
Facilitation of Regular Communication
between UI Designers and Developers
through a Continuous Pipeline Tool

A Design Science Study

Master’s thesis in Computer science and engineering

JESPER LINDSTRÖM
LUKA MRKONJIC

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2020

Master’s thesis 2020

Facilitation of Regular Communication between
UI Designers and Developers through a

Continuous Pipeline Tool

A Design Science Study

JESPER LINDSTRÖM
LUKA MRKONJIC

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2020

Facilitation of Regular Communication between UI Designers and Developers
A Design Science Study
JESPER LINDSTRÖM
LUKA MRKONJIC

© JESPER LINDSTRÖM, 2020.
© LUKA MRKONJIC, 2020.

Supervisor: Regina Hebig, Computer Science and Engineering
Advisor: Johan Frej, Intunio AB
Examiner: Michel Chaudron, Computer Science and Engineering

Master’s Thesis 2020
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: An illustration of the detection of UI changes, as seen in the artifact.

Typeset in LATEX
Gothenburg, Sweden 2020

iv

Facilitation of Regular Communication between UI Designers and Developers
A Design Science Study
JESPER LINDSTRÖM
LUKA MRKONJIC
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
As a result of ever-increasing user expectations on software, UI designers have a
vital role to play in software development projects. Modern software is often built
by cross-functional teams consisting of both engineering and design expertise. As
a result, the number of UI designers for every developer has increased drastically
in the past years, signaling their growing influence. However, the collaboration be-
tween the two disciplines comes with its challenges.

This study aims to improve the collaboration between designers and developers dur-
ing the UI implementation process. An iterative Design Science Research method-
ology was used to understand the problem, propose a solution, and evaluate its
effectiveness. Data was collected in collaboration with our industry partner, Intu-
nio, using a variety of methods, including a focus group, a questionnaire, and several
interviews.

We identify a total of six problems that relate to the process of implementing user
interfaces. Most notably, we find that UI designers are often not fully aware of the
UI implementation progress, which causes design errors to be detected late in the
process. Furthermore, the two disciplines were hesitant to initiate communication
in order not to disturb the other person. In an attempt to mitigate a selection of
the problems, we propose a novel software artifact, Screeny, that facilitates regular
communication between designers and developers. The intention is to catch design
errors as early as possible. Furthermore, the solution enables the designers to track
the implementation progress of the UI.

The evaluation of the artifact was performed using interviews in conjunction with
an artificial simulation approach. The data indicated that the solution might suc-
cessfully mitigate the problems to some degree. In particular, the solution appears
to shorten the feedback loop and reduce the barrier of contact between designers
and developers.

Keywords: cross-functional teams, designer-developer collaboration, design hand-
off, design breakdowns, design science research, automated gui testing, visual re-
gression testing, software artifact, screeny.

v

Acknowledgements
First and foremost, we would like to thank our academic supervisor Regina Hebig
and our industry supervisor Johan Frej for all the guidance we have received through-
out this period. We would also like to thank all the nice Intunio employees for par-
ticipating in our study and for making us feel at home in the workplace during the
past months. Furthermore, we would like to thank our examiner Michel Chaudron
for all the thoughtful feedback and Eric Knauss for publishing helpful guidelines
that brought our thesis on the right track. Finally, we would like to extend our
gratitude to our family and friends for their moral support.

Jesper Lindström and Luka Mrkonjic, Gothenburg, June 2020

vii

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Statement of the problem . 2
1.2 Purpose of the study . 2
1.3 Research questions . 3
1.4 Disposition . 3

2 Background 5
2.1 Related work . 5
2.2 About Intunio . 6
2.3 Designer-developer collaboration . 7

2.3.1 Current practices . 8
2.3.2 Design hand-off . 8
2.3.3 Design breakdowns . 9
2.3.4 Feedback and review procedures 10

2.4 Continuous pipelines . 11
2.5 Headless browsers . 11
2.6 GUI testing . 11

2.6.1 Manual reviews . 12
2.6.2 Automated functional tests 12
2.6.3 Automated visual tests . 13

2.7 Image comparison . 13

3 Methods 15
3.1 Design science research . 15
3.2 Data collection methods . 16

3.2.1 Literature review . 16
3.2.2 Focus group . 17
3.2.3 Questionnaire . 18
3.2.4 Analysis of chat history . 18
3.2.5 Simulation . 19
3.2.6 Interviews . 20
3.2.7 Demonstration . 21

3.3 DSR iterations . 22

ix

Contents

3.3.1 Awareness of problem . 22
3.3.2 Suggestion . 23
3.3.3 Development . 23
3.3.4 Evaluation . 24
3.3.5 Conclusion . 24

4 The Artifact - Screeny 25
4.1 Architecture overview . 25

4.1.1 Continuous pipeline script . 26
4.1.1.1 Temporary project deployment 26
4.1.1.2 Screenshot automation 27
4.1.1.3 Configuration . 28

4.1.2 Web application . 29
4.1.2.1 Front-end . 29
4.1.2.2 Back-end . 30

4.1.3 External interface (Slack) . 32
4.2 Practical limitations . 33

5 Results 35
5.1 Findings per iteration . 35

5.1.1 Iteration 1 . 35
5.1.1.1 Literature review . 35
5.1.1.2 Focus group . 36
5.1.1.3 Questionnaire . 37
5.1.1.4 Demonstration . 38

5.1.2 Iteration 2 . 39
5.1.2.1 Analysis of chat communication 39
5.1.2.2 Demonstration . 40

5.1.3 Iteration 3 . 41
5.1.3.1 Simulation . 41
5.1.3.2 Interviews . 44

5.2 RQ1 (Problems) . 47
5.3 RQ2 (Solution Candidate) . 47

5.3.1 Proposed solution . 47
5.3.2 Evaluation . 48

6 Discussion 51
6.1 Contributions . 51
6.2 Implications for practitioners . 52
6.3 Threats to Validity . 52

6.3.1 Internal validity . 52
6.3.2 External validity . 52
6.3.3 Construct validity . 53

7 Conclusion 55
7.1 Significance of the study . 56
7.2 Future work . 56

x

Contents

Bibliography 57

A Appendix 1 - questionnaire I

xi

Contents

xii

List of Figures

3.1 DSR process model . 15

4.1 A deployment diagram of the Screeny artifact 26
4.2 Sequence diagram of the continuous pipeline 28
4.3 The list of projects . 29
4.4 The list of commits for the "Intunio website" project 29
4.5 Detailed comparison of before and after the UI change (side by side) . 30
4.6 Flowchart of screenshot comparison procedure 31
4.7 Pseudo-code of the algorithm used to find the most recent commit

with the same screenshot key. 31
4.8 Visualization of the pixel difference between two screenshots 32
4.9 The Slack message with its corresponding thread conversation. 32

5.1 Heat map of the questionnaire results. 38
5.2 Slack discussion regarding a design error manually initiated by an

employee . 42
5.3 Slack discussion regarding a design error prompted by the Screeny

Slack bot . 42

xiii

List of Figures

xiv

List of Tables

3.1 Overview of DSR iterations . 22

5.1 Results from the Slack channel analysis. 40
5.2 Simulation projects . 41
5.3 Simulation results . 43
5.4 Thematic analysis of the interview results 46

xv

List of Tables

xvi

1
Introduction

As a result of ever-increasing user expectations on software, modern software devel-
opment is often conducted by cross-functional teams, consisting of both engineering
and design expertise. For instance, the number of user interface designers (hereafter
denoted "designers") at large companies has increased tremendously in relation to
developers. DeAmicis (2019) states that Atlassian went from having one designer
for every 25 developers in 2012 to one for every nine in 2017. Most notably, during
the same five year period, IBM went from having a ratio of one to 72, to one to eight.

As noted by DeAmicis (ibid.), users have become used to well crafted digital experi-
ences on mobile devices, which increased the expectations for all other kinds of user
interfaces (UI) as well. Thus, designers have become an increasingly important part
of the product development process. However, the collaboration between developers
and designers is often far from perfect.

Even though many modern software development teams follow an iterative agile
development process, the design phase often precedes the development phase, as
it serves as a blueprint of the user interface to implement. Hence, developers and
designers may work in isolation, apart from the design hand-off, in which the de-
veloper is provided with the final version of the design work in the form of a static
visual document portraying the final look of the user interface. However, Ben Nadel
(2020) notes that this is a common mistake and suggests that design hand-offs in-
stead should be treated as an ongoing collaborative process rather than a one-time
procedure, though this can be hard to achieve. Due to the lack of continuous col-
laboration, the implementation may diverge from the design, either by mistake or
misinterpretation of a vague design specification. Developers may also be forced to
make their own design decisions as a result of changed requirements that are not
covered by an updated design. The host company, Intunio, agrees that this is a
common problem among software development teams.

In this study, we investigate how designers and developers can be brought closer
to each other throughout the entire development process, in order to catch errors
earlier and increase the overall quality of the implemented interface design. The work
was carried out in collaboration with the previously mentioned company, Intunio, a
design and development consultancy firm located in Gothenburg, Sweden.

1

1. Introduction

1.1 Statement of the problem
The current design hand-off procedure has its drawbacks. Avoiding errors in the user
interface is not trivial, as the design specification is not a perfect representation of
the final software, for instance, due to resource limitations. As noted by Maudet
et al. (2017), edge cases can occur as the designer may only design one desktop ver-
sion and one mobile version, leaving all other screen sizes open for interpretation.
Therefore, developers often need to make their own design decisions or request help
from the designer, where the design is lacking.

As experienced by our industry contact Intunio, various aspects of the final software
may be missing or only vaguely communicated in the design specification, such as
the previously mentioned variety of screen sizes and different states of the applica-
tion. The insufficient specification leaves room for interpretation by the developer,
causing decisions to be made during the implementation phase, at which the de-
signer may not be present. Hence, the designer may not be aware of the new design
decisions made, which may be problematic, assuming the developer lacks design ex-
pertise. Ferreira, Sharp, et al. (2011) reports that developers even were reluctant to
make design improvisations on their own as they knew by past experiences that such
decisions resulted in having to rework the solutions as soon as the designer noticed,
leading to wasted effort. Even though tools exist that do try to "bridge the gap" and
help in communicating the specification more clearly, they do not fully eliminate the
need for developer design decisions since the design is not a perfect representation of
the software, according to Maudet et al. (2017). Furthermore, such tools do not help
to validate the design implementation during the development process continuously.

In a perfect world, designers fully participate in the implementation process to sup-
port the developers with ad hoc design decisions. However, this may not be feasible
in reality due to various factors. For instance, manually checking a test version of the
software for design changes is a time-consuming task. Furthermore, designers may
not have the required technical knowledge to build and run the software regularly.
While developers are aware of software changes through version control and conduct
regular code reviews, such practices usually do not involve designers. Hence, design-
ers may not be aware of new user interface changes unless they regularly assess the
software. This situation is both inefficient and may risk that potential deviations
from the intended design, or other issues, remain unnoticed.

1.2 Purpose of the study
The purpose of this study is to explore and evaluate how a novel software artifact
could support the collaboration between designers and developers during the UI
implementation process. The goal is to facilitate regular communication and thus
catch design errors as early as possible. This goal is accomplished by first mapping
the problems that lead to design errors, which then guides the creation of an artifact

2

1. Introduction

that can be assessed.

1.3 Research questions
The following two research questions were devised based on the identified problems.
Furthermore, questions were formulated to support the Design Science Research
methodology in use, which is described in detail later.

RQ 1: What problems exist with the collaboration between designers and devel-
opers during the implementation of a UI?

RQ 2: What are potential solutions to mitigate problems that occur in the col-
laboration between designers and developers during the implementation of a UI? To
what extent are the problems addressed by the solutions?

