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Dynamic state representation for homeostatic agents
FREDRIK MÄKELÄINEN AND HAMPUS TORÉN
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
In a reinforcement learning setting an agent learns how to behave in an environment
through interactions. For complex environments, the explorable state space can
easily become unmanageable, and efficient approximations are needed. The Generic
Animat model (GA model), heavily influenced by biology, takes an approach utilising
a dynamic graph to represent the state. This thesis is part of the Generic Animat
research project at Chalmers that develops the GA model. In this thesis, we identify
and implement potential improvements to the GA model and make comparisons to
standard Q-learning and deep Q-learning. With the improved GA model we show
that in a state space larger than 232, we see substantial performance gains compared
to the original model.

Keywords: animat, autonomous agents, reinforcement learning, adaptive architec-
tures, open ai, policy discovery, state representation, DQN, homeostatic agent.
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1
Introduction

In this chapter, we give a brief background for applications and research within
artificial intelligence. Furthermore, we introduce the animat model and the Generic
Animat model, and their connections to biology. The research question and our
goals are then presented, and the last section outlines the remaining chapters of this
report.

1.1 Background

In recent years machine learning and artificial intelligence (AI) has taken tremendous
leaps forward in many areas. Computers now regularly outperform or match humans
on tasks such as digit recognition [1], games [2, 3] and medical imaging analysis [4]. A
large part of this advancement stems from the increased computing power available
and the progress made regarding neural networks and deep learning. However the
above examples are usually highly specialised and require vast amounts of data to
train the model on, there are for instance still no robots that can perform basic
household tasks close to human level. For robots to achieve such functionality, they
must be able to adapt to new environments far beyond their present ability. Building
systems that are both flexible and autonomous are the goal of a sub-field of AI called
artificial general intelligence.

Using nature as inspiration has in numerous cases proved itself a successful ap-
proach towards designing algorithms for solving complicated problems. Nature has a
way to find elegant solutions, which might not be optimal but often are good enough.
Dorigo et al. [5] introduced the Ant Colony Optimisation approach for shortest path
problems such as the travelling salesman. While Eberhart and Kennedy [6] drew
inspiration from bird flocking, fish schooling and swarming theory for the Particle
Swarm Optimisation algorithm.

This leads us to the Animat model introduced by Wilson [7], which also draws
inspiration from nature in order to solve the adaptability, learning and survivabil-
ity problems that animals face. To define this model, Wilson identified four basic
characteristics of simple animals, quoting from [7, p. 16-17]

1. "The animal exist in a sea of sensory signals. At any moment only some
signals are significant; the rest are irrelevant."

2. "The animal are capable of actions (e.g. movement) which tend to change
these signals."

1



1. Introduction

3. "Certain signals (e.g. those attendant on consumption of food), or certain
signals’ absence (e.g. absence of pain) have special status for him."

4. "He acts, both externally and through internal operations, so as approximately
to optimise the rate of occurrence of the special signals."

Wilson suggested that the animat model can be used as a way towards artificial
general intelligence [8].

The Psikharpax project [9] aims to build an artificial rat, that can learn to
navigate and survive in an unknown environment using neural networks and actor-
critic models. Yoshida [10] applied reinforcement learning algorithms on homeostatic
agents to optimise their survivability.

1.1.1 The Generic Animat model
The Generic animat model proposed by Strannegård et al. [11] is constructed with
the goal to build an artificial animal that is capable of performing fundamental ani-
mal tasks such as foraging, locomotion, and navigation. It uses generic mechanisms
for perception, action, learning, and decision-making, and at its core, there is a
dynamic graph built upon the animals environmental perception. Primitive animal
behaviour has been successfully modelled using the Generic Animat model [11], as
an example, a bee has been modelled that was able to navigate in an environment
while collecting nectar.

1.1.2 Research questions
This thesis investigates how the Generic Animat model performs in an environment
with a large state space. The analysis is separated into the following steps:

• Analyse the Generic Animat model and identify areas suitable for improve-
ment, using both theoretical and practical approaches.

• Improve and offer suggestions, regarding identified areas.

• Benchmark the Generic Animat model against other established models that
could be used in an animat context.

Additionally, a large focus should be put on producing well written and modular
code, to provide a good open-sourced basis for continued research regarding the
Generic Animat model.

1.1.3 Report outline
In chapter 2, we present brief introductions to reinforcement learning, Q-learning
and deep Q-learning. Additionally, we describe the Generic Animat model, perform
an analysis of the GA model, and finally describe our additions to the GA model.
Chapter 3 contains our work methodology, introduction to the software framework
and the design of our experiments. In chapter 4 we present the results of our
experiments, which are then discussed in chapter 5. In chapter 5 we also discuss

2



1. Introduction

the limitations and validity of the study, possible future directions for research, and
touch upon the societal, ethical and ecological aspects regarding our work. And
finally, in chapter 6 we present our conclusions.
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2
Theory

In this chapter, the first three sections serve as a brief introduction to concepts used
in this thesis regarding reinforcement learning, Q-learning and deep Q-learning. We
then continue by describing an animat and The Generic Animat model as used in
this thesis. The next section contains our analysis of The Generic Animat model,
and the last section describes our additions to this model.

2.1 Reinforcement learning
The purpose of reinforcement learning is to learn, through interaction, how to behave
in an unknown environment. Usually the interactions happen in discrete time steps
t, where the learner (agent) selects an action At ∈ A, based on a representation of
the environment’s state St ∈ S. During the next time step t + 1 the agent receives
a reward Rt+1 ∈ R ⊂ R and a new state description St+1 ∈ S, this process is
repeated until a terminal condition is fulfilled. In finite Markov decision processes
(finite MDPs), the sets A, S and R have a finite number of elements, and the
random variables Rt and St are described by discrete probability distributions that
are fully determined by the previous state and action [12]. In this report, we will
study finite partially observable Markov decision processes (finite POMDPs), which
means that the underlying process is a finite MDP but the agent only receives a
partial description of the true state St at each time step.

2.2 Q-learning
There are a vast number of possible algorithms that can be used by the agent to
learn from its interactions with the environment. A well-known algorithm is called
Q-learning, which was introduced by Watkins [13]. In Q-learning the action-value
function Q : S × A → R, is updated with respect to the state-action pair (St, At),
the reward Rt+1 and the new state St+1,

Q(St, At)← Q(St, At) + α
[
Rt+1 + γmax

a
Q(St+1, a)−Q(St, At)

]
, (2.1)

where α ∈ (0, 1] is called the learning rate and γ ∈ [0, 1] is called the discount factor.
At each time step, the agent selects an action according to some policy π(St).

A common policy is called ε−greedy [12], which selects a random action with prob-
ability ε and otherwise selects the action that maximises the action-value function
maxa Q(St, a). In a finite MDP, the ε−greedy policy ensures complete state space

5



2. Theory

exploration, which is crucial if the agents are supposed to find an optimal policy.
An overview of Q-learning, using lazy initialisation, can be seen in Algorithm 1.

Algorithm 1: Q-learning with lazy initialisation.
Initialise t = 0, S0, A0 and Q(S0, a) for all a ∈ A
repeat

t← t+ 1
Observe St and Rt

if Q(St, ·) does not exist then
Initialise Q(St, a) for all a ∈ A

end
Update Q(St−1, At−1) according to update rule (2.1) using the tuple
(St−1, At−1, St, Rt)
Select action At according to some policy π(St)
Perform action At

until St is terminal

2.3 Deep Q-learning
This section serves as an introductory overview regarding concepts in artificial neu-
ral networks and their application for reinforcement learning. For more in-depth
information, see for example Hertz [14], Sutton and Barto [12], Goodfellow, Yoshua
and Courville [15].

Considering that Q-learning uses a matrix Q(St, At) it is evident that it won’t
scale well as the state space grows large. One possible workaround for this problem
is to replace the Q-matrix with a function approximator such as an artificial neural
network. In 2015, a team at Google Deepmind demonstrated how they used such
an approach to train an agent to solve classic Atari 2600 games [16]. Their deep
Q-network (DQN) agent made use of two novel ideas:

1. To make weight updates more stable, they used two networks: one main net-
work Mmain, and one target network Mtarget. The idea is that Mtarget should
be slower to update, and thus provide a more stable target for training.

2. To reduce correlation between training samples, they used a replay memory
RM with capacity N . This memory works as a queue and contains the last N
state transitions, which can be randomly sampled to provide training data.

The main network Mmain can be trained to output the Q-value Mmain(St, At) =
Q(St, At). A policy such as ε−greedy can be used to select which action to perform.
One way to train a neural network is by using backpropagation [14]. For backprop-
agation to work, we need a way to measure the output error (loss function) in order
to compute gradients. The loss function is defined as [16]

MSE(St, At, Rt+1, St+1) =
[
(Rt+1 + γmax

a
Q(St+1, a)−Q(St, At))2

]
. (2.2)

6



2. Theory

To provide a more stable training target, the Mtarget weights need to update slower
thenMmain weights, this can be accomplished in many ways, and two possible choices
are:

1. As Mnih et al. [16], by cloning the weights in Mmain to Mtarget every C time
steps.

2. As described in [17] and equation 2.3, by linear interpolation of the weights in
Mtarget towards Mmain.

wtargeti
= wmaini

τ + wtargeti
(1− τ) (2.3)

where i ∈ {1...number of network weights} and τ controls the convergence
speed.

An overview of the DQN algorithm, using two networks, linear interpolation, and a
replay memory, can be seen in Algorithm 2.

