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Abstract

The use of pulse oximetry in measuring heart rates is well established. In this
project the technique is applied in conjunction with a simple FFT (Fast Fourier
Transform) treatment to the measuring of heart rates on swimmers using the
MORES sensor developed by CiS Forschungsinstitut für Mikrosensorik und Photo-
voltaik GmbH in Erfurt. Movement data is collected from an IMU (Inertial Mea-
surement Unit) and fused using a complementary filter. It is found that due to the
high noise ratio, poor performance of supporting hardware and immaturity of the
oximetry sensor that the heart rate measurement gave unsatisfactory results. The
IMU gives the expected data and the fusing algorithms perform as intended. Inte-
gration of accelerometer data for the acquisition of velocity and position is proven
not to work.
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1 Introduction

The sport of swimming is mainly one of endurance. As in many such sports, it is of great
interest to monitor heart rate and the way it changes over time. There is currently a lack
of systems capable of doing so in a manner which is minimally intrusive to the swimmer.

Most commercially available heart rate monitors (HRMs) are of the type presented in
figure 1.1. These are designed for use in running or cycling or other land-based sports.
They pose severa disadvantages when used in conjunction with water. The main one is
the fact that the elastic band of the chest strap deteriorates very quickly when exposed
to water. Because of this the strap loses its elasticity, which in turn magnifies the second
issue: Friction from the water. The drag force exerted by the water on the chest strap
during swimming is many times larger than the corresponding force in air. This causes
the chest strap to ride down during motion. On female swimmers this issue can be
resolved temporarily by threading the chest strap through the straps of the swim suit.
For male swimmers this is not a viable solution. This results in poor signal quality in
the measuring unit on the chest strap. The noise in the measurement and the poor
communication between the chest strap and wrist unit when placed in water cause the
calculated heart rate from the device to be of very poor accuracy.

Another available system is the Freelap system [5] which utilizes magnetic commu-
nication to transfer data from a measurement device similar to that in figure 1.1 to a
device held by the coach. In this device most of the signal processing occurs. This yields
an accurate signal to the coach in real time. The system also provides lap times to the
coach. The downsides to this system are several. The solution with a chest-strap is not
ideal, even with the neck-strap added to the Freelap. The elasticity still deteriorates and
the neck strap can be found uncomfortable to the swimmer. Any object placed near the
shoulder or neck has the potential of very uncomfortable chafing. Another disadvantage
is that the system contains many parts, each sold separately. This makes the system
inaccessible to people who are not members of a swim team, or to teams with limited
resources. Because of the magnetic communication, ingenious in many ways, it is also
not very useful for open water swimmers du to a lack of suitable structures for mounting
the magnetic rods required for the communcation. When swimming in a pool the rods
are typically mounted on the wall on a short side of the pool.

In recent years there has been an upswing in interest for exercise and health. As a
result, there is also an increased interest in monitoring vital signs and activity during
rest and exercise. There are several solutions for land-based activity, many of which
utilises accelerometers, gyroscopes and heart rate monitoring. However, water has so far
proved difficult to handle. There is also the restriction of the monitor being wearable,
comfortable and fairly small.

These factors pose the question of whether it would be possible to build a heart rate
monitoring device for swimmers which does not use the chest strap solution, but rather
some other method for heart rate detection. To make it comparable to the Freelap system
in usability it would also be beneficial if it was possible to give lap times or something
similar.

Another set of data which could be of interest to the swimmer and coach is the
acceleration during a lap. From this it should be possible to extract changes in velocity
during a lap or race. A small study on the topic was performed by Stamm et. al [6], where
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Figure 1.1: Photo of a commercially available HRM [1]
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data from an accelerometer was compared to simultaneous data from a velocimeter. This
project is, however, not practically applicable due to the short measurement times used.

There have been attempts at designing a motion display system using wristwatch-style
sensors[7]. These systems are able to determine the stroke rate and style of the swimmer,
but are prone to noise in determining overall characteristics of the swim. The motion
analysis intended for this project is more focused on broader trends than the movoment
in an individual stroke.

1.1 Problem formulation

The problem consists of producing a device for measuring heart rate and motion on a
swimmer without constraining or impacting the motion of the swimmer. The signals from
the measurements are to be processed into a meaningful format. Furthermore, a motion
tracking device for acquisition of acceleration data should be included in the system.

1.2 Scope

The project was carried out as a proof of concept. Accordingly, the focus is on proving
the viability of the chosen design, rather than optimising performance. This means that
some parts had to be realised in a purely make it work mindset. Furthermore; existing
and simplifying software and hardware was used whenever possible.
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2 Theory

In this section the relevant theory will be outlined. Initially there will be brief sections on
optical properties of tissue and oximetry. Thereafter basic introduction to the theory and
treatment of rotations will be given. Lastly there will be a section on the acquisition and
treatment of IMU (Inertial Measurement Unit) sensor data and a few notes on numerical
integration.

2.1 Optical properties of human tissue

The tissues near the surface of the human body can be divided into several types such
as skin, muscle, blood vessels and more. Each of these have a different set of optical
properties. It has been observed in experiments that there is a window in the red and
IR parts of the electromagnetic spectrum where the transmittance of light is significantly
higher than for other wavelengths. This is called the near infra-red window, or NIR-
window.

There are a number of methods for calculating the exact position of the NIR window.
Their accuracy varies depending on the location on the body and the composition of the
tissue. They also give slightly different results. One estimation is that the NIR window is
in the region 650−900nm [8]. This is based on the absorption coefficients of haemoglobin
and water.

2.2 Pulse Oximetry

Pulse oximetry is a reliable and robust method of measuring the oxygenation of a patient’s
blood. It is based on the different behaviours of the optical properties of oxygenated
and non-oxygenated haemoglobin. By measuring the transmittance or reflectance of the
blood vessels at two different wave-lengths it is possible to calculate the concentration of
oxygenated blood. Common sites for transmittance oximetry is the fingertip or earlobe,
in which case a clamp is used. Such a sensor is shown in figure 2.2

It is of importance to have a sampling frequency orders of magnitude larger than the
highest expected heartbeat due to a combination of the Nyquist criterion for sampling
frequencies and the appearance of the signal. A typical expected signal would have
several sharp peaks in the span of a single heart beat. Since both light sources have to
be used in the space of one heartbeat and be able to capture the relatively narrow peak
of oxygenated blood in the arteries during the same measurement cycle it is common to
over compensate and use sampling frequencies in the order of 1kHz [9].

The two light sources are commonly chosen to be in the NIR window while still
coinciding with peaks in the optical properties of haemoglobin. The absorption coefficient
of haemoglobin (Hb) and oxygenated haemoglobin (HbO2) are shown in figure 2.3. Hb
has a local minimum in absorption around 740nm [3]. The location of this minimum
is fairly sharp. HbO2 has a deep minimum in absorption between 650 − 720nm. The
appearance of this minimum is broader than that of the Hb minimum. At 800nm the
absorption is roughly the same, see figure 2.3[3].

The MORES sensors used in this project use the wavelengths 760nm and 905nm.
This coincides with the narrow peak in absorption for Hb, where the absorption by Hb



2.2 Pulse Oximetry 5

Figure 2.2: Photo of a pulse oximeter on a patients finger [2]
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is higher than that by HbO2, and a region where the situation is reversed. Assuming the
inverted conditions are true for the reflection of light by the two substances means that
it is possible to find the oxygenation using such a system.