1.4 Disposition
This chapter introduced the study. In the next chapter, chapter 2, relevant theory
is presented, both related to collaboration practices as well as the technical aspects
that are key to understanding the proposed solution. Additionally, related work
is presented to understand how this study relates to other similar initiatives. In
chapter 3, the details of the DSR approach are presented. The output of the method
is both results, from the data collection, and a software artifact. The final artifact is
presented in chapter 4. The data that guided the design of the solution is presented
afterward, in chapter 5. Findings and their implications are discussed in chapter 6,
and finally, in chapter 7, conclusions are drawn.

3

1. Introduction

4

2
Background

This chapter consists of three primary categories, each with a different purpose.
Firstly related work is introduced to explain how this study relates and differs from
existing initative. Secondly, we present studies that relate to the collaboration
between designers and developers. This aims to describe the current practices and
identify which problems are known to occur. The final part is a technical background
that presents literature related to continuous pipelines, automated (GUI) testing
and image comparison. This is relevant to understand the technical aspects of the
artifact.

2.1 Related work
There are already various studies discussing designer and developer collaboration,
its pitfalls, and suggestions of how these difficulties can be mitigated. Though the
solutions vary in terms of characteristics, most of the relevant work we have identi-
fied can be classified into two categories; process-related practices and tool-related
practices, both aiming at improving designer-developer collaboration but with dif-
ferent means.

One process-related approach is to follow a set of guidelines, such as presented by
Friberg et al. (2017). These guidelines were formulated with the aim to help cross-
functional teams work better and more efficiently together. Furthermore, additional
guidelines and best practices exist. These are presented in detail in the next section
as they are relevant to understand the current practices and problems within de-
veloper and designer collaboration. Such guidelines might indeed help improve the
collaboration and thus reduce the occurrence of errors. However, this study does not
compete with such initiatives. Instead, we aim to catch errors as early as possible.
Furthermore, in order for the guidelines to be as effective as possible, the team is
required to embrace and follow them. Additionally, the team might be required to
change their process accordingly, which may not always be easy.

A vast amount of tools attempts to bridge the gap between the design and the UI
implementation. Two common tooling approaches are either to make the design
specification more well-defined or to enable the designer to produce the final UI
implementation directly.

5

2. Background

An example of a tool that aims to improve the design specification is Enact, as
presented by Maudet et al. (2019). The tool specifically aims to facilitate the col-
laboration regarding touch-based interactions through gestures, which were found to
be challenging to communicate with a developer. The purpose of the tool is to reduce
the occurrence of design errors during the implementation by more thoroughly com-
municating the intended design, for instance, through interactive examples. While
this tool may reduce the occurrence of errors, only touch-based interactions are in
focus. Hence, other types of errors may still occur.

Similarly, Leiva et al. (2018) presents Montage, a tool to help designers capture video
prototypes to communicate interactions more easily. In general, tools that aim to
reduce the occurrence of errors differ from the solution presented in this study on a
conceptual level; our solution help catching errors as early as possible, rather than
attempting to avoid them entirely.

Model-driven engineering of user interfaces is an entirely different approach to UI
design, in which the designer defines models that are used to generate the imple-
mented UI directly. As explained by Vanderdonckt (2008), there are several known
benefits, such as more easily being able to adapt to new requirements. However, the
approach is also met with some major criticism, such as a high threshold for design-
ers to learn and strict limitations on the resulting user interfaces (ibid.). Akiki et al.
(2014) describes that a recent generation of model-driven UI development has the
notable benefit of being adaptive and context-aware, in the sense that the UI can
automatically adapt to suit both the user’s needs and the platform. On a similar
note, Rivero et al. (2014) presents mockup-driven UI development, which is a hybrid
approach where design mockups are used to derive requirements for the development
of model-driven user interfaces.

While model-driven engineering is an active field of research, it is not widely adopted
in the industry. Akiki et al. (2014) notes that various prototypes and approaches
have been presented in literature and that it might be time for a joint-venture
with industry. While this approach might provide promising benefits and could
reduce manual design implementation work, traditional UI development continues
to dominate in industry, and at Intunio, for the time being. Hence, model-driven
approaches are not considered in this study.

2.2 About Intunio
As noted, this study was conducted in collaboration with Intunio. This section de-
scribes the company, its services, as well as its software engineering process. This is
relevant in order to understand the context of which the problems were identified,
and solutions were proposed.

Intunio is a Gothenburg based software engineering consultancy specialized in the
design and development of user experiences. Examples of clients are Ericsson, Elec-
trolux, and Scania. The choice of technology depends on the needs of the client,

6

2. Background

but web technology is most commonly used. Nine industry veterans from The As-
tonishing Tribe (TAT) and BlackBerry founded the company, and today it consists
of a total of 16 employees. Out of the 16 employees, 13 work as either designer or
developer.

Most of the client work is performed in-house in the form of projects. These projects
often have a well-defined deliverable, such as a design prototype or a functional soft-
ware solution. Intunio generally adheres to an agile software engineering methodol-
ogy, but as the projects vary in scope and needs, they adapt the process accordingly.
Some smaller projects may consist of just one designer and one developer and often
has only a single final delivery. Such projects typically use a less formal process, as
the designer and developer can collaborate tightly. Larger projects may consist of a
small group of people and can last for multiple sprints with several deliveries over
a more extended period. These projects often use a more rigorous process which
includes standard agile practices such as daily stand-ups and sprint demonstrations.

In addition to in-house projects, Intunio employees sometimes work on-site as con-
tractors, embedded in the client’s software engineering team, and established soft-
ware engineering processes. Hence, these employees are exposed to the client’s
process, which can vary significantly between different clients.

2.3 Designer-developer collaboration

While designers have become an increasingly important part of the development
process (DeAmicis 2019), cross-disciplinary collaboration comes with challenges on
its own. Cockton et al. (2016, p.2-3) notes that designers and developers tradition-
ally follow different processes. Most commonly, modern-day designers adhere to a
user-centered design (UCD) approach, which focuses on building empathy with the
end-user in order to design solutions that meet their needs iteratively. Many UCD
activities involve contact with the end-user, for instance, to understand the problem
or validate whether a proposed design is satisfactory.

Integrating UCD into software engineering processes can be problematic. When
the first attempts were made to integrate UCD, traditional waterfall methodology
dominated, as explained by Cockton et al. (ibid., p.2-3). While the user research
and user testing activities of UCD fit well into the waterfall process, the iterative
design practice did not. In contrast, the iterative design practice fit perfectly with
an agile software engineering process, but some activities, such as user research and
user testing are given less room, as less planning is done up front.

As agile methodologies dominate in the industry today, this section focuses on how
designers and developers collaborate within such a process.

7

2. Background

2.3.1 Current practices
Delivering a new software feature requires collaboration from both the designer and
the developer. The designer needs to design the UI beforehand, in order for the de-
veloper to implement it. Hence, the developer depends on the designer to implement
the feature fully and vice versa. As the implementation is dependent on the design
work, problems related to scheduling may arise, as found during the early attempts
from 2007 to integrate design into the scrum development process at PayPal (Bud-
wig et al. 2009). The company found that designers had to work long hours in order
to stay ahead of the development team, as they started working on the same sprint
at the same time. As a solution, Silva et al. (2013) suggests that the designer should
be at least one agile sprint ahead of the development team. However, the authors
also make clear that the designer must be available to developers in order to clarify
and resolve issues regarding the design. This is in line with the adjusted process at
PayPal from 2008 (Budwig et al. 2009), in which the authors note that the design
team stays one or two sprints ahead, but also has time scheduled to support the
development teams with the designs that are currently being implemented. While
letting designers stay ahead of the development team seems to be a common ap-
proach, the designers and developers studied by Ferreira, Noble, et al. (2007) stated
that they had noticed a positive benefit when collaborating more tightly through-
out the iterations. Similarly, in a questionnaire by Jones et al. (2016), developers
rated access to designers as the main factor for successful agile software development.

Friberg et al. (2017) studied the designer-developer collaboration practices at five
software companies in Gothenburg, including Intunio. The authors found that the
team members were physically seated either by profession or team, with different
benefits to each approach. Team-based seating had advantages such as improving
communication between designers and developers. Some preferred to be seated by
profession in order to communicate more easily around technical problems. Similarly,
a team observed by Ferreira, Sharp, et al. (2011) was seated by profession, and the
authors found that the developers would physically move around the building to
talk to the designers, only when they needed to discuss issues with the design work.
The designers were never found to initiate contact with the developers, apart from
delivering the design artifact.

2.3.2 Design hand-off
Designers and developers often perform the majority of their work in isolation
(Maudet et al. 2017). A common practice is that the designer produces a design ar-
tifact before the implementation starts (Friberg et al. 2017), possibly a sprint ahead,
as mentioned in the process by PayPal (Budwig et al. 2009). The finished design
artifact is then handed over to the developer, who then proceeds to implement the
UI. This procedure is called a design hand-off (Maudet et al. 2017). The study by
Friberg et al. (2017) highlights that discussions seldom took place between the two
disciplines during the preceding design phase. Furthermore, they also found that
the designers were not integrated with the development process, and as a result,
the disciplines lacked knowledge about each other’s work. The authors note that

8

2. Background

developers receive the design artifact first when the design is already set, which is
something some of the interviewed developers found problematic.

The design artifacts can be seen as a blueprint that describes various aspects of the
final version of the UI. Different types of design artifacts exist (Maudet et al. 2017),
ranging from static mockups to more sophisticated interactive prototypes that also
demonstrate interactive behavior, such as navigation between pages and animations.
The static mockups appear as a screenshot of the desired UI, often created in vector
format using interface design tools such as Sketch and Figma. Maudet et al. (ibid.)
notes that a vast amount of prototyping tools have attempted to bridge the gap
between design artifact and implementation; however, the tools do not yet produce
production-grade software. As a result, a wide variety of tools and methods are used
by the interviewed designers, in order to communicate various aspects of the design
to the developer. However, visual design is often prioritized, according to a survey
done by Myers et al. (2008).

Different teams have different routines for the hand-off procedure. The hand-off
sometimes consists of a meeting, but not always. Friberg et al. (2017) found that
delivery took place either via chat, email, or meeting, depending on the organization.
Ferreira, Sharp, et al. (2011) note that the delivery occurred by email in their
observed organization. Additional tools such as Zeplin (Zeplin 2020), which is used
at Intunio, help facilitate the hand-off by turning the static mockup into a detailed
specification, for instance, including sizes and color codes, and sometimes even code
snippets, to help the developer be more precise and efficient.

2.3.3 Design breakdowns
Maudet et al. (2017) attempts to map the common problems faced during the imple-
mentation phase, based on 16 thorough interviews with both developers and design-
ers. The authors define blocking issues that are found during the implementation
phase as design breakdowns and divided into three categories;

Missing information: the designer has not fully specified the looks or interac-
tions of certain parts, e.g., how a button should look while being hovered.

Edge cases: the designer has not considered extreme or problematic situations,
for instance, empty states or very long usernames.

Technical constraints: the designer has not considered the technical limitations,
leading to extra development time or complexity, e.g., having to implement an en-
tirely custom UI component despite a slightly similar ready-made UI component
being available in the system.

From a case study, the authors found that involving the developer in the design
process did reduce the occurrence of these blocking issues in the implementation

9

2. Background

phase. However, the issues would still occur nevertheless, for instance, due to misin-
terpretation based on the vocabulary mismatches between developers and designers.

Ferreira, Sharp, et al. (2011) found that the development team discussed the design
artifact internally when they first retrieved it to identify potential issues beforehand.
The type of issues mentioned was in line with the categories as defined by (Maudet
et al. 2017), such as technical constraints. The feedback was then either sent by
email or discussed in a meeting with the designers. The authors also noted that
the developers were reluctant to improvise their own design solutions in the case of
blocking issues such as missing edge cases. As an example, the designer might have
designed the UI for a list of five elements, but not specified how the UI should look
if there are no elements at all. The developers were reluctant to improvise their own
solutions to such situations as they have had to rework their improvised solutions
in the past once the designers noticed, leading to wasted effort.

