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1 Abstract

The purpose of this master thesis projectis to develop a method for verifying the sample point
position (SPP) of an electronic control unit (ECU). The thess is performed in two phases; first a
theoretical solution of the problem and also a practical implementation. To realize the theory a circuit
board were constructed. The solution of the problem is then tested and verified on the design PCB. To
be able to validate the test result special test instrument was used such as an oscilloscope with a
controller-area network (CAN) analyzer module.

To analyse the sample point position the method used takes advantage of the built-in error detection
function, Stuff error. The Stuff error is a mechanism integrated in the CAN protocol and is provoked
when it don’t perceive an expected stuff bit in the message sent over the CAN bus. To generate a stuff
bit error the bit length of the stuff bit is decreased until the receiver no longer can interpret it. When
this occurs an error flag is set and by keeping track of the number of steps that the length has been
decreased the sample point position can be calculated.

The accuracy of the calculation of the sample point position is within the given limits that have been
set for this project. As seen in the report the results are SPP#+2% which is close enough to know when
data is sampled. e

Keywords:

Controller Area Network, Bit stuffing, Vehicle Network, Sample point position, Electronic control
unit, CAN, SPP, ECU
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1 Introduction

The electronic communication in a bus or a truck is managed by a so-called ECU (Electronic Control
Unit). These units send and receive data over the CAN protocol, which is message protoco! used in
automotive applications. The protocol standard defines rules on how the cornmunication shall be
performed and among these rules there is a bit timing requirement that indicates when a bit shall be
sampled.

The sample point position setting is a protocol parameter, which is set by the firmware of particular
ECU into the CAN controller and its value is not simply visible from the outside. Wrong setting can
cause higher level of frame error rate in the system, as the CAN uses broadcasts and incorrect
behaviour of any node influences the performance of the whole system.

This report is based on a project at the bus and truck manufacturer Scania CV AB (henceforth only
called Scania) in Sadertdlje. ‘

1.1 Background and problem description

Scania is among the top manufacturers of trucks and buses wotldwide and its brand symbolizes
quality and trust. The company offers many different solutions of vehicles but they all have one thing
in common, they are all built on electronic compenents.

In a truck there are about 20-25 different ECU’s that manages all the electronic communication and
these unils’ controls everything from oil pressure to dashboard lights. Timing and the reliability of
data transfer are two very important criteria and therefore the accuracy of the sample point is a crucial
factor. If a data bit is wrongly perceived if could have devastating consequences in terms of system
failure.

Scania wants to develop a simpler method for verifying the sample point position in their ECU’s, so
this thesis will discuss the importance of the sample point criteria and also how to implement a testing
methodology on how to perform reliable test to verify that position.

1.2 Purpose

The purpose of this thesis is to develop a testing methodology on how to perform reliable test to
verify the sample point position of an ECU. To be able to verify and test the proposed tesling
methodology new tools had to be constructed. The tools construction includes the schematics of a
circuit board containing all the components needed for CAN communication, layout of components
and also on how to interface those components with software.

1.3 Delimiters

There are a couple of areas that has not been taken under consideration during the project. No analyze
of possible signal disturbances from the 50MHz clock cycle has been performed.

The possibility of setting the CAN controller registers via the user interface softwate has not been
implemented. Also the possibility to run the CAN communication at another bit rate than 250kBit/s or
500kBit/s has been neglected.




2 Theory

231 CAN - Basic concept

CAN is short for Controller Area Network and is an asynchronous multi-master serial broadcasting
protocol for communication between ECU’s. Since it is multi-master all nodes can transmit on the bus,
but only one at the time. All nodes receive every transmission but because of individual identification
on each unit only one will respond at a certain message. Chapter 2.2 CAN bus describes more in detail
how nodes determine on which message to act on, (STMicroelectronics)

Its domain of application ranges from high speed networks to low cost multiplex wiring. Examples of
application that has implemented CAN communication are automotive electronics, engine control
units, sensors, anti-skid-systems. These applications are connected using CAN with bitrates up to 1
Mbit/s. CAN is also used in less complicated systems like for example lamp clusters and electrical
windows and this is due to that it is a very cost effective solution.

The intention of this specification is to achieve compatibility between any two CAN implementations.
Compatibility, however, has different aspects regarding e. g electrical features and the interpretation
of data to be transferred. (Bosch, 1991) -

2.2 CAN bus

Every bit transmitted on the bus is defined as recessive or dominant, which maps to 1 or 0. If more
than one node is trying to transmit, the result will carry a dominant bit if at least one node is
fransmitting a dominant bit (See Table 1: Bus state truth table). When a node transmits a dominant bit
it directly perceive that bit on the bus and therefore don’t know if someone else was trying to send
data. If a node transmits a recessive bit, but a dominant bit is seen on the bus, the node knows that
someone else is sending data.

