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Sammanfattning

I denna uppsats används tv̊a metoder för att lösa problemet optimal konsumtion. Problemet
är välkänt inom finansiell matematik och är i sin ursprungliga form löst av Robert Merton.

Denna rapport betraktar en utvidgning med ett slumpmässigt inkomstflöde. Problemet
löses approximativt med hjälp av tv̊a numeriska metoder, den ena använder Markovkedjor
medan den andra ansätter en oändlig serieutveckling. Metoden med Markovkedjor är en

generell metod utvecklad för stokastisk kontrollteori medan metoden som ansätter en
oändlig serieutveckling är en metod som bara g̊ar att använda för att lösa vissa specifika

problem. I uppsatsen implementeras och jämförs de tv̊a metoderna med hjälp av MATLAB.
Metoderna tycks komplettera varandra väl men resultaten är n̊agot ofullständiga.

Abstract

In this thesis two methods are used to solve the optimal consumption problem. The optimal
consumption problem is a well known problem in mathematical finance which in its original
form was solved by Robert Merton. This report considers an extension with a presence of a
random income flow. The problem is approximately solved using two numerical methods,
the approximating Markov chain approach and the infinite series expansion. The Markov
chain approach is a general method developed for stochastic control theory whereas the
infinite series expansion method only can be applied to a specific set of problems. In the

thesis the methods are implemented and compared using MATLAB. The methods seem to
complement each other well however the results are somewhat inconclusive.



Preface

This thesis is divided into two subproblems and two groups have been working separately
since the methods used differ. Angelica Andersson and Jakob Karlsson have been attempting
an analytical solution using infinite series expansion and Johanna Svensson and Olle Elias
have been using a Markov chain method. The thesis is written in English since the supervisor
is not Swedish. The problem is solved numerically using MATLAB and all members of the
group have contributed to the implementation. The group as a whole have put together the
report in terms of solving the problem and analyzing the results.

The introductory chapter is mainly written by Johanna and the basic theory has been
described by Angelica and Johanna. Johanna also described the vital assumptions in the
economic setting whereas Olle has described the processes and the Hamilton-Jacobi-Bellman
equation. The reduction of the problem and the optimal controls has Jakob provided. In
the part where the infinite series expansion is described Angelica introduces the problem and
described the algorithm while Jakob supplies the derivation of the solution. In the section
about the Markov chain approach Johanna describes the Markov decision process and Olle
has written the remaining parts. Angelica is responsible for the results about the infinite
series expansion and Johanna has written the introduction and the part about the Markov
chain method. In the final chapter have all four made equal contributions.

During the process a journal has been kept with details regarding the work. It also
contains specific information about what has been done by whom throughout the project.
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Chapter 1

Introduction

1.1 The optimal consumption problem

The optimal consumption problem describes the optimal way an investor can use his money
if he only has three choices; it is possible to save the money in a risk free bond, it is also
possible to invest it on the risky stock market and spend the money on consumption. Robert
Merton studied the case where the investor had no income flow and managed to solve it
analytically [1].

To emulate the investor’s decision, a way to measure the investor’s preference and risk
attitude will be needed. A basic concept in economics is utility theory in which there are
some assumptions made about the investor’s behavior. First, we assume the investor to be
risk averse, which simply states that the investor will reject investments that are fair game
or worse. We also assume non-satiation, that the investor always prefers more to less wealth.
These assumption describe some characteristics of the utility function. Since the investor is
risk averse, the utility function will be concave, implying that the marginal utility of wealth
decreases as the wealth increases. The assumptions of non-satiation implies that the utility
function will always be increasing. In this report we will use the utility function U(c) = log(c)
where c denotes the consumption. Since the value of money is not constant over time, we
need a discount factor to make the choice of time reasonable. This is set to e−βt where β
represents the continuous discount factor.

The main concepts to formulate this problem mathematically has now been presented.
Our purpose is to maximize the investor’s expected utility during his lifetime, where an
infinite time horizon is assumed. Hence we get the following objective function, which is
referred as the value function,

max

{
E

[∫ ∞
0

e−βtU(ct)dt

]}
. (1.1)

The problem above is a version of the original Merton problem, which has a closed form
solution. In this thesis the problem is generalized by assuming that the investor’s income is
unpredictable which makes it impossible for the investor to borrow against future income.
Hence we get an incomplete market where the investor’s wealth must stay positive at all
times. When adding random income flow to the problem there is no closed form solution
and therefore we will instead use two different numerical methods to find an approximate
solution.

The first of the two methods used in this report is the infinite series expansion which was
introduced by Claudio Tebaldi and Eduardo S. Schwartz in the 2000’s [2]. This method is
not very general, but can be used in our specific case. For the logarithmic utility function
there is not much literature or work presented using infinite series expansion.

The second method is more general and was developed for stochastic control problem in
the early 1990s by Harold J. Kushner and Paul Dupuis [3]. This method uses Markov chains
to approximate the optimal policies and it is most commonly used when solving this type
of problems. Analysis of this numerical method has been made by Munk [4] for a different
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utility function. In this thesis we intend to follow his work but with the logarithmic utility
function.

The purpose of this thesis is to solve the generalized optimal consumption problem using
the two numerical methods. We will also compare the methods and see how they can com-
plement each other. We will investigate how the investor should behave under variation of
economic parameters and deduce the optimal policy.

In this thesis we will only consider the case where we have a logarithmic utility function
and an infinite time horizon. Unfortunately a lot of the underlying theory of the developed
methods will be out of scope of this thesis and we will focus more on the derivation of the
formulae and implementation rather than proving properties of the methods.
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Chapter 2

Stochastic processes

This thesis relies heavily on the concept of stochastic processes. A stochastic process is the
mathematical model of an empirical process whose development is governed by probability
laws. A stochastic process according to [5] is defined as:

Definition 1 Given an index set I, a stochastic process, indexed by I is a collection of
random variables {Xλ : λ ∈ I} on a probability space (Ω,F ,P ) taking values in a set S. The
set S is called the state space of the process.

Two important properties of random processes is mean square continuity and mean square
differentiation which are defined below using Hwei’s definition in [6].

Definition 2 A random process is said to be mean square (m.s.) continuous if

lim
ε→0

E
[
(X(t+ ε)−X(t))

2
]

= 0 (2.1)

Then the m.s derivative X ′(t) can be defined as

Definition 3

l.i.m.ε→0
X(t+ ε)−X(t)

ε
= X ′(t) (2.2)

where l.i.m. denotes limit in the mean (square), provided that

lim
ε→0

E

[(
X(t+ ε)−X(t)

ε
−X ′(t)

)2
]

= 0 (2.3)

2.1 Brownian motion

The most important random process for our work will be the Brownian motion, also called
the Wiener process. The name Brownian motion is due to its origin as a model for the erratic
movement of particles suspended in a fluid.

In order to clearly state what a Brownian motion is the concept of stationary independent
increments are defined:

Definition 4 A random process X(t), t ≥ 0 is said to have independent increments if when-
ever 0 < t1 < t2 < ... < tn,

X(0),X(t1)−X(0),X(t2)−X(t1),...,X(tn)−X(tn−1) (2.4)

are independent. If X(t), t ≥ 0 has independent increments and X(t) − X(s) has the same
distribution as X(t+ h)−X(s+ h) for all s,t,h ≥ 0, s < t, then the process X(t) is said to
have stationary independent increments.

The Brownian process is characterized by the following properties [6]:
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1. X(t) has stationary independent increments

2. The increment X(t)−X(s) t > s is normally distributed

3. E[X(t)] = 0

4. X(0) = 0

The Brownian motion is the most vital stochastic process since it is utilized to model the
behavior of stock prices.

2.2 Markov chain

The discrete-time, discrete-space Markov process is referred to as the Markov chain. The
property of Markov processes is that the probability of going one step forward in the process
only depends on the last step taken, all other transitions made before are irrelevant. The
formal definition is stated below.

Definition 5 A stochastic process {xn,n = 0,1,...} with a discrete state space I is called a
discrete time Markov chain if

P {xn+1 = in+1|x0 = i0,...,xn = in} = P {xn+1 = in+1|xn = in} (2.5)

for i0,...,in+1 ∈ I.

The transition probability of moving from state i to state j can be written as P {xn+1 = j|xn = i} =
pij where i,j ∈ I. These probabilities must satisfy following conditions:

1. pij ≥ 0 for i,j ∈ I

2.
∑
j∈I pij = 1 for i ∈ I.

To use Markov chains for modeling purposes, the first step is to choose state variables which
make the Markov property in (2.5) hold. The second step is to determine the one-step
transition probabilities.

A natural way of expanding the concept of Markov chains is to introduce Markov decision
processes (MDP). The MDP extends the Markov chain in two ways. The process allows
actions, also called controls, in each step and add rewards or costs for the chosen action. The
actions are chosen from a set of allowed actions, or admissible controls.

The use of actions demand a way of controlling the actions in each step, and hence we
need to introduce a policy, or rule, which describes what action to be taken. A fundamental
question in Markov decision theory is whether there exists an optimal policy and how to find
it. The policies are divided into classes, one of the most important classes is the stationary
policies. These policies suggests the same action every time the Markov chain visits a specific
state.
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Chapter 3

The Optimal Consumption
Problem

3.1 The economic setting

The most critical assumptions are stated already in Mertons article [1] from 1971. Two
important assumption concern the behavior of asset prices and also the investor’s attitude
to risk. There are also some other assumptions made about the market, which should be
perfect, with continuous trading possibilities and no transaction costs.

Definition 6 If the log-price process lnS(t), t ≥ is governed by a Brownian motion with a
drift, S(t) = S(0)eαt+σW (t), t ≥ 0, where α > 0 and σ ≥ 0, then the stock price process
S = (S(t))t≥0 is called a geometric Brownian motion.

Assumption 1 The behavior of asset prices in a perfect market can be described by a random
walk of return, or in the continuous case, by a geometric Brownian motion.

Assumption 1 might be the most important one and is often used in financial models. The
accuracy of the assumption was questioned already when Merton presented his work [1] but
it is still used in a lot of financial models. Several alternative assumptions that could be used
instead have been presented throughout history of financial mathematics but none of them
seem to improve assumption 1.

Definition 7 The utility function U(c) : S −→ R, S ⊆ R measures the investors risk attitude
and preferences. The function has the following properties: U(c) ∈ C 2 (R+) with U ′(c) > 0
(non-satiation) and U ′′(c) < 0 (risk aversion).

In the model described in this report, it is assumed that the investor has a logarithmic utility
function, U(c) = log(c), which fulfill the conditions in definition 7.

The model used in this thesis is an equilibrium model, in the sense that it assumes the
market to be perfect. The perfect market has no transaction costs, is accessible with sufficient
trading possibilities, has perfect competition and perfect information. This assumption makes
the model more theoretical, since the real economy is not always in equilibrium in the short
run.

The last important assumption made, is that the investor has an initial wealth endowment.
This assumption is important and can be seen as a part of the problem formulation, since
the problem to be solved is to allocate this wealth and the future unknown income between
consumption, risky investment in the stock market and a low risk bond.