Some designers manually create correction documents, such as annotated screen-
shots, during the implementation phase to communicate issues with the implemen-
tation to the developer (ibid.). Similarly, Ferreira, Sharp, et al. (2011) found that
the developers either emailed or met with the designers for the same reason. The
developers interviewed by Friberg et al. (2017) often gave feedback on the design
during implementation, which took place in the form of a dialogue.

2.3.4 Feedback and review procedures
Friberg et al. (ibid.) found that the feedback practices varied between organizations
and individuals. For instance, one developer always asked for feedback on the im-
plemented design, before considering it as done. Generally, the authors note that,
in most cases, feedback was given only when asked for. One developer said that
they only gave feedback during their sprint retrospective, but thought that more
regular feedback would be desirable. The authors also found that issues that were
found after the release was hard to fix. This indicates that feedback during the
implementation phase is important to avoid such situations.

Written communication was commonly used, mostly when the communication was
not time sensitive, in order not to physically disturb the recipient. All organizations
observed by Friberg et al. (ibid.) used some kind of chat tool internally. Chat was
used for various purposes, including quick questions, feedback, and sharing files.
The participants did however, feel that messages get lost in the history, which was
bad for documentation. Chat communication would sometimes become messy and
hard to follow, but the participants believed this to be solvable by using threaded
communication more often. The most common chat solution was Slack, which is
also used at Intunio.

In a workshop by Friberg et al. (ibid.) regarding how a desirable designer and de-
veloper workflow might look like, one group of participants said that they found

10

2. Background

project documentation to be a waste of time and rather preferred it to be created
naturally by recording the evolution of a project. They suggested this to be done
by regular photographs and screenshots to make people see the design easily.

2.4 Continuous pipelines

Software development projects change over time, and hence the code base is of-
ten maintained through version control systems, such as Git. As developers make
changes on their local machines, their individual codebases start to diverge from the
one on the main branch. Continuous integration (CI) is the practice of developers
merging and building their local changes on the main branch frequently, preferably
many times a day, to avoid the previously mentioned problems.

Continuous delivery (CD) and deployment (CD) are extensions of continuous in-
tegration, extending the practice of merging and building often by also including
testing and deployment of the software. The continuous pipeline is executed when
new changes are pushed, and the new code has to pass all stages in the pipeline in
order to be published. The pipeline is fully customizable and can include tests on
all levels of hierarchy.

2.5 Headless browsers

A headless browser is a GUI-less browser that can be programmed to perform in-
teractions, such as navigating to an URL, clicking a button or taking a screenshot.
A notable example is Selenium, which is a web browser automation suite often used
for automated testing of user interfaces (Selenium 2020a). Selenium supports any
browser that implements the WebDriver specification by W3C (WebDriver 2018)
and provides a unified API to control any such browser (Selenium 2020b).

Another notable example is Puppeteer by Google. The documentation states that
the tool does not aim to replace Selenium but rather focuses provides additional
features by focusing only on Google Chrome. Selenium is noted to focus on cross-
browser testing, while Puppeteer bundles a single, compatible version of Google
Chrome, which has the benefit of requiring zero setup (Google 2020).

2.6 GUI testing

Software can be tested on various levels of abstraction, such as unit and integration
testing (Alsayed et al. 2017). As the GUI resides on a high level of abstraction, spe-
cial tools are required to run automated functional tests, where the user interaction
is simulated. From a design perspective, the valid state is manually tested through
review procedures due to its subjective nature.

11

2. Background

2.6.1 Manual reviews
Through reviews, both formal and informal, the software deliverable is manually
tested by a team member or stakeholder. This procedure is conducted at the end of
the development cycle, in order to verify that the software does not have any defects
(Alsayed et al. 2017). For instance, the Scrum process consists of sprint reviews that
take place at the end of each sprint, where the result is presented to the teammates
and stakeholders (Schwaber et al. 2017).

One particularly thorough formal review method is inspection, as described by
Wiegers (1995). Inspection consists of multiple activities apart from just identi-
fying defects in an artifact, including rework and follow-up of the identified defects.
Wiegers (ibid.) further notes that inspection helps catch errors early, which is much
cheaper to correct early, rather than later, in the process. Furthermore, Alsayed
et al. (2017) claims that the inspection method is more suitable for catching design
errors compared to functional testing techniques.

2.6.2 Automated functional tests
Automated GUI testing tools help test that the GUI objects control the application
as intended when interacted with. The interactions are either defined program-
matically or by record and playback solutions (Meszaros 2003). As classified by
Alégroth (2013), GUI testing can be divided into three generations. Each genera-
tion uses a different strategy for controlling the interaction, with different pros and
cons (Alégroth et al. 2015).

1st generation. Interactions are defined by screen coordinates. While the ap-
proach works for any screen-based software, it would break if the GUI object is
repositioned, which makes the test fragile.

2nd generation. The tests simulate interaction directly with the underlying GUI
components. This approach is more resilient to visual changes, e.g., the position or
look of a button may change, but the button is still identified as the same object
as before. A downside is that this method is strongly tied to the GUI library and
that interactions are only simulated in the GUI library layer. If the software is
web-based, this is done with headless browsers, as mentioned in 2.5.

3rd generation. The coordinates of the GUI objects are identified through im-
age recognition in order to interact with them. This is also defined as Visual GUI
testing (VGT). This approach enables interaction with software without integrating
with the GUI library and is less prone to the movement of GUI objects, but visual
changes may still break the tests. For instance, Sikuli is a tool that lets the pro-
grammer define the tests using screenshots of the components, which are then used
to identify the elements on the screen (Yeh et al. 2009).

12

2. Background

2.6.3 Automated visual tests
As opposed to the above testing solutions that test software functionality, visual
regression testing is a category of testing tools that identify changes in the GUI.
For instance, the tool Wraith (BBC News n.d.) can capture a screenshot of a web
page, which is then compared to a previously taken screenshot to identify visual
differences.

2.7 Image comparison
In order to compute the difference between two images, the respective pixels need
to be compared. While calculating the difference between two color values is trivial,
various factors need to be considered for the result to be perceived correctly by the
human eye. Firstly, as described by Vyšniauskas (2009), the human eye does not
recognize the difference between all colors uniformly. Hence, the authors present
a color comparison formula to mitigate the issue. Secondly, images often contain
anti-aliased pixels, which is a result of a method of smoothing outlines that do not
align with the pixel grid. Kotsarenko (2010) presents a way to detect anti-aliased
pixels. An open-source library by Mapbox (2020) provides a simple solution to
reliably calculate the difference between two images, by implementing ideas from
both of these papers.

13

2. Background

14

3
Methods

This study followed a Design Science Research (DSR) methodology. The central idea
of DSR is to iteratively devise innovative artifacts in order to attempt to solve real
problems. The methodology was chosen as it is known to be suitable for solving real
problems within organizations while simultaneously contributing general findings to
the research community (Dresch et al. 2014, p.v), which is in line with what this
study was intended to accomplish. Furthermore, this study has been structured and
conducted according to the guidelines by Knauss (2020) on applying DSR in the
context of Master Thesis work in collaboration with the industry, particularly with
regards to connecting the research questions to the iterations.

3.1 Design science research
Design science (DS) is the study of how to create artificial objects (artifacts) that
satisfy desired requirements when embedded in an environment, such as an orga-
nization. Design science research (DSR) is the method of creating such general
knowledge through the iterative process of designing artifacts that solve a specific
problem in a specific organization (Vaishnavi et al. 2015, p.10-11).

Awareness of problem

Suggestion

Development

Evaluation

Conclusion

Figure 3.1: DSR process model

15

3. Methods

While various DSR process models have been suggested by different authors, there
are many similarities between the models (Vaishnavi et al. 2015, p.18). This study
follows the process defined by Vaishnavi et al. (ibid., p.14-17). As seen in figure 3.1
above, the process contains five steps that are performed in sequence, before starting
over with another iteration.

Awareness of problem Awareness of relevant problems within the organization.
This may be based on various sources, for instance industry experience or academic
literature.

Suggestion Proposition of solutions that intend to solve the identified problems.
This step is inherently a creative where a new solution is imagined, for instance,
by introducing entirely new functionality or reconfiguring an existing solution in a
novel way.

Development Creation of the proposed artifact. For a software artifact, this
involves designing and developing the software.

Evaluation Evaluation of the artifact in relation to the problems it is intended to
solve within the organization.

Conclusions. Clarification of learning achieved, conclusions, and generalization
for a class of problems. While the artifact may solve a problem for a particular
organization, the goal is also to generalize the knowledge as a research contribution.

3.2 Data collection methods
Several research methods were used as part of the DSR iterations in order to learn
about the problems at the company as well as to evaluate the produced artifacts.
The methods are formally defined in this section.

3.2.1 Literature review
While this study did not conduct a full systematic literature review, published lit-
erature was reviewed in order to identify the current practices and known problems
related to the collaboration between designers and developers in the industry. Fur-
thermore, topics related to automated testing a few specific technical topics were
investigated to support the construction of the artifact. The relevant keywords
included cross-functional teams, design inspections, code reviews, user interface im-
plementation, integrating designers into agile development, automated GUI testing.

16

3. Methods

3.2.2 Focus group

A focus group was conducted early in this study in order to learn about the cur-
rent collaboration practices and identify problems. Focus groups are recommended
as initial orientation in a new field, as a wide variety of views and insights can be
gathered with little effort (Longhurst 2003, p.106). The goal of a focus group is not
to draw general conclusions, but to understand the perspective of a specific group
(Krueger et al. 2015, p.63-67).

Krueger et al. (ibid., p.63-67) note that the purpose is key when deciding on the
group composition. In general, the authors recommend homogeneity but with suffi-
cient variation, in the sense that the participants have a relevant trait in common,
but with potentially contrasting opinions to allow for interesting discussions.

This affected the selection of participants in the sense that every participant were
either a designer or developer at the company. The participants were recruited
specifically for their distinct roles, as they were assumed to bring a unique point of
view. The purpose was to learn about their own experience as well as the perspec-
tive of their respective role.

Furthermore, Krueger et al. (ibid., p.67-68) state that focus groups normally contain
ten to twelve participants, but that small focus groups of four to six participants
are becoming increasingly popular due to practical reasons. A risk with fewer par-
ticipants is that the variety of views is more limited compared to larger groups. In
the case of this study, this was considered, but as the company is relatively small,
it was deemed sufficient to recruit few but well-experienced people. That way, the
participants have experience from a wide variety of projects and team constellations.

The focus group were conducted in-person and consisted of the following topics,
each with some questions to initiate the discussion:

1. Software development process. What does your process look like? Do you
use an agile process? Does it differ between projects?

2. Code reviews. Do you work with code reviews? How does it work? How
often?

3. Design hand-off. How do you work with design hand-offs? How does it
work? What is the design deliverable? Do you involve the programmers in
the design process?

4. Follow-up. How do you follow up the design implementation? Do you have
automated tests? How do you verify that a design is correctly implemented?

5. Proposed solutions. Would it help to track UI changes? What can go
wrong during the implementation of a UI? What kind of aspects do you want
to track? How can such aspects be tracked? Where should the information be
made available?

17

3. Methods

3.2.3 Questionnaire
As explained by Gillham (2008, p.2-9), questionnaires are a cheap and common
method of collecting viewpoints of many participants in a structured way. While
questionnaires often consist of only closed questions, open-ended questions are sug-
gested to lead to more discoveries, though with more effort required to analyze the
answers. The author note that preceding a questionnaire with a semi-structured
interview can lead to most answers already being discovered, and thus closed ques-
tions can be constructed based on the predicted answers.

