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cessing
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Abstract
Machine learning has gained popularity in many fields due to its success in e.g. im-
age analysis. Radar data can be represented as images and thus machine learning
was expected to be useful in radar signal processing. Recent studies have shown
promising results from machine learning in the field of radar applications, yet there
are few machine learning implementations in real radar systems. This thesis aimed
to study the feasibility of machine learning in airborne radar signal processing,
by creating a simple radar target classification function, aimed at learning micro
doppler signatures. A custom cross validation method was proposed that enabled
detecting dataset bias, which was used together with a method from Explainable AI
to discover that the network had learned nonuseful features.

To use machine learning in radar signal processing thus require a more sophisticated
method for aggregating the dataset. This led to the conclusion that the greatest
challenges in implementing a deep learning function in airborne radar systems are
to collect an unbiased dataset and to verify that the network has learned useful
features.

Keywords: airborne radar, machine learning, verification, signal processing, deep
learning, neural networks, cross-validation, Explainable AI, data-driven, pruning.
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1
Introduction

Filters in radar systems are designed to look for features in the data that the sen-
sor captures. Building filters for an airborne radar system is expensive and the
physical restrictions from a flying system further complicate the process. Since the
Second World War airborne radar systems have been used to detect aerial targets
[1]. However, the flying vessels of tomorrow are not known to anyone and as the
speed of technological innovation increases so must development of airborne radar
filters to remain relevant. As digitalization has increased the flow of data in soci-
ety, data-driven development such as Artificial Intelligence (AI) is becoming a key
driver for economic growth according to [2]. The expectation is thus that AI could
contribute to producing a competitive airborne radar system on the modern market.

Data-driven development is producing promising results on radar data [3, 4, 5, 6,
7, 8], and advancements in modern computers enable implementing AI under the
constrains of a flying system, proving its potential. A more rapid design process is
also expected from using data-driven development in the radar system, which could
facilitate the process of adding new functionality. However, industrialization of AI
cannot occur without a secure process of verifying its performance. In additon, im-
plementing a new technology will always involve obstacles, hence a couple of steps
remains before it is possible to benefit from using AI in airborne radar. One of
many challenge with data driven development does not only lie in collecting a great
amount of data, but how to aggregate the information in a meaningful way. Earlier
research has focused on synthetic data or scenarios not connected to the environ-
ment of an airborne radar system.

Therefore it is interesting to investigate the feasibility of machine learning in airborne
radar systems by performing a small-scale test using real-world data, and to find an
approach to verify its functionality.

1.1 Deep learning

Artificial intelligence is the practice of making technology mimic human behavior
and intelligence. Machine learning is a field within AI and a technique to develop an
algorithm without defining a set of complex rules, often implemented as learning a
model from a dataset. Modern machine learning approaches often use deep learning
as a method to learn this model from the dataset. Deep learning fits a function to
patterns in the data using an artifical neural network (ANN), and is often considered

1



1. Introduction

state-of-the-art technology for image analysis tasks [9].

During supervised learning the model fitting process is based upon example input-
output pairs. In the case of image classification, the training dataset would consist
of images with a corresponding label. The performance of the machine learning
algorithm is thus a direct result of how well the training dataset represents the
target environment and if there are useful patterns in the data to learn.

1.2 Radar

By transmitting and listening to radio waves the radar system can determine speed,
direction and distance to a target, even in darkness and bad weather. Detecting and
classifying aerial targets is a valuable capability and during air combat it is especially
important to distinguish between targets. The radar echo can be represented as
range-doppler maps (RD-maps), which are image like matrices showing the strength
of the radar signal response with respect to range and range-rate. Different targets
have different frequency profiles dependent on how the radio waves are reflected off
the targets. Therefore targets can appear different in the RD-maps and are in some
cases even distingusihable by the human eye. Range-doppler maps are an important
analysis tool for a radar system, and enable the use of image analysis tools for radar
data.

1.3 Problem description

As the name suggests, data-driven development is no better than the data itself. Ver-
ifying the performance of a data-driven algorithm requires knowledge of the dataset.
This knowledge must provide insight into what meaningful data is, in other words, if
there exist patterns in the data and if the patterns will teach the algorithm anything
desirable. With that kind of knowledge the performance of the machine learning
algorithm could be estimated for data not available during training and evaluation,
or how to collect new data. Since machine learning does not require any set of rules
for training it is not obvious what aspects in the dataset are important or what could
impair the function. The ANN is a ”black-box” and it might find patterns in the
data not comprehensible to humans, thus complicating the process of understand-
ing what is behind its performance. Allowing it to learn from experience without
providing any prior knowledge is a strength, however in order to trust the algorithm
or to create a good dataset it must be possible to unravel what meaningful features
are and understand what the deep learning algorithm considers useful.

The problem of understanding a data-driven algorithm and creating trust can be
investigated in multiple ways. For example, by opening up the black box and un-
derstanding its behaviour, or by verifying that the dataset is close to the target
environment, or performing tests with the fully trained algorithm to investigate its
behaviour in different environments. The focus appears to be on the dataset and
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1. Introduction

not the network architecture.

Using real-world data positions the dataset close to the target environment, yet it is
not certain to contain any meaningful patterns for a neural network to learn. How
can the data collection method, including labelling, be designed such that an ANN
learns useful features?

Since machine learning has been succesful on image analysis and radar data can be
represented as images, target classification is a suitable function to develop within
the timeline of this work in order to try to answer some of these questions. It is
however unknown how feasible the use of RD-maps with real-world data is and what
problems need to be solved before it is a feasible method. Investigating the potential
of machine learning based only on classification performance could overlook other
benefits in the design process, or obscure obstacles that could impair the system.
For data driven development to take place in a complex radar system it needs to
improve some aspect of the system, whether it be cost, computational complexity,
development speed or performance. Hence focusing on the data and not the network
architecture could provide knowledge which is useful for developing other functions
with machine learning in the airbone radar system.

One big advantage of using machine learning is its capacity of “learning without
rules”, but then it might be percieved as contradictory to look into the black box
of the ANN or trying to find these “5rules”. In order to investigate the process
of creating radar filters using machine learning, without bringing to much prior
knowledge into the process, an interative trial-and-error approach could accumulate
information of the task at hand without interfering with the principles of machine
learning.

1.4 Purpose

This thesis aims to determine challenges that arise when developing a machine learn-
ing algorithm in airborne radar signal processing, and whether they can be overcome.
If the challenges are possible to overcome, machine learning could be considered fea-
sible in current airborne radar system.

1.5 Scope and limitations

To discover the challenges of implementing machine learning algorithms, a prototype
function was developed using supervised deep learning. A small-scale implementa-
tion of the full development process was evaluated. This thesis focuses on the signal
processing part of data driven development. There was no actual implementation of
the function in a real system. The intended functionality was to distinguish target
classes in the radar signal using RD-maps.

3



1. Introduction

The main focus of this thesis lie in the data aspect and the necessary work before
using deep learning in the system. Thus achieving the best classification accuracies
was not prioritised. The neural network architecture remained the same throughout
the work and instead the dataset was altered to obtain the results. The network
architecture was inspired by current reasearch and this thesis did not optimize any
hyperparameters or network architecture.

This work was carried out in the facilites of Saab AB, who produces different kinds of
radar systems. The real-world data was acquired by an airborne surveillance radar
system in a testing facility. The data collection method was thus limited to the
functionality specific to that radar system. To use the data for supervised learning
it requires labelling. This thesis limits the data collection method to collecting new
data and labelling it whilst doing so. As will be shown in Section 4.5.3, data from
a Saab ground radar system were also used.

To use the neural network in an airborne radar system it must be able to work
under the constraints put upon the computational complexity. Therefore it was
considered relevant to propose methods of how to increase computational speed of
a neural network.

1.6 Thesis outline
This thesis consist of seven chapters. Chapters 2-3 aim to provide a reader with
basic knowledge of radar signal processing and deep learning. Chapter 4 describes
how data was collected and labelled, and how the neural network was trained and
evaluated. In Chapter 5 the results from the data collection and network evaluation
is presented, along with a brief analysis of why they ended up the way they did. In
the remaining chapters, a more elaborate analysis of the results is carried out to find
weaknesses in the study and draw conclusions. Ethical implications of this work are
also discussed along with some ideas for future studies.

4



2
Airborne radar

This chapter summarizes some fundamental concepts of airborne radar systems rel-
evant to this work. The goal is to provide the reader with understanding of what
data could be used for machine learning and what patterns could be expected to
learn. For further reading, suitable chapters from [1] are referred to in each section.

2.1 Fundamentals of a radar system
A radar is a sensor that emits electromagnetic energy and measures returned elec-
tromagnetic energy, and a common application is target detection. The range of
which a target can be detected depends on several factors such as transmission sig-
nal power, antenna size, signal wavelength, target aspect angle etc. The received
signal is heavily distorted by noise, not only the electrical noise in the radar itself but
also in the form of returns from unwanted objects. The unwanted return is called
clutter. The delay between signal transmission and receiving can be measured to
determine the range of the target. If the round trip time is t, the target distance r
is then

r = 1
2tc (2.1)

where c is the speed of light. The factor 1
2 due to the fact that the signal must travel

two ways; one trip to the target and then from the target back to the receiver.
If the transmitted signal is reflected from a target that is moving in radial relation
to the receiver, the returned signal is also affected by the doppler effect described as

fd = −2ṙ
λ

(2.2)

where λ is the wavelength of the transmitted pulse, and ṙ is the radial velocity of the
target relative to the receiver. For example, for an X-band radar, the wavelength is
around 0.03 m, and if the pulse is reflected on a target moving 300m/s towards the
receiver, the Doppler shift will be around −(−600)

0.03 = 20 kHz. Therefore the ability to
measure the doppler shift of the received signal allows for the radial relative velocity
of the target to be determined. For more detailed explanation, see [1, Ch. 1, Ch. 15,
Ch. 26]. In this thesis, the aspect angle is defined as the horizontal target velocity
vector relative the radar position, thus a target that moves directly towards the
radar has an aspect angle of 0 degrees and a target that moves away from the radar
has 180 degrees.

5



2. Airborne radar

2.2 Pulse-doppler radar
The following section describes the inner workings of a pulse-doppler radar system
which can be found in [1, Ch. 2-3].

A pulse doppler radar (PDR) emits pulses of electromagnetic energy and is able to
use the doppler shift in the returned signal to determine the velocity of a target.
Due to the pulsed operation of a PDR, it is possible to use the same antenna for
transmission and receiving, often used in application where physical space is limited,
such as in airborne applications. During transmission, no signal can be received,
and while receiving there cannot be any transmission. In Figure 2.1, a simple PDR
system is shown.

Exciter Transmitter

Antenna

Receiver

Duplexer

Signal processor

Data processor

Low power signal

Low power signal

High power signal

Return signal
IQ-signal

Detections

Figure 2.1: Simple illustration of the fundamental elements of a PDR.

The components can be described as
• Exciter: Creates a low power electrical AC signal of desired frequency.
• Transmitter: Amplifies the signal and sends it to the Duplexer.
• Duplexer: Chooses whether to send or receive at a given moment in time.
• Antenna: Converts electrical signal to electromagnetic energy and vice versa.
• Receiver: Demodulates the analog return signal to baseband using the low

power Exciter signal. Creates the complex-valued digital IQ-signal.
• Signal processor: Detects targets in IQ-signal.
• Data processor: Filters detections and keeps track of targets.