Algorithm 2: DQN-learning with target network and replay memory.
Initialise t = 0, S0, A0
Initialise Mmain, Mtarget with random weights
Initialise replay memory RM to capacity N
repeat

t← t+ 1
Observe St and Rt

Add transition (St−1, At−1, St, Rt) to replay memory RM
Uniformly sample a batch B of transitions from RM
foreach b ∈ B do

Extract (s, a, s′, r) from b
Predict future Q-value. Qfuture = maxa Mtarget(s′, a)
Calculate target Q-value. Qtarget = r + γQfuture

Train Mmain(s) towards output Qtarget

end
According to equation 2.3, update weights for Mtarget

Select action At, according to some policy π(St) using Mmain(St)
Perform action At

until St is terminal

2.4 Animat

An animat is an artificial animal (contraction of animal-materials) and the word
was coined by S.W. Wilson in 1985. A schematic description of an animat agent, as
used in this thesis, is given by Figure 2.1.

7



2. Theory

Figure 2.1: The animat and the environment in a reinforcement learning setting.

2.4.1 Body
The body is the animat’s physical representation. The body has its associated finite
sets of variables called sensors, needs, and motors. Sensors and motors take boolean
values, whereas needs take values in the real interval [0, 1].

Needs are denoted by natural numbers i. The status of need i at time t is the real
value ιi(t) ∈ [0, 1]. Intuitively, 0 means death, while 1 means full need satisfaction.
Examples of needs and their associated interoceptors could be water (osmoceptors);
energy (insulin receptors); protein (amino acid receptors); oxygen (CO2 receptors);
integrity, i.e. freedom from pain (nociceptors); sleep (melatonin receptors); proximity
(pheromone receptors); and reproduction (sexual hormone receptors).

Definition 1 (Rewards). For each need i and time t > 0, the reward signal ri(t) is
defined as follows:

ri(t) = ιi(t)− ιi(t− 1). (2.4)

2.4.2 Controller
The controller is responsible for both learning and decision-making, intuitively, it
models the animat’s brain. The controller is a function that takes a (physiological)
state consisting of sensor values and need values as input and outputs an action,
which is immediately executed by the motors.

2.5 The Generic Animat model

In this section we present an overview of the Generic Animat model (GA model),
proposed by Strannegård et al. [11], and a description of the subset of the GA model
that is used in this thesis.

The controller of a GA agent consist of: a perception graph, a set of experience
variables, rules for learning, and finally strategies for decision-making. The time

8



2. Theory

proceeds in discrete ticks and a GA agent is updated at each tick according to
Algorithm 3.

Algorithm 3: The update sequence for a GA agent.
Input: A GA agent
while Termination criteria not fulfilled do

The body receives a response from the environment and updates its
sensors and needs accordingly
The controller receives the active sensors and the status of the needs from
the body
The top active nodes are determined
The global Q-values are determined
The local Q-values and the reliability are updated
Formation and forgetting rules are activated
The top active nodes are determined again
The global Q-values are determined again
The action goodness and utility are determined
An action is selected and sent to the body
The action is performed by the body
The world evaluates the interaction

end

2.5.1 Perception graph
In the Generic Animat model the perception graph is used to approximate the state
based on the sensory input, an example of a perception graph is given in Figure 2.2.

Definition 2 (Perception graph). A perception graph is a graph whose nodes are
sensors and binary AND-gates. In this thesis, two nodes that form a conjunction
are called the predecessors to that conjunction.

Figure 2.2: A perception graph with 5 active and 3 top active nodes. The lowest
layer contains the sensors.

Definition 3 (Perception graph activity). At each time step, the perception graph
receives boolean values to its sensors. Those that receive the value True are called

9



2. Theory

active. This activity propagates via the AND-gates within the same tick. A con-
junction is active if both of its predecessors are active.

We use symbol b for the nodes in the perception graph and Bt for the set of all
nodes at time t. The set of all active nodes at time t is denoted by BA

t .

Definition 4 (Top activity). An active node b ∈ BA
t is top active if the set of sensors

it represents is not a subset to a set of sensors represented by another active node
b′ ∈ BA

t .

The set of all top active nodes at time t is denoted by BT A
t . The set of top active

nodes represents the state with respect to the structure of the perception graph.

2.5.2 Experience variables
The experience variables can be seen as the GA agents memory, which is based on
past experiences.

Definition 5 (Local Q-values). A local Q-value is a real-valued variable Qi(b, a)
that reflects the expected response to need i when performing action a given that
node b is top active.

Definition 6 (Reliability). The reliability Reli(b, a) is a measure of the stability of
the entry Qi(b, a). It is defined as follows:

Reli(b, a) = 1
σi(b, a) + 1 . (2.5)

Here σi(b, a) is the standard deviation of Qi(b, a), calculated over the set of all
previous values of Qi(b, a). The standard deviation is calculated using Welford’s
online algorithm [18].

Definition 7 (Global Q-values). A global Q-value is a real-valued variable
Qglobal

i (BT A
t , a) that reflects the expected response to need i when performing action

a given the set of top active nodes. It is defined as follows:

Qglobal
i (BT A

t , a) =
∑

b∈BT A
t
Qi(b, a)Reli(b, a)∑

b∈BT A
t
Reli(b, a) . (2.6)

Definition 8 (Surprised). If Qi(b, a) is updated at t+ 1 by at least the percentage
φSurprise, for all top active nodes b ∈ BT A

t , the GA agent is surprised.

Definition 9 (Combination probability). The combination probability Comb(b, b′)
contains information about how likely it is that b and b′ are top active together.

2.5.3 Learning rules
In this subsection, we present the update rule for the local Q-values and two forma-
tion rules that are used to create new nodes in the perception graph.

10



2. Theory

Definition 10 (Update local Q-values). The update of the local Q-values is based
on Q-learning, see Section 2.2, where the main differences stems from the state
representation, the set of top active nodes. At t+ 1 the local Q-values are updated
for all previous top active nodes b ∈ BT A

t , with respect to the selected action at, the
received rewards ri(t+ 1) and the new top active nodes b′ ∈ BT A

t+1, as follows:

Qi(b, at)← Qi(b, at) + α
(
ri(t+ 1) + γmax

a

[
Qglobal

i (BT A
t+1, a)

]
−Qi(b, at)

)
,

where α ∈ (0, 1] is the learning rate and γ ∈ [0, 1] is the discount rate.

Definition 11 (Probabilistic merge). At each time step, flip a biased coin. If heads
then select two nodes b and b′ from Bt with probability proportional to the entries
in Comb(b, b′) and such that b′′ = b AND b′ does not yet exist. Then add b′′ to Bt.

Definition 12 (Emotional merge). If the GA agent is surprised at t+1, then select
two top active nodes b and b′ from BT A

t and add b′′ = b AND b′ to Bt+1.

2.5.4 Decision-making

In this section we present the building blocks that are used by a GA agent to select
an action in a potentially multiobjective setting.

Definition 13 (Action goodness). The action goodness is defined as

Gi(a, t) = ιi(t) + ωQglobal
i (BT A

t , a), (2.7)

where ω ∈ [0, 1] is a constant.

Definition 14 (Utility). The utility is defined as

utility(a, t) = min
i

[Gi(a, t)] . (2.8)

Definition 15 (Select an action). The policy is based on ε-greedy. Flip a biased
coin, if heads then select the action that maximizes utility(a, t), otherwise select a
random action.

2.6 Generic Animat model analysis

After inspecting the reliability, the global Q-values and the local Q-value update
rule, see Definitions 6, 7 and 10, we made three observations regarding the GA
model: the state representation through the top active nodes, the influence of the
reliability on the global Q-values, and the initial local Q-values for new nodes.

11



2. Theory

2.6.1 Top activity
Let us begin with a simple example to illustrate the problem where the local Q-
values describe the quality of each node rather than the full state. Consider a GA
agent that has the following three sensors: apple, an edible object; fresh, which is
active if the apple is fresh; and rotten, which is active if the apple is rotten. Suppose
the agent can perform two actions: eat and idle, and the reward function is defined
as; the reward is +1 if the agent eats a fresh apple, −1 if it eats a rotten apple
and 0 if the agent is idle. The optimal policy would be to eat fresh apples and be
idle otherwise. The problem immediately stands out: the sensor apple will be top
active at the same time as the sensors fresh and rotten, which represent states with
contradicting optimal behaviour. In this simple scenario it could then be impossible
for the agent to find an optimal policy, even though the agent receives complete
information about each state. This problem can be solved by forming a new node,
either apple ∧ fresh or apple ∧ rotten, which results in that for each top activity
(state representation) there is a coherent response from the environment.

The observation regarding the top activity underlines both the problem and the
solution: all sets of top activities (all state representations) a node b can be part of
needs to have a coherent response from the environment for action a ∈ A, otherwise
conflicting rewards and conflicting global Q-values could prevent the agent from
learning a good policy. Three formation rules were designed with this in mind, see
Definitions 21, 22 and 23.

2.6.2 Reliability
The reliability’s effect on the global Q-values is evident: nodes with high reliability
(stable local Q-values) have a more significant impact on the global Q-value. In-
tuitively the definition of the reliability might make sense, but the effect that the
reliability has on the global Q-values is not consistent.

If the local Q-values are negative and the reliability is reduced, the likelihood that
action a is chosen increases, but if the local Q-values are positive and the reliability is
reduced, the likelihood that action a is chosen decreases. This discrepancy indicates
that the reliability might need to be redefined so that it has a consistent effect
regardless of the sign of the local Q-values.