Bit Dominant Recessive
Dominant Dominant Dominant
Recessive Dominant Recessive

Tabie 1 Bus state truth table

221 ilata transmissions

As mentioned earlier in the report a master is not needed to communicate, when a node is ready to
transmit data it checks the bus for activity and if it is available it simply writes a CAN frame onto the
network. The CAN frames that are transmitted do not contain addresses of either the transmitting
node or any of the intended receiving node(s). Instead, a unique network label is defined by the
arbitration ID. All nodes on the network receive the message but the only unit with matching
arbitration ID will accept the frame. (National Instruments, 2009)




222 Arbitration

All nodes generates messages concerning their own agenda, this can lead to several nodes trying to
access the bus simultaneously. That problem is solved by bitwise arbitration, also called Carrier
Sensor Multiple Access/Collision Avoidance (CSMA/CA). This principle that has been adopted info
the CAN protocol solves the bus access conflicts by assigning a level of priority to each message. If a
collision is detected, the message with highest priority (lowest arbitration ID) will gain access to the
bus. Lower-priority nodes must wait until the bus becomes available before trying to transmit again.
(Paret, 2007)

2221 CSM/CA

The CSMA/CA principle states that when a dominant bit and a recessive bit are transmiited
simultaneously on the bus, the resulting state must be dominant. And as seen in chapter 2.3 the first
part of a message frame is the arbitration ID, this explains how the ievel of priority solves the conflict
problem. (Paret, 2007)

223  Synchronization

There are no synchronizing signals attached to the data transmitted onto the bus. Instead the transmit
unit starts sending frames synchronously with the bit timing, The receiving unit synchronizes itself by
a change of the bus level as it receives frames. However, it could occur that the units get out of sync
with respect to the other because of a clock error on either side or a phase delay in transmission path
(e.g. cable or driver). Therefore, the receive unit adjusts its operation fiming by means of hardware
synchronization or resynchronization as it receives frames, Hardware synchronization is conducted at
the beginning of a frame, at the start-of-frame bit. Resynchronization happens continuously as the unit
receives the frames. Figure 1 illustrates the problem of when two nodes are out of synch. Node 1
synchronizes at the correct position but Node 2 misses the bit. (Renesas Electronics Corporation, 2006)

sample points

Mode1 Node2

Figure 1 Unsynchronized nodes




2.4 CAN protocol

The CAN protocol supports two message frame formats, the only essential difference being in the
length of the identifier. The “CAN standard frame” supports a length of 11 bits for the identifier and
the “CAN extended frame” supports a length of 29 bits for the identifier.

2.41  Standard frame

A CAN message begins with the start bit "Start Of Frame (SOF)", this is followed by the "Arbitration
field" which consist of the identifier and the "Remote Transmission Request (RTR)" bit used to
distinguish between the data frame and the data request frame called remote frame. The following
"Control field" contains the "IDentifier Extension (IDE)" bit to distinguish between the CAN base
frame and the CAN extended frame, as well as the "Data Length Code (DLC)" used to indicate the
number of following data bytes in the "Data field", If the message is used as a remote frame, the DLC
contains the number of requested data bytes. The "Data field" that follows is able to hold up to 8 data
byte. The integrity of the frame is guaranteed by the following "Cyclic Redundant Check {CRC)" sun.
The "ACKnowledge (ACK) field” compromises the ACK slot and the ACK delimiter. The bit in the
ACK slot is sent as a recessive bit and is overwritten as a dominant bit by those receivers, which have
at this time received the data correctly. The receivers regardless of the result of the acceptance test
acknowledge correct messages. “End Of Frame (EOF)” indicates the end of the message. The
"Intermission Frame Space (IFS)" is the minimum number of bits separating consecutive messages.
Unless another unit starts transmitting the bus remains idle after the IFS. (CAN CiA, 2010)

242  Extended frame

The difference between an extended frame message and a standard frame message is the length of the
identifier. The 29-bit identifier consists of the 11-bit identifier (standard identifier) and an 18-bit
extension (identifier extension). The distinction between CAN base frame format and CAN extended
frame format is made by using the IDE bit, which is transmitted as dominant in case of an 11-bit
frame, and transmitted as recessive in case of a 29-bit frame. As the two formats have to co-exist on
one bus, it is laid down which message has higher priority on the bus in the case of bus access
collision with different formats and the same identifier / base identifier: The 11-bit message always has
priority over the 29-bit message.

CAN controllers, which support extended frame format messages, are also able to send and receive
messages in CAN standard frame format. CAN controllers that just cover the base frame format do
not correctly interpret extended frames. However there are CAN controllers, which only support the
base frame format but recognize extended messages and ignore them. (CAN CiA, 2010)

243  Message frames

There are four different types of messages available: Data frame, remote frame, error frame and
overload frame. This report only describes the data frame since this is the only one used in the project.




24.3.1 Data frame

The data frame is used when a node transmits data and this frame has two message formats, Standard
frame and extended frame. As with all other frames the standard frame begins with a Start-Of-Frame
(SOF) bit, which is of the dominant state and synchronization of all nodes. The structure of a message
is shown in Figure 2: Standard data frame.

} - - — - - Data Frame {number of bits = 44 + BN}
v 42— slu—p - BN (OSNEE)  iians 16 7
Arbifration Figld |~ Gonesl Data Field CRC Field )
E Fleld : - End-of
. j— = YR DU U I o T zzg
o ’ ’ o ’ ’ CRC oﬂx
g FE@‘ 3 _ 1. _|BEY s
ofofol [T L{LLLLLLL o PRLLLLL DL L LT T T LT Lofafefaffolefolofef
Lt lggntier — | 2! nata .
L N tength
Message % Code
Fierng 3 -

. e " Stored in TransmitiRetelva Buffars ' .
Stared In Buffers s ) ;

" Bitstuffing
Figure 2: Standard data fmme {(Bosch 19913

2.4.4 Error detection

If a CAN node receives a message with an error it destroys the frame and causes the transmitter to
resend. The CAN node destroys the message by sending an error frame on the bus. The six different
error detection mechanisms used by the CAN protocol is explained below.