2.3 Rotations

In order to describe the rotation of a coordinate system it is necessary to introduce two
separate frames of reference: The Earth frame and the Body frame. The Earth frame is
an inertial system and fixed to the Earth coordinate axes. The Body frame is fixed to
the object of interest.

2.3.1 Euler’s rotation theorem

Euler’s rotation theorem states that any series of displacements of a three dimensional
body through which some point of the body remains fixed can be represented as a single
rotation around some axis through that point. From this follows that any product of
rotational matrices is itself a rotational matrix[10].

2.3.2 Euler Angles

A common way of representing the rotation of a body is the Euler angles ϕ, θ, ψ. These
are frequently referred to as roll, pitch and yaw respectively. The explanation for this
naming convention lies in their connection to the attitude of an aeroplane.

Figure 2.4: Illustration of the Euler angles as used in aerospace engineering and this project
[4]

It is important to note that rotations do not commute. Because of this it is important
to decide on an order in which the series of rotations take place. In this project the order
XY Z was used. That is: first roll, then pitch, then yaw.
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2.3.3 Gimbal lock

In the Euler angle representation of orientation there is an inherent problem which arises
from the fact that the angles are not uniquely defined for certain rotations. This is known
as Gimbal lock [11]. This is due to the intervals in which the Euler angles are measured.
The angles are typically measured in the intervals ϕ ∈ [−π,π], θ ∈ [−π

2
,π
2
] and ψ ∈ [−π.π],

which makes it possible to represent any orientation without redundancy. Gimbal lock
occurs when the denominator in (2.12) or (2.13) approaches zero due to the nature of the
tangent function. Each pair of numerator and denominator may represent two angles,
except for the cases when the tangent function approaches ±∞.

2.3.4 Quaternions

Another way of representing rotation, used in certain areas of computational science, is
the quaternion. A quaternion can be called a coordinate vector with four elements rather
than three. They are useful in many areas of physics, for example relativity theory[12].

In the case of Euler’s rotation theorem one way of representing a rotation is by the
quaternion q = [q0; q1; q2; q3]. In this representation

q0 = cos
θ

2
(2.1)

[q1; q2; q3] =sin
θ

2
· ê (2.2)

This simplifies certain operations in linear algebra and is a compact form of containing
the variables. The roll, pitch and yaw angles can be derived from (2.2) depending on the
order of rotations. [13]

2.3.5 Rotational matrices

To transform the measured results from a sensor in the Body frame to Earth frame
quantities it is necessary to transform the coordinates. This can be done by applying
rotational matrices. In this representation of rotational systems it is assumed that a
rotation is positive if it follows the right-hand rule. This means that if a rotation is seen
as counter-clockwise (mathematically positive) when looking from the positive end of a
coordinate axis it is positive.

The rotations around the unit vectors are then represented by the matrices Rx, Ry, Rz

according to
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Rx(ϕ) =

1 0 0
0 cosϕ sinϕ
0 − sinϕ cosϕ

 (2.3)

Ry(θ) =

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 (2.4)

Rz(ψ) =

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.5)

In order to obtain the transformational matrix for a rotation from the Body frame
to the Earth frame the angles and order of rotations are reversed. This means that
if the rotation from the Earth frame to the Body frame is RB

I = RXY Z(θ, ϕ, ψ) =
RX(ϕ)RY (θ)RZ(ψ) then the rotation from the Body frame to the Earth frame is RI

B =
RZY X(−θ,−ϕ,−ψ) = RZ(−ψ)RY (−θ)RX(−ϕ)

RI
B = RZY X(−ϕ,−θ,−ψ) = RZ(−ψ)RY (−θ)RX(−ϕ) = cos(−ψ) sin(−ψ) 0
− sin(−ψ) cos(−ψ) 0

0 0 1

cos(−θ) 0 − sin(−θ)
0 1 0

sin(−θ) 0 cos(−θ)

1 0 0
0 cos(−ϕ) sin(−ϕ)
0 − sin(−ϕ) cos(−ϕ)

 =

 cos(−ψ) sin(−ψ) 0
− sin(−ψ) cos(−ψ) 0

0 0 1

cos θ sin θ sinϕ − sin θ cosϕ
0 cosϕ sinϕ

sin θ − cos θ sinϕ cos θ cosϕ

 (2.6a)

 cosψ cos θ cosψ sin θ sinϕ+ sinψ cosϕ − cosψ sin θ cosϕ+ sinψ sinϕ
− sinψ cos θ − sinψ sin θ sinϕ+ cosψ cosϕ sinψ sin θ cosϕ+ cosψ sinϕ

sin θ − cos θ sinϕ cos θ cosϕ


(2.6b)

RB
I = RXY Z(ϕ,θ,ψ) = RX(ϕ)RY (θ)RZ(ψ) =1 0 0

0 cosϕ sinϕ
0 − sinϕ cosϕ

cos θ 0 − sin θ
0 1 0

sin θ 0 cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1


 cos θ 0 sin θ

sinϕ sin θ cosϕ − sinϕ cos θ
− cosϕ sin θ sinϕ cosϕ cos θ

 cosψ sinψ 0
− sinψ cosψ 0

0 0 1

 (2.7a)

 cos θ cosψ − cos θ sinψ sin θ
sinϕ sin θ cosψ + cosϕ sinψ − sinϕ sin θ sinψ + cosϕ cosψ − sinϕ cos θ
− cosϕ sin θ cosψ + sinϕ sinψ cosϕ sin θ sinψ + sinϕ cosψ cosϕ cos θ


(2.7b)
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2.4 Accelerometers

The accelerometer is a common device used to measure the movement of an object.
Conceptually they function by measuring the forces acting on a spring damped mass.
This provides the acceleration of the sensor, from which the velocity and position at any
given point can be obtained using Newtons equations of motion.

Accelerometers are widely used because of their lack of a tendency to drift over time.
They are highly sensitive to any perturbations in movement. This also makes them prone
to noise.

The extraction of the angle of gravity from accelerometer data can be derived as
follows.

Assuming gravity to be the only force acting on the accelerometer and the rotation of
the Body frame coordinate system to be given by (2.7b) we have that

−→
G =

Gx

Gy

Gz

 = RB
I
−→g = RB

I

0
0
1

 (2.8)

where
−→
G is the measurement from the accelerometer in the Body frame and −→g is the

gravity vector in the Earth frame in units of g. Carrying out the calculations in (2.8) we
have

−→
G =

 sin θ
− sinϕ cos θ
cosϕ cos θ

 (2.9)

⇔

1√
G2
x +G2

y +G2
z

Gx

Gy

Gx

 =

 sin θ
− sinϕ cos θ
cosϕ cos θ

 (2.10)

(2.11)

From this it is possible to extract the roll and pitch angles are given by [11]

tanϕ =
Gy

Gz

(2.12)

tan θ =
−Gx√
G2
y +G2

z

(2.13)

It is obvious that ϕ is undefined for Gx = 0. However, we know that if this is the
case the xy-plane is parallel to gravity, and that the roll angle is ±π

2
. A similar argument

can be applied to θ to take care of these special cases. It is, however, extremely unlikely
that the accelerometer should ever measure Gx = 0. Another issue is that the tangent
function is not bijective. Several input angles give the same value of the tangent. Because
of this, the tan−1 function is normally defined in the [±π

2
] range. In order to obtain the

full range of rotations, [π, − π], it is necessary to take the quadrant into account. This
is done in most programming languages by using the arctan2 function, which takes the
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signs of the numerator and denominator into account to determine the proper quadrant
of the output angle.