The reliability depends on the set of corresponding local Q-values, but so does
the local Q-values themselves, which leads to complex and circular dependencies.
By using a constant reliability that is set to 1, the circular dependencies in the local
Q-values and the discrepancy regarding the action selection are removed.

2.6.3 Initial local Q-values
When a new node is created it is possible to choose any values for its initial local
Q-values and reliability values. Depending on the initial local Q-values and the
initial reliability for new nodes, the policies, with respect to the affected sets of
top activities, are affected accordingly. Ideally, the new node should not affect the
current policy, but this is not a simple task since all affected top activities must be
taken into account. For the initial local Q-values, two simple and computationally
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efficient choices stand out as possible candidates: set to 0 and set to the average
of the predecessors local Q-values. Both of those alternatives will affect the current
policy, but by using the average of the predecessors it is possible that the effect is
not as detrimental as when simply setting the local Q-values to 0. However, the
effect will only be temporary no matter the choice of the initial local Q-values.

2.7 Additions to the Generic Animat model
In this section we present our proposed additions to the GA model. The new forma-
tion rules aim to create a state representation that make sure that all top activities
receives a coherent response from the environment, with regards to the received
reward.

2.7.1 Experience variables
The following experience variables are added to support the new formation rules.

Definition 16 (Pair reward). PairRewardi(b, b′, a) is the probability that the re-
ward for need i will be positive if action a is performed when b and b′ are both top
active. If the entry b, b′, a have not yet received at least φP ositiveRewardMerge positive
rewards, PairRewardi(b, b′, a) is set to 0. At t+1 the update of PairRewardi(b, b′, a)
is based on: ri(t + 1), b ∈ BT A

t , b′ ∈ BT A
t , the performed action at and the set of

previous values.

Definition 17 (Reward history). The reward history RewardHistoryi(b, a) is a
pair (pos, neg), where pos (neg) is the number of times a positive (negative) reward
for need i has been received when doing action a while node b has been active. At
t + 1 the update of RewardHistoryi(b, a) is based on: ri(t + 1), b ∈ BA

t and the
performed action at.

Definition 18 (Positive stable nodes). Based on the entries in
RewardHistoryi(b, a), the positive stable nodes PositiveStablei(a) is a list of all
nodes that have received at least φP ositiveStable positive rewards and no negative
rewards for need i and action a.

Definition 19 (Relevant nodes). For each stable node b ∈ PositiveStablei(a) all
nodes b′ that seem to be correlated to b are added to the list of relevant nodes,
Relevanti(b). If at least φRelevantUpdates updates have been performed for an entry in
RelevantTransition(b, b′|b′′, a) and RelevantTransition(b, b′|b′′, a) > pRelevant, then
b′′ is added to Relevanti(b).

Definition 20 (Relevant transition probabilities). The relevant transition proba-
bilities, RelevantTransition(b, b′|b′′, a), contains the conditional probability that b′
is active given that b′′ was active and action a was performed,
where b ∈ PositiveStablei(a′) and b′ ∈ Relevanti(b). At t+ 1 the update of
RelevantTransition(b, b′|b′′, a) is based on: b′ ∈ BA

t+1, b′′ ∈ BA
t , the performed

action at and the set of previous values.
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2.7.2 Learning rules
In contrast to the old formation rules, see Definitions 11 and 12, the new formation
rules are based on the received reward rather than the local Q-values, and in addition
to the top activity they also take the activity into account.

Definition 21 (Positive reward merge). At each time step, flip a biased coin. If
heads, then select two nodes b and b′ with probability proportional to their entry
PairRewardi(b, b′, a) and so that b and/or b′ have received conflicting rewards, i.e.
the entry in RewardHistoryi(b, a) is (> 0, > 0). Then if it does not yet exist, add
b′′ = b AND b′ to Bt.

The positive reward merge creates connections for nodes with conflicting rewards,
with the goal that the new node becomes a positive stable node. Entries in PairReward
with high probability are more likely to be made first.

Definition 22 (Stable node merge). Suppose a stable node
b ∈ PositiveStablei(a) is active, b ∈ BA

t . For b′ ∈ BT A
t , if it is not already repre-

sented, add b′′ = b AND b′ to Bt.

The stable node merge make sure that all stable nodes receives a coherent response
from the environment, i.e. we isolate them by forming new nodes with the top active
nodes.

Definition 23 (Relevant node merge). Suppose a relevant node
b′ ∈ Relevanti(b), is active, b′ ∈ BA

t . For b′ ∈ BT A
t , if it is not already represented,

add b′′ = b AND b′ to Bt.

Similar to stable node merge, we also isolate nodes deemed relevant to a stable
node.
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3
Method

In this chapter, we initially present our work methodology and give an overview of
the functionality of the software framework we developed. Then we describe the
design and the rules of the animat environment, which are used in two different
experiments. Furthermore, we explain why and how we gather statistics during the
experiments, and the final two sections describe the configurations of our experi-
ments.

3.1 Work methodology

Since we are two people working together in this thesis, and we have the intention
of open-sourcing our work, we chose to follow iterative, lean, agile approaches to-
wards software development. At first, we used a top-down approach [19], where we
identified the major modules of the framework and specified their interfaces, this
allowed us to get a prototype up and running quickly, and help confirm that the
planned development environment and core packages worked well together. Once
we established this common ground, we could then proceed to work in parallel when
implementing, testing, and deploying the core algorithms.

For actual development, we followed the lean methodology kanban, which was
developed by Toyota in the 1970’s [20]. The same guiding principles that exist
in kanban can also be applied to software development [21]. Problem-solving was
approached using the divide and conquer mindset which is very common in software
development [22].

For planning and visualisation of tasks and tracking progress we used the on-
line tool Trello (http://www.trello.com), and for managing the source code and
revision control we used Git (http://www.git.com).

3.2 Framework

The framework is developed with the intention to enable easy implementation and
evaluation of animat based agents and environments, a more detailed description and
installation instructions can be found in appendix A. For this thesis the framework
enabled us to: (i) implement and test new environments, (ii) implement and test
new agents, (iii) evaluate changes, (iv) collect and present statistics, (v) debug and
monitor agents as they learned.
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3.3 Environment for the experiments
The environment that will be used by both experiments is presented in this section.
The environment is designed so that conflicting rewards are received if the correct
nodes have not been created. To be able to increase the state space, we have added
a configurable amount of noise to the environment.

3.3.1 World
The environment is built as a bounded 3x3 grid, populated by an agent (cat) and
edible food objects (fish), see Figure 3.1. The rules take inspiration from Skinner’s
theories and implementation of the Skinner Box, where an action can generate either
reward or punishment but is consistent given observations in the environment [23].
For this environment, a green light indicates that the food is safe to consume while
a red light indicates the opposite. For the agent to find an optimal policy, it must
learn to only consume food when the green light is active. To increase the state
space there are also lights that represent noise, these are activated randomly and do
not affect the received reward. The optimal policy is thus straightforward, but the
problem lies in finding this policy with all the noise present.

Rules

The rules of the world will now be listed:

• Initially the agent along with three edible objects are placed in separate ran-
dom locations.

• The edible objects are stationary, and at most there can only be one edible
object per tile.

• The agent can move one tile each time step in the directions up, down, left
and right.

• The agent can consume an edible object if they are on the same tile and the
agent performs the action eat.

• When all edible objects are consumed, they are all placed at new random
unoccupied locations.

• The red light is activated with probability pred = 0.25. If the red light is not
activated the green light is activated instead.

• There are Nnoise noise lights that are activated independently of each other
with probability pnoise = 0.25.

• The agent’s energy decays each time step by a constant rate of −0.02.

• If the agent consumes an edible object when the green light is active, its energy
increases by 0.3.
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• If the agent consumes an edible object when the red light is active, its energy
decreases by −0.3.

• If the agent performs action eat at an empty tile, the energy decreases by
−0.015.

• All movement decreases the energy by −0.01.

Figure 3.1: The figure shows a snapshot of the environment configured for experi-
ment 2. The cat represents the agent, and the fish represent the edible food objects.
In the order presented the top bar shows the activity of: the red light, which is
inactive; the green light, which is active; and 32 lights representing noise, where
four are active. Because of the noise, the state space of this world is greater than
232.

3.3.2 Body

Sensors

The body has the following sensors: a green light sensor, a red light sensor, Nnoise

noise light sensors, a food sensor and four remote perception sensors for food smell.
The food sensor is active if the body stands on the same tile as a food object.

We say that the food produces a smell, the combined intensity of the smells
from different locations is used to find the direction towards the strongest scent.
The strength of the smell, is also attenuated with distance according to the inverse
square law [24, p. 726]. So the combined smell of all food f is calculated for each
offset position L ∈ {up, down, left, right} as follows:

s(L, f) =
N∑

j=1

Ifj

1 + d(L, fj)2 , (3.1)
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where fj is a tile with food, N the total number of food currently in the world,
d(L, fj) the Euclidean distance from position L to the location of food fj and Ifj

= 1
the scent intensity at the source. The sensor corresponding to the offset position
with the highest intensity s(L, f) is set as active.

Needs

An agent has one need: energy. Since the energy is not only affected by the actions
but also the constant decay rate, an agent that is not following a good policy can
possibly see its energy reach 0 within 40 time steps.

Motors and actions

An agent can perform five different actions: move up, move down, move left, move
right and eat.