When the transmitter has sent its pulse, the receiver starts listening for a signal.
The received signal is demodulated to baseband (i.e. frequencies around 0), enabling
sampling with lower frequencies. The signal is sampled two times, one with the
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2. Airborne radar

oscillator signal phase-delayed 90 degrees creating the quadrature- or Q-signal, and
one with the non-delayed oscillator signal creating the in-phase- or I-signal. The
IQ-signal is then the complex number created by setting the I sample as the real
part and the Q sample as the imaginary part of the IQ sample s = I + Qj. From
each pulse a vector of complex numbers is created as

s =
[
s1 s2 · · · sM

]
(2.3)

where M is the number of samples. The interval between the start of each pulse are
denoted as the Pulse Repetition Interval (PRI) and the frequency of which the pulses
are sent is the Pulse Repetition Frequency (PRF). The ratio between the length of
the pulse and the PRI is the duty cycle. A sequence of pulses which will be used in
the signal processing are called a Coherent Pulse Interval (CPI). Figure 2.2 shows
a CPI with two pulses and three samples after each pulse. In practice, the PRF
ranges from a few hundred hertz to several hundred kilohertz at X-band [1, Ch. 25]

s11

s12

s13

s21

s22

s23

Tx Rx Tx Rx
PRI

Time

A
m

pl
itu

de

Figure 2.2: The relation between transmitting (Tx) and receiving (Rx) signals in
a PDR. The radar sends two pulses and the received signal is sampled three times
after each pulse.

In this case, the IQ-signal is gathered in a matrix S as

S =
[
s11 s12 s13
s21 s22 s23

]
. (2.4)

In the general case of a CPI with N pulses and M samples after each pulse, the
IQ-matrix becomes

S =


s11 · · · s1M
... . . . ...
sN1 · · · sNM

 ∈ CN×M (2.5)
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2. Airborne radar

Since each sample is taken at trailing time instances, each sample corresponds to
a specific range. If the sampling interval is ∆t, the i:th sample after each pulse
corresponds to a range of 1

2∆tc meters, from Equation 2.1. Hence the i:th sample
is referred to as the i:th range bin. To determine how the signal changes at every
range, the Discrete Fourier Transform (DFT) is applied to the IQ-matrix over the
pulse dimension, creating the range-doppler matrix or RD-map. The RD-map thus
contains the frequency spectrum at each range, and each element in the frequency
dimension is called a doppler channel. In an airborne radar system, the sampling
interval corresponds to a range of around 100 m at X-band [3].
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Figure 2.3: Synthetic RD-map created from CPI with 128 pulses and 21 samples
after each pulse, resulting in 128 doppler channels and 21 range bins. Each pixel
represent the signal strength at a given range and doppler frequency.

Figure 2.3 shows a synthetic RD-map with a target likely present in range bin 10
and doppler channel 64. The RD-map is then used for detecting targets, often using
the Constant False Alarm Rate (CFAR) algorithm, and this data representation will
be the main form in the rest of this thesis. These matrices come in various shapes
and sizes depending on the types of targets to be detected, which will be further
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2. Airborne radar

explained in the following sections.

2.2.1 Range- and Doppler ambiguities
Due to the inability to transmit and receive simultaneously in a PDR, there are
ambiguities in range and velocity depending on the PRF [1, Ch.12, Ch.25]. Thus it
is sometimes impossible to associate a sample to a specific pulse - the returned echo
after a given pulse may have come from any previous pulse. Due to aliasing, the
doppler frequencies can not always be correctly determined if the sampling rate (i.e
the PRF) is too low. The maximum unambiguous range Ru, that is the maximum
range that can be unambiguously determined for a given PRF, is

Ru = cT

2 (2.6)

where c is the speed of light and T is the PRI.
The maximum unambiguous doppler fu for a stationary radar is

fu = ±PRF2 (2.7)

Because of the ambiguities, there are commonly three classes of PRF - low, medium,
and high. These are not defined precisely by an exact value, but rather in relation
to whether ranges or doppler frequencies are ambiguous or not. At a low PRF, the
range is unambigous because the PRF is set such that is unambiguous up to the
maximal range of the PDR. High PRF yields unambiguous doppler frequencies while
in medium PRF, both range and doppler frequencies are ambiguous. For example,
a low PRF is suitable to use at long ranges and a high PRF when the target is
moving very fast. Medium PRFs are then suitable for targets that are not at very
long ranges and not having very high velocities.

A target with a given range and velocity may appear at different ranges and/or
doppler frequencies in the RD-map, due to the ambiguities. To find the true range
and velocity, the PDR must use several PRFs to resolve these parameters. This
means that every CPI may differ in number of pulses and samples between the
pulses.

2.2.2 Target tracking and radar modes
Target tracking is the process of estimating the position, velocity and acceleration of
a target. Depending on what targets the pilot wants to detect and track over time,
different modes are used. Two commonly used modes are the Single Target Track
(STT) and Track While Scan (TWS). The STT mode is used when accurate esti-
mates of a single target is needed, while the TWS mode is a combination of tracking
several targets while searching for new ones. Thus the STT mode is suitable when
only one target is of interest while TWS is suitable for more general operation [1,
Ch.29]. Both mentioned modes often use medium PRF during operation.
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In the TWS mode, tracking is done by filtering the detections done by the signal
processing, and determining whether the current detections can be assigned to pre-
viously tracked targets, if they are false detections or if they are new, previously
untracked targets. Since the PDR depends on using multiple PRFs to accurately
resolve the target parameters, the RD-maps might have several different shapes even
in the same mode.

2.2.3 Nonstationary vs stationary radar systems
The PDR faces numerous challenges in detecting targets in the noisy radar return.
A common issue is the presence of clutter, which can be derived from precipitation
or the ground. The ground clutter for a stationary PDR is easier to handle than
that of a moving PDR - for a stationary PDR, the ground clutter will have doppler
frequences around zero, since the PDR does not move in relation to the ground.
For airborne, or any moving PDR, the ground clutter will be dependent on the
PDR velocity and transmission angle, requiring more elaborate filtering techniques
to compensate for ground clutter. Airborne PDRs will also be greater penalized
by constraints on weight, power consumption and cooling in comparison to ground
based PDRs.

Thus, there is a difference in how clutter will appear in the range doppler maps
depending on whether the radar is moving in relation to the ground or not.

2.2.4 Micro doppler
Micro doppler is the doppler effect in a target echo not directly associated with
the translational velocity of a target. Micro doppler arises from rotating, vibrating
components, or any moving part of the vehicle that is seen by the radar [10], and it
can sometimes be seen by the naked eye in an RD-map. For example, the rotation
of the propellers of an aircraft could produce micro doppler effects. Thus the micro
doppler effect can provide additional target information rather than just range and
velocity.

For targets as helicopters, the micro doppler effect is likely to be distinguishable in
a radar echo regardless of aspect angle, due to its 360 degree visible rotor blades.
Targets such as boats have likely very little micro doppler return due to the lack of
visible rotating parts, while other forms of aircraft emit detectable micro doppler
signal for some aspect angles - such as a jet aircraft that flies towards the PDR
having a near zero aspect angle, since its turbines can be seen.
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This chapter presents theory behind deep learning and neural networks relevant to
this thesis, limited to supervised learning. For in-depth explanations, see [9].

AI is an active research field, and Goodfellow et. al. [9, p. 1] considers every com-
puter program as some kind of AI. Early AI solved problems that may be expressed
as a set of mathematical rules, while the emerging AI technologies such as machine
learning aims to solve problems that are not as easy to express in a mathematical
context [9, p. 1].

3.1 Machine learning and neural networks
Machine learning is the property of an algorithm to develop itself by feeding it raw
data [9, p. 2-3]. Deep learning is a subset of machine learning which dates back
to the 1940s, and has had several names ever since, gaining popularity in 2006 [9,
p. 12-13]. A deep learning algorithm is a machine learning algorithm that learns
complex representations as a series of simpler representations [9, p. 5]. As men-
tioned, one of the many names the deep learning algorithms have gone by has been
artificial neural networks, due to thier resemblance to neurons in biological brains.
A deep learning algorithm is often referred to as a neural network or just network,
sometimes also deep learning model or just model.

The most common type of ANNs are the feedforward neural networks, which is
approximating some true function y = f ∗(x) as the network function ŷ = f(x; θ)
where x is the input data and θ is the network parameters/weights [9, p. 164].

In the simplest case, the input is a vector x = [x1, x2, ..., xn]T and the weights θ is
the set containing both the multiplication weights W and bias weights b. Figure 3.1
shows a neural network with one layer containing one neuron/unit. This function
maps a vector x ∈ Rn to a scalar f(x) = ŷ ∈ R1. A network with m output neurons
maps the input to Rm instead.

A neural network more commonly consists of several layers, which in themselves
can be seen as simple mathematical functions. Each layer essentially computes the
matrix multiplication between the input vector and its multiplication weights, then
adds the bias weights. This sum is then run through some differentiable function σ
called the activation function, such as the rectified linear unit (ReLU).
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x2 w2 Σ σ f(x) = ŷ

x1 w1

xn wn

b

... ...

Figure 3.1: A simple neural network consisting of one layer and one neuron. The
input x is a vector with n elements, and there are n multiplication weights (w) and
one bias weight (b). σ is the activation function.

If the input to the first layer f (1) is x, then the output of that layer can be expressed
as

f (1)(x) = a(1) = σ(W (1)x+ b(1)) (3.1)
where a(1) is called the layer activation, W (1) is a matrix containing the multiplica-
tion weights and b(1) contains the bias weights for the first layer.

The activation from one layer acts as the input for the next. For instance, a neural
network f with three layers can be described as

f(x; θ) = f (3)(f (2)(f (1)(x))) (3.2)

when omitting the network parameters θ(i) for i = 1, 2, 3.

In general, the output at layer i can be expressed in terms of layer i− 1 as

f (i)(a(i−1)) = a(i) = σ(W (i)a(i−1) + b(i)). (3.3)

3.1.1 Convolutional neural networks
Convolutional Neural Networks (CNNs) are a special case of feedforward networks
which employ a convolution operation, though not identically defined as the con-
volution found in e.g. signal processing [9, Ch. 9.1] as the filter is not reversed.
CNNs were popularized in 2012 when a CNN outperformed current state-of-the-art
algorithms in an image recognition benchmark test [11]. The main advantages of
using CNNs are that the CNN needs fewer parameters and is translationally in-
variant in the input [9, Ch. 9.2]. Translational invariance enables the network to
detect features that look the same but are located in different parts of the input.
The need for fewer parameters is accomplished by reusing weights for several parts
of the input, while this parameter reusage also results in the translational invariance.

Goodfellow et al. [9, p. 326], defines CNNs as “... simply neural networks that use
convolution in place of a general matrix multiplication in one of their layers.” For
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a convolutional layer, the matrix W (i) of (3.3) is a sparse matrix that performs the
convolutional operation when multiplied by the activation from the previous layer.
The convolution operation is commonly performed in one or two dimensions, and in
the 2D case, the output of the convolutional layer is also two dimensional.

A convolutional layer consists of several filters or kernels (often a number 2k for
some integer k), which in the 2D case are same-size matrices of size n × m. The
activation from the previous layer is assumed to be a matrix, and each kernel is then
multiplied in a sliding window manner over the activation output from the previous
layer, creating a new matrix. Since this is done once for each kernel, the output
from the convolutional layer is a three dimensional array.

Shaping the output from the layer can be done by choosing padding and stride.
Padding is the process of concatenating zeros around the input thus enlarging the
output array, which can be done such that the output array has similar dimensions
to the input (referred to as having same padding). Stride is how the sliding window
operation is carried out - a stride of 2 x 2 means that the kernel moves two rows or
two columns for each multiplication. For more in-depth explanation, see [9, Ch. 9].