A questionnaire was performed with developers and designers at Intunio. The ques-
tionnaire had two separate purposes. Firstly, it served to verify that the insight
gained from the focus group applied to more people in the company, such as learning
about commonly used communication tools and collaboration practices. Secondly,
and more importantly, the questionnaire aimed to measure how the participants
perceive the current designer-developer collaboration, as well as how often certain
design errors occur.

The questionnaire in this study was preceded by a focus group, which allowed us to
explore the topic before defining the questions. Still, the survey was semi-structured
as a few open questions were believed to be useful to explore the topic further. The
questions can be found in appendix A.

Some of the closed questions were defined using a Likert scale (Allen et al. 2007) with
the intent of measuring the intensity in the answers regarding specific statements.
Others were open to learning about their personal experience of the problems. While
open answers, in general, require more effort to analyze, the number of answers was
limited by the number of developers and designers at the company, and hence this
was deemed acceptable.

Questions related to design errors were categorized according to the three design
breakdowns by Maudet et al. (2017): missing information, edge cases, and technical
constraints. These questions were part of those which used a Likert scale in order
to capture how often the respondent perceives that such errors occur.
The response rate can be high if the participants are "captive" (Gillham 2008, p.9),
which was the case in this study, as we personally requested the employees at In-
tunio to answer the questionnaire. Furthermore, the survey was intentionally non-
anonymous to allow for individual comparison of how the participants believe that
the artifact would affect their answers. This was used as part of the interviews,
which are later described in 3.2.6.

3.2.4 Analysis of chat history
Each of Intunio’s client projects has a chat channel consisting of only the relevant
team members, including both designers and developers. Quantitative data was
collected by extracting relevant conversations from the chat channels, from start to
finish, of a specific number of past projects. A conversation was deemed relevant if

18

3. Methods

it related to the implementation of the UI, for instance regarding issues, questions
or status updates.

The projects were selected based on the following criteria:
• The project consisted of both designers and developers.
• The project was built using web technology, as the artifact was only con-

structed to support web technology as a delimitation. While the chat history
could be extracted no matter the technology, this was important as the same
chat channels and projects would also be used for the simulation, as later
described in 3.2.5.

• The company could give access without violating any confidentiality agree-
ments.

Thematic analysis (Braun et al. 2012) was used to find common themes in the data
gathered from observing historic chat conversations. The themes were derived from
the data itself, based on the frequency of occurrence. This approach was suitable
as the purpose was to explore the collaboration practices, rather than analyze them
according to a predefined framework.

3.2.5 Simulation
As reviewed by Pries-Heje et al. (2008), there are various ways to evaluate an artifact
as part of DSR. An artifact can be evaluated either before (ex-ante) or after (ex-
post) the construction of the artifact. However, with design science research being
iterative, the definition of ex-post relates to the artifact and not the final system,
as noted by the author (ibid.).

Further considerations include whether to evaluate the artifact using a naturalistic
method, such as observation, or an artificial method, such as experiments and sim-
ulation (Venable et al. 2012). The authors note that both approaches have their
strengths and weaknesses. For instance, naturalistic evaluations risk misinterpreta-
tion due to the complex nature of reality, while artificial evaluations risk having the
results not be applicable to reality. Furthermore, naturalistic evaluation, where the
solution is tested in a real scenario, is mentioned as critical. However, it tends to
be complex due to the many variables involved (Pries-Heje et al. 2008).

At the end of this study, a simulation was performed in order to assess the final
artifact. The choice was made using the framework presented by (Venable et al.
2012). For instance, the choice of an artificial evaluation rather than a naturalistic
one was partly due to practical reasons, as no suitable project was available at our
host company at the time. Furthermore, the artifact is purely technical which is in
line with the framework.

The simulation was performed as a replay of the project’s UI implementation, by ex-
ecuting the artifact on every historic Git commit for a selection of suitable historical
projects. This effectively shows how the artifact would behave and look given that

19

3. Methods

it would have been used at the time each commit was made by a developer. The
past projects were part of the analyzed chat history (described in 3.2.4), meaning
that for every chat conversation that related to a UI change, a commit where the
change was introduced could be identified in the simulation data. For every such
conversation in the chat history, an assessment was made of whether the artifact
would have successfully captured a screenshot that could communicate the same
context and spark a similar conversation. If so, the case was deemed supported
in the sense that it would be sufficient for designers and developers to identify the
problem in the simulated output of the artifact. The result of this was a percentage
metric that states how many of the chat messages that initiated the design-related
discussion, the artifact would already cover in an automated fashion.

Furthermore, to determine if the artifact could help the designers and developers to
catch errors earlier than was previously identified manually, the timestamps were
noted. This included both the time of the Git commit (i.e., when the UI change was
introduced) and the chat conversation that related to the specific UI change. The
difference between these two timestamps was used to determine how long it took
for the problematic UI change to be manually identified and discussed in the chat.
If the artifact would display the same issue directly at the time of the commit, we
conclude that the feedback loop could be shortened if the artifact was used.

3.2.6 Interviews
Semi-structured interviews are known to be useful for obtaining qualitative data,
such as opinions, from a limited number of people, as explained by Longhurst (2003,
p.108-112). The authors state that these interviews share many similarities with
focus groups, in the sense that the intention is not to obtain data from a represen-
tative sample of a larger population, but rather focus on people that have a specific
relation to the topic. Hence, the participant selection is noted to be vital.

During this study, such interviews were conducted with the purpose of assessing the
final artifact from the perspective of the target audience. The interviews were con-
ducted using video calls. The artifact was demonstrated using simulated data from
a project that the interviewee had participated in. The artifact was presented along-
side an excerpt from a historic chat conversation that the interviewee participated
in. The chat conversation regarded UI implementation issues in that particular
project. This was done in order to give the interviewee a realistic example of how
the artifact would function.

Participants were selected based on the following criteria:
• The person represented a distinct role among our interviewees (designer, de-

veloper, or a mix of both). This was important as the topic relates to the
collaboration between the roles, and thus the different roles could assess the
artifact from the perspective of their specific role.

• The interviewee has plenty of work experience. Similar to the focus group
described above, vast experience is desirable to mitigate some of the risk with

20

3. Methods

interviewing only a small number of people, as their opinions would be based
on multiple projects.

• The interviewee was present in the chat history of at least one of the three
projects that were observed and simulated. This enabled us to demonstrate
the artifact a project the interviewee would be familiar with.

The following questions were asked as part of the interview:
1. How do you think the artifact would have affected your previous answer to

the following question: How often do you communicate, outside of process-
related meetings (e.g., Scrum), with the opposite role (designer, if you work
as a developer or vice versa) during a project?

2. How do you think the artifact would have affected your previous answer to
the following question: To what extent are you aware of the implementation
progress of your co-workers during a project?

3. How do you think the artifact would have affected your previous answer to the
following question: If you’re a designer, how confident are you that the design
of a feature will be correctly implemented by a developer, with your current
level of communication and feedback? If you’re a developer, how confident are
you that you implement the design of a feature correctly (from the designer’s
perspective), with your current level of communication and feedback?

4. Apart from what has already been answered, how do you think that the artifact
would affect you and your collaboration?

5. What potential improvements do you see?
6. Do you have anything else to add?

Questions 1, 2, and 3 were based on the questionnaire in order to compare to the
baseline. The interviewee was presented with his or her answer to the questionnaire
question and was asked whether the artifact would be believed to have affected the
answer. Furthermore, a few open questions were asked in order not to limit the
answers. The interviews were analyzed using thematic analysis (Braun et al. 2012)
to summarize and categorize the meaning of the answers.

3.2.7 Demonstration
In order to obtain feedback regarding the artifact, demonstrations were held twice
as part of this study, one after the first iteration and one after the second. During
the demonstrations, the current version of the artifact was showcased to a number
of people at once, by navigating the artifact UI and orally explaining its functional-
ity. The participants were asked to discuss a set of open-ended questions regarding
the proposed solution, functionality, and UI of the artifact. Furthermore, potential
flaws were discussed, and suggestions of how the flaws could be mitigated were given.

All of Intunio’s employees were invited to attend the first demonstration, and hence
a large number of participants with different roles participated, including business
stakeholders. For the second iteration, an explicit selection of participants was made
as the demonstration took place through a video call. The purpose was to ensure

21

3. Methods

that at least one designer and at least one developer participated.

3.3 DSR iterations
Three iterations were performed during the study, each of which included all of the
five steps described. Each iteration contributed to answering both research ques-
tions to some degree, as the understanding of the problems and potential solutions
gradually increased during the process. However, each iteration did have one pri-
mary research question in mind, which it aimed to contribute substantially to. Table
3.1 provides an overview of each phase of the three iterations. The primary research
questions are noted next to the iteration number.

Iteration 1 (RQ1) Iteration 2 (RQ2) Iteration 3 (RQ2)
Awareness of
problem

Literature review
Focus group
Questionnaire

Analysis of chat history
Feedback from demonstra-
tion

Feedback from demonstra-
tion

Suggestion Facilitate regular communi-
cation regarding UI

Better track and communi-
cate UI changes

Adapt to support specific
projects

Development Technical proof of concept Functional artifact designed
and implemented

Artifact adapted to support
specific projects

Evaluation Demonstration Demonstration Simulation
Interviews

Conclusion Aspects that need to be con-
sidered

Technical requirements to
support specific projects

Assessment of usefulness

Table 3.1: Overview of DSR iterations

3.3.1 Awareness of problem
In order to gain an understanding of the problems (RQ1), the first iteration started
out by a literature review, which was followed by a focus group and a questionnaire.
As described in 2.3, there turned out to be no consensus in the industry on how
designers should be integrated into agile software development processes.

Due to the lack of consensus, it was deemed important to assess the particular
workflow and collaboration practices of the host company. Therefore, a small focus
group and a questionnaire were carried out. The focus group had a duration of
one hour and consisted of three senior employees, one being a designer, one being
a programmer, and one being a mix of both. Based on the insights from the focus
group, a questionnaire was constructed and sent to all of the company’s develop-
ers and designers. The questionnaire was sent to a total of 13 employees who work
as either designer or developer. Out of the 13 employees, nine answers were obtained.

Based on insights from the first iteration, a decision was made to analyze con-
versations from chat channels that were associated with past projects. This was
performed during the second iteration using the method described in 3.2.4, in order
to further learn about the current collaboration practices. The company provided

22

3. Methods

access to the chat history of three completed projects to map out the current collab-
oration practices further and identify problems. The projects were all built with web
technology using React as the underlying framework. The chat channels consisted
of a total of 14 unique employees, and a total of 39 messages were deemed relevant,
as they initiated a conversation related to the user interface.

In both the second and third iteration, insights were obtained in the form of feedback,
based on the demonstration that occurred as part of the evaluation of the previous
iteration (later described in 3.3.4).

3.3.2 Suggestion
During the first iteration, various problems were identified. Solutions to the few
problems that were thought to be the most interesting were considered further,
both internally and through discussions with the company. The most promising
approach consisted of a software artifact that facilitates regular communication be-
tween designers and developers with regard to the UI implementation process.

The evaluation from the first iteration revealed that the general idea of the solu-
tion was thought to be promising, but that certain aspects needed to be carefully
considered in order for such a solution to be convenient for the company and hence
solve the problem properly. Based on these findings, various alternative solutions
were assessed (RQ2). A new solution was suggested where the artifact would prop-
erly track when the UI is changed, and better communicate these changes to the
designers and the developers in order to initiate frequent communication.

