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Abstract
The use of artificial intelligence has increased within a variety of different fields the
last decade, including the area of health care. Machine learning algorithms have
already been successfully used in e.g. skin cancer detection in images, indicating its
potential for being applied to wound treatment by automatically classifying wound
images. In addition to reducing patient discomfort, a machine learning based solu-
tion for wound image classification could lower the costs for treatment of wounds.
Today, this cost corresponds to the third biggest health care cost for Västra Göta-
landsregionen, the health care sector in Västra Götaland.

This master thesis is a collaboration between the electronics and software develop-
ment company QRTECH and Västra Götalandsregionen with the aim of creating
an image-based aid to be used in the diagnosis of venous leg ulcers. A total of
300 manually annotated images depicting various ulcers for training a network have
been provided by Alexandra Forssgren, specialist in dermatology and head of the
dermatology department at Skaraborg Hospital. A deep learning based algorithm,
using a pre-trained version of the VGG19 convolutional neural network, has been
implemented to perform automated binary classification in order to separate venous
leg ulcers from other ulcers. Since the annotated ulcer data set was limited, transfer
learning was used by pre-training on ImageNet as well as on a set of dermoscopic
skin images. The network was implemented in Python using the deep learning li-
brary Keras with TensorFlow as backend.

To improve performance and reduce overfitting, methods such as dropout, L1/L2
regularisation and data augmentation were applied. Augmentation included rota-
tion, flipping, contrast enhancement as well as added noise and modified brightness.
The best set-up was selected based on the performance metrics accuracy, precision
and recall. For the test set, the final network reached an accuracy, precision and
recall of approximately 85 %, 82 % and 75 %, respectively. Most certainly, the lim-
ited size of the data set affected the results negatively and a larger data set would
increase the variety of the training examples, possibly leading to better performance.
However, the performance metrics are still promising considering the small data set
which proves the potential of a machine learning based solution for ulcer image clas-
sification.

Keywords: Deep learning, convolutional neural networks (CNNs), image classifica-
tion, leg ulcers, transfer learning, VGG19, Keras.
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Chapter 1

Introduction

The field of machine learning has developed tremendously the last decades and its
area of application has expanded, ranging from social media to self-driving cars [1].
One reason for the field’s broad area of use is time efficiency, an inherent property
of machine learning algorithms. One possible area of interest for machine learning
methods is the health care industry, where machines have proven to process patient
data far more rapidly than humans [2].

This report presents the development of a tool, suggested to support medical person-
nel in wound diagnosis. The technical solution presented is an automated algorithm
which can learn to recognise different types of wounds in digital photographs. In
this chapter, wound treatment today will be introduced, focusing on potential im-
provements. The aim, research questions and limitations will be presented as well,
introducing the proposed solution. Lastly, a section covering related research is
included.

1.1 Background

One of the main advantages with machine learning methods is their ability to ac-
curately recognise objects in images, making them suitable for object detection and
classification. Machine learning is divided into different branches, out of which deep
learning is one of these. Deep learning methods utilise artificial neural networks,
originally inspired by the neural network in the human brain [1, 3]. A network
can process several hundred images in seconds, becoming a useful tool for time-
consuming tasks. For instance, a network can therefore be used within the field of
health care to determine a diagnosis faster than any human [2]. A solution based on
deep learning could also be a tool for smaller health care centers that lack clinical
specialists [4].

Treatment of wounds is the third biggest cost for Västra Götalandsregionen (VGR),
who are responsible for the health care and medical treatment in the county Västra
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1. Introduction

Götaland in Sweden [5]. This cost corresponds to 4 % of the total health care
cost and hence, wound treatment is seen as an area of improvement by VGR [6].
Moreover, visits at the hospital for wound dressing two to three times a week may
be necessary for some patients which increase costs and discomfort further [7]. As
an early and correct diagnosis could lower the costs for wound care, introducing a
technical tool for diagnosis could potentially lower the costs but also improve the
life quality considerably for patients.

The focus for this project has been to identify venous leg ulcers in images. These
ulcers are located below the knee as all leg ulcers, and arise from venous insufficiency
which can be caused by widening of the veins. Another cause can be non-functioning
valves, which are present in the veins of the legs to prevent blood to flow back
towards the feet on its way to the heart. Non-functioning valves are not able to
close completely to prevent the blood to flow backwards, causing high pressure in
the veins. A wound is categorised as hard-to-heal if the prognosis of healing is more
than six weeks. Out of all cases diagnosed with hard-to-heal leg ulcers, 38 - 60 %
are caused by venous insufficiency [7]. Research has shown that correct and early
treatment of the wound has shortened the healing time [8, 9]. In addition to this,
treating venous leg ulcers with compression, such as stockings and bandages, will
improve the healing process [10].

1.1.1 Wound Diagnosis

When manually diagnosing wounds, part of the examination is a visual inspection.
However, additional parameters need to be taken into consideration as well when
determining a diagnosis. Many of the considered parameters regard the medical
history and the overall health status of the patient. As a part of the wound evalu-
ation for venous leg ulcers, a so-called Doppler examination is also performed. In a
Doppler examination, the pressure in arteries and veins is measured which can in-
dicate the diseases causing the wound. All the parameters taken into consideration
when evaluating a leg ulcer are summarised in Table 1.1 [11].

Table 1.1: All parameters taken into consideration when evaluating a leg ulcer in
order to determine a diagnosis.

Health status Visual inspection Doppler examination
Profession, heritage, pregnancy Depth, size Arterial blood pressure
Other diseases Redness, infection Ankle-brachial pressure index
Wound duration Fibrin, necrosis
Former thrombosis Surrounding skin
Medication
Social situation, smoking, diet
Sleep, pain
Mobility
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1. Introduction

1.2 Aim of the Project

The aim of this master thesis is to present an automated algorithm that could aid
in determining a diagnosis for patients suffering from hard-to-heal wounds, enabling
faster decisions to be made regarding a proper treatment. By utilising image data,
manual visual inspection normally performed when determining a diagnosis will be
imitated. The image data provided consists of digital photographs, taken using both
mobile cameras and digital cameras. Venous leg ulcers have been chosen as the main
focus and the goal is to have an automatic algorithm for determining if a wound is
a venous leg ulcer or not from image data.

1.3 Research Questions

The main question to be answered is whether a deep learning based solution can
be used for diagnosis of venous leg ulcers from image data. Further, the method
will be evaluated to investigate how well suited the proposed solution is for an
implementation in the primary care and hospitals. The final question to answer is
whether similar solutions have already been developed, investigating their level of
success. In order to gain more in-depth knowledge within the field of deep learning,
recent research where deep learning is applied to different medical applications,
including wound treatment, will be studied.

1.4 Limitations

The aim is to implement a software limited to venous leg ulcer classification to fit
the scope of the master thesis, a decision made unanimously together with VGR
and QRTECH. The implemented software should therefore be restricted to perform
binary classification only separating venous leg ulcers from other types of wounds.
This limitation is motivated by the fact that this kind of ulcer is one of the most
common among leg ulcers. Further, merely classification will be investigated, i.e.
no segmentation of the wound will be included. In addition to this, only images and
no other additional patient data will be used as input for the automatic algorithm
as the time span for the project is limited.

1.5 Related Work

Deep learning for image classification is used commercially in everyday tools such
as social media and companies’ web pages, as well as in different fields of research
ranging from the automotive industry to health care. To present a more elabo-
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1. Introduction

rate picture of how convolutional neural networks (CNNs), see Section 2.1.1, can be
utilised for image classification, this section will describe previous research studies.
The section will first cover how image classification is employed in different appli-
cations, then address suggested solutions specific to health care. Finally, papers
related to the topic of classification of skin cancer and wounds will be discussed.
Additionally, implemented smartphone and tablet applications for wound treatment
will be presented.

1.5.1 Deep Learning for Image Classification

There is an increased general interest in self-driving cars and other autonomous
systems, making it important to develop reliable machine learning methods. For
instance, deep learning based image classification could be applied to traffic signs
[12]. In a paper from 2016, the aim was to detect and classify traffic signs, where
classification was performed using a CNN. The results presented an accuracy out-
performing average human performance [12].

