. Therefore, the comparison could not be identical. Also, the calculations of the polymer are in this LCA study based on data from a supplier of polymer, while the pre-study used data from Gryaab's carbon footprint tool (Gustavsson & Tumlin, 2013) to calculate the environmental impact of the polymer. Moreover, the ratio of the monomers in the used polymer, polyacrylamide, is unknown. Therefore, as described in Section 5.1, a ratio of 50 percent acrylic acid and 50 percent acrylonitrile was assumed in this study, even though acrylonitrile resulted in larger emissions. More detailed data could have led to more equivalent results as in the pre-study for the polymer.

The environmental impact of global warming from the GAC process is larger in this LCA study than in the pre-study. The impact of the electricity is, as for both the ozonation and the PAC process, like the pre-study and thus not the reason for the difference. However, similar to the PAC process, the environmental impact from the production of virgin GAC is lower in this LCA study compared to the pre-study. On the other hand, the impact of regeneration is larger in this LCA study, which can be explained by the use of different sources that differentiates. In this study, electricity, natural gas, and the manual emissions in Table D.5 and Table D.8 in Appendix 4 were added for the regeneration while only natural gas was accounted for in the pre-study. Also, the environmental burden from transport is larger in this study.

As depicted in Table 11, ozonation is the most advantageous process in terms of contribution to global warming. The values in Table 11 can also be linked to Gryaab's total contribution to global warming in the year 2019, which amounted to 13 000 tonnes CO₂-eq (Ernst et al., 2020). A comparison of Gryaab's total contribution to global warming reveals how beneficial a possible implementation of an ozonation process would be in comparison to a PAC- or a GAC process from a climate impact perspective only. However, in comparison to the pre-study, this LCA also entails midpoint impact results in terms of contribution to fossil depletion, energy use, eutrophication, and acidification. For a more detailed analysis, the contribution to these midpoint impact categories is important to consider when comparing the three advanced WWT processes.

Furthermore, ozonation is the most beneficial alternative considering eutrophication and acidification while the impact on fossil depletion and energy use is similar for ozonation and the GAC process, as presented in Figure 11. However, an important aspect is the large use of electricity for ozonation (Operating data Gryaab, energy, 2020). Rya WWTP consumes almost 41 GWh of electricity per year for the existing treatment of wastewater. The ozonation process consumes approximately 22 GWh of electricity per year, which can be seen in Table 2. An implementation of ozonation thus requires an increase of approximately 50 percent considering the consumption of electricity at Rya WWTP, regardless of the electricity origins from non-renewable- or renewable resources. Important to remember is, therefore, that even if the electricity is renewable, it consumes energy that could have been used for other purposes. As described in Section 6.2, wind power has low efficiency and results in large losses. Another renewable alternative, such as hydro power with higher efficiency, could potentially result in lower electricity use.

Moreover, Gryaab's current environmental permit allows for emissions of 40 tonnes phosphorus per year and 1000 tonnes nitrogen per year for the effluent treated wastewater (Gryaab, n.d.c). The characterization factor for phosphorus and nitrogen is 3.06 g PO_4 -eq/g and 0.42 g PO_4 -eq/g, respectively (Baumann & Tillmann, 2004). Therefore, conversion to EP results in 542 tonnes PO₄-eq/year in accordance with Equation 1:

$$(40 \cdot 10^6 \cdot 3.06 + 1000 \cdot 10^6 \cdot 0.42) \cdot 10^{-6} = 542 \tag{1}$$

When comparing the permit with the emissions contribution to eutrophication for the processes, the emissions from all three processes are well below the permit. However, ozonation is the most preferable process, considering emissions contributing to eutrophication, given its almost non-existent influence as can be seen in Figure 11.

No emissions contributing to acidification are included in the environmental permit. As can be seen in Table G.20 and Table G.21 in Appendix 7, the largest contributors to AP are the production of activated carbon, regeneration, and transport by container ship. Both heavy oil and hard coal contain sulphur (Bruneau, n.d.), resulting in emissions of substances contributing to AP in Table 9. Therefore, using renewable fuels and coconut shells in the production of activated carbon reduces emissions contributing to AP. Moreover, the fact that the emissions associated with the production of activated carbon affect AP the most, can explain the low impact of acidification from the ozonation process.

Ozonation with wind power and the GAC process with coconut shells are thus the most environmental advantageous alternatives based on the contribution to the five midpoint impact categories. Two further beneficial aspects of the GAC process are the additional removal of BOD and no additional risks regarding work environment and safety, which are further described in Section 8.6. As mentioned in Section 2.2, the retention time at Rya WWTP is relatively low which can be one factor that BOD is released into the recipient since there is not enough time for all BOD to be hydrolysed and degraded by bacteria. Moreover, as described in Section 2.4.2.2, removal of BOD in the wastewater is important since it otherwise can cause eutrophication and an oxygen-poor environment. Due to the current issue of released BOD into the recipient, an implementation of the GAC processes would probably both reduce the amount

of BOD and pharmaceutical residues in the wastewater. Furthermore, more stringent regulations regarding the removal of BOD will arise in the future which also demonstrates the benefit of the GAC process. Additional aspects indicating the GAC process as more advantageous compared to ozonation is the risk for by-products likewise transformation products and the possible effects to humans and organisms. However, as also further described in Section 8.6, a disadvantage of the GAC process is the ethical aspects with claims of current unexploited areas in Rya forest.

8.1.2. Treatment of 1 m³ of Wastewater

Similar as described by Pesqueira et al., (2020) in Section 3.2, this LCA study also indicates the importance of analysing the energy use of the processes. As discussed in Section 8.1.1, ozonation is the most beneficial process considering most midpoint impact categories. However, the process consumes a large amount of energy in terms of electricity. Even if the electricity is made of renewable resources, it is used energy that must be produced which could have been used for other purposes. Therefore, reflecting on the processes' environmental benefits compared to their environmental burden is vital. Pesqueira et al., (2020) also noted the lack of information on how pharmaceutical residues can impact living organisms, and that not all studies find a beneficial environmental impact with implementing advanced WWT processes. As described in Section 2.2, the effluent treated wastewater from Rya WWTP flows into the primary recipient Göta Älv, close to the ocean Kattegatt. The dilution is high, which also complicates the measuring of eventual impacts in the recipient. However, the potential environmental benefit compared to the possible environmental burden of implementing the advanced WWT processes is further described in Section 8.5.

Furthermore, also presented in Section 3.2 is that the GAC process overall performs environmentally better than the ozonation in several studies. It differs compared to this LCA study, where Figure 12 shows that the ozonation process in general performs environmentally better. Similar as described by Pesqueira et al., (2020), Section 7.2 displays the value of choosing renewable alternatives where it is possible. Mousel et al., (2017) mean that the ozone dosage is a critical aspect considering the electrical demand for ozonation, whereas Pesqueira et al., (2020) at the same time point out the benefits of using environmentally beneficial energy mixes in the ozonation process. The previously mentioned aspects in combination with combining the GAC process and ozonation in Section 3.1, entail a possible environmentally beneficial alternative. In this LCA study, 10 g ozone/m³ wastewater is used, which can be compared with the ozone dosage of 4 g/m³ at the WWTP Stengården. However, the available area at Rya WWTP is limited, and an eventual implementation of two processes for the reduction of pharmaceutical residues may therefore be difficult. Hence, further investigations concerning the question are vital.

Table 12 presents the contribution to GWP, EP, and AP of all process within the existing WWT at three different WWTPs. These values can be compared to the results from this LCA for ozonation, the PAC process, and the GAC process. The environmental burden of the advanced WWT processes investigated in this study can then be compared to the impact of existing WWTPs without any advanced WWT process. A perception of the order of magnitude regarding the environmental impact of advanced WWT processes can thus be obtained.

Table 12. The contribution to global warming, eutrophication, and acidification for the existing WWTP at Henriksdal WWTP, Käppala WWTP, and Kungsängen WWTP. Also, the contribution to the three different midpoint impact categories is presented for ozonation, the PAC process, and the GAC process for a possible implementation at Rya WWTP.

	Implementation at	Henriksdal	Käppala	Kungsängen
	Rya WWTP	WWTP	WWTP	WWTP
Contribution to	Ozonation: 5	115 ^H	279 ^H	118 ^H
global warming	PAC process: 141			
$(g CO_2-eq/m^3)$	GAC process: 79			
Contribution to	Ozonation: ~ 0	4560 ^H	4580 ^H	5720 ^H
eutrophication	PAC process: 57			
$(mg PO_4-eq/m^3)$	GAC process: 15			
Contribution to	Ozonation: ~ 0	890 ^H	647 ^H	776 ^H
acidification	PAC process: 924			
$(mg SO_2-eq/m^3)$	GAC process: 226			

References: H: (Arnell et al., 2016)

As can be seen in Table 12, the ozonation contributes to a low degree or not at all to the three different midpoint impact categories, in relation to the existing WWT at Henriksdal WWTP, Käppala WWTP, and Kungsängen WWTP. The GAC process contributes in a significant way to global warming and acidification, but only trivial to eutrophication. Furthermore, the contribution of the PAC process is high to global warming and acidification, where the impact might be larger than the total impact from the existing WWT at Henriksdal-, Käppala-, and Kungsängen WWTP. On the other hand, the contribution to eutrophication of the PAC process is low. As discussed in Section 8.1.1, there are possibilities to reduce the processes' environmental impact by choosing more environmentally beneficial alternatives. However, the alternatives for the PAC process do not affect the result in such a way to make it more advantageous to ozonation and the GAC process.

8.2. What are the Major Environmental Impacts Considering the Selected Midpoint Impact Categories, of Each Advanced Process?

The three advanced WWT processes contribute to various degrees to each of the five midpoint impact categories. The contribution within one process can also be very different for each of the midpoint impact categories, which demonstrates the importance of including several midpoint impact categories. However, this also complicates the analysis since the processes can be advantageous in some aspects but disadvantageous in other aspects.

As described in Section 8.1.1, the ozonation has a large contribution to energy use and consumes 22 GWh. The total use of electricity at Gryaab is 41 GWh/year (Operating data Gryaab, energy, 2020) and a potential implementation of an ozonation process at Rya WWTP would consequently increase the total energy use by approximately 50 percent, in relation to the current situation. Moreover, as depicted in Figure 16 and Figure 17, a possible implementation of an ozonation process would result in no contribution to eutrophication and acidification. As described in Section 8.1.1, the potential contribution to global warming for the ozonation process is low in comparison to Rya WWTP's current yearly contribution to CO_2 -eq. Furthermore, the contribution to fossil depletion is large for the ozonation since Swedish

electricity mix includes a large share of nuclear power. Unfortunately, no reference value was found for fossil depletion and, therefore, no comparison to other studies could be made. Based on the discussion regarding the impact on each of the five midpoint impact categories, a possible implementation of an ozonation process at Rya WWTP contributes the most to energy use and fossil depletion.

Unlike the ozonation, the PAC- and GAC process has a large impact on global warming. As mentioned in Section 8.1.1, both the PAC- and GAC process exceeds Gryaab's total contribution to global warming in the year 2019. The yearly contribution to GWP, EP, and AP of the PAC- and GAC process can be compared to the results from the LCA study by Arnell et al. (2016) of the Henriksdal WWTP in Stockholm. The yearly influent wastewater to Henriksdal WWTP is 103 660 000 m³/year and it contributes to 17 900 tonnes CO₂-eq/year, 706 tonnes PO₄-eq/year, and 138 tonnes SO₂-eq/year, which is presented in Table 13. The contribution to global warming of the PAC process is larger than the total contribution to global warming of Henrikdal WWTP, which demonstrates the great impact on global warming for the PAC process is close to Gryaab's current environmental permit regarding emissions of phosphorus and nitrogen in effluent treated wastewater. Also, both the PAC- and the GAC process have a low impact on eutrophication in comparison to Henriksdal WWTP. The contribution of the PAC process to acidification is, however, similar to Henriksdal WWTP.

	Implementation at Rya WWTP	Henriksdal WWTP
Contribution to global	PAC process: 19 100	17 900 ^H
warming (tonnes CO ₂ -eq/year)	GAC process: 11 300	
Contribution to eutrophication	PAC process: 8	706 ^H
(tonnes PO ₄ -eq/year)	GAC process: 2	
Contribution to acidification	PAC process: 122	138 ^H
(tonnes SO ₂ -eq/year)	GAC process: 32	

Table 13. The contribution to global warming, eutrophication, and acidification for the existing WWTP at Henriksdal. The contribution to the three different midpoint impact categories is also presented for the PAC process and the GAC process for an eventual implementation at Rya WWTP.

References: H: (Arnell et al., 2016)

Furthermore, the PAC process has a great impact on fossil depletion as presented in Figure 11, which depends on the large use of energy sources in the production of virgin PAC. Moreover, both the PAC- and the GAC process have a great impact on energy use. The electricity use of the PAC- and the GAC process is, however, low in comparison to the ozonation. Therefore, the large use of energy can be derived from the large consumption of natural gas and fossil fuels. Based on the discussion regarding the impact on each of the five midpoint impact categories, an eventual implementation of the PAC process would contribute the most to global warming and acidification. Moreover, an eventual implementation of the GAC process would contribute the most to global warming.

8.3. What Parts of the Advanced Processes are Most Crucial for the Total Environmental Impact?

The following section evaluates what parts of the advanced WWT processes are most crucial for the total environmental impact. The evaluation is based on which activities contribute the most to each midpoint impact category.

8.3.1. Ozonation

As mentioned in Section 7.2 and depicted in Figure 13, Figure 15, and Figure 17, oxygen production has the largest contribution to global warming, energy use, and acidification although ozone production is more energy-intensive which is depicted in Table G.19 in Appendix 7. The possible credited heat from the ozone production is though greater than for the oxygen production, which likewise is presented in Table G.19 in Appendix 7, and results in a larger overall impact of the oxygen production. Since oxygen production has the largest impact in three out of five midpoint impact categories, this activity is assigned to be the most crucial for the total environmental impact of the ozonation. The impact of the ozone production is, however, the activity most affected by the introduction of wind power.

8.3.2. PAC Process

The production of virgin PAC is the major contributor to each of the five midpoint impact categories, and consequently most crucial for the total environmental impact of the PAC process. As can be seen in Table G.2, G.5, G.14, G.17, and G.20 in Appendix 7, the extraction of hard coal, the consumption of natural gas likewise electricity, and the activation of PAC are major contributors to the production of virgin PAC. Therefore, a disadvantage of the PAC process is the need for virgin PAC, since it contributes to a large environmental impact. However, as described in Section 7.3, renewable activated carbon has the potential to largely reduce the environmental impact of the production of virgin PAC. Using coconut shells instead of hard coal to produce virgin PAC is, therefore, an important aspect to consider. The production of non-renewable activated carbon requires more energy-intense steps, such as coal mining, in comparison to the production of renewable activated carbon. On the other hand, due to the lack of detailed data in GaBi to produce activated carbon from coconut shells, the result for the energy use can be developed further to be more reliable. Several producers of activated carbon already produce PAC and GAC from coconut shells, for instance, DESOTEC (DESOTEC through Seiler, 2022) and Zhulincarbon (Zhulincarbon, n.d.). Moreover, the Research Institute of Sweden (RISE) is currently working on a project in which different methods to produce activated carbon from biocarbon are evaluated (RISE, 2021). Renewable alternatives instead of fossil resources are thus possible to find, which is beneficial for both the PAC process and the GAC process.

8.3.3. GAC Process

The production of virgin GAC and the regeneration of activated carbon are the major contributors within the GAC process, and thus most crucial for the total environmental impact of the GAC process. Therefore, it is important to evaluate which factors contribute to the production of virgin GAC and the regeneration if the GAC process is considered a further candidate at Rya WWTP. The amount of bed volumes is a factor with great impact on the total environmental impact of the GAC process. Figures 23-27 convey that a reduced amount of bed

volumes has a greater environmental burden. Therefore, it is advantageous with a large number of bed volumes, since it increases the lifetime of the GAC and reduces the need for regeneration. The amount of suspended material at Rya WWTP is relatively low, which enables a potentially larger bed volume (Neth at Gryaab, 2022). However, the specific number of bed volumes needs to be further evaluated.

The usage of renewable resources to produce virgin GAC is another factor with great impact on the total environmental burden. Coconut shells have the potential to reduce the contribution of the GAC process to all selected midpoint impact categories. However, as described in Section 8.3.3, the result depicting the energy use can be developed further to be more reliable. Furthermore, the GAC process is dependent on transport and natural gas in all cases. In this study, only fossil diesel mix and natural gas have been evaluated, but possible renewable alternatives in the future may lead to the GAC process as a more beneficial alternative. However, an important aspect is that even though the energy is renewable, the energy must be produced which always has an environmental impact, as indicated in Figure 25. By combining different sensitivity analyses, an even lower impact on the different midpoint impact categories can be reached. For instance, one advantageous combination is the one with coconut shells, 30 000 bed volumes, and wind power. Finding these crucial activities and their possible improvements is thus a way to develop the processes further.

8.4. Impact on Actors

The choice of implementing a process for the reduction of pharmaceutical residues in wastewater is not straightforward. There are several factors and perspectives to consider that both can help and complicate the choice to make. As mentioned in Section 4.6, several actors are affected when it comes to changes in a WWTP. The WWTP, in this case the Rya WWTP, is of course the main actor being affected. However, other WWTPs, both within and outside of Sweden, evaluating the same question, are also influenced by Gryaab's choice in the matter. Also, the inhabitants around Rya WWTP and the connected municipalities probably have an interest in the decision since it can result in changing costs and handling of water. An eventual side effect of implementing a process for the reduction of pharmaceutical residues is, for example, increased water- and sewer costs for the households (Neth at Gryaab, 2022). Furthermore, an advanced WWT process results in emissions and it is therefore of importance to further investigate its eventual impact on, for example, the air quality and ecotoxicity, from a broader perspective.

Moreover, mentioned in Section 4.6 and Section 1 is the upcoming regulations and other measures for minimizing potential environmental burdens from wastewater. This is a question currently discussed at the EU level. Therefore, Susanne Tumlin, development engineer at Gryaab and one of Sweden's representatives in sewer, environment, and circulation at the EU level, briefly explained the development work within the EU considering WWTPs (Tumlin, 2022). First, a WWTP is classified as an environmentally hazardous activity and a permission is therefore needed to conduct the activity. There are no terms or requirements on WWTPs to remove pharmaceutical residues from the wastewater, but Gryaab's current permission includes a condition to study how the recipient reacts to environmentally hazardous substances, for instance, pharmaceutical residues. However, measuring the recipient is not easy and it is,
therefore, difficult to conclude its current condition and how it responds to ensuing changes. Due to low concentrations, it is uncertain if it is possible to measure any effect and thus also difficult to conclude anything regarding the need of implementing an advanced process.

At the EU level, there are directives that all member countries must follow. Also, the EU have strategies and alignments that are up to each country to what extent they want to follow them. All countries follow a baseline that currently is in the progression to be updated. However, deciding on a baseline is not an easy task. The reason is varied developed WWTs throughout the EU countries but also differences in how much each country can afford to invest in WWT. Due to uncertainties, other solutions are also considered, for instance, changed rules in how doctors prescribe drugs to their patients. More clear and better markings on the products is another measure in the development work.

However, Sweden now performs voluntary development work on how to improve the WWT. The pre-study at Gryaab, funded by SEPA, is a part of this development work. Depending on the result of these projects, different actors can be affected. Still, Tumlin emphasizes the importance of mapping the recipients with the lowest dilution or the largest WWTPs in terms of treated wastewater. By finding these vital WWTPs, the implementation of processes for the reduction of pharmaceutical residues can be prioritised at those locations, or possibly even limited to them (Tumlin, 2022). In this way, advanced WWT processes are only implemented where needed.

Ozonation and the GAC process are the preferred alternatives based on the results of this study. However, the choice of which process to choose is not straightforward due to safety risks with ozonation that are more discussed in Section 8.6. One thing for sure is that the risks have an impact on actors, and further investigations in how to limit the risks are, therefore, essential.

8.5. The Recipient of Rya WWTP

As described in Section 2.1, the effects in nature of pharmaceutical residues depend on several factors such as the sensitivity of the recipient, the concentration of pharmaceutical residues, the dilution factor, and the turnover in the recipient. The characteristics of the recipient play a major role in terms of the required level of reduced pharmaceutical residues to minimise environmental risks (Baresel, n.d.). Therefore, there is no universal method nor universal process that is the most preferred choice for all WWTPs. Moreover, as mentioned in Section 4.1, processes for the removal of pharmaceutical residues are acknowledged as resource-intense. The potential environmental benefits of the removal of pharmaceutical residues against the possible environmental burden of the advanced WWT process must therefore be evaluated.

The primary recipient of Rya WWTP is large and has a high turnover, entailing larger dispersion of pharmaceutical residues, which is described in Section 2.2. Therefore, it is difficult to measure the current concentrations of pharmaceutical residues in the recipient, likewise a potential reduction of pharmaceutical residues entailed by the implementation of advanced WWT processes. The installation and operation of an advanced WWT process, with a large environmental impact, can potentially result in a greater environmental burden than an environmental benefit. Moreover, the pre-study conveys the importance of further analyses to

achieve a deeper comprehension and thereby perform a more righteous conclusion about the risk assessment of the recipient (Ernst et al., 2020).

As described in section 3.3, the implementation of an ozonation plant at Nykvarnsverket WWTP in Linköping resulted in a significant reduction of pharmaceutical residues in the effluent treated wastewater. For Nykvarnsverket WWTP, the discharge point of effluent treated wastewater is in the river Stångån (Gålfalk, 2020). In comparison to the recipient of Rya WWTP, Stångån is very small, has less turnover, and a lower dilution factor. Therefore, it is difficult to compare the effects of reduced pharmaceutical residues in Stångån and Göta Älv.

Furthermore, Ullared WWTP is another plant for which the need for increased treatment of wastewater has been investigated. The river Högvadsån is the recipient of Ullared WWTP and is classified as a Natura 2000 area (Baresel, n.d.). Natura 2000 is a network of valuable natural areas with species or habitats considered particularly worthy of protection from a European perspective (Naturvårdsverket, n.d.b). Högvadsån mostly flows into a gently hilly agricultural landscape, with several endangered and vulnerable biotopes and species. Moreover, high levels of pharmaceutical residues are judged to have negative consequences for the reproduction of salmon and trout. The need for increased treatment of wastewater at Ullared WWTP was therefore evaluated, but the report concluded that there was no need for an advanced WWT process at Ullared WWTP (Baresel, n.d.). The report highlighted the high dilution effect of wastewater in the river Högvadsåsen as the underlying factor behind the motivation.

Characteristics, such as flow conditions, of Högvadsåsen are similar to the ones of Göta Älv. Therefore, to some extent, the results from the study of Ullared WWTP can be linked to the question of whether an increased treatment of wastewater is preferable or not at Rya WWTP. However, the pre-study describes that the substances Citalopram, Diclofenac, Oxazepam, Ranitidine, Estradiol, and Estrone exceed the predicted no-effect concentration (PNEC) at a ten times dilution in the primary recipient (Ernst et al., 2020). Moreover, the pre-study also presents that Citalopram, Ranitidine, and Estrone exceed PNEC values at a 100 times dilution in the recipient, which demonstrates the importance of further analyses to enable righteous conclusions of the recipient's sensitivity. Therefore, it is difficult to compare the results of Ullared WWTP and Rya WWTP, since they in some aspects are comparable but in some they differ.

8.6. Ethical Aspects

Emissions in nature caused by humans always entail several ethical aspects. The discharge of pharmaceutical residues into water is an issue that raises many ethical questions. An important question is if humans have the right to emit pharmaceutical residues into rivers, lakes, and oceans? Moreover, the installation and operation of advanced WWT processes entail several ethical aspects, such as work environment and safety. As discussed in Section 8.4, the installation and operation of advanced WWT processes also involve a financial aspect, where a potential increase in water- and sewer costs for households is an ethical aspect. However, WWT is available for all people in the society independent of the income and the area of living.

Furthermore, as described in Section 2.4.2.2, the most suitable solution is to place the GAC process in the Rya forest. Although the proposed area is not classified as a nature reserve, it

results in claims on current unexploited nature. Moreover, previous proposals to build in the Rya forest have provoked strong reactions from the public (Ernst et al., 2020). This aspect is, therefore, important to include when evaluating the strengths and weaknesses of the GAC process.

Regarding work environment and safety, the GAC process is the most preferable since it does not lead to any new risks in relation to the existing WWT at Rya WWTP (Ernst et al., 2020). There are, therefore, both positive and negative ethical aspects concerning the implementation and operation of the GAC process. Ernst et al. (2020) also convey that, unlike the GAC process, the PAC process and ozonation raise several issues of concern regarding the work environment and safety. The PAC process causes dust and dirt, whilst the ozonation causes high-frequency sounds which means that people with pacemakers cannot enter that part of the plant. Furthermore, Ernst et al. (2020) depict the fire- and explosion risks with handling PAC since it is classified as a dust-explosive substance, likewise the fire risk and hazardous aspects of handling ozone. Moreover, the pre-study also mentions the risk of leakage of ozone from the ozonation process which can result in a contribution to the greenhouse effect.

As mentioned in Section 5.1, biodiversity is not well addressed in LCA. By only considering the LCA results when making a decision, several environmental aspects may be missed. A relevant question is therefore how the lack of these aspects can affect human influence on nature? Moreover, effects in nature are not always local which strengthens the value of investigating all possible alternatives and effects before deciding. Humans in other geographical areas can be influenced by the decision, even though they do not benefit from it. These aspects promote the fact of using more than one sustainability tool in studies, to reinforce the result with data from different perspectives.