Monitoring

The transmitter of a bit compares the signal sent with the signal perceived on the bus line
(transmission channel). Except for the arbitration phase during the transmission of the identifier of a
message and in the ACK slot, a transmitter starts sending an error frame if the data bit on the bus is
different from the one sent. In this way bit errors affecting all stations on the bus cannot lead to non-
detectable errors because they will be detected by the transmitter of the frame first.

Cyclic Redundancy Check

The 15 CRC bits are computed with every bit between the SOF o the last data bit. The BCH code used
for generating the CRC leads to a hamming distance of six, including a parity check, in the unstuffed
bit sequence.

Message Frame Check

The SOF, RTR, IDE, DLC, CRC delimiter and EQF fields must be consistent with the CAN
specification. If a fixed format field in a received frame {(except for the last EOF bit} does not conform
to the standard, the receiver sends an error frame and does not accept the received frame.

Bit Stuffing

Any violation of the stuff rule between SOF and CRC is regarded as an error. This error will be
explained more in detail further down in the report.

Acknowledgement

The transmitter of a data or remote frame treats a missing acknowledgement as an error and destroys
the EOF field by sending an error frame,




Error Signalling

Each station that detects an error starts sending an error frame, so that other stations are notified of
this condition by seeing a violation of the stuff rule or the fixed format delimiter or EOF fields. Note
that due to the Bit Stuffing mechanism all stations answer a received error frame with error frames of
their own, (Charzinski, 1994)

2.4.5 Bit timing

The Neminal Bit Rate of the network is uniform throughout the network and is given by:

fupr = t_
NBT

Where tyyr is the Nominal Bit Time. As defined in equation (1) the bit time is divided into four
separate non-overlapping time segments called SYNC_SEG, PROP_SEG, PHASE_SEG1 and
PHASE_SEG2. These are illustrated in Figure 3: Nominal Bit Time, (Florian & Bassemir, 1999) (Robb,
1999)

syhe_seg prop_seg phase_segt phase seg2 |

N

Sample Point

Norminal Bit Time |

A

figure 3: Nominal Bit Time




2.4.6  Bitstuffing

Since the CAN bus does not contain any clock signal there must be a way for all nodes to synchronize
data. Therefore receivers use transitions in the CAN frame to synchronize their internal clock.

To ensure that there are enough transitions, the CAN protocol implements the Bit-stuffing rule. Bit
stuffing adds an extra bit, which is of the opposite state compared to current one, This extra bit is
inserted after five consecutive identical bits has beent detected. Since the appearance of stuff bits
depends on the message content, the length of the CAN frame will vary depending on the data
content. The receiver automatically throws the extra stuff biis away so that the application software in |
the CAN node does not need to take them into consideration. (Intrepid Control System, 2010) j

This process is illustrated in Figure 4 below. 1
|
|

Frame before stuffing

1

G -

1

0 . ; . i L o H H < o » H L
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Figure 4: Bif stuffing
If more than five consecutive bits with the same polarity are detected between Start of Frame and the

CRC Delimiter, the bit-stuffing rule has been violated. A Stuff-Error occurs and an Error Frame is
generated. The message is then repeated. (Sofiing)

The remaining bits of the other segment of the data frames, such as the CRC delimiter, ACK field and
End-of-Frame, have fixed structures and are not stuffed. (Paret, 2007)




3 Theoretical solution of problem

Since the sample point position is a protocol parameter set by software the only way to verify it would
be to do it electrically. Of course the possibility of reading the controller register exists in software but
this will not actually verify anything other than the data stored. The verification of the sample point
position is not a widely discussed area and therefore hard to compare different solutions.

The solution discussed in this thesis is based on report by (Novak) but is using a slightly different
hardware construction that is describe further down. It is based on that an error is deliberately
provoked in the CAN protocol to make it possible to calculate the sample point position.

3.1 Issues

Since this is a rather complex protocol the mission was to identify all possible issues that could
complicate the task. By reading the CAN specification (Bosch, 1991) the issue of controlling the timing
is raised. Due to strict iming requirements there are several error mechanisms used in the protocol
and there could be a problem controlling all of these.

3.2 Aliernatives

The obvious compoenent needed in any solution would be to have at least one CAN controller acting
as a receiver. With this decided different alternatives were compared.

321 CAN generator

A possible way would be to create a CAN generator that could produce the CAN messages needed to
communicate with the receiver. It would then be possible to control the generator and manage the
messages sent. But due to lack of time to be able to create an own controller with the CAN protocol
implemented this idea was rejected.

3.2.2  CAN message interference controller

As describe in chapter 3.2.1 the implementation of an own CAN protocol generator was not a
possibility due to the workload. Instead the idea of interrupt the message between two CAN
confrollers was raised. This solution is also performed by (Novak).

By using two fabricated CAN controllers the protocol is integrated and therefore saves a lot of time
and work. '




3.3 Interfering the message

To be able to interfere the message sent between two CAN controllers a third component is needed.
Several possibilities were discussed, e.g PIC or a ARM processor, but since that the impact of
interfering the message has to be as small as possible the best solution were to use a FPGA. The FPGA
can receive and transmit the message with the delay of only a few clock cycles.

Figure 5: Interfering the message

3.4 Finding the sample point position

Since the method for how to hijack the CAN message has been decided the remaining problem would
be how to actually find the sample point position (SPP). Seen in Figure 3: Nominal Bit Time the SPP is
located between segment three and four. The segments are as described before set in software.