Deep learning based image classification can be applied to a variety of different im-
ages, including earth images taken from above, so-called aerial remote sensing images
[13]. In this paper, only a limited data set was available and the authors therefore
spent effort on developing a high performing network despite this limitation. The
solution was to use two neural networks, whereof one was a CNN constructed by
the authors utilised for classification. The authors found that the proposed solution
achieved improved performance compared to previous studies using the same data
set [13].

1.5.2 Deep Learning for Medical Image Classification

Another area of growing enthusiasm for applying deep learning to image classifica-
tion is the medical field, including classification of CT images as well as ultrasound
images. As described in an article from 2016 [14], pre-trained CNNs may be ap-
plied in order to classify whether CT images contain traces of Alzheimer’s disease,
tumours or normal ageing. Worth noting is that CT images are not considered
when diagnosing Alzheimer’s disease, but is rather used to eliminate other potential
diseases. However, the results indicate the potential of utilising CT images for de-
tection of Alzheimer’s disease, achieving an average of 88 % accuracy for the three
classes [14].

A similar approach was used in a research article for detecting early stages of thyroid
cancer, using pre-trained CNNs for the purpose of classification [15]. The proposed
binary classifier produced an output assigning ultrasound images to one of two
classes, benign or malignant nodule. The accuracy reached 83 % but according to
the paper, a greater set of training samples could possibly improve performance
further [15].
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1. Introduction

Another example of deep learning applied to ultrasound images is a research paper
from 2017 [16], which investigated how to classify liver fibrosis in ultrasound images
of liver tissue. The paper suggested an image classifier taking three classes of tissue
into consideration; normal, early-stage and late-stage fibrosis. The presented solu-
tion included a combination of two networks, one being a pre-trained VGGNet. For
an in-depth description of one version of the VGGNet, VGG19, see Section 2.1.2.
Moreover, the authors included a dropout layer after every fully-connected layer and
augmented the training images by using methods such as flipping the images verti-
cally and horizontally. They worked with a limited data set, but by implementing
augmentation they could extend the training set. The conclusion was that one can
reach better performance with a deeper network and with a greater data set [16].

1.5.3 Deep Learning for Skin Image Classification

A medical application for classification of images using CNNs is the detection of skin
cancer. In a study from 2017 [17], the performance of a computer-aided classifier
for skin cancer severity was compared to a set of manual classifications done by
dermatologists. For a set of images, both photographic and dermoscopic, the net-
work outperformed the average of all dermatologists in the task of deciding whether
the lesion should be treated or not. The network used was a pre-trained version
of Google’s Inception V3, which was first introduced in [18], where all layers were
retrained on nearly 130 000 images of skin lesions [17].

Classification using CNNs has also proved to be useful for identifying skin damage
caused by pressure injuries [19]. In this paper, the studied wounds contained dif-
ferent types of tissue, demonstrating both infection and different stages of healing.
Images were cropped into patches, containing only one tissue type each. Using a
CNN, classification was performed in order to assign each patch a tissue type. By
classifying each patch, regions of a certain tissue could be recognised in the original
images and hence, the entire image could be segmented [19].

1.5.4 Mobile and Tablet Applications for Wound Care

Despite their promising results, the mentioned advances in research regarding deep
learning based skin image classification are yet to be implemented in health care.
However, a number of mobile and tablet applications for wound care have been
developed over the last few years [20–22]. Even though these applications do not
use fully automated algorithms, they offer personal assessments for patients without
the need for patients leaving their homes as well as tools for health care professionals
to ease their workload.

WoundDoc is an application offering consultations regarding different wounds, pro-
posing a treatment plan that can be sent to the patient’s medical practitioner [20].
In contrast to WoundDoc, WoundDesk is a tool to be used solely by health care
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1. Introduction

professionals. The application can help in keeping track of all patients and their
chronic wounds, by offering a place for documentation but also tools such as semi-
automated wound surface measurements [21]. Another application for health care
professionals is the Swedish Dermicus Wound, facilitating diagnosis and decisions
regarding the most appropriate treatment for hard-to-heal ulcers. These decisions
are made by skin specialists that can be notified by the primary care in case of a
new patient [22].

1.5.5 Concluding Remarks

A common factor among the aforementioned papers is the use of pre-trained net-
works to improve performance, all pre-trained on the database ImageNet [23]. Fur-
thermore, an issue often encountered in the medical papers was the challenge to get
access to a big enough data set due to patient confidentiality, indicating a common
problem when using medical data in machine learning. As indicated by many of
the authors, the hope for the future is to be able to train the networks with a more
extensive database and hence, achieve better performance. Moreover, the mobile
and tablet applications mentioned demonstrate the potential of eHealth based so-
lutions regarding wound treatment. The company GNOSCO, responsible for the
Dermicus Wound application, recently announced the start of a project to develop
an automated algorithm for early detection of skin cancer from images using artifi-
cial intelligence [24]. This affirms the possibility of developing completely automatic,
mobile solutions arising with advances in machine learning.

1.6 Thesis Outline

To cover the reminder of this thesis, the report is divided into the following chapters;
Theory, Data and Methods, Results and Concluding Discussion.

The theoretical background to machine learning is introduced in Theory, Chapter
2. In this chapter, the building blocks for the chosen algorithm are presented. All
details regarding the implementation are covered in Data and Methods, Chapter 3.
The results from implementing the chosen machine learning algorithm to the task
of classifying wound images are presented in Results, Chapter 4. The results are
discussed in Concluding Discussion, Chapter 5, including factors affecting the per-
formance of the algorithm. Furthermore, future work will be mentioned in Chapter 5
as well, including additional improvements which could be taken into consideration
for future developments. A more extensive documentation of all the results during
the master thesis will be found in Appendix A, where additional graphs and tables
are found.
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Chapter 2

Theory

Artificial intelligence can undoubtedly contribute to solving many problems today,
saving both time and resources. For this to be achieved, machines need to be able
to solve simpler tasks which include tasks among the most trivial to humans. Image
classification is a typical example of this kind of task, where classifying the contents
of an image may seem simple for a human but is more demanding of a task for a
computer. Deep learning, a field within machine learning, embodies a number of
strategies for teaching machines how to solve these challenges [25].

The following components can be considered the building blocks of a machine learn-
ing algorithm; a specification of a task, a cost function, a learning method and a
model [25]. The building blocks listed will be introduced in this chapter, estab-
lishing the theoretical foundation for creating a binary classifier with the aim to
classify wounds. Furthermore, additional subjects regarding implementation will be
covered, including implementation frameworks, common pre-trained networks and
fine-tuning.

2.1 Artificial Neural Networks

Artificial neural networks are inspired by the human neural network, composed of
neurons responsible for transferring information to be processed in various parts of
the human brain. By interacting with other neurons, each neuron receives multiple
signals which can be weighted according to their importance. If the sum of all
inputs exceeds a certain threshold, the neuron will fire and send a signal forward.
This behaviour can be described by a simplified mathematical model, according to
the following equation,

y = a
( n∑

i=1
wixi + w0

)
. (2.1)

In the equation, the inputs to the neuron are denoted xi, index i representing a
specific input. As seen in the equation, a total of n inputs are received by the
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2. Theory

neuron. The weight associated with each input is denoted by wi while w0 represents
a bias term. The function a is the activation function, mimicking the activation of a
neuron sending a signal forward. The signal is represented by the right hand side of
the equation, which will be received as input by another neuron. An artificial neural
network is a collection of these artificial neurons, stacked into layers similar to its
biological counterpart [25, 26]. In the layers of an artificial network, these neurons
are seen as individual units, working in parallel. In the case of a larger number of
stacked layers, the network is classified as a deep neural network [25].

2.1.1 Convolutional Neural Networks

A feedforward network, which is an artificial neural network according to the pre-
vious definition, is one important model within the field of deep learning. For a
network to be classified as feedforward, the information passed through the network
needs to be passed forward through the network without feedback loops. An ex-
ample of a feedforward network is the convolutional neural network (CNN). These
networks are used extensively in computer vision and as the name might suggest,
CNNs utilise the convolution operation [25].

Convolution is utilised in the convolutional layers of a CNN, by the use of kernels. 2D
convolution is applied similarly to applying a filter to an image in image processing,
enabling the kernels to detect different features. Each kernel of the layer, typically
much smaller than the input image, will give rise to a feature map. The size of the
feature map will be equal to the image if zero-padding is used and slightly smaller
if zero-padding is neglected, excluding the edges. The found features represent
different structures in images and are thus dependent on the elements of the kernel,
the so-called weights. The weights are the parameters of the model, optimised during
training of a network. In the early layers of the network, the kernels recognise basic
features and simple shapes such as blobs and lines while more specific features are
recognised further into the network [3].