3.1.2 Recurrent neural networks
An RNN differs from a feedforward network by its ability to feedback information
from one sample to another. This is because the RNN contains additional variables,
creating a hidden state of the RNN which at timestep t is

ht = f(ht−1, xt). (3.4)

There exist several examples of RNNs, which can define their hidden state in other
ways, but the main idea is to have variables that enable retaining information be-
tween timesteps.

A popular RNN is the Long Short-Term Memory (LSTM), which has become suc-
cessful because of its capability to retain information for many timesteps. The
LSTM is described further in [9, Ch. 10.10], while [9, Ch. 10] explains RNNs in
general.

3.1.3 Training and development of deep learning algorithms
Developing a deep learning algorithm/neural network is a data-driven process thus
highly dependent on the data that is used in the process. In supervised learning,
given a data set

D = {x,y} (3.5)

where x is the set of input values and y is the set of output or target values, each
element in the subsets x,y form a matching pair (xi, yi). These sets can be described
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as

x = {x1, .., xN} (3.6)
y = {y1, .., yN} (3.7)

where N is the number of samples. During training, the network learns the mapping

f : x→ y (3.8)

by observing the data pairs. Each pair {x(i), y(i)} can be modelled as random samples
from the training data distribution p̂, that is

(x(i), y(i)) ∼ p̂ (3.9)

which in the best case is similar or identical to the true distribution p

Since the dataset x,y is already known, running the algorithm on x is not very
interesting - the true answers y are already known. What is interesting is how the
algorithm performs on data that has not been observed, since this is the most prob-
able use of the network. During algorithm development, the available dataset is
commonly split into three parts - the training, validation, and test sets.

The training set is the data that the network uses for modifying its weights θ to
fit the function ŷ = f(x; θ) to the true function y = f ∗(x). The validation set
is indirectly used in training by measuring the network performance on this data
during training. When the network has been trained, the test set performance is
measured to simulate completely unseen data, as if the algorithm was run in the
intended application. In practice, these subsets are often created by choosing subset
sizes and then randomly sampling the dataset until the subset sizes are attained.
The relation in size of these sets will be further denoted as “70:10:20 split” for a
dataset split into parts of 70 % training, 10% validation, and 20% testing. However,
this way of splitting the data for verifying the results assume that there is no bias
in the dataset, as will be further explained in Section 3.3.

The performance of these sets provide a basis for analysis. A network that does
not improve its performance on the training set may indicate that the network ar-
chitecture is unsuitable or that the data does not have sufficiently rich features to
learn. Better performance on the training data than on test data may indicate that
the network has been trained too much, often referred to as overfitting [9, Ch. 5.2].
Overfitting indicates that the network fails to generalize - it does not perform as
well on data that is has not seen. Poor generalization may also be due to dataset
bias, which will be further explained in Section 3.3. If the network fails to perform
well on the training set, it is considered underfitted.

Any machine learning algorithm is evaluated by some performance criterion, such
as accuracy in a classification task. The accuracy is determined by dividing the
number of correct guesses by the total number of samples [9, ch.5]. Finding the
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optimal set of weights θ is thus an optimization problem aiming to maximize perfor-
mance. Solving this particular optimization problem is often not possible and hence
another objective function is used in optimization, hoping that it will improve the
performance measure [9, ch. 8].

The objective function J∗(·) is the expected value of a loss function over the data-
generating distribution p, for some loss function L(·), as

J∗(θ) = E(x,y)∼p[L(f(x; θ), y)]. (3.10)

Since the true distribution p is not known, the samples are instead following the
distribution p̂. The objective function is then approximated as follows

J∗(θ) ≈ E(x,y)∼p̂[L(f(x; θ), y)] (3.11)

where p̂ is the training set distribution. Because the training set is finite, the ex-
pected value is approximated as the sample mean

J∗(θ) ≈ J(θ) = 1
N

N∑
i=1

L(f(x; θ), y) (3.12)

where N is the number of samples. This function is then optimized by randomly
initializing the weights θ and updating them by running some gradient descent
algorithm. The gradient g is calculated by taking n samples x = {x(1), .., x(n)}, y =
{y(1), .., y(n)} from the training set and approximated as

ĝ = 1
n
∇θ

∑
i

L(f(x(i); θ), y(i)). (3.13)

Thus the gradient estimate is the mean gradient of the loss over all the samples in
the minibatch. The size of the minibatch is often referred to as batch-size, and is
commonly a power of two, depending on how many samples that fit into memory,
most likely 32, 64, 128, or 256.

As mentioned, the weights are updated using a gradient descend method, which uses
the estimated gradient from each minibatch to update the weights as

θk+1 = θk − λĝ (3.14)

where k is the optimization step number and λ is the step size or learning rate. This
is one of the simplest form of optimization, in practice more advanced variants are
used, such as RMSprop or Adam [9, Ch.8.5].

When the network has been trained with all the data in the training set one time,
one epoch has passed. If the training sets are big enough, one epoch might suffice,
but often several epochs are used for training. If the total size of the training set is
N and the batch size is n, then the total number of optimization steps taken during
one epoch is the result of the integer division N

n
.
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3.2 Neural network pruning and acceleration

The recent success of neural networks has been accompanied by large models, requir-
ing vast amounts of computing resources for training and inference [12, 13, 14, 15].
These large models are often over-parameterized [16], which makes them susceptible
to overfitting. [15]

Reducing the computational complexity of the networks is not only important to
reduce inference time - in embedded or other resource constrained environments the
power consumption is also a factor that must be considered. But what affects power
consumption? Han et al. [15] suggests that arithmetic computations are rather cheap
in comparison to memory accesses. SRAM memory access is in the same order of
magnitude in energy consumption as a 32-bit floating point addition, while DRAM
access is three orders of magnitude more energy consuming than a 32-bit floating
point addition. Hence limiting memory access is a valuable tool to enable deep
learning in resource constrained environments.

Pruning is a method employed to address the issues derived from having extremely
many parameters in a model, a field where one of the early pioneers were LeCun et
al. [17] in 1989, followed by Hassibi et al. [18]. The method aims to find elements in
a neural network, such as weights, layers, and filters that contribute the most to the
prediction capacity, the highest saliency. When the saliency has been determined,
the elements that have low saliency are removed. As weights are removed (i.e. set
to zero) and the weight matrices become sparser, the network can be compressed
to require less storage space, such as up to one 63:rd of the ordinary network size [19].

This type of pruning is called unstructured pruning and it does not yield immediate
performance or memory benefits if not specialized software or hardware is used, since
its sparsities cannot be exploited [20, 12]. Yet unstructured pruning may be used as
a tool to combat overfitting [21], and can often be used to remove a decent amount of
weights without losing performance, sometimes even gaining performance, on large
networks [15, 22].

Structured pruning on the other hand is the process of removing higher-order ele-
ments such as layers or filters, which gives faster inference and lower memory usage
even in standard libraries [14, 23, 24].

A problem in all pruning methods is that the saliency is not some quantity that
can be observed - it is merely a quantity or criterion determined by the developer,
hence the holy grail of pruning research is to find the optimal saliency measure.
The magnitude of the weights were a common saliency criterion prior to 1989 [17],
regaining popularity in 2015 as an scalable and efficient criterion [15, 12]. By this
criterion, low magnitude weights are considered to have low importance, a belief
which is questioned in [17, 23].

Thus, a significant difference between pruning methods is the salience criterion, but
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how elements are removed may differ aswell. A typical pruning method consists of
training a model (or using a pretrained), removing weights, and fine tuning to regain
performance [16]. This type of pruning is used in [15], while [22, 12, 23] instead uses
an iterative approach, mixing element removal with fine tuning.

These methods require training a model or having access to a pretrained model,
which states that someone has to make the effort to train the model before pruning.
Zhu and Gupta [12] conclude that pruned models (large and sparse) outperform
small and dense models for a given memory size. Frankle and Carbin [25] proposed
the Lottery ticket hypothesis, which states that a randomly initialized feedforward
network before training contains subnetworks that can achieve comparable perfor-
mance to the whole network. These subnetworks are referred to as winning tickets
and can be found by unstructured pruning. These winning tickets are further inves-
tigated by Zhou et al. [26] who suggested that the only important components of
the winning tickets are the sign of the weights from the beginning, thus it is possible
create networks that do not need training to have at least some performance.

Liu et al. [16] showed that for structured pruning, it is not necessarily true that
pruned models outperform smaller nonpruned models, but that the same perfor-
mance can be achieved by directly training a small model with the architecture
found by structured pruning. They argued that the structured pruning methods
may be more suitable in finding a good network architecture instead of actually
using the same weights as the pruned network. At the same time they achieve con-
tradictory results from those in [25], stating that the winning tickets does not achieve
better performance than random initialization when using large learning rates.

There are also other methods for optimizing neural networks that such as quan-
tization, low-rank factorization, knowledge distillation and compact convolutional
filters [13], but these methods will not be further explained in this thesis. Even
though a network is possible to implement in a real-world application, it is neces-
sary to investigate whether it should be implemented. The developer must ensure
that the network does what it is expected to do when implemented in the target
environment, making sure that there was no bias in the data used for training.

3.3 Dataset bias
As the performance of any machine learning algorithm is the product of the data
that was used in training, the dataset essentially determines the performance of the
algorithm. A core machine learning problem is gathering the proper data to feed
the algorithm. But what is “proper” data? The whole point of the algorithm is
to have good performance on data it has not been trained on [9, Ch. 5.2], and to
accomplish this, it is necessary for the training data to be sufficiently similar to the
data that it will encounter in the intended application. Thus proper training data is
data that resembles the data generated in the application well enough - an unbiased
dataset.
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It is often impossible to sample all the possible data that the algorithm might en-
counter in its application, thus the algorithm must learn to generalize - learn patterns
and features in the training data that will enable it to have good performance on
unseen data. A datapoint generated in the application can be seen as a sample
from a random variable that follows an unknown distribution p, while the training
data can be considered samples from another random variable distributed as the
unknown distribution p̂.

A proper training set is such that p̂ is similar, or in best case identical to p. Thus
the training samples must be similar to the samples generated by p, but also suf-
ficiently many to capture all variations of p. The training set is biased if p̂ is not
identical to p, which in practice is always the case, the question is if the training
set bias is sufficiently small for the algorithm to perform well in the application.
As previously mentioned, the dataset is usually randomly split into training, vali-
dation and testing, which is a form of cross-validation (CV) [9, Ch. 5.3]. However,
measuring performance only on these sets may be misleading if the dataset is biased.

Bias may be hard to detect and can lead to entirely wrong conclusions as a problem
may appear easier than it actually is. It has been shown that many popular bench-
mark datasets are biased [27].

An example of a biased training set is when developing an algorithm to distinguish
cats and dogs in images. If all the images with a dog for some reason also contained
bicycles, and all the cat images also contained cars, what would the network learn?
To distinguish dogs from cats or bicycles from cars? Due to this erroneous data
collection procedure, it is not certain. In this case p̂ is a poor representation of p
since certainly dogs and cats occur in images without vehicles. In this case, the bias
could have been detected by manual inspection of the images or by selecting the test
set from another data source (hopefully not contaminated by vehicles) and seeing
the performance degrade significantly.

Yet bias is harder to detect when data is not as intuitive to humans as images, or
when the bias is less distinct. It can be thought of as any characteristic in the train-
ing data that correlates samples to each other but is not a useful feature to base a
prediction on. In the previously mentioned cat and dog example, bicycles and cars
are features/characteristics present in the images but to humans it is obvious that
the vehicles have nothing to do with cats and dogs, yet those are characteristics
correlating the samples, a pattern that the algorithm will find.