3.4 Policy evaluation
To evaluate an agents policy, in the environment described in Section 3.3, we decided
to measure: the energy, the episode length, the number of consumed food while the
green light was active (green food) and the number of consumed food while the
red light was active (red food). Additionally, for the Generic Animat agents, we
measure: the number of nodes, the stable nodes and the relevant nodes.

For each agent the data is collected over Neval independent evaluations, each
evaluation consist of Nepisodes succeeding episodes. An episode starts with a training
phase that last for ttraining time steps, learning and exploration are turned on during
this phase. A training phase is always followed by a testing phase, where learning
and exploration are turned off. The testing phase is evaluated over Ntesting runs,
where each run ends after ttesting time steps or if the agent’s energy reaches 0. A
detailed description of how the data is generated can be seen in Algorithm 4.

3.5 Experiment 1: Generic Animat model
This experiment has been designed to evaluate the new formation rules, the old
formation rules, the reliability and the initial local Q-values. The environment
described in section 3.3 will be used with Nnoise = 10 noise lights. In total, eight
agents will be tested separately, four of them will be using the new formation rules
and the remaining four agents will use the old formation rules. Two versions of the
reliability will be studied: as described in definition 6 and always set to one. For
new nodes, two versions of the initial local Q-values will be assessed: set to zero
or set to the average of its predecessors values. All eight agents have the following
learning parameters in common: εstart = 1.0, εdecay = 0.99, εmin = 0.1, α = 0.05,
γ = 0.9 and ω = 1.0.

The data will be collected as described in Section 3.4, using the following param-
eters: Neval = 200, Nepisodes = 50, ttraining = 200, Ntesting = 20 and ttesting = 100.
After each training phase the number of nodes will be measured for all agents, and
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Algorithm 4: An overview of how data is collected during the evaluation of
one agent. The example statistics strain and stest, are included to show how
statistics that are based on the training and the testing phase are gathered,
respectively.
Initialise the environment and the agent.
For each statistic, i.e. s ∈ {strain, stest}, initialise a matrix, As, with
dimension Neval ×Nepisodes.
For each statistic that is based on the test episodes, i.e. stest, initialise
vectors, bs, of length Ntesting.
for i=1,2,...,Neval do

Reset the environment (place the agent and the food at new random
locations and set the agents energy to one (ιenergy(0) = 1)).
Reset the agent (remove all new nodes and set the local Q-values for the
sensors to zero).
for j=1,2,...,Nepisodes do

Reset the environment.
Turn on learning and exploration.
for ttraining time steps do

The agent learns.
end
Store data in As

i,j, for the statistics that are based on the training
episodes, i.e. strain.
Turn off learning and exploration.
Clear the vectors bs.
for k=1,2,...,Ntesting do

Reset the environment.
t = 0
while t < ttesting and ιenergy(t) > 0 do

t← t+ 1
The agent exploits its current policy.

end
Store data in bs

k, for the statistics that are based on the test
episodes, i.e. stest.

end
Calculate averages over the entries in the vectors bs and store them in
As

i,j.
end
For each statistic s and episode j, use the entries in As to calculate the
mean and standard deviation over all evaluations i ∈ {1, 2, ..., Neval} and
store them in µs

j and σs
j , respectively.

Plot µs
j ± σs

j over the total number of training steps j · ttraining.
end
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for the New Animat agents, the stable nodes and the relevant nodes will be gathered
as well. Two statistics will be gathered after each testing phase: the energy, and the
number of consumed food while the red light was active (red food).

New Animats
An agent that exclusively uses the new formation rules, see Definitions 21, 22 and 23,
will be called New Animat. The parameters for the new formation rules are set to:
φP ositiveStable = 20, φRelevantUpdates = 20, pRelevant = 0.90 and φP ositiveRewardMerge =
10. The difference between the New Animat agents lies with the configuration of
the initial local Q-values and the definition of the reliability. In Table 3.1, the
configuration for each agent can be seen.

Agent Reliability Initial Qi(b, a)
New Animat 1 Always one 1

2
∑

b′∈{b1,b2}Qi(b′, a)
New Animat 2 As Def. 6 1

2
∑

b′∈{b1,b2}Qi(b′, a)
New Animat 3 Always one 0
New Animat 4 As Def. 6 0

Table 3.1: The configuration of the reliability and the initial local Q-values for
each agent that uses the new formation rules in the first experiment. Here b1 and
b2 are the predecessors to a new node b.

Old Animats
An agent that exclusively uses the old formation rules, see Definitions 11 and 12,
will be called Old Animat. The parameters for the old formation rules are set to:
φSurprise = 0.05 and the probability for the probabilistic merge will be p = 0.01. The
configuration of the reliability and the initial local Q-values, for each Old Animat
agent, can be seen in Table 3.2.

Agent Reliability Initial Qi(b, a)
Old Animat 1 Always one 1

2
∑

b′∈{b1,b2}Qi(b′, a)
Old Animat 2 As Def. 6 1

2
∑

b′∈{b1,b2}Qi(b′, a)
Old Animat 3 Always one 0
Old Animat 4 As Def. 6 0

Table 3.2: The configuration of the reliability and the initial local Q-values for
each agent that uses the old formation rules in the first experiment. Here b1 and b2
are the predecessors to a new node b.

3.6 Experiment 2: Benchmark
Five agents are compared to each other in this experiment: New Animat, Old An-
imat, DQN, Q-learner and Random. The environment described in section 3.3 is
used with Nnoise = 32 noise lights.
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The data will be collected as described in section 3.4, with the following param-
eters: Nexp = 20, Nepisodes = 50, ttraining = 200, Ntesting = 20 and ttesting = 100. If
applicable for a specific agent, we will after each training phase record the number
of nodes in its perception graph, or in the Q-learner’s case, the number of rows in
its Q-matrix (states visited). After each test phase, we gather four different statis-
tics: the energy level, the episode length, the amount of food consumed while the
red light was active (red food), and the amount of food consumed while the green
light was active (green food). Additionally, for one of the New Animat agents, a log
containing when and by which rule nodes were created is saved for later analysis.

New Animat

The New Animat agent exclusively use the new formation rules, see Definitions 21, 22
and 23. The parameters for the new formation rules are set to: φP ositiveRewardMerge =
10, φP ositiveStable = 15, φRelevantUpdates = 20, pRelevant = 0.65. And the New Animat
agent uses the following learning parameters: εstart = 1.0, εdecay = 0.99, εmin = 0.01,
α = 0.05, γ = 0.9 and ω = 1.0. The initial local Q-values are set to the average of
its predecessors and the reliability is always 1.

Old Animat

The Old Animat agent exclusively use the old formation rules, see Definitions 11 and
12. The parameters for the old formation rules are set to: φSurprise = 0.04 and the
probability for the probabilistic merge will be p = 0.02. And the agent is configured
with the learning parameters: εstart = 1.0, εdecay = 0.99, εmin = 0.01, α = 0.05,
γ = 0.9 and ω = 1.0. The initial local Q-values are set to 0 and the reliability as
described by Definition 6.

DQN

The DQN agent replaces the Q-matrix by a function approximator in the form of a
neural network, as described in Section 2.3 and by Algorithm 2. It is implemented
on top of Keras [25] and configured to use TensorFlow [26] as backend.

The optimal policy in this environment, i.e. which action to take for a given ob-
served state is straightforward, since the actions giving a positive reward are linearly
separable. We can therefore use a simple topology for the network consisting of just
one input layer and one output layer. The hyperparameters used were found through
repeated manual trials and chosen to provide a good balance between training time,
stability and performance. There was no exhaustive grid search done to try and find
the optimal parameters, and it is therefore very likely that better parameter settings
exist for this experiment. In the end, we settled on the following parameters: Replay
memory capacity = 1000, Replay batch size = 32, Optimizer = Adam, Activation =
Sigmoid, Loss function = MSE, εstart = 1.0, εdecay = 0.99, εmin = 0.01, α = 0.005,
γ = 0.9 and τ = 0.1.

In total, this two-layered network has 200 weights to train: The input layer with
39 input features+bias, and an output layer with five outputs. For a more in-depth
explanation of the parameters, please see the
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Keras documentation (https://keras.io), and the source code accompanying
this thesis (https://gitlab.com/fredrikma/aaa_survivability.git).

Q-learner

The Q-learner agent is based on ordinary Q-learning, where each unique set of active
sensors has an entry in the Q-matrix. Since the state space is vast, it is implemented
using lazy initialisation according to Algorithm 1. It uses the following learning
parameters: εstart = 1.0, εdecay = 0.99, εmin = 0.01, α = 0.05, γ = 0.9.

Random

This agent will select an action randomly at each time step.
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Result

In this chapter, we present the results of our two experiments. The first experiment
investigates the performance of the New Animat agents and the Old Animat agents,
using different configurations of the reliability and the initial local Q-values. The
second experiment compares a New Animat agent and an Old Animat agent to a
deep Q-learning agent (DQN), a standard Q-learning agent (Q-learner) and an agent
(Random) that selects actions randomly.

4.1 Experiment 1: Generic Animat model
In this section we present the results of the first experiment. The New Animat agents
and the Old Animat agents are compared separately, where the mean and standard
deviation of each statistic is shown in a plot. The order of the configurations of the
reliability and the initial local Q-values are the same for the New Animat agents
and the Old Animat agents, see Table 3.1 and 3.2, i.e. the only difference between
New Animat 1 and Old Animat 1 is the set of formation rules that are being used.