To be able to locate the position the integrated CAN error mechanism, Stuff bit error, is to be used. In
chapter 2.4,6 this function is explained in detail.

When five consecutive bits of the same polarity has been detected on the bus the CAN protocol adds
the so-called stuff bit. If the stuff bit is missing and there are more than five bits with the same polarity
in row on the bus the stuff error will occur. So by altering the stuff bit the error can be provoked.




3.5 Implementation

This chapter will in theory describe the system flow from start to end of a transmitted message on the
CAN bus.

351 System overview

Figure 6: System overview

1: The FPGA sends start command to the CAN transceiver.

2: The CAN transceiver sends a defined message which the FPGA hijacks and performs its
calculations,

3: The FPGA forwards the altered message to the CAN receiver.
4: The CAN receiver responds to the CAN fransceiver without to involvement of the FPGA.




3.5.2

Flow chart

Hrrar detected?

Figure 7: Flow chart




3.5.3  FPossible complications

There can be some complication when trying to alter the message from the CAN transceiver. If the
wrong bit is changed it can be hard to detect what type of error that have occurred. Also the problem
of propagation delay has an impact on the system. If the CAN transceiver has not detected its transfer
bit on its data input pin within a defined time another error, than stuff bit error, will be provoked.

The calculations performed by the FPGA are based on a fully synchronized CAN system, If the units
were out of synch it would be impossible to measure an exact sample point position.

4 Practical solution of problem

To be able to realize to theoretical solution a hardware platform with the chosen components were
needed. The goal was to create a platform that was user-friendly and portable.

At first, the system was developed on an off-the-shelf platform from Spartan with some external CAN
controllers. This prototype worked as a debugging systeni and were later on in the project the base for
the self designed PCB.

41 Hardware

Since the Spartan starter kit includes a lot of circuitry not needed for this project and is unnecessary
large by size, a new slimmer version was designed. The new P’CB only included the circuitey stated
below. The stripped down system is shown in Figure 6.

Sipply voltage
Lco sV
33V
2.5v
1.8V
LV
CANEX
e EE TS CAN e
TRANS. .
41\ SVio33v Je CANRN
LsB

Figure 8: System overview
FPGA

The programmable logic used in this project is part of the Spartan-3 FPGA family. It is a low-cost,
high-performance logic solution for consumer —oriented solutions. The device chosen for the
construction of this family is a 400K gates FPGA called XC35400. The XC35400 is a 144-pin quad flat
package chip with 16 multipliers and 4 Digital Clock Managers (DMCs).




Configuration memory

The platform flash used is part of a series of in-system programmable PROMs and is a non-volatiie
storage. By non- volatile means that the information stored at the chip is retained even when not
powered. The chip, XCF04s, has a storage volume of 4MB and is power by 3.3V supply voltage. It
supports several configuration modes and the one used in this projectis a “FPGA Master Serial
Mode”. (Xilinx 2009)

CAN controller

The MCP2515 is stand-alone CAN controller with SPI interface that implements the CAN
specifications. It has the capabilities of transmitting and receiving CAN data of both standard and
extended frames. The MCP2515 has numerous acceptance filters used to filter unwanted messages.
{Microchip 2010)

CAN transceiver

The MCP2551 is a high-speed CAN, fault-tolerant device that serves as the interface between a CAN
protocol controller and the physical bus. The MCP2551 device provides differential transmit and
receive capability for the CAN protocol controller, and isfully compatible with the [SO-11898
standard. Typically, each node in a CAN system must have a device to convert the digital signals
generated by a CAN controller to signals suitable for transmission over the bus cabling (differential
output). It also provides a buffer between the CAN controller and the high-voltage spikes that can be
generated on the CAN bus by outside sources (EMIL, ESD, electrical transients, etc.). (Microchip 2010)

USB to serial

The FT232R is a USB to serial UART interface device, which simplifies USB to serial designs and
reduces external component count by fully integrating an external EEPROM, USB termination
resistors and an integrated clock circuit, which requires no external crystal, info the device, It has been
designed to operate efficiently with a TJSB host controller by using as little as possible of the total USB
bandwidth available. (FTDI 2010)

DC/DC converter

Several DC/DC converters are used to provide the correct supply voltages to the different chips. The
available voltages on the circuit board are 5V, 3.3V, 1.8V and 1.2V.

LCD

A 2x16 segment LCD display.




4.2 Software
This thesis has included two kinds of software development; hardware description coding (VHDL)
and a graphical user interface (C#).

421 VHDL

The main part of the project has been coding the behaviour of the CAN Sample Point Analyzer. The
function of the code is to listen for a message from the CAN controller and locating the stuff bit within
thai message. By knowing that a stuff bit always inserts after five consecutive identical bits, the
software only needs to wait until this bit occurs.

First, a setup of the CAN controller is performed setting all concerned registers. These registers
control for example the transmitting bit rate of the controller and the message content, When the setup
is done the message programmed is sent onto the bus.

After the setup a listen state is initiated waiting for the stuff bit to appear. This state consists of a loop
counting the equal bits that arrive. When the loop counter detects the fifth equal bit the next state is
entered knowing that the next following bit is the stuff bit that is going to be altered.

After the stuff bit is received the decreasing of its length is'started. Knowing that a bit sent at for
example 250kbit/s consists of 200 system clock cycles, this state decreases the length of the stuff bit by
1/200 each time it is entered. The new altered bit is now sent onto the bus and if no error is detected
the loop is restarted.