8.7. Source of Errors and Improvements

This LCA study includes several sources of error, which to large extent depends on limitations and assumptions. GaBi offers a wide range of options but lacks detailed data regarding the production of polyacrylamide. Moreover, as described in Section 5.1, this LCA study also lacks recipe specific data on polyacrylamide production. The environmental impact of the production of polyacrylamide is therefore a source of error, which is described in Section 8.1.1. A variation in the recipe of acrylic acid and acrylonitrile is assumed to have a rather large impact on the result, since acrylonitrile results in larger emissions. The environmental impact of polyacrylamide production could be developed further by including more detailed data from companies. The result of the polymer production is dependent on the required amount of energy and monomers, likewise the production of heat. Therefore, the calculations related to the polymer production could be improved, and thus its environmental impact for the five midpoint impact categories. However, more specific data for the polymer production would probably still depict the PAC process as the least environmental preferable alternative.

As mentioned in Section 5, credited heat from oxygen production, ozone production, and sensitivity analyses was assumed to represent heat from residential systems from wood. As discussed in Section 8.1.1, the "saved" impact of the credited heating differs between the prestudy and this LCA study. Using another software package with a larger variation of data than GaBi, could enable a more conforming result in relation to the pre-study. Moreover, the authors' lack of experience performing in-depth LCA analyses is another potential source of error. However, the LCA study has been guided by a supervisor and examiner with a great experience of the tool. This source of error is therefore assessed to have a rather low impact on the final results.

The study could be improved by verifying the data for the regeneration in relation to existing facilities. A longer timeframe of the study could have opened the possibility to find relevant facilities for regeneration in Belgium and evaluate if the data used in this LCA study could be considered adequate. Contact was made with a person at the organisation Svenskt Vatten asking for relevant facilities in Belgium, unfortunately without any response within the timeframe.

Including several countries for the production of coconut shells is another aspect that could have been taken into consideration. As mentioned in Section 6.1.2 and Section 6.1.3, the production of coconut shells was assumed to occur in China. However, other potential countries may exist, and it is therefore important to not stare blindly at China as a country of production. A relevant country closer to Sweden would result in fewer transports and thus a lower impact. Furthermore, alternative renewable resources in the production of activated carbon exist, such as wood, which could have been included in this study to evaluate the environmental impact of renewable resources further. Another improvement of the study would be to include hydropower as an alternative source of electricity since it has higher efficiency than wind power.

Furthermore, a possible improvement of the study would be to investigate a combination of advanced WWT processes for the reduction of pharmaceutical residues. As described in Section 3.1, a combined process can potentially be more resource-efficient and a combination of the energy-intensive ozonation and the GAC process would therefore be interesting to investigate at Rya WWTP. A combination of the two processes could enable a lower required amount of electricity for oxygen production and ozone production in the ozonation. If the ozonation process is placed first, it could result in a decreased consumption of activated carbon in the GAC process, resulting in a reduced required amount of virgin GAC. Thereby, less GAC needs to be regenerated which in turn could reduce the environmental burden.

Another improvement would be to expand this LCA study to also consider the existing WWT without any advanced WWT process and include a quantitative result of relevant pharmaceutical residues. As described in Section 3.2, the result of the LCA can be largely affected by including the effects of pharmaceutical residues in the analysis. A development of this LCA study could therefore be to include pharmaceuticals of concern and expand the study to also include the midpoint impact category ecotoxicity. However, this would require a measure of the current concentration of pharmaceutical residues in the effluent treated wastewater released to the recipient. As discussed in Section 8.5, this is difficult due to several aspects and would therefore require a lot of pre-work for the study.

9. Conclusions and Recommendations

The results of this LCA study conclude that the ozonation with wind power and the GAC process with renewable GAC, wind power, the largest possible bed volume, and a regeneration plant at Rya WWTP are the two environmentally preferred alternatives. The PAC process is not recommended as an option for a potential implementation of an advanced WWT process at Rya WWTP, due to the large environmental burden of the process. Oxygen production is the most crucial activity for the total environmental impact of the ozonation, favouring the use of wind power. For both the PAC- and the GAC process, the production of virgin activated carbon is the most crucial activity. Using a renewable resource in the production of PAC and GAC is advantageous, since it considerably reduces the impact of both processes. For the GAC process, regeneration is also crucial.

Ozonation has the lowest environmental impact based on the contribution to each midpoint impact category. However, the ozonation results in a large consumption of electricity which demonstrates the importance of using renewable energy at a potential implementation at Rya WWTP. Unlike the GAC process, a potential implementation of the ozonation at Rya WWTP also entails additional risks regarding the production of by-products and transformation products, likewise work environment and safety. Therefore, the earlier mentioned combination of the sensitivity analyses for the GAC process is considered an advantageous option for a potential implementation of an advanced WWT process at Rya WWTP.

The results of this LCA study depict the large environmental burden of implementing an advanced WWT process. The large environmental burden of the advanced processes in combination with the need for further analyses regarding the sensitivity of Göta Älv, concludes that further investigations evaluating the treatment efforts against the additional environmental burdens caused by the advanced WWT processes are essential.

This LCA study demonstrates the importance of a more detailed investigation than the multicriteria-analysis in the pre-study. Including several midpoint impact categories revealed the impact on fossil depletion, energy use, eutrophication, and acidification, which were not obtained in the pre-study. Ozonation contributed the most to the midpoint impact category energy use. The PAC process contributed the most to global warming and acidification, while global warming was most significant for the GAC process. Moreover, the inclusion of more detailed data resulted in a greater assessed environmental burden of the PAC process in this study in comparison to the pre-study. This LCA study has contributed to more extensive results considering the environmental impact of the three investigated processes, which is important for the potential selection of an advanced WWT process at Rya WWTP.

10. References

Aho Vanhatapio, A., Wensing, K. (2021). *Beräkning av koldioxidutsläpp från frakter mellan Kina, USA och Sverige, Skillnader i koldioxidutsläpp med eller utan lagerhållning nära slutkund. [Calculations of carbon dioxide emissions from shipping between China, the US, and Sweden, Differences in carbon dioxide emissions with or without warehousing near end customer]* (E2021:071). Chalmers University of Technology. https://odr.chalmers.se/bitstream/20.500.12380/302756/1/E2021_071.pdf

Álvarez-Muñoz, D., Rodríguez-Mozaz, S., Maulvault, A.L., Tediosi, A., Fernández-Tejedor, M., Van den Heuvel, F., Kotterman, M., Marques, A., Barceló, D. (2015). Occurrence of pharmaceuticals and endocrine disrupting compounds in macroalgaes, bivalves, and fish from coastal areas in Europe. *Environmental research*, *143*(B), 56-64. https://doi.org/10.1016/j.envres.2015.09.018

American Institute of Chemical Engineers [AIChE]. (n.d). *Advanced Wastewater Treatment* (*AWT*). <u>https://www.aiche.org/ifs/resources/glossary/isws-water-glossary/advanced-wastewater-treatment-awt#:~:text=Any%20process%20which%20reduces%20the,high%20percentage%20of%20su spended%20solids.</u>

Arena, N., Lee, J., Clift, R. (2016). Life Cycle Assessment of activated carbon production from coconut shells. *Journal of Cleaner Production*, *125*, 68–77. https://doi.org/10.1016/j.jclepro.2016.03.073

Arnell, M., Andersson, S., Junestedt, C., Oliveira, F., Rahmberg, M., Åmand, L. (2016). *Nya* utsläppskrav för Svenska reningsverk – effekter på reningsverkens totala miljöpåverkan [New emission requirements for Swedish waste water treatment plants – effects on the treatment plants' total environmental impact] (Nr B 2246). IVL Svenska miljöinstitutet. https://www.ivl.se/download/18.694ca0617a1de98f473715/1628416844797/FULLTEXT01.p df

Asplund, E. (2021). *Disc Filter facility at Gryaab* [photography]. Gryaab. <u>https://www.gryaab.se/pressmeddelanden/bildarkiv/</u>

Avloppsguiden. (n.d.). *Avloppsguidens ordlista [Sewer guide dictionary]*. <u>https://avloppsguiden.se/informationssidor/avloppsguidens-ordlista/</u>

Azapagic, A., Tarpani, R.R.Z. (2018). Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceutical and personal care products (PPCPs). *Journal of Environmental Management, 215,* 258-272. https://doi.org/10.1016/j.jenvman.2018.03.047 Bailey, M.P. (2020). *Calgon carbon adds activated-carbon production capacity in Belgium*. Chemical Engineering Essentials for the CPI professional.

https://www.chemengonline.com/calgon-carbon-adds-activated-carbon-production-capacityin-belgium/

Baresel, C. (2020). Riskbedömning av Ryaverkets recipient med avseende för läkemedelsemissioner. En bedömning baserat på tidigare studier och tillgänglig kunskap [A risk assessment of the recipient of Rya WWTP with respect to effluents of pharmaceutical residues. An assessment based on previous studies and available knowledge] (U 6293). Svenska miljöinstitutet. (Internal data).

Baresel, C., Ek, M., Ejhed, H., Allard, A.S., Magnér, J., Dahlgren, L., Westling, K., Wahlberg, C., Fortkamp, U., Söhr, S. (2017). *Handbok för rening av mikroföroreningar vid avloppsreningsverk [Handbook for treatment of micro-contaminants at sewage treatment plants]* (B 2288). Svenska miljöinstitutet. https://www.ivl.se/download/18.34244ba71728fcb3f3f8e2/1591705071470/B2288.pdf

Baresel, C., Gunnarsson, A., Habagil, M., Keucken, A., Malovanyy, A., Petersén, A., Svedberg, S. (n.d.). *Läkemedelsrening vid Ullared reningsverk [Purification of pharmaceutical residues at Ullared WWTP]* (C 468). VIVAB Vatten & Miljö I Väst AB. <u>https://www.ivl.se/download/18.694ca0617a1de98f4734d8/1628416311171/FULLTEXT01.p</u> <u>df</u>

Baresel, C., Ekengren, Ö., Filipsson, S., Karlsson, J., Winberg von Friesen, L., Blomqvist, S., Hasselgren, M., Lazic, A., Stapel, H., Feldthusen, M., Hellman, J., Nordin, A. (2020). *The municipal wastewater treatment plant of the future – A water reuse facility* (C538). IVL Swedish Environmental Research Institute.

https://sjostad.ivl.se/download/18.19f66483176f7d6a18e112c/1611845125745/The%20munic ipal%20wastewater%20treatment%20plant%20of%20the%20future%20%E2%80%93%20A %20water%20reuse%20facility%20C538.pdf

Baumann, H., Tillman, A-M. (2004). Appendix 2: Characterisation indicators. *The Hitch Hiker's Guide to LCA* (p. 515). Studentlitteratur. ISBN 978-91-44-02364-9

Björlenius, B. (2018). *Pharmaceuticals – improved removal from municipal wastewater and their occurrence in the Baltic Sea* [Doctoral Thesis, KTH Royal Institute of Technology]. DiVA. <u>http://www.diva-portal.org/smash/get/diva2:1264354/FULLTEXT01.pdf</u>

Bruneau, L. (n.d.). *Industrier spridande gaser och lukt [Industries dispersing gases and odors]*. <u>https://www.ivl.se/download/18.1ee76657178f8586dfc8d2/1619515730548/B14.pdf</u>

Bui, X.T., Vo, T.P.T., Ngo, H.H., Guo, W.S., Nguyen, T.T. (2016). Multicriteria assessment of advanced treatment technologies for micropollutants removal at large-scale applications. *Science of The Total Environment*. *563-564*, 1050-1067. https://doi.org/10.1016/j.scitotenv.2016.04.191

Čelić, M., Gros, M., Farré, M., Barceló, D., Petrović, M. (2019). Pharmaceuticals as chemical markers of wastewater contamination in the vulnerable area of the Ebro Delta (Spain). *Science of The Total Environment*, *652*, 952-963. https://doi.org/10.1016/j.scitotenv.2018.10.290

Cimbritz, M., Mattsson, A. (2018). *Reningstekniker för läkemedel och mikroföroreningar i avloppsvatten [Purification techniques for pharmaceutical and micro-contaminants in wastewater]* (2018:7). Havs- och vattenmyndigheten. https://www.havochvatten.se/download/18.4c271c50163bf560e38ecf2d/1528952839153/rapp ort-reningstekniker-for-lakemedel-och-mikrofororeningar-i-avloppsvatten.pdf

Clerc, B., Gulde, R., McArdell, C.S, Rutsch, M., Schollée, J.E., Von Gunten, (2021). Formation of transformation products during ozonation of secondary wastewater effluent and their fate in post-treatment: From laboratory- to full-scale. *Water Research, 200*(117200), https://doi.org/10.1016/j.watres.2021.117200

Contactica S.L., Emivasa. (2018). *Portable solution for the electrochemical regeneration of activated carbon*. (768905). PORTABLECRAC. https://www.aspire2050.eu/sites/default/files/users/user735/Deliverables/WP6/D6%201_Virgi n%20activated%20carbon%20%20Thermal%20regeneration_v4_FINAL.pdf

DESOTEC through Seiler. (2022). (Communication via e-mail).

Edefell, E., Ullman, R., Bengtsson, E. (2019). *Ultrafilter och granulerat aktivt kol för avskiljning av mikroföroreningar [Ultrafilter and granulated activated carbon for separation of micro-contaminants]* (2019–1). Svenskt Vatten. <u>https://www.svensktvatten.se/contentassets/7ec170db0a6d4d8a84523b0340841755/vu-rayt-19-01.pdf</u>

Ernst, G., Neth, M., Tumlin, S. (2020). *D1909 Läkemedelsrening: Förstudie av alternativ för läkemedelsrening på Ryaverket [Purification of pharmaceutical residues: A pre-study of alternatives for purification of pharmaceutical residues at Rya WWTP]*. Gryaab. <u>https://www.svensktvatten.se/globalassets/avlopp-och-miljo/reningsverk-och-reningsprocesser/bestallargrupp/19-slutrapporter/gryaab.pdf</u>

Eskebaek, A. (2016). *Utvärdering av småskalig rening från läkemedelsrester i källsorterad urin [Evaluation of small-scale purification of source sorted urine]* [Examensarbete, Uppsala universitet & Sveriges Lantbruksuniversitet]. <u>http://vav.griffel.net/filer/C_SLU2016-032.pdf</u>

Finnson, A. (2019). *Läkemedelsrening [Purification of pharmaceutical residues]*. Svenskt vatten. <u>https://www.svensktvatten.se/vattentjanster/avlopp-och-miljo/reningsverk-och-reningsprocesser/lakemedelsrening</u>

Gryaab. (2020). Basis for multicriteria-analysis. (Internal data).

Gryaab. (n.d.a). *Avloppsvattenrening [Wastewater treatment]*. <u>https://www.gryaab.se/vad-vi-gor/avloppsvattenrening/</u>

Gryaab. (n.d.b). *Framtidens avloppsrening med Nya Rya [Future wastewater treatment with New Rya WWTP]*. <u>https://www.gryaab.se/vad-vi-gor/nya-rya/</u>

Gryaab. (n.d.c). *Gryaabs miljötillstånd [Gryaab's environmental permit]*. https://www.gryaab.se/om-gryaab/gryaabs-miljotillstand/

Gryaab. (n.d.d). *Kort om Gryaab* [Short introduction of Gryaab]. <u>https://www.gryaab.se/vad-vi-gor/kort-om-gryaab/</u>

Gryaab. (n.d.e). *Vatten som vatten – eller? [Water as water - or?]*. https://www.gryaab.se/hjalp-oss/klokt-avloppstank/vatten-som-vatten-eller/

Gustavsson, D.J.I, Tumlin, S. (2013). Carbon footprints of Scandinavian wastewater treatment plants. *Water Science & Technology*, *68*(4), 887-893. <u>https://doi.org/10.2166/wst.2013.318</u>

Gålfalk, M., Johansson, C., Nilsson Påledal, S., Sehlén, R., Yngvesson, J. (2020). *Innovativ* teknik för mätning av växthusgaser från avloppsreningsverk [Innovative technology for measuring greenhouse gases from sewage treatment plants] (2020-10). Svenskt Vatten utveckling. <u>http://vav.griffel.net/filer/svu-rapport-2020-10.pdf</u>

Hoff, H. (2020). *Läkemedel i avloppsvatten [Pharmaceuticals in wastewater]*. Sveriges riksdag. <u>https://www.riksdagen.se/sv/dokument-lagar/dokument/motion/_H8022492</u>

Hörsing, M., Wahlberg, C., Falås, P., Hey, G., Ledin, A., Jansen, J.I.C. (2014). *Reduktion av läkemedel i svenska avloppsreningsverk – kunskapssammanställning [Reduction of pharmaceuticals in Swedish wastewater treatment plants – compilation of knowledge]* (2014–16). Svenskt Vatten Utveckling. <u>http://vav.griffel.net/filer/SVU-rapport_2014-16.pdf</u>

Karlstads Kommun. (2020). *Avancerad rening av läkemedelsrester vid Sjöstadsverket* [*Advanced purification of pharmaceutical residues at Sjöstadsverket*] (2). Norconsult. https://www.svensktvatten.se/globalassets/avlopp-och-miljo/reningsverk-ochreningsprocesser/bestallargrupp/19-slutrapporter/karlstad-kommun.pdf Klimatanpassning.se. (2020). *Vatten och avlopp [Water and sewer]*. https://www.klimatanpassning.se/hur-samhallet-paverkas/vatten-och-avlopp/vatten-avlopp-1.22569

Kolrester från industrier kan designas att rena avloppsvatten [Coal residues from industries can be designed to purify wastewater]. (n.d.). forskning.se. <u>https://www.forskning.se/2019/05/15/kolrester-fran-industrier-kan-designas-att-rena-avloppsvatten/#</u>

Krahnstöver, T., Wintgens, T. (2018). Separating powdered activated carbon (PAC) from wastewater – Technical process options and assessment of removal efficiency. *Journal of Environmental Chemical Engineering*. *6*(5), 5744-5762. https://doi.org/10.1016/j.jece.2018.09.001

Kristianstads Kommun. (2020). Läkemedelsrening igång på Degeberga avloppsreningsverk [Purification of pharmaceutical residues underway at Degeberga wastewater treatment plant]. https://www.kristianstad.se/sv/nyhetsarkiv/lakemedelsrening_degeberga/

Li, Y., Zhang, S., Zhang, W., Xiong, W., Ye, Q., Hou, X., Wang, C., Wang, P. (2019). Life cycle assessment of advanced wastewater treatment processes: Involving 126 pharmaceuticals and personel care products in life cycle inventory. *Journal of Environmental Management*, 238, 442-450. <u>https://doi.org/10.1016/j.jenvman.2019.01.118</u>

Lüdtke, M. (2019). Läkemedelsrening och statligt stöd [Purification of pharmaceutical residues and state support] [Conference session]. NAM19, Sundsvall. https://www.svensktvatten.se/globalassets/utbildning/konferenser-och-seminarier/2019/nam19/5-maximilian-ludtke-naturvardsverket.pdf

Martínez Bueno, M.J., Boillot, C., Munaron, D., Fenet, H., Casellas, C., Gómez, E. (2014). Occurrence of venlafaxine residues and its metabolites in marine mussels at trace levels: development of analytical method and a monitoring program. *Analytical and Bioanalytical Chemistry*, 406, 601–610. <u>https://doi.org/10.1007/s00216-013-7477-x</u>

Mousel, D., Palmowski, L., Pinnekamp, J. (2017). Energy demand for elimination of organic micropollutants in municipal wastewater treatment plants. *Science of The Total Environment*, *575*, 1139-1149. <u>https://doi.org/10.1016/j.scitotenv.2016.09.197</u>

Mulder, M., Antakyali, D., Ante, S. (2015). *Costs of removal of micropollutants from effluents of municipal wastewater treatment plants – general cost estimates for the Netherlands based on implemented full scale post treatments of effluents of wastewater treatment plants in Germany and Switzerland.* STOWA and Waterboard the Dommel, The Netherlands.

https://www.stowa.nl/sites/default/files/assets/PROJECTEN/Projecten%202018/Stowa%20T APES%20Final%20report.pdf Muñoz, I., Rodríguez, A., Rosal, R., Fernández-Alba, A.R. (2009). Life Cycle Assessment of urban wastewater reuse with ozonation as tertiary treatment: A focus on toxicity-related impacts. *Science of The Total Environment*, *407*(4), 1245–1256. https://doi.org/10.1016/j.scitotenv.2008.09.029

Nationalencyklopedin AB [NE]. (n.d.). *Verkningsgrad [Efficiency]*. https://www.ne.se/uppslagsverk/encyklopedi/l%C3%A5ng/verkningsgrad

Naturvårdsverket. (2017). Avancerad rening av avloppsvatten för avskiljning av läkemedelsrester och andra oönskade ämnen. Behov, teknik och konsekvenser [Advanced purification of wastewater for separation of pharmaceutical residues and other unwanted substances. Need, technique, and consequences] (Report 6766). Arkitektkopia AB. https://www.naturvardsverket.se/globalassets/media/publikationer-pdf/6700/978-91-620-6766-3.pdf

Naturvårdsverket [SEPA]. (2021). *Läkemedel i miljön [Pharmaceuticals in the environment]*. https://sverigesmiljomal.se/etappmalen/lakemedel-i-miljon/

Naturvårdsverket. (n.d.a). *Läkemedel i miljön [Pharmaceuticals in the environment]*. <u>https://www.naturvardsverket.se/amnesomraden/miljofororeningar/organiska-</u> <u>miljogifter/lakemedel-i-miljon/</u>

Naturvårdsverket. (n.d.b). *Natura 2000-områden [Natura 2000 areas]*. https://www.naturvardsverket.se/amnesomraden/skyddad-natur/olika-former-avnaturskydd/natura-2000-omraden/

Naturvårdsverket. (n.d.c). *Rekommenderade ämnen för analys [Recommended substances for analysis]*. <u>https://www.naturvardsverket.se/bidrag/lakemedelsrening-vid-avloppsreningsverk/rekommenderade-amnen-for-analys/</u>

Neth at Gryaab. (2022). (Personal communication).

New standard for hospital wastewater treatment. (2015). *Elsevier*, *52*(3), 44-45. https://doi.org/10.1016/S0015-1882(15)30141-5

Niinipuu, M. (2019). *Tailoring residue-derived carbon materials for the removal of wastewater contaminants: Adsorption and surface properties* [Dissertation for PhD, Umeå University]. DiVA. <u>http://umu.diva-portal.org/smash/get/diva2:1307880/FULLTEXT01.pdf</u>

Operating data Gryaab. (2020). (Internal data).

Pesqueira, J.F.F.R., Pereira, M.F.R., Silva, A.M.T. (2020). Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review. *Journal of Cleaner Production, 261,* 121078. <u>https://doi.org/10.1016/j.jclepro.2020.121078</u>

Ports.com. (n.d.). *Sea route & distance*. <u>http://ports.com/sea-route/port-of-shanghai,china/port-of-antwerp,belgium/</u>

Rahman, S.M., Eckelman, M.J., Onnis-Hayden, A., Gu, A.Z. (2018). Comparative Life Cycle Assessment of Advanced Wastewater Treatment Processes for Removal of Chemicals of Emerging Concern. *Environmental Science & Technology*, *52*(19), 11346-11358. <u>https://doi.org/10.1021/acs.est.8b00036</u>

Reports from Sweco to Gryaab. (2020). (Internal data).

Research Institute of Sweden [RISE]. (2021). *Ersättning av fossil aktivt kol [Replacement of fossil activated carbon]*. <u>https://www.ri.se/sv/vad-vi-gor/projekt/ersattning-av-fossilt-aktivt-kol</u>

Sehlén, R., Nilsson, J., Stapf, M., Schütz, J., Bester, K., Kharnel, S., Lukas, M., Bogusz, A., Putna-Nimane, I. (2020). *Evaluation and experiences of full-scale ozonation followed by MBBR post-treatment and comparison with previous pilot tests*. CWPharma. https://doi.org/10.5281/zenodo.4032487

Sphera. (n.d.a). *GaBi LCA Databases*. Sphera. https://gabi.sphera.com/sweden/databases/gabi-databases/

Sphera. (n.d.b). *GaBi LCIA Documentations*. Sphera. https://gabi.sphera.com/support/gabi/gabi-lcia-documentation/

Supplier of polymer. (2022). (Communication via e-mail).