During the third iteration, the solution was adapted to support a few specific projects
were the artifact could have been deployed to, based on insights from evaluating the
artifact during the second iteration. While the idea behind the solution did not
change, this required a few technical changes as well as configuring the artifact to
support the desired workflow of each project.

3.3.3 Development
This section describes the process of the development, but does not describe the
artifact itself. The final artifact is presented fully in chapter 4, and the results that
lead to the creation of the artifact are later presented in chapter 5.

During the first iteration, initial proof of concept was developed in accordance with
the suggested solution. The intention of the artifact was partly to assess the tech-
nical feasibility, but also to communicate the idea to stakeholders at the company,
to evaluate the solution.

Based on the findings from the first iteration and the revised suggested solution,
a more sophisticated and functional version of the solution was designed and im-
plemented. The new software artifact continued to use the underlying technology

23

3. Methods

as developed in the first iteration as a proof of concept, but was developed to be
sufficiently functional to be tested in real projects.

After evaluating the artifact as part of the second iteration, certain technical require-
ments were identified to deploy the solution to a specific set of projects. Therefore,
the third iteration served to implement changes to the software artifact according
to the adapted suggested solution that met these requirements.

3.3.4 Evaluation
At the end of the first iteration, an evaluation was performed by demonstrating the
artifact to 11 participants, both developers and designers. Our initial understand-
ing of the problem was explained, and an initial artifact was presented, serving as
a proof of concept of the suggested solution. The participants were invited to give
feedback and assess if the artifact was on the right track to solve the given problem.

Similarly, a demonstration was performed at the end of the second iteration. The
session consisted of four participants of both developers and designers. The partici-
pants were again asked to give feedback, but also specifically asked to consider what
the technical requirements would be in order to deploy the solution to the projects
where the solution was thought to be relevant.

At the end of the third iteration, a more rigorous evaluation was performed in order
to assess to what degree the artifact would solve the problem (RQ2). Usage of the
final artifact was simulated for the same three projects that were used for the chat
analysis. A total of 785 commits were processed. Apart from simulations, interviews
were conducted with five employees at the company.

3.3.5 Conclusion
From the first iteration, it was concluded that the idea behind the solution was
considered promising by the company stakeholders and that the idea ought to be
extended and refined in another iteration, to address certain issues and construct a
functional artifact that can be tested.

The second iteration revealed that the solution had successfully addressed certain is-
sues, but needed further changes in order to support the company’s specific projects.
Hence, another iteration was needed.

During the third and final iteration, the artifact was adapted to support the said
projects, to perform the evaluation as described in 3.3.4. This resulted in insights
about its believed effect towards solving the problem, primarily based on the as-
sessment of the company stakeholders. The evaluation revealed several additional
problems, including some potential ideas that might mitigate them. Hence, further
iterations are believed to be beneficial to continue to improve the solution in order
to solve the problem better.

24

4
The Artifact - Screeny

This chapter presents both the practical and technical aspects of the final version
of the artifact, named Screeny, that was constructed according to the proposed so-
lution. The final artifact is a result of the three iterations that were guided by the
efforts to understand the problem and evaluate the artifacts. The design choices are
later motivated in 5.1, as the findings are presented.

The artifact enables the designers to keep track of the UI implementation progress
in order to facilitate communication between the disciplines. When the artifact is
used with a software project, screenshots of the UI are taken automatically when
a developer commits any change to the project’s Git repository. The artifact de-
termines if any visual changes were made compared to the last version. When the
artifact detects a change, a summary of the changes is sent to a Slack chat channel,
where both the designers and developers are present. The visual changes can then
be viewed in full detail through a web application, which is easily accessible from
the chat message.

4.1 Architecture overview

The artifact primarily served to evaluate the proposed solution in order to determine
if it provides any benefit to designers and developers as part of the UI implementa-
tion process. Hence, some common functionality, such as user authentication, has
been left out as it was deemed unimportant to fulfill the purpose. Furthermore,
technical decisions were specifically made to meet the requirements of Intunio. A
consequence of this is that the artifact only supports web technology and requires
Bitbucket Pipelines to be used for continuous integration tooling. However, the
technical aspects of the solution could be modified to meet other requirements.

25

4. The Artifact - Screeny

Web server

«artifiact»
Web application

front-end

«artifiact»
Web application

back-end

HTTP

Continuous pipeline

«artifiact»
Screeny script

File storage server Database server

HTTP
MongoDB protocolHTTP

HTTP

«component»
MongoDB

«component»
Amazon S3

External service(s)

«component»
Slack APi

HTTP

HTTP

«artifiact»
Project	Docker
container

«artifiact»
Screeny	Docker
container

HTTP

DockerDocker

DockerHub

«artifact»
Screeny Docker

image

HTTP

Figure 4.1: A deployment diagram of the Screeny artifact

A deployment diagram can be seen in figure 4.1. The prototype consists of three
major parts; a script that runs as part of the continuous pipeline, a web application,
and one or many external interfaces where the data is presented (e.g. Slack). The
continuous pipeline interacts with DockerHub to download certain scripts, which will
be described shortly. Additionally, the web application is supported by a database
that is used for storing and querying structured data and a file storage service used
for storing the screenshots. The continuous pipeline script uploads files directly to
the file storage services, and the files can also be accessed by any external interfaces,
in order to present the data.

4.1.1 Continuous pipeline script
The continuous pipeline script is denoted Screeny script and is responsible for taking
screenshots of the software project. The script is configured to run whenever a
commit is made to a Git repository. The repository also contains several files to set
up and configure both the continuous pipeline, temporary project deployment, and
screenshot automation.

4.1.1.1 Temporary project deployment

When continuous pipelines are executed, the project code is locally available in the
temporary environment. A common task would be to run a test suite as part of
the pipeline. Such a script would install any required software and dependencies,
configure the project, and then run the test suite as a CLI program.

While similar steps are used for the Screeny script, there is a notable difference
in that the project needs to be accessible from a web browser, and not just a test
suite executed as a CLI program. This scenario is closer to a full deployment of the
project, either in development or production. However, as the script acts as the web
browser and runs in the same environment, local access is sufficient. This solution
differs from continuous deployment in the sense that the project does not need to

26

4. The Artifact - Screeny

be deployed publicly and to an external server. The project is only temporarily
deployed, within the continuous pipeline environment, for the execution time of the
script.

To solve this, Docker is used as part of the continuous pipeline. The project is
required to have a "Dockerfile" that defines its software dependencies as well as how
to configure and run the project’s web server. If the project already uses Docker in
either development or production, this requirement is already met. The continuous
pipeline script launches a Docker container according to the project’s Dockerfile,
which then allows the project to be accessed through a web browser within the tem-
porary environment.

Furthermore, the Screeny script in itself is temporarily downloaded to the contin-
uous pipeline environment using Docker. The latest version of the Docker image
downloaded from DockerHub, which is an official service to publish Docker images.
This approach comes with a few benefits. Firstly, this ensures that the latest ver-
sion of the Screeny script is run, as the image is downloaded from DockerHub first
when the continuous pipeline is executed. Secondly, this avoids the need to store
any Screeny script files in the Git repository of every software project, apart from
the configuration that is specific to the project itself.

4.1.1.2 Screenshot automation

The primary purpose of the Screeny script is to obtain screenshots of the UI of the
software project with which it is being run. To accomplish this, Google Chrome
is controlled as a headless browser using Puppeteer (Google 2020). The browser is
executed with a fixed screen resolution of 1440x900, which was deemed sufficient to
capture ordinary desktop websites.

Screenshots are taken according to a list of page paths (e.g. /Team representing in-
tunio.se/Team), which is specified in the Screeny configuration file screeny.js. This
configuration file is part of the project’s Git repository. Apart from page paths, cus-
tom scripted interactions may also be specified in the configuration file by directly
controlling the Puppeteer browser, for instance, to click a button to trigger a specific
UI state. This approach adheres to the second generation of automated testing by
directly interacting with the underlying GUI elements, as described in 2.6.2.

27

4. The Artifact - Screeny

DockerHub Project	Docker
container

Screeny	Docker
container

File	storage
service

Web	application
back-endScreeny	script

Download	Screeny

Docker	image

Start	project	container

Start	Screeny	container

Take	screenshots	of	
project	over	HTTP

HTTP	response
Upload	screenshots

URLs	to	screenshots

Send	list	of	screenshot	URLs

OK

Stop	container

Stop	container

Figure 4.2: Sequence diagram of the continuous pipeline

When the continuous pipeline is run, the script starts both the project Docker con-
tainer and the Screeny script Docker container, as illustrated in the sequence diagram
in figure 4.2. The project container exposes a web server which is accessible via a
specific hostname and port. For the Screeny script to have access to the temporarily
deployed project, a Docker network is configured between the two containers. The
Screeny script is then invoked to access the page paths and perform the interactions
on the specified hostname (the Docker container name) and HTTP port (e.g. 8000),
in order to take the desired screenshots. The screenshots captured by the headless
browser are then uploaded directly to the file storage solution, as mentioned in 4.1,
and the direct links to the uploaded images are obtained. Finally, the screenshot
links are sent to the back-end using an HTTP request, together with metadata of
the Git commit.

4.1.1.3 Configuration

The following few files need to be added to the project’s Git repository to set up
the artifact.

screeny.js The Screeny configuration file controls the screenshot automation us-
ing a list of page paths and custom interactions. The developers must keep this
configuration file up to date to ensure that all desired pages are captured as the
project evolves.

run-pipeline This file executes the continuous pipeline script and starts both the
Screeny script and the project as part of a network, as described in 4.1.1.1.

28

4. The Artifact - Screeny

bitbucket-pipelines.yml The Bitbucket Pipelines configuration file schedules
the run-pipeline file to run when a commit is made, either to any branch or to
a specific set of branches.

4.1.2 Web application
The central part of the artifact is a web application that both manages and presents
all the collected data. The front-end consists of a simple interface that enables
the user to explore the UI changes of a particular software project. The back-end
primarily handles the incoming data from the continuous pipeline script.

4.1.2.1 Front-end

The web application consists of three pages; a list of projects, a list of commits
within a project, and a detailed comparison of the UI changes that were made by a
particular commit.

Figure 4.3: The list of projects

The list of projects can be seen in 4.3. This page provides a simple overview of
all projects that are configured to be used with the artifact, with the most recent
screenshot visible as a thumbnail image to allow for quick recognition.

Figure 4.4: The list of commits for the "Intunio website" project

29

4. The Artifact - Screeny

When navigating to a project, a chronological list of all the past commits are pre-
sented. This page is displayed in figure 4.4, however only the topmost commit is
visible in the screenshot. The commits include relevant metadata such as the au-
thor, timestamp, and commit message. Most notably, if any UI was changed in the
commit, screenshots of affected pages are presented as thumbnail images.

Figure 4.5: Detailed comparison of before and after the UI change (side by side)

A detailed comparison of the UI changes can be viewed by clicking one of the image
thumbnails. The comparison has a few settings to help identify and understand
the visual changes that were made. The highlight setting, if activated, places a red-
tinted semi-transparent overlay on the areas that had visual changes. This feature is
useful to help identify smaller changes, such as spacing and font sizes. Furthermore,
two layout options are available. The side by side option shows the screenshots of
the previous version (left side) and the new version (right side) next to each other.
This can be seen in figure 4.5. If the highlight is enabled, it is only visible on top
of the screenshot of the new version. The overlay option shows only a screenshot
of the new version, with or without the highlight, though much bigger as it fills the
entire screen.

4.1.2.2 Back-end

The back-end of the web application provides a few simple API endpoints for obtain-
ing the data, which is used by the front-end interface. However, the most interesting
yet complex aspect of the back-end is to retrieve, process and store the incoming
screenshots and metadata from the continuous pipeline script.