By keeping track of how many times the length has been decreased the sample point can be
calculated. Once an error message occurs the loop is broken and the value printed. The flow chart of
the VHDL code can be seen in Figure 7: Flow chart.




4,22 ilser intevface (C8})

The user interface was not part of the project specification but was added to simplify the debugging.
By communication via the RS232 protocol the CAN controller registers could be read and displayed in
a user-friendly application. Some other data such as bit rate and bus termination is also printed.
Figure % shows a print screen of the software interface used on a computer.

CAN Sinwulator - Register Editor.

Figure ¢ User interface

4.2.3  Configuration

As seen in Figure 7 one of the states manage the configuration of the CAN controller. This was done
by the FPGA via the SPI protocol. For further reading on values and which registers to configure see
appendix B.




4,3 Method

One way to find the sample point position of an ECU is to calculate the limit where the CAN protocol
rules are violated. To do this a message is sent with a known configuration that is not violating the
rules and then gradually decreases the values until an error is flagged.

As mentioned in chapler 2.4.4 Exror detection, there are several mechanisms used to detect an error. In
this method used to find the sample point position, the Stuff bit error will be the indicator of when that
position is found.

If the bit rate of the CAN controller is set to 250kBit/s, the length of one bit is therefore by eq. (1 ):

tnpr = 4Us

Figure 10 below shows one bit with the length typr and it also illustrates the sample point set at 80%
of that bit time. To be able to verify that the programmed sample point really is at the given position
the Stuff bit error detection will be helpful. -

i
|
1t

sample point

NET
Figure 10: Bit length

431  Configuration of the message

As explained in theory the CAN nodes doesn’t have any clock cycle to synchronize on, instead the
synchronization happens on falling edges in the message transmitted on the bus. Since this analyzing
method used to verify the sample point position is depending on high resolution of the bit time the
synchronization is a crucial factor. It is very important that nodes samples at the same time of a bit to
be really certain that the error provoked are not caused by a synchronization fault.

Figure 1 illustrates the problem when two nodes are out of sync. Node 1 samples at the correct bit and
Node 2 that is out of synch samples at the following, which will cause an error. Therefore a message
with as many transitions as possible is constructed to assure that the nodes are synchronized.




4.3.1.1 Message setup
When configuring the message frame there are a couple of fields that are needed to be set. The
transmitted frame should be configured with to following values:

1D = 0x3555555
Data length = 0xA
Data byte 0-7 = O0xAA, OxAA, OxAA, OxAA, OxAA, OxAA, 0xAQ, 0x2A

The maximum number of bytes in the data field is 8, but since this only includes one transition the
field is set to OxA, however only 8 bytes of data are transmitted. The different frame fields are shown
below in Figure 11.

Bus Idie Arbliration figld  Control fieki Data field CRC ACK
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Figure 11 CAN data frame

By setting the message frame as described above the maximum number of transitions will be provided
on the bus since the binary value of a 0x5 and a 0xA is (101 respectively 1010. Data byte 6 is set to
OxAO because it is during this byte the stuff bit will be provoked. What will happen is that the CAN
controller will receive more than five zeroes, which will produce a stuff bit. The stuff bit that appears
will be the one that should be altered. In Figure 13 the message is illustrated in binary code.

4.4 Locating the stuff bit

The only bit that is supposed to be altered is the stuff bit, it is therefore essential that no other bit is
changed. Since the message is hardcoded the algorithm knows what sequence to lock for and it is not
possible for a stuff bit to appear somewhere else but between data byte 6 and 7.

A state machine is used to locate the stuff bit, and is shown in Figure 12. When five zeroes are
detected the system knows that the following bit is the stuff bit. And when it reaches that state it starts
to decrease that bit one step at a time.

Figunre 12: State machine of locating the stuff bit



4.5 Finding the sample point position

To find the sample point position the Stuff bit error needs to be provoked. This is done by successively
decreasing the stuff bit length until the receiving node no longer can interpreter it. When bit-stuffing
rule is violated the ECU sets an active error frame and the transmission is interrupted. In Figure 13 the
message is illustrated before and after the insertion of a stuff bit.

. : data byte 6 databyte 7
. oI nrr
OxAD : OxAA
data byte & P databyte 7

LML L
PRI o . I | S LI I N, i
i OxAD s OxXAA

T

Figure 13: CAN message

When detected, the length of the stuff bit is decreased with steps of 20ns until the error is flagged. The
error will be provoked when bit flank of the stuff bit has passed the sample point position, as seen in
Figure 14. When the edge of the bit has passed the sample point the CAN controller will miss to
sample the stuff bit and instead sample the next following bit. When this happens six zeroes will be
read in a row which violates the Stuff error rule and a flag will be set.
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Figure 34: Decreasing the stuff bit length

By keeping track of how many steps that the stuff bit has been decreased the sample point position
can be calculated.




4.6 Calculating the sample point position

A counter is keeping track of the number of steps that the bit has been decreased. This number is
stored in cnt Tmp in equation (2 ).

cnt = BitRate — cntTmp {23

Depending on which bit rate the system is running, the length of a data bil is different. While running
at 250kBit/s one bit is 4s respectively 2us at 500kBit/s. A bit with the length 4us can be divided into
200 cycles of a 50MHz clock. Therefore the variable BitRate is either set to 200 or 100 depending on bit
rate setup. The result calculated in equation ( 2 ) will thereby represent the sample point position
given in number of cycles. The number of cycles calculated is the divided by the total number of
cycles given by the bit rate.