Before the problem can be formulated along with the associated Hamilton-Jacobi-Bellman
equation the economic setting of this problem must be described. The setting describes a
risk-free bond B(t), the stock price S(t), an illiquid asset H(t) and a wealth process L(t).
The setting used is described in detail in [7].
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• The risk-free bond with a constant positive interest rate r is described as:

dB(t) = rB(t)dt, t > 0.

• The stock price follows the geometrical Wiener process which in differential form is
written as:

dS(t)

S(t)
= αdt+ σdW1(t), t > 0.

where α (> r) is the continuously compounded rate of return and the standard deviation
σ also referred as the volatility.

• The illiquid asset which is correlated with the stock price with correlation coefficient ρ:

dH(t)

H(t)
= (µ− δ)dt+ η

(
ρdW1(t) +

√
1− ρ2dW2(t)

)
, H(0) = h, t > 0. (3.1)

where µ is the expected rate of return on the risky illiquid asset, δ is the rate of dividend
paid by the illiquid asset and η is the continuous standard deviation of the rate of return.

• The wealth process is fed by the holdings in bond, stock and dividends from the non-
traded asset and is defined as:

dL(t) = (rL(t) + δH(t) + π(t)(α− r)− c(t)) dt+ π(t)σdW1(t), L(0) = l, t > 0. (3.2)

Note that the processes are written in differential form, this is needed since no exact solution
can be found (for most cases) and also because the approximating Markov chain method
relies on the processes being in this form.

3.2 The Hamilton-Jacobi-Bellman equation

In this section the original problem stated in section 1.1 will be reformulated and the
Hamilton-Jacobi-Bellman equation, which from now on will be called the HJB equation,
will be introduced.

By recalling (1.1) and writing it more carefully using the economic setting described in
the previous section this yields the following function,

V (l,h) = max
c,π∈A(l,h)

{
E

[∫ ∞
0

e−βtU(ct)dt|L(0) = l,H(0) = h

]}
, (3.3)

where A(l,h) is the set of all admissible controls is described in detail in [7]. Unfortunately
a rigorous definition is out of scope for this thesis.

Now to derive the HJB equation one utilizes the Bellman’s linear programming principle
which describes the infinitesimal change of the function V (l,h). The actual derivation of the
equation relies on Ito’s formula from stochastic calculus which we will not be able to describe
in this thesis but a formal derivation can be seen in [7].

1

2
η2h2Vhh + (rl + δh)Vl + (µ− δ)hVh + max

π
G (π) + max

c≥0
H (c) = βV, (3.4)

where

G (π) =
1

2
Vllπ

2σ2 + Vlhηρπσh+ π(α− r)Vl(l,h), (3.5)

H (c) = −cVl + U (c) = −cVl + log (c) . (3.6)

Now to reduce the equation one needs to make some assumptions about the value function.
To maximize G(π) we study the behavior of the function through the second order derivative.

d2

dπ2
G(π) = Vllσ

2

In order for the maximum to exist the function G(π) must be concave thus we need to assume
that Vll ≤ 0 and also that Vll exists at all points which simply means that we assume that V
is smooth.
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3.3 Reducing the problem

Following the papers by Munk [4] and Tebaldi/Schwarz [2] a reduction of the problem is
needed for the numerical methods. To reduce this problem from a PDE to an ODE the
following transform will be used:

z =
l

h
,

V (l,h) = K +
log h

β
+W (z) ,

where K is an arbitrary constant which will be set later to simplify the problem further. The
derivatives of V will take on the following form,

Vh =
1

hβ
− l

h2
W ′ ⇔ hVh =

1

β
− zW ′,

Vl =
1

h
W ′ ⇔

{
lVl = zW ′

hVl = W ′
,

Vhh = − 1

h2β
+

2l

h3
W ′ +

l2

h4
W ′′,

⇔ h2Vhh = − 1

β
+ zW ′ + z2W ′′,

Vll =
1

h2
W ′′ ⇔

 h2Vll = W ′′

lhVll = zW ′′

l2Vll = z2W ′′
,

Vlh = − 1

h2
W ′ − l

h3
W ′′ ⇔ h2Vlh = −W ′ − zW ′′.

Looking at (3.4) the right hand side becomes:

βV = βK + log h+ βW, (3.7)

for the left hand side the transformation is done in steps, starting with maxπ G (π) and
maxc≥0H (c)

7



max
π

G (π) = max
π

[
1

2
Vllπ

2σ2 + Vlhηρπσh+ (α− r)Vlπ
]

= max
π

[
1

2
W ′′σ2π

2

h2
− (W ′ + zW ′′) ηρσ

π

h
+ (α− r)W ′π

h

]
=
{
h > 0, π1 = π

h

}
= max

π1

[
1

2
W ′′σ2π2

1 − (W ′ + zW ′′) ηρσπ1 + (α− r)W ′π1

]
= max

π1

[
1

2
W ′′

(
σ2π2

1 − 2ηρzπσ
)
−W ′ηρσπ1 + (α− r)W ′π1

]
= max

π1

[
1

2
W ′′ (σπ1 − ηρz)2 −W ′ηρσπ1 + (α− r)W ′π1

]
− η2

2
ρ2z2W ′′

=
{
ϕ = π1 − ηρz

σ

}
= max

ϕ

1

2
W ′′σ2ϕ2 + (−ηρσ + α− r)︸ ︷︷ ︸

k1

(
ϕ+

ηρz

σ

)
W ′

− η2

2
ρ2z2W ′′

= max
ϕ

[
1

2
W ′′σ2ϕ2 + k1ϕW

′
]
− η2

2
ρ2z2W ′′ +

ηρk1

σ
zW ′,

max
c≥0

H (c) = max
c≥0

[−cVl + log c] = max
c≥0

[
− c
h
W ′ + log c

]
=
{
h > 0, c1 = c

h

}
= max

c1≥0
[−c1W ′ + log c1] + log h,

and then the rest of the left hand side

1

2
η2h2Vhh + (rl + δh)Vl + (µ− δ)hVh

=
η2

2

(
− 1

β
+ 2zW ′ + z2W ′′

)
+ (rz + δ)W ′ + (µ− δ)

(
1

β
− zW ′

)
=
η2

2
z2W ′′ +

(
η2 + r − (µ− δ)

)
zW ′ + δW ′ − η2

2β
+
µ− δ
β

.

To simplify the equation even further we can first make the observation that both sides
contain the term log h and hence these cancel out. Next we can remove the constants by
remembering that K is just an arbitrary constant, and hence we can set it to

K =
µ− δ
β2

− η2

2β2
, (3.8)

and the equation can now be written as

η2

2

(
1− ρ2

)
z2W ′′ + kzW ′ + δW ′ + max

ϕ

[
1

2
W ′′σ2ϕ2 + k1ϕW

′
]

+ max
c≥0

[−cW ′ + log c] = βW,

where k = η2+r−(µ− δ)− ηρk1

σ and k1 = −ηρσ+α−r. Here we make a small transformation
ζ = c − δ to get rid of the term δW ′. And so we will finally end up with the reduced HJB
equation:

η2

2

(
1− ρ2

)
z2W ′′ + kzW ′ + max

ϕ
G2 (ϕ) + max

ζ≥−δ
H2 (ζ) = βW, (3.9)

with

G2 (ϕ) =
1

2
W ′′σ2ϕ2 + k1ϕW

′,

H2 (ζ) = −ζW ′ + log (ζ + δ),

k = η2 + r − (µ− δ) +
ηρk1

σ
,

k1 = −ηρσ + α− r.

8



Recall that in Section 3.2 we made certain assumptions regarding the value function.
Since h and l are both positive these assumptions now give us that W is smooth and that
W ′′ ≤ 0. This means that we can solve for the maximum of G2 and H2. We get that

ϕ∗ = − k1W
′

σ2W ′′
,

ζ∗ =
1

W ′
− δ,

G2 (ϕ∗) = −k
2
1 (W ′)

2

2σ2W ′′
,

H2 (ζ∗) = −1 + δW ′ − logW ′,

and taking the values of ϕ∗ and ζ∗ and converting them back to the original optimal controls,
π and c. By scaling with the initial wealth l they can be expressed as:

π∗

l
=
ηρ

σ
− k1W

′

σ2zW ′′
, (3.10)

c∗

l
=

1

zW ′
. (3.11)
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Chapter 4

Numerical Methods for Solving
the Problem

4.1 The infinite series expansion method

In this section we will describe in detail how the optimal consumption problem can be solved
using infinite series expansion. We will utilize the fact that it is possible to find an infinite se-
ries expansion that solves a transformed version of equation (3.9). Once this series expansion
has been found, we will be able to return to W(z) and hence also find the optimal controls
using MATLAB.

4.1.1 Deriving an analytical solution

We start off with the reduced HJB equation (3.9) which we can now write as

η2

2

(
1− ρ2

)
z2W ′′ + kzW ′ − k2

1

2σ2

(W ′)
2

W ′′
+ δW ′ − logW ′ − 1 = βW. (4.1)

As the equation takes up a lot of space we introduce constants Ki and a function F and
write our equation as

K1W +K2zW
′ +K3z

2W ′′ +K4
(W ′)

2

W ′′
+ F (W ′) = 0, (4.2)

where

K1 = −β,

K2 = k = η2 + r − µ+ δ +
ηρk1

σ
=

= η2 + r − µ+ δ − η2ρ2 +
ηρ

σ
(α− r) ,

K3 =
η2

2

(
1− ρ2

)
,

K4 = − k2
1

2σ2
= − (−ηρσ + α− r)2

2σ2
,

F (x) = δx− log x− 1.

If we now take a look at (4.2) we can start to see a pattern emerging where we have terms
on the form zkW (k) (z). This is what we will use to find the solution, so where is this pattern
broken? By simple calculation we can see that

(W ′)
2

W ′′
=

(zW ′)
2

z2W ′′
, (4.3)
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so the part of the equation which is making it difficult for us is the term F (W ′). To
simplify this, what we essentially want to do is a variable transformation where the new
variable is W ′ or something similar. There is a transform known as the Legendre transform
which does exactly this, the transformation acts on the function f (x) as follows.

g (y) = max
x

(f (x)− xy) ,

which gives us the new variable y = f ′ (x). However, the transformation does not work too
well in our case. What we will instead use is a variation of this transformation which will
introduce a new variable y and a new function W̃ (y)

W̃ (y) = max
z

(
W (z)− z

y

)
. (4.4)

At optimality of the right hand side we see that y = 1
W ′(z) . The inverse of this transfor-

mation takes the form

W (z) = min
y

(
W̃ (y) +

z

y

)
, (4.5)

and we can see that at optimality we have that z = y2W̃ ′ (y). So now we have the following
relationships

y =
1

W ′ (z)
,

z = y2W̃ ′ (y) ,

W ′′ (z) =
dW ′

dz
=

d 1
y

dy2W̃ ′ (y)
=

dỹ

d 1
ỹ2 W̃ ′

(
1
ỹ

) ,
=

1

− 1
ỹ4W ′′

(
1
ỹ

)
+ 2 1

ỹ3
W̃ ′
(

1
ỹ

) = − 1

y4W̃ ′′ − 2y3W̃ ′
,

this means that the term F (W ′) is now written as

F (W ′) = F

(
1

y

)
=
δ

y
+ log y − 1,

which turns equation (4.2) into:

K1W̃ + (K1 +K2 + 2K4) yW̃ ′ −K3
(W̃ ′)2

W̃ ′′ − 2
y W̃

′
−K4y

2W̃ ′′ +
δ

y
+ log y = 1. (4.6)

At this point we can try to find a solution to the ODE. The first step is to find a way
to deal with the term log y, and the easy way to do so is to set that W̃ contains the term
− 1
K1

log y. A reasonable guess is that the remaining terms would deal with the derivatives

of log y namely y−k with k = 1,2,... and have some constant in front of it. Let us call these
constants Bk and see what happens when we assume such a solution.