The integration of acceleration to obtain velocity is straightforward in theory, but is
infamous for its tendency to drift and give unreasonable values. It is typically only a useful
approach if the measurement period is very short. This is due to the error propagation
of any small offset in the data.

2.5 Gyroscopes

Gyroscopes are used to measure the angular velocity of an object. By the standard
equations of motion in solid mechanics they are governed by equation (2.14) where θ̇ is
the vector of angular velocities Ω = [ωx, ωy, ωz] measured by the gyroscope.

θ̇ =
d

dt
θ (2.14)

In theory, this equation should be integrated in time in order to obtain the rotation
of the body fixed system of coordinates. However: in practice this is rarely desirable due
to the error propagation through the integration operation. Integration will cause the
errors to accumulate over time.

Suppose the signal from the gyroscope can be represented by (2.15) where Ωε is the
signal from the gyroscope, Ω is the actual angular velocity in the inertial frame and u,b
are constant and time-dependent errors.

Ωε = Ω + u(t) + b (2.15)

If (2.15) is integrated the errors become more significant the longer the timespan
used in the measurement, since the same error is introduced in each time-step. This
phenomenon is called gyro drift and can introduce significant errors in the estimate of
the orientation of the object.

While the gyro drift makes the gyroscope unreliable over time, it has a much lower
propensity for errors than the accelerometer. This is due to the gyroscope being generally
less noisy than the accelerometer.

2.6 Fusing accelerometer and gyroscope data

In the above sections where accelerometers and gyroscopes are discussed it was mentioned
that the attitude estimation from the accelerometer is noisy and error prone for short
times while reliable over time. The opposite is true for the gyroscope. These features are
well known and one of the reasons for the development of 6-axis IMU´s.

There are many algorithms to fuse the data from the two sensors which can be im-
plemented. Two of the more common ones are the Kalman filter and the Complimentary
filter.

The Kalman filter is an iterative algorithm where the errors introduced by the gyro-
scope are expressed in error covariance matrices which are used to calculate a quantity
known as the Kalman gain. The algorithm is based on a quaternion representation of
the attitude of the coordinate system, and is highly accurate. However, it requires a firm
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calibration of the sensors to know the error covariance matrices and a sophisticated model
of the problem at hand.

There are variations of the Kalman filter where the error covariance matrices are
set to constant values. This is done in part to simplify the calculations, but also to
eliminate a significant amount of linear algebra. In one example of the Kalman filter
where data from a magnetometer was used alongside the accelerometer and gyroscope it
was estimated that 60% of the operations could be eliminated using this method. It also
allowed significant gains in the computational efficiency. [13]

The Complimentary filter is more hands on in its design. It consists of a high-pass
filter for the gyroscope data and a low-pass filter for the accelerometer data. These filters
can vary in their complexity and design. The data points are then used to form a weighted
sum which estimates the actual value of the quantity of interest.

The Complimentary filter is possible to implement as hardware, in which case the
filters being constructed so that their cut-off frequencies are the same simplify the cal-
culations significantly. For the purposes of this project it was not feasible to construct a
hardware high-pass filter for some of the data and a low-pass filter for the rest because
of the nature of the wiring of the I2C connection. Therefore the data had to be filtered
using computer algorithms.

As with hardware filters there are a multitude of ways of implementing software fil-
tering of data. One of the simplest low-pass filters is the smoothing function. It can be
implemented as in (2.16) where α ∈ [0,1] is the weighting constant, index n indicates the
time-step and f indicates a filtered value [14].

fn,f = α · fn + (1− α) · fn−1,f (2.16)

As evident by (2.16) the smoothing function is merely a method of updating the
quantity by only a fraction of its measured value added to its previous value. This gives
any rapid fluctuations less impact while still following the overall trend of the signal. For
the purpose of filtering accelerometer data for human motion detection this is sufficient.

The Complementary filter in itself will introduce a high-pass filter to the gyroscope
signal by correcting it with the low-pass filtered signal from the accelerometer.

The following is a short overview of the classical complementary filter described by
Mahoney et. al in [14].

If the signal can be represented by

ẋ = u (2.17)

yx = L(s)x+ µx (2.18)

yu = u+ µu + b(t) (2.19)

where L(s) is a low pass filter, µ and b errors with different characteristics introduced
by the sensors. In order to obtain an estimate x̂ for the signal x it is necessary to fuse
the signals y. This can be done using the complementary filter

x̂ = F1(s)yx + F2(s)
yu
s

(2.20)

F1(s) + F2(s) = 1
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The complementary condition ensures that the cross over frequencies of the filters are
the same. The most common form of the complimentary filter is given by

˙̂x = yu + k(yx − x̂) (2.21)

In the case of fusing IMU data this can be rewritten as

φ(t) = αφg(t) + (1− α)(φa(t)) (2.22)

where α is some weight, φg is the angle obtained by the gyroscope data according to
φg(t) = φ(t − 1) + φ̇g(t)dt and φa is the angle obtained according to (2.13) and (2.12).
This represents a case where the gyroscope data is used for the larger part of the angle,
but the results are corrected using the data from the accelerometer to avoid gyro drift.
This is considered a basic case of the complimentary filter, but is commonly accurate
enough for use in model aeroplanes and similar systems.

2.7 A few notes on numerical integration

It is common knowledge that the integral of a function can be said to represent the area
of the space between the curve and the x-axis. Issues arise when this operation is to be
performed numerically since it is not possible to use the approach of finding the primitive
function for a signal.

There are several ways of approximating the numerical integral of a function. Classic
examples are the forward Euler method and the backward Euler method, both of which
rely on the use of rectangles with height f(x) and width dx to calculate the integral at
each point. There are differences between the two, and for a more thorough explanation
see for example Chapter 4 of Numerical Recipes [15].

In this project a very simplistic approach was used. Since the signal is extrapolated
from discrete measurement points by linear functions across each time-step it is straight-
forward to formulate an algorithm so that the integral I of a function f(x) is given by

I(i) = I(i− 1) + f(xi)dxi +
1

2
(f(xi−1)− f(xi))dxi (2.23)

where the x-axis is represented by discrete steps i and dx may have uneven spacing
and dxi = xi − xi−1.
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3 Method

This section outlines the hardware used, the principles of the casing, and the software
employed for controlling the device and processing the resulting signals.

3.1 Hardware

The hardware for the project is based on the following components.

• Arduino Yún Micro controller Platform

• MPU9150 9-axis MEMS Motion Tracking Device

• MORES in-ear optical heart-rate measuring sensor

• MicroSD card for data storage

• Battery

3.1.1 Arduino Yún Microcontroller Platform

The Arduino system was chosen in part because of its simplified C-based programming
environment, and partially because of the open-source community surrounding it. These
factors made it possible to focus on the novel aspects of the project rather than reinventing
something already done by someone else. It also means that there is existing software
controlling the accelerometer unit. The Yún variant was selected because it has a built-in
MicroSD unit, WiFi compatibility which proved very useful in developing the software
and a relatively small footprint. The downside to using an Arduino system is that the
microprocessor has a comparatively small amount of flash storage, putting constraints on
the complexity of the code used to control the device. The communication to the SD
card is very slow, which is not ideal.