In data representations less intuitive to humans it is hard, or even impossible to
find bias by manual inspection. If there exists some characteristic that seems to
separate classes of datapoints, how would a human be able to determine whether
this characteristic is a useful feature or bias? This would require that the person
inspecting the data has domain specific knowledge to subjectively evaluate what
features in the data that could be useful and what could be bias.
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When bias is hard to detect by manual labour, CV may be used.

3.3.1 Cross-validation
CV is the process of splitting the dataset into two partitions, using one partition for
developing the predictive model and the other for evaluation [28]. Selecting these
partitions can be done controlled or uncontrolled, and Stone [28], suggests that an
controlled CV is when the samples in the dataset are chosen randomly. As earlier
mentioned, performing a common training, validation and test set split randomly is
not only an example of CV, but also a controlled CV. From [28], uncontrolled CV
can be interpreted as when the split is based on some known parameter, such as time.

A k-fold CV is the process of splitting the dataset into k partitions and for k it-
erations selecting one partition as the test set and the other k − 1 partitions for
training [9, Ch. 5.3.1]. This is done such that each partition has been used for
testing one time, and the performance is averaged over all iterations. In Figure 3.2,
a partitioning of the dataset from a 4-fold CV can be seen.

25 %

1

25 %

2

25 %

3

25 %

4

Figure 3.2: Example of partitions in a 4-fold CV scheme. In the first iteration,
partition 1 is chosen as test set and the network is trained on partitions 2,3, and
4. This is done until all partitions have been used as the test set one time, and the
performance is averaged.

If the performance on the partitions are significantly different, the dataset may con-
tain bias. However, by performing a controlled CV, it is not possible to pinpoint
the source of bias, since the partitions are randomly chosen. Intuitively, if the par-
titions are not random but instead known, such as in an uncontrolled CV, it is
expected that more information of the source of bias would be known. By having
access to further information of the dataset, as metadata, each known parameter in
the metadata could potentially be used in an uncontrolled CV. Using metadata for
partitioning the dataset, will be further referred to as metadata CV (MCV). MCV
and how it is expected to be valuable in finding dataset bias will be more thoroughly
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explained in Section 4.3.

Another way of detecting bias is to investigate what features the network has learned.
If the network has learned useful features to base its prediction on, there was no
or little bias in the dataset. Dataset bias and unuseful features learned are tightly
coupled since bias increases the likelihood of learning unuseful features, and con-
cluding that the network has learned unuseful features indicates dataset bias. But
a problem arises - how can a human determine whether the network has learned
useful features or not? The human must have domain specific knowledge in order
to understand what useful features could be found in the data, making a subjective
assessment whether the features are useful or not. But there must also exist some
method to explain the actions and decisions to humans, which is a problem since
neural networks are traditionally black boxes. The solution is called Explainable AI.

3.4 Explainable AI
Explainable AI is the gathering of methods which analyze the decision making of
the machine learning algorithms in an apprehensible way to humans. The inability
to understand why an algorithm took certain decisions is limiting the usefulness of
the algorithms [29], simply because humans are unlikely to trust and implement an
algorithm they do not understand. Since different people need different information
in order to understand or trust an algorithm or model, Arrieta et al. [30] defines
explainability in the following way: “Given a certain audience, explainability refers
to the details and reasons a model gives to make its functioning clear or easy to un-
derstand”. Thus whether a model is explainable or easy to understand is completely
dependent on what audience its explanations shall be presented to.

Several methods exists to give human understandable explanations on why a deep
learning model has made a certain decision, such as Layer-wise Relevance Propaga-
tion (LRP) [31], intermediate activation visualization [32], and several more which
can be found in [30].

3.4.1 Occlusion
Understanding a CNN can be done using a method proposed by [32, Ch. 4.2]. The
idea is simple - by removing the information in a set of pixels (patch) in an image,
such as setting those values to zero, the output of the network without that infor-
mation is measured. The patch is then slid over the entire image, and by storing
the output of the network from each occluded position, a new image can be created.
Thus the output of this process can be a new image where each pixel represents the
most probable class, or the probability of a given class when that portion of the
image is occluded.

From this method the developer can “see” what parts of the input image had large
importance for the prediction - if the predicted class or the prediction probability
changes much as a certain area is occluded, that area is assumed to have some
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relevance to the prediction. However, due to the nonlinear behaviour of deep neural
networks, this method would not be able to capture when several distinct parts of
the image together constitute the reason for the prediction. It is still useful and
easy to apply since it does not need any addditional information of the network, in
contrary to other methods.

3.5 Deep learning in radar signal processing
Classification and object detection using deep learning is an active research field,
using images as input data. The task can be stated as labelling a whole image[11],
labelling every pixel [33] or finding the position and extension of objects [34, 35, 36].
Object detection is essentially a classification problem with only two classes - ob-
ject or no object. Performing detection in a radar signal processing is thus solving
a classification problem, and while deep learning has been successful in classifica-
tion problems in image recognition, representing radar data as images enables using
methods from the field of image analysis.

Wang et al. [6] created a neural network to perform radar target detection. This
algorithm consisted of running a binary classification network in a sliding window
manner over the RD-map. They conclude that their neural network algorithm has
better performance than a traditional detector under some conditions but since they
only used synthetic data, further research on the algorithm would require real-world
data to evaluate its performance. This approach is also rather inefficient, since the
network must be evaluated many times per image. Brodeski et al. [37] proposed a
detection method based on the Faster R-CNN algorithm [35], allegedly being able
to run a sample in 20 ms, yet without specifying computational hardware. They
used data from a calibration process, thus the data was partially real - they did not
include data from any operational scenario. However, their algorithm also deter-
mined target elevation- and azimuth angles.

Earlier research in classification of radar targets often uses high resolution range pro-
files (HRRP) [38, 39, 40, 41] or micro doppler effects [8, 42, 43]. Other approaches
include target flying patterns [4] and raw time-domain data [44]. Since RD-maps
are essentially images, an intuitive method for target classification is utilizing CNNs,
but as radar data often occurs as a stream of data over time, there are often gains
in utilizing RNNs [38, 39, 44, 5, 7].

Altmann et al. [5] used RD-maps in distinguishing six different states in a continuous
cooking process. When utilizing single RD-maps for classification, they achieved an
accuracy of 60 %, which was improved to 99 % when adding temporal information by
RNN network structures. Kouba [38] and Jithesh et al. [39] used HRRP with RNN
and achieved good performance on classification tasks, although solely synthetic
data was used.
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This chapter describes the implementation process of building a protoype of a func-
tion in an airborne radar system, using deep learning.

The following sections describe the process of radar data acquisition and target
association, the process of finding a suitable problem and creating a neural network.
Furthermore a custom method for detecting dataset bias is presented and finally
several test cases used to evaluate performance is described.

4.1 Creating a dataset with an airborne radar sys-
tem

This section starts from the very beginning of the design process with collecting data
using an airborne radar system, labelling it and processing it into labelled range-
doppler maps. The method is a combination of a manual process of data collection
and an automatic approach of labelling samples of interest.

4.1.1 Raw radar data acqusition
The airborne radar system used for collection of real-world radar data was an air-
borne surveillance radar. Recording of data was done in a testing facility, meaning
that the radar system was stationary on the ground. As earlier mentioned, this will
make the clutter appear different in the RD-maps from when the radar is moving.

To record data, the testing facility had to be operated manually, and the operator
had to choose which targets to collect data from and what radar modes to use. The
concept of ”recording” data is here referred to as operating the radar ”live” and save
the received information, along with numerous target parameters from the tracking
system. During radar operation, the target detection and tracking system found
airborne targets flying over the Gothenburg region. During the search for a suitable
target no data was saved. When a target was located the recording started. The
information contained in a recording was the raw IQ data associated with tracking
system information, such as position, altitude and heading of the targets. Each tar-
get found by the radar system was assigned an identification number by the tracker.
As will be shown in Section 5.1, the targets mostly consisted of commercial jet air-
craft.
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To select targets and label them, data from an air traffic control (ATC) system was
collected simultaneously as the recordings. This data consisted of several parameters
such as target position, altitude, source and destination airport, callsign, aircraft
type (ICAO Type Designator, a four letter string describing the aircraft type) and
a unique aircraft registration number. The operator chose targets from the ATC
data that were believed to be within detection range of the radar and on adequate
height.

4.1.2 Automatic labelling of data
A data driven approach often requires large amounts of data and following method is
a strategy to automatically label data after each recording, since supervised learning
require input-output pairs. Labelling each recording by hand would make the data-
driven development procedure infeasible since then the development time would be
too lengthy.

Commercial aircrafts send data with their transponder to an ATC service when pass-
ing through different airspaces. The data from the transponder contain information
about the aircraft, such as position, altitude, heading and etc. The data from the
transponder is similar to the estimates prodced by the tracker system. This work
thus consider the transponder data as the ’true’ one and the ATC information can
thus be utilized as labels. However, in reality the transponder data is also an es-
timation. Yet, these different sources of data are not possible to combine without
some adjustments. Different sample time sets them apart, and time of continuous
tracking. In addition, an ATC service keep track of all aircraft in the airspace,
hence the data will contain a huge amount of aircrafts unlike the data from the
tracker system. Therefore interpolation and search in the ATC data was necessary
to determine what aircraft in the ATC data matched the target chosen during radar
operation.

Scripting the labeling process is structured from the way the data is recorded by
the test facility. The recordings are folders with raw IQ data stored on a file server.
When the operator decides which target to aim for and record, it becomes one folder.
Recording multiple targets therefore generates many folders of IQ data which have
a corresponding data package with information from the tracker system. If one
package only contains information from using STT mode all samples would contain
the target, this is however unusual since the TWS and STT modes are used inter-
changeably. Since the majority of information fram a scan mode is irrelevant to this
work a stategy to sort it out is necessary.

Since each target is recorded in one package it is enough to sort for the longest pri-
oritized track in each package. That would provide an identifier unique to the target
assigned by the tracker, which makes it possible extract the prioritezed targets co-
ordinates, altitude and time fromt the metadata. With the identification number
from the tracker it was possible to extract the chosen target’s coordinates, altitude
and time from the tracker data. The next step was to make sure all data uses the
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same units as in the ATC data, which utilizes UTC-time in seconds from midnight,
altitude in meters and coordinates in the WGS84 coordinate system.
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Figure 4.1: How to extract label from ATC data and apply to the collected radar
data. The dotted lines are different trajectories of aerial targets from recorded ATC
data. The thick line is the interval for when the radar system recorded the aerial
target. The squares visualize how the search program identifies the correct trajectory
and matches it with the radar system’s recording.

As mentioned, the data from the tracker system and the ATC data are set apart by
different sample intervals and length of the intervals for continuous tracking, even
though the units now are the same. As shown in figure 4.1, only searching using
two parameters could yield an ambiguous result. Meaning that two different air-
planes could exists in the choosen search window and the correct label could not
be determined. By creating a four dimensional search window with data from the
tracker system (latitude, longitude, time and altitude), the corresponding aircraft
in the ATC data was found. It was necessary to use atleast coordiantes and time.
The search window created by the tracker information is most likely to small, and
it was necessary to expand it to find the target. The estimates from the tracker and
corresponding offsets used were:

• Latitude WGS84 [deg] ± 0.5 [deg]
• Longitude WGS84 [deg] ± 0.5 [deg]
• Time UTC [sec] ± 3 [sec]
• Altitude [m] ± 2000 [m]

It could however still return an ambiguous result. Then it would be necessary to
split the intervall of coordinates and time into smaller intervalls and create multiple
smaller search windows. Chosing the most frequently occuring aircraft in all of the
smaller search windows provide a final result. For this work it was however only
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necessary to search using the full interval. If the search process had successfully
matched a tracker identification number to an aircraft in the ATC data, then it was
possible to associate each IQ matrix with any parameter available in the ATC data.