An advantage of using artificial neural networks as deep learning models is the level
of complexity that can be described when compared to linear functions. In order
to ensure non-linearity, a non-linear activation function is used for mapping the
filter output, typically after each layer. The most common is the rectified linear
unit (ReLU). This is a piecewise linear function, enabling it to possess some of the
advantageous properties of linear functions. For example, it preserves the ability
of a linear model to generalise well and to be easily optimised using gradient-based
methods [25].

Another non-linear operation typically included in a CNN is pooling. A pooling
function is applied to a smaller region of the feature maps, and computes a single,
representative value for each region. One example is max pooling where the max-
imum value from a smaller region of the input is determined and processed as the
new output. By introducing a pooling layer, an invariance will be introduced which
enables small translations to be present in the input without affecting the output

8



2. Theory

tremendously. This property is valuable when a feature can be detected without its
exact location being of high importance. Pooling increases computational efficiency
since it can be viewed as a down sampling, reducing the resolution of the feature
maps. Furthermore, pooling will reduce model complexity which in turn reduces
the risk of overfitting [25].

For image classification tasks, one or more fully-connected (FC) layers can be added
in the end of the network, performing a linear combination of all outputs from the
previous layer [3]. Finally, the output layer of the network needs to be adjusted in
order to comply with the task of the network. When performing classification, the
output could for example represent the probabilities of the image belonging to each
class. In the case of a binary output, a sigmoid function can convert the network
output to a probability. In the case of multiple values, the softmax function will
output a probability distribution over all possible outcomes. Hence, the sigmoid or
softmax function will constitute the final layer of a network [25].

2.1.2 VGG19

A CNN that has proved to be applicable for image classification is VGG19. This
network is derived from the network architecture VGGNet, where the number 19
represents the number of weight layers present in the structure. The VGGNet was
designed and presented by Simonyan and Zisserman for their contribution in the
ImageNet Challenge 2014 [27].

The traditional building blocks of a CNN, described in Section 2.1.1, establish the
layers of VGG19. The network consists of five blocks of convolutional layers, where
the filters are of size 3 × 3. The five blocks are separated by max pooling layers
and lastly, three FC layers are added. The last layer of the FC layers produces the
network’s predictions as output. The number of channels correspond to the number
of classes in the predictions, and softmax is used as activation function in order to
return a probability [27].

2.2 Learning

In the previous section, the artificial neural network was introduced as a deep learn-
ing model. The purpose of this model is to describe the relationship between a
given set of input and output data but in order to accurately map this relationship,
the model needs to be trained on the task. Learning can be categorised into two
subgroups; supervised and unsupervised learning. In supervised learning, a desired
output is given for each input. In unsupervised learning on the other hand, target
labels are not given but the algorithm learns properties from the structure of the
data set [25]. In this thesis, only supervised learning will be used.

Training of a neural network is performed in cycles where one cycle is characterised
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2. Theory

by passing the entire data set through the network, denoted as an epoch. The
goal of training is to find the optimal parameters for the model, and as mentioned
when describing the convolutional neural network, the parameters of the model are
the weights of the kernels [25]. The weights should be initialised before training,
preferably randomly to ensure diversity among the gradients in parameter updates
[3]. The optimal weights are found through the process of optimisation, minimising
a cost function. The weights will be updated based on the value of the cost function,
but the goal of the training process is not to reach the minima per se. Minimisation
is a tool for reaching the overall goal which is improved performance on the specified
task. In order to measure how well the algorithm performs, performance needs to
be quantified by a performance metric [25]. If the performance metrics start to
stagnate, converge, it is fair to assume that the network will not perform better
than it has done up to that epoch and the training is considered finished.

2.2.1 Cost Function

In machine learning, a common cost function to minimise is based on maximum
likelihood estimation. The function to be minimised will therefore be the negative
log-likelihood, which can also be considered as the cross-entropy between the dis-
tribution of the training data and of the current model output [25]. In the case of
only two classes, binary cross-entropy is given by

J(y, ỹ) = −
(
y · log(ỹ) + (1− y) · log(1− ỹ)

)
, (2.2)

where y is the true probability derived from the training data and ỹ is the output
probability from the network. The cost function is typically also referred to as the
loss function.

2.2.2 Optimisation

In most cases, the goal of optimisation is to minimise a cost function by changing
the model parameters. A tool to use for this purpose is therefore the derivative of
the cost function with respect to the model parameters, as it is a natural choice for
quantifying the response for a change of the parameters. If the purpose is to reach
the cost function minimum, a suggestion is to change the parameters in the opposite
direction of the cost function derivative. This process is the very fundamental idea
of gradient descent, which is the foundation of many optimisation methods. The
size of the steps taken in the desired direction is named learning rate, a parameter
set before learning. In machine learning terms, this kind of tuning parameters are
collectively referred to as hyperparameters. To allow the value of the loss function
to alter the values of the parameters, gradients need to be calculated in parameter
updates. The method of back-propagation is used for this purpose [25].

With gradient descent as starting point, many improvements have been made in the
development of other optimisation methods. In contrast to gradient descent where
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all samples are used for computing the gradient of the cost function in each pa-
rameter update, one improvement includes performing updates by drawing a batch
of samples from a training set. In minibatch stochastic gradient descent, a gradi-
ent estimate is computed for the current batch and each parameter in the model is
then updated according to the gradient. This introduces another hyperparameter,
the batch size, to be determined before learning. Parameter updates can also be
performed for each sample, an approach used in stochastic gradient descent (SGD).
One of the method’s main advantages is its ability to maintain the same computa-
tional time per update regardless of the number of samples. This will enable quicker
convergence even if the number of samples is large. Still, SGD can have relatively
slow convergence and accelerating convergence further can be achieved using meth-
ods such as momentum. In momentum, an average of past gradients is accumulated
during parameter updates. This enables past gradients to be considered during new
parameter updates, and their contribution is determined by a hyperparameter [25].

As a hyperparameter will need to be adjusted in order to achieve an adequate effect
of momentum, alternative methods for faster convergence without the need of adding
hyperparameters are preferred [25]. An alternative is to use an adaptive step size,
or learning rate, for each parameter in the model. One of the methods utilising this
kind of adaptive learning rate is Adam optimisation, a method developed with the
aim of being used for machine learning applications [28]. In addition to its potential
of faster convergence, Adam optimisation is regarded as more robust considering
the choice of hyperparameters which makes the method a possible candidate for
challenging SGD [25].

2.2.3 Performance Metrics

Machine learning is driven by the improvement of performance, which is accom-
plished through the process of optimisation. In order to quantify learning, a perfor-
mance metric is used. The performance metric set to evaluate the learning progress
is normally accuracy or error rate. In the case of classification, this corresponds to
the proportion of outputs correctly or incorrectly classified. In addition to this, pre-
cision and recall are also commonly used as performance metrics. Precision reports
the fraction of correctly classified samples among all samples classified as positive.
Recall on the other hand reports the fraction of correctly classified samples among all
samples that truly are positive. Precision and recall can be summarised as follows,

Precision = true positive
true positive + false positive , (2.3)

Recall = true positive
true positive + false negative . (2.4)

In the equations, positive and negative denote the two classes considered during
binary classification. True positive is the number of samples correctly classified as
positive. False positive is the number of negative samples incorrectly classified as
positive, and vice versa for false negative.
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2.2.4 Regularisation

As mentioned previously, the progress made in learning is quantified by a perfor-
mance metric which enables any improvement to be detected. However, the aim is
to have an algorithm with preserved performance even when encountered with new,
unseen data. In addition to a decreased training error, minimised in the process of
optimisation, a low generalisation error is desired as well. This generalisation error is
defined as the expected value of the error made by the algorithm when encountered
with new data [25].

The size of the generalisation error is retrieved by testing the algorithm on a vali-
dation set, separated from the training set. The magnitude of the errors and their
relationship can be used to investigate the behaviour of the algorithm. A large
training error indicates underfitting while a large gap between the training error
and generalisation error is a sign of overfitting, representing two major challenges
in machine learning. When it comes to overfitting, there are a number of different
strategies for decreasing an algorithm’s generalisation error while keeping the train-
ing error unaffected. These methods are collectively referred to as regularisation
methods [25].