The choice of the Arduino platform was adhered to since the time constraints were
such that it was deemed ill-advised to change systems in the middle of the project.

3.1.2 MPU9150 9-axis MEMS MotionTracking Device

This IC-unit by Invensense has the capability to use an accelerometer, a gyroscope and
a magnetometer to track the motion of a body [16]. In this case it was used to track the
linear acceleration of the swimmer. This particular unit was chosen since it incorporates
the three most used detectors for motion in one unit. This simplifies accurate tracking.
The magnetometer may in some cases be of limited use, since it is easily perturbed by
the presence of magnetic materials, such as iron. This is disadvantageous since most
swimming pools are man-made and therefore reinforced with iron or steel. Despite this
the 9-axis IMU was chosen and the magnetometer data ignored in the data fusing.
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(a) The MORES sensor (b) The MORES sensor and otoplastic

Figure 3.5: The MORES sensor with and without otoplastic.

3.1.3 MORES in-ear optical heart-rate measuring sensor

In-ear detection of heart rate was chosen in order to eliminate the chest strap or other
foreign objects placed on the swimmers body. The ear-piece can be directly wired to the
rest of the electronics if they are placed on the back of the head, thus eliminating the need
for wireless communication. The sensors are delivered with an otoplastic for securing it
in the ear. For optimal signal it is important to use an individually moulded otoplastic.
For this project it was decided that the use of generic otoplastics of different sizes would
be adequate to prove the validity of the concept. The sensor is shown in figure 3.5, in
figure 3.5a alone and in figure 3.5b mounted on an otoplastic.

The MORES system consists of two LEDs emitting light at 760 and 905 nm. This
light is then reflected on the tissue of the ear canal. This tissue changes its reflectivity
depending on the oxygen level in the blood. The reflected light is measured by a photo
diode (PD). The sensor part is called MORES and is developed separately by the same
group at Cis Forschungsinstitut Fuer Mikrosensorik Und Photovoltaik which developed
the MORES system [17; 18; 19; 20]. The group also holds a number of patents on the
technology [21; 22; 23; 24]

3.2 Design of the casing

The decision of the positioning of the controlling electronics on the swimmer was made by
elimination. After researching a number of different methods of measuring human heart
rates it was found that in-ear systems would be an interesting area to explore. Since these
require wiring in order to be useful it became necessary to take these wires into account.
The wires would produce drag and interfere with the swimmers movement unless made
elastic and glued to the swimmers skin if the electronics were placed far away. Positions
near the head include the back of the head and the nape of the neck. Both these locations
are possible choices. When looking at fastening solutions it became apparent that the
nape of the neck is a difficult location for various reasons. But for fastening something
to the head there is already a part of the standard equipment for a swimmer available:
the swim cap. If the cap is used as a fastening mechanism, it would reduce the number
of foreign or obstructing objects introduced. In addition to placing the device under a
swim cap, it was designed so that it could be fastened to a goggle strap.
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The 3D-printing technology used to manufacture this version of casing is notorious
for instability. Due to this, and insecurities about the plastic used in the printing and its
mechanical properties a second option was devised.

The second method consisted of wrapping the device in several layers of plastic. In
this version of sealing the magnetic circuit breaker employed for the 3D-printed case
was omitted from the circuit since it was possible to connect and disconnect the bat-
tery without breaking the seal, thus ensuring dry conditions for the electronics. This
method makes it impossible to use the MORES sensor, but was deemed viable for the
accelerometer measurements.

3.3 Software

The software can be seen as two separate parts: Controlling the MCU and signal pro-
cessing.

3.3.1 Controlling the MCU

The code for controlling the MCU is written in the Arduino language, derived from the
Processing language. This simplifies the development because of the higher-level syntax
which may be used. When using other systems this coding would have been done in either
C or Assembler, which would have posed a hindrance because of their distance from the
way a human user thinks.

This part of the software has two tasks:

1. Collecting data from the HR-sensors or MPU9150 at a constant frequency

2. Writing this data to the SD card

The controlling software was split so that measurements are performed either for heart
rate acquisition or accelerometer data acquisition. This was done so that the measurement
frequency could be increased in both cases without the need of using a different processor
with more RAM.

For collecting data from the MPU9150 a software library shared under Open Source
licensing was used [25]. Using this library it was possible to gather raw data from the
unit. This data was later processed in the signal processing part of the code.

The speed of the data acquisition was limited by the slow communication between the
ATmega32u4 processor controlling the Arduino and input/output pins and the Atheros
AR9331 controlling the SD-card unit. Since the heart rate of a human is not a sine wave
it is necessary to oversample the signal quite a lot in order to catch the spikes in the
pulse signal. By utilizing the fact that the writing speed per byte for the SD-card peaks
at 512 byte per block due to the way the protocol is constructed the writing frequency
to storage was optimised for speed. In the data files generated by this program one set
is 80 byte.

Another limiting factor is the lack of RAM on the Arduino board. This problem is
difficult to work around since strings are known for consuming a lot of data, and the
numbers consume some as well. All in all the 1 kB of RAM would be insufficient for
writing in chunks of 512 byte.
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The write() function in the Arduino language is used so that the system only writes
to the SD card when it is deemed efficient by the programmer. The function works by
only writing when the file is closed or flushed, rather than every time the function is
called like the print() function.

The data acquisition from the IMU was done at 40Hz. This was chosen since it was
achievable using the arduino while still clearing the RAM in every write cycle. This is
paramount for long-time stability.

The heart rate data could be acquired at a higher frequency because it contains only
one data point and one time stamp for each measurement. This also means that more
data points can be written to the SD card in each call to the write() function.

3.3.2 Signal processing

The signal processing on the heart rate signal was performed using a simple FFT (Fast
Fourier Transform) program and a band-pass filter. The signal was split into segments,
making it possible to trace the change in the heart rate.

The IMU signal was processed using the complementary filter presented in (2.22). This
was chosen over the more complex Kalman filter for the reason of simplicity, particularly
concerning the calibration and extensive knowledge of the IMU sensor required for the
functionality of the filter. Since the project is primarily formulated as a proof of concept
rather than research on suitable filtering methods for accelerometer data the algorithm
which was easier to implement was deemed more suitable for the cause. The simplistic
version of the complimentary filter chosen was selected for the same reasons, since it is
accurate enough for keeping track of the direction of the gravity-vector.

Before the application of the complementary filter the accelerometer data was filtered
using a simple low-pass filter. The problem of Gimbal Lock was circumvented by using
the arctan2 function, which takes the quadrant of the answer into consideration and thus
can give any angle in the ±π range as an answer, of the numpy library in Python.

3.4 Testing

The first testing stage was under lab conditions. The heart rate monitoring was tested on a
test person sitting still, while the accelerometer data processing was tested by performing
a series of set movements and verifying the accuracy of the processing.