Finally one last category was added to the labeld dataset, which was ’no-target’. In
those datapoints there are no detected targets and they only contained background,
such as clutter.

4.2 Commercial aircraft classification using deep
learning and RD-maps

Before training a neural network, the IQ matrices were processed into RD-maps. A
raw radar data frame consisted of the complex IQ-matrix of size N rows and M
columns, where N is the number of pulses and M is the number of samples after
each pulse.

Each pulse was windowed with a Hann window to reduce sidelobes in the signal
introduced by sampling. The fast fourier transform (FFT) was applied over the
range dimension (which become the x-axis in the RD-map) to transform the matrix
into the frequency domain, creating the RD-map. Since the RD-map consisted of
complex numbers, only the magnitude of the complex numbers were considered.

The number of pulses and number of samples after pulses varied between CPIs,
making it infeasible to run all through a network requiring same-size input for all
samples. Hence the FFT operation was zero-padded (or only the first 128 pulses
in the CPI were chosen) such that the RD-map always had 128 doppler channels,
while only 21 range bins were considered, 10 bins on each side of the target. Thus
the samples all had 128 rows and 21 columns, suitable for a neural network. Thus
the target was expected to be centered in the range bins. There could exist multiple
detections in each RD-map, and the target of interest was chosen as the detection
with the greatest amplitude.

4.2.1 Choice of deep learning task and network structure

Because the radar data could be represented as images and the ICAO Type Des-
ignator was available in the data, a classification task was chosen. This problem
formulation is a well studied deep learning task - given an image, determine what
class it belongs to. The algorithm aimed to determine aircraft type (as the ICAO
Type Designator) using an RD-map as input, learning the targets micro doppler
signatures.

The network structure was inspired from that of [5] since they also used micro
doppler classification. The architecture is shown in Table 4.1.
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Table 4.1: Architecture of neural network. Three convolutional layers were followed
by three fully connected layers. The number of classes is denoted as n was dependent
on how many classes that were represented in the dataset.

Type Size Kernel size Stride Padding Activation
Convolutional 32 3x3 2x2 Same ReLU
Convolutional 64 3x3 2x2 Same ReLU
Convolutional 128 3x3 2x2 Same ReLU
Fully connected 256 - - - ReLU
Fully connected 256 - - - ReLU
Fully connected n - - - Softmax

To reduce risk of overfitting and increase training speed, dropout of rate 0.4 and
batch normalization were used between all layers.

Each aircraft class was represented as a one-hot encoded vector, and the network
was trained with the categorical crossentropy loss, using the Adam optimization
algorithm with the default parameters [9, Ch. 8.5.3], for 100 epochs or until the
validation loss had not increased for five epochs. Each batch consisted of 64 samples.

For imbalanced datasets, class weighting were used such that the loss of the least
frequently occurring class were weighted with one and the i:th class were weighted
with nleast

ni
where nleast is the number of occurrences of the least occurring class and

ni is the occurrences of class i. For implementation, Keras [45] and Tensorflow [46]
was used.

Due to the importance of the data in a data-driven development process, the data
collected must be thoroughly understood. CV was used to measure generalization
and detect dataset bias. To be able to investigate bias sources, a custom CV scheme
was developed, which was derived from the uncontrolled CV previously mentioned
in Section 3.3.1.

4.3 Metadata cross-validation
As earlier mentioned, CV schemes such as the k-fold CV cannot be used to find the
source of bias, just to indicate whether or not bias exists in the dataset. It is there-
fore very hard to modify the data collection method to remove the elements that
introduces bias, since the source is not known. Therefore a method to detect dataset
bias and its source is proposed in this section. By having additional information of
the dataset as metadata, the CV could be performed in a way that is expected to
help finding what causes the bias, a metadata CV (MCV).

The idea is simple - use metadata to partition the samples in the dataset before
doing CV, instead of distributing them randomly. Like in other CV methods, dif-
ferences in performance on these sets may indicate bias, but since it is known what
parameters that differs between the partitions, the bias can be pinpointed to some
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extent.

MCV is not guaranteed to find the cause of bias, but it indicates that the bias is
correlated to the parameter used for partitioning the data. The intuition behind
this method is that if the data is partitioned based on a parameter that should not
influence the algorithm decision making, but this partitioning actually does influ-
ence it, then the partitioning parameter is correlated to the bias source.

For example, assume that a given dataset consists of images of cats and dogs. Also
assume that these images had been captured by a few different kinds of cameras. It
is not desired that the cameras used for taking the pictures should produce images
with such unique characteristics that it is learned by a machine learning algorithm.
In this case, the parameter (what camera used for capturing the image) is not de-
sired to affect the images very much. But if it does, the camera used is influencing
the algorithm’s decision making, or is correlated to something that does. Splitting
the dataset into partitions based on which camera took the picture could indicate
that the cameras are a source of bias. This bias would have been detected if it was
harder to recognize cats taken by a specific camera when not trained on the given
camera. As the number of unique cameras approaches infinity, this bias vanishes.
Hence, it is expected that having only a few variations of a parameter increases the
likelihood that this parameter is bias correlated.

There are however risks with partitioning the dataset. Splitting the dataset may
introduce class imbalances, and having classes in the test set not represented in the
training set would yield a misrepresentative performance estimate. This could be
mitigated by e.g. carefully choosing the partitions or removing samples of classes
that are not represented.

Once the partition parameter has been chosen, another CV methods can be used
such as the k-fold CV. It is also possible to further partition the data by choosing
another parameter to further split on, creating a nested MCV scheme. Nested MCV
can be performed in an arbitrary number of levels, only limited by the number of
metadata parameters available.

The point of using muliple levels is to further investigate what the bias could be,
by separating the data using more parameters. For example, choosing targets from
an interval of ranges and then splitting that further could indicate how important
the range is for the generalization. However, choosing more specific and possibly
smaller subset of interest from the dataset leads to a less conclusive results since the
sample size of each subset decreases.

4.4 Performance evaluation by cross-validation
Five types of CV was used to evaluate the network performance and will be referred
to as simple CV, 10-fold CV, 10-fold MCV, simple MCV, and nested MCV. The
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simple CV consisted of partitioning the dataset into a 81:9:10 split. 10-fold CV was
performed as a controlled k-fold CV previously described in Section 3.3.1 with 10
partitions. The 10-fold MCV consisted of sorting the dataset by recording time and
performing a 10-fold CV. Simple MCV means that the dataset was partitioned on
recording occasions and then all samples from one occasion was chosen as test set
and the rest of the samples were used for training and validation (10 % validation).
The reason for choosing recording occasion as the splitting parameter in the simple
MCV is because it was deemed the most accurate way of simulating that the network
was used in the real environment, since the network is unlikely being developed the
same day as it is implemented.

Nested MCV was done in the following way:
1. First partitioning: Choosing a subset of interest from the datasets using the

metadata, such as excluding all samples with a given characteristic found in
the metadata.

2. Second partitioning: Further splitting this subset of data into training,
validation and test sets. This was done by either
(a) simple CV
(b) simple MCV
(c) both simple CV and simple MCV.

For any CV scheme, depending on how partitions are chosen and the dataset dis-
tribution, some partitions might not have all classes represented. Hence the classes
not represented in the partition chosen as training/validation set were removed from
the test set.

The 10-fold CV and 10-fold MCV generates 10 performance measures that are aver-
aged. The simple CV, simple MCV, nested MCV yields only one measure and thus is
expected to have high variance. To mitigate this variability, training and evaluation
were done five times with reinitialized networks to give a more stable measurement,
thus the performance was determined by averaging these five measurements.

4.5 Network performance evaluation

The network performance was evaluated by a simple CV on the full dataset, and this
performance is further referred to as the baseline performance, which is presented in
Section 5.2. To detect dataset bias, multiple CVs were employed and the occlusion
method was used to evaluate if the network has learned useful features.

The CVs were done in test scenarios, with slight variations in methodology due to
differences in purpose of the tests - they could be performed to 1) detect dataset bias
and/or evaluate whether the network has learned useful features; or 2) minimize the
generalization error or maximize performance.
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The ability to generalize was evaluated as the nominal difference between validation
and test set accuracies (generalization error, GE). However, the GE in itself tells
very little about bias. For example, reaching a validation accuracy of 0.2 and a test
accuracy of 0.2 would give a zero GE, but if training or validation accuracy is much
different from the baseline performance, this might also indicate bias. In order to
ensure that the network had not been overfitted, the training accuracy were also
considered. Hence in the results, the training, validation, test set accuracies are
presented along with the GE. Furthermore, better performance on validation sets
than similar cases might indicate bias since the network finds more patterns to base
the prediction on.

The following sections describe the test cases and a brief speculation on how the
performance will be affected and what would mean. Each test case has a brief
explanation to motivate the test design. Due to the outcome of the test described
in Section 4.5.2 (results presented in Section 5.2.2), test cases in Section 4.5.3-4.5.9
used one range bin input images if not otherwise specified.

4.5.1 Test: Full dataset cross-validation
A 10-fold CV, 10-fold MCV, and simple MCV was performed to detect bias in the
dataset.

4.5.2 Test: Reducing input size
To evaluate the importance of the input dimension and whether the network has
learned useful features, the number of range bins was reduced and the occlusion
method was used. This can be summarized as:

• The number of range bins in the input images were reduced from 21 to five,
three, and one range bin and evaluated with a simple MCV.

• Occlusion were applied to two images with size 21 range bins, one from the
training set and one from the testing set in the simple MCV process.

Detailed description
Since the targets will only cover a few pixels, there is a lot of “background” in each
RD-map - information in some range bins are unlikely to contain target information,
such as those far away from the target. By reducing the number of range bins of
the input images there should be less background for the network to learn. If the
network had learned background instead of some useful feature, the training and
validation performance should decrease as the number of range bins decreases since
there would be fewer input dimensions to find unuseful patterns in. The GE should
stay the same or decrease as the number of range bins are reduced.

The occlusion method was applied on two images with 21 range bins, occluding a
patch of 11 doppler channels and three range bins. The values in the patch were
set to the smallest value found in the image. The patch was applied one time on
every possible location of the image. Close to the edges, only portions of the patch
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was used since the whole patch was not possible to fit within the image, in order to
produce a new image of the same size as the RD-map. Hence in the corners of the
image, only two range bins and six doppler channels were occluded.

The images to apply occlusion on were chosen as samples that the network is very
confident in (its output probability of the correct class was over 0.99), one sample
from the training set and one from the test set. The probability of the correct class
was measured for each step in the occlusion process. If the network has learned
useful features, the class probability should not be affected very much when areas
far from the target are occluded.

4.5.3 Test: Coarser class types and multiple radar systems

The importance of the class detail level was evaluated by only considering jet- or
propeller aircraft and no target as classes. Adding data from another radar system
were done to minimize GE. Hence the test was carried out in the following way:

• Simple MCV with coarser classes.
• Simple MCV with coarser classes and adding training data from another radar

system.

Detailed description
Using the ICAO designator type as aircraft class might be unsuitable for a classifi-
cation task - unique aircraft of the same class may have too different micro doppler
signal and hence making it unwise to consider them the same class. Poor network
performance may be because there are greater variances within the class than be-
tween classes. Hence new classes were created instead, consisting of jet aircraft,
propeller aircraft, or no target, and the nested MCV were performed. If the per-
formance or generalization increases significantly, this could indicate that the ICAO
Type Designator is too detailed to be able to distinguish in the radar echo.