Approaches commonly used to decrease the generalisation error, or validation error,
include data augmentation and dropout. Augmentation is the very intuitive solu-
tion to expand the data set. For the purpose of image classification, new images
can be created by altering the images already present in the data set. Possible aug-
mentations include alterations such as rotation, adding noise, scaling and flipping
vertically and horizontally. However, a certain degree of resemblance is to be main-
tained between the original data set and the additional training samples created
by augmentation. Therefore, it is important to consider the nature of the original
data when determining the type and amount of augmentations added. Dropout on
the other hand, enables a number of subnetworks to be trained as different units
are excluded from the network. The output units are kept intact, and the units are
removed by setting their output to zero. The probability of setting an output to zero
is a hyperparameter determined before training begins. Fortunately, the probability
that all connections between input and output will be erased will be insignificant as
long as the network is large enough [25].

Another regularisation strategy is to add a penalty to the loss function [25], accord-
ing to

J̃(w;x, y) = J(w;x, y) + αΩ(w), (2.5)

where J is the original loss function. The penalty term is denoted by Ω and α is a
hyperparameter determining its contribution with w denoting the network parame-
ters. Different penalty terms could be used, for example L1 and L2 norm according
to

Ω(θ) = ||w||1, (2.6)

Ω(θ) = 1
2 ||w||

2
2. (2.7)
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As a penalty term, Equation 2.7 forces the network parameters closer to the origin,
the network parameters will therefore shrink with each update. Equation 2.6 reg-
ularises the size of the weights as well but can also introduce sparsity, parameters
with the value of zero. This property enables the model to separate the important
features from the less important, performing a so-called feature selection.

2.2.5 Transfer Learning

As mentioned previously, one of the building blocks of a machine learning algorithm
is the specification of a task to be solved, learned by the algorithm in the process
of learning. However, the assignment might be too difficult without any reference
regarding desired features and convergence during optimisation might be hard to
reach. Therefore, one alternative is to solve a simpler task first. Pre-trained net-
works are appropriate to use for this purpose, being trained on a different data
set containing enough information for the network to perform well on the simpler
task. In this way, the output weights from the pre-training can be used for ini-
tialisation instead of selecting random starting points. For images, basic shapes
and structures such as blobs and lines are recognised in the earlier kernels of the
network as mentioned in Section 2.1.1. The detection of these basic features will
be utilised, improving the network’s performance since it does not need to learn all
features from scratch. Some examples of databases used for pre-trained networks
are ImageNet, WordNet and MNIST depending on the task of the network, whether
it is to determine or classify images, words or numbers [25].

Pre-trained networks for image classification are usually trained on the huge image
database ImageNet, which contains millions of images portraying different objects
such as different mammals, cars, flowers, etc. [23, 29]. ImageNet was introduced in a
paper from Princeton University in 2009, emphasising the necessity to gather differ-
ent kinds of information, e.g. images, in one easily accessible place [29]. ImageNet
arranges a competition every year where the challenge is to correctly classify dif-
ferent pictures. Some of the participants have published their network architecture
and among the most successful CNN architectures are AlexNet, GoogLeNet, ResNet
and VGGNet [27, 30–32]. The architectures are open to use as pre-trained models
to be applied for different types of classification.

Employing the weights from a pre-trained network to continue training on new data
is referred to as fine-tuning, and is especially well suited for training CNNs as these
require large amounts of training data and computational power [33]. Fine-tuning
is therefore usually applied when working with a limited set of data, as this might
not be necessary with a large enough data set [34]. In order for the pre-trained
model to be compatible with the new task of the network it is sometimes necessary
to modify some of the layers in the architecture. The pre-trained network might
have been trained on a different number of classes than the ones required by the
current task and if so, the final layers are adjusted to fit the number of classes
needed. Furthermore, it could be favourable to only retrain parts of the network
during fine-tuning. As more general features from the data are recognised in the
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early layers of a CNN, it is generally redundant to include more than the final layers
in the fine-tuning. If the task of the CNN is to classify images that differ significantly
from the images the pre-trained network was trained on, it can be beneficial to train
more layers. A suggested fine-tuning technique is to gradually add layers until the
performance of the CNN is improved [33].

2.3 Deep Learning Frameworks

A machine learning framework is a tool generally applied when constructing a neural
network, as it provides the structure in which the calculations for training are per-
formed. There are different frameworks available, some examples are Caffe, Tensor-
Flow, PyTorch and Theano. In Python, the frameworks are modules that can be
imported to a machine learning script where different commands or operations from
the framework are implemented.

Caffe is an example of a framework, compatible with C++, Python and Matlab.
Available functions within Caffe will help the user to train, test and fine-tune their
network, and pre-trained models are also provided. Additionally, since it is open
source it is possible to find the code online and even contribute to the script. Users
can design a network from scratch using Caffe’s layers, since all types of CNN layers
are accessible [35].

As Caffe, TensorFlow provides tools for constructing a CNN, both pre-trained and
built from scratch. TensorFlow is based on the system DistBelif which works sim-
ilarly to the Caffe model. TensorFlow is designed to be more efficient and flexible
than its ancestor. An important difference is that TensorFlow uses mutable data,
meaning that the object can be changed even after declaration. With this framework
it is possible to try different set-ups since the neurons are updated and represented
as tensors [36].

Another alternative is to use a machine learning library with a framework already
implemented, an example of such a library is Keras. This library is constructed in
Python and has three frameworks available; TensorFlow, Theano and CNTK. Most
tools that might be used when designing a neural network is implemented in Keras,
from pre-trained networks to loss functions. The process of implementing a machine
learning algorithm can be made simple and straightforward using Keras as an inter-
face, due to its many useful features. The built-in package Applications can be used
to retrieve different pre-trained networks, allowing users to test different networks
in order to choose the most suitable architecture. By calling the already defined
classes or functions in the library, evaluating different designs and architectures is
not as time-consuming as if the users would have designed the network themselves
[37].
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Chapter 3

Data and Methods

As the aim of this project was to develop an algorithm for identifying venous leg
ulcers in images, a CNN was employed in order to perform binary classification. The
training was performed on a computer with graphics card NVIDIA Titan X with
a memory of 12 GB. This chapter presents all details regarding the processing of
data and implementation of the algorithm. First, a description of the data will be
given together with the data collection and pre-processing of the images. The imple-
mentation of the algorithm will be presented as well, including chosen framework,
network architecture and the training of the network.

3.1 Data

Two data sets were used for training the network, including a separate set for pre-
training in addition to the images depicting different ulcers. The network was pre-
trained using dermoscopic skin images, retrieved from the open source archive ISIC.
This database is a part of the ISIC project, aiming to reduce the number of un-
necessary biopsies and deaths caused by melanoma [38]. A total number of 1995
skin images were used, depicting melanomas in different stages but also benign skin
lesions. Each image belonged to one of two classes; benign or malignant, and was
given a label accordingly. A total of 1591 benign lesions and 404 malignant were
divided into two data sets, 80 % for training and 20 % for validation.

Various images of patients’ ulcers were provided by head of the dermatology depart-
ment at Skaraborg Hospital in Skövde, Alexandra Forssgren. A large part of the
data obtained was collected from prior research studies of hers but she also collected
new images during the thesis from patients with their consent. Additional images
were also obtained from the web page Sårwebben, published by Skaraborg Hospital.
A total of 300 images were accessed for training the network, depicting both venous
and non-venous leg ulcers. The data set was divided into a training and validation
set corresponding to approximately 85 % and 15 % of the data set, or more exactly
252 and 48 images, respectively. For some cases there were multiple images of the
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same patient. If the same ulcer was visible in several images, the images were divided
ensuring that this ulcer was not encountered during both training and validation.
In total, images of 163 venous leg ulcers and 137 non-venous ulcers were obtained
where both sets contained approximately equal amounts of both type of images.
The training set consisted of 55 % venous leg ulcers and 45 % non-venous ulcers
while the validation set contained exactly 50 % of each class. The non-venous sam-
ples contained images of wounds such as arterial leg ulcers, diabetic and cancerous
wounds. As some images consisted of several ulcers, images were in some cases also
cropped to separate the wounds. An additional set of 10 images was kept separate
for testing the network. To increase the test set, images from a document published
for health care personnel in the region of Östergötland were used [39]. By adding
these additional images, the test set increased to a total of 34 leg ulcer images, 22
non-venous and 12 venous.