4.1.1 Energy
The energy can be seen in Figure 4.1. After ∼ 1000 trained time steps, all of the
New Animat agents have a higher energy compared to all of the Old Animat agents.
Initially the agents 1 and 2 have a higher energy compared to the agents 3 and 4,
additionally there are no noticeable differences when comparing agents 1 to 2 and 3
to 4, when looking at either the New Animat agents or the Old Animat agents.

From Sub-figure 4.1a we see that New Animat 1 and New Animat 2 stabilises at
∼ 0.94 after 3000 trained time steps. New Animat 3 and New Animat 4 converge
towards ∼ 0.94 after 4000 time steps, but, compared to New Animat 1 and New
Animat 2, they have a larger standard deviation throughout this time frame.

After ∼ 3000 time steps all of the Old Animat agents starts to perform similar
to each other, where the energy increases slowly and reaches ∼ 0.74 at the end of
this time frame, see Sub-figure 4.1b.

4.1.2 Number of nodes
In Figure 4.2 the number of nodes can be seen. All of the New Animat agents
stabilise around 220 nodes, which is about half of the nodes that are formed by the
Old Animat agent at the end of the time frame. There are no noticeable differences
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when comparing agents 1 to 2 and 3 to 4, when looking at either the New Animat
agents or the Old Animat agents.

From Sub-figure 4.2a we see that after ∼ 1500 time steps, New Animat 1 and
New Animat 2 create new nodes at a faster pace compared to New Animat 3 and
New Animat 4. After 4000 time steps all of the New Animat agents have stabilised
around 220 nodes, but the standard deviation has not converged to zero for any of
them.

After 2000 time steps, Old Animat 3 and Old Animat 4 starts to create more
nodes compared to Old Animat 1 and Old Animat 2. The number of nodes increases
steadily for all Old Animat agents, at the end of this time frame New Animat 1 and
New Animat 2 have ∼450 nodes and New Animat 3 and New Animat 4 have ∼ 490
nodes.

4.1.3 Red food
The number of consumed food, while the red light was active (red food), can be
seen in Figure 4.3. All New Animat agents have stopped consuming red food after
4000 steps but none of the Old Animats have stopped consuming red food within
the time frame. Initially the agents 1 and 2 consume more red food compared to
the agents 3 and 4, additionally there are no noticeable differences when comparing
agents 1 to 2 and 3 to 4, when looking at either the New Animat agents or the Old
Animat agents. Notice that for New Animat 3 and 4 the red food decreases the first
1000 steps but then starts to increase again before finally stabilising at zero. After
2000 time steps all of the Old Animat agents starts to perform similar to each other,
at the end of the time frame they consume ∼ 0.25 red food.

4.1.4 Stable and relevant nodes
In the Figures 4.4 and 4.5 the stable and relevant nodes can be seen. A fraction
with mean 1 and standard deviation 0, means that the node was present in all
independent evaluations for that agent. For all agents the stable node Green Light
∧ Center FOOD converges to one with zero standard deviation within the first 3000
time steps. The nodes Center FOOD and Green Light eventually converges to 1
with zero standard deviation for all agents as well. The relevant nodes are added
at a faster pace for New Animat 1 and New Animat 2 compared to New Animat 3
and New Animat 4. The remote perception nodes are not always added for any of
the agents. There are no noise nodes present for any agent. The Red Light node is
added to the set of relevant nodes for all agents, but it is with a mean that is less
than 0.1.
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(a) The New Animat agents. (b) The Old Animat agents.

Figure 4.1: The mean energy along with the standard deviation is presented for the
New Animat agents and the Old Animat agents. After ∼ 1000 time steps all of the
New Animat agents have a higher energy compared to all of the Old Animat agents.
Notice that, within each type of agent, the energy is similar when comparing agent
1 to agent 2 and agent 3 to agent 4. New Animat 1 and New Animat 2 stabilise at
∼ 0.94 after approximately 3000 steps, New Animat 3 and New Animat 4 reaches
a similar mean but they have a larger standard deviation. Initially Old Animat 1
and Old Animat 2 have a slightly larger energy compared to Old Animat 3 and Old
Animat 4. After ∼3000 time steps the Old Animat agents perform similar to each
other, where the energy increases slowly and ends up at ∼ 0.74. The configurations
of the agents can be seen in Table 3.1 and 3.2.

(a) The New Animat agents. (b) The Old Animat agents.

Figure 4.2: The mean number of nodes along with the standard deviation is
presented for the New and Old Animat agents. All of the New Animat agents
stabilise around 220 nodes, but the standard deviation does not converge to zero for
any of them. There are no noticeable differences when comparing agents 1 to 2 and
3 to 4, when looking at either the New Animat agents or the Old Animat agents.
For all Old Animat agents the number of nodes steadily increases, Old Animat 1 and
Old Animat 2 reaches ∼ 450 nodes, and Old Animat 3 and Old Animat 4 reaches
∼ 490 nodes after 10000 time steps. The configurations of the agents can be seen in
Table 3.1 and 3.2.
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(a) The New Animat agents. (b) The Old Animat agents.

Figure 4.3: The mean red food along with the standard deviation is presented for
the New and Old Animat agents. All New Animat agents have stopped consuming
red food after 4000 time steps, but the Old Animat agents do not stop consuming
red food during this time frame. Initially the agents 1 and 2 consume more red food
compared to the agents 3 and 4, additionally there are no noticeable differences
when comparing agents 1 to 2 and 3 to 4, when looking at either the New Animat
agents or the Old Animat agents. Notice that for New Animat 3 and 4 the red
food temporarily increases after 1000 time steps. After 2000 time steps all of the
Old Animat agents start to perform similar to each other, at the end of the time
frame they consume ∼ 0.25 red food. The configurations of the agents can be seen
in Table 3.1 and 3.2.
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(a) New Animat 1. (b) New Animat 2.

Figure 4.4: The mean and standard deviation of the fraction of stable and relevant
nodes for New Animat 1 and New Animat 2, if a node is added by all independent
evaluations the mean is one and the standard deviation is zero. There is no signifi-
cant difference between the two agents. The stable node, Center FOOD and Green
Light reaches a fraction of 1 with zero standard deviation after 3000 time steps. The
remote perception nodes are not always added and the Red Light node is added to
less than 5% of the evaluations. The configurations of the agents can be seen in
Table 3.1

(a) New Animat 3. (b) New Animat 4.

Figure 4.5: The mean and standard deviation of the fraction of stable and relevant
nodes for New Animat 3 and New Animat 4, if a node is added by all independent
evaluations the mean is one and the standard deviation is zero. There is no signifi-
cant difference between the two agents. The stable node reaches a fraction of 1 with
zero standard deviation after 3000 time steps, both Center FOOD and Green Light
are eventually always added as well. The remote perception nodes are not always
added and the Red Light node is added to less than 10% of the evaluations. The
configurations of the agents can be seen in Table 3.1
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4.2 Experiment 2: Benchmark
In this section, we present the results of the second experiment. For each of the
five tested agents, we show the mean and standard deviation of each statistic in a
plot. For one of the New Animat agents, we also show a partial log over its node
formation, see Listing 4.1.

4.2.1 Energy
Figure 4.6 shows the energy as a function of the number of trained time steps. Here
it is clear that New Animat and DQN reach a higher energy level compared to the
other agents. The energy for DQN increases quickly and is higher than New Animat
during the first 2000 time steps, but then New Animat stabilises at a level that DQN
is unable to reach in this time frame. Old Animat’s energy is slowly improving over
time, and it performs better than both Q-learner and Random. However, it fails to
reach the performance levels of New Animat or DQN. Q-learner and Random show
similar energy performance with no noticeable improvement in this time frame.

4.2.2 Number of nodes
Figure 4.7 shows two different statistics: the total number of nodes created by New
Animat and Old Animat, and the total number of unique states visited by the Q-
learner. New Animat’s node count stabilises around 700 nodes after 3000 time steps.
The number of nodes for Old Animat increases steadily, and at the end of this time
frame, Old Animat has roughly twice as many nodes as New Animat. The number
of unique states visited by the Q-learner increases linearly with the number of time
steps.

4.2.3 Episode length
In Figure 4.8 the episode length is shown. DQN has an episode length close to 100
after 1000 time steps, and after 2000 time steps so does New Animat. Even though
DQN quickly approaches a mean episode length of 100, the standard deviation does
not stabilise to zero during this time frame. On the other hand, the standard
deviation for New Animat reaches zero as soon as the mean reaches 100. The
episode length increases steadily over time for Old Animat, but it never reaches
the same level as New Animat or DQN. Q-learner and Random show no noticeable
improvement in this time frame.

4.2.4 Green food
Figure 4.9 shows how much food the agents consumed while the green light was
active (green food). Consuming green food is the only way to gain energy, and is
therefore an important performance measure. Initially, DQN consumes more green
food compared to New Animat but after ∼1800 time steps New Animat starts to
outperform DQN with regards to both number of consumed green food and stability.
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Old Animat show an increase in the number of green food consumed with time and
performs better than both Q-learner and Random agent. However, it fails to reach
the performance levels of New Animat and DQN. Q-learner and Random agent show
similar performance with no noticeable improvement in this time frame.

4.2.5 Red food
Figure 4.10 shows the amount of food the agents consumed while the red light was
active (red food). One crucial part of a good policy is to avoid eating food while the
red light is active, and here it is clear that both New Animat and DQN stops eating
red food after ∼1000 time steps. Q-learner and Random are consistently eating the
same amount of red food, while Old Animat consumes an increasing amount of red
food during this time frame.