To minimize generalization error and maximize performance, data from a different
radar system was added to the training and validation sets when performing a simple
MCV. This was done when using the coarser class types since the dataset from the
other radar system did not contain the ICAO Type Designator. This dataset was
available at the start of this thesis thus not collected using the aforementioned data
acquisition method.

4.5.4 Test: Adding temporal information using LSTM

A target is often tracked over multiple timesteps and which enable the use of RNNs.
An LSTM unit of 128 units were added before the last layer, with 10 images in each
time series. Is it helpful for the network to use old information from samples when
classifiying the current? In [5], generalization improved greatly when adding tem-
poral information to a micro doppler classification task, hence it might be suitable
to use in this application also. The LSTM was added in the same way as in [5].
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To minimize generalization error and maximize performance, the samples were ag-
gregated in time series and evaluated in a simple MCV.

4.5.5 Test: Pruning the network
To improve generalization, pruning from 30% to 80% of the weights were done.
Using two different input sizes, the networks were pruned and evaluated as:

• Simple MCV for each pruning level when using 21 range bin inputs.
• Simple MCV for each pruning level when using one range bin inputs.

Detailed description
Network pruning may have a positive effect on the network performance [22], though
most pruning research uses rather large network architectures. What happens when
pruning is employed in this context? Will it increase generalization? Can pruning be
used to increase generalization on relatively small networks? Better generalization
may indicate that pruning makes the network “unlearn” some unuseful features, but
decreased generalization could indicate that the network has too few parameters to
benefit from pruning.

The networks which where trained on input data with 21 and one range bin re-
spectively in Section 4.5.2 were pruned from 30 % to 80 % during 10 epochs. This
was done by the iterative method proposed in [12], which uses the magnitude of the
weight as saliency measure. The performance of these networks were evaluated with
the nested MCV. If the generalization error decreases as the network is pruned, this
would indicate that the the network unlearns unuseful features. However, too much
pruning might make the network behave strangely as too many activations becomes
zero.

4.5.6 Test: In-flight radar data
To more accurately investigate real-world performance, the network was trained on
data recorded in the testing facility, and tested on data that was recorded during
flight containing an Airbus A320 aircraft. The whole dataset was split into a 90:10
training and validation split while the test set consisted of 150 samples recorded
during flight in 2013. These samples had a rather different background since they
were recorded at a different location, height and while the aircraft was moving.
Good performance on the in-flight data would suggest that the learned features are
robust, while bad performance indicates that the recorded data is not similar to
data recorded while flying.

4.5.7 Test: Angle test
As mentioned in Section 2.2.4, radar targets emit a varying degree of micro doppler
depending on their aspect angle and what kind of vessel it is. Jet aircraft creates the
most micro doppler return as they fly towards the PDR, thus the network should

32



4. Method

perform better when training and testing on jet aircraft that flies towards the PDR
if it had learned micro doppler signatures.

A nested MCV was performed when the first partition only contained samples in
which the aircraft fly towards the radar or within ±15 degrees aspect angle. In the
second partitioning, a simple CV was used.

To make a fair comparison to the actual gains of choosing targets with small aspect
angle, a simple MCV was performed with only the classes represented in the small
angle set, but when keeping samples with large aspect angles.

4.5.8 Test: Restrict to data acquired by the TWS mode and
downsampling

The STT radar mode is expected to produce samples that are very similar to each
other since they are gathered at a faster sampling rate than of the TWS mode,
yielding time correlated samples. This test aimed to determine whether the STT
mode yields more biased samples than TWS, and if the TWS samples are strongly
time correlated aswell. This was done by:

• Nested MCV. First partitioning removed all samples gathered in the STT
mode. Then a simple MCV was performed.

• Nested MCV. First partitioning removed all STT samples and the remaining
dataset were downsampled by a factor five. Then a simple MCV was per-
formed.

Detailed description
The STT mode quickly generates large amounts of data since there is no time wasted
on looking for other targets. Between each sample, the target will not have moved
very far, thus the samples close in time would look rather similar.

If the generalization error decreases as the STT samples are removed, the STT
samples are likely more time correlated than the TWS samples. If the generalization
error further decreases when downsampling, this suggests that the TWS mode yields
time correlated samples aswell. The performance was compared to the results from
the one range bin case in Section 5.2.2.

4.5.9 Test: Sensitivity to additive white gaussian noise
To evaluate if clutter or noise are features that the network learned for classification,
white gaussian noise of several standard deviations was added to each sample in the
dataset. The test was constructed in the following way:

• Simple CV with additive gaussian noise of standard deviation 5.
• Simple CV with additive gaussian noise of standard deviation 10.
• Simple CV with additive gaussian noise of standard deviation 15.

Detailed description
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There are a multitude of sources of noise and clutter in the radar echo, and if the
network has learned features found in clutter or noise to base its classification on,
the performance should degrade rapidly as more noise is added. This assumes that
the clutter and noise levels are rather low.

Adding white noise on the input images should make the classification task harder. If
the network has learned robust features in the radar signal, its performance should
not be affected very much when adding a bit of noise. During this test, white
gaussian noise with standard deviation 5, 10, and 15 was added to all of the samples
and evaluated with a simple CV.
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Results

In this chapter, some interesting results are presented along with a brief analysis
aiming to provide possible explanations for the reasons behind the results. These
explanations then provides the basis for the conclusions drawn in the following
chapter. Section 5.1 presents the dataset class distribution while each Section in
Section 5.2 shows the results from a test case described in Section 4.5.

5.1 Data distribution
The data was recorded on three separate occasions, the 21 February, 12 March, and
19 March. In table 5.1, some conditions during the recording days are presented.

Table 5.1: Number of RD-map samples and weather conditions during each record-
ing day

Date 21 Feb 12 March 19 March
Weather Rain Rain Sun
Samples 10 600 64 036 46 064

The number of unique ICAO Type Designators in the data was 18, and one class
resembling no target was added, hence the total number of classes was 19. In
Figure 5.1 the distribution of the classes can be seen. Each number corresponds to
an aircraft type in Table 5.2. This shows that the data is biased in the sense that
all classes are not equally represented.
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Figure 5.1: Distribution of aircraft types in the full dataset.
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Table 5.2: Mapping between number and ICAO Type Designator

Aircraft type ICAO type designator
0 No target
1 B77W
2 B738
3 A359
4 AT76
5 A320
6 B788
7 HA4T
8 A319
9 A321
10 BE20
11 A35K
12 P28A
13 E190
14 LJ75
15 A20N
16 B77L
17 B789
18 A21N
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5.1.1 Class distribution on different recording occasions

As previously mentioned in Section 4.3, the simple MCV were chosen such that it
split data based on the recording occasion. In the simple MCV, the data recorded
in February was selected as the test set and the rest for training and validation. For
this split, all classes were not represented in the training, validation and test sets.
Only five classes were represented in all of the subsets, which were 1) No target; 2)
A320; 3) AT76; 4) B738; 5) B77W.

Only considering these five classes, the class distribution in the subsets can be seen
in Figure 5.2 and Figure 5.3. There were 65 713 and 8 942 samples recorded in the
training/validation and test sets respectively when only considering the aforemen-
tioned classes.
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Figure 5.2: Distribution of aircraft types in the training and validation set, from
both occasions in March.
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Figure 5.3: Distribution of aircraft types in the test set, recorded in February.

Thus the distributions differs somewhat; the B738 aircraft represented almost 40 %
of all the samples in both sets, while the other classes differed slightly.
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5.2 Test results
Table 5.3 shows the baseline performance.

Table 5.3: Baseline performance as the network accuracy on the training, validation
and test sets created from a 81:9:10 split of the full dataset and 19 classes.

Case Training Validation Testing GE
Baseline 0.77 0.80 0.80 0.00

This was a rather expected result. The test set performance is similar to the vali-
dation performance which is a good sign, suggesting good generalization.

5.2.1 Results from: Full dataset cross-validation

Table 5.4: Mean performance as accuracy over the training, validation and test
sets respectively.

Case Training Validation Testing GE
10-fold CV 0.77 0.80 0.80 0.00
10-fold MCV 0.78 0.81 0.27 0.54
Simple MCV 0.90 0.90 0.39 0.51

The 10-fold CV does not seem to indicate any bias since the generalization error is
zero while having performance similar to other cases on training and validation sets.
The 10-fold MCV and simple MCV cases however indicates that there is bias, due
to high generalization error. This shows that the 10-fold CV fails to detect the bias
that is detected by the 10-fold MCV and simple MCV scheme.

Since the parameters splitting the partitions in MCV are known, the 10-fold MCV
indicates a strong time correlation between the samples and the simple MCV shows
that there is some bias correlated to the day of the recording. This could for example
be the weather during recording or that the samples are recorded close in time, but
not possible to pinpoint exactly by only considering this information.
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5.2.2 Results from: Reducing input size
The performance on the simple MCV when the number of range bins are reduced,
are presented in Table 5.5.

Table 5.5: Performance as the mean accuracy over the training, validation and test
sets respectively in a nested MCV scheme. The generalization error decreases as the
number of input dimensions are decreased, likely because there are fewer dimensions
to find unuseful patterns in.

Case Training Validation Testing GE
21 range bins 0.90 0.90 0.39 0.51
5 range bins 0.90 0.92 0.43 0.49
3 range bins 0.89 0.90 0.47 0.43
1 range bins 0.87 0.90 0.51 0.39

By reducing the number of range bins, the generalization error consistently de-
creases. The training and validation performance decreases slightly, but the test set
performance increases significantly more.

In Figure 5.4, the output of the occlusion method can be seen. To the left, a sample
was used which the network had been trained on, and the right is the result when
using a sample from the test set.

To the left, it can be seen that the network more often reacted very little to oc-
clusions, which is a desirable behaviour as the image contains information that is
unlikely derived from the actual target (i.e. far from the center range bin). The
rightmost figure shows that the predicted class probability dropped greatly as parts
of the image is occluded, which suggests that it bases its prediction on nondesirable
features, such as around range bin 20.

From both the performance measurements and the occlusion analysis, it can be
concluded that the baseline performance is highly misleading - the network seems
to have learned features far from the target and fails to generalize. Reducing the
number of input dimensions seems to reduce the likelihood of learning unuseful
features. Yet even with one range bin it is likely that the network has learned
unuseful features due to the poor generalization.
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Figure 5.4: Class probability as parts of image is occluded. The target is located
somewhere along range bin 10. Each pixel show how likely a given class is according
to the network as a patch centered in that location of the RD-map is occluded. A
probability of 0.5 means that the network assigns a 50 % probability of that sample
representing a given class, and 50% probability for all other classes. To the left,
an image that has been trained on acts as the input sample while to the right, the
input image was a sample that the network had not trained on. To the right, the
network reacted aggressively to occlusion of areas that is expected to contain very
little target information, while to the left it mostly reacts very little.
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5.2.3 Results from: Coarser class types, with and without
ground radar data

By only considering three classes - jet, propeller or no target resulted in the data
distribution that can be seen in Figure 5.5 and Figure 5.6.
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Figure 5.5: Distribution of aircraft types in the training and validation set.

The distribution of the test set is shown in Figure 5.6.
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Figure 5.6: Distribution of aircraft types in the test set.

The data from the ground radar system consisted of 68 958 samples, 67 % jet aircraft
and 33 % propeller aircraft, not containing the no target class. The results from the
simple MCV can be seen in Table 5.6 with coarser classes and when ground radar
data is added.

Table 5.6: Performance on simplified problem formulation as accuracy over the
training, validation and test sets respectively.