W̃ = − 1

K1
log y +B0 +

∞∑
n=1

Bny
−n, (4.7)

W̃ ′ = − 1

K1y
−
∞∑
n=1

nBny
−n−1 =

∞∑
n=0

Cny
−n−1, (4.8)

W̃ ′′ =
1

K1y2
+

∞∑
n=1

n (n+ 1)Bny
−n−2 =

∞∑
n=0

Dny
−n−2. (4.9)
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By comparing this to equation (4.6) we can now look at the individual terms y−k for
k = 0,1,2,... to get an expression for Bk. But before we can do that we need to see what

happens to the term (W̃ ′)2

W̃ ′′− 2
y W̃

′ .

W̃ ′

W̃ ′′ − 2
y W̃

′
=

∑∞
n=0 Cny

−n−1∑∞
n=0Dny−n−2 − 2

∑∞
n=0 Cny

−n−2
= y

∑∞
n=0 Cny

−n∑∞
n=0 (Dn − 2Cn) y−n

. (4.10)

At this point we make the assumption that this can be written as an infinite sum
y
∑∞
n=0Eny

−n. This assumption is made for us to be able to use the method described
above and find the terms Bk. Multiplying both sides by the denominator on the left hand
side and dividing by y gives us that

∞∑
n=0

Cny
−n =

( ∞∑
n=0

Eny
−n

)( ∞∑
n=0

(Dn − 2Cn) y−n

)
. (4.11)

Comparing the individual terms y−k on both sides we get that on the left hand side Ck
is the term multiplied by y−k and on the right hand side we will get a sum of terms on the
form Ei (Dj − 2Cj) which have the property that i + j = k. This means that we can now
write the relationships between our constants explicitly as follows.

Cn =

n∑
i=o

En−i (Di − 2Ci) , (4.12)

C0 = − 1

K1
, (4.13)

D0 =
1

K1
, (4.14)

Dn = − (n+ 1)Cn = n (n+ 1)Bn, n 6= 0. (4.15)

As we now have all the relations between the constants we can start to calculate what
they are. The first step is to find E0 using the fact that C0 and D0 are known. We can then
insert this result in equation (4.6) and compare the constant term to retrieve B0. Then we
can use (4.12) to express E1 as a function of B1. By repeating this process we can get all the
constants Bn and En. So let us see how this works. First we can use (4.12) to express En as
a function of Bn. When doing so we can obviously assume that all Bi and Ei are known for
i < n:

C0 = E0 (D0 − 2C0)

⇒ E0 =

(
1

K1
− 2

(
− 1

K1

))−1(
− 1

K1

)
= −K1

3

1

K1
= −1

3
,

Cn =

n∑
i=o

En−i (Di − 2Ci) =

= −1

3
(Dn − 2Cn) +

n−1∑
i=1

En−i (Di − 2Ci) + En
3

K1

⇒ En =
K1

9
n2︸ ︷︷ ︸

Known

Bn −
K1

3

n−1∑
i=1

En−i (i (i+ 1) + 2i)Bi︸ ︷︷ ︸
Known

= F 1
nBn + F 2

n .

For B0, we get that

B0 =
1

K2
1

(
2K1 +K2 + 2K4 −

1 +K4

3
K3

)
. (4.16)
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As we have now described En as a function of Bn we can insert our results into equation
4.6 and solve for Bn.

K1Bny
−n + (K1 +K2 + 2K4)Cny

−n −K3y
−n

n∑
i=0

EiCn−i −K4Dny
−n =

{
δy−1, n = 1

0, n > 1
.

(4.17)
Using that Cn, Dn and En can be expressed as functions of Bn we can solve for Bn and

get that (for n > 1)

(
K1 − (K1 +K2 + 2K4)n+K3

(
1

K1
F 1
n +

n

3

)
− n (n+ 1)K4

)
Bn = K3

(
n−1∑
i=1

EiCn−i −
1

K1
F 2
n

)
.

(4.18)

Bn =
K3

(∑n−1
i=1 EiCn−i −

1
K1
F 2
n

)
(
K1 − (K1 +K2 + 2K4)n+K3

(
1
K1
F 1
n + n

3

)
− n (n+ 1)K4

) . (4.19)

Note that for n = 1 the formula is somewhat different. From equation (4.17) an extra δ
occurs on the right hand side of the equation (4.18) and in the numerator in equation (4.19).
Now that all required formulae have been derived it is possible to solve for the coefficients
numerically.

4.1.2 Algorithm

Since the coefficients Bn are known W̃ (y), W̃ ′(y) and W̃ ′′(y) are also known, see equations
(4.7)- (4.9). The coefficients Bn are calculated in MATLAB, the interested reader can study
Appendix A2. This makes it possible to retrace our steps and obtain W (z) , W ′(z) and
W ′′(z) using the following relations:

z = y2W̃ ′

W (z) = W̃ + yW̃ ′

W ′(z) =
1

y

W ′′(z) = − 1

y4W̃ ′′ + 2y3W̃ ′
.

The optimal controls can be expressed as a function of z according to equations (3.10) Finally,
the value function and optimal controls are plotted as a function of z with different values of
correlation ρ, stock volatility σ and income volatility δ.

4.2 Markov chain approach

The approximating Markov chain approach was initially developed by Kushner and Dupuis
in the early 1990’s and is very well documented. In the following subsections we will in detail
describe more specific theory that is used for this method and provide a way of constructing
an approximate Markov chain for some processes. We will also derive the formulae for
the optimal consumption problem and describe precisely how the approximate solution is
obtained.

4.2.1 Markov decision process

In this section we will focus on the Markov decision process and the admissible controls
attached to this process. We begin with a formal definition of the Markov decision process,
also called the controlled Markov chain, following definition is found in [8].
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Definition 8 The Markov decision process is defined by (S,C,{P (u)}u∈C ,π0), where S is a
finite state space, C is a finite set of actions and for each u ∈ C, P (u) ∈ [0,1]n×n is a
probability transition matrix on S. Let xk ∈ S be a state and π0 be the probability distribution
of x0.

The Markov decision process is important because it has the property of controls (actions)
attached to the process. Next, we want to express the controls more formal. The following
definitions are found in a book written by D.P. Bertsekas [9]. Note that these definitions
are quite general in the sense that they describe admissible controls for some discrete-time
dynamic systems, hence the Markov property is not necessary for these definitions.

Definition 9 Let xk ∈ Sk be a state,uk ∈ Ck a control and wk ∈ Dk the random disturbance.
Then we can write a discrete-time dynamic system as xk+1 = fx(xk,uk,wk) where k =
0,1,...,N−1. The control uk is constrained to a nonempty set Uk in Ck where uk ∈ Uk(xk) for
all xk ∈ Sk and all k. The probability distribution Pk(·|xk,uk) describe the random disturbance
wk, where the distribution is not allowed to depend on prior disturbances w1,...,wk−1.

Definition 10 The policies that consist of a sequence of functions π = µ0,...,µN−1 where µk
maps states xk onto controls uk = µk(xk) such that µk(xk) ∈ Uk(xk) for all xk ∈ Sk, are
called admissible controls.

In our case, it is necessary that the admissible controls have the property that the wealth
process is non-negative at all times. There are some more relevant notations of the control
policies. A policy µ is called Markov if each µk only depends on xk. If the policy is Markov,
it is called stationary if µk does not depend on the time k. The stationarity tells us that
there exists a function ϑ : S → πu such that µk ≡ ϑ for all k. If the policy ϑ is stationary,
then the state process xk is Markov with transition probability matrix Pϑ.

The goal when using Markov decision processes to numerically solve a problem, is to find
an optimal policy. A policy is said to be optimal if it maximizes our value function. If there
exist an optimal policy, that policy could be found by using dynamic programming with
policy iteration.

4.2.2 Constructing the approximating Markov chain

When dealing with continuous stochastic processes it is often hard to attain explicit solutions,
so discrete approximations are very useful. The idea is to approximate the controlled state
variable process (X(t))t∈R+

with a controlled discrete time Markov chain ξh =
(
ξhn
)
n∈Z+

on

a discrete state space Rh. In this part we will describe a general method for constructing
an approximate Markov chain and state some necessary conditions that will be vital for the
numerical convergence of the approximating Markov chain method.
First of all we need to consider a continuous state and space stochastic process. Due to
practicality we will use the controlled diffusion process defined below:

Definition 11 The stochastic diffusion process which is governed by a Brownian motion
{W (t)}t≥0 is as follows,

dX(t) = b (X(t), u(X(t))) dt+ σ (X(t)) dW (t), (4.20)

where b(·) and σ(·) are assumed to be bounded and Lipschitz continuous i.e |f(y) − f(x)| ≤
C|x− y| where C is some positive constant.

Since we want the Markov chain to ”follow” the processes we approximate we need some
conditions on the Markov chain, these are the local consistency conditions [3] which are
defined below

Definition 12 The local consistency conditions for a controlled Markov chain
{
ξhn
}
n∈Z+

is

E
[
ξhn+1 − ξhn|ξhn = X,uhn = α

]
≡ bh(x, α)∆th(x,h) = b(x, α)∆th(x,h) + o(∆th(x,α)), (4.21)
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Var
(
ξhn+1 − ξhn|ξhn = X,uhn = α

)
≡ ah(x, α)∆th(x,α) = σ2(x, α)∆th(x,α) + o(∆th(x,α)),

(4.22)
which also defines the functions ah(x, α) and bh(x, α)

This gives us a way to confirm that the transition probabilities we construct are sound.
Now consider a discrete state space Rh ⊂ R and an interpolation function ∆th(x,h) =
h2

σ2(x)+h|b(x,α)| hence the transition probabilities are defined as:

Definition 13 The transition probabilities for the approximating Markov chain is

ph (x,x± h|α) =
σ2(x)/2 + hb±(x,α)

σ2(x) + h|b(x,α)|
, ∀x ∈ Rh, (4.23)

where α is the applied control at time t and b± = max {0,± b}

which satisfy the consistency conditions.

From a coding point of view these may be cumbersome to implement since both the de-
nominator of the interpolation function ∆th(z,α) and the transition probabilities are control
dependent. Now let us consider a different diffusion process, namely a diffusion process gov-
erned by a two dimensional Brownian motion. The reason we chose this will become apparent
in the coming chapter.

Definition 14 The stochastic diffusion process which is governed by a two-dimensional Brow-
nian motion (W1(t),W2(t))t≥0 is defined as:

dZ(t) = (b (Z(t)) + u(Z(t))) dt+ σ1 (Z(t)) dW1(t) + σ2 (Z(t)) dW2(t), (4.24)

where b(·), u(·) and σ1,2(·) are assumed to be bounded and Lipschitz continuous.