The second stage was testing in water using the 3D-printed casing. This was done to
see whether the movement increased the inaccuracy of the measurements.
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4 Electronic Circuitry

For simplicity with the form factor of the Arduino Yún an Arduino Protoshield, a mostly
empty circuit board wired and sold for the simplification of connection of circuits to
Arduino boards, was used for building the circuit used. Since this board has pin distances
and pre-drilled holes for connecting to and enabling proper mounting of the Arduino board
to a container this simplified the design process somewhat. A different option would have
been to etch a custom board for this particular circuit. This would, however, have added
unnecessary complications to the process.

Additional circuitry for the accelerometer IC was not necessary, since it was already
placed on a breakout board. Therefore it was only a question of selecting appropriate
pins for INT, SCL and SDA. The power was supplied from the 3.3V pin on the Arduino.

The MORES device was connected to a transimpedance amplifier, which was then fed
into an inverting amplifier. Both of these amplifiers were built on the CA3420EZ oper-
ational amplifier. The amplifiers were supplied with a ±5 V supply. This was obtained
by connecting a 7.4V battery to a 7805 voltage regulator to obtain a 5V signal. The
output from this was then fed into an LTC1046 IC which converted it to a −5V signal.
The photo diode was reverse biased at 5V by connecting its anode to the transimpedance
amplifiers negative input, with the positive being grounded, and the cathode to the 5V
supply. The amplifying circuit is shown in figure 4.7

Figure 4.6: Eagle schematic for the entire circuit board

The LEDs of the MORES were forward biased using output pins from the Arduino.
Since these are at 5V it was necessary to build voltage dividers. By using different pins
and different dividers it was made possible to choose which LED to use.

The power to the circuit was supplied from a 7.4V 2200mAh Li-ion battery. The
supply was regulated to 5V by a 7805 voltage regulator. The power was controlled by
a magnetic switch. The choice of the magnetic switch was made to enable a watertight
casing which would not need to be opened in order to disconnect the battery.

The completed circuit is presented in figure 4.8. Here, the device is wired for sealing
using a plastic bag, thus the magnetic circuit breaker is not included. If the 3D-printed
case was to be used the circuit breaker would have been placed in the location of the white
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Figure 4.7: Schematic for the amplifying circuit. The resistors and capacitances were tuned
to the application so that R2 = 56kΩ, R3 = 1kΩ, R4 = 10kΩ, C1 = C2 = 33pF

electrical tape. The x- and y-axes for the accelerometer and gyroscope are included. The
z-axis is given by the right-hand rule.

Figure 4.8: The finished device without battery. The coordinate axes shown are for the
accelerometer and gyroscope.
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5 Software

This section outlines the principles of the controlling and signal processing softwares.

5.1 Arduino Program

The Arduino boards are programmed in an IDE provided open-source. The language is
based on C++ and most of the common packages are provided in the Arduino IDE. The
syntax is the same as in C++.

The acquisition of data was performed using separate programs for accelerometer and
heart rate data. This allowed the heart rate data to be probed at a frequency deemed
appropriate for the signal. This frequency was set at 50Hz.

In order to speed up the writing to the SD card the write() function was chosen in
favour of the print() function for the FileSystem class. This choice was made because
of the increased efficiency of the write() function. In both cases this was combined with
only opening the file in those iterations of the main loop where there was a sufficient
amount of data stored to maximise the efficiency of the writing without there being so
much data that the processor was hindered from fully functioning.

For reading the data from the accelerometer a software library developed specifically
for that purpose was used [25]. A timer was used to provide as even timesteps as possible.
However, due to the low performance of the Arduino MCU it was not possible to place
the data acquisition in the timer function. It was instead used to set a marker which was
then controlled in the main function and used as a signal to use a measuring function in
which the data was acquired and pushed to the FIFO-queue. The FIFO was then purged
in the main function, which also handled the writing to the SD-storage. Due to this there
were some irregularities in the measurement frequencies, but not to the extent that they
introduced errors if the proper set-up sequence was used.

Since the signal processing of heart rate data is more sensitive to using a regular
sampling frequency the acquisition of that data was controlled using a timer on the
MCU. The LED of choice was turned on before the acquisition and then turned off after
the signal is stored in a FIFO. This was deemed sufficient for the purpose of measuring
the heart rate.

5.2 Signal processing: Heart Rate

The heart rate signal was processed using the fft function of the numpy package. A
band pass filter was applied to investigate the viability of visually inspecting the signal
to quickly see the heart signal.

The heart rate signal was processed by using a simple blocking band-pass filter com-
posed by slightly smoothing of a superposition of step functions. An example of such a
filter is shown in figure 5.9. The filter was applied directly on the fourier transform of
the heart rate data by matrix multiplication.

Following the application of the filter the data was reconstructed to see that no im-
portant data was lost. Thereafter the signal is again fourier transformed. In the scope
of acquiring the heart rate the application of the fiter is redundant, since the same FFT
algorithm is used both ways, and therefore no additional knowledge may be gained by
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Figure 5.9: Transfer function for a simple band-pass filter with cutoff-frequencies at 0.4Hz
and 2.2Hz

5.3 Signal processing: IMU

The IMU data was treated using a smoothing function on the accelerometer data and
a complimentary filter for fusing it with gyroscope data. While the IMU is capable of
giving a magnetometer signal this was disregarded since the device was intended for
use in swimming pools. The steel reinforcements of the structure would have interfered
significantly with the magnetometer readings and given disturbances greater than the
contribution from the accurate data from the magnetometer to the accuracy. Because of
this the orientation is only treated in the roll and pitch angles.

While importing the data, normalization was performed so that the magnitude of the
first reading is 1g. In some cases it was necessary to truncate data in the beginning of
the measurement. This was determined on a case-by-case basis, with the decision based
on irregularities in the measured data as well as abnormalities in the length of the time
step. This type of abnormalities typically occured in the 20 first seconds or not at all.

The smoothing function was applied as (2.16) on each component of the accelerometer
data. An estimate of the orientation was given by (2.12) and (2.13).

Using the complimentary filter in (2.21) and rearranging the terms the following im-
plementation was found for fusing the data

θ̂n = βθ(θ̂n−1 + θ̇ndtn) + (1− βθ)θa,n (5.1)

Index n represents the time step, a signifies data from the accelerometer, θ̂ is the
estimate while θ̇ is the reading from the gyroscope. The same equation is valid for ϕ.

A safety mechanism checking the magnitude of the accelerometer data was put in



5.3 Signal processing: IMU 21

place. If gravity was not the dominant force, the orientation extracted from the accelerom-
eter data was disregarded and only the gyroscope component used. The break-point for
this criterion was placed at

√
G2
x +G2

y +G2
z > 1.5g

After finding the roll and pitch angles, the rotational matrices RI
B and RB

I were
computed. Since the yaw angle cannot be determined from the accelerometer data it was
not taken into consideration and (2.6a) was used with RZ(ψ = 0) = I. This was applied
to the acceleration data in every time step. Before rotating the acceleration to the inertial
frame the estimated gravity in the body frame was deducted, since it was not of interest
in this application.

During the calibration of the device it was desirable to see if gravity was captured
accurately by rotating the gravity vector to to the Body frame system according to (2.8).