For every commit, the back-end retrieves a list of screenshot URLs, as well as meta-
data about the commit. Each screenshot is uniquely identified by a key being either

30

4. The Artifact - Screeny

the page path or a given name (in the case of a custom interaction). This value
is denoted the screenshot key. A flowchart of the screenshot storage procedure can
be seen in figure 4.6. First, the previous screenshot with the same key needs to be
obtained to determine if the commit actually modified the captured UI. The two
screenshots can then be compared to determine if they are identical or not. If the
screenshots are identical, the screenshot with the particular key is not stored with
the new commit, indicating that no UI change occurred.

Find previous commit
with the same

screenshot key

No YesAre the old and new
screenshots identical?

Don't store the screenshot
in the new commit

Store the screenshot in
the new commit

Figure 4.6: Flowchart of screenshot comparison procedure

Git commits are structured as a tree, with each commit being a node that typically
has one parent node, and any number of children (in the case of branches). Hence,
the commit that most recently changed the same part of the UI can be found by
traversing the parents recursively and checking whether the commit has a screenshot
with the same key, starting at the current commit. The algorithm is defined as
pseudo-code in figure 4.7. If the traversal reaches the root, it can be concluded that
the commit introduces a new page or state that was not previously seen.

getOldScreenshot(screenshotKey, commit)
if the commit contains the screenshotKey

oldScreenshot = get the screenshot with
the same screenshotKey from the commit

return oldScreenshot

if the commit has a parent
recursively run getOldScreenshot(screenshotKey, parent)
to traverse the tree upwards

else
Root was reached: conclude that screenshotKey was not
part of any previous commit

Figure 4.7: Pseudo-code of the algorithm used to find the most recent commit with
the same screenshot key.

If a match is found, the images are compared using the pixel-by-pixel comparison li-
brary Pixelmatch (Mapbox 2020), which is based on the image comparison literature

31

4. The Artifact - Screeny

described in 2.7. The library is used to detect if the two screenshots are identical,
and if they are not, the library provides an image displaying the pixel differences
in red. This image, which can be seen in figure 4.8 below, is used for the Highlight
setting mentioned earlier.

Figure 4.8: Visualization of the pixel difference between two screenshots

4.1.3 External interface (Slack)
Information about the UI changes can be sent to any number of external services.
However, only Slack was added at the time of the third iteration.

By notifying a Slack chat channel of any UI changes, both designers and developers
could easily follow the progress and discuss the changes. Technically, the back-end
of the web application sends a message to a bot user within a predefined channel
using the Slack API, whenever a UI change is detected.

Figure 4.9: The Slack message with its corresponding thread conversation.

As seen in figure 4.9, the Slack message includes metadata, such as commit message
and author, as well as a small thumbnail of the page. Furthermore, it presents a
percentage indicating how many pixels were affected by the change. Most notably,
the message includes a button which opens the web application with the detailed
comparison of the particular UI change.

32

4. The Artifact - Screeny

The bot also initiates a threaded conversation connected to the message, with the
purpose of inviting the designers and developers to discuss the changes within the
thread, to encapsulate the messages that relate to a particular screenshot and thus
reduce the clutter in the channel itself.

4.2 Practical limitations
The artifact has several known limitations which have not been addressed due to
time constraints.

• Screenshots are only taken using Google Chrome. As a result, cross-browser
issues are not detected.

• Screenshots are only taken with a single, fixed resolution of 1440x900. Hence,
alternative sizes, such as mobile and tablet, are not captured.

• The image comparison algorithm calculates the difference only from top to
bottom, which is problematic when a new UI element is added above the
existing UI. As the existing UI is pushed downwards by the new element, a
difference is detected in almost every pixel.

• Only web-based software projects are supported, as the screenshots are taken
by headless browsers. In theory, different platforms could be supported by
changing the continuous pipeline script.

• Git merging is not properly handled. As a consequence, the artifact may not
find a commit where the same page or state was previously changed, and hence
falsely conclude that it was just introduced. In the case of a merge, a commit
node has two or more parents, which was not handled properly as the issue
was detected during the final evaluation.

33

4. The Artifact - Screeny

34

5
Results

This chapter starts by presenting the data and findings from each of the data collec-
tion methods as part of the DSR iterations (see table 3.1 for an overview). Through-
out this chapter, we derive six problems (denoted P.1 to P.6) based on a various data,
both from the literature and from this study. These problems are defined by this
study and serve as a motivation for the proposed solution. Finally the findings are
summarized and grouped by the two research questions, including the list of the
derived problems.

5.1 Findings per iteration
During each iteration, we identify problems, provide a suggestion, develop a solution,
evaluate the solution, and finally conclude the findings. The section presents the
main findings per iteration.

5.1.1 Iteration 1
The focus of the first iteration was to understand the underlying problems in de-
signer and developer collaboration, which would guide the suggestion of a potential
solution. To summarize, a literature review was done, a focus group was held, a
questionnaire was sent out, the first artifact was created, and a demonstration was
held, showcasing the artifact with the aim to gather feedback.

5.1.1.1 Literature review

The reviewed literature that relates the collaboration between designers and devel-
opers was previously presented in full, in 2.3 as part of the background chapter.

The work by Maudet et al. (2017) directly contributed to the understanding of the
problems. The authors note that there is a gap between design and implementation,
which the developer needs to bridge through interpretation. We defined this problem
as a P.1. However, the most notable contribution by the authors is the definition of
design breakdowns, which we defined as P.3. In related work by Maudet et al. (2019),
it was made clear that interactions and animations are difficult to communicate,
which led to the definition of P.4. Finally, Ferreira, Sharp, et al. (2011) found that
developers create improved solutions on their own, which was defined as P.2.

35

5. Results

5.1.1.2 Focus group

Insights from the focus group contributed to a general understanding of the collab-
oration between designers and developers at the company. Furthermore, all partic-
ipants had vast work experience and provided personal anecdotes to showcase the
problems they experience daily. The participants had experience both from projects
at Intunio and at external clients. However, the participants did in some cases not
specify from which project the experiences were based on. The group consisted of
3 employees, denoted persons A, B, and C. The employee roles were designer (A),
developer (B), and one with expertise in both fields (C). A set of questions was be-
forehand to guide the discussion, which was described in detail in 3.2.2. In summary,
the questions touched upon the current process and problems with regard to the UI
implementation process. Lastly, potential solutions were discussed. The questions
were informed by the literature related to agile processes and collaboration practices.

The employees at Intunio usually follow an agile process for most of their projects.
However, the procedures vary from project to project, depending on the size and
needs of the project. Examples of such procedures are meetings, code reviews, and
sprint demos. Their projects are normally built by cross-functional teams, con-
sisting of both designers and developers. The designers normally finish the design
specification before handing it over to the developers, being one step ahead of the
development process, in line with the literature described in 2.3. There was a mu-
tual understanding between the designers and developers that a design specification
does not fully cover all areas of the final software, mostly due to time constraints
and efficiency. The developers were quite used to fill in the gaps where needed. This
finding further confirms P.1 (improvisation).

Problems were often discovered late in development. Most notably, on one occasion,
design errors in the implemented UI were noticed by the designer during the demon-
stration to a client. The participants suggested this stemmed from the challenge of
keeping up with changes as the project is developed. To quote person A: "In some
cases, a designer designs a feature which then another person sends to a developer,
who implements the feature which then a project leader accepts as finished, without
acknowledgment from the original designer, even if the designer was not happy with
the implementation". It became clear that this problem was rooted in the process
of following up on the design implementation, which was either missing entirely or
insufficient. Person C had tried to solve the problem himself by introducing a "gate-
keeping" process where new changes in the implemented UI needed to be approved
by him before being published. While this approach was time-consuming, it helped
with catching errors before release. We defined the lack of awareness of the UI im-
plementation progress as problem P.5. The proposed solution was greatly impacted
by this insight in the sense that the core functionality help designers track the UI
implementation.

Both person B and C manually took screenshots and videos and used them as a way
of communicating status updates and feedback regularly, typically through Slack.
Furthermore, the participants agreed that certain aspects of the user interface, such

36

5. Results

as animations, are more difficult to convey than others, which confirms P.4 (anima-
tions). Both participants agreed that this was a slow and inefficient way of following
up on implementation changes, which lead us to suggest a solution that would au-
tomatically post screenshots of UI changes to Slack, as a way of facilitating this
communication.

Person A did not regularly follow the design implementation on his own due to tech-
nical difficulties with setting up the development environment locally. Occasionally,
he tested the software at the developer’s computer, however mostly when the devel-
oper invited him to do so. Person C explained that when working with web-based
projects, there were cases where a staging server was set up, through which the de-
signer could test the development version of the software. However, this was only the
case in certain projects, even though the staging server was noted to be beneficial to
the designer and helped assess the changes made during the implementation process.

Lastly, the focus group discussed what a potential solution would be. All of the
employees wanted a simple way of following up changes made during development
without adding too much overhead to their already established process. They men-
tioned that broadcasting changes through a project-specific Slack channel could be
useful. However, person A argued that it would lead to even more daily notifications
on Slack, which could be disturbing. Despite this, everyone preferred Slack rather
than email. The argument of disturbance sparked a discussion of only notifying
the team when changes had been made to specific git branches, for instance, the
development branch. Furthermore, it was suggested that the solution should only
trigger when it detects a UI change, i.e. not for every single commit.

5.1.1.3 Questionnaire

Answers to the questionnaire were received from nine of the Intunio employees. Five
of the respondents are developers, three designers, and two a mix of both. One of
the findings was that while all respondents use Slack and Zeplin, only the develop-
ers use Bitbucket. It was clear that communication was maintained regularly, with
most respondents stating that they communicate either daily or a few times a sprint.
Even though communication is practiced regularly, all designers answered that they
were either neutral or quite unaware of the implementation progress during a project
(P.5), which motivates the proposed solution of an automated way to track the UI
implementation progress.

According to the questionnaire, most of the designers are confident or very confident
that the design would be implemented correctly by the developer, with their current
level of communication. However, two people felt that they were quite unconfident.
When asked the same question but without the ability to communicate with the
other role, all respondents but one downgraded their answers. Most notably, all de-
signers downgraded their answers to either being unconfident or quite unconfident,
which indicate a correlation between communication level and the confidence that
the design would be implemented correctly.

37

5. Results

In the following section of the questionnaire, the respondents were asked to rate
how often they perceive that a certain design breakdown occurs. The categories
of design breakdowns are defined as Missing information, Edge cases and Techni-
cal constraints, as previously explained in section 2.3.3. The questions were asked
to both designers and developers. However, the errors are likely discovered by the
developer during implementation. Hence, the designers were asked to consider how
often they experienced that the developer asked for clarification or created impro-
vised solutions where their design was not sufficient. The table below shows how
the different roles responded to the different questions, divided by each design break-
down. The numbers indicate how often they perceive that the problems occur, one
a scale from one to five (never to very often).

1
(never)

2 3 4 5
(very often)

 Missing information 0 2 1 2 4

- Designer 0 1 1 1 0
 - Developer 0 1 0 1 2

 - Mix of both 0 0 0 0 2

 Edge cases 0 0 2 3 4

- Designer 0 0 1 2 0
 - Developer 0 0 1 1 2

 - Mix of both 0 0 0 0 2

 Technical constraints 1 1 2 4 1

- Designer 1 0 1 1 0
 - Developer 0 1 0 3 0

 - Mix of both 0 0 1 0 1

Figure 5.1: Heat map of the questionnaire results.

Looking at the Missing information row in the table 5.1, it is clear that the large
majority of developers and multidisciplinary employees feel that the designer has
not fully specified the design. The designers also felt that missing information was
an issue, though to a lesser extent. The question regarding the Edge cases had
similar results, though on the higher end of the spectrum, indicating that such
errors happen quite often. The results to the final question regarding Technical
constraints show that five of the participants perceive such errors to occur often or
very often. At the same time, the rest were spread across the remaining choices.
This data confirms problem P.3, concluding that all categories of design breakdowns
are frequently occurring.