Now first of all we need to redefine the transition probabilities in a more manageable way
and the best way to proceed is to define the denominator as a function itself, here denoted
Qh(x,α)

Definition 15 The denominator and function that determines the interpolation function
∆th(z) is defined as,

Qh(z) = max
α

{
σ2

1 + σ2
2 + h (|α|+ |b|) ,

}
(4.25)

Where α is the control applied at time t and is bounded by some interval I.

With this out of our hands we define the interpolation function and the more practical
transition probabilities implementation-wise as

Definition 16 The transition probabilities and interpolation function for the approximating
Markov chain of the process Z(t) is defined as

ph (z,z ± h|α) =
(
(σ2

1(z) + σ2
2(z))/2 + h(b(z)± + α±)

)
/Qh(z),

ph (z,z|α) = 1− ph (z,z + h|α)− ph (z,z − h|α) ,
∆th = h2/Qh(z).

(4.26)

The only thing left to do now is to check whether these fulfill the local consistency con-
ditions,

E
[
ξhn+1 − ξhn|ξhn = z, uhn = α

]
=
∑
z′∈Rh

(z′ − z)ph(z,z′|α) =

h
(
ph(z,z + h|α)− ph(z,z − h|α)

)
=
h2 (b+ α)

Qh(z)
= ∆th(z)(b+ α).

where we used the relation a+− a− = a, ∀a ∈ R, now all that is left is to check the variance:

Var
(
ξhn+1 − ξhn|ξhn = z, uhn = α

)
=
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E
[
(ξhn+1 − ξhn)2|ξhn = z, uhn = α

]
−E

[
ξhn+1 − ξhn|ξhn = z, uhn = α

]2
=∑

z′∈Rh

(z′ − z)2ph(z,z′|α)−
(
∆th(z)(b+ α)

)2
=

h2
(
ph(z,z + h|α) + ph(z,z − h|α)

)
+ o(∆th(z)) =

∆th(z)(σ2
1 + σ2

2) + o(∆th(z)).

and thus we can conclude that these transition probabilities are locally consistent with the
state process in definition 14

4.2.3 The approximating Markov chain for the optimal consumption
problem

To construct the approximating Markov chain we need to model it after our continuous space
and state process Z(t) defined below,

dZ(t) = (k1ϕ− ζ + kz) dt+ σϕdW1(t) + ηZ(t)
√

1− ρ2dW2(t). (4.27)

Now it may not be obvious why this is the wealth process for the reduced case however it will
become clearer in the section which describes the convergence of the method. The process
Z(t) is a positive valued process so the state space will simply be Rh = {0, h,2h,..., Ih} where
I is some big number and h will be the mesh size. The control,

(
ζh, ϕh

)
=
(
ζhn , ϕ

h
n

)
Z+

, for

the Markov chain is a bounded sequence that will be dependent on the current state of the
Markov chain i.e ζhn = ζhn

(
ξhn
)

and ϕhn = ϕhn
(
ξhn
)

with the bounds −δ ≤ ζh(z) ≤ Kζz and
|ϕh(z)| ≤ Kϕ.

The transition probabilities are given by the underlying stochastic process with the meth-
ods described in section 4.2.2

ph (z,z − h|ζ, ϕ) =
1
2

(
σ2ϕ2 + η2(1− ρ2)z2

)
+ h ((k1ϕ)− + (ζ)+ + k−z)

Qh(z)
, (4.28)

ph (z,z + h|ζ, ϕ) =
1
2

(
σ2ϕ2 + η2(1− ρ2)z2

)
+ h ((k1ϕ)+ + (ζ)− + k+z)

Qh(z)
, (4.29)

ph (z,z|ζ, ϕ) = 1− ph (z,z + h|ζ, ϕ)− ph (z,z − h|ζ, ϕ) , (4.30)

for z ∈ Rh. At the boundaries, z = 0 and z = z̄, these will be:

ph (z̄,z̄ − h|ζ, ϕ) =
1
2

(
σ2ϕ2 + η2(1− ρ2)z̄

)
+ h ((k1ϕ)− + ζ+ + k−z̄)

Qh(z)
, (4.31)

ph (z̄,z̄|ζ, ϕ) = 1− ph (z̄,z̄ − h|ζ, ϕ) , (4.32)

and at the lower boundary

ph (0,h|ζ,ϕ) = ζ−, (4.33)

ph (0,0|ζ,ϕ) = 1− ζ−, (4.34)

where
Qh(z) = σ2K2

ϕz
2 + η2(1− ρ2)z2 + h (|k|z + |k1|Kϕz + max {δ,Kζz}) .

In this thesis we will not consider any other transition probabilities to be possible.
Before we can utilize these transitions we need to confirm that this Markov chain will fulfill
the local consistency conditions.

E
[
ξhn+1 − ξhn|ξhn = z, ζhn = ζ, ϕhn = ϕ

]
=
∑
z′∈Rh

(z′ − z)ph (z,z′|ζ, ϕ) =
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h2(k1ϕ− ζ + kZ(t))

Qh(z)
= ∆th(z) (kz + k1ϕ− ζ)

Var
(
ξhn+1 − ξhn|ξhn = z, ζhn = ζ, ϕhn = ϕ

)
=

E
[
(ξhn+1 − ξhn)2|ξhn = z, ζhn = ζ, ϕhn = ϕ

]
−E

[
ξhn+1 − ξhn|ξhn = z, ζhn = ζ, ϕhn = ϕ

]2
=∑

z′∈Rh

(z′ − z)2ph (z,z′|ζ, ϕ)−
(
∆th(z) (kz + k1ϕ− ζ)

)2
=

∆th(z)
(
σ2ϕ2 + η2(1− ρ2)z2

)
+ o(∆th(z)).

4.2.4 The dynamic programming equation

In this part of the thesis we will derive the dynamic programming equation, which will be
the DPE from now on, for the Markov chain defined in previous chapter. As we recall the
value function for the reduced problem is defined as

F (z) = sup
(ζ,φ)∈Â(z)

E

[∫ ∞
0

e−βt log(ζ(t) + δ)dt

]
.

Now by using the interpolation function defined as ∆th(z) = h2/Qh(z) and letting ∆thn =

∆th(ξhn) and ∆thn =
∑m=n−1
m=0 ∆thm we can define the approximate value function as

Wh(z) = sup
(ζh,φh)∈Ah(z)

E

[ ∞∑
n=0

e−βt
h
n log(ζhn + δ)∆thn|ξh0 = z

]
, z ∈ Rh. (4.35)

For the discrete Markov chain according to Munk [4] this will become Iζ = [−δ,Kζz], Iϕ =
[−Kϕz,Kϕz]

Wh(z) = sup
ζ∈Iζ ,ϕ∈Iϕ

{
∆th(z) log(ζ + δ) + e−β∆th(z)

∑
z′∈Rh

ph (z,z′|ζ,ϕ)Wh(z′)

}
. (4.36)

Policy iteration

To solve the dynamic programming equation we utilize the policy iteration algorithm. We
start with an arbitrary selected control

(
ζh0 (z), ϕh0 (z)

)
and solve the system

Wh
0 (zi) = ∆th(zi) log(ζh0 + δ) + e−β∆th(zi)

∑
z′i∈Rh

ph
(
zi,z
′
i|ζh0 , ϕh0

)
Wh

0 (z′i), ∀zi ∈ Rh,

then we compute a so called policy improvement which is simply that we update the values
of ζ and ϕ which will be given below:

ζj(z) = arg max
ζ∈Iζ

{
log(ζ + δ) + e−β∆th(z)

(
−ζ+D−Wh

j−1(z) + ζ−D+Wh
j−1(z)

)}
,

ϕj(z) = arg max
ϕ∈Iϕ

{
1

2
σ2ϕ2D2Wh

j−1(z)− (k1ϕ)−D−Fhj−1(z) + (k1ϕ)+D+Wh
j−1(z)

}
,

where

D2W (z) =
W (z + h)− 2W (z) +W (z − h)

h2
, D+W (z) =

W (z + h)−W (z)

h
, D−W (z) =

W (z)−W (z − h)

h

These values will then be used to compute Wh
j (z) in the same manner as Wh

0 (z) .
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By noting that these equations is linear for all Wh
j (zi), zi ∈ Rh the DPE is simply a

linear system of equations which we solve for Wm(z), and then update the controls ζm and
ϕm. The equation is as following:

PmWm = Rm (4.37)

and since the matrix Pm is tridiagonal this equation is solved very fast. Below the matrix is
described in detail.

Pm =



a b

c
. . .

. . . ∅
. . . a b

c a
. . .

∅
. . .

. . . b
c a


,am =



ph (0,0|ζm,ϕm)− eβ∆th(0)

...

ph (zi,zi|ζm,ϕm)− eβ∆th(zi)

...

ph (z̄,z̄|ζm,ϕm)− eβ∆th(z̄)


,

bm =



ph(0,h|ζm,ϕm)
...

ph(zi,zi + h|ζm,ϕm)

...
ph(z̄ − h,z̄|ζm,ϕm)


, cm =



ph(h,0|ζm,ϕm)
...

ph(zi + h,zi|ζm,ϕm)

...
ph(z̄,z̄ − h|ζm,ϕm)


,

Rm =



−∆th(0) log(ζm + δ)eβ∆th(0)

...

−∆th(zi) log(ζm + δ)eβ∆th(zi)

...

−∆th(z̄) log(ζm + δ)eβ∆th(z̄)


,Fhm =



Fhm(0)
...

Fhm(zi)
...

Fhm(z̄)

 ,

∀zi ∈ Rh.

The algorithm in short

Now the algorithm for solving this problem is quite simple, first of all we initialize the controls
(ζ0,ϕ0), an arbitrary initial state z and of course all the relevant constants. Then we continue
by solving the first iteration of the discrete dynamic programming equation P0Wh

0 = R0.
Then we generate with our approximating Markov chain a transition to another state, that is
z → z′ and solve the controls for the current state. Then with our updated controls denoted
(ζ1,ϕ1) we solve the matrix equation (4.37) again and check if

sup
z
|Wi(z)−Wi+1(z)| < ε, (4.38)

where ε is some user supplied tolerance. If this condition is not fulfilled we generate another
transition step and solve everything again until the criteria (4.38) is satisfied.

4.2.5 Convergence scheme

Unfortunately any rigorous proofs regarding the convergence of this method is out of scope
for this thesis, however we will argue that our method is sound with the help of already
developed theory. First of all we can conclude that our approximating Markov chain will
converge towards the state process Z(t) as h→ 0 since it is locally consistent, this has been
proven for numerous stochastic control problems by Kushner and Dupuis in [3].

So all that is left to prove according to [4] is the stability of the method and that the
discrete equation converges to the continuous HJB equation. Furthermore the dynamic pro-
gramming equation for the discrete case (4.36) will yield the sought result if we write the
transition probabilities (4.28)-(4.30) explicitly:
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eβ∆th(z) − 1

∆th(z)
F (z) = sup

ζ∈Iζ ,φ∈Iφ

{
log(ζ + δ)eβ∆th(z) +

Σ

2
D2F (z) + µ+D+F (z)− µ−D−F (z)

}
,

(4.39)
where Σ = σ2φ2 + η2(1− ρ2)z2, µ± = (k1φ)± + ζ∓ + k±z.