Case Training Validation Testing accuracy GE
No ground data 0.87 0.89 0.85 0.04
With ground data 0.82 0.83 0.87 -0.04
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Generalization increased compared to baseline when choosing different classes, which
was expected since this was a simpler problem. Adding data from another radar
system seemed to further minimize the generalization error slightly, although this
difference might not be significant. Yet a rather interesting discovery is that it did
not worsen the performance, suggesting that some target characteristics may be
similar even in different radar systems. Due to the low number of propeller aircraft
in the test set (3%), it is inconclusive if the micro doppler signal has been learned.

5.2.4 Results from: Adding temporal information using LSTM

In Table 5.7, the accuracies from the simple MCV are presented when adding an
LSTM layer . To make a direct comparison, the performance when no LSTM layer
is used is also shown, as earlier presented in Section 5.2.2.

Table 5.7: Generalization accuraccies with and without LSTM

Case Training Validation Testing GE
1 range bin 0.87 0.90 0.51 0.39

1 range bin + LSTM 0.94 0.92 0.53 0.39

Thus adding an LSTM layer did not minimize the generalization error, but increased
the accuracies. This can be interpreted as the LSTM layer is making the network
learn better but still suffers from the dataset bias. In contrast to [5], there was no
great improvement, which is likely due to the nature of the problem - an aircraft
does not change type over time.

5.2.5 Results from: Pruning the network

Figure 5.7 shows the test set performance in the simple MCV as weights were pruned.
Both networks seemed to increase test set performance as weights are pruned, but
only to some extent - the 21 range bin network seemed to maximize its performance
with 70 % weights pruned, while the one range bin network had its max when 60 %
weights were pruned. This suggests that pruning can be used to improve general-
ization. The difference in optimal pruning percentage can be due to the difference
in number of parameters between the networks.

The one range bin network had a test set accuracy of almost 40 % when pruned to
80 % - an interesting observation is that the test set contains almost 40 % of the
B738 class. This much pruning is thus likely to have made the network always guess
B738 for all samples in the test set.

Validation set accuracy is also of interest, since it represents how well the networks
performs on samples that it has seen. In Figure 5.8, the validation set accuracies
are shown for the same pruning levels as previously.
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Figure 5.7: Network accuracy on test set for different pruning levels. The 21 range
bin network seems to benefit the most from pruning while the one range bin network
was not affected as much, until a rather large pruning level had been reached.
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Figure 5.8: Network accuracy on validation set for different pruning levels.

The validation accuracy increases slightly at low pruning levels, but degrades as
the pruning level increases. This can be interpreted as the network unlearning its
trained features with pruning, since it is unable to retain its validation set accuracy.
But because of dataset bias, this is expected to be good to some extent since some
learned features are not useful for generalizing.
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5.2.6 Results from: In-flight radar data
The network was trained and validated on the whole dataset and 150 samples from
an A320 was used for testing, and produced the results seen in Table 5.8.

Table 5.8: Network performance when trained and validated on whole dataset,
while testing on a few samples when the aircraft was moving.

Case Training Validation Testing
1 range bin + in-flight 0.69 0.75 0.008

The network performed extremely poorly on the test set which indicates that the
features learned are not very robust. The lack of training samples where the radar is
moving is probably the most contributing factor but it might aswell be other factors
such as the weather.

5.2.7 Results from: Small Angle
The number of samples where the aircraft had an aspect angle of less than 15 degrees
were 93 361, distributed as can be seen in Figure 5.9.
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Figure 5.9: Distribution of aircraft types with an angle under 15 degrees.

The performance can be seen in Table 5.9 compared to the simple CV when only
the classes represented in the small angle dataset are considered.

Table 5.9: Network accuracy when only considering targets with small angle

Case Training Validation Testing GE
1 range bin + fewer classes 0.76 0.81 0.81 0.00
1 range bin + small angles 0.85 0.87 0.88 -0.01

Considering targets with small angles appeard to be beneficial for the classification -
all of the accuracies were higher when only small angle targets were used for training
and testing. This suggests that the micro doppler signal is somewhat important for
the classification, but to an unknown extent because it has been previously shown
that the dataset is biased.
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5.2.8 Results from: Restrict to data acquired by TWS and
downsampling

When removing all the samples collected with the STT mode, there were 42 718
samples left, distributed as in Figure 5.10, and the mapping from numbers to aircraft
type can be seen in Table 5.2.
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Figure 5.10: Distribution of aircraft types when removing the samples acquired
by the STT mode.

Without STT samples, the performance is presented in Table 5.10 with and without
downsampling, along with the one range bin performance earlier presented.

Table 5.10: Generalization performance as accuracy on training, validation and
test sets when including STT data and when using only TWS. For comparison, the
case ”1 range bin” is that of Section 5.2.2

Case Training Validation Testing GE
1 range bin 0.87 0.90 0.51 0.39

1 range bin + only TWS 0.63 0.65 0.37 0.28
1 range bin + only TWS + downsampling 0.58 0.53 0.37 0.16

Removing the STT samples made the network perform worse on all sets, yet de-
creased the generalization error. Downsampling worsened performance on training
and validation sets but further decreased the generalization error, which indicates
that many of the samples contribute little to learning useful features since the same
test set accuracy could be reached with only 20% of the samples.

This suggests that the STT samples are strongly time correlated, and the TWS
samples aswell. Thus further measures must be carried out to combat the dataset
time correlation in order to create a less biased dataset, such as downsampling.
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5.2.9 Results from: Sensitivity to additive white gaussian
noise

Adding white gaussian noise to the input samples seemed to have quite an effect
on the test set performance, as seen in Figure 5.11. Accuracies on other sets were
not presented here since the test set performance were always very similar to the
training and validation performance when using simple CV.
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Figure 5.11: Test set accuracy when adding white gaussian noise

The performance seems to degrade rather linearly with increasing added noise. This
sensitivity can be interpreted such that the network still has learned unuseful fea-
tures, since the performance degrades quite rapidly. It is also possible that the
network has found useful features, such as micro doppler signature, but that they
are rather weak and is too distorted by the noise to be detected by the network.
None of these explanations seem more plausible since it is not known if these noise
levels are reasonable or not.

5.3 Summary of test results
Performing a 10-fold CV did not show any sign of dataset bias, but the 10-fold MCV
indicated a sample time correlation. The MCV indicated that data recorded on the
same occasions were rather similar, since generalizing across occasions were trou-
blesome, further supporting the hypothesis of time correlated samples. The time
correlation is believed to be derived from the fact that samples were recorded close
in time, such that the target had not moved very far between samples. The weather
conditions were also expected to play a significant role.

The time correlation between samples was also detected when performing the occlu-
sion analysis as the network seemed to have learned unuseful features in the back-
ground to base its prediction on. Reducing the samples dimensions minimized the
generalization error because there were fewer dimensions to find unuseful patterns in.
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The aircraft classes were rather detailed as represented by its ICAO Type Desig-
nator, and when choosing less detailed classes as 1) no target; 2) jet aircraft; and
3) propeller aircraft the generalization greatly improved, suggesting that the ICAO
Type Designator may be too detailed to distinguish between targets in a radar
echo. Yet this improvement was inconclusive since the coarser test set was very
imbalanced, consisting of almost 80 % jet aircraft. Adding data of jet- or propeller
aircraft from a different radar system did not significantly increase generalization
performance, but there was no degradation either, suggesting that data from differ-
ent radar systems is possible to combine.

Using several samples in a time series did not significantly improve generalization
performance. In [5], the classification got better when adding a LSTM layer, but the
success was likely due to the nature of the problem - the state of a cooking process
may change over time but in this case, an aircraft type does not change over time.

Network pruning seemed to increase the generalizability of the network, thus may
be used for reducing overfitting or unlearning patterns.

The network was evaluated on samples gathered from a real-world scenario as the
radar system was in flight, and performed extremely poor, suggesting that the data
collected in-flight is too different from that collected from the test facility. This
was believed to be mainly because of the differences in how clutter appears in the
RD-maps, but also because of the training data bias.

Using only targets that were recorded while flying towards the radar increased per-
formance on all sets. This suggests that the micro doppler signature is used for
classification, but to an unknown extent due to dataset bias.

Removing STT samples resulted in a lower performance on all sets but decreased the
generalization error, suggesting that the STT samples were strongly time correlated.
When also downsampling the remaining partition, the performance decreased on the
training and validation sets but not on the test set, thus the generalization error
was further reduced. From this it was concluded that removing STT samples did
not remove all time correlation bias - the TWS mode also generates time correlated
samples. Therefore the STT mode should be especially avoided during recording,
but downsampling or other measures should also be carried out to mitigate the sam-
ple time correlation.

Adding white gaussian noise to the input data impaired the performance signifi-
cantly, but this could both indicate that the network has learned useful and unuseful
features. Thus that test case did not yield any useful information.
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Discussion

The following discussion in this chapter uses sources of errors and the overall implica-
tion of the results to identify criterias that could be used for assessing the feasibility
of the machine learning filter on the radar data.

6.1 Strength and weaknesses of methods
All the tests were carried out with the same network architecture. When changing
the input sizes or classes, it is likely that a different network architecture would
yield a different result. But with this in mind, performance differences needed to be
large to be considered significant. Therefore, it is not believed that optimizing the
network hyperparameters would have had an impact on the conclusions of this thesis.

Analysis of the results were based on the accuracy of the networks but not on the
loss, which might have been used for a more in-depth analysis.

Network pruning had a positive effect on the generalization, although the method
used does not have any effect on the memory usage or computational complexity of
the network since it was an unstructured method and no compression was used. If
the computational load needs to be lowered, then it is possible to resort to other
pruning methods.

During the timeline of this Master’s thesis, the outbreak of the coronavirus disease
(Covid-19) had a great impact on the amount of commercial aircraft flying over
the Gothenburg region [47]. Collection of data became cumbersome since it was
not efficient to keep the testing facility up and running whilst awating the very few
aircraft to pass by. Thus data was recorded fewer times than predicted and the
trial-and-error approach was not as powerful. The data collected was analyzed but
it was not possible to collect new data upon new observations as efficiently needed
for the timeline of this thesis or to counteract the discovered and potential sources
of bias. Having more data or recordings from more separate occasions would have
made the results more conclusive.

In the process of automatic labelling, 21 range bins were selected around the target.
However, the radar system did at times provide several target detections, of which
then the detection with strongest amplitude was chosen. This may have led to that
the wrong detection was selected for some samples, which could have been noise or
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a completely different aircraft. It could be necessary to use a more sophisticated
method for associating the targets in each RD-map with ATC information.

It is worth noticing that all results are performed on data collected using TWS and
STT mode, which often use medium PRF during operation. Using a higher PRF
could provide more details in the RD-maps and thus potentially improve classifica-
tion performance.

6.2 Useful features

Analysis of the test results indicated that the dataset was biased, but also that the
network uses micro doppler signature as basis of classification. Due to the dataset
bias it is not possible to say how important the micro doppler signal is for the clas-
sification. When the number of input dimensions were reduced, the strong time
correlation between samples seemed to persist even as there were fewer dimensions
to find nonuseful patterns in. From this it is believed that the network mostly had
learned nonuseful features, and that the micro doppler signal was used to a lesser
extent.

Since all training data was gathered from a stationary radar, there was one source of
bias not accounted for. As stated in Section 3.3, the training data must be similar
to the data generated in the target environment, but in this case the target envi-
ronment is a flying aircraft. Thus one source of bias is the fact that all the samples
were stationary collected, which will have a significant impact, as was seen when
testing on data recorded in-flight in Section 5.2.6. From this it is concluded that the
network had not learned the micro doppler signatures sufficiently well to perform
good on in-flight data.