The filter is tuned by finding a value of α so that the accelerometer signal is not overly
noisy. Thereafter values for βθ and βϕ are found so that the roll and pitch angles are zero
when no motion occurs.

Thereafter the corrected acceleration data is integrated using (2.23). If necessary the
acceleration is first put through a simple low-pass filter similar to (2.16).
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Figure 6.10: Photo of the device fastened under the swim cap of the test subject.

6 Experiments

The experiments were conducted both on dry land and in water. Following calibration
and set-up of the device a number of dry land tests were performed to test the IMU
performance. There were tests using both a constant orientation and rotations during
the measurement while the device was situated on a desk surface. There were also some
tests using a walking subject. Additionally there was testing of the MORES sensor
performance.

The sealing method was tested by encasing a weight in absorbent material and sub-
merging it for a prolonged period to investigate whether leaking occurred.

In the water the following distances were swum: 100m freestyle with flip turns, 4x25m
freestyle with progressive speed increases for each length, 4x25m freestyle with increase
in speed during each length, 100m individual medley with a very short rest between each
stroke. The device was fastened so that the xy-plane was parallel to the intended direction
of motion and the z-axis perpendicular to it.
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7 Results

In this section the results from the tests outlined in Experiments are presented.

7.1 Testing of Sealing method

It was found that the 3D-printed case was unable to provide a dry environment for the
device. The method utilising plastic bags and plastic films was able to do so and was
therefore used in the swimming tests.

7.2 Heart Rate Measurements

In figure 7.11 and 7.12 a band pass filter with cut-off frequencies at 0.4Hz and 2.2Hz was
used to illustrate the effect of a band-pass filter. Figures 7.13 , 7.14 and 7.15 show the
same data, but with the upper cut-off frequency moved to 4.5Hz which is more consistent
with human heart rates. Note that the double transformation has no effect on the FFT
data. The data was acquired on a subject sitting still in a chair.
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Figure 7.11: Processed and unprocessed data from the heart rate sensor
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Figure 7.12: Fourier transformed data before and after applying the band pass filter
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Figure 7.13: Processed and unprocessed data from the heart rate sensor
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Figure 7.14: Fourier transformed data before and after applying the band pass filter
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Figure 7.15: Fourier transformed data before and after applying the band pass filter in
addition to after double transformation
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7.3 Accelerometer Measurements

7.3.1 Rotating the device

The results presented in this section are from a test where the circuit was oriented in
different directions. Note how the raw accelerometer data lines up with the estimated
gravity, showing that the direction of gravity is correctly estimated. Also note the fluctu-
ating nature of the roll angle while gravity is in the x-direction. This is due to the arctan
function switching signs at ±π

2
. Further, note the unreasonable values for velocity and

position.
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Figure 7.16: Corrected Acceleration



7.3 Accelerometer Measurements 27

0 100 200 300 400 500
Time [s]

−4

−3

−2

−1

0

1

2

A
cc

e
le

ra
ti

o
n
 [

g
]

Corrected acceleration in the xy-plane

Figure 7.17: Corrected acceleration in the xy-plane
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Figure 7.18: Roll and pitch angles
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Figure 7.19: Velocity and position estimated by integrating accelerometer data
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Figure 7.20: Raw acceleration in the body frame and the estimated gravity in the body frame
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7.3.2 Walking test person

During this measurement set the device was first placed on a table during start-up and
then held in the hand of a walking test person. Figure 7.21 show the corrected accelerom-
eter data, while 7.22 show the sum of the x- and y-components of the data. The estimated
velocities and positions are presented in figures 7.24a and 7.24b. Figure 7.26 shows the
corrected accelerometer data after being passed through (2.16) with α = 0.95. Note the
noise in the corrected acceleration due to the high sensitivity of the accelerometer. Also,
again, note the errors in the estimation of velocity and position.
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Figure 7.21: Corrected acceleration by axis
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Figure 7.22: Corrected acceleration in the xy-plane
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Figure 7.23: Roll and pitch angles



7.3 Accelerometer Measurements 31

0 10 20 30 40 50 60 70
Time [s]

−20

−10

0

10

20

30

40

V
e
lo

ci
ty

 [
m

/s
]

Corrected velocity by axis

xy
x
y
z

(a) Estimated velocity

0 10 20 30 40 50 60 70
Time [s]

−400

−200

0

200

400

600

800

1000

1200

1400

Po
si

ti
o
n
 [

m
]

Estimated Position In the XY-plane

xy
x
y
z

(b) Estimated position

Figure 7.24: Velocity and position estimated by integrating accelerometer data
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Figure 7.25: Raw acceleration
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Figure 7.26: Filtered acceleration
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7.4 Swimming tests

The tests on a swimmer were performed as one long set. In figures 7.27, 7.28, 7.29, 7.30
and 7.31 the full set of results are presented. For convenience the results for each part of
the measurement set is presented in the following section. These results exclude the cal-
ibration step performed before the measurement.The results also exclude the estimation
of position and velocity due to the method of extraction being proven unsatisfactory.
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Figure 7.27: Corrected acceleration
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Figure 7.28: Filtered acceleration with α = 0.95
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Figure 7.29: Corrected acceleration in the xy-plane
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Figure 7.30: Roll and pitch angles
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Figure 7.31: Raw acceleration in the body frame and the estimated gravity in the body frame
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7.4.1 100m front crawl

The first distance swum was 100m front crawl, more commonly referred to as freestyle.
Note that the turn between lengths is easily visible in the corrected acceleration as a
break in the periodic motion. This periodic motion marks the breathing rhythm of the
swimmer. This is also why the first length is less visible: the swimmer took less breaths
during the first two lengths. This is further supported by the roll angle having the same
periodicity, as the roll angle would correspond to turning the head sideways. The same
motion can be seen in the pitch angle, but it is obscured slightly by the behaviour of the
arctan function.
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Figure 7.32: Corrected acceleration
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Figure 7.33: Filtered acceleration with α = 0.95
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Figure 7.34: Corrected acceleration in the xy-plane
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Figure 7.35: Roll and pitch angles
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Figure 7.36: Raw acceleration in the body frame and the estimated gravity in the body frame
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7.4.2 4x25m freestyle progressive speed

In this part the speed was increased each length. Note that, again, the breathing rhythm
is visible. Particularly in the filtered results (see figure). There is no visible increase in
the initial acceleration for each length, however. The increased concentration around an
imagined line may be a sign that the intensity was kept higher, and thus the speed kept
more stable during the length.
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Figure 7.37: Corrected acceleration
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Figure 7.38: Filtered acceleration with α = 0.95

250 300 350 400 450 500
Time [s]

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

A
cc

e
le

ra
ti

o
n
 [

g
]

Corrected acceleration in the xy-plane

Figure 7.39: Corrected acceleration in the xy-plane
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Figure 7.40: Roll and pitch angles
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Figure 7.41: Raw acceleration in the body frame and the estimated gravity in the body frame
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7.4.3 4x25m freestyle accelerating speed

During this set the speed was increased during each length. These results are similar
to those in the previous section. It is difficult to see any acceleration during the length
without further analysis. Again, the breathing rhythm is very visible in the roll angle.
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Figure 7.42: Corrected acceleration
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Figure 7.43: Filtered acceleration with α = 0.95
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Figure 7.44: Corrected acceleration in the xy-plane