Svenskt Vatten. (2016). *Hur renas avloppsvattnet [How to purify wastewater]*. https://www.svensktvatten.se/fakta-om-vatten/avloppsfakta/hur-renas-avloppsvattnet/

Tekniska verken. (n.d). *Rening av läkemedelsrester [Purification of pharmaceutical residues]*. <u>https://www.tekniskaverken.se/om-oss/innovation/innovativa-projekt/rening-av-lakemedelsrester/</u>

Tierps Energi & Miljö AB. (2020). *Implementering av fullskalig läkemedelsrening vid Tierps reningsverk [Implementation of full-scale purification of pharmaceuticals at Tierps wastewater treatment plant]*. <u>https://www.svensktvatten.se/globalassets/avlopp-och-miljo/reningsverk-och-reningsprocesser/bestallargrupp/19-slutrapporter/tierp-energi-och-miljo-ab.pdf</u>

Wahlberg, C., Björlenius, B., Paxéus, N. (n.d.). *Läkemedelsrester i Stockholms vattenmiljö* [*Pharmaceutical residues in Stockholm's aquatic environment*]. Stockholm Vatten. https://www.stockholmvattenochavfall.se/globalassets/pdf1/rapporter/avlopp/avloppsrening/la kemedelsrapport_slutrapport.pdf

Walldén, M. (2020). *Slam föreslås bara få användas i jordbruket [A suggestion of only using sludge in agriculture]*. Sveriges Natur. <u>https://www.sverigesnatur.org/aktuellt/slam-foreslas-bara-fa-anvandas-i-jordbruket/</u>

Westling, K. (2021a). Läkemedelsrester och andra föroreningar – minskade utsläpp via avloppsreningsverk [Pharmaceutical residues and other contaminants – reduced effluents via wastewater treatment plants]. Svenskt Vatten.

https://www.svensktvatten.se/vattentjanster/avlopp-och-miljo/reningsverk-ochreningsprocesser/bestallargrupp-lakemedelsrester-mikroplaster-och-andrafororeningar/lakemedelsrester-och-andra-fororeningar/

Westling, K. (2021b). *Naturvårdsverket – pågående bidragsprojekt läkemedelsrening [The Swedish Environmental Agency Protection – ongoing grant projects for purification of pharmaceutical residues]*. Svenskt Vatten.

https://www.svensktvatten.se/vattentjanster/avlopp-och-miljo/reningsverk-ochreningsprocesser/bestallargrupp-lakemedelsrester-mikroplaster-och-andrafororeningar/lakemedelsrening/

Xing, W., Ngo, H.H., Kim, S.H., Guo, W.S., Hagare, P. (2020). Adsorption and bioadsorption of granular activated carbon (GAC) for dissolved organic carbon (DOC) removal in wastewater. *Bioresource Technology*, *99*(18), 8674-8678. https://doi.org/10.1016/j.biortech.2008.04.012

Zhulincarbon. (n.d.). *Powdered Activated Carbon*. https://www.activatedcarbon.net/powdered-activated-carbon

Appendix 1 – LCIA Methods

Table A.1. A brief description of the LCIA methods used in the study, i.e., CML 2001, EN 15804+A1, and ReCiPe (Sphera, (n.d.b).

Database	Description					
CML 2001	An impact assessment method which restricts quantitative modelling to					
(2016)	early stages in the cause-effect chain to limit uncertainties. Results are					
	grouped in midpoint categories according to common mechanisms (e.g.					
	climate change) or commonly accepted groupings (e.g. ecotoxicity).					
EN 15804+A1	The standard EN 15804 is used to calculate environmental indicators to					
(2013)	use in Environmental Product Declaration (EPDs). The introduction of					
	EN 15804 as a separate group of characterization factors is meant to align					
	more specifically to the EN 15804 standard without additional					
	calculations done by thinkstep as is the case with the CML values.					
ReCiPe (2016)	ReCiPe can be seen as a fusion of the two methodologies CML 2001 and					
	Ecoindicator 99, taking the midpoint indicators from CML and the					
	endpoint indicators from Ecoindicator. All mid- and endpoint indicators					
	are available in three versions taking into account three different cultural					
	perspectives:					
	Individualist (I) is based on the short-term interest, undisputed impact					
	types, and technological optimism as regards human adaptation. Uses the					
	shortest timeframe e.g. a 20 year timeframe for global warming, GWP20					
	Hierarchist (H) is based on the most common policy principles with					
	regard to the timeframe and other issues. Uses the medium timeframe e.g.					
	a 100 year timeframe for global warming, GWP100					
	Egalitarian (E) is the most precautionary perspective, taking into account					
	the longest timeframe, impact types that are not yet fully established but					
	for which some indication is available, etc. Uses the longest timeframe					
	e.g. a 1000 year timeframe for global warming, (GWP1000) and infinite					
	time for ozone depletion (ODPInf)					

Appendix 2 – Concentrations of Pharmaceutical Residues in Effluent Treated Wastewater from the Existing WWTP

Substance	Concentration (ng/l)
Estrone (E1)	10
Atenolol	600
Carbamazepine	300
Citalopram	26
Diclofenac	600
Ibuprofen	100
Metoprolol	1100
Naproxen	600
Oxazepam	400
Paracetamol	20
Propranolol	100
Sertraline	40
Ciprofloxacin	5
Clarithromycin	20
Erythromycin	100
Sulfamethoxazole	100
Trimethoprim	100

Table B.1. Concentration of different pharmaceutical residues in the effluent wastewater at Rya WWTP (Baresel, 2020).

Appendix 3 – Chosen Flows in GaBi

For Tables C.1-C.6, bolded text means tracked flows in GaBi, i.e., flows that can be linked to another activity. Italicized text means waste flows in GaBi and normal text means untracked flows that are not linked to another activity. Lastly, underlined text defines activities that are linked to a tracked flow.

Table C.1. Chosen flows in GaBi for all activities within the system boundary for the ozonation process.

Activity		Chosen flows and activities in GaBi				
Oxygen production	Inflow	• SE: electricity, production mix SE [production mix] linked to <u>SE:</u>				
(VPSA)		Electricity grid mix				
		• Heat (consumption mix, at consumer from residential heating systems				
		from wood) [Thermal energy] linked to EU-28: Heat ts (residential heating				
		systems from wood pellets)				
	Outflow	Oxygen [renewable resources]				
Ozone production	Inflow	• SE: electricity, production mix SE [production mix] linked to <u>SE:</u>				
		Electricity grid mix				
		• Heat (consumption mix, at consumer from residential heating systems				
		from wood) [Thermal energy] linked to EU-28: Heat ts (residential heating				
		systems from wood pellets)				
		Oxygen [renewable resources]				
	Outflow	Ozone [inorganic intermediate products]				
Ozonation and other	Inflow	Ozone [inorganic intermediate products]				
installations		• SE: electricity, production mix SE [production mix] linked to <u>SE:</u>				
(Was fixed to one)		Electricity grid mix				
		• CH: treatment, sewage, to wastewater treatment, class 2 [wastewater				
		treatment]				
	Outflow	• CH: treatment, sewage, to wastewater treatment, class 3 [wastewater				
		treatment]				

Activity		Chosen flows and activities in GaBi			
Production of hard	Inflow	• CN: hard coal supply mix [Appropriation] linked to CN: Hard coal mix ts			
coal (China)	Outflow	CN: hard coal supply mix [Appropriation]			
Transport (China to	Туре	GLO: Container ship, 5,000 to 200,000 dwt payload capacity, ocean going ts			
Belgium)	Inflow	CN: hard coal supply mix [Appropriation] linked to Cargo [Others]			
		• Heavy fuel oil (1.0 wt. % S) [Refinery products] linked to EU-28: Heavy			
		fuel oil at refinery (1.0wt.% S)			
	Outflow	• CN: hard coal supply mix [Appropriation] linked to Cargo [Others]			
Production	Inflow	• BE: electricity, production mix BE [production mix] linked to <u>BE:</u>			
(activation) of virgin		electricity grid mix ts			
PAC (Belgium)		CN: hard coal supply mix [Appropriation]			
		• Natural gas, at consumer Belgium [Natural gas, at consumer] linked to			
		<u>BE: Natural gas mix ts</u>			
		• Water (decarbonised, softened) [Operating materials]			
	Outflow	Activated carbon [organic intermediate products]			
		• Emissions (See Table D.7 in Appendix 4)			
Transport (Belgium	Туре	GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity			
to Rya WWTP)	Inflow	Activated carbon [organic intermediate products] linked to Cargo			
		[Others]			
		• Diesel [Refinery products] linked to EU-28: Diesel mix at refinery ts			
	Outflow	Activated carbon [organic intermediate products] linked to Cargo			
		[Others]			
Addition of PAC to	Inflow	• CH: treatment, sewage, to wastewater treatment, class 2 [wastewater			
nitrifying MBBR and		treatment]			
other installations		Activated carbon [organic intermediate products]			
(Was fixed to one)		• SE: electricity, production mix SE [production mix] linked to SE:			
		Electricity grid mix			
	Outflow	• CH: treatment, sewage, to wastewater treatment, class 3 [wastewater			
		treatment]			
		Activated carbon [organic intermediate products]			
Production of	Inflow	• IT: electricity, production mix IT [production mix] linked to IT: Electricity			
polymer for the PAC		<u>grid mix</u>			
process		• Acrylic acid [Organic intermediate products] linked to <u>DE: Acrylic acid</u>			
		(Propene) ts [Organic intermediate products]			
		• Acrylonitrile [Organic intermediate products] linked to <u>RER: Acrylonitrile</u>			
		(AN) PlasticsEurope			
	Outflow	Polyacrylamide [Plastics]			
Transport (Italy to	Туре	GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity			
Rya WWTP) (PAC	Inflow	Polyacrylamide [Plastics] linked to Cargo [Others]			
process)		• Diesel [Refinery products] linked to <u>EU-28: Diesel mix at refinery ts</u>			
	Outflow	Polyacrylamide [Plastics] linked to Cargo [Others]			
Addition of polymer	Inflow	Activated carbon [organic intermediate products]			
to the PAC process		Polyacrylamide [Plastics]			
		• CH: treatment, sewage, to wastewater treatment, class 3 [wastewater			
		treatment]			
	Outflow	Sewage sludge (wastewater processing) [Waste for disposal]			
		• CH: treatment, sewage, to wastewater treatment, class 3 [wastewater			
		treatment]			

Table C.2.	Chosen flows in	GaBi for all	activities within t	the system	boundary for the	process of PAC
------------	-----------------	--------------	---------------------	------------	------------------	----------------

Production of	Inflow	• IT: electricity, production mix IT [production mix] linked to IT: Electricity			
polymer for treatment		<u>grid mix</u>			
of PAC sludge		• Acrylic acid [Organic intermediate products] linked to <u>DE: Acrylic acid</u>			
		(Propene) ts [Organic intermediate products]			
		• Acrylonitrile [Organic intermediate products] linked to <u>RER: Acrylonitrile</u>			
		(AN) PlasticsEurope			
	Outflow	Polyacrylamide [Plastics]			
Transport (Italy to	Туре	GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity			
Rya WWTP)	Inflow	Polyacrylamide [Plastics] linked to Cargo [Others]			
(treatment of PAC		• Diesel [Refinery products] linked to EU-28: Diesel mix at refinery ts			
sludge)	Outflow	Polyacrylamide [Plastics] linked to Cargo [Others]			
Treatment of PAC	Inflow	• SE: electricity, production mix SE [production mix] linked to SE:			
sludge		Electricity grid mix			
		Polyacrylamide [Plastics]			
		Sewage sludge (wastewater processing) [Waste for disposal]			
	Outflow	Sewage sludge (wastewater processing) [Waste for disposal]			
Transport (Rya	Туре	GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity			
WWTP to Sävenäs)	Inflow	• Sewage sludge (wastewater processing) [Waste for disposal] linked to			
		Cargo [Others]			
		• Diesel [Refinery products] linked to EU-28: Diesel mix at refinery ts			
	Outflow	• Sewage sludge (wastewater processing) [Waste for disposal] linked to			
		Cargo [Others]			
Incineration	Inflow	Sewage sludge (wastewater processing) [Waste for disposal]			
	Outflow	• Heat (consumption mix, at consumer from residential heating systems			
		from wood) [Thermal energy] linked to EU-28: Heat ts (residential heating			
		systems from wood pellets)			
		• Sewage sludge (wastewater processing) [Waste for disposal] linked to <u>DE:</u>			
		Municipal waste water treatment (sludge incineration) ts [wastewater			
		treatment]			

Sensitivity analyses	Information	Chosen flows and activities in GaBi for sensitivity analyses
Wind power	Based on the main case but all electricity mixes are replaced by wind power.	• Electricity from wind power [System-dependent] linked to <u>BE:</u> <u>Electricity from wind power ts/SE: Electricity from wind power</u> <u>ts/IT: Electricity from wind power ts</u>
Activation in China	Based on the main case but both the production and activation occur in China.	 Production (activation) of Virgin PAC (China): CN: hard coal supply mix [Appropriation] linked to <u>CN: Hard</u> <u>coal mix ts</u> CN: electricity, production mix CN [production mix] linked to <u>CN: Electricity grid mix ts</u> Natural gas, at consumer China [Natural gas, at consumer] linked to <u>CN: Natural gas mix ts</u> Transport (Shanghai port to Gothenburg port): GLO: Container ship, 5,000 to 200,000 dwt payload capacity, ocean going ts Activated carbon [Organic intermediate products] linked to Cargo [Others] inflow/outflow Heavy fuel oil (1.0 wt. % S) [Refinery products] linked to <u>EU-28:</u> Heavy fuel oil at refinery (1.0wt.% S) Shift from ship to truck: Activated carbon [Organic intermediate products] inflow/outflow Transport (Gothenburg port to Rya WWTP): GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity Activated carbon [Organic intermediate products] linked to Cargo [Others] inflow/outflow Diesel [Refinery products] linked to <u>EU-28: Diesel mix at refinery</u>
Activation in China with wind power	Based on activation in China but all electricity mixes are replaced by wind power.	Electricity from wind power [System-dependent] linked to <u>CN:</u> Electricity from wind power ts/SE: Electricity from wind power ts/ IT: Electricity from wind power ts
(coconut shells)	Based on activation in China, hard coal is replaced by coconut shells.	 Coconuts with shell (1.5 kg DM per piece, 50% H2O) [Renewable primary products] Excluding the manually added emissions for production (activation) of PAC, see Table D.7 in Appendix 4

Table C.3. Change of flows in GaBi for the sensitivity analyses of the PAC process: Wind power, Activation in China, Activation in China with wind power, and Renewable PAC (coconut shells).

Activity		Chosen flows and activities in GaBi
Production of hard	Inflow	• CN: hard coal supply mix [Appropriation] linked to <u>CN: Hard coal mix ts</u>
coal (China)		
	Outflow	CN: hard coal supply mix [Appropriation]
Transport (China to	Туре	GLO: Container ship, 5,000 to 200,000 dwt payload capacity, ocean going ts
Belgium)	Inflow	• CN: hard coal supply mix [Appropriation] linked to Cargo [Others]
		• Heavy fuel oil (1.0 wt. % S) [Refinery products] linked to EU-28: Heavy
		fuel oil at refinery (1.0wt.% S)
	Outflow	• CN: hard coal supply mix [Appropriation] linked to Cargo [Others]
Production	Inflow	• BE: electricity, production mix BE [production mix] linked to <u>BE:</u>
(activation) of virgin		electricity grid mix ts
GAC (Belgium)		CN: hard coal supply mix [Appropriation]
		• Natural gas, at consumer Belgium [Natural gas, at consumer] linked to
		BE: Natural gas mix ts
		• Water (decarbonised, softened) [Operating materials]
	Outflow	Activated carbon [organic intermediate products]
		• Emissions (See Table D.7 in Appendix 4)
Transport (Belgium	Туре	GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity
to Rya WWTP)	Inflow	Activated carbon [organic intermediate products] linked to Cargo
		[Others]
		• Diesel [Refinery products] linked to EU-28: Diesel mix at refinery ts
	Outflow	Activated carbon [organic intermediate products] linked to Cargo
		[Others]
GAC process and	Inflow	Activated carbon [organic intermediate products]
other installations		Recycled GAC [non-renewable resources]
(Rya WWTP,		• SE: electricity, production mix SE [production mix] linked to SE:
Sweden)		Electricity grid mix ts
(Was fixed to one)		• CH: treatment, sewage, to wastewater treatment, class 2 [wastewater
		treatment]
	Outflow	Activated carbon [organic intermediate products]
		• CH: treatment, sewage, to wastewater treatment, class 3 [wastewater
		treatment]
Transport (GAC to	Туре	GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity
regeneration in	Inflow	• Activated carbon [organic intermediate products] linked to Cargo [Others]
Belgium)		• Diesel [Refinery products] linked to EU-28: Diesel mix at refinery ts
	Outflow	• Activated carbon [organic intermediate products] linked to Cargo [Others]
Regeneration	Inflow	Activated carbon [organic intermediate products]
(Belgium)		• BE: electricity, production mix BE [production mix] linked to <u>BE:</u>
		Electricity grid mix ts
		• Natural gas, at consumer Belgium [Natural gas, at consumer] linked to
		BE: Natural gas mix ts
		• Water (decarbonised, softened) [Operating materials]
	Outflow	Recycled GAC [non-renewable resources]
		• Activated carbon (charged) [Hazardous waste for recovery]
		• Emissions (See Table D.8 in Appendix 4)
Transport	Туре	GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity
(regenerated GAC	Inflow	• Recycled GAC [non-renewable resources] linked to Cargo [Others]
back to Rya WWTP)		• Diesel [Refinery products] linked to <u>EU-28: Diesel mix at refinery ts</u>

Table C.4. Chosen flows in GaBi for all activities within the system boundary for the process of GAC.

(Dutflow	•	Recycled GAC [non-renewable resources] linked to Cargo [Others]
D 11 1 1 1	01 1.11		

Bolded text=tracked flows, italicized text=waste flows, normal text=untracked flows, underlined text=linked activities

Table C.5. Change of flows in GaBi for the sensitivity analyses of the GAC process: Wind power, Activation in China, Activation in China with wind power, Main case accounting for credited heat from regeneration, Regeneration plant at Rya WWTP, Credited heat from regeneration plant at Rya WWTP, Credited heat from regeneration plant at Rya WWTP, with natural gas, Renewable GAC (coconut shells), 30 000 bed volumes, and 10 000 bed volumes.

Sensitivity analyses	Information	Chosen flows and activities in GaBi for the sensitivity analyses
Wind power	Based on the main case but all electricity mixes are replaced by wind power.	• Electricity from wind power [System-dependent] linked to <u>BE</u> : Electricity from wind power ts/SE: Electricity from wind power ts
Activation in China	Based on the main case but both the production and activation occur in China.	 Production (activation) of Virgin GAC (China): CN: hard coal supply mix [Appropriation] linked to <u>CN: Hard coal</u> <u>mix ts</u> CN: electricity, production mix CN [production mix] linked to <u>CN:</u> <u>Electricity grid mix ts</u> Natural gas, at consumer China [Natural gas, at consumer] linked to <u>CN: Natural gas mix ts</u> Transport (Shanghai port to Gothenburg port): GLO: Container ship, 5,000 to 200,000 dwt payload capacity, ocean going ts Activated carbon [Organic intermediate products] linked to Cargo [Others] inflow/outflow Heavy fuel oil (1.0 wt. % S) [Refinery products] linked to <u>EU-28:</u> <u>Heavy fuel oil at refinery (1.0wt.% S)</u> Shift from ship to truck: Activated carbon [Organic intermediate products] inflow/outflow Transport (Gothenburg port to Rya WWTP): GLO: Truck-trailer, Euro 5, 34 – 40t gross weight / 27t payload capacity Activated carbon [Organic intermediate products] linked to Cargo [Others] inflow/outflow Diesel [Refinery products] linked to <u>EU-28:</u> Diesel mix at refinery ts
Activation in China with wind power	Based on activation in China but all electricity mixes are replaced by wind power.	• Electricity from wind power [System-dependent] linked to <u>CN:</u> Electricity from wind power ts/BE: Electricity from wind power ts/SE: Electricity from wind power ts
Main case accounting for credited heat from regeneration	Based on the main case but heat is added as a negative inflow to regeneration.	• Heat (consumption mix, at consumer from residential heating systems from wood) [Thermal energy] linked to EU-28: Heat ts (residential heating systems from wood pellets)
Regeneration plant at Rya WWTP	Based on the main case but all transports to and from regeneration are removed. The flows connected to regeneration are switched to occur in Sweden. Natural gas at regeneration is replaced by biogas and the loss of biogas as vehicle fuel is replaced by diesel.	 SE: electricity, production mix SE [production mix] linked to <u>SE:</u> <u>Electricity grid mix ts</u> Diesel [Refinery products] linked to <u>EU-28: Diesel mix at refinery ts</u>

Credited heat from	Based on regeneration	٠	Heat consumption mix, at consumer from residential heating
regeneration plant at	plant at Rya WWTP		systems from wood [Thermal energy] linked to EU-28 Heat ts
Rya WWTP	but heat is added as a		(residential heating systems from wood pellets)
	negative inflow to		
	regeneration.		
Credited heat from	Based on the main case	•	SE: electricity, production mix SE [production mix] linked to SE:
regeneration plant at	but all transports to and		Electricity grid mix ts
Rya WWTP with	from regeneration are	•	Heat consumption mix, at consumer from residential heating
natural gas	removed. The flows		systems from wood [Thermal energy] linked to EU-28 Heat ts
	connected to		(residential heating systems from wood pellets)
	regeneration are		
	switched to occur in		
	Sweden. Heat is added		
	as a negative inflow to		
	regeneration.		
Renewable GAC	Based on activation in	•	Coconuts with shell (1.5 kg DM per piece, 50% H2O) [Renewable
(coconut shells)	China, hard coal is		primary products]
	replaced by coconut	•	Excluding the manually added emissions for production (activation) of
	shells.		GAC and regeneration, see Table D.7 and Table D.8 in Appendix 4
30 000 bed volumes	Based on the main case	-	
	but all flows are		
	divided with the ratio		
	(30 000/20 000).		
10 000 bed volumes	Based on the main case	-	
	but all flows are		
	divided with the ratio		
	(10 000/20 000).		

Table C.6. Chosen flows in	GaBi for all activities within	the system boundary for the	existing sludge treatment.
5	5	~ ~ ~ ~	0 0

Activity		Chosen flows and estivities in CoDi
Acuvity		Chosen flows and activities in Gabi
Primary settling (Was	Inflow	• CH: treatment, sewage, to wastewater treatment, class 3 [wastewater
fixed to one)		treatment]
		Sewage sludge (wastewater processing) [Waste for disposal]
	Outflow	• CH: treatment, sewage, to wastewater treatment, class 3 [wastewater
		treatment]
Polymer production	Inflow	• IT: electricity, production mix IT [production mix] linked to IT: Electricity
		<u>grid mix</u>
		• Acrylic acid [Organic intermediate products] linked to <u>DE: Acrylic acid</u>
		(Propene) ts [Organic intermediate products]
		• Acrylonitrile [Organic intermediate products] linked to <u>RER: Acrylonitrile</u>
		(AN) PlasticsEurope
	Outflow	Polyacrylamide [Plastics]
Transport (Italy to	Туре	GLO: Truck-trailer, Euro 5, 34 - 40t gross weight / 27t payload capacity
Rya WWTP)	Inflow	Polyacrylamide [Plastics] linked to Cargo [Others]
		• Diesel [Refinery products] linked to EU-28: Diesel mix at refinery ts
	Outflow	Polyacrylamide [Plastics] linked to Cargo [Others]
Existing sludge	Inflow	Polyacrylamide [Plastics]
treatment		Sewage sludge (wastewater processing) [Waste for disposal]
		• SE: electricity, production mix SE [production mix] linked to SE:
		Electricity grid mix ts
	Outflow	• Sludge for use as fertilizer [Waste for recovery]

Bolded text=tracked flows, italicized text=waste flows, normal text=untracked flows, underlined text=linked activities

Appendix 4 – Inventory Data

Table D.1. Flows of wastewater per year and m³ for the ozonation process. The values in m³ constitute the basis for the calculations in GaBi for the ozonation process.

Ozonatio	n process															
	Yearl	y flows of wast	tewater			Flows	per m3 wa	stewater								
	Oxygen prod	uction (VPSA)	Unit			Oxygen pro (VPSA	duction A)	Unit				Price	Unit			
Electricity	Inflow 7750000	Outflow	kWh/year	r	Electricity	Inflow 0,060233061	Outflow	kWh/m3		E	lectricity	0,8	kr/kWh			
Heat		1076000	kWh/year kg/year	r	Heat		0,00836	kWh/m3 kg/m3		R	The pr	: Ozonation re ice of electrici	port from s ty in kr/kW	Sweco to G h was	ryaab, 202	0
											used to kWh/y electri	o calculate the ear. The cost city demand in	e total elect for the tota n kr/year w	ricity in I as known		
	Ozone pr Inflow	roduction Outflow	Unit	Including heat pumps for ozone production		Ozone proc	luction Outflow	Unit	Including heat pumps for ozone production		and th thus b kr/yea kr/kW	e total electric e calculated b r with the pric h.	iy (kWh/ye y dividing tl e of electri	ar) could he cost in city in		
Electricity	10125000		kWh/year	10940000	Electricity	0,078691579		kWh/m3	0,085025766							
Oxygen	12807120		kg/year		Oxygen	0,099537037		kg/m3								
Heat		10354000	kWh/year	r	Heat		0,08047	kWh/m3								
Ozone		1287720	kg/year		Ozone		0,01001	kg/m3								
	Ozonatior instal Inflow	n and other lations Outflow	Unit			Ozonation a installat Inflow	nd other ions Outflow	Unit								
Ozone	1287720		kg/year		Ozone	0,01000817		kg/m3								
Wastewater	128666880	128666880	m3/year		Wastewater	1	1	m3								
Electricity	3510000	·	kWh/year	r	Electricity	0,027279748		kWh/m3								
	Heatpump prode	s for ozone uction Outflow	Unit			Heatpumps f product Inflow	or ozone tion Outflow	Unit								
Electricity	815000		kWh/year	r	Electricity	0,006334186		kWh/m3								
																1

Table D.2. Flows of wastewater per year and m^3 for the sensitivity analysis with wind power for the ozonation process. The values in m^3 constitute the basis for the calculations in GaBi for the ozonation process with wind power.