Now if we let h→ 0 and assume that the finite differences exists i.e
D2F (z) → F ′′(z), D±F (z) → F ′(z) then we see that this equation converges to the

HJB equation of the reduced problem, since e∆th(z)β → 1, eβ∆th(z)−1
∆th(z)

→ β, h → 0 and

µ+ − µ− = µ. By recalling (4.27) we see that the shape of the state process coincides
with the associated HJB equation which actually follows from the derivation of the original
equation.

The stability of the method has already been proven by Munk [4] and it utilizes some
techniques from functional analysis which is not described in this thesis.
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Chapter 5

Results

In this section several plots from both numerical models are presented. The plots show how
the value function and the optimal controls respond when the most interesting constants are
changed, ceteris paribus. The values of some initial constants are shown in table 5.1, we use
the same values as Munk used in his paper [4].

Table 5.1:

Constants
Stock volatility σ 0.3
Income volatility η 0.1
Correlation ρ 0.0
Time preference rate β 0.2

In the plots, the ratio z has been used, recall that z = l/h, where l denotes initial wealth
and h denotes initial income. The initial wealth l has been used to normalize the optimal
controls which is possible since l > 0 is assumed. Due to normalization, the controls together
with the capital placed in the risk-free bond, should sum up to one. Hence the optimal
investment strategy can be achieved from the figures in this section.

In the model, it is possible for the investors wealth process L(t) to equal zero at some
time t. If the wealth process gets down to zero, it is possible to achieve positive wealth again,
due to the random income flow.

5.1 Numerical results for the infinite series expansion

In the following section, we will present the results given by the infinite series expansion. By
recalling that Merton’s original problem [1] has no random income i.e h = 0 it is possible to
see that the asymptotic behavior of the controls tend to the Merton solution. Note that in
the following plots h > 0.

The first interesting constant we choose to vary, is the correlation ρ, between changes in
income and changes in the risky stock market. From figure 5.1 we can see that the value
function is highest for the highest value of ρ and lowest for the lowest value. Figure 5.2
describes the optimal consumption for different values of ρ. It states that the consumption
should be higher for a higher correlation. Finally figure 5.3 declares that if the correlation is
high, then your optimal risky investment should be high. The result suggests that the investor
should both spend more money and invest more in the risky stock market if the correlation
is high. This may seem odd at first glance, but there is a chance that our investor would
both make profit on the risky market and also obtain a high income flow (because of the high
correlation). This chance is positive indeed, since we assumed in our model that the investor
is risk averse, i.e. will not accept fair game or worse. Also note that the total variations of
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the fractions to be put into risky intestments, risk-free bonds and on comsumption are quite
small. The distributions is roughly said about 50% risky investments, 30% risk-free bonds
and 20% consumption for large values of z. For small z, i.e. when your initial wealth is not
extremely large compared to your initial income, there is a lot more variance. This is also
reasonable.

Figure 5.1: Value function F(z) for different values of the correlation ρ between changes in
income and changes in the risky stock market.

Figure 5.2: Optimal consumption c∗/l for different values of the correlation ρ between changes
in income and changes in the risky stock market.
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Figure 5.3: Optimal risky investment π∗/l for different values of the correlation ρ between
changes in income and changes in the risky stock market.

The next interesting constant is the stock volatility σ. Figure 5.4 decribes the value
function for different values of σ. We can see that the value function is high for high values
of stock volatility and lower for lower values. From figures 5.5 and 5.6 it is evident that it
is resonable to make large risky investments when the market is relatively stable (i.e. when
σ is low) and also to consume a smaller fraction of your wealth. Note that the change in
consumption is small, while the change in investments in risky stock markets is very high.
This means that the distribution between risky and risk-free investments is highly affected
by changes in stock volatility.

Figure 5.4: Value function F(z) for different values of stock volatility σ.
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Figure 5.5: Optimal consumption c∗/l for different values of stock volatility σ.

Figure 5.6: Optimal risky investment π∗/l for different values of stock volatility σ.

The last constant of interest is the income volatility η. Figure 5.7 declares that the value
function is shifted upwards for increasing values of η. In figures 5.8 and 5.9 we can see that
the optimal consumption and optimal risky investment also follow this pattern. In other
words the investor should invest more money on the risky stock market and also consume
more if the income volatility is high. This may seem a bit counterintuitive, but that does
not mean that it is completely wrong. A motivation to the risky investments could be that
since our investor is risk averse it might be a good idea to make risky investments in order
to make profit to avoid bankruptcy. When studying the result for the optimal consumption,
we must consider what it truly is we are optimizing. It is not strictly speaking to maximize
wealth, but instead to maximize the utility function, and therefore it might be preferable to
consume more with high income volatility.
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Figure 5.7: Value function F(z) for different values of income volatility η.

Figure 5.8: Optimal consumption c∗/l for different values of income volatility η.
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Figure 5.9: Optimal risky investment π∗/l for different values of income volatility η.

To conclude, the only parameter that has a truly large influence on our optimal invest-
ments is the market volatility. It affects the distribution between risky and risk-free invest-
ments. The other parameters have interesting effects but does not affect the total ratios as
much.

5.2 Numerical results for the Markov chain approach

In this section we present the figures from the numerical Markov model. The code used to
produce the figures in this section can be found in appendix A.1. In the code, we differentiate
numerically when solving for the optimal controls, described in equation (3.10). The value
function produced by our code is quite numerically unstable, which make our numerical
differentiation very unstable. For some low values, the value function is unstable and the
optimal controls tend to infinity. Since the problematic values are not of interest, these
have been removed from the plots. The problematic region is included in the plots shown in
appendix C. The area of focus should be where the ratio z is larger, therefore the behavior
of our functions close to zero is less important.

The first constant of interest is the correlation parameter ρ, which describes correlation
between changes in income and changes in the risky stock market. Figure 5.10 shows the
value function for four different values of ρ. The value of the function F (z) is lowest when
ρ = −0.8 and highest when ρ = 0.0. The interpretation of this result should be, that if there
is negative correlation, the stock market will do worse at the same time at which the investor
achieve new income. Hence the investor will have low risk of having zero wealth, but have
no possibility to save the assets and thereby increase their value. If the correlation instead
is positive, the investor will gain income at the same time as the stock market does well. In
this scenario the investor can keep the assets and achieve a higher wealth before the income
vanishes and the stock market does worse again. Hence the investor will be better off when
the correlation is positive compared to negative. When income and the changes in the stock
market are uncorrelated, the investor will have the opportunity to save some of the assets
most of the time. The growth of these assets will increase the investors wealth and thereby
this scenario is optimal.
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Figure 5.10: Correlation between changes in income and changes in the risky stock market
affect the value function F (z), note that z = l/h, where l denotes wealth and h denotes
income of the investor.

The effect of correlation is also visible when the optimal consumption rate c∗(z)/l is
plotted. In figure 5.11, the model suggest that the investor should consume more when the
correlation is non-zero. Consistently with what the plot in figure 5.10 showed, the consump-
tion should be highest when ρ = −0.8. Note that the optimal consumption is higher for
ρ = 0.4 than ρ = −0.4 when z is low, but when z is higher, the consumption should be
greater for ρ = −0.4 than ρ = 0.4. There is no straightforward explanation for this behavior,
it could be a numerical issue in the code.

Figure 5.11: The effect of correlation on the optimal consumption rate c∗(z)/l.

To complete the picture given by figure 5.10 and 5.11, the optimal risky investment is
shown in figure 5.12. The model suggest that the investment on the risky stock market
should be highest when the correlation is negative and lowest when the correlation is zero.
The result of the figures shown is that when the correlation is negative, most of the investors
wealth should be invested on the risky stock market or in the bond. Hence less money will be

26



spent on consumption. Both for positive and zero correlation, there will be a greater amount
invested in the bond and spent on consumption, in expense of the risky investment. It is also
possible to observe that the trade-off between the three choices seem to be lower when the
correlation is highly negative. For the other values of correlation shown in the figures, the
slope of the optimal consumption is increasing while the slope of the optimal risky investment
is decreasing. An interpretation is that if the correlation is highly negative, the investor has
limited choices and will behave in a similar way regardless of the fraction z.

Figure 5.12: Correlation affects the optimal risky investment, π∗(z)/l, when the correlation
is negative, the optimal risky investment is higher.

The volatility of market, denoted σ, is the next important constant. In figure 5.13 the
value function with different σ is presented. In the figure it is clear that when volatility of
market increases the value function gets lower.

Figure 5.13: When the volatility is higher, the corresponding value function is lower.

When the volatility of market increase, the choice of consumption becomes more attrac-
tive, this relation is shown in figure 5.14. It is also possible to observe that the slope of the
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curves are increasing, suggesting that a higher amount should be consumed, if the initial
ratio z is larger.

Figure 5.14: Higher volatility of the stock market will increase the optimal consumption ratio.

The third plot, shown in figure 5.15, describes how the volatility of market affect the
optimal risky investment ratio. When the volatility is higher the investment is also higher.
Here π∗ have decreasing slope for all values of σ. Combined with the change in slope in figure
5.14, this result suggest that if z is high, a greater amount could be invested on the risky
stock market in expense of consumption. It is also possible to observe that both consumption
and the investment on the risky stock market are quite low, that implies that the investment
in the risk free bond is high.

Figure 5.15: The volatility of the stock market affect the optimal risky investment ratio,
π∗(z)/l.

The last constant of interest is the income volatility, denoted η. When the numerical
simulations were performed, the model was very unstable when changing this constant. The
optimal control ζ has a logarithmic term containing η which makes the model unstable for
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large values of this constant. Since the control is updated during the calculations of the value
function, this numerical problem has major impact on the accuracy of the model. To make
the model work properly, the changes in income volatility where chosen quite small. In figure
5.16, the value functions are shown. In the figure it is possible to note that when income
volatility increases the value function also shift upwards.

Figure 5.16: When volatility of income increases, the value function shift upwards.

When the income volatility increases the model suggest that the investor should consume
less. In figure 5.17 it is clearly shown that the optimal consumption is higher when the
income volatility is lower. This result is quite reasonable, if there is high income volatility
it is better to save some of the income for the future instead of consuming. Note that the
optimal consumption has an increasing slope for all values of η.

Figure 5.17: If the income volatility is higher, the investor should consume less.

The last picture in this section, figure 5.18, shows the optimal risky investment ratio.
When income volatility is high, the optimal risky investment is low. Note that the optimal
risky investment decreases when z increases for all values of η, this implies that the con-
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sumption is high in expense of the risky investment. The values of the fractions π∗(z)/l and
c∗(z)/l states that a very small amount should be consumed, the remaining part should be
invested in the risky stocks and the risk free bond. Since z denotes initial wealth divided
by initial income, a high value of z implies that either the initial income is very low, or the
initial wealth is very high. Hence the investor should be less affected by high volatility of
income when z is high, because the initial wealth endowment is so dominating. When the
investor is less dependent of the income, a greater amount could be spent on consumption,
since it is less important when next income is achieved. The investor will make the decision
between the investments and consumption based upon the wealth rather than the income.

Figure 5.18: Higher volatility of income will decrease the optimal risky investment ratio
π∗(z)/l.