A variation could be seen in the obtained images regarding camera distance, light
setting and angle. Some of these variations are visible in the images below, see
Figure 3.1. To allow the ulcer to be the main part of the image, the images were
pre-processed to remove parts of the background. Furthermore, data augmentation
was performed as the data set provided was limited, in order to extend the data
set and improve performance during training. For a thorough description of the
augmentation, see Section 3.3.1.

Figure 3.1: Depicting the variation seen among the received images.
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3.1.1 Pre-Processing

Upon receiving the data, a Matlab script was constructed for pre-processing. The
script was utilised to save appropriate coordinates for cropping together with the
centre point of the wound in a separate file. The coordinates and centre points
were applied in the script for augmentation, ensuring the images would be cropped
according to the saved coordinates before being fed into the network. The centre
points were utilised when rotating the images, as the centre of rotation. Moreover,
all images were normalised before training in order to maintain all data within the
same unit interval.

3.2 Network Implementation

The selected framework was TensorFlow, used as backend together with the machine
learning library Keras. For this project, different networks were retrieved from
the module Applications as mentioned in Section 2.3, including VGG16, VGG19,
Inception V3 and ResNet50. In the early phase of the project, additional tests were
done with the NVIDIA Deep Learning GPU Training System, DIGITS, with Caffe
as framework [40]. DIGITS provides the opportunity to try the networks LeNet,
AlexNet and GoogLeNet, pre-trained on a suitable database such as ImageNet or
MNIST [40]. Smaller tests were performed using the received data set on the different
networks, before settling for the VGG19 network using TensorFlow as framework.
Training this network indicated trends of a declining loss and an increasing accuracy
early on, producing the most promising results.

3.2.1 Baseline

The pre-trained network chosen was VGG19, and it was implemented using weights
from pre-training on the ImageNet database. In order to classify images using
binary classification, the final layer of the network was modified to only handle two
classes and the activation function was changed from softmax to sigmoid. To avoid
overfitting, two dropout layers were added after the first and second FC layer. The
final network architecture, with modifications, is displayed in Figure 3.2.

3.3 Network Training

In order to train a network using Keras, a training set-up needs to be compiled where
settings such as optimiser, learning rate and loss function are to be set. The same
settings were applied in both pre-training using skin images of melanomas and fine-
tuning using images of ulcers. Adam optimisation was used together with binary
cross-entropy as loss function. Furthermore, the additional regularisers L1, L2 and
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Figure 3.2: The network architecture used, with VGG19 as foundation but with
added dropout layers and softmax function changed to sigmoid. All convolutional
blocks are shown, as well as the sizes of the individual layers. The input image in
the figure is from the training set.

L1 together with L2 were also added to further reduce overfitting tendencies. The
hyperparameters set before training were number of epochs, learning rate, learning
rate decay, class weight for the loss function, regularisation parameter and dropout
level. Different levels of each hyperparameter were tested and adjusted several times,
retraining the network every time to evaluate the performance metrics, before the
most suitable levels were determined.

In addition to being pre-trained on ImageNet, the network was trained using a set of
dermoscopic skin images from the open source archive ISIC before encountering the
ulcer images. The data set used for the pre-training was not balanced and the loss
function was rescaled with a weight factor corresponding to the class ratios to ensure
equal importance for both classes during training. The number of epochs for the
pre-training was decided based on the time required to finish one epoch, otherwise it
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would have taken too long before being able to run tests. For this reason, the epochs
for the pre-training was set to 50. Regarding fine-tuning using the wound images,
the number of epochs was originally set too high, to 200 epochs, but was adjusted
based on the convergence of the performance metrics. The number of epochs for fine-
tuning was therefore finally set to 50 as well. For both pre-training and fine-tuning,
the training and validation sets were evaluated using loss, accuracy, precision and
recall. The performance of the final network structure and hyperparameter set-up
was finally tested using a smaller test set of images, 10 skin lesion images for the
pre-trained network and 34 ulcer images for the fine-tuned network.

When retrieving images, Keras allows real-time processing of the images as they
are collected from the correct folder by the use of a generator. This tool enables
augmentation to be performed by Keras as well, without the need of saving every
augmented image. However, as the images were cropped before being fed to the net-
work, the rotation provided by Keras caused artifacts in the images such as lines and
black edges. As this pre-implemented augmentation did not yield desired results, as
the produced artifacts could potentially affect the training of the network, the func-
tion for augmentation was rewritten. An elaborate description of this customised
augmentation will be covered in Section 3.3.1. Additional modifications were made
to some of the pre-implemented functions in Keras, including a customised callback
function in order to evaluate the model with precision and recall.

3.3.1 Augmentation

For protecting patient integrity, the access to patient data is restricted. Due to
this reason, the data set received from Skaraborg Hospital was limited and data
augmentation was implemented as a solution to the problem. New data was thereby
created from the original data set using modifications such as rotation and colour
alterations. However, images of ulcers are sensitive to excessive modifications as
the wounds’ characteristics must be preserved. One example of when this might
be an issue is when altering an image using contrast enhancement or other colour
alterations. The wound might become unnaturally bright red, or not red enough,
when compared to the original image and hence, this can cause the network to
train on implausible cases. Therefore, the augmentation was restricted to rotation,
flipping the images vertically and horizontally, slightly changing the brightness and
contrast and adding noise. As with changing the brightness and contrast, the amount
of noise added was also restricted in order to not alter the image beyond resemblance
to its original.

For adding noise as well as adjusting the brightness and contrast in Python, the
module skimage.exposure was used. Different parameters for specifying the aug-
mentation was chosen randomly from a predefined interval. To adjust the brightness,
a gamma correction was added with the module skimage.exposure.adjust_gamma.
To obtain a darker image, the allowed interval for the gamma value was 0.7 - 0.9,
and for a brighter image the range was 1 - 1.1. In addition to modifying the gamma
value for a brighter image, the gain was also adjusted to increase the brightness
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intensity. For this purpose, the interval of the gain factor was set to be 0.85 - 0.95.
For achieving a darker image the gain factor was set to the default value, one. The
contrast of the image was modified by changing the scale of the intensity levels, us-
ing the Python module skimage.exposure.rescale_intensity. An interval was
set to determine an intensity range, where the lower boundary was always set to
zero and the upper boundary was set within the range 208 - 238.

The module used for adding noise was skimage.util.random_noise and the types
of noise added were speckle, Gaussian and Poisson noise. Speckle noise, or multi-
plicative noise, is the result of adding an image multiplied with uniformly distributed
noise to the original image [41]. Mean was set to zero for speckle and Gaussian noise.
The variance was selected randomly within the interval 0.02 - 0.1 for speckle noise
and 0.009 - 0.04 for Gaussian noise.

Some examples of the added augmentations are visible in the images below. Two
images of the same ulcer are shown in Figure 3.3, comparing the original to a case
with three augmentations added which was the maximum number of augmentations
added. Image (B) in Figure 3.3 shows the augmented image with the most extreme
modifications regarding gamma and gain for brightness as well as the variance for
Gaussian noise. Moreover, this image is flipped compared to the original photo in
Image (A). Individual examples of the most extreme cases are shown in Figure 3.4,
where it is possible to see how the same image differs when the maximum value of
brightness, darkness, Gaussian noise and contrast are added.

Figure 3.3: Depicting the effect of adding a number of augmentations to an image.
(A) The original image of the ulcer, with no augmentations added. (B) The resulting
image after adding the maximum number of augmentations. The augmentations
added include; flipping the image, adding maximum value of Gaussian noise and
increasing the brightness to its maximum.

For rotation, the coordinates for cropping were taken into consideration in order
for the images to be rotated before cropping. Rotation was performed using a
rotation matrix and applying it to every coordinate of the image, and selecting
the corresponding pixel intensity after rotation. Moreover, the coordinates for the
centre of the ulcer were used as the centre of rotation. The rotation matrix used is
described by the following matrix,

R =
[
α β (1− α) · Cx − β · Cy

−β α β · Cx + (1− α) · Cy

]
, (3.1)
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Figure 3.4: A selection of the possible augmentations. (A) The original image
depicting a venous leg ulcer. (B) The resulting image after flipping the image. (C)
The result after darkening the image, using gamma 0.7. (D) The resulting image
after brightening the image, with gamma set to 1.1 and the gain factor to 0.85. (E)
The image after adding Gaussian noise to the image with a variance of 0.04. (F)
The resulting image after changing the contrast with a intensity range 0 - 208.