Sensitivity	analysis for t	he ozonation	n process					
				Sensitivity ana	alysis			
				Wind powe	er			
	Electricity	Unit (yearly)		i i i	Electricity	Unit (m3)		
Oxygen				Oxygen				
production	7750000	kWh/year		production	0,06023306	kWh/m3		
Ozone				Ozone				
production	10940000	kWh/year		production	0,08502577	kWh/m3		
Ozonation				Ozonation				
and other				and other				
installations	3510000	kWh/year		installations	0,02727975	kWh/m3		

PAC process													
		Yearly flows o	fwastewa	ater					Flows	per m3 wastewat	er		
	Production (active (Bel	ation) of virgin PAC gium) Outflow	Unit						Production (activation) (Belgium)	of virgin PAC	Unit		
		outilow								ounow			
Electricity industrial furnace Hard coal (3 kg)	3556720 5799000 25708900)) 	kWh/yea kg/year MJ/year	I r				Electricity industrial furnace Hard coal	0,027642856 0,045069873 0,199809772	k 2	kWh/m3 kg/m3 MJ/m3		
Heat (natural gas)	7141932,42		kWh/yea	r				Heat (natural gas)	0,055507155		kWh/m3		
Softened water (from decarbonized water)	24027190	1932000	kg/year					Softened water (from decarbonized water)	0,186739509	0.015023201	kg/m3		
Viigin PAC		1555000	Kg/year					Viight FAC		0,013023231	. Kg/III3	 	
	Transport (b-c) container ship	Unit											
Nautical miles (nm)	1,852	km											
	11908	nm											
Distance	22053,616	km											
Amount	1												
Total distance	22053,616	i km										 	
	Transport (d-e) pre- study 40 ton payload	Unit			Diesel consumption calculated based on GaBi values	(transport d-e) pre-study and	Unit		Transport (d-e) distance in GaBi	Unit			
Distance	1250	km			Payload truck	27000	ka	Patio	1 91150947				
Amount	48	NIII			Amount	71 59259259	~6	Distance	690 0326554	km		 	
Total distance	60000	km/vear			Total distance	89490,74074	km						
					Diesel Density Total diesel	0,3 0,246 0,82	I/km kg/km kg/dm3						
					consumption	22014,72222	∧g					 	

Table D.3. Flows of wastewater per year and m³ for the PAC process. The values in m³ constitute the basis for the calculations in GaBi for the PAC process.

Wastewater PAC (activated carbon)	Addition of PAC to other ins Inflow 128666880 1933000	nitrifying MBBR and tallations Outflow 128666880 1933000	Unit m3/year kg/year				Wastewater PAC (activated carbon)	Addition of PAC to nitrii other installa Inflow 0,01502329	fying MBBR and itions Outflow 1 0,015023291	Unit 1 m3 1 kg/m3
Electricity other	1000000		kWb/woor				Electricity other	0.00777200		kWb/m2
Instantions	100000		kwn/year				instanations	0,00777200	•	KWN/m5
	Production of polyme	er for the PAC process	Unit					Production of polymer for	r the PAC process	Unit
Electricity	44100	outhow	kWh/year				Electricity	0.00034274	6	kWh/m3
Acrylonitrile (50%)	73500		kg/year				Acrylonitrile (50%)	0,00057124	3	kg/m3
Acrylic acid (50%)	73500		kg/year				Acrylic acid (50%)	0,00057124	3	kg/m3
Polyacrylamide		147000	kg/year				Polyacrylamide		0,001142485	5 kg/m3
	Transport (h-i) pre-			Diesel consumption	(transport h-i)			Transport (h-i) distance in	1	
Distance	study 40 ton payload	Unit		calculated based on	pre-study and	Unit	Datia	GaBI 1.0115004	Unit	
Distance	2000	кm		Payload truck	27000	Kg	като	1,8115084		
Amount	4			Amount	5,44444444		Distance	1104,05224	9 km	
Total distance	8000	km/year		Total distance	10888,88889	km				
					0,3	l/km				
				Diesel	0,246	kg/km				
				Descito		ha (dan 2				
				Total diesel	0,82	kg/am3				
				consumption	2678,666667	kg				

	Addition of polyme	er to the PAC process	Unit					Addition of polymer to the	ne PAC process	Unit
	Inflow	Outflow						Inflow	Outflow	
Wastewater	128666880	128666880	m3/vear				Wastewater	1	1	m3
	12000000	12000000	,				wastewater			
PAC (activated carbon)	1933000		kg/year				PAC (activated carbon)	0,015023291	-	kg/m3
Polyacrylamide	147000		kg/year				Polyacrylamide	0,001142485	<i>i</i>	kg/m3
PAC sludge		2100000	kg/year				PAC sludge	l	0,163212165	kg/m3
	Production of polyme	er for treatment of PAC						Production of polymer for t	reatment of PAC	
	SIU	Outflow	Unit					sludge	Outflow	Unit
Flectricity	60165	Outriow	kWb/vear				Electricity	0.000467603	Outriow	kWh/m3
Acrylonitrile (50%)	100275		kwii/yeu				Acrylonitrile (50%)	0,000779338		kg/m3
Acrylic acid (50%)	100275						Acrylic acid (50%)	0.000779338		kg/m3
Polyacrylamide		200550	kg/year				Polyacrylamide		0,001558676	i kg/m3
	Transport (I-m) pre-			Diesel consumption	(I-m) calculated			Transport (I-m) distance in		
Distance	study 40 ton payload	Unit		based on pre-study a	and GaBi values	Unit	Desia	GaBi 1.01150047	Unit	
Amount	2000	ĸm		 Amount	2/000	ĸg	Distance	1,81150847	km	
Total distance	8000	km/vear		Total distance	14855 55556	km	Distance	1104,032245	NIII	
rotar alstance	0000	kiny year		Total distance	14050,00000	KIII				-
					0,3	l/km				
				 Diesel	0,246	kg/km				
				 Density	0,82	kg/dm3				
				rotal diesel	2654 466667	ka				
				consumption	2024,400007	vR				

1										
	Treatment o	f PAC sludge	Unit					Treatment of PAC	sludge	Unit
	Inflow	Outflow						Inflow	Outflow	
Electricity	462000		kWh/year				Electricity	0,003590668		kWh/m3
PAC sludge	21000000	21000000	kg/year				PAC sludge	0,163212165	0,163212165	i kg/m3
Polyacrylamide	200550		kg/year				Polyacrylamide	0,001558676		kg/m3
				Discol concumption	(o.p) colculated			Transport (o.p) distance in		
	Transport (o-p) pre-st	budy 40 top payload	Unit	based on pre-study	and CaBi values	Unit		GaBi	Unit	
	Transport (0-p) pre-si	ady to ton payload	onne	based on pre-study	and dabi values	onic		0001	onic	
Distance	30		km	Payload truck	27000	kg	Ratio	1,81150847		
Amount	525			Amount	777,7777778		Distance	16,56078373	km	
Total distance	15750		km/year	Total distance	23333,33333	km				
				Diesel	0,3	I/km				
					0,246	kg/km				
				Density	0,82	kg/dm3				
				Total diesel						
				consumption	5740	kg				
	Incine	ration	Unit					Incineratio	n	Unit
	Inflow	Outflow						Inflow	Outflow	
Heat		544444	kWh/year				Heat		0,042314261	kWh/m3
PAC sludge	21000000		kg/year				PAC sludge	0,163212165		kg/m3

Table D.4. Flows of wastewater per year and m³ for the sensitivity analyses of the PAC process: Wind power, Activation in China, Activation in China with wind power, and Renewable PAC (coconut shells). The values in m³ constitute the basis for calculations in GaBi for the sensitivity analyses of the PAC process.

Sensitivity analyses f	or the PAC process										
					Sensitivity analyse	5					
					Wind power						
	Electricity U	Unit (yearly)		Electricity	Unit (m3)						
Activation in Belgium	3556720	kWh/year	Activation in Belgium	0,027642856	kWh/m3						
Activation in China	3556720	kWh/year	Activation in China	0,027642856	kWh/m3						
Other installations in Sweden	1000000	kWh/year	Other installations in Sweden	0,007772008	kWh/m3						

Production (activation) of unit (market) Inflow Outflow Unit (market) Implementation Implementation <th></th> <th></th> <th></th> <th></th> <th>Ac</th> <th>tivation in China</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>					Ac	tivation in China						
Inflow Outflow Unit (yearly) Inflow Outflow Unit (m3 Image: Control (marked marked mark			_	Production (act	ivation) of virgin PAC							
Electricity industrial furnace Softenel ship from Shanghai port Softenel unit Softenel ship from Shanghai unit KWh/war Hard coal O.02764285 0.045069873 KWh/m3 Image: Content of the ship from Shanghai unit Content of the ship from Shanghai unit <th>Figure interview in the second set</th> <th>Inflow</th> <th>Outflow</th> <th>Unit (yearly)</th> <th>El e stalisita in durateis i</th> <th>Inflow</th> <th>Outflow</th> <th>Unit (m3)</th> <th></th> <th></th> <th></th> <th></th>	Figure interview in the second set	Inflow	Outflow	Unit (yearly)	El e stalisita in durateis i	Inflow	Outflow	Unit (m3)				
Influcter 3358/20 KWI/year Influcter 0,04506983 KWI/mis Image: Control of the control of th	Electricity industrial	2556720		White for an a	Electricity industrial	0.007640856		White (mg2				
Haid Cold (Ag) 373500 Ag/real Haid Cold 0,04500373 Ag/rd3 Ag/rd3 Ag/rd3 Heat (natural gas) 25708900 MJ/vear Heat (natural gas) 0,199809772 MJ/m3 Image: Cold (Ag) MJ/m3 Image: Cold (Ag) MJ/m3 Image: Cold (Ag) Image: Cold (Ag) <td< th=""><td>Hard coal (2kg)</td><td>5550720</td><td></td><td>kwn/year</td><td>Hard coal</td><td>0,027842838</td><td></td><td>kg/m2</td><td></td><td></td><td></td><td></td></td<>	Hard coal (2kg)	5550720		kwn/year	Hard coal	0,027842838		kg/m2				
Test (NetWing gas) L270000 M/ (Val) NetWing gas) 0,255007155 M/ (M) M/ (M) M <th< th=""><td>Heat (patural das)</td><td>25708000</td><td></td><td>Milvear</td><td>Heat (natural gas)</td><td>0,043005873</td><td></td><td>MI/m3</td><td></td><td></td><td></td><td></td></th<>	Heat (patural das)	25708000		Milvear	Heat (natural gas)	0,043005873		MI/m3				
Softened water (from decarbonized water) KWh/yea Softened water (from decarbonized water) 0.055507155 KWh/m3 Image: Constraint of the constr	near (natural gas)	25708500		wij/year	near (natural gas)	0,155005772		wayina				
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $												
Softened water (from decarbonized water) Softened water (from 24027190 kg/year Softened water (from decarbonized water) 0,05330/133 KWI/HS Image: Constant (Constant		7141022 42		kWb/woor		0.055507155		kWb/m2				
Solution 24027190 kg/year decarbonized water) 0,186739509 kg/m3 decarbonized water) 0,186739509 Virgin PAC 1933000 kg/year Virgin PAC 0,186739509 kg/m3 decarbonized water) 0,186739509 Virgin PAC 1933000 kg/year Virgin PAC 0,186739509 kg/m3 decarbonized water) 0,186739509 Virgin PAC Image: Solution of the state of the s	Softened water (from	/141552,42		kwiiyyeai	Softened water (from	0,03330/133		KWHIJIHIS				
Virgin PAC Negrinitian Negrinitan Negrinitian Negrinitian	decarbonized water)	24027190		kg/year	decarbonized water)	0 186739509		kg/m3				
Image: And the sector of th	Virgin PAC	2102/150	1933000	0 kg/year	Virgin PAC	0,100,0000	0.015023291	kg/m3				
Transport (container ship) from Shanghai port to Gothenburg port Unit Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port to Gothenburg port to Gothenburg port to Gothenburg port Unit Image: Ship) from Shanghai port to Gothenburg port to Gothen												
ship) from Shanghai port port unit Distance 26444 Mmount 1 1		Transport (container										
port to Gothenburg port unit Distance 26444 Amount 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		ship) from Shanghai										
port Unit Distance 26444 km Amount 1 Total distance 26444 km		port to Gothenburg										
Distance 26444 km Image: Constraint of the second sec		port	Unit									
Amount 1 <td>Distance</td> <td>26444</td> <td>km</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>	Distance	26444	km									
Total distance 2644 km	Amount	1										
Total distance 2644 km distance 2644 km distance												
	Total distance	26444	km									
Diesel consumption												
							Diesel consumption					
Transport (truck) from (transport truck) from		Transport (truck) from					(transport truck) from					
Gothenburg port to Gryaab) Transport		Gothenburg port to					Gothenburg port to Gryaab)			Transport		
Gryaab pre-study 40 calculated based on pre- (transport truck)		Gryaab pre-study 40					calculated based on pre-			(transport truck)		
ton payload Unit distance in GaBi Unit distance in GaBi Unit		ton payload	Unit				study and GaBi values	Unit		distance in GaBi	Unit	
Distance 7 km Payload truck 27000 kg Ratio 1,81150847	Distance	7	km			Payload truck	27000	kg	 Ratio	1,81150847		
Amount 8,05 Distance 3,86418287 km	Amount	8,05				Amount	11,92592593	1	 Distance	3,86418287	km	
Total distance 56,35 km Total distance 83,48148148 km	Total distance	56,35	km			Total distance	83,48148148	km				
						Discol						
Diesei U, si //km						Diesel	0,3	i/Km				
U,40 Kg/Km						Deposity	0,246	kg/km				
Total disel consumption 2005/4/4/4 a						Total diesel consumption	20 5364444	ka ka				
						rotar dieser consumption	20,00044444	ng.				

			Production	Renewable PA (activation) of virgin PAC	C (coconut shells)						
	Inflow	Outflow	Unit (yearly)			Inflow	Outflow	Unit (m3)			
Electricity industrial	3556720		kWh/year		Electricity industrial furnace	0,027642856		kWh/m3			
Coconut shell	5799000		kg/vear		Coconut shell	0.045069873		kg/m3			
	25708900		MJ/year		Heat (natural gas)	0.199809772		MJ/m3			
Heat (astural eac)	7141022 42				•	0.055507155		h10/b /m2			
Softened water (from	/141952,42		kwn/year		Softened water (from	0,05550/155		KWN/IIIS			
decarbonized water)	24027190		kg/vear		decarbonized water)	0 186739509		kg/m3			
Virgin GAC	2402/150	1933000	kg/year		Virgin GAC	0,100705505	0.01502	kg/m3			
							0,01001				
	Transport (container ship) from Shanghai port to Gothenburg port	Unit									
Distance	26444	km									
Amount	1	KIII									
Total distance	26444	km									
	Transport (truck) from Gothenburg port to Gryaab pre-study 40 ton payload	Unit				Diesel consumption (transport truck) from Gothenburg port to Gryaab) calculated based on pre- study and GaBi values	Unit			Transport (transport truck) distance in GaBi	Unit
Distance	7	km			Payload truck	27000	kg		Ratio	1,81150847	,
Amount	8,05				Amount	11,92592593			Distance	3,86418287	km
Total distance	56,35	km			Total distance	83,48148148	km				
	í í				Diesel	0,3	l/km				
						0,246	kg/km				
					Density	0,82	kg/dm3				
					rotal dieser consumption	20,55644444	rg.				

GAC process												
		Yea	arly flows of wastev	water				Flows per m3	wastewater	_		
	Production (activat (Belg	tion) of virgin GAC (ium)	Unit				Production (activ GAC (Be	ation) of virgin Igium)	Unit			
	Inflow	Outflow					Inflow	Outflow				
Electricity industrial furnace	592480	0	kWh/year			Electricity industrial furnace	0,004604759		kWh/m3			
Hard coal (3kg)	966000	J	kg/year			Hard coal	0,00750776		kg/m3			
Heat (natural das)	4282600	0	MJ/year			Heat (natural gas)	0,033284401		MJ/m3			
Softened water (from	1105700,20	,	Kwiiyyeai			Softened water (from	0,005240407		KWIIJIIIJ			
decarbonized water)	4002460	0	kg/year			decarbonized water)	0,03110715		kg/m3			
Virgin GAC		322000	kg/year			Virgin GAC		0,002502587	kg/m3			
	Transport (b-c) _container ship	Unit										
Nautical miles (nm)	1,852	2 km										
	11908	3 nm										
Distance	22053,616	5 km										
Amount	1	1										
Total distance	22053,616	5 km										
1												

Table D.5. Flows of wastewater per year and m³ for the GAC process. The values in m³ constitute the basis for the calculations in GaBi for the GAC process.

	Transport (d-e) pre- study 40 ton	11-12		Diesel consu	mption (tr	ansport d-e) calculated	11-14			Transport (d-e)	11-14	
	payload	Unit		based on pre	-study and	d Gabi values	Unit			distance in Gabi	Unit	
Distance	1250	km		Payload truck	¢	27000	kg	Ra	atio	1,81150847		
Amount	8			Amount		11 92592593	_	Di	istance	690.0326554	km	
Total distance	10000	km/vear		Total distanc	-	14907 40741	km		istance	050,0520554	KIII	
Total distance	10000	King year		rotar alstanc	-	14507,40741	KIII					
				Diesel		0,3	I/km kg/km					
				Density		0.82	ka/dm3					
				Tetal discal		0,02	Kg/um3					
				consumption		3667,222222	kg					
	GAC process and ot	ther installations Outflow	Unit							GAC process installa Inflow	and other tions Outflow	Unit
Virgin GAC	322000		kg/year					Vi	irgin GAC	0.002502587		kg/m3
Peopled GAC	202000		kg/year						ngin GAC	0,002302307		kg/m2
Recycled GAC	2878000		kg/year					R	ecycled GAC	0,022567859		kg/m3
Electricity other installations	3000000		kWh/year					El	ectricity other istallations	0,023316024		kWh/m3
Wastewater	128666880	128666880	m3/year					W	/astewater	1	1	m3
GAC for regeneration		580000	kg/year					G	AC for regeneration		0,045077645	kg/m3

	Transport (g-h) pre-									
	study 40 ton			Diesel consumption (trai	nsport g-h) calculated			Transport (g-h)		
	payload	Unit		based on pre-study and	GaBi values	Unit		distance in GaBi	Unit	
Distance	1250	km		Payload truck	27000	kg	Ratio	1,81150847		
Amount	145	i		Amount	214,8148148		Distance	690,0326554	km	
L										
Total distance	181250	km/year		Total distance	268518,5185	km				
				Discol	0,3	I/km				
				Diesei	0,246	kg/km				
				Density	0,82	kg/am5				
				Total diesel						
				consumption	66055,55556	kg				
	Regeneration 20000 bed volumes				,			Regeneration 2000	0 bed volumes	
	(Belgium)		Unit					- (Belgi	um)	Unit
	Inflow	Outflow						Inflow	Outflow	
Activated carbon for							Activated carbon for			
regeneration	5800000)	kg/year				regeneration	0,045077645		kg/m3
			MJ/0,9 kg							
			regenerated							
	4,93		activated carbon				Natural gas	0,030633963		kWh/m3
			kWh/ 0,9							
			regenerated							
	1,369554	L	activated carbon				Electricity	0,013644382		kWh/m3
Natural gas	3941576,412	2	kWh/year				Softened water	0,099984238		kg/m3
			kWb/0.0 kg							
			KWN/0,9 Kg							
	0.61		activated carbon				Lost of GAC		0.002502587	ka/m3
	0,01	•	activated carbon				GAC transported back to		0,002502507	Kg/III3
Electricity	1755580		kWh/year				Rva WWTP		0 022367839	kg/m3
Electricity	2100000		kg/0.9 kg						0,022007000	16/110
			regenerated							
	4.47	,	activated carbon							
Softened water	12864660)	kg/year							
Lost of GAC		322000	kg/year							
GAC transported back to										
Rya WWTP		2878000	kg/year							
										1
	Transport (j-k) pre-							í		
----------------	----------------------	---------	-----------------------	--------------------------	--------	----------	------------------	------		
	study 40 ton		Diesel consumption (t	ransport j-k) calculated			Transport (j-k)			
	payload	Unit	based on pre-stud	ly and GaBi values	Unit		distance in GaBi	Unit		
Distance	1250	km	Payload truck	27000	kg	Ratio	1,81150847			
Amount	71,175		Amount	106,5925926		Distance	690,0326554	km		
Total distance	88968,75	km/year	Total distance	133240,7407	km					
				0,3	l/km					
			Diesel	0,246	kg/km					
			Density	0.82	kg/dm3					
			Total diesel							
			consumption	32777,22222	kg					

Table D.6. Flows of wastewater per year and m³ for the sensitivity analyses of the GAC process: Wind power, Activation in China, Activation in China with wind power, Main case accounting for credited heat from regeneration, Regeneration plant at Rya WWTP, Credited heat from regeneration plant at Rya WWTP, With natural gas, Renewable GAC (coconut shells), 30 000 bed volumes, and 10 000 bed volumes. The values in m³ constitute the basis for calculations in GaBi for the sensitivity analyses of the GAC process.

Sensitivity analyses for	or the GAC process										
					Sensitivity analy	/ses					
				v	/ind power						
	Electricity	Unit (yearly)		Electricity	Unit (m3)						
Activation in Belgium	592480	kWh/year	Activation in Belgium	0,004604759	kWh/m3						
Activation in China	592480	kWh/year	Activation in China	0,004604759	kWh/m3						
Other installations in	200000		Other installations	0.00004.0004	hut (
sweden	300000	kwn/year	in sweden	0,023316024	kwn/ms						
Regeneration in			Regeneration in								
Belgium	1755580	kWh/year	Belgium	0,013644382	kWh/m3						L

			Produ	Act	ivation in China						
	Inflow	Outflow	Unit (vearly)		Inflow	Outflow	Unit (m3)				
Electricity industrial				Electricity							
furnace	592480		kWh/year	industrial furnac	e 0,004604759		kWh/m3				
Hard coal (3kg)	966000		kg/year	Hard coal	0,00750776		kg/m3				
Heat (natural gas)	4282600		MJ/year	Heat (natural gas	6) 0,033284401		MJ/m3				
	1189706,28		kWh/year		0,009246407		kWh/m3				
				Softened water							
Softened water (from	1000.100			(from							
decarbonized water)	4002460	222000	kg/year	decarbonized	0,03110/15	0.000500507	kg/m3				
Virgin GAC		322000	kg/year	Virgin GAC		0,002502587	kg/m3				
	Transport (d-e) container										
	ship from Shanghai port to										
	Gothenburg nort	Unit									
Distance	26444	km									-
Amount	1										-
, and and	-										
Total distance	26444	km									
						Diesel consumption					
						(transport d-e truck from					
	Transport (d-e, truck from					Gothenburg port to Gryaab)					
	Gothenburg port to Gryaab)					calculated based on pre-study			Transport (d-e)		
	pre-study 40 ton payload	Unit				and GaBi values	Unit		distance in GaBi	Unit	
Distance	7	km			Payload truck	27000	kg	Ratio	1,81150847		
Amount	8,05				Amount	11,92592593		Distance	3,86418287	km	
Total distance	56,35	km			Total distance	83,48148148	km				
					Diesel	0,3	l/km				
						0,246	kg/km				
					Density	0,82	kg/dm3				
					Total diesel	í l					
					consumption	20,53644444	kg				

				Regeneratio	n plant at Rya WWTP					
	Inflow	Outflow	Unit (vearly)			Inflow	Outflow	Linit (m3)		_
Activated carbon for	-	outnow	onit (yearry)		Activated carbon for	innow	outhow	onic (ins)	1 litre of diesel contains 9,8kWh	
regeneration	5800000		kg/year		regeneration	0,045077645		kg/m3	9,8(kWh/litre)/0,82(kg/litre)=12kWh/kg	1
Diesel (replacement										
fuel due to loss of					Diesel (replacement fuel				Natural gas = 13,3kWh/kg	
biogas)	4368580,523		kWh/year		due to loss of biogas)	0,033952642		kWh/m3	https://www.energigas.se/fakta-om-	
Electricity	1755580		kWh/year		Electricity	0,013644382		kWh/m3	gas/biogas/faq-om-biogas/vad-ar-	
Lost of GAC		322000	kg/year		Lost of GAC		0,00250259	kg/m3	energiinnehallet-i-naturgas-biogas-och-	
Recycled GAC		2878000	kg/year		Recycled GAC		0,02236784	kg/m3	fordonsgas/	
		Credited heat fro	om regeneratio	n plant at Rya WWTP (similar heat is gener	ated in Belgium for the ma	ain case accounting for credited h	eat from reg	eneration)		
	Inflow	Outflow	Unit (yearly)			Inflow	Outflow	Unit (m3)		
Activated carbon for					Activated carbon for					
regeneration	5800000		kg/year		regeneration	0,045077645		kg/m3		
Diesel (replacement										
fuel due to loss of	4368580 533		White former		Diesel (replacement fuel	0.022052542		White Inco		
blogas)	4368580,523		kwn/year		due to loss of blogas)	0,033952642		KWN/M3		
Electricity	1755580		kWh/year		Electricity	0,013644382		kWh/m3		
Lost of GAC		322000	kg/year		Lost of GAC	,	0,00250259	kg/m3		
GAC transported back to					GAC transported back to					
Rya WWTP		2878000	kg/year		Rya WWTP		0,02236784	kg/m3		
Heat generated		3900000	kWh/year		Heat generated		0,03031083	kWh/m3		

	Cr	edited heat from	regeneration p	lant at Rya WWTP with natural gas for rege	eneration instead of bioga	s (no need for substitution of die	sel due to lo	oss of bioga	s)			
	Inflow	Outflow	Unit (yearly)			Inflow	Outflow	Unit (m3)				
Activated carbon for					Activated carbon for							
regeneration	5800000		kg/year		regeneration	0,045077645		kg/m3	B	iogas= 13 kWh/kg		
Natural gas (used in					Natural gas (used in							
regeneration, all biogas					regeneration, all biogas				N	atural gas = 13,3kWh/kg	2	
for fuel)	3941576,412		kWh/year		for fuel)	0,030633963		kWh/m3			16-1	
Electricity	1755580		kWh/year		Electricity	0,013644382		kWh/m3	n	ttps://www.energigas.se	e/fakta-om-	
Lost of GAC		322000	kg/year		Lost of GAC		0,00250259	kg/m3	B.	as/piogas/iaq-om-pioga: pergippeballet-i-paturg:	s/vdu-dr-	h-
GAC transported back to					GAC transported back to				f	ordonsess/	as-biogas-oci	- I
Rya WWTP		2878000	kg/year		Rya WWTP		0,02236784	kg/m3		Juonsgas/		
Heat generated		3900000	kWh/year		Heat generated		0,03031083	kWh/m3				