The results shown in this section clearly show that all shown parameters have a major
impact on the model and i.e. the investor’s decision.
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Chapter 6

Discussion

6.1 Infinite Series Expansion

The main reason for choosing the infinite series method is because it gives an exact solution
to the problem. If you have a problem which can be solved with this method, you will
end up with a near perfect solution. The problem is however, that it does not hold for all
utility functions. Another problem is that very high tolerance is needed in the computations,
otherwise there is a great risk of rounding errors as the coefficients Bn are very small. Since
Bn depends on the parameters this might explain the low sensitivity to changes in parameter
values. However the results turned out to be quite reasonable. The only reason for concern
is that the results between the methods do not completely coincide.

The shape of the value function is as expected, concave and positive. The values of π∗

and c∗ seem to give reasonable advice to an investor and the asymptotic behavior supports
this conclusion.

6.2 Markov chain approach

The Markov chain method has numerous advantages to the infinite series expansion, first of
all it is possible to generalize the code for other utility functions although the reduction of the
problem to an ODE is still required. According to Munk [4] it is actually of great importance
that the problem needs to be reduced since the variance and covariance matrix of the original
two-dimensional state variables (L(t),H(t)) has a non-trivial control-dependence and thus it
is not possible to approximate it by a locally consistent Markov chain. Another benefit of
this method is that is very well documented and there is a large strand of literature regarding
this topic. There are some issues implementation-wise such as the size of the increments of
the discrete state space Rh and the size of the bounds on the controls, if they are to large
too much time will be spent on optimizing the controls. Another important remark is that
the tolerance when computing solutions of equation (4.36) should be around 10−5 otherwise
the improvement for each new solution is not worth the computations.

The numerical results of the Markov chain approach turned out quite well. The policies
behaved in a reasonable way when important economic constants where changed. The method
is very sensitive to changes in income volatility since this constant plays a major role in the
computations.

6.3 Comparing the methods

The methods have different strengths and weaknesses. The infinite series expansion is good
when one is only interested in exact values with one utility function. The Markov chain
method on the other hand is fairly fast to implement for different utility functions but does
not yield as exact results. There are some numerical issues with both methods but these
are discussed in detail in the previous section. A general conclusion is that if one wants
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trustworthy results one needs to utilize both methods since the Markov approach can be
implemented fast and confirm whether the series expansion used for a certain utility function
is correct.

When important parameters where changed, the behavior of the optimal controls differed
between the two methods. This result is quite surprising since the optimal controls mostly
depend on derivatives of the value function, and the value functions of the two methods have
similar shape. Another difference is the scale of the value function, the function achieved by
infinite series is much lower than one achieved from the Markov chain approach. The scaling
error might be due to some faulty implementation in the Markov code but it is not clear
exactly where. An important observation when comparing the methods is that the Markov
chain approach seem to depend more on the constants as changes in the optimal controls
modeled by infinite series expansion are surprisingly small. This is probably because the
values of the coefficients in the series expansion tends to zero very fast and yields rounding
errors.

What might have been interesting but probably out of our reach is to formulate some
condition on the utility function such that the reduction of the original HJB equation is
possible. There is some connection between the choice of transform and utility function, see
Munk [4] or Tebaldi/Schwarz work [2] with the HARA utility function. To continue the work
done in this thesis one might improve the implementations numerically and draw some more
theoretical conclusions regarding the two methods.
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Appendix A

MATLAB code

A.1 The approximating Markov chain approach

1 function x = TDMAsolver ( a , b , c , d )
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 %This f u n c t i o n s o l v e s t r i−d i a g o n a l matr ices
4 %using Thomas a lgor i thm , r e t u r n s the s o l u t i o n
5 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
6 %a , b , c are the column v e c t o r s f o r the compressed t r i d i a g o n a l

matrix , d i s the r i g h t v e c t o r
7 n = length (b) ; % n i s the number o f rows
8

9 % Modify the f i r s t −row c o e f f i c i e n t s
10 c (1 ) = c (1 ) / b (1 ) ; % D i v i s i o n by zero r i s k .
11 d (1) = d (1) / b (1 ) ; % D i v i s i o n by zero would imply a s i n g u l a r

matrix .
12

13 for i = 2 : n−1
14 temp = b( i ) − a ( i ) ∗ c ( i −1) ;
15 c ( i ) = c ( i ) / temp ;
16 d( i ) = (d( i ) − a ( i ) ∗ d( i −1) ) /temp ;
17 end
18

19 d(n) = (d(n) − a (n−1) ∗ d(n−1) ) /( b(n) − a (n−1) ∗ c (n−1) ) ;
20

21 % Now back s u b s t i t u t e .
22 x (n) = d(n) ;
23 for i = n−1:−1:1
24 x ( i ) = d( i ) − c ( i ) ∗ x ( i + 1) ;
25 end
26 end

1 function i n c = d e l t a t ( z )
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This i s the i n t e r p o l a t i o n f u n c t i o n
4 % I t c a l l s the denominator f u n c t i o n q ( z )
5 % I s used when s o l v i n g the DPE
6 % Returns the time increment .
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 global h ;
9 i n c = hˆ2/q ( z ) ;
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1 function Q = q ( z )
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This i s the denominator f u n c t i o n
4 % f o r both the t r a n s i t i o n
5 % p r o b a b i l i t i e s and a l s o the
6 % i n t e r p o l a t i o n f u n c t i o n d e l t a t
7 % Returns the denominator f o r
8 % the t r a n s i s t i o n s and time increm .
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11

12 global rho sigma d e l t a K phi K zeta h ;
13 %ALL the c o e f f i c i e n t s ! !
14 gamma = 0 . 5 ; r = 0 . 1 ; b=0.15; mu = 0 . 0 5 ;
15 k1 = b−r−(1−gamma) ∗ sigma∗ d e l t a ∗ rho ;
16 k2 = d e l t a ˆ2∗(1−gamma)+r−mu;
17 k = k2+rho∗k1∗ d e l t a / sigma ;
18

19 Q = sigma ˆ2∗K phi ˆ2∗ zˆ2+ d e l t a ˆ2∗(1− rho ˆ2) ∗zˆ2+ . . .
20 +h∗(abs ( k ) ∗z+abs ( k1 ) ∗K phi∗z+max(1 , K zeta∗z ) ) ;
21 end

1 function f = p h i f u n l o g (x , z ,V)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This f u n c t i o n i s used when
4 % s o l v i n g the DPE a s s o c i a t e d
5 % with the problem at hand .
6 % Returns the updated v a l u e o f
7 % the c o n t r o l phi
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 % x i s phi f o r which we s o l v e
11 % z i s the s t a t e
12 % V i s the curren t i t e r a t i o n o f the v a l u e f c t
13

14 global rho sigma d e l t a ; % c o n s t a n t s
15 global h ; % increment
16 global zmax ; % Boundaries
17 gamma = 0 . 5 ; r = 0 . 1 ; b=0.15;
18 k1 = b−r−(1−gamma) ∗ sigma∗ d e l t a ∗ rho ;
19 i = round( z/h) +1;
20 % Certain cases are r e q u i r e d when s o l v i n g the c o n t r o l s
21 i f z ˜= zmax
22 f = −(sigma ˆ2∗xˆ2∗(V( i +1)−2∗V( i )+V( i ) ) ∗ . . .
23 0 . 5 / ( hˆ2)−max(−k1∗x , 0 ) ∗(V( i )−V( i −1) ) /h + . . .
24 max( k1∗x , 0 ) ∗(V( i +1)−V( i ) ) /h) ;
25 else
26 f = −(V(end)−V(end−1) ) ∗ (0 . 5∗ sigma∗xˆ2+h∗max(−k1∗x , 0 ) ) /h ;
27 end
28 end

1 function f = z e t a f u n l o g (x , z ,F)
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This f u n c t i o n i s used when
4 % s o l v i n g the DPE a s s o c i a t e d
5 % with the problem at hand .
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6 % Returns the updated v a l u e o f
7 % the c o n t r o l z e t a
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 % x i s z e t a f o r which we s o l v e over
11 % z i s the s t a t e
12 % V i s the curren t i t e r a t i o n o f the v a l u e f c t
13

14 global h zmax d e l t a I ;
15 beta hat = 0 . 17 62 5 ;
16 i = round( z/h) ; Max Ind = I ;
17 % Certain cases are r e q u i r e d when s o l v i n g the c o n t r o l s
18 i f z>h && z < zmax
19 f = −(log ( x+d e l t a ) ∗ d e l t a t ( z )+exp( beta hat ∗ d e l t a t ( z ) ) ∗ . . .
20 (−max(x , 0 ) ∗(F( i )−F( i −1) ) /h+max(−x , 0 ) ∗ . . .
21 (F( i +1)−F( i ) ) /h) ) ;
22 e l s e i f z == 0
23 f = −( d e l t a t ( z ) ∗ log ( x+d e l t a )+exp( d e l t a t ( z ) ∗ beta hat ) ∗ . . .
24 (max(−x , 0 ) ∗F(1)+(1−max(−x , 0 ) ) ∗F(2) ) ) ;
25 else
26 f = −(log ( x+d e l t a )−exp( beta hat ∗ d e l t a t ( z ) ) ∗ . . .
27 max(x , 0 ) ∗(F( Max Ind )−F( Max Ind−1) ) /h) ;
28 end
29 end

1 function [ ] = update log (F , z )
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % Function t h a t updates zeta m and phi m
4 % Takes in a Matrix P, v e c t o r R and a s t a t e z .
5 % Doesn ’ t return , updates the v a l u e s o f
6 % z e t a and phi here
7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 global K phi K zeta zeta phi de l t a h ;
9 opt ions = optimset ( ’ MaxFunEvals ’ ,10ˆ6) ;

10 war1 = 1 ; war2 = 1 ;
11 % dummy are dummy v a r i a b l e s
12 % war1 ,2 are warning v a r i a b l e s t h a t t e l l s us t h a t no good s o l u t i o n

was
13 % found
14 [ x1 ,dummy1, war1]= fminbnd ( @( x ) z e t a f u n l o g (x , z ,F) ,−de l ta , K zeta∗z

, opt ions ) ;
15 i f z>h
16 [ x2 , dummy2, war2]= fminbnd ( @( x ) p h i f u n l o g (x , z ,F) ,−K phi∗z ,

K phi∗z , opt ions ) ;
17 phi = x2 ;
18 end
19 ze ta = x1 ;
20 i f war1 ˜= 1
21 ’Bad s o l u t i o n f o r c o n t r o l ze ta ’
22 end
23 i f war2 ˜= 1
24 ’Bad s o l u t i o n f o r c o n t r o l phi ’
25 end
26 end

1 function prob = p t r a n s l o g ( z1 , z2 )
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2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This f u n c t i o n computes the t r a n s i t i o n
4 % p r o b a b i l i t i e s f o r the approximating markov
5 % chain .
6 % I t checks the s p e c i a l cases f i r s t ,
7 % i . e zmax , z = 0 and then the b a s i c cases
8 % Returns the p r o b a b i l i t i e s
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11