α = cos(θ), β = sin(θ). (3.2)

Cx and Cy represent the x and y coordinates for the centre of the ulcer, and θ
denotes the angle of rotation. An angle was chosen randomly and the coordinates
for cropping were rotated first, to ensure that they remained within the boundaries
of the image before rotating the rest of the image. As many of the images were
cropped closely to the leg in order to remove unnecessary background information,
a large rotation could cause large parts of the leg to be excluded from the image.
In order to ensure that a larger part of the ulcer and leg was visible after rotation,
the angle was limited to the range of 5 - 50 degrees. If rotation was not possible, a
flipping of the image was performed instead.

As with the ulcer images, the dermoscopic images depicting melanomas used for pre-
training were not to be altered drastically in order to ensure resemblance between
the original and newly added images. Thus, the same set of augmentations were
applied as for the ulcer images. However, as the images depicting melanomas were
not cropped, neither were they rotated.
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A customised function was created in Python for augmentation, having the coor-
dinates for cropping of the images as input together with the image itself. During
training, the amount of data augmentation was chosen randomly for each input im-
age which resulted in a slightly different image and therefore, a slightly different set
of images for each epoch. The number of different types of augmentation techniques
to use for each image was chosen at random, but could never be more than three.
No augmentation was performed on the validation set, but all images were resized
to the size of 224× 224× 3.
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Results

This chapter presents the results of the project, including both pre-training using
dermoscopic images and fine-tuning using ulcer images. Different combinations of
regularisers and levels of dropout were tested for fine-tuning. All hyperparameters
were manually tuned in order to achieve satisfactory learning.

The hyperparameters considered were; epochs, batch size, learning rate, learning
rate decay, class weight, steps per epoch and regularisation parameter. The number
of epochs needed for considering training to be finished is characterised by converged
performance metrics and loss. Learning rate specifies the size of the steps taken in
optimisation, and learning rate decay enables a decay over each parameter update.
Class weight represents the weighting of the loss function for both classes, indexed 0
and 1. Class weights were only used for pre-training as the dermoscopic data set was
not balanced. The listed parameters also include batch sizes during training and
testing of the network. Steps per epoch denote the number of batches retrieved for
every epoch. Batch sizes and steps per epoch were chosen to ensure that the entire
data set was retrieved in each epoch. A regularisation parameter was also determined
for the different combinations of the L1 and L2 regulariser. This parameter was only
set for fine-tuning as these regularisers were not applied in the pre-training. Table 4.1
presents all hyperparameters for both pre-training as well as fine-tuning.

4.1 Pre-Training on Dermoscopic Images

Additional pre-training using images of melanomas yielded slightly better results
compared to initialising the weights with the network pre-trained on only ImageNet.
To evaluate the effect of the initialisation, the network was fine-tuned using the
ulcer images with the same set-up but changing the initialisation of the weights.
Hence, two cases were compared; only pre-training the network on ImageNet and
pre-training the network on both ImageNet and dermoscopic images. Both cases
resulted in equal accuracy, and therefore, precision and recall were compared for
the validation set. For comparison, the same values of precision and recall were

23



4. Results

Table 4.1: Chosen hyperparameters for pre-training and fine-tuning, which are not
altered during testing of different regularisers and levels of dropout.

Pre-training Fine-tuning
Epochs 50 50
Batch size, training 30 6
Batch size, validation 10 6
Batch size, testing 10 34
Learning rate 1 · 10−6 1 · 10−6

Learning rate decay 1 · 10−4 1 · 10−4

Class weight 1:4, 0:1 1:1, 0:1
Steps per epoch, training 50 42
Steps per epoch, validation 40 8
Steps per epoch, testing 1 1
Regularisation parameter 0 0.01

observed at the same epoch during training, after convergence. Precision was slightly
higher when pre-training the network on both ImageNet and dermoscopic images
while recall was higher for the weights only pre-trained on ImageNet. A higher
precision was favoured after consulting Alexandra Forsgren due to the severity of
false positives, making it more important that the ulcers classified as venous truly
are venous. Thus, the decision was made to include the additional pre-training on
skin lesions. However, to perform this pre-training was time-consuming, making it
difficult to test and tweak hyperparameters and the number of epochs was therefore
limited to 50 and a dropout of 20 % was used.

The results from the pre-training using dermoscopic images are presented in Ap-
pendix A. Applying a weight to the classes alters the loss function, which can be
seen in an initially very high loss. From the results it is however visible that the loss
is decreasing, and it is still decreasing when the last epoch finishes and none of the
performance metrics has converged yet. This indicates that if the training would
have been given more time to complete more epochs, better results could have been
achieved.

4.2 Fine-Tuning on Ulcer Images

For the fine-tuning using the ulcer images, VGG19 was initialised with the weights
from the network pre-trained on ImageNet and dermoscopic images. Experiments
were performed for three cases of regularisers; L1, L2 and L1 combined with L2.
For each test, three different dropout levels were compared; 10, 20 and 30 %. The
hyperparameters set before training are summarised in Table 4.1. Different levels
of the regularisation parameter α, see Section 2.2.4, were tested and it was finally
set to 0.01 for all regularisers. In the following tests, the values of all performance
metrics and the loss from the last epoch are documented. By adapting the number
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of epochs based on the convergence of the performance metrics, the training was
ended in time, and overfitting of the network was avoided. Since there were no
indications of the performance changing drastically, the last epoch was considered
representing the best result.

4.2.1 L1 Regulariser

The test results from applying a L1 regulariser with different dropout levels gave al-
most identical results. The loss, accuracy, precision and recall are listed in Table 4.2
for the training and validation set for all three dropout levels. When comparing the
three cases, the best performance metrics for the validation set are obtained for the
dropout levels 10 % and 20 %, but their losses differ. To determine the best set-
up, the difference between training loss and validation loss was compared. A small
gap between training and validation loss implies less overfitting and thus a better
fit, compared to a greater gap. According to Table 4.2, the difference between the
training and validation loss is the smallest with a dropout at 20 %. A dropout level
of 20 % is therefore considered the best option for the case of L1 regularisation.

Table 4.2: Test results when training the network with L1 regulariser and different
dropout levels. The values documented are from the last epoch.

Training Validation
Level of dropout Level of dropout
10 % 20 % 30 % 10 % 20 % 30 %

Loss 0.070 0.075 0.113 Loss 0.292 0.262 0.287
Accuracy 98.41 % 97.62 % 96.43 % Accuracy 89.58 % 89.58 % 87.50 %
Precision 98.57 % 97.16 % 95.10 % Precision 88.00 % 88.00 % 87.50 %
Recall 100 % 99.28 % 98.55 % Recall 91.67 % 91.67 % 87.50 %

4.2.2 L2 Regulariser

Regulariser L2 was applied in the second test, with the same settings. The results
are summarised in Table 4.3, presenting similar results when compared to those in
Table 4.2. Equal percentages can be seen when observing the accuracy, precision and
recall for validation in both tests. To determine the most promising set-up using the
L2 regulariser, the gap between the training and validation loss is evaluated. The
results show that L2 regulariser with dropout level 20 % has the best fit out of all
the cases with the same accuracy, precision and recall.
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Table 4.3: Test results when training the network with L2 regulariser and different
dropout levels. The values documented are the values for the final epoch.

Training Validation
Level of dropout Level of dropout
10 % 20 % 30 % 10 % 20 % 30 %

Loss 0.084 0.109 0.095 Loss 0.274 0.263 0.277
Accuracy 97.22 % 96.83 % 96.03 % Accuracy 89.58 % 89.58 % 87.50 %
Precision 98.57 % 97.14 % 97.14 % Precision 88.00 % 88.00 % 87.50 %
Recall 100 % 98.55 % 98.55 % Recall 91.67 % 91.67 % 87.50 %

4.2.3 L1 and L2 Regulariser

The third test was performed using a L1 and L2 regulariser with all the three
dropout levels used in the previous tests, 10, 20 and 30 %. As seen in Table 4.4, the
results are similar to each other, but also when compared to the other tests. Highest
accuracy, precision and recall achieved are given with the dropout set to 20 % which
was therefore considered as the most appropriate dropout level for this regulariser.