4.2.6 Node formation
For one of the New Animat agents in the experiment, Listing 4.1 shows a partial
log for which point in time nodes were created and the specific rule used.
t = 585 : Formed AND_1 : ’Green Light ’ AND ’Center FOOD ’ : ( Reward based merge )
t = 745 : Formed AND_2 : ’AND_1 ’ AND ’Dir -left FOOD ’ : ( Reward based merge )
t = 869 : Formed AND_3 : ’AND_1 ’ AND ’Noise 25’ : ( Reward based merge )
... ( Reward based merges ) ...
t = 979 : Formed AND_9 : ’AND_1 ’ AND ’Noise 7’ : ( Stable node merge )
t = 979 : Formed AND_10 : ’AND_1 ’ AND ’Noise 18’ : ( Stable node merge )
t = 979 : Formed AND_11 : ’AND_1 ’ AND ’Dir -up FOOD ’ : ( Stable node merge )
t = 979 : Formed AND_12 : ’AND_1 ’ AND ’Noise 14’ : ( Stable node merge )
t = 979 : Formed AND_13 : ’AND_1 ’ AND ’Noise 28’ : ( Stable node merge )
... ( Stable node merges ) ...
t = 1337 : Formed AND_39 : ’AND_1 ’ AND ’AND_7 ’ : ( Stable node merge )
t = 1749 : Formed AND_40 : ’Dir - right FOOD ’ AND ’AND_32 ’ : ( Relevant node merge )
t = 1749 : Formed AND_41 : ’Dir - right FOOD ’ AND ’AND_24 ’ : ( Relevant node merge )
t = 1749 : Formed AND_42 : ’Dir - right FOOD ’ AND ’AND_19 ’ : ( Relevant node merge )
... ( Alternating : Stable node merges followed by Relevant node merges ) ...
t = 9276 : Formed AND_648 : ’Center FOOD ’ AND ’AND_647 ’ : ( Relevant node merge )

Listing 4.1: For one of the New Animat agents, this listing shows the timing for
when the three active node formation rules are invoked. At time = 585 the rule for
positive reward (definition 21) is activated and forms the node
Green Light ∧ Center FOOD. At time = 979 this node has been identified as stable,
and the rule for stable node merge (definition 22) is activated. At time = 1749 the
first relevant node is identified, and the rule for relevant node merge (definition 23)
is activated. Between time = 1749 and time = 9276, we then see alternating usage
of the rules for stable node merge and relevant node merge.
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Figure 4.6: For each agent, the mean and standard deviation of the energy with
respect to the number of trained steps can be seen. New Animat and DQN have
the highest performance, and Old Animat performs slightly better then Q-learner
and Random. Q-learner and Random have similar performance to each other in this
time frame. For DQN the energy increases rapidly from the very beginning but is
soon overtaken by New Animat’s performance in this time frame. For New Animat
the energy increases rapidly after ∼ 1000 steps and then stabilises after ∼ 2200
steps.
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Figure 4.7: The mean and standard deviation for the total number of nodes for
New Animat and Old Animat, and the total number of unique states for Q-learner,
with respect to the number of trained steps. New Animat stabilises around ∼ 700
nodes, whereas the number of nodes keeps increasing for Old Animat. At the end of
this time frame, Old Animat has created twice as many nodes as New Animat. The
number of unique states for Q-learner increases linearly with the number of trained
time steps.
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Figure 4.8: The mean and standard deviation of the episode length with respect
to the number of training steps. Both New Animat and DQN finds a policy that
enables them to survive for the complete duration of a test episode, which is 100
time steps. After ∼ 2200 steps the mean reaches 100 and the standard deviation
goes to zero for New Animat. The episode length for DQN increases rapidly in the
beginning and the mean reaches 100 the first time around 1700 time steps but small
fluctuations of the standard deviation can be seen throughout this time frame. The
episode length for Old Animat improves with the number of training time steps, and
while it does not reach New Animat’s or DQN’s performance, it still outperforms
both Q-learner and Random. The Q-learner and Random agent show no noticeable
improvement in this time frame.
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Figure 4.9: The mean and standard deviation of the number of food eaten while
green light was active, this is the only way to gain energy. Initially, DQN consumes
more green food than New Animat, but after 1800 time steps New Animat starts
to perform better then DQN. The mean stabilises around 31 green food for New
Animat, whereas for DQN the mean does not stabilise during this time frame. Old
Animat performance is well below New Animat and DQN, but it is better than
both Q-learner and Random. The Q-learner and Random agent show no noticeable
improvement in this time frame.
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Figure 4.10: The mean and standard deviation of the number of food eaten while
red light was active. It is clearly visible that New Animat and DQN are the only
agents that learns to not eat food while the red light is active, and that this part of
their respective policy is found after ∼ 1000 steps. Old Animat eats more red food
compared to both Q-learner and Random.
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Discussion

In this chapter, we discuss the results of the experiments, limitations and validity,
future work and societal aspects regarding our work.

5.1 Formation rules
Even though the Old Animat agents formed twice as many nodes, it is evident from
both experiments that the New Animat agents outperform the Old Animat agents.
The New Animat agents exclusively use the new formation rules, see Definitions 21,
22 and 23; and the Old Animat agents use the old formation rules, see Definitions
11 and 12. We will now discuss the formation rules in more detail.

5.1.1 New formation rules
From Listing 4.1, we can see that the new formation rules are applied in the an-
ticipated order: (i) positive reward merge (Definition 21), (ii) stable node merge
(Definition 22), (iii) relevant node merge (Definition 23).

From Figure 4.2a we can see that New Animat 1 and New Animat 2 have sta-
bilised in the number of nodes after ∼ 3000 time steps. We can also see from Figure
4.1a and 4.3a, that the policy for those agents stabilises around that time, and from
Figure 4.4, we see that the fraction of stable and relevant nodes stabilise around
3000 time steps as well. This indicates that the top activities need to have a coher-
ent response if a GA agent should be able to find a good policy, and we can see that
all of our new formation rules play an important role to achieve this goal.

The environment is designed so that the conjunction Green Light ∧ Center
FOOD is a stable node with respect to the action eat, i.e. the reward will always
be positive if the action eat is performed while that node is active, see Section 3.3.
By studying the Figures 4.4 and 4.5, we see that the node Green Light ∧ Center
FOOD becomes a stable node for all New Animat agents. We know that the agent
will reach food if it moves in the direction indicated by its remote perception nodes
(Dir-left/right/up/down FOOD). As anticipated, we see that they start being added
to the set of relevant nodes shortly after the stable node has been identified, but
they are not always added and they are not the only nodes that are being added.

A reason the remote perception nodes are not always added to the set of relevant
nodes, could be because the agent learns to exploit hidden information in the envi-
ronment. Since the remote perception nodes show the next nearest food when the
agent stands on food, it is possible for the agent to use this information to find the
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most likely direction to a wall. The environment is bounded, so if the agent moves
into a wall it will simply stay where it is. Therefore, given that Center FOOD and
Red Light is active, it is better to move in any direction other than the active remote
perception node, since it is likely that a wall is present there. If the agent moved
into the wall then the Center FOOD node will be active the next time step, and
maybe also Green Light. Due to this exploit, the action that was used to walk into
the wall will now be updated without the corresponding remote perception node
being active in the previous time step, which make it less likely that the relevant
transition probability becomes greater than the threshold pRelevant, see Definitions
19 and 20.

To assure that the remote perception nodes receive a coherent response from the
environment it is important to separate their top activities. All nodes in the set of
relevant nodes will eventually be completely separated from each other, see definition
19. If only three remote perception nodes are added to the relevant nodes, the fourth
remote perception node will be isolated from the remaining remote perception nodes
and the effect is the same as if it was added, with a difference being that less nodes
have been created. In Figure 4.2a we see that the number of nodes for New Animat
1 and New Animat 2 seems to stabilise after 3000 time steps, but the standard
deviation is constant rather than moving towards 0. From the energy and red food,
Figures 4.1 and 4.3, it seems that an optimal policy has been found by New Animat
1 and New Animat 2 after 3000 time steps, which indicates that the top activities
are sufficiently separated by then, even though the remote perception nodes are not
always added to the relevant nodes.

From Figures 4.4 and 4.5 we can see that after the remote perception nodes have
started to be added to the relevant nodes the nodes Center FOOD, Green Light
and Red Light are added as well. This tells us that those nodes are added with
respect to the relevant nodes rather than the stable node. The nodes Center FOOD
and Green Light are most likely added after the agent finds a good policy, since
when a good policy has been found the agent will stop performing the action eat
except when both Center FOOD and Green Light are active. Every time the agents
has consumed green food one of the remote perception nodes will be active and
eventually the threshold, pRelevant, will be reached and Center FOOD and Green
Light are added to relevant nodes. The Red Light node is probably added with
respect to Center FOOD, due to the exploit mentioned earlier where the agents
utilised the wall to stay at the same location, given that Center FOOD and Red
Light was active.

5.1.1.1 Limitations

The new formation rules rely on the existence of positive rewards in the environment,
i.e. the new formation rules will not be able to create any nodes in an environment
where the reward function is defined without any positive rewards. However, the
Generic Animat model focus on homeostatic agents, where the rewards are defined
as the difference in each need. If a need reaches zero the agent dies, therefore, in the
homeostatic setting, it is reasonable to expect that there should exist interactions
that leads to an increasing need and thus positive rewards.