5.1.1.4 Demonstration

After the first iteration, the early artifact was demonstrated to 11 of the Intunio
employees in order to gather feedback. Primarily, the intention was to validate the

38

5. Results

idea behind the proposed solution and the functionality that was part of the arti-
fact. In general, the participants liked the solution and the direction of which the
artifact was heading. At the time, the artifact was only a proof of concept that
took a screenshot of a web-based project whenever a Git commit was made. The
screenshots were uploaded to a given Slack channel.

The participants thought that the Slack integration would fit their current workflow
without adding too much overhead to their way of working. However, they were
concerned about how often the Slack bot would post changes to the Slack channel.
At the time being, the bot posted on every commit on any branch, making any other
communication on the channel difficult due to the constant stream of bot messages
filling up the screen. Furthermore, they also only wanted to be notified of visual
changes in the project, not every commit. Furthermore, they wanted to more easily
detect what part of the user interface changed compared to the previous version.

Based on these insights, the proposed solution was adapted to include both selection
of which Git branches are relevant to be processed, and detection of image changes,
in order not to notify the users of changes that are not relevant. Furthermore,
the participants requested more clear visualizations of the UI changes. Though,
as the customization options of Slack messages are limited, the solution was also
extended to include a separate web application where the visual differences between
screenshots could more clearly be highlighted. A direct link to the web application
would be provided with each message in Slack to provide the users with convenient
access.

5.1.2 Iteration 2
The main focus during iteration two was to further explore and develop a solution
to the problems that had been identified previously.

5.1.2.1 Analysis of chat communication

Messages from three of Intunio’s Slack project channels were analyzed using the-
matic analysis. The purpose was to strengthen the reliability of the results from
the focus group and questionnaire. A total of 39 messages were considered as they
related to UI changes. Themes were identified among these messages to detect com-
mon behaviors. The themes are presented in table 5.1, together with the frequency
of occurrence. It was clear that both designers and developers were active in the
channels, and communication was in many cases held daily between the group mem-
bers.

39

5. Results

Behavior Frequency
Designer shares screenshot after testing the demo-version 8
Status update from developer with screenshot 6
Status update from developer 6
Feedback from other stakeholder 4
Status update from developer with video 4
Designers and developers discuss the technical implementa-
tion

3

Feedback from designer 2
Developer asks for design assets 2
Developer asks for design change 2
Designer shares video after testing the demo-version 2

Table 5.1: Results from the Slack channel analysis.

All three projects were automatically deployed either to production or a staging
environment whenever the developer pushed a change to specific branches. As a
result, the designers themselves were able to access the latest deployed version and
assess the implemented UI, which was visible in the most frequent behavior. Another
notable behavior was that developers regularly notified the chat channel, primarily
the designers, that something had been deployed and could be assessed. With the
notification, other stakeholders, such as business-related roles, also took the oppor-
tunity to share their opinions about the recent changes.

Based on these insights, the proposed solution was deemed to be beneficial in the
sense that it would facilitate an existing behavior in a more automated fashion, re-
ducing the need for manually sent screenshots and status updates. By reviewing the
chat conversations, we found that the discussions could be relatively unstructured,
which sparked the idea of encapsulating the discussions within threads concerning
each screenshot to make discussions easier to follow.

5.1.2.2 Demonstration

The artifact was then presented to four of Intunio’s employees at the end of the
second iteration to obtain feedback and detect shortcomings. Additionally, the ses-
sion aimed to investigate what blocking issues exist in order to run the artifact with
some of their projects.
The participants liked the solution, just like during the first demonstration. Further-
more, they appreciated the progress that had been made with the artifact since the
last time, indicating that it was on the right track. In particular, the newly added
way of selecting a project and seeing all of its commits was appreciated. They noted
that it would facilitate the process of tracking UI changes, especially historically,
as they could scroll through a list of commits while seeing a thumbnail image of
the UI changes for every commit. Furthermore, they liked the aesthetics of the web

40

5. Results

application and its navigation. In general, the participants believed that the arti-
fact would improve the way they collaborate, especially during the early phase of a
project.

When asked about the blocking issues for running the artifact with their projects,
the participants noted that the artifact, in its current state, would not work with
the majority of the projects they had in mind, due to some of them being native
mobile applications and some requiring dynamic interactions, such as logging in or
clicking a button, in order to access all the pages of the project. The participants
were also missing the ability to define custom screen resolutions of the screenshots
as most of their projects are responsive and hence made for multiple devices, such
as desktops and mobile phones.

The artifact would only fully support one of the projects in its current state. While
native mobile applications are out of the scope of this study, the support for cus-
tom interactions was deemed reasonable to develop. Hence the artifact was further
adapted to not only support taking screenshots through a list of page paths but
also from scripted interactions, such as clicking a button (which was described in
4.1.1.2). Through this addition, the artifact could support two additional projects.

5.1.3 Iteration 3
During the last iteration, the focus was put on evaluating the final artifact.

5.1.3.1 Simulation

Simulation data were collected from three historical projects, denoted A, B, and
C, consisting of a total of 785 commits. As seen in table 5.2, a total of 293 of the
commits affected the UI, but only 18 chat conversations in the original projects’ slack
histories were related to UI changes. As noted, many UI changes were not discussed
in Slack. Hence, the artifact could potentially have triggered conversations regarding
UI changes that were previously not discussed. The simulation method is however,
only able to compare the artifact’s performance to the number of conversations that
actually did take place.

Project Total commits UI changes Chat conversations
A 60 44 2
B 200 70 1
C 525 179 15

Table 5.2: Simulation projects

The simulation resulted in a metric stating the portion of the 18 historic chat con-
versations that the artifact could potentially have initiated by a screenshot of the UI
change. If so, the time difference between the UI change and the chat conversation

41

5. Results

is calculated to determine how long it previously took to detect the error.

An example of a supported case can be seen in the two following figures below.
Figure 5.3 illustrates an example of a historic Slack conversation by a designer who
notes an error in the design implementation, which in this case was due to a text
being wrong. The following picture, namely figure 5.2, shows the simulated output
of the artifact for the same example commit. Though this time, it was not manually
brought up by a designer but rather a follow-up of an automatically generated chat
message. The same conclusion was drawn, i.e that the design implementation was
faulty and needs correction.

Figure 5.2: Slack discussion regarding a design error manually initiated by an
employee

Figure 5.3: Slack discussion regarding a design error prompted by the Screeny
Slack bot

42

5. Results

Table 5.3 below presents the results of the simulation of the three projects. A row
in the table is one conversation that relates to a UI change, based around one or
multiple screenshots, in the project’s Slack channel. The "supported" column states
whether the artifact was able to take a screenshot of the UI change or not. Lastly,
if the artifact supported the case, the time difference between the UI change and
the chat conversation is noted in the last column. The difference is not calculated
for unsupported cases as the commit can not be identified in the simulation data.

Case Project Supported Difference (days)
1 A No -
2 A No -
3 B Yes 39
4 C Yes 52
5 C Yes 0
6 C No -
7 C Yes 42
8 C No -
9 C No -
10 C No -
11 C Yes 1
12 C No -
13 C No -
14 C Yes 0
15 C Yes 57
16 C Yes 57
17 C Yes 0
18 C No -

Table 5.3: Simulation results

As seen in table 5.3, the artifact was able to capture screenshots that could support
9 out of 18 observed cases, i.e 50% of the time. Furthermore, with the supported
cases, the difference in time between the UI change and the chat conversations was
large in general, averaging at 28 days with a median of 39.

The reasons that the artifact was not able to support nine of the cases can be di-
vided into the following categories. Three of the cases consisted of discussions that
related to animations in the project, which the artifact did not support since it only
captured static screenshots. Two of the cases concerned UI that required specific

43

5. Results

interactions to access, for instance clicking a button to navigate to a specific UI
state. While the artifact does support custom interactions, support for the specific
cases need to be explicitly programmed, which was not the case during the simula-
tion. Two of the cases were unsupported as they related to a responsive variant of
the project, e.g. mobile UI, which is not supported by the artifact due to its fixed
resolution. Finally, two of the cases were not supported due to structural changes
in an externally hosted content management, which had changed since the commit
was made. Hence, the case might have been captured if the artifact was run at the
time of the actual commit.

Apart from the limitations of the artifact, screenshots from some commits could not
be captured due to external software dependencies no longer being functional, which
is a problem with the simulation approach, and not a limitation of the artifact.
However, none of the chat conversations related to a commit that could not be
captured, and hence the result is unaffected.

5.1.3.2 Interviews

Five employees from the company were interviewed to evaluate the artifact and to
determine how they believe it would affect their collaboration. Additionally, the
participants were asked to give general feedback on how to make the solution bet-
ter. Out of the five interviewees, two were developers (denoted A and B), two were
designers (C and D), and one was a mix between both (E).

A few questions which the participants previously answered in the questionnaire were
asked once more. The participants’ old answers were stated, and they were asked to
consider if and how they believe the artifact would have affected their answers. All
participants made it clear that the level of communication varies depending on the
type of project. All participants thought that they would have communicated more
had the artifact been present. Person D believed that the artifact would have been a
good conversation starter, as they generally do not want to disturb one another and
therefore are hesitant to initiate communication. We defined this finding as problem
P.6. Furthermore, the perceived urgency of the communication would be reduced,
in the sense that the designer could review the contents when available, rather than
feeling the need to answer instantly.

When asked about their awareness of the UI implementation progress during the im-
plementation process, all agreed that the artifact would have benefited their aware-
ness. The designers thought the change in awareness would be improved majorly,
though both developers and designers were believed to be positively impacted. Both
designers agreed that being able to follow up on visual changes is beneficial in terms
of general awareness during the project, as they sometimes lack the ability to run
the project themselves.

Another question from the questionnaire regarded their confidence about the imple-
mentation being done correctly according to the design specification. Person B, a
developer, explained that while trying to fill the gaps in lacking design specifications,

44

5. Results

he misses the designer’s original intentions and has to revisit his work in 8 out of
10 times. This confirmed problem P.2 regarding improvisation, though the intervie-
wee did not seem reluctant to do so. He notes that the artifact would dramatically
improve his way of working as it would lead to designers catching potential errors
earlier. Person E notes that he usually reviews the implementation manually, many
times during a project and that the artifact hence would have saved him both time
and effort.

Lastly, the following are some concluding thoughts from each of the interviews:

• Person A, developer: "The artifact would lower the barrier of communica-
tion between the roles and also save me time as a developer so that I do not
have to, for example, send videos of my implementation progress."

• Person B, developer: "The feedback cycle from publishing a design specifi-
cation, me implementing it and then sending it back to the designer is quite
long. Using the artifact in our project would make it shorter and also lower
the risk of design errors along the way."

• Person C, designer: "Using the artifact as means of verification is great as
I can give feedback at my own pace, though, as I have not used the artifact in
a real project, it is hard to imagine how effective it would be."

• Person D, designer: "The artifact would have helped me catch small, pixel
imperfections in the UI implementation, which I mostly miss as they are usu-
ally hard to notice."

• Person E, a mix of both: "Initiating conversations and asking what others
think can at times interrupt people’s workflow. With the artifact in hand, I
can definitely see how the process would have been much smoother."

To summarize our results from the interviews, a thematic analysis was performed, as
shown in table 5.4. The table is divided into three columns, theme, where common
themes found in the interviews have been categorized, No. of participants noting
how many of the interviewees brought up the selected theme during the interview
and theme description where the meaning of the various themes are described.

45

5. Results

Theme No. of participants Theme description
Facilitates
communication

4 participants The artifact would have facilitated the
communication during a project.