44 7.4 Swimming tests

450 500 550 600 650 700
Time [s]

−4

−3

−2

−1

0

1

2

3

4

R
o
ll 

a
n
g
le

 [
ra

d
]

Roll Angle

Accelerometer
Corrected

(a) Roll angle

450 500 550 600 650 700
Time [s]

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

P
it

ch
 a

n
g
le

 [
ra

d
]

Pitch Angle

Accelerometer
Corrected

(b) Pitch angle

Figure 7.45: Roll and pitch angles
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Figure 7.46: Raw acceleration in the body frame and the estimated gravity in the body frame
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7.5 100m individual medley

Here each of the competitive strokes were swum for one length in the order butterfly,
backstroke, breaststroke and front crawl. Noting the change in the pitch and roll be-
haviours while changing from each stroke is interesting due to the rotational nature of
each stroke. Looking at the intervals 740s to 770 s and 810s to 840 s we see butterfly and
breaststroke, which are dominated by a pitching motion. In the 770s to 810s and 840s
to 870s intervals we see the roll-dominated back- and front crawl strokes. Also note that
the roll angle is almost constant near −π

2
during backstroke.

750 800 850 900
Time [s]

−1

0

1

2

A
cc

e
le

ra
ti

o
n
 [

g
]

Corrected acceleration by axis

x
y
z

Figure 7.47: Corrected acceleration
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Figure 7.48: Filtered acceleration with α = 0.95
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Figure 7.49: Corrected acceleration in the xy-plane
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Figure 7.50: Roll and pitch angles
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Figure 7.51: Raw acceleration in the body frame and the estimated gravity in the body frame
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8 Discussion

In this section the method, results and future prospects of the project are discussed.

8.1 The Method

The assumptions for the treatment of IMU data were that no yawing motion occurs and
that gravity was the dominant force in order for the IMU fusion algorithm to work.

The assumption of gravity being dominant was partially taken care of by not using
IMU fusion in the case of gravity not being dominant. This was deemed valid because of
the short time spans during which it may occur. The world record for the 50m freestyle
in long course is 20.91s [26]. This means that the average velocity during the race is
≈ 2.4m/s. Assuming the velocity to be fairly constant during the race itself, with a
possible acceleration towards the end, there would be very little non-gravity acceleration
during this time. The possible points of higher accelerations are starts and turns. The
start may include momentary acceleration higher than 10% of g, but this will only be for
very short instants. It also contains very little rotation as performed in a racing situation.
Thus, the results are likely reliable during the start unless there is significant shaking or
twitching of the head.

The other situation is the turn. Suppose the turn takes one tenth of a second, and
during this time the linear velocity in the direction of swimming is reversed. This means
that the linear acceleration would be a maximum 5m/s2 during this time. However, the
change should be gradual and not abrupt if a flip turn, and occurs at significantly lower
velocities for an open turn. Because of the short time period during which this occurs it
was deemed sufficient to use only the gyroscope data for these points.

The assumption of no yawing motion should be acceptable for any moderately skilled
swimmer. There is no yawing motion in the standard strokes for swimming, nor should
there be in any efficient method for propelling a human body through water. If the
device is properly calibrated the x-component of the Earth frame acceleration should be
sufficient. There may be a slight yawing motion in the breathing motion of the freestyle
stroke, but this should be negligible. It should also be clearly visible in the acceleration
y-component.

The complimentary filter was, despite its simplicity, sufficient in fusing the data from
the sensors to eliminate gyro drift. A properly calibrated Kalman filter is arguably more
refined and may have provided more details in the data due to the lack of a need for low
pass filtering the accelerometer data. However, the difficulties in setting up a model and
finding the error covariance matrices were not manageable in the scope of this project.

The 3D-printed box which was supposed to contain the electronics did not function to
satisfaction due to the struts designed to hold the electronics in place not being durable
enough for the intended use. This was in part due to them being extremely thin, and
possibly in part to the plastic used in the printing having unsuitable mechanical proper-
ties.

Due to the heart rate measurement not working on a still subject, see the following
section on the results from the heart rate measurements, it was decided not to attempt
these measurements on a moving subject. Therefore, the second option for water proofing
was viable. This casing was made using commonly available materials such as plastic wrap
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and bags. This made the complete device smaller overall, which could be useful because
of the possible reduction in drag. The method was deemed acceptable due to the proof
of concept nature of the project. If the device was to be made a commercial product, the
casing would have to be significantly improved along with minimising the footprint of the
device.

8.2 The Results

As can be seen in figures 7.13 and 7.15 the signal was heavily dominated by noise. The
data in figure 7.13 are not at all consistent with the resting heart rate of a human.
Regardless of the noise in the transformed signal, the only frequencies one may imagine
seeing in 7.13 are all substantially higher than what can be seen as a reasonable resting
heart rate, or indeed even a maximum heart rate for the test subject.

Measuring heart rate using the method presented in this project is notorious for
being noisy [18; 19]. The acquisition of data was further hampered by the relatively low
frequency of measurement available without crashing the Arduino. It is recommended
to use the ratio of the signal from the two LEDs in order to obtain better data. This,
however, requires a more powerful CPU in the controlling device since it requires twice
as many measurements in the same time interval. This was not feasible using the current
platform. It may, however, be an option to pursue in the future.

Measuring the response from only one LED may be insufficient for analysis of heart
rates. There is no literature to the authors knowledge suggesting this is the case, but
most literature on using LEDs to measure any type of heart data concerns pulse oximetry
and as such suggests the use of two LEDs.

The suggested method for processing the signal from the MORES sensor was per-
haps overly optimistic in its simplistic approach. The filtering methods used during the
sensor development are not disclosed, but are said to be both numerous and advanced.
Researching, adapting and implementing these methods would be outside the scope of
any project with the time constraints of this one, regardless of the other components of
the project. Therefore we accept the fact that this method will not work.

Additional testing of the signal processing method on data provided by the research
group behind the MORES system proved that it is insufficient for treating the type of
data to be expected from the sensors.

The compound effect of the insufficient measurement frequency, the constraint of only
being able to use one LED at a time and the overly simple processing makes the heart rate
monitoring part of the project unfunctional at the present time. It could, however, be
significantly improved by the use of a significantly faster micro processor and developing
better processing algorithms. It has already been proven that it is possible to process the
data which should be given by the sensor.

For the purpose of swimming it is questionable whether the MORES system is mature
enough a technology to be used for heart rate monitoring. It has been shown to have
problems with much more noise in cases where the jaw is moved significantly, but also
when the subject is moving. The noise introduced by the movement of the swimmer
might be insurmountable for this to be a practical approach for swimming.

However, there are systems on the market which are said to be able to measure heart
rate in-ear. One example is the LG heart rate monitoring earphones [27]. These systems
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are patented, and are locked to one type of communication. This was deemed undesirable
for the reason of making the circuits and programming more complicated due to the closed
nature of the supporting software needed to use this type of system. They are also not
rated for use in water and are normally constructed to be used alongside a smartphone.
This means that acquiring their data using a simple Arduino circuit was not feasible due
to the lower performance of the Arduino platform compared to the processors used in
state-of-the-art telephones.