Table 4.4: Test results when training the network with L1 together with L2 reg-
ulariser and different dropout levels. The values documented are from the final
epoch.

Training Validation
Level of dropout Level of dropout
10 % 20 % 30 % 10 % 20 % 30 %

Loss 0.088 0.103 0.097 Loss 0.281 0.272 0.305
Accuracy 96.83 % 96.83 % 97.22 % Accuracy 87.50 % 89.58 % 87.50 %
Precision 97.86 % 95.83 % 95.71 % Precision 87.50 % 88.00 % 87.50 %
Recall 99.28 % 100 % 97.10 % Recall 87.50 % 91.67 % 87.50 %

4.2.4 Comparing Regularisers

Different levels of dropout did not affect the results considerably, but all three cases
showed slightly better performance for a dropout level of 20 %. Using L2 as reg-
ulariser results in the smallest difference between training and validation loss, and
is therefore considered the top performing network. In Figure 4.1, the losses for
both training and validation data during training are shown, where the gap between
the orange and blue graph is the smallest compared with the results from the other
set-ups tested. The trends for the different performance metrics during training can
be seen in Figure 4.2 and 4.3 below.

As mentioned, very small differences could be seen when comparing the results from
all tests. Considering all values of accuracy on the validation set, a very limited range
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Figure 4.1: The loss versus epochs with L2 regulariser and dropout 20 %. The
difference between the losses at the last epoch is approximately 0.15.

Figure 4.2: Shows the the performance metrics during training for the validation
set with the best set-up from all tests, L2 regulariser with 20 % dropout level.

Figure 4.3: Illustrates the performance metrics during training for the training set
with the best set-up from all tests, L2 regulariser with 20 % dropout level.
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is seen and no network surpassed an accuracy of 89.58 %. This indicates the presence
of a number of images that the network is never able to classify correctly, preventing
a higher accuracy to be achieved. The incorrectly classified images were examined,
and a number of frequently recurring images were identified. In Figure 4.4, the
recurring incorrectly classified images of venous leg ulcers can be seen, while the
non-venous can be seen in Figure 4.5. These images occurred for the majority of
the networks, regardless of regulariser or level of dropout.

Figure 4.4: Recurring incorrectly classified images of venous leg ulcers.

Figure 4.5: Recurring incorrectly classified images of other ulcers, not venous leg
ulcers.

Recurring correctly classified images, when comparing the classifications from dif-
ferent network set-ups, are displayed in Figure 4.6 and Figure 4.7. In Figure 4.6, the
correctly classified venous leg ulcers are depicted and in Figure 4.7, other types of
ulcers are shown. All images were classified with a high certainty, 95 % probability
or greater.
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Figure 4.6: Recurring correctly classified images of venous leg ulcers, all classified
with a probability equal to or greater than 95 %.

Figure 4.7: Recurring correctly classified images of other ulcers, not venous leg
ulcers. All images have been classified with a probability equal to or greater than
95 %.

Correctly classified images, but with a lower certainty, were also observed. Recurring
images for the different network set-ups were compared, finding images classified
with a probability in the range 50 - 75 %. Even though still uncertain, a slightly
better prediction was obtained for images taken from a larger distance. Examples
of these images can be seen in the upper row in Figure 4.8, all depicting venous
leg ulcers. The images in the bottom row depict the same ulcers taken from a
closer distance, two of which were classified with higher degree of uncertainty and
one being incorrectly classified. This indicates an increased uncertainty regarding
images taken from a closer distance.
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Figure 4.8: Images of venous leg ulcers, all but one classified correctly, but with
low certainties. In the figure, two images of each wound are presented. The images
taken at a further distance, (A) - (C), have been classified with a probability above
75 %. Two of the pictures of the corresponding ulcers taken from a closer distance,
(D) and (E), have been classified with a lower probability of 50 - 75 %, whereas the
third image, (F), was incorrectly classified.

4.2.5 Results for the Test Set

Lastly, the network’s performance was tested using images it had never encountered
before. By testing it on the test set, which was not included in the training, the
network’s true performance was evaluated. The test was performed using the final
network, with a L2 regulariser and a dropout level of 20 % since this was considered
the best set-up according to the analysis in Section 4.2.4. On the test set, consisting
of 34 various ulcer images, the network achieved an accuracy of 85 %, a precision of
82 % and a recall of 75 %.

For comparison, a final test was performed with the set-up using a L2 regulariser
and a dropout of 20 %. An important modification was made compared to the pre-
vious tests, moving all images in the validation set to the training set and thereby
enabling training of the network using the entire data set. As a result of an in-
creased training set, a larger number of epochs was needed for convergence of the
performance metrics. Thus, training lasted for 100 epochs.

A slightly better performance could be seen for the training set when using the en-
tire data set as training data, 300 images, than when being divided into a training
set and a validation set. The values of loss, accuracy, precision and recall are sum-
marised in Table 4.5. In this table, the results obtained when a validation set was
included is shown as well, denoted as Training with 252 images for comparison. For
a visualisation of the trends during the entire training without a validation data set,
see the graphs in Figure 4.9 and Figure 4.10.

For comparison, the performance of the network was investigated using the same
test set as before. Moving all images to the training set did not affect the results
tremendously, and both tests gave identical results for the test set. For the test set,
the network reached approximately 85 % accuracy, 82 % precision and 75 % recall
as was obtained from the training including a validation set.
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Table 4.5: Comparison between the results obtained from the training set in the
final performance test of the network. Results shown both with and without the
validation set, where the training set consists of 252 and 300 images respectively,
for L2 regularisation and with a dropout level 20 %. All values documented are the
values from the last epoch.

Loss Accuracy Precision Recall
Training with 300 images 0.060 98.00 % 98.17 % 98.77 %
Training with 252 images 0.109 96.83 % 97.14 % 98.55 %

Figure 4.9: Illustrates the loss during the final evaluation of the networks perfor-
mance with L2 regulariser with 20 % dropout level.

Figure 4.10: Illustrates the performance metrics during the final evaluation of the
networks performance with L2 regulariser and 20 % dropout level.
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Chapter 5

Concluding Discussion

The aim of this master thesis was to develop an algorithm for classifying images
of ulcers, for the purpose of creating an aid for diagnosing ulcers. The proposed
algorithm can in many aspects be considered successful, the results being proof
of the solution’s feasibility. However, a number of improvements could be made
regarding the implementation and should be taken into consideration for further
development.

5.1 Discussion Regarding the Method

The most important proposal regarding possible improvements to be made, having
the potential of producing more reliable and accurate results, is increasing the size
of the data set. The limited data set was the major concern during the project,
undoubtedly affecting the results as larger data sets are typically applied for training
CNNs. Possibly, a better performance could be achieved with a larger data set.
In order to use medical images from novel patient data, a written application is
required, that needs to be processed and approved. The master thesis had a limited
time span and therefore, such an application was not possible within the scope of this
project. Due to this reason, a large part of the data was from Alexandra Forssgren’s
previous research, already approved for these kinds of studies.

Another possible improvement concerns the pre-training of the network. Pre-training
using images depicting different melanomas seemed somewhat promising. This can
be seen in Appendix A, most notably by a decreasing loss for both validation and
training data but also by an increased accuracy, precision and recall for training
data. This indicated that if continued, the pre-training might have reached an even
higher accuracy and a lower loss. These pre-training results could be improved by
performing additional hyperparameter tuning. However, the time needed to finish
the desired number of epochs was unreasonably long, partly due to the large amount
of images, and additional tests were therefore not performed. If overcome, additional
data sets could be used for pre-training, enabling the network to train on more data.
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One possibility is to train the network on images with a higher degree of similarity
when compared to the ulcer images, including other digital photographs.

One issue regarding the implementation of the network includes the drawbacks of
Keras. The library has many useful tools and is simple to use, but the structure
for building networks does not allow editing of individual building blocks in many
cases. This was the reason for rewriting some of the functions and the classes
they belong to, e.g. ImageDataGenerator and DirectoryIterator. Rewriting the
tools already provided in Keras became the focus of the project for a longer time
than should have been necessary. Without the need of rewriting the functions for
augmentation, more time could be spent tuning the parameters for fine-tuning and
especially, pre-training.