Hence this data acquisition method cannot be used for creating algorithms that will
be run in a flying radar. If the bias from time correlation can be mitigated, the next
problem will be mitigating the bias inherited from collecting data while stationary.
This is expected to be possible by data augmentation, where the clutter in a flying
radar can be calculated and added to the samples.

The weather conditions are expected to be a source of bias, but it was not considered
as a splitting parameter in an MCV. It is possible that the weather condition is the
most significant source of bias, making the samples time correlated.

As shown in Section 5.2.8, when downsampling the dataset, the same test set ac-
curacy was reached while also minimizing the generalization error. This can be
interpreted as the number of training samples does not need to be that many, but
that it is more important that the samples contain more variation.
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6.3 Feasibility of machine learning in airborne radar

Filters in radar systems are “traditional learning” which is based upon theory that
explains how the world works. Machine learning is theoryless and learns from expe-
rience by finding patterns in data, without any perception of how the world works.
Therefore, machine learning cannot work without great amounts of data with proper
information. Thus determining the possiblity of aggregating large amount of data
in a meaningful way provides answer whether or not machine learning is feasible in
the airborne radar.

To begin with, it was simple to collect and label great amounts of data using an air-
borne system. However the techniques that made it simple also induced misleading
results. The dataset became too homogenous since the samples were to much alike,
causing bias. Sampling with STT proved to be a bad idea as it did not improve
classification performance even if it enabled gathering greater amounts of data. Us-
ing an LSTM layer and time series of data did not improve generalization as was
believed, but likely because the samples were so similar that adding more did not
add any information. A vital tool used to detect dataset bias was the MCV scheme.

The main source of bias is likely the clutter in the RD-maps. When representing
radar data as RD-maps the clutter creates patterns in the images that are inter-
preted as features and thus becoming significant to the network. This is based upon
the minimized generalization error from removing almost all range-bins and the oc-
clusion analysis, but also the terrible performance when using a network trained on
stationary data with in-flight data.

The tests also show how to counteract the impact of clutter in the images. Network
pruning show potential to counteract bias in the dataset, by unlearning less signf-
icant features. Furthermore, a different approach to classes increased the accuracy
to 88 %, without any work on the network itself. Thus indicating the potential of
using RD-map classification for detection: target or no target. The possibility of
combining data from different radar systems is very interesting. Using a data-driven
approach it appears to be easy to combine data from different systems. Since it does
not require any modelling of the systems, only data with similar formats.

In the timeline of this thesis it was thus possible to collect and label almost 200
000 datapoints where approximately 125 000 were used in the final dataset. Data
with basic signal processing methods (absolute value, FFT and an arbitrary window
function) in combination with a simple neural network reached an accuracy of 88 %
percent on course class types, and 87 % in separating five aircraft types in a sub-
set where the aspect angle was small. Which indicates the feasibility of collecting
a large and useful dataset . Both tests mentioned above was validated with the
method for detecting misleading results. However, it was not as trivial as simply
collecting a large amount of data. A clear strategy is necessary to avoid misleading
results, the MCV splitting the data between month of recording. Thus the airborne
radar system’s capability of creating a lot of data endorses the feasbility of machine
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learning, and the possibility of classifying aircraft emphasize that there are mening-
ful patterns to learn from.

Deep learning algorithms are also expected to be feasible from a computational
load perspective. Traditional radar signal processing algorithms are computation-
ally intensive, hence neural networks are expected to be possible to run in hardware
designed for radar signal processing. As shown in this thesis, there exist pruning
methods for lowering the computational complexity of neural networks which can
be used if the developed algorithm cannot fulfill the computational constraints.

Arguing in favor of a theoryless method using the following principle might be a
humorous contradiction, nevertheless becoming that “the most simplest solution is
most likely the right one” - the Occam’s principle states. Thus “the simplest model
that fits the data is also the most plausible” [48]. Lending the reasoning from [48]
where a simple candidate, in this case a lightweight neural network, interpreting the
intended datset is more meaningful than a complex solution. Considering all results,
it is generally not a big difference between the training and validation sets. Fur-
thermore, the training set often produce good performance. Indicating that there
is no need for a bigger network with more weights/layers. The simpler network is
sufficient, but the composition, labelling and content of the dataset must still be
investigated. An RD-map does not contain as much detail and thus not as much
information as an optical image. This means that a small CNN, with regards to
trainable parameters, is likely sufficent.

Furthermore, in order to use supervised learning and produce RD-maps the full
data- and signal processing chain of the radar system is necessary, since the data
was automatically labelled by fusing tracking data from the radar with ATC data.
Metadata is valuable for verifying network performance and finding dataset bias.
This work did not perform any attempts with raw IQ data or without metadata.
Thus this work could not replace the data- & signal processing chain but work to-
gether with it to possibly add new or helpful functionality.

In conclusion, there are three criterions used in this discussion to determine whether
or not machine learning is feasible in airborne radar systems. The challenge of
collecting a great amount of data is considered overcome by this work. Network
pruning and the fact that it is not necessary to use a large network to learn from
RD-maps provides an example of how machine learning could work under constraints
of a flying system. However, one criterion remain inconclusive, namely verification.
This work have succeded to verify that the results can be misleading when using the
collected dataset, by suggesting a variety of tests to perform on a trained network.
Thus the challenge of verifying the results are commenced, but it is not possible
to determine a secure method of verification since no sufficently unbiased datasets
were discovered. Thus this work addresses the challenge of verifying the results
rather succesfully, but since no results could be trusted, this work verifies that the
network would not have good performance in a real-world implementation. Should
then machine learning be considerd infeasible for an airborne radar system? This
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work suggest that datacollection is not trivial when using an airborne radar system,
and common machine learning techinques cannot be applied without adjustments.
However, since it was possible to succesfully create methods for each criterion during
the timeline of this work, machine learning could be considered feasible if techniques
to counteract the biased dataset is researched.
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Conclusion

In this thesis, the feasibility of data-driven algorithm development in radar signal
processing has been investigated. Many aspects of implementing deep learning are
considered feasible, such as accessing large quantities of data and computational
complexity. However, real-world implementation could not be deemed feasible by
this work, since the data collection method generated biased samples. Due to this
bias, it is not possible to verify that the algorithm will exhibit desirable behaviour
in a real-world implementation, thus data-driven development will not be feasible
until this is solved.

Radar data was represented as images and a CNN was trained to determine radar
target classes, with good performance. A 10-fold CV scheme was employed to eval-
uate data quality but did not suggest that the dataset was biased. However, the
proposed 10-fold MCV scheme suggested that the samples had a strong time corre-
lation, which means that the initial network performance was not representative of
a real-world scenario.

Occlusion analysis suggested that the network had learned unuseful features, which
further indicated that the dataset was biased. Reducing the number of input dimen-
sions helped to decrease the generalization error since there were fewer dimensions
to find unuseful patterns in, yet this did not completely remove the effects from the
dataset bias. Network pruning also helped in reducing the generalization error but
only to some extent as performance dropped rapidly when too many weights were
removed. It was concluded that the network had not learned micro doppler signal
sufficiently well to be able to perform well on real-world data, due to dataset bias.
The computational load of neural networks are not expected to be problematic since
traditional radar algorithms are computationally intensive as well.

The proposed data collection method can be used to quickly generate large amounts
of biased data, which must be accounted for. Deep learning algorithms are believed
to be potentially useful in radar signal processing, but a core issue is to find and
mitigate the bias introduced by the collection method. Humans must be able to
trust the network before they are willing to implement it in a real system, and using
methods from Explainable AI will be an essential way of determining whether the
algorithm will behave as expected or not. The proposed MCV schemes are expected
to be useful for detecting bias in order to adapt the data collection process, even for
collecting data for other functions using an airborne radar. The greatest obstacle in
applying deep learning in radar applications is to develop a method for creating an
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unbiased dataset and to verify that the algorithm will behave as intended.

7.1 Future research
Due to the challenges and discoveries of this thesis there exist several aspects that
would need further investigation. RD-maps are less detailed than optical images,
thus it is reasonable that there is less information to extract hence reducing the
need of complex network architectures and number of training samples. This limits
the amount of target information that could be extracted from an RD-map but is
expected to make the network train faster and/or on fewer samples than in appli-
cations using optical images. It would therefore be interesting to evaluate what
sample size it would require to develop a deep learning algorithm on radar data in
comparison to other fields such as image analysis. Because data can be gathered
cheaply at a low quality, would it be better to more carefully choose the dataset
than to just gather more low quality data?

Data augmentation is commonly used in image analysis but was not employed in
this thesis. What kinds of data augmentation could be employed on radar data
represented as images and what would its effects be on network performance and
robustness? This could for instance be adding a clutter profile to simulate a moving
radar.

Since the sample size from a moving radar system was very small, a future study
could evaluate the performance on data from a moving radar when the network is
trained on stationary data. Then how the performance is affected by using data
augmentation could be evaluated, to find a suitable augmentation method.

In this thesis, the radar data was represented as images, but other representations
might be more suitable for machine learning problems. Thus the different represen-
tations of radar data could be evaluated to find the most promising representation.

Target detection is a key functionality of many radar systems, and shows potential
to be carried out by deep learning algorithms. Wang et al. [6] used purely synthetic
radar data and Brodeski et al. [37] used calibration data, hence it would be interest-
ing to use the data collection method from this thesis to investigate target detection
on real-world data. The algorithm presented in [37] is based on the Faster R-CNN
network architecture, but the Faster R-CNN is considered slow in comparison to
the YOLO algorithm [36]. Implementing radar target detection with YOLO instead
could be the aim of future research.

Radar target classification using supervised deep learning algorithms requires a
dataset containing the signatures of the targets that shall be detected. In mili-
tary applications, it is often impossible to acquire data of the targets of interest,
such as enemy aircraft, making supervised approaches obsolete. Thus investigating
the potential of unsupervised learning for radar target classification would be suit-
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able for future research. This could for instance be training a network to distinguish
between targets that have already been seen (such as friendly or commercial air-
craft) and those that have never been seen before (potentially enemy aircraft) using
unsupervised anomaly detection.

The MCV scheme could be further elaborated, it proved very useful to investigate
bias. For instance, if there exists no metadata of the dataset, would it be able to
create “synthetic” metadata from information contained in the data itself? For large
dimensional samples it could be calculating mean or variance in each sample, then
splitting data based on these parameters.

7.1.1 Ethical aspects
Radar systems have traditionally been an expensive technology mostly used in mil-
itary application, but as the technology becomes cheaper it becomes a more viable
choice in other fields. The work presented in this thesis is focused on military usage
but can also be applied to civil radar development, although this data collection
method is typically only viable for long range radar systems.

Deep learning may prove a cheaper option to traditional radar algorithm develop-
ment, making it possible for smaller organizations to integrate radar technology into
their products. Then radar technology might be feasible to use in other types of
applications without requiring thorough radar knowledge.

The usefulness of deep learning algorithms are greatly decreased because of their
black box nature, and the proposed MCV scheme might be useful for finding dataset
bias in other fields. This would be useful to detect potentially dangerous, discrim-
inative or other undesirable behaviour of deep learning algorithms before they are
implemented.

In military applications, actions based on incorrect information can have devastat-
ing consequences, making it very important that algorithms implemented in these
applications are robust and can be trusted sufficiently. Thus it is more important
in this sector to be able to verify that the algorithms will not behave in an undesir-
able way. Radar systems are also an integral part of the defence capabilities of any
modern nation but are traditionally expensive. Cheaper radar systems may reduce
public military spending, and enable poorer countries to defend themselves or at a
lower cost. However, more accessible radar technology may enable using radar for
destructive purposes.
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