					Renewable	GAC (coconut shells)							
			Produ	ction (activation) of v	irgin GAC								
	Inflow	Outflow		Unit (yearly)			Inflow	Outflow	Unit (m3)				
Electricity industrial						Electricity industrial							
furnace	592480			kWh/year		furnace	0,004604759		kWh/m3				
Cocoput shell	966000			kalueer		Cocoput shell	0.00750776		ka/m2				
cocondcisiien	4282600			Mill/waar		cocondestien	0.022284401		MI/m2				
•	4282000	,		wu/year			0,055284401		wu/mo				
Heat (natural gas)	1189706,28	8		kWh/year		Heat (natural gas)	0,009246407		kWh/m3				
Softened water (from						Softened water (from							
decarbonized water)	4002460)		kg/year		decarbonized water)	0,03110715		kg/m3				
Virgin GAC		322000		kg/year		Virgin GAC		0,00250259	kg/m3				
	Transport (d-e) container												
	ship from Shanghai port to												
	Gothenburg port	Unit											
-													
Distance	26444	km											
Amount													
Total distance	26444	km											
							Diesel consumption (transport						
	Transport (d-e, truck from						d-e truck from Gothenburg port						
	Gothenburg port to Gryaab)						to Gryaab) calculated based on				Transport (d-e)		
	pre-study 40 ton payload	Unit					pre-study and GaBi values	Unit			distance in GaBi	Unit	
Distance	7	/ km				Payload truck	27000	kg		Ratio	1,81150847		
Amount	8,05	5				Amount	11,92592593			Distance	3,86418287	km	
Total distance	56,35	i km				Total distance	83,48148148	km					
						Diesel	0,3	I/km					
							0,246	kg/km					
						Density	0,82	kg/dm3					
						Total diesel	20,53644444	kg					

					30000	bed volumes					
			Produ	ction (activation) of virgin	GAC (Belgium)						
	Inflow	Outflow	Unit (yearly)				Inflow	Outflow	Unit (m3)		
Electricity industrial						Electricity industrial					
furnace	394986,6667		kWh/year			furnace	0,003069839		kWh/m3		
Hard coal	644000		kg/year			Hard coal	0,005005173		kg/m3		
	2855066,667		MJ/year				0,022189601		MJ/m3		
Heat (natural gas)	793137,52		kWh/year			Heat (natural gas)	0,006164271		kWh/m3		
Softened water (from decarbonized water)	2668306,667		kg/year			Softened water (from decarbonized water)	0,0207381		kg/m3		
Virgin GAC		214666,6667	kg/year			Virgin GAC		0,0016684	kg/m3		
	Transport (h. s) containes	Unit									
Noutical miles (pm)	Transport (b-c) container	Unit km									
Nautical miles (nm)	1,052	NIII DOD									
Distance	22053 616	km									
Amount	1										
Total distance	22053.616	km									
rotar arstance	22055,010										

						Diesel consumption					
						(transport d-e) calculated					
	Iransport (d-e) pre-study					based on pre-study and GaBi				Transport (d-e)	
	fuel consumption	Unit				values	Unit			distance in GaBi	Unit
Distance	1250	km			Payload truck	27000	kg		Ratio	1,81150847	
Amount	5				Amount	7,950617284		/	Distance	690,0326554	km
Total distance	6250	km			Total distance	9938,271605	km				
					Diesel	0,3	l/km				
						0,246	kg/km				
					Density	0,82	kg/dm3				
					Total diesel	2444,814815	kg				
			GAC pro	ocess and other installations							
	Inflow	Outflow	Unit (yearly)		Inflow	Outflow	Unit (m3)				
Virgin GAC	214666,6667		kg/year	Virgin GAC	0,001668391	1	kg/m3				
Recycled GAC	1918666,667		kg/year	Recycled G	AC 0,014911892	2	kg/m3				
Electricity other				Electricity	other						
installations	2000000		kWh/year	installatio	ns 0.015544016	5	kWh/m3				
Wastewater	128666880	128666880	m3/year	Wastewate	er	1 1	m3				
				GAC for							
GAC for regeneration		3866666.667	kg/vear	regenerati	on	0.030051764	kg/m3				
						-,					
						Diesel consumption					
						(transport g-h) calculated					
	Transport (g-h) pre-study					based on pre-study and GaBi				Transport (g-h)	
	fuel consumption	Unit				values	Unit			distance in GaBi	Unit
Distance	1250	km			Payload truck	27000	kg	1	Ratio	1,81150847	
Amount	96,66666667				Amount	143,2098765		/	Distance	690,0326554	km
Total distance	120833,3333	km			Total distance	179012,3457	km				
					Diesel	0,3	I/km				
						0,246	kg/km				
					Density	0,82	kg/dm3				
					Total diesel	44037,03704	kg				

				Regeneration (Belgiu	im)							
	Inflow	Outflow	Unit (yearly)			Inflow	Outflow	Unit (m3)				
Activated carbon for					Activated carbon							
regeneration	3866666,667		kg/year		for regeneration	0.030051764		kg/m3				
			MJ/0.9 kg			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
			regenerated									
			activated									
Natural gas	4.93		carbon		Natural gas	0.020422642		kWh/m3				
			kWh/0.9 kg			-,						
			regenerated									
			activated									
	1.369554		carbon		Electricity	0.009096254		kWh/m3				
					Softened water	-,		,				
					(from							
	2627717 608		kWh/vear		decarbonized	0.066656159		kg/m3				
	2027717,000		kWh/0.9 kg			0,000000000		1.6/11.0				
			regenerated									
			activated									
Electricity	0.61		carbon		Lost of GAC		0.001668391	kg/m3				
Licenser,	0,01		carbon		GAC transported		0,001000001	16/110				
	1170386 667		kWh/vear		back to Rva WWTP		0.014911892	kg/m3				
	1110000,007		kg/0.9 kg		back to hja himi		0,011011052	16/110				
			regenerated									
Softened water (from			activated									
decarbonized water)	4.47		carbon									
accurbonized watery	8576440		kg/year									
Lost of GAC		214666 6667	/ kg/year									
GAC transported back												
to Rva WWTP		1918666 667	kg/vear									
							Diesel consumption					
							(transport J-k) calculated					
	Transport (J-k) pre-study fuel						based on pre-study and GaBi			Transport (J	-K)	
	consumption	Unit					values	Unit		distance in	GaBi Unit	
Distance	1250	кm				Payload truck	27000	кg	Ratio	1,811	150847	
Amount	47,45					Amount	/1,0617284		Distance	e 690,03	326554 km	
lotal distance	59312,5	кm				Total distance	88827,16049	кm				
						Diesel	0,3	1/Km				
							0,246	kg/km				
						Density	0,82	kg/dm3				
						Total dieesel						
						consumption	21851,48148	kg				

				10000 be	d volumes						
			Produ	ction (activation) of virgin GAC (Belgiun	n)						
	Inflow	Outflow	Unit (yearly)			Inflow	Outflow	Unit (m3)			
Electricity industrial					Electricity industrial						
furnace	1184960		kWh/year		furnace	0,009209518		kWh/m3			
Hard coal	1932000		kg/year		Hard coal	0,015015519		kg/m3			
Heat (natural gas)	8565200		MJ/year		Heat (natural gas)	0,066568802		MJ/m3			
	2379412,56		kWh/year			0,018492813		kWh/m3			
Softened water (from					Softened water (from						
decarbonized water)	8004920		kg/year		decarbonized water)	0,062214301		kg/m3			
Virgin GAC		644000	kg/year		Virgin GAC		0,0050052	kg/m3			
	Transport (b-c) container										
	ship	Unit									
Nautical miles (nm)	1,852	km									
Distance	11908	nm									
	22053,616	кт									
Amount	1										
Total distance	22053,616	кт									
						Diesel consumption					
						(transport d-e) calculated					
	Transport (d-e) pre-study					based on pre-study and GaBi				Transport (d-e)	
	fuel consumption	Unit				values	Unit			distance in GaBi	Unit
Distance	. 1250	km			Payload truck	27000	kg		Ratio	1,81150847	
Amount	5				Amount	23,85185185			Distance	690,0326554	km
Total distance	6250	km			Total distance	29814,81481	km				
					Diesel	0,3	I/km				
						0,246	kg/km				
					Density	0,82	kg/dm3				
					Total diesel	7334,44444	kg				

			GAC pro	ocess and other inst	allations							
	Inflow	Outflow	Unit (yearly)			Inflow	Outflow	Unit (m3)				
Virgin GAC	644000		kg/year		Virgin GAC	0,005005173		kg/m3				
Recycled GAC	5756000		kg/year		Recycled GAC	0,044735677		kg/m3				
Electricity other					Electricity other							
installations	600000		kWh/year		installations	0,046632047		kWh/m3				
Wastewater	128666880	128666880	m3/year		Wastewater	1	1	m3				
					GAC for							
GAC for regeneration		11600000	kg/year		regeneration		0,090155291	kg/m3				
							Discolar					
							Diesel consumption					
							(transport g-h) calculated					
	Transport (g-h) pre-study						based on pre-study and GaBi				Transport (g-h)	
	fuel consumption	Unit					values	Unit			distance in GaBi	Unit
Distance	1250	km				Payload truck	27000	kg	F	Ratio	1,81150847	
Amount	290					Amount	429,6296296		[Distance	690,0326554	km
Total distance	362500	km				Total distance	537037,037	km				
						Diesel	0,3	I/km				
							0,246	kg/km				
						Density	0,82	kg/dm3				
						Total diesel	132111,1111	kg				

				Regeneration (Belgi	um)							
	Inflow	Outflow	Unit (yearly)			Inflow	Outflow	Unit (m3)				
Activated carbon for					Activated carbon							
regeneration	11600000		kg/year		for regeneration	0,090155291		kg/m3				
			MJ/0,9 kg									
			regenerated									
			activated									
Natural gas	4.93		carbon		Natural gas	0.061267926		kWh/m3				
	.,		kWh/0.9 kg			-,			-			
			regenerated									
			activated									
	1 360554		carbon		Electricity	0.027288763		kWb/m3				
	1,305334		carbon		Softenedwater	0,027288703		KWIIJIIIJ				
					Soliteneu water							
	7000450.004		Land Land		(Irom	0 100000177		1-1-2				
	/883152,824		kwn/year		decarbonized	0,199968477		kg/m3				
			kwh/0,9 kg									
			regenerated									
			activated									
Electricity	0,61		carbon		Lost of GAC		0,005005173	kg/m3				
					GAC transported							
	3511160		kWh/year		back to Rya WWTP		0,044735677	kg/m3				
			kg/0,9 kg									
			regenerated									
Softened water (from			activated									
decarbonized water)	4,47		carbon									
	25729320		kg/year									
Lost of GAC		644000) kg/year									
GAC transported back												
to Rva WWTP		5756000	kg/vear									
									-			
									-			
							Discolar succession					
							Diesel consumption					
							(transport J-K) calculated				-	
	Transport (J-k) pre-study fuel						based on pre-study and GaBi				Transport (J-k)	
-	consumption	Unit					values	Unit		-	distance in GaBi	Unit
Distance	1250	km				Payload truck	27000	kg		Ratio	1,81150847	
Amount	290					Amount	429,6296296			Distance	690,0326554	km
Total distance	362500	km				Total distance	537037,037	km				
						Diesel	0,3	l/km				
							0,246	kg/km				
						Density	0,82	kg/dm3				
						Total dieesel						
						consumption	132111,1111	kg				

	Activation of (GAC			Activation	of PAC		
Emissions		Unit		Unit	Tietritunion	Unit		Unit
Hard coal ash	0.17	kø/kø	0.00042544	kg/m3	0.17	kø/kø	0.002553959	kg/m3
Aluminium	0.000618	kg/kg	1.5466E-06	kg/m3	0.000618	kg/kg	9.28439E-06	kg/m3
Antimony	9.13E-08	kg/kg	2.28486E-10	kg/m3	9.13E-08	kg/kg	1.37163E-09	kg/m3
Arsenic	0.00000146	ko/ko	3 65378E-09	kg/m3	1 46E-06	ko/ko	2 1934E-08	kg/m3
Barium	0.00000728	ko/ko	1 82188E-08	kg/m3	7 28E-06	ko/ko	1.0937E-07	kg/m3
Benzene	0.0000289	kg/kg	7 23248E-08	kg/m3	2 89E-05	ko/ko	4 34173E-07	kg/m3
Benzo(a)nyrene	5 78F-10	kg/kg	1,25246E-00	kg/m3	5 78E-10	kg/kg	8 68346E-12	kg/m3
Beryllium	7 28E-08	kg/kg	1,4403E-12	kg/m3	7 28E-08	kg/kg	1.0937E-09	kg/m3
Boron	0.0000274	kg/kg	6.85709E-08	kg/m3	2 74E-05	kg/kg	4 11638E-07	kg/m3
Bromine	0,0000274	kg/kg	1 371/2E-00	kg/m3	5.48E-07	kg/kg	\$ 23276E_09	kg/m3
Cadmium	9.13E-08	kg/kg	2 28486E-10	kg/m3	9.13E-08	kg/kg	1 37163E-09	kg/m3
Calcium	0.0000728	kg/kg	2,20400E-10	kg/m3	7.28E-05	kg/kg	1,97105E-05	kg/m3
Carbon dioxide	0,0000728	Kg/Kg	1,02100L-07	Kg/III.J	7,201-05	Kg/Kg	1,075712-00	Kg/IIIJ
fossil	7	ka/ka	0.017518106	ka/m3	7	ka/ka	0 105163038	kg/m3
Carbon monovide	1	Kg/Kg	0,017510100	Kg/III.J	,	Kg/Kg	0,105105050	Kg/1115
fossil	0.00578	ka/ka	1 4465E-05	ka/m3	0.00578	ka/ka	8 68346E-05	ka/m3
Chromium	0,000/0	kg/kg	3 25336E_00	kg/m3	1 3E-06	kg/kg	1.05303E-08	kg/m3
Chromium VI	0,0000015	kg/kg	<u>4 02916E-10</u>	kg/m3	1,51-00	kg/kg	2.41875E-09	kg/m3
	0,00000101	kg/kg	4,02910E-10	kg/m3	1,01E-07	kg/kg	2,41875E-09	kg/m3
Copper	0,000000185	kg/kg	2 40248E-09	kg/m3	9.6E_07	kg/kg	2,74720E-07	kg/m3
Dinitrogen	0,0000090	Kg/Kg	2,402461-09	Kg/III.5	9,012-07	Kg/Kg	1,44224E-08	Kg/III3
monovide	0.0000578	ka/ka	1 4465E 07	ka/m3	5 78E 05	ka/ka	8 68346E 07	ka/m3
Dioxin 2378	0,0000378	Kg/Kg	1,4405E-07	Kg/III.5	5,78L-05	Kg/Kg	8,08340E-07	Kg/III3
Tetrachlorodibenzo-								
n-	1 16E-12	ka/ka	2 903E-15	ka/m3	1 16E-12	ka/ka	1 7427E-14	kg/m3
p- Ethane	0.0000867	kg/kg	2,005E-15	kg/m3	8.67E-05	kg/kg	1,7427E-14	kg/m3
Ethene	0,000173	kg/kg	2,107/4E-07	kg/m3	0,000173	kg/kg	2 50003E-06	kg/m3
Ethype	0,000173	kg/kg	4,32947E-07	kg/m3	2 80E 05	kg/kg	2,39903E-00	kg/m3
Euryne	0,0000289	kg/kg	1,23248E-08	kg/m3	2,89E-05	kg/kg	4,34173E-07	kg/m3
Hudrogerhons	0,00000402	Kg/Kg	1,13019E-08	Kg/III.5	4,021-00	Kg/Kg	0,94070E-08	Kg/III.5
aliphatic alkanas								
unspecified	0.0000289	ka/ka	7 23248E-08	ka/m3	2 89E-05	ka/ka	4 34173E-07	ka/m3
Hydrocarbons	0,000020)	Kg/Kg	7,252401 00	Kg/1115	2,071 05	Kg/Kg	4,541752.07	Kg/III5
aliphatic								
unsaturated	0.0000289	kg/kg	7.23248E-08	kg/m3	2.89E-05	kg/kg	4.34173E-07	kg/m3
Hydrogen chloride	0.00234	kg/kg	5.85605E-06	kg/m3	0.00234	kg/kg	3.51545E-05	kg/m3
Hydrogen fluoride	0.0000728	ko/ko	1 82188E-07	kg/m3	7 28E-05	ko/ko	1.0937E-06	kg/m3
Iodine	0.000000659	kg/kg	1.6492E-09	kg/m3	6.59E-07	kg/kg	9,90035E-09	kg/m3
Iron	0.000255	ko/ko	6 3816E-07	kg/m3	0.000255	ko/ko	3 83094E-06	kg/m3
Lead	0.00000438	kg/kg	1.09613E-08	kg/m3	4.38E-06	kg/kg	6.5802E-08	kg/m3
Lead-210	0.00269	kBa/kg	6 73196E-06	kBa/m3	0.00269	kBa/kg	4 04127E-05	kBa/m3
Magnesium	0.000219	ko/ko	5 48066E-07	kg/m3	0.000219	ko/ko	3 2901E-06	kg/m3
Manganese	0.00000128	kg/kg	3 20331E-09	kg/m3	1 28F-06	ko/ko	1 92298F-08	kg/m3
Mercury	0.00000120	kg/kg	4 10424E-10	kg/m3	1,20E 00	kg/kg	2.46382E-09	kg/m3
Methane fossil	0.000578	kg/kg	1 4465F-06	kg/m3	0.000578	ko/ko	8 68346E-06	kg/m3
Molybdenum	0,00000274	kg/kg	6.85709E-10	kg/m3	2 74E-07	kg/kg	4 11638E-09	kg/m3
Nickel	0.000000274	kg/kg	2 75285E-09	kg/m3	1 1E-06	kg/kg	1,65256E-08	kg/m3
Nitrogen oxides	0.0116	kg/kg	2,75265E-05	kg/m3	0.0116	kg/kg	0.00017427	kg/m3
NMVO non-	0,0110	Kg/Kg	2,7031-05	Kg/III.J	0,0110	Kg/Kg	0,00017427	Kg/III.5
methane volatiel								
organic compounds	0.0000994	ko/ko	2 48757E-07	kg/m3	9 94F-05	ko/ko	1 49332E-06	kg/m3
Particulates < 2.5	0,0000774	Kg/Kg	2,4075712-07	Kg/III.J),)+L=05	Kg/Kg	1,47352E-00	Kg/1115
	0.00116	ko/ko	2.903E-06	kø/m3	0.00116	ko/ko	1.7427E-05	kg/m3
Particulates > 10	3,00110	ng/ ng	2,7051 00	ng/113	0,00110	ng/ ng	1,71271-05	ng/1115
	0.000578	ko/ko	1 4465F-06	ko/m3	0.000578	ko/ko	8 68346F-06	kg/m3
Particulates > 2.5	0,000070	ng/ng	1,77051-00	к <u>е</u> /ш <i>3</i>	0,000370	ng/ng	0,000-00-00	N6/1113
μm and $< 10\mu m$	0.00116	ko/ko	2.903E-06	kø/m3	0.00116	ko/ko	1.7427E-05	kg/m3
Phosphorus	0.00000365	ko/ko	9 13444F-00	kg/m3	3.65F-06	ka/ka	5 4835F-08	kg/m3
Polonium_210	0.00491	kBa	1 22877E_05	kBa/m?	0.00401	kRa	7 37644F-05	kBa/m3
Potassium	0.000728	ka/ka	1 821885 07	kg/m ²	7 28E 05	ka/ba	1 0937E 06	kg/m3
Potassium 40	0.000728	kBa/ka	1.021000-07	kBa/m ²	0.00078	kBa/ka	1 171825 05	kBa/m ²
1 0tassium-40	0,00078	кр4/к8	1,95202E-00	квч/шэ	0,00070	кр4/кб	1,1/102E-03	крализ

Table D.7. Manually added emissions in	1 GaBi for the activation of	of GAC and the ac	ctivation of PAC
--	------------------------------	-------------------	------------------

Propane	0,0000578	kg/kg	1,4465E-07	kg/m3	5,78E-05	kg/kg	8,68346E-07	kg/m3
Propene	0,0000289	kg/kg	7,23248E-08	kg/m3	2,89E-05	kg/kg	4,34173E-07	kg/m3
Radium-226	0,000694	kBq/kg	1,7368E-06	kBq/m3	0,000694	kBq/kg	1,04262E-05	kBq/m3
Radium-228	0,00376	kBq/kg	9,40973E-06	kBq/m3	0,00376	kBq/kg	5,64876E-05	kBq/m3
Radon-220	0,0000578	kBq/kg	1,4465E-07	kBq/m3	5,78E-05	kBq/kg	8,68346E-07	kBq/m3
Radon-222	0,0000578	kBq/kg	1,4465E-07	kBq/m3	5,78E-05	kBq/kg	8,68346E-07	kBq/m3
Scandium	7,28E-08	kg/kg	1,82188E-10	kg/m3	7,28E-08	kg/kg	1,0937E-09	kg/m3
Selenium	0,00000548	kg/kg	1,37142E-09	kg/m3	5,48E-07	kg/kg	8,23276E-09	kg/m3
Silicon	0,000913	kg/kg	2,28486E-06	kg/m3	0,000913	kg/kg	1,37163E-05	kg/m3
Sodium	0,0000365	kg/kg	9,13444E-08	kg/m3	3,65E-05	kg/kg	5,4835E-07	kg/m3
Strontium	0,000011	kg/kg	2,75285E-08	kg/m3	0,000011	kg/kg	1,65256E-07	kg/m3
Sulphur dioxide	0,0289	kg/kg	7,23248E-05	kg/m3	0,0289	kg/kg	0,000434173	kg/m3
Thallium	9,13E-08	kg/kg	2,28486E-10	kg/m3	9,13E-08	kg/kg	1,37163E-09	kg/m3
Thorium	0,00000011	kg/kg	2,75285E-10	kg/m3	1,1E-07	kg/kg	1,65256E-09	kg/m3
Thorium-228	0,000318	kBq/kg	7,95823E-07	kBq/m3	0,000318	kBq/kg	4,77741E-06	kBq/m3
Thorium-232	0,000202	kBq/kg	5,05522E-07	kBq/m3	0,000202	kBq/kg	3,0347E-06	kBq/m3
Tin	3,65E-08	kg/kg	9,13444E-11	kg/m3	3,65E-08	kg/kg	5,4835E-10	kg/m3
Titanium	0,0000219	kg/kg	5,48066E-08	kg/m3	2,19E-05	kg/kg	3,2901E-07	kg/m3
Toulene	0,00000578	kg/kg	1,4465E-08	kg/m3	5,78E-06	kg/kg	8,68346E-08	kg/m3
Uranium	0,00000146	kg/kg	3,65378E-10	kg/m3	1,46E-07	kg/kg	2,1934E-09	kg/m3
Uranium-238	0,000578	kBq/kg	1,4465E-06	kBq/m3	0,000578	kBq/kg	8,68346E-06	kBq/m3
Vanadium	0,00000219	kg/kg	5,48066E-09	kg/m3	2,19E-06	kg/kg	3,2901E-08	kg/m3
Water/m3	0,00186	m3/kg	4,65481E-06		0,00186	m3/kg	2,79433E-05	
Xylene	0,0000578	kg/kg	1,4465E-08	kg/m3	5,78E-06	kg/kg	8,68346E-08	kg/m3
Zinc	0,00000183	kg/kg	4,57973E-10	kg/m3	1,83E-07	kg/kg	2,74926E-09	kg/m3