Example of sample point calculation is givén in equation (3 ) below.

BitRate = 200 (33
cntTmp = 17 .

cent = 200 — 17 =183

}—EEE = 0.915 = 91.5%

200

Since the system doesn’t have a floating point implementation the result will lose some precision. The
given example above will be printed as 91% because of this resolution problem.

47 Verifying

To verify the results calculated be the system an oscilloscope with a CAN analyzer has been used. This
analyzer shall not be mixed up with this thesis system since they do not perform the same tasks.

With the oscilloscope the length of bits within the message could be verified. To assure that the code
worked as supposed to, an untouched message were sent and analyzed. Then an altered message with
a decreased length of the stuff bit was sent. And by using the oscilloscope measuring functions I could
verify that my altered bit were of the correct length set by me.

The CAN analyzer has the possibility of setting the sample point of the integrated CAN controller, By
using this function I could test that the code were finding the correct sample point position. Setting
that sample point at different values the test result in chapter 5 were calculated by the CAN sample
point analyzer.

Verification towards Scania ECU’s has also been done, the sample point position in those units are
programmed at a value which are not allowed to mention in this report because it is classified
informatior.




5 Results

The testing has been an on-going task since there are a lot of different modules that are cooperating in
this project.

The general test method used has been more of a {rial and error technique. In the beginning of the
project testing were done to just get the system to response for different commands such as setting
and reading registers from the CAN controller. Next step in the testing phase was sending a CAN
message and let it run through the FPGA unaltered and analyze the data on the bus. By verifying that
the message was correct with the CAN analyzer tool, the following procedure was to start decreasing
the length of the stuff bit.

Since the results from the above test cases only rendered “Fail” or “OK" there is no need to present
this in the report. Focus has instead been put on results from the final system.

The test results in the tables below are presented as an average of 30 runs. Each run is performed in
room temperature with the same setting of the CAN controller regarding frame structure, bit rate and
bus termination.




The tables below show the calculated average sample point position (SPP’) with settings.

Programmed SPP

56.25% 62.50% 68.75% 75%

81.25%

87.50%

Measured SPP

LB O  60.03% 0 66:97% 0 72.77%:

79.45%

85.90%.

Table 2: 250kBit/s - 60 Ohm - Extended frame

Programmed SPP

56.25% 62.50% 68.73% 75%

81,25%

87.50%

_Measured PP

. 55% - 60.15%  67:20% : 72:30%

C80%.

85.98%.

Tabie 3: 500kBitfs - 60 Ohin - Extended frame

Programmed SPP

56.25% 62.50% 68.75% 75%

81.25%

87.50%

" Measured SPP i

in 55.10%60,95% ¢ 66.82% . 72.35%

81% .

85.80%"

Table 4; 250kBit/s- 120 Ohm - Extended frame

Programmed SPP

56.25% 62.50% 68.75% 75%

81.25%

87.50%

. 80.55%

Table 5 500kBit/s - 120 Ghin - Extended frame

Programmed SPP

56.25% 62.50% 68.75% 75%

81.25%

87.50%

MeasiredSpp -~

. B5.05%  60.00% 67% 3%

79.35%.

86.25%

Table & 250kBit/s - 60 Ohm - Standard frame

Programmed SPP

56.25% 62.50% 68.75% 75%

81.25%

87.50%

[ Measured SPPI

s BB 00 60:89% . 68.20%: 1 173:30%:

80.50%

85,40%

Table 7: 500kBit/s ~ 60 Ohun - Standard frame

Programmed SPP

56.25% 62.50% 68.75% 75%

81.25%

87.50%

Meastred SPP

oo BB9% . 61.35% ©67.70% 74.16%

‘BE.64%:

TFable & 250kBit/s - 120 Ohm - Standard {rame

Programmed SPP

56.25% 62.50% 68.75% 75%

81.25%

87.50%

“Medsured SPPY 1

L 56,05% 0 61.50%:67.40% 73.23%

80:45%

86:15%

Table 9 500kBitfs - 120 Ohm - Standard frame

Programmed SPP 1%
MeasuredSPP. 0 01 8%
Table 10; Scania BCU

Table 10 presents the results from test runs performed with a Scania ECU, but due to classified
information the settings of the test runs in cannot be given.




6 Discussion

The results obtained are based on a test environment with very short cable distance; it is uncertain
what will happen with delays and disturbances if the cable length is very long. It will probably cause
an error due to the response time has been violated. Even though the project specifications were
fulfilled there are some improvements that could be implemented.

Ta be able to get a better estimation of the sample point a faster system clock is needed. The clock
used in this project is at 50MHz and gives a bit time of 20ns. If instead a 100MHz clock is to be used
the resolution would increase by a factor 2. And with better resolution the decreasing of the stuff bit
length could be more precise. But to really take advantage of such a fast system clock a floating point
implementation is needed, because then it is possible to calculate tenths instead of rounding off to
integers. In the implementation that is described in this report the result calculated are just integers,
this gives a good estimation of were to sample point is located but not an exact value. The results
shown in the tables in previous chapters are printed with decimals, but this is not from the calculation
of the sample point but from the average calculation of the-entire test run performed.

Another implementation that could be done is to control the message sent from the CAN controller
onto the bus. Today this message is hard coded and can only be change if the code is modified. By
giving the possibility to modify the message sent this module could not only work as a sample point
analyzer but also as a Message analyzer. It could facilitate the work to see what response is given from
the receiver for a certain message. For example, if the unit that controls the breaks of a truck response
correct when the “break”-command is sent. To be able to set different messages the windows software
created for this project needs fo be modified as well. The software is prepared for this kind of
functionality and could easily be expanded.