The analysis of the IMU data was more satisfactory. It is evident from figure 7.20 that
the algorithm estimates gravity correctly. We can also see in figure 7.16 that the gravity
component was significantly reduced. The remaining part could be due to imprecision in
the estimation of the orientation. This is done by subtracting the estimated body frame
gravity from the raw data before rotating it to the inertial frame. Ideally the curves in
this figure should be flat at 0g. The deviations from this behaviour are partly due to
sensor noise and partly due to inaccuracies in the measurment. The behaviour at 350s
comes from the estimation of the angle from accelerometer data in the roll angle, see
figure 7.18a. The cause of this is not evident in the raw data in 7.20.

The test where the sensor was held in the hand of a walking subject shows the high
sensitivity of the accelerometer, see figures 7.21 and 7.25. The shaking in the signal
comes from the motions of walking. Filtering takes care of the noise to some extent, see
figure 7.26. Finding the balance in how much to filter is of importance if the results are
to be used in non-scientific applications. In the signal processing only the angles from
the accelerometer data is low-pass filtered. The filtering used here is rather inclusive of
fluctuations since the angle extracted is only used as a small correcting factor (2% of
the angle comes from the accelerometer data). We see that the angles in 7.23 are fairly
smooth due to the nature of the complementary filter.

In both figure 7.24 and figure 7.19 it is evident that the extraction of velocity and
position by integrating the acceleration is not a suitable method. This is a known issue
with accelerometers. Typically a different type of sensor would be used for this purpose.
GPS sensors are commonly used in similar applications for other sports. They, however,
are not necessarily suitable in this case. GPS has a sensitivity in the ±1m range. For
swimmers in a pool this is not sufficient, since the pools are normally 50m long or shorter.
This makes the results from the positioning poor in accuracy.

The results from the swimming tests show that it can be detected when the swimmer
is swimming and when they are resting. In figures 7.32 and 7.33 it is possible to see where
the turns occur. At approximately 135s, 160s and 190s there are spikes in acceleration
on all three axes. Looking at the roll angle in 7.35a it is possile to see when the swimmer
took a breath due to to the roll angle introduced there. The busy appearance of the pitch
angle is due to the nature of the range in which it is defined. A small change around the
edge points will appear as a half rotation, while may in reality only be a few degrees.

When the swimmer stops between each length, see for example section 7.4.2, it is
clearly evident that there is a change in the data when the swimmer is resting between
lengths. Looking at figure 7.40b it is easier to see the problem in the pitch angle. It is
meant to move in the range ±π

2
, which it does. However, due to the sensor placement the

pitch angle moves between the two extremes without there being a significant rotation
from the swimmer. This issue could in future testing be solved by using a different sensor
placement to the one used here.
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What is not directly evident is the increase in speed during the set. This can in no
trivial way be seen in the treated data, see figure 7.39.

Looking at the results in figure 7.44 you can see the acceleration during each length
by the increase in acceleration during each length. In both cases the breathing is evident
in the roll angle.

In the individual medley results it is visible that different strokes are used at different
times. It is, however, not trivial to see from only the accelerometer data which stroke is
being used. When the roll and pitch angles in figure 7.50 are introduced, especially paried
with the direction of gravity, it is possible to make educated guesses as to what stroke is
used. Butterfly and breaststroke are dominated by a pitching rotation in their pattern
of moition, while backstroke and front crawl are dominated by a rolling rotation of the
torso. The motion of the torso is not available in these data since they are acquired from
a sensor fastened to the head. Therefore the roll angle in backstroke is near constant. In
front crawl the rolling motion depicted comes from the breathing action.

8.3 Future Prospects

The future development of this project could be considered twofold. The first part is
making the heart rate detection functional, the second improving the overall performance
and commercial viability of the device.

The heart rate detection part of the device could be improved by devising better filters
and amplifiers for the signal. This could facilitate detection of the signal.

Another improvement would be using an MCU with better overall performance. This
would increase the measuring frequency to the desired 200Hz using both LEDs. It has
been shown that pulse oximetry can be done at 100Hz [28], but it is usually recommended
to use higher frequencies [9]. Another improvement would be using a more sensitive
method of reading the data than the one provided on the analogue read pins on the
Arduino Yùn which only have 10 bit sensitivity. This is arguable not sufficient, since the
useful signal from the MORES sensor is said to be in the 1h − 1% range of the total
signal. This is not detectable given the low sensitivity of the read pin and the slight offset
(≈ 1V) on the signal after amplification. An attempt to remove the offset was carried
out, but it proved very difficult given the amplifying circuits used. In future attempts to
develop this or similar projects other circuit designs might prove necessary.

Another part of the filtering needed should be done in the signal processing stage.
There are numerous filtering techniques which could be used for this purpose. They are,
however, rather advanced and require fine tuning. This falls outside the scope of this
project, but could be made into a separate project of its own.

Heart rate detection using this method has been shown to work in the past, but the
details of the circuitry and signal processing is undisclosed, likely due to patent law.

A faster MCU would be likely to improve the quality of the accelerometer signal as
well, due to producing smaller time steps. The effect would not be as dramatic as in
the case of the heart rate detection, since the signal from the accelerometer is detectable
using the slower device.

Another important improvement for the commercial viability of this system is reducing
the overall footprint. It would be desirable that the device be no larger than strictly
necessary. Using an MCU directly rather than an Arduino board would help in this.
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The IMU itself is rather small, as is the surrounding circuitry. The circuitry for the
heart rate detection could easily be made smaller in physical size simply by using smaller
components. The Arduino extension board used for the prototype is based on the DIP
package for components, which is rather bulky.

8.4 Impact on the sport of swimming

A functional system for measuring acceleration, and by extension speed and distance
travelled, of swimmers would be a useful tool for coaches and those swimming for fitness.
In order for it to gain widespread popularity it would be necessary to reduce the footprint
as discussed above. It would also be pivotal to develop a user interface which is very easy
for a layperson to use. It would probably be beneficial for the measuring device to be
able to in some way communicate in real time with a device held by the coach for instant
feedback. Such communication could possibly be inspired by the Freelap system.

This type of measurement could be useful in developing and practising tactics for
longer distances swum in competition. It would hardly be allowed in competition, since
pacing is explicitly forbidden by FINA rules. However, it could be instructive for the
swimmer to see where they lose speed during a race.

For fitness swimmers the device would be more useful for keeping track of exercise.
With additional development of the motion sensing data processing, reduction of the
footprint and, ideally, development of a system which allows for the measuring of heart
rates in-ear this device could be commercially viable. This is reinforced by the current
fitness trend in society as a whole, and the desire to have and analyse such data for
swimmers and triathletes outside the world of competitive swimming.



Conclusion 53

9 Conclusion

It was found that a simple FFT algorithm was not sufficient for treating oximetry data.
The sensitivity and speed of the reading equipment further limited the ability to obatin
the desired heart rate data. This could be improved in the future by using a faster MCU
with higher sensitivity for reading.

The accelerometer data shows promise as a motion analysis system for swimmers.
The rhythm of breathing and timing of turns can be seen in the data. Extrapolation
of velocity and position by integration of acceleration proved to be unsatisfactory and
provided unreasonable results.

In the future the system can be improved by reducing the footprint of the device
significantly. The signal processing algorithm could be improved by the use of a more
sophisticated fusing algorithm than the complementary filter used here.
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