5.2 Discussion Regarding the Results

Despite the issues during implementation, promising results were obtained. How-
ever, it should be noted that the results were similar regardless of set-up concerning
regulariser and level of dropout. When evaluating the correctly and incorrectly
classified images, recurrent patterns can be seen.

For the incorrectly classified images, the network fails to classify the same five im-
ages, two of which were depicting venous leg ulcers and three of which were depicting
other ulcers. Images from the validation set can be seen in Section 4.2.4, where these
incorrectly classified ulcers are depicted in Figure 4.4 and Figure 4.5. When examin-
ing the training samples for the venous ulcers, these images were normally depicting
ulcers from a distance. As close-up images of venous leg ulcers were more rare, this
might explain the reason for the network not being able to classify Image (B) in Fig-
ure 4.4 as a venous leg ulcer. Furthermore, Image (A) and Image (B) in Figure 4.5
might be difficult for the network to classify as there is more of a resemblance to
the images of venous leg ulcers. This can be seen considering both the actual ulcer
but also in the composition of the image, as a larger part of the leg is visible which
is normally seen in the training images of venous leg ulcers.

The discussed images can be compared with the images that were correctly classified,
seen in Figure 4.6 and Figure 4.7. For most cases, the correctly classified images of
venous leg ulcers depict the entire leg. For a limited number of ulcers, the validation
set contained both images of the entire leg as well as close-ups. In these cases,
the networks classified the images taken from a distance with a greater certainty
compared to the close-ups. These images can be seen in Figure 4.8, where one of
the close-ups was not classified correctly at all.

For future data collection, introducing additional variation in the images should be
taken into consideration. Variation includes different lighting, angles and taking
the images from different distances. This would enable the network to recognise
the ulcers in a larger variety of settings which could potentially make the network’s
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predictions on images taken from a closer distance more certain.

5.3 Future Work

A number of improvements remain to be applied before implementing a deep learn-
ing based solution of this kind in the health care sector. The presented results are
promising but as mentioned, increasing the data set could yield better performance
for classifying venous leg ulcers. A larger data set also introduces the possibility
of including more classes, enabling classification of other wounds as well. Including
ulcers such as arterial leg ulcers, diabetic wounds etc., would thereby widen the area
of use. Future developments also include adding additional, non-imaging parame-
ters, normally evaluated when setting a diagnosis for an ulcer, listed in Table 1.1.
This introduces the issue of having different types of input data, both images as well
as tabular data, but if solved it could enable a full automated system for diagnosing
ulcers to be developed.

Regardless of the level of complexity, with an automated classification aid the pos-
sibility of developing many kinds of easily accessible tools arises. The solution could
be developed as a smartphone application, to be used within health care as a support
system. Health care personnel could photograph a wound and receive a prediction
after a few seconds. If developed with this target group in mind, the application
could assist medical staff in their work and ease their workload. In the long run,
this would be beneficial for patients as well who will be offered accurate treatment
faster, reducing discomfort and improving life quality.

5.4 Final Thoughts

Considering the limited data set provided and the promising results obtained, a
deep learning based solution for leg ulcer image classification should be considered
plausible. The high values of precision, recall and accuracy for the validation set
when comparing the different set-ups indicate the potential of a machine learning
based solution. As a conclusion, the suggested solution is a good starting point for
assisting health care personnel in ulcer diagnosis, potentially beneficial both when
it comes to the financial aspect as well as the well-being of patients.
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Appendix A

Appendix 1 - Graphs and Tables

A.1 Pre-Training Results

In addition to the results presented in Chapter 4, a more thorough description of the
results from the pre-training are presented in this section. Values for loss, accuracy,
precision and recall for the final epoch are documented in Table A.1. Figure A.1
illustrates the loss both for the training set as well as the validation set over all 50
epochs. The accuracy, precision and recall during training can be seen in Figure A.2
and Figure A.3, for validation and training, respectively.

Table A.1: The results from the pre-training on skin lesion images with a dropout
level of 20 %. The values documented are the values from the last epoch.

Training Validation
Loss 0.712 Loss 0.597
Accuracy 80.20 % Accuracy 72.25 %
Precision 49.13 % Precision 38.63 %
Recall 88.54 % Recall 62.96 %
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Figure A.1: The loss obtained over all epochs during pre-training. The loss starts
at a high value due to the unbalanced data set. The training loss is clearly decreasing,
while the validation loss is more difficult to interpret.

Figure A.2: Accuracy, precision and recall for the validation set. The graphs are
noisy and do not converge, indicating a less successful learning.

Figure A.3: Accuracy, precision and recall for the training set. All performance
metrics are increasing over the shown epochs, and are still increasing when the final
epoch is reached. This behaviour indicates that a further increase might have been
seen, if given more time.
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A.2 Fine-Tuning Results

This section presents the results from the fine-tuning. The results include values
for loss, accuracy, precision and recall for all epochs during training, from the tests
covered in Chapter 4.

Figure A.4: The loss obtained over all epochs during training with a L1 regulariser
and a dropout of 10 %. The difference between the losses for the final epoch is
approximately 0.22.

Figure A.5: Accuracy, precision and recall for the validation set using L1 regu-
lariser and 10 % dropout.

Figure A.6: Accuracy, precision and recall for the training set. L1 regulariser was
used together with a dropout level of 10 %.
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Figure A.7: The loss obtained over all epochs during training with a L1 regulariser
and a dropout of 20 %. The difference between the losses at the last epoch is
approximately 0.19.

Figure A.8: Accuracy, precision and recall for the validation set using L1 regu-
lariser and a dropout of 20 %.

Figure A.9: Accuracy, precision and recall for the training set when training with
a L1 regulariser and a dropout level of 20 %.
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Figure A.10: The loss obtained over all epochs during training with a L1 regu-
lariser, with a dropout of 30 %. The difference between the losses for the final epoch
is approximately 0.17.

Figure A.11: Accuracy, precision and recall for the validation set. L1 regulariser
was used with 30 % dropout.

Figure A.12: Accuracy, precision and recall for the training set, with L1 regulariser
and a dropout level of 30 %.
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Figure A.13: The loss obtained over all epochs during training with a L2 regu-
lariser and 10 % dropout. The difference between the losses at the last epoch is
approximately 0.19.

Figure A.14: Accuracy, precision and recall for the validation set using L2 regu-
lariser and 10 % dropout.

Figure A.15: Accuracy, precision and recall for the training set. L2 regulariser
was used together with a dropout level of 10 %.
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Figure A.16: The loss over all epochs during training with a L2 regulariser and a
dropout of 30 %. The difference between the losses for the final epoch is approxi-
mately 0.18.

Figure A.17: Accuracy, precision and recall for the validation set when training
with a L2 regulariser and 30 % dropout.

Figure A.18: Accuracy, precision and recall for the training set, using a L2 regu-
lariser and a dropout level of 30 %.
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Figure A.19: The loss obtained over all epochs during training with a L1 together
with a L2 regulariser, with 10 % dropout. The difference between the losses at the
last epoch is approximately 0.19.

Figure A.20: Accuracy, precision and recall for the validation set, using L1 together
with a L2 regulariser and 10 % dropout.

Figure A.21: Accuracy, precision and recall for the training set, using L1 together
with a L2 regulariser and 10 % dropout.
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Figure A.22: The result obtained over all epochs during training with a L1 together
with a L2 regulariser and a dropout of 20 %. The difference between the losses at
the last epoch is approximately 0.17.

Figure A.23: Accuracy, precision and recall for the validation set. L1 together
with L2 has been used as a regulariser, with a 20 % dropout.

Figure A.24: Accuracy, precision and recall for the training set, using L1 together
with L2 and 20 % dropout.
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Figure A.25: The loss obtained over all epochs during training with a L1 together
with a L2 regulariser and 30 % dropout. The difference between the losses at the
last epoch is approximately 0.21.

Figure A.26: Accuracy, precision and recall for the validation set. L1 together
with L2 has been used as a regulariser, with a 30 % dropout.

Figure A.27: Accuracy, precision and recall for the training set. L1 together with
L2 has been used as a regulariser together with 30 % dropout.
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