12 global rho sigma d e l t a eta ; % c o n s t a n t s
13 global ze ta phi ; % c o n t r o l
14 global h ; % increment
15 global zmax ;
16 %C o e f f i c i e n t s
17 gamma = 0 . 5 ; r = 0 . 1 ; b=0.15; mu = 0 . 0 5 ;
18 k1 = b−r−sigma∗ d e l t a ∗ rho ;
19 k2 = d e l t a ˆ2∗(1−gamma)+r−mu;
20 k = k2+rho∗k1∗ d e l t a / sigma ;
21 a = ( sigma ˆ2 .∗ phiˆ2+ d e l t a ˆ2∗(1− rho ˆ2) ∗ z1 ˆ2) ∗ 0 . 5 ;
22 % S p e c i a l cases z = zmax and z = 0
23 i f z1 == zmax | | z1 == 0
24 i f z1 == 0
25 i f z2>0
26 % Trans i t ion from 0−>h
27 prob = max(−zeta , 0 ) ;
28 return
29 else
30 % Trans i t ion from 0−>0
31 prob = 1−max(−zeta , 0 ) ;
32 return
33 end
34

35 end
36 % Trans i t ion from zmax −> zmax−h
37 i f z2< zmax
38 prob = a+h∗(max(−k1∗phi , 0 )−max( zeta , 0 )+max(−k , 0 ) ∗zmax) ;
39 prob = prob/q ( z1 ) ;
40 return
41 else
42 % Trans i t ion from zmax −> zmax
43 prob = a+h∗(max(−k1∗phi , 0 )−max( zeta , 0 ) ) ;
44 prob = 1−prob/q ( z1 ) ;
45 return
46 end
47

48 end
49 % Basic cases
50 i f z1>z2 % check ing which t r a n s i s t i o n i s made
51 % Trans i t ion from z −> z−h
52 prob = a+h∗(max(−k1∗phi , 0 )+max( zeta , 0 )+max(−k , 0 ) ∗ z1 ) ;
53 prob = prob/q ( z1 ) ;
54 return
55 e l s e i f z1<z2
56 % Trans i t ion from z −> z+h
57 prob = a+h∗(max( k1∗phi , 0 )+max(−zeta , 0 )+max(k , 0 ) ∗ z1 ) ;
58 prob = prob/q ( z1 ) ;

37



59 return
60 else
61 % Trans i t ion from z −> z
62 p1 = a+h∗(max( k1∗phi , 0 )+max(−zeta , 0 )+max(k , 0 ) ∗ z1 ) ;
63 p2 = a+h∗(max(−k1∗phi , 0 )+max( zeta , 0 )+max(−k , 0 ) ∗ z1 ) ;
64 prob = 1−(p1+p2 ) /q ( z1 ) ;
65 end

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2 % This i s the main f i l e
3 % This i s where the c a l l s and the computat ions Mare made
4 % We s i m u l a t e the cont inuous s t a t e p ro ces s wi th
5 % the approximating markov chain and s o l v e i t
6 % The f i l e i s composed o f to s e c t i o n s ,
7 % 1 : f i r s t time i n i t i a l i z a t i o n and s o l v i n g o f the v a l u e f u n c t i o n
8 % 2 : S o l v i n g the DPE u n t i l convergence c r i t e r i a i s met
9 % and computing the c o n t r o l s through the v a l u e f u n c t i o n

10 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
11

12 % A l l r e l e v a n t c o n s t a n t s de f ined , K’ s are r e s t r i c t i o n s f o r
c o n t r o l s

13 % c l e a r a l l ; c l c
14 global rho sigma d e l t a K phi K zeta eta ;
15 global ze ta phi % c o n t r o l
16 global h I ; % increment
17 global zmax ;
18 %p o s i t i v e c o n s t a n t s r e q u i r e d f o r a p p l i e d c o n t r o l
19 sigma = 0 . 5 ; d e l t a = 0 . 1 ; rho = 0 . 2 ; eta = 1 ;
20 %S t a t e increment and maximum inc
21 h = 0 . 0 5 ; I = 20000;
22 %i n i t i a l s t a t e s
23 t = [ ] ;
24 t (1 ) = 0 ;
25 z = 3∗h ; % Z(0) = z
26 zmax = I ∗h ;
27 Z = [ ] ;
28 Z(1) = z ;
29 ze ta = 1/2 ; % I n i t i a l c o n t r o l
30 phi = 1/2 ; % I n i t i a l c o n t r o l
31 % Bounded c o n t r o l s
32 K phi = 0 . 4 ;
33 K zeta = 0 . 5 ;
34 beta hat = 0 . 2 ; % from Munks paper
35 beta = 0 . 2 ;
36

37 % F i r s t time i n i t i a t i o n
38 % Since the t r a n s i s t i o n matrix i s t r i d i a g o n a l i t w i l l be composed
39 % o f t h r e e v e c t o r s a , b , c and u t i l i z i n g the TDMA algo r i th m
40 rho = rho + 0 . 2 ;
41 a = zeros (1 , I ) ; % s u b d i a g o n a l
42 b = zeros (1 , I +1) ; % d i a g o n a l
43 c = zeros (1 , I ) ; % s u p e r d i a g o n a l
44 R = zeros (1 , I +1) ; % r e s u l t v e c t o r
45 for i = 1 : length (b) % i n i t i a t i n g the v e c t o r s
46 R( i ) = −( d e l t a t ( ( i −1)∗h) ∗ log ( ( i −1)∗h+d e l t a ) ) ∗exp( d e l t a t ( ( i

−1)∗h) ∗ beta hat ) ;
47 b( i ) = p t r a n s l o g ( ( i −1)∗h , ( i −1)∗h)−exp( beta hat ∗ d e l t a t ( ( i −1)∗
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h) ) ;
48 end
49 for i = 1 : length ( a )
50 a ( i ) = p t r a n s l o g ( i ∗h , ( i −1)∗h) ;
51 c ( i ) = p t r a n s l o g ( ( i −1)∗h , i ∗h) ;
52 end
53 F old = TDMAsolver ( a , b , c ,R) ;
54 F F i r s t I t e r a t i o n = F old ;
55 %t o l e r a n c e and a boo lean
56 e p s i l o n = 10ˆ−9; F i r s t I t e r a t i o n = 1 ;
57 %% C a l c u l a t i n g F( z )
58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
59 % This w h i l e loop computes the f i n a l approximate s o l u t i o n o f F,
60 % t h i s i s done by the p o l i c y i t e r a t i o n a l go r i th m where we s imply

genera te
61 % a s t a t e t r a n s i t i o n update the c o n t r o l s f o r our curren t i t e r a t i o n

o f F
62 % and then s o l v e i t u n t i l our convergence c r i t e r i o n i s met
63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
64 while F i r s t I t e r a t i o n == 1 | | max(abs (F new−F old ) )> e p s i l o n
65

66 i f F i r s t I t e r a t i o n == 0 % Simple programming t e c h n i q u e r e a l l y
67 F old = F new ;
68 end
69

70 % Generating the markov chain and updates the c o n t r o l s f o r the
71 % current s t a t e
72 i f binornd (1 , p t r a n s l o g ( z , z+h) ) == 1
73 z=z+h ;
74 update log ( F old , z ) ;
75 e l s e i f binornd (1 , p t r a n s l o g ( z , z−h) ) == 1
76 z=z−h ;
77 update log ( F old , z ) ;
78 else
79 update log ( F old , z ) ;
80 end
81 %Updating the matrix P and v e c t o r R and c a l c u l a t i n g F m( z )
82 for i = 1 : length (b)
83 R( i ) = −( d e l t a t ( ( i −1)∗h) ∗ log ( ( i −1)∗h+d e l t a ) ) ∗exp( d e l t a t

( ( i −1)∗h) ∗ beta hat ) ;
84 b( i ) = p t r a n s l o g ( ( i −1)∗h , ( i −1)∗h)−exp( d e l t a t ( ( i −1)∗h) ∗

beta hat ) ;
85 end
86 for i = 1 : length ( a )
87 a ( i ) = p t r a n s l o g ( i ∗h , ( i −1)∗h) ;
88 c ( i ) = p t r a n s l o g ( ( i −1)∗h , i ∗h) ;
89 end
90 F new = TDMAsolver ( a , b , c ,R) ; % New s o l u t i o n o f F
91 % This i s used during the f i r s t i t e r a t i o n and no more
92 F i r s t I t e r a t i o n = 0 ;
93 end
94 %% C a l c u l a t i n g the c o n t r o l s
95 % This i s where we c a l c u l a t e the c o n t r o l s c and \ p i
96 % Equations f o r the c o n t r o l s can be seen in the t h e s i s .
97 % C o e f f i e n c e n t s
98 r = 0 . 1 ; b=0.15; mu = 0 . 0 5 ;
99 k1 = b−r−sigma∗ d e l t a ∗ rho ;
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100 z = 0 : h : zmax ;
101 % Numerical d e r i v a t i v e s
102 Fprim = d i f f ( F new ) /h ; Fbis s = d i f f (F new , 2 ) /h ˆ2 ;
103 constant1 = ones (1 , length ( z ) ) ∗ eta ∗ rho/sigma ;
104 %The c o n t r o l s
105 c s t a r = 1 . / ( z ( 1 : end−1) .∗Fprim ) ;
106 p i s t a r = constant1 ( 1 : end−2)−((k1∗Fprim ( 1 : end−1) ) . / ( sigma ˆ2∗ z ( 1 :

end−2) .∗ Fbiss ) ) ;

A.2 Infinite series expansion

1 %Main f i l e I n f i n i t e s e r i e s expansion , f i n a l v e r s i o n
2 close a l l
3 clear a l l
4 clc
5 global r mu d e l t a beta z max alpha ;
6

7

8 %Constants
9 z max=500;

10 AmountOfPoints =5000;
11 r =0.1 ;
12 sigma =0.3 ;
13 mu=0.05;
14 eta =0.1 ;
15 d e l t a =0.3 ;
16 rho =0;
17 beta =0.2;
18 alpha = 0 . 1 5 ;
19

20 %C a l c u l a t i o n o f v a l u e f u n c t i o n and opt imal c o n t r o l s , f o r d i f f e r e n t
21 %sigma / eta / rho a f t e r p r e f e r e n c e s
22

23 [ z W c s t a r p i s t a r ]= In fSe r i e sFunc ( AmountOfPoints , rho , sigma , eta
) ;

24 %sigma = 0 . 4 ;
25 eta = 0 . 2 ;
26 %rho = −0.4;
27 [ z W2 c s t a r 2 p i s t a r 2 ]= In fSe r i e sFunc ( AmountOfPoints , rho , sigma ,

eta ) ;
28 %sigma = 0 . 5 ;
29 eta = 0 . 3 ;
30 %rho = 0;
31 [ z W3 c s t a r 3 p i s t a r 3 ]= In fSe r i e sFunc ( AmountOfPoints , rho , sigma ,

eta ) ;
32 %sigma = 0 . 6 ;
33 eta = 0 . 4 ;
34 %rho = 0 . 4 ;
35 [ z W4 c s t a r 4 p i s t a r 4 ]= In fSe r i e sFunc ( AmountOfPoints , rho , sigma ,

eta ) ;
36

37

38 % P l o t s
39

40 f igure (1 )
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41 set (0 , ’ DefaultAxesColorOrder ’ , [ 0 0 0 ] , ’ DefaultAxesLineSty leOrder ’ ,
’ −|−.|−−|: ’ )