The code written for this project works for its purpose but might be problematic to alter when adding
new function. Before doing so, a makeover is needed in terms of structure and variable naming.




7 Summary

The criteria’s set by Scania for this project has been fulfilled and my CAN Sample Point Analyzer
works according to specifications. However, there are still improvements that are needed as
mentioned in the discussion. Due to lack of time in the end of the period, testing and verification of
the project has not been performed enough. There are still possible cases were the CAN Sample Point
Analyzer might not indicate the correct value,

However, the result of this thesis is indicating well enough on where the sample point is located.
Furthermore, the testing has proven that the calculation and measurement of the sample point is only
differ maximum 2% from the actuat value.

The PCEB designed has been patched with a few wires since there were some errors when exporting
the net list from the schematics to the layout software, This has been fixed in the layout files but not
been fabricated. Those errors caused the supply voltages to the different components to mix up; this
resulted in that the 5V supply wire was connected to the 3,3V. By cutting the 5V supply and connected
it by wires to the involved components the problem were solved.

As with all projects new interesting features appeared during the development, The given criteria’s
has been extended as the project proceeded, some has been implemented but since this was only a
master thesis it was not possible to apply them all.
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10 Appendix

A. VHDL modules
B. Register map of CAN controller

C. Configuration of the CAN controller




A, VEDL modules

An explanation of every VHDI module and process seen in Figure 6 will follow below. No details
such as signal names will be explained. Module and process names will be written in cursive text.

LCDDriver

The LCDDriver module initiates and setup the LCD display. It prints data regarding the sample point
position.

ScaledClk

Receive an input signal from external button and sets the chosen clock frequency. Logic 1 represents
the frequency 500 kHz and a 0 sets it to 250 kHz. The output from this module works as a start bit to
for e.g. CanRead.

OhmCntrl

Takes an input from external button and sets the chosen CAN termination. There are two possible
configurations to choose from; 600 and 120Q. The module output controls a relay which is connected
to each of the terminations.

Uart

This is the core to all communication sent between the FPGA and a computer and L.CD display. It
includes a hardcoded ASCII table to represent all the text needed to be printed along with the
initiation of the serial communication. To be able to communication via the R5232 protocol certain
settings need to match and this is set here.

UartTran

UartTran is a more compact version of the Uart above, it does not include any text table. It only sends
the data bits as it receives them. This is done to facilitate the reception of data in the c# software
CanSim, see 3.2.2 User interface in C#.

UartRec

UartRec is the opposite of the above nart modules and handles the reception of data bits from the
serial port. Initiation and setup is performed to make it possible to receive data.

ShortBit

This is the component that shortens the chosen bit to perform the sample point test. Depending on the
set frequency the length of the test bit is calculated.

Debounce

Component is not in use, but could easily be implemented to prevent noise on button signals.
CanCntrl

CanCntrl resets and controls the CAN controller chip, it writes all the registers needed to be set.
CanRead

This module reads from the CAN controller registers. Reading is done to show register values in the
cff software.

SystemCnt

Every sample point test is run 64 times and SystemCnt handles the counting of these test runs. The
number of runs is set to 64 to facilitate the calculation of the average sample point position, this is
done by right shifting the final value six times.




The following components are not modules, but instead processes of the core file. Processes names are
texted in cursive.

ShowPercent

The process takes a input argument from the ShoriBit module and passes on the calculated value to
Uart where it is printed to the user. As explained in SystemCnt above the average percent calculation
is performed with an six bit right shift.

UpCounter

This is the counter used to shorten the test bit length. It increases the variable cntShortBitTmp by one
every clock cycle as long as no error has been detected on the CAN bus.

BitRate

As explained above the process BitRate sets the variable bitRateLength value according to the chosen
frequency. ‘

SystemCntStateCnir]

Controls the state machine of start signals for the counting processes such as avarageCalc and
systemCnt.

CanReadStateCntrl o

A state machine that controls the CanRead module.

ReadCanReg

A process to choose between which of CanCtrl or CanRead to access data from.

CoreCounterDelay

A delay counter used by the system. It is used to delay some of the signals, otherwise the CAN
controller will signal an error on wrong bases,

ErrorCntDelay

To prevent unwanted error signal triggers an error count delay is used. To assure that it is actual error
indicated the system waits for the counter to reach 100 000 clock cycles before checking the interrupt

pin.
AverageCalc

Performs the first part of average percentage calculation. It summarize the sample point positions and
stores the value in the variable averagePercent, This variable is shifted in ShowPercent calculate the
final value ,

intCounter

This process sets the error flag indicating an error on the CAN bus, If ErrorCntDelay has reach 100 000
and the interrupt pin is still active, the error flag is set.

LCDCharReset

Handles the char pointer of the LCD display. For every character written the pointer is increased one
step.




B. Register map of the CAN Controlier

Table is from the datasheet of the MCP2515 CAN controller.