The positive stable nodes, see Definition 18, identifies nodes that exclusively
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receives positive rewards as stable nodes. If we in the investigated environment
were to remove the green light sensor from the observation space, the new formation
rules would not work since no node would be identified as a stable node. The
reason for this is because the reward history is based on the set of active nodes, see
Definition 17, so even if the node Red Light ∧ Center FOOD is top active, each of
the predecessor nodes will update their corresponding reward history as well. It is
therefore crucial that all potential stable nodes are either represented by a single
sensor or a conjunction of several sensors, which can be assured by including the
complement of each sensor.

From the first experiment, we saw that none of the noise sensors was added as
relevant nodes. However, if we would increase the activity of the noise nodes, they
too would eventually be added to relevant nodes as well. To find causation is not
a trivial task, and with the simple strategy that we use to find relevant nodes, we
know that in the limit of infinity all noise nodes will have been added to the relevant
nodes. This is true since the probability is greater than zero that a noise node can
be activated, prior to a stable or relevant node, so that the threshold pRelevant is
eventually reached.

5.1.2 Old formation rules
The Old Animat agents mainly create nodes through its rule for emotional merge
(see Definition 12), and since this rule randomly selects the top active nodes to
connect, it is likely that many of the new nodes created by the Old Animat agents
are based on noise.

When studying the energy and red food, see Figures 4.1b and 4.3b, we can see
that Old Animat 1 and Old Animat 2 performs slightly better than Old Animat 3
and Old Animat 4 the first 3000 time steps. However, after 3000 time steps, the
difference becomes negligible between using the average initial local Q-values and
initial local Q-values set to zero. This indicates that, in the beginning, useful nodes
are created, but after 4000 time steps noise might be added to a larger extent.

The old formation rules are built exclusively on the top active nodes, and one
problem with this approach is that new nodes can easily become unnecessarily com-
plex since the set of top active nodes describes the current state to its highest level
of detail. As time move on it is therefore expected that new nodes are more likely
to be based on an increasing amount of sensors, but a node that is based on many
sensors is less likely to become active. For example, in this experiment, the proba-
bility that a node based on three noise nodes becomes active is 0.253 ≈ 0.016. This
fact is most likely the reason why the difference between the definitions of the initial
local Q-values is so small after 3000 time steps, even though we from Figure 4.2b
can see that we continuously create new nodes.

The performance with regards to red food, see Figure 4.10, is worse for Old
Animat compared to both Q-learner and Random. The fact that the amount of red
food increases as Old Animat learns to consume more green food (see Figure 4.9),
underlines the problems where information propagates through the top activities.
Some nodes can be top active together with both green food and red food. Therefore
the information about how good it was to eat green food is propagated to the red
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food and vice versa. However, the policy found by Old Animat regarding energy,
episode length and green food is better than Q-learner and Random (see Figures
4.6, 4.8, 4.9. This indicates that even with a perception graph that is not optimally
designed, the state representation can initially help the agent to find a better policy.

5.2 Reliability

From the first experiment, it is clear that the reliability set to be constant one or by
using Definition 6, have little to no effect on the agent’s policy. So with these results
and an identified possibility for contradicting behaviour of the current reliability (see
Section 2.6), we recommend setting the reliability to one rather than keeping the
current version.

5.3 Initial local Q-values

Comparing New Animat 1 and New Animat 2 to New Animat 3 and New Animat 4
in the first experiment, it is clearly beneficial to use the average of the predecessors
local Q-values for new nodes. In Figure 4.3a, we can see that the number of Red
food increases temporarily for New Animat 3 and New Animat 4, which happens
at the same time as nodes start being created by relevant node merge, see Figure
4.2a and 4.5. This shows that for this environment, it is possible for an agent to
temporarily forget its current policy when creating new nodes if the initial local
Q-values are set to zero.

5.4 Model comparison

In Figures 4.1a and 4.6 we see that New Animat has similar energy performance
in both experiments. We also see that even though the state space between the
experiments is vastly different, a good policy is still found around ∼ 2200 time steps
in both experiments.

In the second experiment we have seen that DQN quickly improves with time,
but it does not reach the same level of performance as New Animat, see Figures
4.6, 4.8, 4.9 and 4.10. However, performance alone does not tell the complete story.
Considering that the environment and rules are designed with an animat perspective,
and adapted to suit the Generic Animat model with its boolean sensory inputs, there
are two points worth mentioning. Compared to the Generic Animat model a DQN
can be considered more general since: (i) it is not limited to boolean values as input,
and in theory could handle continuous state spaces directly, and (ii) it does not rely
on complicated node formation rules. But compared to the perception graph a
neural network can be considered: (i) more of a black box approach, and might not
be suitable for tasks where explainability for actions are of high importance, and (ii)
more rigid in its layout, in that it is not very easy to change the topology without
having to retrain the complete network.
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Since the state space is larger than 232 it is unlikely that the same state is visited
more than once within a time frame of 10000 time steps, this is confirmed in Figure
4.7, where we see linear growth in the Q-learner’s unique states visited. It is therefore
expected that the performance of Q-learner should be close to Random, which has
been confirmed in all presented statistics (see Figures 4.6, 4.8, 4.9 and 4.10). So
we can conclude that the state space in the second experiment is too large for an
ordinary Q-learning agent to learn a good policy within 10000 time steps.

5.5 Future work
In this thesis, valuable contributions to the Generic Animat model are the three
rules developed for making the correct node connections, which enables the model
to converge towards a policy with the potential to maximise a need. We do this
by identifying and forming the nodes contributing to positive rewards, and isolating
them by connecting them to all other nodes that can be top active simultaneously
with these nodes. Another approach could be to only use the stable and relevant
nodes in the top activity rather than making sure they are entirely isolated. This
way it might be possible that for each need, we can filter out irrelevant nodes from
the top activity, and then base the update of the local Q-values and the selected
action on this trimmed top activity instead. And if the current reliability concept
were made binary, it could be used to apply this filtering.

We believe this approach is well worth exploring further since it has potential
to significantly reduce the number of nodes that are formed, which in turn would
reduce the computational complexity of the model and make the perception graph
simpler to understand. It might also make sense from a neurological perspective,
considering how the brain process, filter and store information. According to McNab
and Klingberg [27], the human brains basal ganglia plays a big part in filtering out
irrelevant information, and making sure only the relevant parts are stored in the
brains working memory. And Hélie et al. [28], argue that one important part of
the basal ganglia is to train connections between posterior cortical areas and frontal
cortical regions that are responsible for automatic behaviour after extensive training.

It is also essential to evaluate the GA model in more scenarios, and there are
plenty of well established POMPD benchmarks available [29]. But since the GA
model relies on boolean sensory input (observation space) and discrete output (ac-
tion space) the number of readily available scenarios shrinks considerably, and if
changes are made we need to pay special consideration so that the complexity re-
mains intact for results to be comparable.

5.6 Societal, ethical and ecological aspects
When considering the societal, ecological and ethical aspects with regards to the
animal part of an animat, we have in this thesis only dealt with artificially simulated
animals. However, the animat model draws inspiration from biology, which has
real, living creatures, and thus we consider the ethical aspects of our simulations.
Regarding animals, an estimation is that on a yearly basis up to 100 million [30]
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vertebrae animals are used for research. And the ethical aspects of animal testing
are a subject often debated and with public opinion shifting over time, also it is not
uncommon with threats against researchers involved in animal experiments [31].

In their book The Principles of Humane Experimental Technique, Russell and
Burch (1959) [32], the authors propose a concept involving 3 R’s when dealing with
animal experiments. These R’s stand for replacement, reduction and refinement,
and can be interpreted as:

• Replacement: if possible considering the research goal, the animal in question
should be replaced whenever possible by non-animal methods such as simu-
lations or other innate models. If a non-animal approach is not possible, an
animal considered less sentient, or that has a lower pain perception should be
used.

• Reduction: the aim should be to use as few animals as possible to complete the
experiment, taking into consideration the welfare of the individual animals.

• Refinement: by using suitable methods, pain, suffering and distress should be
minimised during the animals lifetime.

In our environment and experiments, we have to express the agent graphically some-
how, we could have used a simple symbol like a circle for this, but we chose to
represent it with an image of a cat. We used a cat since we wanted to emphasise the
biological connection of the animat model, and a cat is something to which we can
easily relate. However, we did design the environment and its rules not to promote
what could be considered unethical or cruel methods. For example, we specify the
reward functions as a change in need, and cues from the environment are simple
observations. We could have implemented an environment closely resembling the
Skinner box [23] together with its shock generator and electrocuting grid.

When viewing the Generic Animat research project as a step towards artificial
general intelligence (AGI), there are also some issues to address. Recently an open
letter [33] regarding potential autonomous weapons development was published,
and the current round in the competition "The general AI challenge" [34] is cur-
rently about Solving the AI race. Research regarding autonomous systems has the
potential for significant societal impact in many areas, and as always there are two
sides of a coin. Progress can be used to do good, but often the opposite is also true,
and technology can potentially be misused for more nefarious or unethical purposes.
However, we argue that for the work done in this thesis no special precaution or
concern needs to be taken since: (i) the research are on an elementary level (ii) ani-
mats live in a simulated, contained, environment with no possibility for interaction
with the outside world.
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In this thesis, we have studied the Generic Animat model proposed by Strannegård
et al. [11] and identified three possible areas for improvement. The first regarding
the state representation using the top activity and Q-global calculation. The second
regarding the reliabilitys effect on choosing the optimal action to take in any given
state. And the third involving the effect initial local Q-values can have on a currently
learned policy when creating new nodes.