42 hold on
43 plot ( z ,W, z ,W2, z ,W3, z ,W4) ;
44 axis ( [ 0 100 0 2 0 ] )
45 xlabel ( ’ z=l /h ’ )
46 ylabel ( ’F( z ) ’ )
47 t i t l e ( ’ Value func t i on F( z ) f o r d i f f e r e n t \ eta ’ )
48 %legen d ( ’\ sigma =0.3 ’ , ’\ sigma =0.4 ’ , ’\ sigma =0.5 ’ , ’\ sigma =0.6 ’)
49 legend ( ’ \ eta =0.1 ’ , ’ \ eta =0.2 ’ , ’ \ eta =0.3 ’ , ’ \ eta =0.4 ’ )
50 %legen d ( ’\ rho=−0.8 ’ , ’\ rho =−0.4 ’ , ’\ rho =0.0 ’ , ’\ rho =0.4 ’)
51 hold o f f
52

53 f igure (2 )
54 hold on
55 plot ( z , p i s t a r , z , p i s t a r 2 , z , p i s t a r 3 , z , p i s t a r 4 ) ;
56 axis ( [ 0 100 0 .45 0 . 5 6 ] )
57 t i t l e ( ’ \ pi ˆ∗( z ) f o r d i f f e r e n t \ eta ’ )
58 xlabel ( ’ z=l /h ’ )
59 ylabel ( ’ \ pi ˆ∗( z ) / l ’ )
60 %legen d ( ’\ sigma =0.3 ’ , ’\ sigma =0.4 ’ , ’\ sigma =0.5 ’ , ’\ sigma =0.6 ’)
61 legend ( ’ \ eta =0.1 ’ , ’ \ eta =0.2 ’ , ’ \ eta =0.3 ’ , ’ \ eta =0.4 ’ )
62 %legen d ( ’\ rho=−0.8 ’ , ’\ rho =−0.4 ’ , ’\ rho =0.0 ’ , ’\ rho =0.4 ’)
63 hold o f f
64

65 f igure (3 )
66 hold on
67 plot ( z , c s t a r , z , c s ta r2 , z , c s ta r3 , z , c s t a r 4 ) ;
68 axis ( [ 0 100 0 .165 0 . 2 ] )
69 t i t l e ( ’ c ˆ∗( z ) f o r d i f f e r e n t \ eta ’ )
70 xlabel ( ’ z=l /h ’ )
71 ylabel ( ’ c ˆ∗( z ) / l ’ )
72 %legen d ( ’\ sigma =0.3 ’ , ’\ sigma =0.4 ’ , ’\ sigma =0.5 ’ , ’\ sigma =0.6 ’)
73 legend ( ’ \ eta =0.1 ’ , ’ \ eta =0.2 ’ , ’ \ eta =0.3 ’ , ’ \ eta =0.4 ’ )
74 %legen d ( ’\ rho =−0.8 ’ , ’\ rho =−0.4 ’ , ’\ rho =0.0 ’ , ’\ rho =0.4 ’)
75 hold o f f

1 function [ z W c s t a r p i s t a r ]= In fSe r i e sFunc ( AmountOfPoints , rho ,
sigma , eta )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % The p o i n t wi th t h i s f u n c t i o n
4 % i s to c o l l e c t v a l u e s o f W,
5 % c s t a r and p i s t a r f o r
6 % d i f f e r e n t v a l u e s o f rho ,
7 % sigma and eta .
8 % Returns v a l u e s o f z , W,
9 % c s t a r , p i s t a r f o r curren t

10 % v a l u e s o f rho , sigma and
11 % eta
12 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
13

14 % AmountOfPoints i s the amount o f p i o n t s used in the c a l c u l a t i o n s
15 % rho i s c o r r e l a t i o n c o e f f i c i e n t
16 % sigma i s the s t o c k v o a l t i l i t y
17 % eta i s the income v o a l i t y
18

19
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20 global r mu d e l t a beta B K1 K2 K3 K4 N z max alpha ;
21

22 %Amount o f i t e r a t i o n s when c a l c u l a t i n g B n
23 N=400;
24 B=zeros (1 ,N) ;
25 E=zeros (1 ,N) ;
26 F1=zeros (1 ,N) ;
27 F2=zeros (1 ,N) ;
28

29 %Constants
30 K1=−beta ;
31 K2=etaˆ2+r−mu+delta −( eta ∗ rho ) ˆ2 + ( alpha−r ) ∗ eta ∗ rho/sigma ;
32 K3=(eta ˆ2+( eta ∗ rho ) ˆ2) /2 ;
33 K4=−(−eta ∗ rho∗ sigma+alpha−r ) ˆ2/(2∗ sigma ˆ2) ;
34

35 %S t a r t i n g p o i n t s o f i t e r a t i o n
36 E(1) =−1/3;
37 B(1)=−(1/K1) ∗ ( (2∗K1+K2+2∗K4) ∗(−1/K1)−K3∗E(1) ∗(−1/K1)−K4/K1) ;
38

39 %Obatining v a l u e s o f the c o e f f i c i e n t s B n
40 for n=1:N−1
41 F1(n+1)=K1/9∗n ˆ2 ;
42 a=0;
43 for j =1:n−1
44 a=a+E(n−j +1)∗ j ∗( j +3)∗B( j +1) ;
45 end
46 F2(n+1)=−K1/3∗a ;
47 b=0;
48 for j =1:n−1
49 b=b+j ˆ2∗E(n−j +1)∗B( j +1) ;
50 end
51 i f n==1
52 B(n+1)=(K3/3∗b+d e l t a ) /(K1−(K1+K2+2∗K4) ∗n+K3∗(1/K1∗F1(n

+1)+n/3)−n∗(n+1)∗K4) ;
53 else
54 B(n+1)=K3/3∗b/(K1−(K1+K2+2∗K4) ∗n+K3∗(1/K1∗F1(n+1)+n/3)

−n∗(n+1)∗K4) ;
55 end
56 E(n+1)=F1(n+1)∗B(n+1)+F2(n+1) ;
57 end
58

59

60

61 y max=fzero (@yMaxRoot , z max ) ;
62 y step=y max/AmountOfPoints ;
63 y=1: y s tep : y max ;
64

65 % Get t ing WTilde , WTildePrim and WTildeBiss
66 [ WTilde WTildePrim WTildeBiss ] = WTildeFunc ( y ) ;
67

68 % Get t ing z , W, WPrim and WBiss
69 [ W, WPrim, WBiss , z ] = Wfunc( WTilde , WTildePrim , WTildeBiss ,

y ) ;
70

71 % C a l c u l a t i n g the opt imal c o n t r o l s .
72 k1 = alpha−r−sigma∗ eta ∗ rho ;
73 c s t a r=zeros (1 , length ( z ) ) ;
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74 p i s t a r=zeros (1 , length ( z ) ) ;
75

76 c s t a r = 1 . / ( z .∗WPrim) ;
77 const1= ones (1 , length ( z ) ) ∗ eta ∗ rho/sigma ;
78 p i s t a r = const1 −((k1∗WPrim) . / ( sigma ˆ2∗ z .∗WBiss ) ) ;
79

80 end

1 function [ W, WPrim, WBiss z ] = Wfunc( WTilde , WTildePrim ,
WTildeBiss , y )

2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This f u n c t i o n i s used f o r
4 % trans forming WTilde to W.
5 % Returns W, WPrim and WBiss
6 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
7

8 % WTilde i s the transformed v e r s i o n o f the v a l u e f u n c t i o n
9 % WTildePrim i s the f i r s t d e r i v a t i v e o f WTilde ( e x p r e s s e d as a

s e r i e s )
10 % WTildeBiss i s the second d e r i v a t i v e o f WTilde ( a l s o e x p r e s s e d as

a s e r i e s )
11

12 z=y . ˆ 2 . ∗WTildePrim ;
13 W=WTilde+y .∗WTildePrim ;
14 WPrim=1./y ;
15 WBiss=−1./(y . ˆ 4 . ∗WTildeBiss+2∗y . ˆ 3 . ∗WTildePrim ) ;
16 end

1 function [ WTilde , WTildePrim , WTildeBiss ] = WTildeFunc ( y )
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This f u n c t i o n i s used f o r
4 % e x p r e s s i n g WTilde ,
5 % WTildePrim and WTildeBiss .
6 % Returns WTilde , WTildePrim
7 % and WTildeBiss
8 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
9

10 % y i s the v a r i a b l e on which WTilde depends
11

12 global K1 B N;
13

14 sum1=zeros (1 , length ( y ) ) ;
15 sum2=zeros (1 , length ( y ) ) ;
16 sum3=zeros (1 , length ( y ) ) ;
17 for j =1: length ( y ) ;
18 for i =1:N−1;
19 sum1( j ) = sum1( j ) + B( i +1)∗y ( j )ˆ(− i ) ;
20 sum2( j ) = sum2( j ) + i ∗B( i +1)∗y ( j )ˆ(− i −1) ;
21 sum3( j ) = sum3( j ) + i ∗( i +1)∗B( i +1)∗y ( j )ˆ(− i −2) ;
22 end
23 end
24

25 WTilde=−1/K1∗ log ( y )+B(1)+sum1 ;
26 WTildePrim=−1./K1. / y−sum2 ;
27 WTildeBiss=1/K1. / y.ˆ2+sum3 ;
28
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29 end

1 function zeroPo int = yMaxRoot ( y max )
2 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3 % This f u n c t i o n r e t u r n s a v a l u e
4 % t h a t i s 0 on ly i f the v a r i a b l e
5 % y max corresponds to the v a l u e
6 % o f y which w i l l l a t e r re turn
7 % z max .
8 % Returns zeroPoint
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 % y max i s the maximum v a l u e o f the v a r i a b l e y
12

13 global z max B N K1 ;
14 sum=0;
15 for i =1:N−1
16 sum = sum + i ∗B( i +1)∗y maxˆ(1− i ) ;
17 end
18 zeroPo int=z max+y max/K1+sum ;
19 end
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Appendix B

Solving tridiagonal matrices

In this section we describe the algorithm that is used for solving the system of linear equations
when the matrix is tridiagonal.

a1 b1 0
c1 a2 b2

c2 a3
. . .

. . .
. . . bn−1

0 cn−1 an




x1

x2

x3

...
xn

 =


d1

d2

d3

...
dn

 (B.1)

The concept of the algorithm is to modify the coefficients

c′1 =
c1
b1
, d′1 =

d1

b1

c′i =
ci

bi − c′i−1ai
, i = 2,3,...,n− 1

d′i =
di − d′i−1ai

bi − c′i−1ai

this is the so-called forward sweep. Then we obtain the solution by doing a backwards
substitution:

xn = d′n, xi = d′i − c′ixi+1, i = n− 1,n− 2,...,1

The advantage of this method is that it only takes O(n) operations to solve (B.1) rather than
O(n3) operations when using ordinary Gaussian elimination.
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Appendix C

Additional plots for Markov
chain approach

In this appendix some additional plots from the Markov chain approach are presented. The
plots show how the value function and optimal controls behave for small z. Since this region
is not of interest, this part has been removed from the plots presented in the report. In the
beginning of the value function shown in figure C.1, a small change of slope can be seen. This
deviant part has major impact on the optimal controls, shown in figure C.2 and C.3, which
heavily depend on derivatives of the value function.

Figure C.1: The value function F(z) when the problematic region is included. Note the
instability in the beginning.
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Figure C.2: The optimal consumption becomes unstable.

Figure C.3: The optimal risky investment becomes very unstable.
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