			Regene	eration		
Emissions		Unit		Unit		Unit
Hard coal ash	0,00931	kg/0,9kg	0,010344444	kg/kg	0,000231383	kg/m3
Aluminium	0,0000344	kg/0,9kg	3,82222E-05	kg/kg	8,54948E-07	kg/m3
Antimony	5,07E-09	kg/0,9kg	5,63333E-09	kg/kg	1,26005E-10	kg/m3
Arsenic	8.12E-08	kg/0.9kg	9.02222E-08	kg/kg	2.01808E-09	kg/m3
Barium	0.00000405	kg/0.9kg	0.00000045	kg/kg	1.00655E-08	kg/m3
Benzene	0.00000161	kg/0.9kg	1.78889E-06	kg/kg	4.00136E-08	kg/m3
Benzo(a)pyrene	3 21E-11	kg/0.9kg	3 56667E-11	ko/ko	7 97786E-13	kg/m3
Beryllium	4 05E-09	kg/0.9kg	4 5E-09	ko/ko	1,00655E-10	kg/m3
Boron	0.00000152	kg/0.9kg	1,68889F-06	kg/kg	3 77768E-08	kg/m3
Bromine	3.04F-08	kg/0,9kg	3 37778E-08	kg/kg	7 55536E-10	kg/m3
Cadmium	5.07E-09	kg/0.9kg	5.63333E-09	ko/ko	1 26005E-10	kg/m3
Calcium	0.00000405	kg/0.9kg	0.0000045	kg/kg	1,20005E-07	kg/m3
Carbon dioxide fossil	2	kg/0, 9kg	2 222222222	kg/kg	0.049706308	kg/m3
Carbon monovide, fossil	0.000321	kg/0,9kg	0.000356667	kg/kg	7 97786E-06	kg/m3
Chromium	7.23E_08	kg/0, 7kg	8.03333E-08	kg/kg	1,77780E-00	kg/m3
Chromium VI	8 03E 00	kg/0, 7kg	0,03333E-08	kg/kg	2 21030E 10	kg/m3
Cobalt	1,01E 08	kg/0,9kg	9,92222E-09	kg/kg	2,21939E-10	kg/m3
Coppor	1,01E-08	kg/0,9kg	1,12222E-08	kg/kg	2,31017E-10	kg/m3
Dinitrogen menovide	0,00000221	kg/0,9kg	2,92222E-06	kg/kg	1,52407E-09	kg/iii3
Dimutogen monoxide	0,00000321	kg/0,9kg	5,3000/E-00	Kg/Kg	7,97780E-08	Kg/III5
DIOXIII, 2,3,7,8	C 40E 14	1	7 122225 14	1 /1	1 50557E 15	1
Falses	0,42E-14	kg/0,9kg	7,13335E-14	kg/kg	1,39357E-15	kg/m5
Ethane	0,00000482	kg/0,9kg	5,55550E-00	Kg/Kg	1,19/92E-07	kg/m5
Ethene	0,00000963	kg/0,9kg	0,0000107	kg/kg	2,39336E-07	kg/m3
Ethyne	0,00000161	kg/0,9kg	1,/8889E-06	kg/kg	4,00136E-08	kg/m3
Formaldenyde	0,00000257	kg/0,9kg	2,85556E-07	кд/кд	6,38/26E-09	kg/m3
Hydrocarbons, aliphatic,	0.000001.61	1 /0.01	1 700005 04	1 4	4.001265.00	1 / 2
alkanes, unspecified	0,0000161	kg/0,9kg	1,78889E-06	kg/kg	4,00136E-08	kg/m3
Hydrocarbons, aliphatic,	0.000001.61	1 (0.01	1 500005 04		4 0010 (5 00	1 / 2
unsaturated	0,0000161	kg/0,9kg	1,78889E-06	kg/kg	4,00136E-08	kg/m3
Hydrogen chloride	0,00013	kg/0,9kg	0,000144444	kg/kg	3,23091E-06	kg/m3
Hydrogen fluoride	0,00000405	kg/0,9kg	0,0000045	kg/kg	1,00655E-07	kg/m3
Iodine	3,66E-08	kg/0,9kg	4,06667E-08	kg/kg	9,09625E-10	kg/m3
Iron	0,0000142	kg/0,9kg	1,57778E-05	kg/kg	3,52915E-07	kg/m3
Lead	0,00000243	kg/0,9kg	0,0000027	kg/kg	6,03932E-09	kg/m3
Lead-210	0,000149	kgBq/0,9kg	0,000165556	kgBq/kg	3,70312E-06	kgBq/m3
Magnesium	0,0000122	kg/0,9kg	1,35556E-05	kg/kg	3,03208E-07	kg/m3
Manganese	0,00000071	kg/0,9kg	7,88889E-08	kg/kg	1,76457E-09	kg/m3
Mercury	9,12E-09	kg/0,9kg	1,01333E-08	kg/kg	2,26661E-10	kg/m3
Methane, fossil	0,0000321	kg/0,9kg	3,56667E-05	kg/kg	7,97786E-07	kg/m3
Molybdenum	1,52E-08	kg/0,9kg	1,68889E-08	kg/kg	3,77768E-10	kg/m3
Nickel	0,00000061	kg/0,9kg	6,77778E-08	kg/kg	1,51604E-09	kg/m3
Nitrogen oxides	0,000642	kg/0,9kg	0,000713333	kg/kg	1,59557E-05	kg/m3
NMVO, non-methane						
volatiel organic						
compounds	0,00000552	kg/0,9kg	6,13333E-06	kg/kg	1,37189E-07	kg/m3
Particulates < 2.5 um	0,0000642	kg/0,9kg	7,13333E-05	kg/kg	1,59557E-06	kg/m3
Particulates > 10 um	0,0000321	kg/0,9kg	3,56667E-05	kg/kg	7,97786E-07	kg/m3
Particulates > 2.5 um, and						
< 10um	0,0000642	kg/0,9kg	7,13333E-05	kg/kg	1,59557E-06	kg/m3
Phosphorus	0,00000203	kg/0,9kg	2,25556E-07	kg/kg	5,04519E-09	kg/m3
Polonium-210	0,000273	kgBq/0,9kg	0,000303333	kgBq/kg	6,78491E-06	kgBq/m3
Potassium	0,00000405	kg/0,9kg	0,0000045	kg/kg	1,00655E-07	kg/m3
Potassium-40	0,0000434	kgBq/0,9kg	4,82222E-05	kgBq/kg	1,07863E-06	kgBq/m3
Propane	0,00000321	kg/0,9kg	3,56667E-06	kg/kg	7,97786E-08	kg/m3
Propene	0,00000161	kg/0,9kg	1,78889E-06	kg/kg	4,00136E-08	kg/m3
Radium-226	0,0000385	kgBq/0,9kg	4,27778E-05	kgBq/kg	9,56846E-07	kgBq/m3
Radium-228	0,000209	kgBq/0,9kg	0,000232222	kgBq/kg	5,19431E-06	kgBq/m3
Radon-220	0,00000321	kgBq/0.9kg	3,56667E-06	kgBa/kg	7,97786E-08	kgBq/m3
Radon-222	0.00000321	kgBq/0.9kg	3,56667E-06	kgBa/kg	7,97786E-08	kgBq/m3
Scandium	4.05F-09	kg/0.9kg	4 5E-09	ko/ko	1.00655E-10	kg/m3

Table D.8. Manually added emissions in GaBi for the regeneration.

Selenium	3,04E-08	kg/0,9kg	3,37778E-08	kg/kg	7,55536E-10	kg/m3
Silicon	0,0000507	kg/0,9kg	5,63333E-05	kg/kg	1,26005E-06	kg/m3
Sodium	0,0000203	kg/0,9kg	2,25556E-06	kg/kg	5,04519E-08	kg/m3
Strontium	0,00000061	kg/0,9kg	6,77778E-07	kg/kg	1,51604E-08	kg/m3
Sulphur dioxide	0,00161	kg/0,9kg	0,001788889	kg/kg	4,00136E-05	kg/m3
Thallium	5,07E-09	kg/0,9kg	5,63333E-09	kg/kg	1,26005E-10	kg/m3
Thorium	6,1E-09	kg/0,9kg	6,77778E-09	kg/kg	1,51604E-10	kg/m3
Thorium-228	0,0000177	kgBq/0,9kg	1,96667E-05	kgBq/kg	4,39901E-07	kgBq/m3
Thorium-232	0,0000112	kgBq/0,9kg	1,24444E-05	kgBq/kg	2,78355E-07	kgBq/m3
Tin	2,03E-09	kg/0,9kg	2,25556E-09	kg/kg	5,04519E-11	kg/m3
Titanium	0,00000122	kg/0,9kg	1,35556E-06	kg/kg	3,03208E-08	kg/m3
Toulene	0,00000321	kg/0,9kg	3,56667E-07	kg/kg	7,97786E-09	kg/m3
Uranium	8,21E-09	kg/0,9kg	9,12222E-09	kg/kg	2,04044E-10	kg/m3
Uranium-238	0,0000321	kgBq/0,9kg	3,56667E-05	kgBq/kg	7,97786E-07	kgBq/m3
Vanadium	0,00000122	kg/0,9kg	1,35556E-07	kg/kg	3,03208E-09	kg/m3
Water/m3	0,00323	m3/0,9kg	0,003588889	m3/kg	8,02757E-05	
Xylene	0,00000321	kg/0,9kg	3,56667E-07	kg/kg	7,97786E-09	kg/m3
Zinc	1,01E-08	kg/0,9kg	1,12222E-08	kg/kg	2,51017E-10	kg/m3

Polyme production Inflow Unit Inflow Unit	1										
Listing situation and the GAC process Polymer production Unit Volte Effertivity 191000 kg/year C C Acrylic acid (50%) 0.00168445 KW/m3 C KW/m3 KW/m3 KW/m3 KW/m3 </td <td></td> <td>Yearly flows of</td> <td>f wastewater</td> <td></td> <td></td> <td></td> <td></td> <td>lows per m3</td> <td>wastewater</td> <td></td> <td></td>		Yearly flows of	f wastewater					lows per m3	wastewater		
Infor Outlow Wh/yer Control Infor Outlow Infor Outlow Number of the second of the				Exi	sting sludge treatment fo	or ozonation an	d the GAC process				
Inflow Outflow Outflow </td <td></td>											
InflowOutfowOutfowInflowOutfowWW/verInflowOutfowWW/verInflowOutfowWW/verInflowOutfowWW/verInflowOutfowWW/verInflowOutfowWW/verInflowOutfowWW/verInflowOutfowWW/verInflowOutfowWW/verInflowOutfowInflowOutfowInflowOutfowInflowOutfowInflowInflowOutfowInflowInflowOutfowInfl	Poly	mer production		Unit			Polyme	er production		Unit	
Electricity 0.008967 KWn/m3 Actylointrile (50%) 191000 kg/year 0 Actylointrile (50%) 0.001845 kg/m3 Actylia cid (50%) 191000 kg/year 0 Actylia cid (50%) 0.001845 kg/m3 Actylia cid (50%) 191000 kg/year 0 Actylia cid (50%) 0.001845 kg/m3 Polyscrylamide 0 0 Max Actylia cid (50%) 0.001845 kg/m3 Polyscrylamide 0 Max Max Max Max Polyscrylamide 0 Max Max Max Max Polyscrylamide 0 Max Max Max Max Maxtewater 12866880 m3/year Max Max Max Sludge 12866880 m3/year Max Max Max Sludge to 12866880 m3/year Max Max Max Sludge to 12866880 kg/year Max Max Max Sludge to 12866880 kg/year Max Max Max Sludge to 12866880 kg/year Max Max Max Sludge to 12800000 kg/year Max Max		Inflow	Outflow					Inflow	Outflow		
Acrylonitrile (50%) 191000 kg/vear Control (50%) 0,0014845 kg/m3 Acrylic acid (50%) 0,0014445 kg/m3	Electricity	114600		kWh/year			Electricity	0,00089067		kWh/m3	
Acrylic acid (50%) 191000 kg/year is Acrylic acid (50%) 0,0018445 kg/m3 kg/m3 Polyacrylamide 382000 kg/year image: state	Acrylonitrile (50%)	191000		kg/year			Acrylonitrile (50%)	0,00148445		kg/m3	
	Acrylic acid (50%)	191000		kg/vear			Acrylic acid (50%)	0 00148445		kg/m3	
Polyacrylamide S3200 kg/var kg/var Polyacrylamide 0.00296831 kg/m3 Variable Inflow Unit Inflow Inflow Unit Inflow Variable Dutriow Variable Inflow Outriow Inflow Outriow Variable 12866680 12866680 m3/var Inflow Inflow Outriow Inflow Variable 4000000 kg/var Inflow Inflow Outriow Inflow Inflow Sludge to 12866680 12866680 m3/var Inflow Inflow Outriow Inflow Sludge to 1000000 kg/var Inflow Inflow Outriow Inflow Inflow Sludge to 1000000 kg/var Inflow Inflow Outriow Inflow Sludge to 2340000 kg/var Inflow Inflow Outriow Sludge to 382000 kg/var Inflow Inflow Inflow Polscylanylamide 382000 kg/var Inflow Inflow Inflow Sludge to 382000 kg/var Inflow Inflow Inflow Polscylanylamide 382000 kg/var Inflow Inflow	nergine della (5676)	101000		Ng/ year			nergine dela (5670)	0,00110113		Ng/ 110	
Indication Inditent indication Indication Indi	Polyacrylamide		382000	kg/year			Polyacrylamide		0,00296891	kg/m3	
Primary settling Unit Inition Outflow Outflow Inition Outflow Outflow Massewater 1 m3 Inition Outflow Inition Inition <tht< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></tht<>											
Inflow Outflow Outflow M3/ver Control Wastewater 1 1 m3 1 Sludge 128666880 128666880 m3/ver Control Sludge 0.31088031 m3/max Control Control Control Control 0.31088031 kg/m3 Control Contro Control Control	Pr	imary settling		Unit			Prim	ary settling		Unit	
Vastewater 128666880 m3/year image image Sludge 40000000 kg/year image image Kisting Sludge treatment Unit Image Image Image Sludge treatment Unit Image Image Image Image Sludge treatment Mithin Image Image Image Image Sludge treatment Mithin Image Image Image Image Sludge treatment Mithin Mithin Image Image Image Sludge treatment Mithin Mithin Image Image Image Sludge treatment Mithin Mithin Image Image Imag		Inflow	Outflow					Inflow	Outflow		
Sindge 4000000 kg/year Image Sindge	Wastewater	128666880	128666880	m3/year			Wastewater	1	1	m3	
Image: constraint of the section of the sectin of the section of the section of the section of the section of	Sludge		4000000	kg/year			Sludge		0,31088031	kg/m3	
Existing sludge treatment Unit Existing sludge treatment Unit Unit Inflow Outflow Inflow Inflow Outflow Inflow Inflow <td></td>											
InflowOutflowOutflowOutflowOutflowOutflowSludge to agriculture40000000kg/year $agricultureSludge toagriculture0,31088031kg/m3Electricity2340000kWh/yearCElectricity0,0181865kWh/m3Polacrylamide382000kg/yearCPolyacrylamide0,0029681kg/m3Polacrylamide382000kg/yearCPolyacrylamide0,0029681kg/m3Polacrylamide382000kg/yearCPolyacrylamide0,0029681kg/m3Polacrylamide382000kg/yearCPolyacrylamide0,0029681kg/m3Polacrylamide382000kg/yearCPolyacrylamide0,0029681kg/m3Polacrylamide382000kg/yearCPolyacrylamide0,0029681kg/m3Polacrylamide382000kg/yearPolyacrylamide0,0029681kg/m3kg/m3Polacrylamide382000kg/yearPolyacrylamideNoncoFormationKg/yearKg/yaarPolacrylamide382000kg/yearPolyacrylamideNoncoFormationKg/yaarKg/yaarKg/yaarPolyacrylamide2000kg/yaarPolyacrylamide27000kgKgRatio1104,05249kmPolyacrylamide955Amount$	Existin	g sludge treatme	ent	Unit			Existing s	ludge treatm	ent	Unit	
Sludge to agriculture Ad000000 (3,1088031 4g/wa Adv		Inflow	Outflow					Inflow	Outflow		
agriculture lectricity4000000 2340000kWh/yearagriculture agriculture0,3108303 0,31083030,3108303 0,3108303kWh/m3Polacylamide382000kWh/yearIIPolyacylamide0,0029691kg/m3kg/m3IPolacylamide382000kWh/yearIIPolyacylamide0,0029691kg/m3kg/m3IImage: Second	Sludge to	40000000	40000000				Sludge to		0.04000000	1-1-2	
Lectricity234000KWiyterKWiyterConstrainedClectricity0,019385KWiytinPolacrylamide382000kg/yearPolyacrylamide0,00296891kg/m3International ConstructionInternational ConstructionInternational ConstructionInternational ConstructionInternational ConstructionInternational ConstructionInternational ConstructionTransports of polymer for GAC/ozonation (40International Construction (17, 18, 19, 19, 19, 19, 19, 19, 19, 19, 19, 19	agriculture	4000000	4000000	kg/year			agriculture	0,31088031	0,31088031	kg/m3	
Polacrylamide 382000 kg/year comparison polyacrylamide 0,00296891 kg/m3 Amount	crecurcity	2340000		Kwii/yeai			crecuricity	0,0181865		KWIIJIIIS	
Image: section of the section of th	Polacrylamide	382000		kg/year			Polyacrylamide	0,00296891		kg/m3	
Image: state stat											
Transports of polymer for GAC/ozonation (40 Unit Diesel consumption (transports of polymer for GAC/ozonation) calculated based or pre-study and GaBi values Unit Transport (polymer for GAC/ozonation) Distance 2000 km Payload truck Unit distance in GaBi Units Distance 2000 km Payload truck 27000 kg Ratio 1,81150847 Amount 9,55 Amount 14,1481481 Distance 1104,052249 km Total distance 19100 km/year Total distance 28296,2953 km Image: stand											
Distance in polymer for GAC/ozonation (40 insports of GAC/ozonation) Total distance in GAC/ozonation) GAC/ozonation (40 Vinit and GaBi values Unit GAC/ozonation) ton payload) Vinit and GaBi values Unit distance in GaBi Unit Distance 2000 km Payload truck 27000 kg Ratio 1,81150847 Amount 14,1481481 Distance 1104,052249 km 1104,052249 km Total distance 19100 km/year Total distance 28296,2963 km Image: Colspan="2">Image: Colspan="2" Colspa="2" Colspa="2" Colspan="2" Colspan="2" Colspa="2" Colspan="2" Col	Transports of				Diesel consume	tion (transports				Transport	
CAC/ozonation (40 Calculated based on pre-study Ca	nolymer for				of polymer for G	AC/ozonation)				(nolymer for	
Interpretation payload) Init Init Init Distance 2000 km Payload truck 27000 kg Ratio 1,81150847 Amount 9,55 Amount 14,1481481 Distance Distance 1104,052249 km Total distance 19100 km/year Total distance 28296,2963 km Init Init Init Local distance 19100 km/year Disesel 0,34 l/km Init Init Init Local distance 19100 Init Init Init Init Init Init Init Init Init Local distance 19100 Init	GAC/ozonation (40				calculated base	d on pre-study				GAC/ozonation)	
Distance 2000 km Payload truck 27000 kg Ratio 1,81150847 Amount 9,55 Amount 14,1481481 Distance 1104,055249 km Total distance 19100 km/year Total distance 28296,2963 km Image: constraint of the second	ton payload)			Unit	and GaBi values		Unit			distance in GaBi	Unit
Amount 9,55 Image: Marrier Marrie	Distance	2000		km	Payload truck	27000	kg		Ratio	1,81150847	
Total distance 19100 km/year Total distance 28296,2963 km cm cm 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>Amount</td><td>9,55</td><td></td><td></td><td>Amount</td><td>14,1481481</td><td></td><td></td><td>Distance</td><td>1104,052249</td><td>km</td></td<>	Amount	9,55			Amount	14,1481481			Distance	1104,052249	km
0,3 1/km 0,3 0,246 0,246 kg/km 0 0.82 0 0,82 0 0,82 0 0,82 0 0,82 0 0,83889 0 0,44563108 0 0,54345254 0 0,54345254	Total distance	19100		km/year	Total distance	28296,2963	km				
Image: select of the select											
Image: Construction of the co											
Image: Construction of the sector o						0.3	1/km				
Density 0,82 kg/dm3 Total diesel consumption 6960,88899 kg Diesel 0,44563108 kg/km consumption truck 0,54345254 l/km					Diesel	0 246	kg/km				
Total diesel 6960,8889 kg Consumption 6960,8889 kg Diesel 0,44563108 kg/km consumption truck 0,54345254 l/km					Density	0.82	kg/dm3				
consumption 6960,8889 kg Diesel 0,44563108 kg/km consumption truck 0,54345254 1/km					Total diesel	-,					
Diesel 0,44563108 kg/km consumption truck 0,54345254 l/km					consumption	6960,88889	kg				
consumption truck 0,54345254 1/km					Diesel	0,44563108	kg/km				
					consumption tru	ck 0,54345254	l/km				

Table D.9. Flows of wastewater per year and m^3 for how the existing sludge treatment would be for the ozonation process and the GAC process. The values in m^3 constitute the basis for the calculations in GaBi for the existing sludge treatment process.

	and of a second					F	Laura a as as 2 .			
	earry nows of	wastewater				r.	lows per mon	wastewater		
				Eviating cludes treats	ant for the l	DAC				
				Existing sludge treath	ient for the	PAC process				
Polyme	er production		Unit			Polyme	er production		Unit	
	Inflow	Outflow					Inflow	Outflow		
Electricity	103140		kWh/yea	ar		Electricity	0,0008016		kWh/m3	
Acrylonitrile (50%)	171900		kg/year			Acrylonitrile (50%)	0,00133601		kg/m3	
Acrylic acid (50%)	171900		kg/year			Acrylic acid (50%)	0,00133601		kg/m3	
De lue en de se isle		242000	h=6			De lue en de miele		0.00067000	ha /m 2	
Polyacrylamide		545800	kg/year			Polyacrylamide		0,00267202	kg/mb	
Prim	ary settling		Unit			Prima	ary settling		Unit	
	Inflow	Outflow					Inflow	Outflow		
Wastewater	128666880	128666880	m3/year			Wastewater	1	1	m3	
Sludge		36000000	kg/vear			Sludge		0.27979228	kg/m3	
								-,		
Existing s	ludge treatme	ent	Unit			Existing sl	ludge treatme	ent	Unit	
	Inflow	Outflow					Inflow	Outflow		
Sludge to						Sludge to				
agriculture	3600000	3600000	kg/year			agriculture	0,27979228	0,27979228	kg/m3	
Electricity	2105072,713		kWh/yea	ar		Electricity	0,01636064		kWh/m3	
Polyacrylamide	343800		kg/year			Polyacrylamide	0,00267202		kg/m3	
				Diesel consumption	ו				Transport	
Transports of				(transports of polyn	ner for PAC)				(transports of	
polymer for PAC (40				calculated based or	n pre-study				polymer for PAC)	
ton payload)	2000		Unit	and GaBi values	27000	Unit		Detie	distance in GaBi	Unit
Amount	2000		KIII	Amount	10 7333222	vR		Distance	1,01150847	km
Total distance	17100		km/vear	Total distance	25466 6667	km		Distance	1104,032249	NIII
rotar arstance	1/150		King year	Total distance	25400,0007	NIII				
					0,3	I/km				
				Diesel	0,246	kg/km				
				Density	0,82	kg/dm3				
				Total diesel						
				consumption	6264,8	kg				
				Diesel	0,44563108	kg/km				
				consumption truck	0,54345254	I/KM				

Table D.10. Flows of wastewater per year and m^3 for how the existing sludge treatment would be for the PAC process. The values in m^3 constitute the basis for the calculations in GaBi for the existing sludge treatment process.

Appendix 5 – Example of Calculations

Example calculation	n of fuel consump	tion for the PAC p	orocess, t	the GAC process, and t	he existing sludge trea	atment	
Fuel consumption in tra	GaBi (calculated ba nsport of virgin GAC	ased on values for		In the pre-study, it was ass The largest truck in GaBi ha	umed a truck with a payload as a payload of 27 tonnes. Th	of 40 tonne erefore, the	25. 2
Diesel consumption	0,000000744	kg		er, the total sourned fuel			
Transport of activated carbon	0,045077645	kg		In GaBi, the fuel consumpt	ion is not presented. Therefo	re, it was	
	0,445631084	kg/km		calculated based on the fol	llowing example in red:		
Diesel consumption truck	0,543452541	l/km		Distance: 1 km Diesel consumption: 7,44* Amount product transport	10^-7 kg ed: 0,045 kg		
				Diesel consumption truck=	(7,44*10^-7/0,045)*27000=0),44kg/km	
				Density diesel: 0,82 kg/dm > Diesel consumption tru	3 ck=0,44/0,82=0,54I/km		
				The ratio of the fuel consu consumption in GaBi could (0,3l/km)/(0,54l/km)=1,81	mption from the pre-study ar then be calculated as in red	nd the fuel below:	
				Based on the ratio, the dist	tance for each transport was	calculated.	

Figure E.13. Example calculation of the fuel consumption in GaBi for all transports in the PAC process, the GAC process, and the existing sludge treatment.

Example calculation of loss of b	piogas production	for the PAC pro	cess									
Loss of biogas production (in e treatment for PAC	xisting sludge) Un	nit	By imple PAC is in	menting th cinerated. 1	e PAC proc The enviror	ess, less bi nmental im	ogas is pro pact for th	duced sinc e existing s	e sludge co sludge trea	ontaminate tment in th	d of ie	
	1000 kg/	/day	PAC proc	tess will the	eretore be a	a bit differe	ent in comp case. To kr	parison to t	ne existing	siuoge ectricity is		
	365000 kg/	/year	used wh	en having t	he PAC oro	ress the f	allowing ca	culations l	have been	made in re	d:	
Loss of sludge by using PAC	365 m3	3/year	used with	ci naving t	ne rae pro	cess, the h	Showing ca	Culduons	nave been	induc in re	u.	
Sludge to biogas	574687 m3	3/year	Loss of s	ludge by us of sludge (a	ing PAC: 10	000 kg/day same valu	> 365000) kg/year ater) = 100	0kg/m3			
Total electricity for biogas prod.	1460000 kW	Vh/year	> loss o Sludge to	of sludge by biogas for	using PAC the currer	= (365000 nt sludge tr	kg/year)/(1 eatment=1	.000kg/m3 .004712-43)=365m3/y 30025=574	ear 687m3/yea	r	
Density of sludge (assumes the same value as for water)	1000 kg/	:/m3	Total ele Electricit	ctricity for y for loss o	biogas pro f	duction=14	6000kWh/	year				
Electricity for loss of biogas	927,2873756 kW	Vh/year										

Figure E.2. Example calculation of loss of biogas production and thereby less electricity used for the existing sludge treatment in the PAC process.

Appendix 6 – GaBi Modelling

LCA ozonation Process plan: Energy (net calorific value) [MJ]

The names of the basic processes are shown.

Figure F.1. A visualization of the modelling in GaBi for the main case of the ozonation process.

Figure F.2. A visualization of the modelling in GaBi for the main case of the GAC process.

Figure F.3. A visualization of the modelling in GaBi for the main case of the PAC process.