Lower Higher-Order Address Bils
Adtress
Bits 0000 xxxx [ 0001 opoc| 0010 xxxx | 0011 xxxx | 0100 xxxx | 0101 xxxx [ 0310 oocx | 0111 xxxx
Ty RXEOSIDH | REZSI0H | RXMOSIDH | TXBOCTRL | TXBICTRL | TXBZCTRL | RXBOCTRL | RXBICIRL
5661 | RXFOSIDL | RXF3SIDL | RXMOSIDL | TXBOSIDH | TXB1SIDH | TXB28IDH | RXBOSIDH | RXB1SIDH
so1e RXFOEIDS | RXFIEIDE | RXMOEIDS | TXBOSIDL | TXB1SIDL | TXB2SIDL | RXBOSIDL | RXBISIDL
oell RXFOEDC | RXF3EIOC | RXMOEIDD | TXBOEIDS | TXB1EIDS | TXB2EIDE | RXBOEIDS | RXB1EIDS
0100 RXF1SIDH | RAFASIDH | RXMISIDH | TABOEIDD | TXB1EIDD | TXB2EIDG | RXBOEIND | RXBEIDD
0101 RXFISIDL | RXFASIDL | RXMISIDL | TXBODLC | TXBADLC | TXB2DLC | RXBODLC | RXBIDLC
PEET) RXFIEDS | RXF4EIDE | RAMIEIDS | TXBODD TXBID0 | To®200 | RXBODD | RXBIDD
0111 RXFIEIDD | RXFAEIDC | RXMIEIDD | TXBODA TXB1D1 .| TxB2D1 | RXBOD1 | RXBIDt
1000 RXF2SIDH | RXFSSIDH | ONF3 3] TXBOD2 THB1D2 | TXB2D2 | RxBODZ | ROWBID2
1001 R¥F2eiDL | rosEssIoL | CNE2 ] TXBOD3 TXBiD3 | TXB2D3 | RXBOD3 | RXBID3
1010 RXF2EIDE | RXFEEIDS | TXBOD4 TXBiID4 | TXB2D4 | RXBOD4 | RXBID4
1011 RXFZEIDD | RXFSEIDD | | TXBODS TXB1D5 | TxB2DS | RmXBODS | RXBiDE
100 | OBFPCTRL | TEC §:-. CAN]NTF 1 TxB0D6 | TXBID6 | TXB2D6 | RXBODS | RXBID6 _
1101 | TXRTSCTRL| REC | 7iEF o1 mxeopy | TB1D7 | THB2D7 | RXBOD7 | RXBiD7
1110 CANSTAT | CANSTAT CANSTAT | CANSTAT | CANSTAT | CANGTAT | CANSTAT | CANSTAT
2211 | CANCTRL. | CANCTRL | CANCTRL | CANCTRL “|"CANCTRL [ CANCTRL | CANCTRL'| CANCTRL
Note: Shade-d register locations md[cate that thess allow the userfo mampulate Individual bits using the Bit Modsfy command.
R:g‘rf:’ Aﬁfé’i;"’s g7 | one | Bus5 | B4 | eit3 | sz | er1 | Bito P?f;‘:&g
BFPCTRL ac — - BIBFS | BOBFS | BIBFE | BOBFE | B1BFM | BOBFM | --00 0000
TXRTSCTRL|! 0D — - BZRTS | BIRTS | BORTS | B2RTSM | BIRTSM | BORTSM | --xxx x000
CANSTAT «E | oPmoOD2 [oPMOD1|CPMODO]  — 1CODZ | 1ICODY | ICOD0 —  l1o8- ooo-
CANCTRL xF | REQOP? |REQOP1 | REQOPD | ABAT | OSM | CLKEN |{CLKPREY|CLKPRED[11:0 0111
TEC 1C Transmit Ermor Counter (TEC) 0O00 boLD
REC 1B Receive Emor Counter (REC) 0030 00O
CHF3 28 SOF |wakFL| — — —  |PHSEG22|PHSEG2Y [PHSEG20| 00~ -000
CNF2 26 |BTLMGDE] SAM |PHSEG1Z|PHSEG1|PHSEGH0| PRSEG2 | PRSEGT | PRSEGD | vooe oooo
CNF1 24 siwi | suwo | BrRPs | BRP4 | BRP3 | BRP2 | BRP1 | BRPO |ooos poco
CANINTE 28 | MERRE | WAKIE | ERRIE | TX2IE | THE | TX0E | RXHE | RXDE [ovoss cooo
CANINTF 26 | MERRF | WAKIF | ERRIF | TxX2IF | TXUF | TXGF | RXHF | RXOIF [oosa oood
EFLG 2D RXIOVR | RXDOVR| TXBO TXEP RXEP | TXWAR | RXWAR | EWARN | 0088 D020
TXBOCTRL 30 — ABTF MLOA | TXERR | TXREGQ — TXP1 TXPOD | -080 0-80
THBICTRL | 49 — ABTF | MLOA | TXERR | TXREQ — TXP1 TXPD |-v80 0-go0
TXB2CTRL | 59 — ABTF | MLOA | TXERR | TXREQ — TXP1 TXPD |-a80 c-o0
RXBOCTRL | 69 — Rt | RxXMO — RXRTR | BUKT | BUKT | FILHITO [-pe- ooeo
RXBICTRL | 70 — RSM1 | RXMD — RXRTR | FILHIT2 | FILHITE | FILHITO | -so- cooo




C. Configuration of the CAN contraller

In the table below the affected registers are shown with thefr values. The address to each register can
be found in the register map in appendix B.

Register Data (Hex)

enez

' TXBOEIDS
| TXBOEIDO

TXBOD3
TXBODS
;--E.TXBO'DE-

Foérbittring: detektera vilken typ av fel det dr. Just nu kan den bara se atf det ir ett error ch inte
vilken typ.