Solutions have been implemented and validated in a simple yet noisy environ-
ment, where it was clear that the solutions implemented for this New Animat,
substantially increased the performance compared to the original Generic Animat
model. It was also shown that in an environment with a state space large enough
to render ordinary Q-learning infeasible, the New Animat has comparable or better
performance to a DQN agent.

In addition, a framework, suitable for continued research within reinforcement
learning in an animat context has been developed and open-sourced.
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A
Development framework

A.1 Installation
This section describes the steps necessary to setup a minimal development frame-
work.

1. Virtual machine and OS installation (optional).

2. Native packages.

3. Git configuration.

4. Python virtual environment setup.

5. Installation of backend for Keras (optional).

6. Project retrieval and installation.

7. Running an example.

If you don’t have access to a native Linux environment we recommend running
Ubuntu 16.04 LTS (https://www.ubuntu.com/download/desktop) under VMware
Workstation Player 14 (https://www.vmware.com/products/workstation-player/
workstation-player-evaluation.html).

Install the needed native packages:
animat@ubuntu :~$ sudo apt -get install git python3 -pip python3 -tk python3 -venv

graphviz

Configure git:
animat@ubuntu :~$ git config --global user.name "John Doe"
animat@ubuntu :~$ git config --global user. email johndoe@example .com

Retrieve the project:
animat@ubuntu :~$ git clone https :// gitlab .com/ fredrikma / aaa_survivability .git

Create and activate a Python 3 virtual environment:
animat@ubuntu :~$ python3 -m venv my_animat_env
animat@ubuntu :~$ source my_animat_env /bin/ activate
( my_animat_env ) animat@ubuntu :~$
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A. Development framework

Figure A.1: The example scenario for Cat3x3 running in the framework. The upper
left part shows the 3x3 tiled environment with an agent (cat) and two edible objects
(fish and frog). The small middle window contains the scenario controls, while the
two windows to the right shows real-time statistics and configuration parameters.

Install TensorFlow as backend for Keras, this is optional if you already have one
installed. Follow https://www.tensorflow.org/install/install_linux or:
animat@ubuntu :~$ pip install tensorflow

Install the project:
( my_animat_env ) animat@ubuntu :~$ cd aaa_survivability /
( my_animat_env ) animat@ubuntu :~/ aaa_survivability$ pip install -e .
...
Installing collected packages : aaa - survivability

Running setup .py develop for aaa - survivability
Successfully installed aaa - survivability

Running an example:
( my_animat_env ) animat@ubuntu :~/ aaa_survivability$ cd aaa_survivability
( my_animat_env ) animat@ubuntu :~/ aaa_survivability / aaa_survivability$ cd scenarios /
( my_animat_env ) animat@ubuntu :~/ aaa_survivability / aaa_survivability / scenarios$

python scenario_cat_3x3 .py

If everything worked well something similar to figure A.1 should show.

A.2 Folder structure

The project is structured according to the Python Package Index [35] guidelines,
and the overall folder structure can be seen below.
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A. Development framework

project_root

aaa_survivability

agents

animat

envs

animat

simple

scenarios

statistics

bin

• aaa_survivability and sub-folders contains the python source code.

• aaa_survivability/agents contains the implementation for various agents.

• aaa_survivability/envs contains environments which follow the OpenAI
gym interface [36].

• aaa_survivability/scenarios contains runnable programs, both with and
without gui

• aaa_survivability/statistics contains runnable programs to calculate statis-
tics for the various scenarios.

• bin contains shellscripts to easily run scenarios, generate statistics and save
out the results.

A.3 Graphical framework
The graphical framework for which an example can be seen in Figure A.1, is created
to enable easy control and measurement of an animat based agents performance in
a chosen environment. Some of the things possible to do in this framework includes

• Continuous or single-step time.

• Export and visualization of the perception graph.

• Saving and loading of an animat.

• Action override.

• Display of need and action statistics.

• Display of the animat configuration and statistics.
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A.4 Python code
The code is written in a modular way so that testing agents against new scenarios
should be pretty straightforward. For example configuring and running an animat
agent in the Cat 3x3 environment (appendix B.2) with a GUI, can be accomplished
with a few lines of code
from aaa_survivability . scenarios . main_app import MainApp

if __name__ == ’__main__ ’:
config_agent = {’use_probabilistic_merge ’: False ,

’probabilistic_merge_prob ’: 0.01 ,
’use_emotional_merge ’: False ,
’use_reward_based_merge ’: True ,
’prob_reward_based_merge ’: 1.0 ,
’reward_based_threshold ’: 3,
’use_stable_node_merge ’: True ,
’stable_threshold ’: 20,
’use_average_q ’: True ,
’start_alpha ’: 0.05 ,
’gamma ’ : 0.9 ,
’alpha_decay ’: 1}

config = {}
config [’Agent ’] = config_agent

app = MainApp (’cat_3x3 -v0 ’, config , animat_baseline =True)
app. mainloop ()
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B
Environments

During development and testing, we created a few environments to help test basic
functionality and make sure that our implementation of the models was correct.
Here we will give brief descriptions of those environments.

B.1 Eat/Drink
This is a very simple environment to help us verify that the Q-learning part of the
models is working on a basic level. The agent has two actions to choose from, a ∈
{Eat, Drink}. The observation space consists of one sensor which is always active.
If the agent eats it receives a positive reward, and if it drinks it receives a negative
reward. The goal for the agent is thus to only eat and refrain from drinking. Some
statistics from an agent in this environment can be seen in figure B.1.

B.2 Cat 3x3
The environment in figure B.2, is a more complex environment which contains basic
vision sensors and actions for movement. It is designed to test more parts of a model
compared to the eat/drink environment. The world is tile-based of size 3x3, and
there are two edible food objects of different types that the agent can interact with.
One healthy food in the form of fish, and one poisonous food represented by a frog.
The agent has 5 actions to choose from, a ∈ {Move Up, Move Down, Move Left,
Move Right, Eat}.
The observation space consists of:

• Current tile sensor for fish, active if the agent stands on a fish.

• Current tile sensor for frog, active if the agent stands on a frog.

• Current tile sensor other, active if the agent is not standing on a fish or a frog.

• Four sensors giving the direction to the fish object {Up, Down, Left, Right},
that are not mutually exclusive. If the fish is located diagonally from the
agent, two sensors will be active.

The rewards are given as:

• Eat fish: r = 0.5
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B. Environments

Figure B.1: The statistics for an agent in the eat/drink environment. We can
see that the agent has found a policy that enables it to sustain its need over time.
Exploration is active, and that explains the dips in the need curve.
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Figure B.2: The environment designed to test most parts of a model. From the
statistics on the left side, we can see that the agent (cat) has found a policy that
enables it to sustain its need over time. Exploration is active, and that explains the
dips in the need curve.

• Eat frog: r = −0.2

• Eat something else: r = −0.01

• Movement: r = −0.01

The goal for the agent is thus to learn how to navigate towards fish and then eat it,
and refrain from eating any frogs.

B.3 Remote perception
This environment which can be seen in figure 3.1, is used to test the sensors for
remote perception as described in section 3.3.2 and equation 3.1. The world is
tile-based of configurable size (default 20x20) and contains a configurable amount
(default 100) of healthy food represented by fish. Eating is automatic in this en-
vironment, and fish are consumed as soon as the agent occupies the same tile as a
fish. When all fish are consumed, they all respawn at new random locations. For
any tile, there is a maximum of one fish occupying it. The agent has 4 actions to
choose from, a ∈ {Move Up, Move Down, Move Left, Move Right}.
The observation space consists of:

• 4 sensors giving the direction toward strongest fish smell {Up, Down, Left,
Right}.

The rewards are given as:

• Consume fish: r = 0.2

• Movement: r = −0.001
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Figure B.3: The environment designed to test the remote perception. From the
statistics on the left side, we can see that the agent (cat) has found a policy which
enables it to survive indefinitely.

The goal for the agent is thus to learn how to navigate towards fish by using its
’smelly vision’.

B.4 Yoshida 1
Figure B.4 show an environment inspired by one described in Yoshida [10]. The
world is bounded, tile-based of size 3x3, and just as in Cat 3x3 (section B.2) the
agent can interact with two edible food objects. One healthy in the form of fish,
and one poisonous represented by a frog. The differences compared to the Cat
3x3 environment lies in the agent’s observation space and goal. The agent in this
scenario has an energy level E ∈ [0, 100] and the goal is to keep this energy level as
close as possible to the target energy Etarget = 60. This energy is translated into a
need for the agent according to equation B.1.

There are 44 sensory inputs in total, 20 of these represents the discretised energy
level, and the other 24 are constructed so that absolute positions for the fish, frog
and agent can be computed. The sensors might not seem very animat like but
are chosen so that we can recreate the observation space used by Yoshida [10] and
reach a similar state space complexity. This sensory input makes the environment
extremely hard for The Generic Animat model since there are few opportunities for
transfer learning.

For a more in-depth explanation of this environment, please see the source code
accompanying this thesis (https://gitlab.com/fredrikma/aaa_survivability.
git).

need = max(1− |Etarget − E|
Etarget

, 0) (B.1)

VIII



B. Environments

Figure B.4: The Yoshida 1 environment which offers few opportunities for transfer
learning, and from the statistics on the left side we see that the agent is struggling
to find a good policy.
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