Sludge management GAC and ozonation

The names of the basic processes are shown.

Figure F.4. A visualization of the modelling in GaBi for the existing sludge treatment. The including activities and the design are equal for the ozonation process, the PAC process, and the GAC process.

Appendix 7 – Results

Global Warming Potential

Table G.1. Results in tonnes CO₂-eq per year from the hot spot analysis for the ozonation process for the main case and the sensitivity analysis.

	Hot spot analysis detail ozonation								
	Credited heat of	Credited heat	SE: Electricity of	SE: Electricity	SE: Electricity				
Ozonation (t CO2-	oxygen	of ozone	other	of oxygen	of ozone				
eq/year)	production	production	installations	production	production	Total			
Electricity (SE)	-32,68	-314,59	163,02	327,19	193,42		684		
Windpower (SE)	-32,68	-314,59	24,39	21,16	-308,58		-263		

Table G.2. Results in kg CO₂-eq per year from the hot spot analysis for the PAC process for the main case and the four sensitivity analyses.

												Hot spot a	nalysis detail P	PAC												
									Container	Heavy fuel																
		Natural					Diesel,	Truck- trailer,	activated carbon	activated carbon						Truck-					Truck-			Truck-		
		gas,		.	Container	Heavy fuel	virgin	virgin	Shanghai	Shanghai	Electricity			Electricity,	Diesel,	trailer,	Acrylic		Electricity,	Diesel,	trailer,		Diesel,	trailer,		
	Hard coal,	production	Electricity,	Production	ship, hard	oil ship,	PAC to	PAC to	port to	port to	of other	Acrylic		polymer	polymer	polymer	acid,	Acrylonitrile,	polymer for	polymer for	polymer	Electricity,	sludge to	sludge to	Incinerati	
PAC (Kg CO2-	production	of virgin	production	(activation)	coal to	hard coal	куа	куа	Gothenburg	Gothenburg	installation	acid, PAC	Acrylonitrile,	TOT PAC	TOT PAC	TOT PAC	sludge	sludge	sludge	sludge	for sludge	siudge	incinerati	incineratio	on of	Heat,
eq/year)	of virgin PAC	PAC	of virgin PAC	of virgin PAC	Beigium	to Belgium	WWIP	WWIP	port	port	s	process	PAC process	process	process	process	treatment	treatment	treatment	treatment	treatment	treatment	on	n	siudge	Incineration
Main case, β	1722706,46	147348,40	727847,65	13591891,41	930017,41	129639,82	6526,42	71216,02			46444,69	96365,92	240608,22	19473,20	794,11	8665,29	131470,54	328258,08	26566,98	1083,39	11821,93	21457,45	1746,88	19061,85	26252,37	-165454,09
Main case, y	1722706,46	147348,40	45033,91	13591891,41	930017,41	129639,82	6526,42	71216,02			6949,08	96365,92	240608,22	430,51	794,11	8665,29	131470,54	328258,08	587,34	1083,39	11821,93	3210,47	1746,88	19061,85	26252,37	-165454,09
Prod. in China, δ	1722706,46	462748,04	4 2889476,85	13591891,41			37,83	412,85	371714,58	51815,17	46444,69	96365,92	240608,22	19473,20	794,11	8665,29	131470,54	328258,08	26566,98	1083,39	11821,93	21457,45	1746,88	19061,85	26252,37	-165454,09
Prod. in China, η	1722706,46	462748,04	4 45033,91	13591891,41			37,83	412,85	371714,58	51815,17	6949,08	96365,92	240608,22	430,51	794,11	8665,29	131470,54	328258,08	587,34	1083,39	11821,93	3210,47	1746,88	19061,85	26252,37	-165454,09
Coconut shells, δ		462748,04	4 2889476,85				37,83	412,85	371714,58	51815,17	46444,69	96365,92	240608,22	19473,20	794,11	8665,29	131470,54	328258,08	26566,98	1083,39	11821,93	21457,45	1746,88	19061,85	26252,37	-165454,09

Table G.3. Results in kg CO ₂ -eq per year from the hot spot analysis for the GAC process for the main case and the ten sensitivity analyses	Table G.3. Results	s in kg CO2-eq per year fro	n the hot spot analysis for the	e GAC process for the main of	case and the ten sensitivity analyses.
---	--------------------	-----------------------------	---------------------------------	-------------------------------	--

								Hot	spot analysis de	etail GAC									
	Container ship, hard	Heavy fuel oil ship,	Electricity,	Natural gas,	Production (activation)	Diesel, virgin GAC	Truck- trailer, virgin GAC	Container ship, activated carbon Shanghai port	Heavy fuel oil ship, activated carbon Shanghai port	Electricity of	Diesel, GAC to	Truck-trailer, GAC to	Diesel, regenerated	Truck-trailer, regenerated				Heat generated	Diesel, fuel
GAC (kg CO2-	coal to	hard coal to	production	production of	of virgin	to Rya	to Rya	to Gothenburg	to Gothenburg	other	regeneration	regeneration	GAC to Rya	GAC to Rya	Electricity,	Natural gas,		during	for
eq/year)	Belgium	Belgium	of virgin GAC	virgin GAC	GAC	WWTP	WWTP	port	port	installations	in Belgium	in Belgium	WWTP	WWTP	regeneration	regeneration	Regeneration	regeneration	regeneration
Main case, α	154922,72	2 21595,4	5 121245,18	24545,36	2264143,40	1087,17	11863,20			139334,06	19582,63	213684,89	9717,04	106031,92	359262,08	81320,43	6401149,92		
Main case, µ	154922,72	2 21595,4	6 4253,85	24545,36	2264143,40	1087,17	11863,20			20847,23	19582,63	213684,89	9717,04	106031,92	12604,59	81320,43	6401149,92		
Prod. in China, ε			481330,31	77084,78	2264143,40	6,30	68,77	61920,39	8631,40	139334,06	19582,63	213684,89	9717,04	106031,92	359262,13	81320,43	6401149,92		
Prod. in China, π			7501,77	77084,78	2264143,40	6,30	68,77	61920,39	8631,40	20847,23	19582,63	213684,89	9717,04	106031,92	12604,59	81320,43	6401149,92		
Main case- credited heat, α	154922,72	2 21595,4	5 121245,18	24545,36	2264143,40	1087,17	11863,20			139334,06	19582,63	213684,89	9717,04	106031,92	359262,08	81320,43	6401149,92	-118519,17	
Reg. at Rya WWTP, diesel, α	154920,03	21595,0	8 121245,18	24545,36	2264154,30) 1087,17	11863,20			139334,06					81537,35		6401149,21		108174,57
Reg. at Rya WWTP, diesel-credited																			
heat, α	154920,03	21595,0	B 121245,18	24545,36	2264154,30	1087,17	11863,20			139334,06					81537,35		6401149,21	-118519,03	108174,57
Reg. at Rya WWTP, natural gas- credited heat, α	154920,03	3 21595,0	8 121245,18	24545,36	2264154,30) 1087,17	11863,20			139334,06					81537,35	57297,51	6401149,21	-118519,03	
Coconut shells, ε			481330,31	77084,78		6,30	68,77	61920,39	8631,40	139334,06	19582,63	213684,89	1408,27	15366,94	359262,13	81320,43			
30000 bed volumes, α	103281,81	14396,9	7 80830,11	16363,57	1509428,93	3 724,78	7908,80			92889,37	13055,09	142456,60	6478,02	70687,94	239508,07	54213,62	4267433,28		
10000 bed volumes, α	309845,61	43190,94	4 242490,50	49090,75	4528289,51	2174,35	23726,39			278668,11	39165,26	427369,79	19434,07	212063,84	718524,23	162640,85	12802299,83		

Fossil depletion

	Hot spot a	nalysis detai	lozonation			
		Credited				
	Credited heat	heat of	SE: Electricity	SE: Electricity	SE: Electricity	
	of oxygen	ozone	of other	of oxygen	of ozone	
Ozonation (Mg oil-eq/year)	production	production	installations	production	production	Total
Electricity (SE)	-10,56	-101,70	313,87	682,31	876,40	1873
Windpower (SE)	-10,56	-101,70	7,15	5,23	-79,40	-67

Table G.4. Results in Mg oil-eq per year from the hot spot analysis for the ozonation process for the main case and the sensitivity analysis.

Table G.5. Results in kg oil-eq per year from the hot spot analysis for the PAC process for the main case and the four sensitivity analyses.

												Hot spot	analysis deta	il PAC												
									Container	Heavy fuel																
									ship,	oil ship,																
						Heavy			activated	activated																
		Natural			Container	fuel oil		Truck-	carbon	carbon						Truck-					Truck-					
	Hard coal,	gas,	Electricity,	Production	ship,	ship,	Diesel,	trailer,	Shanghai	Shanghai				Electricity,	Diesel,	trailer,	Acrylic		Electricity,	Diesel,	trailer,		Diesel,			
	production	production	production	(activation)	hard coal	hard coal	virgin PAC	virgin PAC	port to	port to	Electricity of	Acrylic		polymer	polymer	polymer	acid,	Acrylonitrile,	polymer for	polymer	polymer for	Electricity,	sludge to	Truck-trailer,	,	
PAC (kg oil-	of virgin	of virgin	of virgin	of virgin	to	to	to Rya	to Rya	Gothenburg	Gothenburg	other	acid, PAC	Acrylonitrile,	for PAC	for PAC	for PAC	sludge	sludge	sludge	for sludge	sludge	sludge	incinerati	sludge to	Incineration	Heat,
eq/year)	PAC	PAC	PAC	PAC	Belgium	Belgium	WWTP	WWTP	port	port	installations	process	PAC process	process	process	process	treatment	treatment	treatment	treatment	treatment	treatment	on	incineration	of sludge	incineration
Main case, β	3547089,08	638029,15	577103,65	5		304373,11	24656,26				89422,12	79627,14	145524,21	6509,98	3000,08		108634,08	198536,43	8881,46	4092,96		41313,02	6599,55		2102,37	-53486,12
Main case, y	3547089,08	638029,15	13191,0	5		304373,11	24656,26				2038,25	79627,14	145524,21	126,06	3000,08		108634,08	198536,43	171,99	4092,96		941,67	6599,55		2102,37	-53486,12
Prod. in China, δ	3547089,08	757226,25	688948,7	7			142,93			121653,56	89422,12	79627,14	145524,21	6509,98	3000,08		108634,08	198536,43	8881,46	4092,96		41313,02	6599,55		2102,37	-53486,12
Prod. in China, η	3547089,08	757226,25	13191,0	5			142,93			121653,56	2038,25	79627,14	145524,21	126,06	3000,08		108634,08	198536,43	171,99	4092,96		941,67	6599,55		2102,37	-53486,12
Coconut shells, δ		757226,25	688948,7	7			142,93			121653,56	89422,12	79627,14	145524,21	6509,98	3000,08		108634,08	198536,43	8881,46	4092,96		41313,02	6599,55		2102,37	-53486,12

Table G.6. Results in kg oil-eq per year from the hot spot analysis for the GAC process for the main case and the ten sensitivity analyses.

										Hot spo	t analysis deta	ail GAC								
GAC (kg oil-eq/year)	Hard coal, production of virgin GAC	Container ship, hard coal to Belgium	Heavy fuel oil ship, hard coal to Belgium	Electricity, production of virgin GAC	Natural gas, production of virgin GAC	Production (activation) of virgin GAC	Diesel, virgin GAC to Rya WWTP	Truck- trailer, virgin GAC to Rya WWTP	Container ship, activated carbon Shanghai port to Gothenburg port	Heavy fuel oil ship, activated carbon Shanghai port to Gothenburg port	Electricity of other installations	Diesel, GAC to regeneration in Belgium	Truck-trailer GAC to regeneration in Belgium	Diesel, regenerated GAC to Rya WWTP	Truck-trailer, regenerated GAC to Rya WWTP	Electricity, regeneration	Natural gas, regeneration	Regeneration	Heat generated during regeneration	Diesel, fuel for regeneration
Main case, α	590875,72	2	50702,61	96134,18	106283,19		4107,25	5			268266,36	73981,53		36710,15		284855,57	352123,28			
Main case, µ	590875,72	2	50702,61	1266,93	106283,19		4107,25	5			6114,76	73981,53		36710,15		3754,05	352123,28			
Prod. in China, ε	590875,72	2		114765,39	126139,09		23,81	1		20265,11	268266,36	73981,53		36710,15		284855,61	352123,28			
Prod. in China, π	590875,72	2		2197,37	126139,09		23,81	L		20265,11	6114,76	73981,53		36710,15		3754,05	352123,28			
Main case-credited heat, α	590875,72	2	50702,61	96134,18	106283,19		4107,25	5			268266,36	73981,53		36710,15		284855,57	352123,28		-38313,53	
Reg. at Rya WWTP, diesel, a	590875,72	2	50701,73	96134,18	106283,19		4107,25	5			268266,36					156987,67				408674,52
Reg. at Rya WWTP, diesel- credited heat, α	590875,72	2	50701,73	96134,18	106283,19		4107,25	5			268266,36					156987,67			-38313,48	408674,52
Reg. at Rya WWTP, natural gas-credited heat, α	590875,72	2	50701,73	96134,18	106283,19		4107,25	5			268266,36					156987,67	355546,06		-38313,48	
Coconut shells, ε				114765,39	126139,09		23,81	L		20265,11	268266,36	73981,53		5320,31		284855,61	352123,28			
30000 bed volumes, α	393917,12	2	33801,74	64089,44	70855,45		2738,17	7			178844,24	49321,02		24473,43		189903,73	234748,85			
10000 bed volumes, α	1181752,06	5	101405,28	192268,47	212566,49		8214,50)			536532,71	147963,07		73420,29		569711,20	704246,56			

Total use of primary renewable energy resources

	Hot spot a	nalysis detail	ozonation				
	Credited	Credited					
	heat of	heat of	SE: Electricity	SE: Electricity	SE: Electricity		
	oxygen	ozone	of other	of oxygen	of ozone		
Ozonation (GWh/year)	production	production	installations	production	production	Total	
Electricity (SE)	-1,64	-15,75	3,44	7,60	10,73		4
Windpower (SE)	-1,64	-15,75	8,79	19,41	27,40		38

Table G.7. Results in GWh per year from the hot spot analysis for the ozonation process for the main case and the sensitivity analysis.

Table G.8. Results in MJ per year from the hot spot analysis for the PAC process for the main case and the four sensitivity analyses.

												Hot spot	analysis deta	il PAC												
									Container	Heavy fuel																
									ship.	oil ship.																
									activated	activated											Truck-					
		Natural						Truck-	carbon	carbon											trailer.					
	Hard coal.	gas.	Electricity.	Production	Container	Heaw fue	Diesel.	trailer.	Shanghai	Shanghai				Electricity.	Diesel.		Acrylic		Electricity.	Diesel.	polymer					
	production	production	production	(activation)	ship, hard	oil ship,	virgin PA	virgin PAC	port to	port to	Electricity of	Acrylic		polymer	polymer	Truck-trailer,	acid,	Acrylonitrile,	polymer for	polymer	for	Electricity,	Diesel,	Truck-trailer,		
	of virgin	of virgin	of virgin	of virgin	coal to	hard coal	to Rya	to Rva	Gothenburg	Gothenburg	other	acid, PAC	Acrylonitrile.	for PAC	for PAC	polymer for	sludge	sludge	sludge	for sludge	sludge	sludge	sludge to	sludge to	Incineration	Heat.
PAC (MJ/year)	PAC	PAC	PAC	PAC	Belgium	to Belgiun	n WWTP	WWTP	port	port	installations	process	PAC process	process	process	PAC process	treatment	treatment	treatment	treatment	treatmen	treatment	incineration	incineration	of sludge	incineration
Main case, ß	764939,08	3 56184,97	7488353,89)		42612,1	7 59114,38	3		1	3531397,35	203999,17	21363,75	200139,08	7192,81		278312,91	1 29146,24	273046,61	9813,05		1631505,71	15822,69		33035,18	-29818422,32
Main case, y	764939,08	56184,97	32121176,23			42612,1	7 59114,38	3			9017160,95	203999,17	21363,75	397958,83	7192,81		278312,91	1 29146,24	542929,00	9813,05		4165928,71	15822,69		33035,18	-29818422,32
Prod. in China, δ	764939,08	8 18550,32	6193850,42				342,69)		17031,47	3531397,35	203999,17	21363,75	200139,08	7192,81		278312,91	1 29146,24	273046,61	9813,05		1631505,71	15822,69		33035,18	-29818422,32
Prod. in China, ŋ	764939,08	8 18550,32	32121176,23				342,69)		17031,47	9017160,95	203999,17	21363,75	397958,83	7192,81		278312,91	1 29146,24	542929,00	9813,05		4165928,71	15822,69		33035,18	-29818422,32
Coconut shells, δ		18550,32	6193850,42				342,69	9		17031,47	3531397,35	203999,17	21363,75	200139,08	7192,81		278312,91	1 29146,24	273046,61	9813,05		1631505,71	15822,69		33035,18	-29818422,32

Table G.9. Results in MJ per year from the hot spot analysis for the GAC process for the main case and the ten sensitivity analyses.	

									Hot spot	analysis detail G	AC									
GAC (MJ/year)	Hard coal, production o virgin GAC	Container ship, hard f coal to Belgium	Heavy fuel oil ship, hard coal to Belgium	Electricity, production of virgin GAC	Natural gas, production of virgin GAC	Production (activation of virgin GAC	Diesel,) virgin GAC to Rya WWTP	Truck- trailer, virgin GAC to Rya WWTP	Container ship, activated carbon Shanghai port to Gothenburg port	Heavy fuel oil ship, activated carbon Shanghai port to Gothenburg port	Electricity of other installations	Diesel, GAC to regeneration in Belgium	Truck-trailer, GAC to regeneratior in Belgium	Diesel, regenerater GAC to Rya WWTP	Truck-trailer, d regenerated GAC to Rya WWTP	Electricity, regeneration	Natural gas, regeneration	Regeneration	Heat generated during regeneration	Diesel, fuel for regeneration
Main case, α	127423,9	0	7098,35	1247413,2	6 9359,3	2	9847,30)			10594192,05	5 177373,73	3	88014,0	7	3696215,2	6 31008,04			
Main case, µ	127423,9	0	7098,35	5 5343149,7	8 9359,3	2	9847,30)			27051482,84	4 177373,73	3	88014,0	7	15832308,7	1 31008,04			
Prod. in China, ε	127423,9	0		1031774,3	0 3090,1	2	57,09	,		2837,11	10594192,05	5 177373,73	3	88014,0	7	3696215,8	0 31008,04			
Prod. in China, π	127423,9	0		5350759,5	4 3090,1	2	57,09	,		2837,11	27051482,84	4 177373,73	3	88014,0	7	15832311,0	3 31008,04			
Main case-credited heat, $\boldsymbol{\alpha}$	127423,9	0	7098,35	5 1247413,2	6 9359,3	2	9847,30)			10594192,05	5 177373,73	3	88014,0	7	3696215,2	6 31008,04		-21359729,28	8
Reg. at Rya WWTP, diesel, α	127423,9	0	7098,23	3 1247413,2	6 9359,3	2	9847,30)			10594192,05	5				6199649,9	6			979813,72
Reg. at Rya WWTP, diesel- credited heat, α	127423,9	0	7098,23	3 1247413,2	6 9359,3	2	9847,30)			10594192,05	5				6199649,9	6		-21359705,06	979813,72
Reg. at Rya WWTP, natural gas-credited heat, $\boldsymbol{\alpha}$	127423,9	0	7098,23	3 1247413,2	6 9359,3	2	9847,30)			10594192,05	5				6199649,9	6 7712,87		-21359705,0€	i
Coconut shells, ε				1031774,3	0 3090,1	2	57,09	,		2837,11	10594192,05	5 177373,73	3	12755,6	5	3696215,8	0 31008,04			
30000 bed volumes, α	84949,2	6	4732,24	831608,7	5 6239,54	4	6564,87	,			7062794,70	118249,15	5	58676,0	4	2464143,6	9 20672,03			
10000 bed volumes, α	254847,9	4	14196,72	2 2494828,0	1 18718,64	4	19694,60	,			21188383,65	5 354747,45	5	176028,1	3	7392431,3	62016,08			

Total use of primary non-renewable energy resources

	Hot spot ana	alysis detail ozo	nation				
				SE:			
	Credited heat of	Credited heat	SE: Electricity	Electricity of	SE: Electricity		
	oxygen	of ozone	of other	oxygen	of ozone		
Ozonation (GWh/year)	production	production	installations	production	production	Total	
Electricity (SE)	-0,13	-1,21	3,97	8,76	12,37		24
Windpower (SE)	-0,13	-1,21	0,08	0,19	0,26		-1

Table G.10. Results in GWh per year from the hot spot analysis for the ozonation process for the main case and the sensitivity analysis.

Table G.11. Results in MJ per year from the hot spot analysis for the PAC process for the main case and the four sensitivity analyses.

											Hot	spot analysi	s detail PAC												
									Container	Heavy fuel															
									ship,	oil ship,											Truck-			Truck-	
									activated	activated											trailer,			trailer	
					Container			Truck-	carbon	carbon						Truck-					polymer			,	
				Production	ship,	Heavy fuel	Diesel,	trailer,	Shanghai	Shanghai				Electricity,	Diesel,	trailer,			Electricity,	Diesel,	for			sludg	
	Hard coal,	Natural gas,	Electricity,	(activation) hard coal	oil ship,	virgin PAC	virgin PAC	port to	port to	Electricity of			polymer	polymer	polymer	Acrylic acid,	Acrylonitrile,	polymer for	polymer for	sludge	Electricity,	Diesel,	e to	
	production of	production	production	of virgin	to	hard coal to	to Rya	to Rya	Gothenbur	Gothenburg	other	Acrylic acid,	Acrylonitrile,	for PAC	for PAC	for PAC	sludge	sludge	sludge	sludge	treatme	sludge	sludge to	incine Incineratio	n Heat,
PAC (MJ/year)	virgin PAC	of virgin PAC	of virgin PAC	PAC	Belgium	Belgium	WWTP	WWTP	g port	port	installations	PAC process	PAC process	process	process	process	treatment	treatment	treatment	treatment	nt	treatment	incineration	ration of sludge	incineration
Main case, β	156022803,60	26360084,87	25550649,76	i		12996179,1	9 1052688,77				4070134,29	3354039,87	6138484,87	276006,57	128087,10		4575864,77	8374640,08	376551,45	174747,41		1880402,20	281765,14	89324,	9 -2289979,21
Main case, y	156022803,60	26360084,87	561619,04	ł.		12996179,1	9 1052688,77				86777,29	3354039,87	6138484,87	5367,33	128087,10		4575864,77	8374640,08	7322,57	174747,41		40091,11	281765,14	89324,4	9 -2289979,21
Prod. in China, δ	156022803,60	31286908,38	30286112,37	r			6102,54			5194385,94	4070134,29	3354039,87	6138484,87	276006,57	128087,10		4575864,77	8374640,08	376551,45	174747,41		1880402,20	281765,14	89324,4	9 -2289979,21
Prod. in China, η	156022803,60	31286908,38	561619,04	1			6102,54			5194385,94	86777,29	3354039,87	6138484,87	5367,33	128087,10		4575864,77	8374640,08	7322,57	174747,41		40091,11	281765,14	89324,4	9 -2289979,21
Coconut shells, δ		31286908,38	30286112,37				6102,54			5194385,94	4070134,29	3354039,87	6138484,87	276006,57	128087,10		4575864,77	8374640,08	376551,45	174747,41		1880402,20	281765,14	89324,	9 -2289979,21

									Hot spot and	lysis detail GAC										
GAC (MJ/year)	Hard coal, production of virgin GAC	Container ship, hard coal to Belgium	Heavy fuel oil ship, hard coal to Belgium	Electricity, production of virgin GAC	Natural gas, production of virgin GAC	Production (activation) of virgin GAC	Diesel, virgin GAC to Rya WWTP	Truck- trailer, virgin GAC to Rya WWTP	Container ship, activated carbon Shanghai port to Gothenburg port	Heavy fuel oil ship, activated carbon Shanghai port to Gothenburg port	Electricity of other installations	Diesel, GAC to regeneration in Belgium	Truck-trailer, GAC to regeneration in Belgium	Diesel, regenerated GAC to Rya WWTP	Truck-trailer, regenerated GAC to Rya WWTP	Electricity, regeneration	Natural gas, regeneration	Regeneration	Heat generated during regeneration	Diesel, fuel for regeneration
Main case, α	25990349,78	3	2164909,46	4256238,37	4391074,87		175357,40)			12210402,86	3158610,90		1567324,56		12611677,12	14547923,86			
Main case, µ	25990349,78	3	2164909,46	53919,69	4391074,87		175357,40)			260331,86	3158610,90		1567324,56		159769,66	14547923,86			
Prod. in China, ε	25990349,78	3		5045073,80	5211787,36		1016,56	i		865283,29	12210402,86	3158610,90		1567324,56		12611678,97	14547923,86			
Prod. in China, π	25990349,78	8		93554,74	5211787,36		1016,56	;		865283,29	260331,86	3158610,90		1567324,56		159769,69	14547923,86			
Main case-credited heat, $\boldsymbol{\alpha}$	25990349,78	8	2164909,46	4256238,37	4391074,87		175357,40)			12210402,86	3158610,90		1567324,56		12611677,12	14547923,86		-1640373,04	
Reg. at Rya WWTP, diesel, α	25990349,78	3	2164871,76	4256238,37	4391074,87		175357,40)			12210402,86					7145445,66				17448189,17
Reg. at Rya WWTP, diesel- credited heat, α	25990349,78	3	2164871,76	4256238,37	4391074,87		175357,40)			12210402,86					7145445,66			-1640371,18	17448189,17
Reg. at Rya WWTP, natural gas-credited heat, α Coconut shells, ε	25990349,78	8	2164871,76	4256238,37 5045073,80	4391074,87 5211787,36		175357,40 1016,56)		865283,29	12210402,86 12210402,86	3158610,90		227148,49		7145445,66	14686459,06 14547923,86		-1640371,18	
30000 bed volumes, α	17326898,70	0	1443272,87	2837491,94	2927383,09		116904,91	L			8140268,57	2105740,65		1044882,99		8407785,36	9698615,90			
10000 bed volumes, α	51980727,26	5	4329821,22	8512481,85	8782154,52		350714,73	8			24420805,20	6317221,87		3134649,05		25223357,01	29095847,71			

Table G.12. Results in MJ per year from the hot spot analysis for the GAC process for the main case and the ten sensitivity analyses.

Energy use

Table G.13. Results in GWh per year from the hot spot analysis for the ozonation process for the main case and the sensitivity analysis. The values present the total energy use and thus the sum of the total primary renewable energy resources in Table E.7 and total primary non-renewable energy resources in Table E.10.

	Hot sp	ot analysis detai	il ozonation			
	Credited heat	Credited heat	SE: Electricity of	SE: Electricity of	SE: Electricity	
	of oxygen	of ozone	other	oxygen	of ozone	
Ozonation (GWh/year)	production	production	installations	production	production	Total
Electricity (SE)	-1,76	-16,96	7,41	14,60	6,14	28
Windpower (SE)	-1,76	-16,96	8,88	17,83	10,70	37

Table G.14. Results in MJ per year from the hot spot analysis for the PAC process for the main case and the four sensitivity analyses. The values present the total energy use and thus the sum of the total primary renewable energy resources in Table E.8 and total primary non-renewable energy resources in Table E.11.

											H	lot spot anal	ysis detail PAC													
									Container	Heavy fuel																
									ship,	oil ship,																
								Truck-	activated	activated														Truck-		
					Contain			trailer,	carbon	carbon						Truck-					Truck-			trailer,		
				Production	er ship,	Heavy fuel	Diesel,	virgin	Shanghai	Shanghai				Electricity,	Diesel,	trailer,	Acrylic		Electricity,	Diesel,	trailer,			sludge		
	Hard coal,	Natural gas,	Electricity,	(activation) hard	oil ship,	virgin PAC	PAC to	port to	port to	Electricity of	Acrylic		polymer	polymer	polymer	acid,	Acrylonitrile,	polymer for	polymer for	polymer	Electricity,	Diesel,	to		
	production of	production of	production of	of virgin	coal to	hard coal	to Rya	Rya	Gothenburg	Gothenburg	other	acid, PAC	Acrylonitrile,	for PAC	for PAC	for PAC	sludge	sludge	sludge	sludge	for sludge	sludge	sludge to	incinera	Incineration	Heat,
PAC (MJ/year)	virgin PAC	virgin PAC	virgin PAC	PAC	Belgium	to Belgium	WWTP	WWTP	port	port	installations	process	PAC process	process	process	process	treatment	treatment	treatment	treatment	treatment	treatment	incineration	tion	of sludge	incineration
Main case, β	156787742,68	26416269,83	33039003,65	5		13038791,35	5 1111803,1	5			7601531,64	4 3558039,03	6159848,62	476145,65	135279,91		4854177,69	8403786,32	649598,05	184560,46		3511907,91	297587,84		122359,67	-32108401,52
Main case, y	156787742,68	26416269,83	32682795,27	7		13038791,35	5 1111803,1	5			9103938,2	3558039,03	6159848,62	403326,17	135279,91		4854177,69	8403786,32	550251,57	184560,46		4206019,82	297587,84		122359,67	-32108401,52
Prod. in China, δ	156787742,68	31305458,70	36479962,79	9			6445,24	4		5211417,41	7601531,64	4 3558039,03	6159848,62	476145,65	135279,91		4854177,69	8403786,32	649598,05	184560,46		3511907,91	297587,84		122359,67	-32108401,52
Prod. in China, η	156787742,68	31305458,70	32682795,27	7			6445,24	4		5211417,41	9103938,2	3558039,03	6159848,62	403326,17	135279,91		4854177,69	8403786,32	550251,57	184560,46		4206019,82	297587,84		122359,67	-32108401,52
Coconut shells, δ	0,00	31305458,70	36479962,79)			6445,24	4		5211417,41	7601531,64	4 3558039,03	6159848,62	476145,65	135279,91		4854177,69	8403786,32	649598,05	184560,46		3511907,91	297587,84		122359,67	-32108401,52

Table G.15. Results in MJ per year from the hot spot analysis for the GAC process for the main case and the ten sensitivity analyses. The values present the total energy use and thus the sum of the total primary renewable energy resources in Table E.9 and total primary non-renewable energy resources in Table E.12.

									Hot spot ar	alysis detail GAC										
								Truck- trailer,	Container ship, activated											
	Hard coal, production of	Container ship, hard coal to	, Heavy fuel oil ship, hard coal to	Electricity, production of	Natural gas, production of	Production (activation) of virgin	Diesel, virgin GAC to Rya	virgin GAC to Rya	carbon Shanghai port to Gothenburg	Heavy fuel oil ship, activated carbon Shanghai port to	Electricity of other	Diesel, GAC to regeneration	Truck-trailer, GAC to regeneration	Diesel, regenerated GAC to Rya	Truck-trailer, regenerated GAC to Rya	Electricity,	Natural gas,		Heat generated during	Diesel, fuel for
GAC (MJ/year)	virgin GAC	Belgium	Belgium	virgin GAC	virgin GAC	GAC	WWTP	WWTP	port	Gothenburg port	installations	in Belgium	in Belgium	WWTP	WWTP	regeneration	regeneration	Regeneration	regeneration	regeneration
Main case, α	26117773,68	8	2172007,81	1 5503651,63	3 4400434,18		185204,70				22804594,91	1 3335984,6	3 0,00	1655338,63	3	16307892,38	14578931,90			
Main case, µ	26117773,68	8	2172007,81	1 5397069,48	8 4400434,18		185204,70				27311814,70	3335984,6	3 0,00	1655338,63	3	15992078,3	14578931,90			
Prod. in China, ε	26117773,68	8	0,00	6076848,10	0 5214877,48		1073,65			868120,40	22804594,91	1 3335984,6	3 0,00	1655338,63	3	16307894,7	14578931,90			
Prod. in China, π	26117773,68	8	0,00	5444314,28	8 5214877,48		1073,65			868120,40	27311814,70	3335984,6	3 0,00	1655338,63	3	15992080,72	2 14578931,90			
Main case-credited heat, α	26117773,68	8	2172007,81	1 5503651,63	3 4400434,18		185204,70				22804594,91	1 3335984,6	3 0,00	1655338,63	3	16307892,3	14578931,90		-23000102,31	
Reg. at Rya WWTP, diesel, α	26117773,68	8	2171969,99	5503651,63	3 4400434,18		185204,70				22804594,91	1				13345095,62	2			18428002,89
Reg. at Rya WWTP, diesel- credited heat, α	26117773,68	8	2171969,99	5503651,63	3 4400434,18		185204,70				22804594,91	1				13345095,62	2		-23000076,24	18428002,89
Reg. at Rya WWTP, natural gas-credited heat, α	26117773,68	8	2171969,99	5503651,63	3 4400434,18		185204,70				22804594,91	1				13345095,62	14694171,93	l	-23000076,24	
Coconut shells, ε	0,00)	0,00	6076848,10	0 5214877,48		1073,65			868120,40	22804594,91	1 3335984,6	3 0,00	239904,15	5	16307894,7	14578931,90			
30000 bed volumes, α	17411847,96	5	1448005,11	1 3669100,69	9 2933622,63		123469,78				15203063,28	8 2223989,8	0,00	1103559,04	1	10871929,0	9719287,93			
10000 bed volumes, α	52235575,20)	4344017,94	4 11007309,85	5 8800873,17		370409,33				45609188,85	5 6671969,3	3 0,00	3310677,18	3	32615788,34	29157863,80)		

Eutrophication Potential

	Hot spo	ot analysis deta	il ozonation												
	Credited heat of	Credited heat	SE: Electricity	SE: Electricity	SE: Electricity										
Ozonation (t PO4-	oxygen	of ozone	of other	of oxygen	of ozone										
eq/year)	production	production	installations	production	production	Total									
Electricity (SE)	-0,08	-0,80	0,10	0,14	-0,49	-0,3									
Windpower (SE)	-0,08	-0,80	0,01	-0,07	-0,78	-0,8									

Table G.16. Results in tonnes PO₄-eq per year from the hot spot analysis for the ozonation process for the main case and the sensitivity analysis.

Table G.17. Results in tonnes PO₄-eq per year from the hot spot analysis for the PAC process for the main case and the four sensitivity analyses.

												Hot spo	t analysis deta	II PAC												
									Container	Heavy fuel																
									ship,	oil ship,																
									activated	activated											Truck-					
		Natural						Truck-	carbon	carbon											trailer,					
	Hard coal,	gas,	Electricity,	Production	Container	Heavy fuel	Diesel,	trailer,	Shanghai	Shanghai				Electricity,	Diesel,	Truck-	Acrylic		Electricity,	Diesel,	polymer			Truck-		
	production	production	production	(activation)	ship, hard	oil ship,	virgin PAC	virgin PAC	port to	port to	Electricity of	Acrylic		polymer for	polymer	trailer,	acid,	Acrylonitrile,	polymer	polymer	for	Electricity,	Diesel,	trailer,		
PAC /t PO4-	ofuiraia																1 A A A A A A A A A A A A A A A A A A A	1 A A A A A A A A A A A A A A A A A A A					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			and the second se
TAC (LI 04	of virgin	of virgin	of virgin	of virgin	coal to	hard coal	то куа	то куа	Gothenburg	Gothenburg	other	acid, PAC	Acrylonitrile,	PAC	for PAC	polymer for	sludge	sludge	for sludge	for sludge	sludge	sludge	sludge to	sludge to	Incineration I	Heat,
eq/year)	PAC	PAC	PAC	PAC	coal to Belgium	to Belgium	to Rya WWTP	to Rya WWTP	port	port	otner installations	acid, PAC process	Acrylonitrile, PAC process	process	for PAC process	PAC process	treatment	sludge treatment	for sludge treatment	treatment	treatment	treatment	incineration	sludge to incineration	of sludge i	ncineration
eq/year) Main case, β	PAC 474,29	PAC 41,12	PAC 172,93	01 Virgin PAC 2966,72	COBI to Belgium 3471,84	to Belgium 37,71	to kya WWTP 6,74	to Rya WWTP 37,81	port	port	installations 28,38	acid, PAC process 34,03	Acrylonitrile, PAC process 107,76	process 4,30	for PAC process 0,82	PAC process 4,60	treatment 46,43	treatment 147,01	treatment 5,87	treatment 1,12	treatment 6,28	treatment 13,11	incineration 1,81	incineration 10,12	of sludge i 103,54	ncineration -422,59
eq/year) Main case, β Main case, γ	PAC 474,29 474,29	PAC 41,12 41,12	PAC 172,93 14,10	PAC 2966,72 2966,72	Coal to Belgium 3471,84 3471,84	to Belgium 37,71 37,71	to Rya WWTP 6,74 6,74	to kya WWTP 37,81 37,81	port	port	other installations 28,38 2,18	acid, PAC process 34,03 34,03	Acrylonitrile, PAC process 107,76 107,76	PAC process 4,30 0,13	for PAC process 0,82 0,82	PAC process 4,60 4,60	treatment 46,43 46,43	treatment 147,01 147,01	treatment 5,87 0,18	treatment 1,12 1,12	treatment 6,28 6,28	treatment 13,11 1,01	incineration 1,81 1,81	incineration 10,12 10,12	of sludge i 103,54 103,54	ncineration -422,59 -422,59
eq/year) Main case, β Main case, γ Prod. in China, δ	PAC 474,29 474,29 474,29	01 Virgin PAC 41,12 41,12 118,85	07 Virgin PAC 172,93 14,10 810,89	PAC 2966,72 2966,72 2966,72	coai to Belgium 3471,84 3471,84	to Belgium 37,71 37,71	to Rya WWTP 6,74 6,74 0,04	to Rya WWTP 37,81 37,81 0,22	Gothenburg port 1387,64	port 15,07	other installations 28,38 2,18 28,38	acid, PAC process 34,03 34,03 34,03	Acrylonitrile, PAC process 107,76 107,76 107,76	PAC process 4,30 0,13 4,30	for PAC process 0,82 0,82 0,82	PAC process 4,60 4,60 4,60	treatment 46,43 46,43 46,43	treatment 147,01 147,01 147,01	treatment 5,87 0,18 5,87	treatment 1,12 1,12 1,12	treatment 6,28 6,28 6,28	treatment 13,11 1,01 13,11	incineration 1,81 1,81 1,81	sludge to incineration 10,12 10,12 10,12	of sludge i 103,54 103,54 103,54	-eat, ncineration -422,59 -422,59 -422,59
eq/year) Main case, β Main case, γ Prod. in China, δ Prod. in China, η	PAC 474,29 474,29 474,29 474,29	01 Virgin PAC 41,12 41,12 118,85 118,85	01 Virgin PAC 172,93 14,10 810,89 14,10	PAC 2966,72 2966,72 2966,72 2966,72	coal to Belgium 3471,84 3471,84	to Belgium 37,71 37,71	to Rya WWTP 6,74 6,74 0,04 0,04	to Rya WWTP 37,81 37,81 0,22 0,22	Gothenburg port 1387,64 1387,64	Gothenburg port 15,07 15,07	other installations 28,38 2,18 28,38 2,18 2,18	acid, PAC process 34,03 34,03 34,03 34,03	Acrylonitrile, PAC process 107,76 107,76 107,76 107,76	PAC process 4,30 0,13 4,30 0,13	for PAC process 0,82 0,82 0,82 0,82	PAC process 4,60 4,60 4,60 4,60 4,60	treatment 46,43 46,43 46,43 46,43 46,43	treatment 147,01 147,01 147,01 147,01 147,01	treatment 5,87 0,18 5,87 0,18	treatment 1,12 1,12 1,12 1,12 1,12	treatment 6,28 6,28 6,28 6,28 6,28	treatment 13,11 1,01 13,11 1,01	incineration 1,81 1,81 1,81 1,81 1,81	sludge to incineration 10,12 10,12 10,12 10,12	of sludge i 103,54 103,54 103,54 103,54 103,54	-422,59 -422,59 -422,59 -422,59 -422,59 -422,59

Table G.18. Results in kg	PO4-eq per year from the hot sp	oot analysis for the GAC	C process for the main case and the ter	n sensitivity analyses.

									Hot spo	analysis detail	GAC	1								
CAC I/rs POA os (voos)	Hard coal, production of	Container ship, hard coal to	Heavy fuel oil ship, hard coa	Electricity,	Natural gas, production	Production (activation) of virgin) Diesel, virgin GAC to Rya	n Truck-trailer, virgin GAC to	Container ship, activated carbon Shanghai port to Gothenburg	Heavy fuel oil ship, activated carbon Shanghai port to Gothenburg	Electricity of other	Diesel, GAC to regeneration in	Truck-trailer, GAC to regeneration	Diesel, regenerated GAC to Rya	Truck-trailer, I regenerated GAC to Rya	Electricity,	Natural gas,	Dependention	Heat generated during	Diesel, fuel for
Main case a	79.0	1 578.9	4 6.2	8 28.8	1 6.85	GAC 494.2	1 11	2 63	0	port	85.1	5 20.2	4 113.4	4 10.0	4 56.2	102 85 3	6 22.7	0 271.6	1 regeneration	regeneration
Main case u	79.0	1 578.3	4 62	8 13	4 6.85	494.2	0 11	2 6,3	0		6.5	3 20,2	4 113.4	4 10.0	4 56.2	9 39	7 22.7	0 271.6	1	
Prod. in China, ε	79,0	1		135,0	8 19,80	0 494,2	0 0,0	1 0,0	4 231,1	2,5	1 85,1	5 20,2	4 113,4	4 10,0	4 56,2	29 85,3	6 22,7	0 271,6	4	
Prod. in China, π	79,0	1		2,3	5 19,80	494,2	0 0,0	1 0,0	4 231,1	5 2,5	1 6,5	3 20,2	4 113,4	4 10,0	4 56,2	9 3,9	7 22,7	0 271,6	4	
Main case-credited heat, α	79,0	1 578,3	4 6,2	8 28,8	1 6,85	i 494,2	0 1,1	2 6,3	0		85,1	5 20,2	4 113,4	4 10,0	4 56,2	19 85,3	6 22,7	0 271,6	4 -302,7	1
Reg. at Rya WWTP, diesel, α	79,0	1 578,3	3 6,2	8 28,8	1 6,85	i 493,7	1 1,1	2 6,3	0		85,1	5				49,8	3	271,6	4	111,7
Reg. at Rya WWTP, diesel-credited heat, α	79,0	1 578,3	3 6,2	8 28,8	1 6,85	5 493,7	1 1,1	2 6,3	0		85,1	5				49,8	3	271,6	4 -302,7	1 111,7
Reg. at Rya WWTP, natural gas-credited heat, α	79,0	1 578.3	3 6,2	8 28.8	1 6,85	6 493,7	1 1.1	2 6.3	0		85,1	5				49.8	3 8,1	5 271,6	4 -302,7	1
Coconut shells, c				135.0	8 19.80)	0.0	1 0.0	4 231.1	2.5	1 85.1	5 20.2	4 113.4	4 1.4	6 8.1	.6 85.3	6 22.7	0		
30000 bed volumes, α	52,6	7 385,5	6 4,1	.9 19,2	0 4,57	329,4	7 0,7	5 4,2	0		56,7	7 13,4	9 75,6	2 6,6	9 37,5	i3 56,9	1 15,1	3 181,1	0	
10000 bed volumes, a	158,0	1 1156,6	8 12,5	6 57,6	1 13,70	988,4	0 2,2	5 12,6	0		170,3	1 40,4	7 226,8	7 20,0	8 112,5	i8 170,7	2 45,3	9 543,2	9	

Acidification Potential

	Hot spot	analysis deta	ail ozonation												
		Credited													
	Credited heat	heat of	SE: Electricity	SE: Electricity of	SE: Electricity of										
	of oxygen	ozone	of other	oxygen	ozone										
Ozonation (t SO2-eq/year)	production	production	installations	production	production	Total									
Electricity (SE)	-0,37	-3,52	0,53	0,81	-1,86	-0	,5								
Windpower (SE)	-0,37	-3,52	0,07	-0,22	-3,31	-3	,5								

Table G.19. Results in tonnes SO₄-eq per year from the hot spot analysis for the ozonation process for the main case and the sensitivity analysis.

Table G.20. Results in kg SO₂-eq per year from the hot spot analysis for the PAC process for the main case and the four sensitivity analyses.

												Hot spo	t analysis de	tail PAC												
									Container ship, activated	Heavy fuel oil ship, activated																
		Natural			Container	Heavy		Truck-	carbon	carbon						Truck-					Truck-					
	Hard coal,	gas,	Electricity,	Production	ship,	fuel oil	Diesel,	trailer,	Shanghai	Shanghai				Electricity,	Diesel,	trailer,	Acrylic		Electricity,	Diesel,	trailer,					
	production	production	production	n (activation)	hard coal	ship, hard	virgin PAC	virgin PAC	port to	port to	Electricity of 🛛	Acrylic		polymer	polymer	polymer	acid,	Acrylonitrile,	polymer for	polymer for	polymer for	Electricity,	Diesel,	Truck-trailer,		
PAC (kg SO2-	of virgin	of virgin	of virgin	of virgin	to	coal to	to Rya	to Rya	Gothenburg	Gothenburg	other a	acid, PAC	Acrylonitrile,	for PAC	for PAC	for PAC	sludge	sludge	sludge	sludge	sludge	sludge	sludge to	sludge to	Incineration	Heat,
eq/year)	PAC	PAC	PAC	PAC	Belgium	Belgium	WWTP	WWTP	port	port	installations	process	PAC process	process	process	process	treatment	treatment	treatment	treatment	treatment	treatment	incineration	incineration	ofsludge	incineration
Main case, ß	2750,33	430,7	924,3	5 81827,04	4 30991,44	456,52	41,67	139,58			151,53	193,66	980,48	34,94	5,07	16,98	264,21	1337,66	47,67	6,92	23,17	70,01	11,15	37,36	27,02	-1851,00
Main case, y	2750,33	430,7	123,4	7 81827,04	4 30991,44	456,52	41,67	139,58			19,04	193,66	980,48	1,18	5,07	16,98	264,21	1337,66	1,61	6,92	23,17	8,80	11,15	37,36	27,02	-1851,00
Prod. in China, δ	2750,33	3 746,19	8514,3	3 81827,04	4		0,24	0,81	12386,83	182,46	151,53	193,66	980,48	34,94	5,07	16,98	264,21	1337,66	47,67	6,92	23,17	70,01	11,15	37,36	27,02	-1851,00
Prod. in China, η	2750,33	3 746,19	123,4	7 81827,04	4		0,24	0,81	12386,83	182,46	19,04	193,66	980,48	1,18	5,07	16,98	264,21	1337,66	1,61	6,92	23,17	8,80	11,15	37,36	27,02	-1851,00
Coconut shells, δ		746,19	8514,3	3			0,24	0,81	12386,83	182,46	151,53	193,66	980,48	34,94	5,07	16,98	264,21	1337,66	47,67	6,92	23,17	70,01	11,15	37,36	27,02	-1851,00

Table G.21. Results in kg SO ₂ -eq per year from the hot spot	analysis for the GAC process for the main	case and the ten sensitivity analyses.
--	---	--

									Hot spot a	analysis detail	GAC									
								Truck-	Container ship, activated carbon	Heavy fuel oil ship, activated carbon										
		Container				Production	Diesel,	trailer,	Shanghai	Shanghai			Truck-trailer,	Diesel,	Truck-trailer	<mark>,</mark>			Heat	
	Hard coal,	ship, hard	Heavy fuel oil	Electricity,	Natural gas,	(activation)	virgin GA0	virgin GAC	port to	port to	Electricity of	Diesel, GAC to	GAC to	regenerated	regenerated				generated	
	production of	f coal to	ship, hard coa	I production of	production of	of virgin	to Rya	to Rya	Gothenburg	Gothenburg	other	regeneration	regeneration	GAC to Rya	GAC to Rya	Electricity,	Natural gas,		during	Diesel, fuel for
GAC (kg SO2-eq/year)	virgin GAC	Belgium	to Belgium	virgin GAC	virgin GAC	GAC	WWTP	WWTP	port	port	installations	in Belgium	in Belgium	WWTP	WWTP	regeneration	regeneration	Regeneration	regeneration	regeneration
Main case, α	458,1	5 5162,5	57 76,0	5 153,98	3 71,76	13630,80	0 6,9	4 23,2	!5		454,60	125,04	418,8	0 62,0	4 207,8	1 456,2	6 237,74	4 7533,57	7	
Main case, µ	458,1	5 5162,5	57 76,0	5 11,58	3 71,76	13630,80	0 6,9	4 23,2	!5		57,12	125,04	418,80	62,0	4 207,8	1 34,3	0 237,74	4 7533,57	7	
Prod. in China, ε	458,1	5		1418,3	2 124,30	13630,80	D 0,0	4 0,1	3 2063,40	30,39	454,60	125,04	4 418,80	62,0	4 207,8	1 456,2	6 237,74	4 7533,57	,	
Prod. in China, π	458,1	5		20,5	7 124,30	13630,80	0,0	4 0,1	3 2063,40	30,39	57,12	125,04	418,8	62,0	4 207,8	1 34,3	0 237,74	4 7533,51	7	
Main case-credited heat, $\boldsymbol{\alpha}$	458,1	5 5162,5	57 76,0	5 153,98	3 71,76	13630,80	0 6,9	4 23,2	15		454,60	125,04	4 418,8	62,0	4 207,8	1 456,2	6 237,74	4 7533,51	-1325,9	2
Reg. at Rya WWTP, diesel, α	458,1	5 5162,4	18 76,0	5 153,98	3 71,76	13629,21	1 6,9	4 23,2	15		454,60)				266,0	3	7533,51	,	690,71
Reg. at Rya WWTP, diesel- credited heat, α	458,1	5 5162,4	18 76,0	5 153,94	3 71,76	13629,2	1 6,9	4 23,2	15		454,60					266,0	3	7533,5	7 -1325,9	2 690,71
Reg. at Rya WWTP, natural gas-credited heat, α	458,1	5 5162,4	18 76,01	5 153,98	3 71,76	13629,21	1 6,9	4 23,2	!5		454,60)				266,0	3 100,90	0 7533,51	-1325,9	2
Coconut shells, ε				1418,32	124,30		0,0	4 0,1	3 2063,40	30,39	454,60	125,04	418,8	8,9	9 30,1	2 456,2	6 237,74	1		
30000 bed volumes, α	305,4	3 3441,7	71 50,7	0 102,65	6 47,84	9087,20	0 4,6	3 15,5	i0		303,07	83,36	5 279,20	41,3	6 138,5	4 304,1	7 158,49	9 5022,38	3	
10000 bed volumes, α	916,3	0 10325,1	14 152,0	9 307,96	143,52	27261,61	1 13,8	8 46,5	0		909,21	250,08	8 837,6	124,0	9 415,6	2 912,5	2 475,48	8 15067,14		
DEPARTMENT OF TECHNOLOGY MANAGEMENT AND ECONOMICS DIVISION OF ENVIRONMENTAL SYSTEMS ANALYSIS CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2022 www.chalmers.se