Implementation
awareness

4 participants The artifact would have raised their
implementation awareness during a
project.

More confident 4 participants The artifact would have made the par-
ticipants more confident that the de-
sign is implemented correctly.

Initiates
communication

4 participants The interviewee mentions that the ar-
tifact would have made it easier to ini-
tiate communication during a project.

Catches errors 3 participants The artifact would have increased the
rate of catching visual errors in a
project.

No custom
resolutions

2 participants The artifact lacks the ability to define
custom resolution sizes.

No annotation
support

2 participants The artifact lacks the ability to anno-
tate the screenshots while on the web-
site.

Table 5.4: Thematic analysis of the interview results

Four out of five of the interviewees agreed that the artifact would have facilitated
their communication and made it more consistent. While communication usually
happens regularly, manually sending status updates of UI changes is easy to forget,
as noted by one person. Four out of five also agreed that their implementation
awareness would have been improved by using the artifact. Furthermore, four out
of five believed the artifact would have made them more confident that a design
is correctly implemented. While the developers themselves would not send status
updates more often, the general implementation awareness in the team would likely
be raised as the solution would automate the procedure. During the interviews,
we learned that the participants were generally hesitant to initiate conversations in
order not to disturb the other person (P.6). Four out of five participants noted that
the artifact would reduce the bar to initiate conversations, and hence help catch
visual errors, both earlier and at a higher rate.

While the interviewees generally had a positive attitude towards the artifact, a
variety of potential improvements were also suggested. Two of the interviewees
lacked the possibility of defining custom resolutions when using the artifact, which
would have led to it missing screenshots of, e.g. mobile device screen sizes. Different
participants had previously requested this during the demonstration of the second
iteration (5.1.2.2), which indicates its importance. Two of the interviewees requested
the ability to add annotations to specific areas of the screenshots to communicate
more easily in connection to a specific part of the UI. As noted by one of the

46

5. Results

interviewees, "Annotating a particular area on the screenshot would have made it
easier to communicate the problem to others, instead of trying to describe it in
Slack.".

5.2 RQ1 (Problems)
A variety of problems occur during the process of implementing user interfaces, with
regards to the collaboration between designers and developers. The following prob-
lems have been identified and confirmed to occur, based on the literature presented
and data collected at the company during this study.

• P.1: Design mockups are often incomplete, either intentionally due to resource
limitations, or by mistake. As a result, developers need to fill in the gaps
through interpretation.

• P.2: Developers sometimes create improvised solutions where the design is
missing or incomplete. Developers regularly need to rework improvised solu-
tions as they are occasionally deemed unsatisfactory by the designer.

• P.3: All categories of design breakdowns regularly occur during implementa-
tion due to insufficient design mockups, requiring rework or additions by the
designer.

• P.4: Certain aspects of a design, such as animations, are difficult for designers
to communicate to developers.

The following problems were identified in the data, yet only vaguely described in
the literature, or not found at all.

• P.5: Designers are often not aware of the state of the UI implementation. As
a result, issues with the design mockup or the implementation are discovered
late in the process.

• P.6: Designers and developers are both generally hesitant to initiate com-
munication, in order not to disturb the other person, despite that regular
collaboration between the roles is known to reduce errors.

5.3 RQ2 (Solution Candidate)
The problems related to interpretation (P.1), improvisation (P.2), lack of awareness
(P.5), and hesitation to initiate communication (P.6) were deemed the most relevant
and promising for a potential solution to mitigate. This decision was made to reduce
the scope of the study in order to meet the time constraints.

5.3.1 Proposed solution
As described in 5.1, potential solutions to these problems have evolved iteratively
during the study. After three iterations, the proposed solution consists of a tool

47

5. Results

whose primary purpose is to facilitate awareness and regular communication be-
tween the designers and developers throughout the implementation process. The
details of our implementation of the final solution were described in chapter 4.

In summary, the tool regularly captures screenshots of the implemented user inter-
face, whenever the developer publishes any UI changes to the code version control
system. If the screenshots differ visually from the last version, the screenshots are
automatically posted into a chat channel where both the designer and developer are
present.

The automated screenshots allow the designers to keep track of the implementation,
even without any contact with the developer (addressing P.5). Furthermore, this is
thought to both help catch mistakes in the UI implementation (P.1) and to identify
improvised solutions that may need the support of a designer (P.2). Furthermore,
as the screenshot messages are sent automatically in a chat channel where both
designers and developers can instantly communicate in connection to the message,
the threshold of initiating contact with the other person is thought to be lower (P.6).

5.3.2 Evaluation
The interview and simulation data, obtained by evaluating the final artifact, indi-
cates that the solution could mitigate the problems to some degree.

While errors related to interpretation (P.1) or improvisation (P.2) would still occur,
four out of five interviewees thought that the solution would both facilitate com-
munication and raise awareness of the implementation. Furthermore, three out of
five interviewees noted that more errors would be caught using the solution. Thus,
issues are believed to be identified earlier, and hence new issues that arise if the
original issue is not mitigated might potentially be avoided entirely. The simulation
data further confirmed this by showing that an average of 28 days passed between
the introduction of an error and until it would be identified. In contrast, the so-
lution would enable errors to be spotted when they are introduced, given that the
solution is able to capture the error. The results show that the current state of the
solution would capture half of the errors in our data set. However, the data set
only consisted of a small number of conversations, yet the number of commits that
caused UI changes were a few hundred (as seen in table 5.2). Hence, it is not clear
whether the artifact could potentially have captured design errors in commits that
were not discussed.

The interview data showed that the solution was believed to reduce the barrier of
initiating contact (P.6) by four out five interviewees, as the communication would
happen in connection to an automated message. It was suggested that an automated
message was believed to be less urgent than if sent by a co-worker. However, during
the focus group, one person noted that Slack notifications are disturbing, yet the
participants of the interviews did not note that this would be problematic.

48

5. Results

Finally, four of five interviewees believed the solution would help them stay aware of
the implementation progress (P.5), which was believed to help designers verify the
implementation. Furthermore, the solution was thought to make the participants
more confident that the design is correctly implemented.

49

5. Results

50

6
Discussion

The following chapter discusses the contributions of the report and lists the main
threats to validity encountered during the study.

6.1 Contributions
In this study, we present Screeny, a solution to mitigate some of the problems that
occur during the UI implementation process. Hence, we contribute an increased
understanding of how such an artifact can be constructed to meet our specific goals.
Most problems that this study identified were previously described in the literature,
however, often based on case studies. Our findings contribute to these studies by
confirming that the problems exist at yet another company, in particular a small-
sized software consultancy. Through our confirmation, we incrementally increase
the likeliness that these problems are general and widespread within software devel-
opment.

The problems that relate to interpretation (P.1) and design breakdowns (P.3) were
already well described by Maudet et al. (2017). Furthermore, in another study
Maudet et al. (2019) describes that touch-based gestures and animations are diffi-
cult to communicate and hence prone to errors (P.4).

Improvisation (P.2) was described by Ferreira, Sharp, et al. (2011) in the sense that
developers were reluctant to improvise solutions on their own. While we confirm
the existence of improvisation, our findings do not show that the developers are
reluctant to improvise, in contrast with the mentioned study, despite occasionally
having to rework their solutions.

Notably, the following two problems identified were only briefly described in the
literature.

We found that designers are not aware of the UI implementation progress (P.5).
Similarly, Friberg et al. (2017) briefly noted that the designers were not integrated
into the development process and hence lacked knowledge of each others’ work. How-
ever, our findings also show that designers often are not only unaware of developers’
daily work but are unaware of the state of the UI implementation in general. As
a result of this, issues related to the UI implementation are found late in the process.

51

6. Discussion

Finally, we learned that the roles are hesitant to initiate communication in order not
to disturb one another (P.6). This problem was briefly touched upon by Ferreira,
Sharp, et al. (2011) in the sense that the designers would never initiate contact.
However, the designers in our study did initiate communication regularly, although
both designers and developers were hesitant to do so.

6.2 Implications for practitioners
For the software industry, this study highlights the need for tight collaboration
between designers and developers throughout the process in order to minimize errors.
The proposed solution appears to provide some of the benefits of tight collaboration,
without a change in process that would require the designer to participate fully in the
implementation process. The implications are an efficient utilization of the designers’
time, while at the same time, they are brought closer to the developers throughout
the implementation process. This results in an increased ability to deliver high-
quality software with fewer design errors.

6.3 Threats to Validity
Various factors risk the validity of the study and its generalizability. This section
will go through the different validity threats based on the categorization by Runeson
et al. (2012), i.e. internal, external, and construct validity.

6.3.1 Internal validity
As the study was carried out on-site, in tight collaboration with Intunio, the employ-
ees who participated in e.g. the evaluations were involved throughout the process.
As a result, all employees who participated in the study already knew our intentions
and showed interest, which might have lead to possible bias and a higher risk of
skewed answers, in particular during the interviews where the artifact was to be
critically assessed.

Finally, as no ongoing projects were suitable to test the artifact on at the time,
none of the interviewees had actually used the artifact in a real project. Hence, the
participants had to assess the artifact based on hypothetical answers to the interview
questions, i.e how the artifact would have affected their collaboration.

6.3.2 External validity
Due to the qualitative nature and as the study was conducted at only one com-
pany, our findings are not generalizable. Furthermore, the context of the study was
a small software consultancy company with less than 20 employees, which might
not be representative of the software engineering sector in large. Additionally, the
findings in this study are derived from qualitative data based on experiences and

52

6. Discussion

opinions of a limited number of participants, rather than any statistical evidence.

Additionally, as the study only focused on a single company, the data collection was
limited by the number of employees and projects. As a result, the data collection
were generally restricted to a small population, further lowering the generalizability
of the study.

Most employees at Intunio are experienced and well used to working with each other
in different team compositions. Hence, problems that generally occur during the
early phases of teamwork might have been overlooked. Furthermore, the employees
might already be used to a process or solution that mitigates certain collaboration
problems. These factors might impact the generalizability of our findings.

6.3.3 Construct validity
Various measures against low construct validity were taken. For instance, the risk
of misunderstanding the interview questions were mitigated by demonstrating the
artifact and thoroughly explaining the context. The interviews were also recorded
and transcribed, further mitigating the risk of misinterpretation.

As the interviews were based on the interviewee’s hypothetical, believed effects of
the artifact, we can not ensure that the answers would be the same if the interviewees
actually would have used the artifact as part of a real project. Furthermore, as the
interviews and one of the two demonstrations were done remotely as video calls, we
could not ensure that the interviewees fully understood the artifact’s functionality.

The evaluation was affected by the lack of suitable ongoing projects at the company
at the particular period in time. Hence, no naturalistic evaluation was possible,
although it would have been desirable to obtain a stronger result. Instead, the
described simulation method was performed using old projects and historic chat
conversations, in conjunction with interviews where several participants provided a
subjective assessment. However, the number of chat conversations were relatively
small. Furthermore, we do not know if all the communication regarding the project
took place in chat, as communication might also have occurred in person or through
other platforms.

53

6. Discussion

54

7
Conclusion

This study explored how the collaboration between designers and developers could
be improved, specifically during the UI implementation process. A novel software
artifact was constructed according to the proposed solution, as part of the DSR
methodology, to catch errors as early as possible through the facilitation of regular
communication between the roles.

Based on the literature presented and data collected at the company during this
study, a set of six problems were identified to occur with regards to the collabora-
tion during the implementation of user interfaces (RQ1). In order to narrow down
the study due to time constraints only a handful of the problems were addressed by
the proposed solution, namely P1, P2, P5 and P6.

• P.1: Developers fill in the gaps through interpretation.
• P.2: Developers improvise solutions.
• P.3: Design breakdowns occur regularly.
• P.4: Certain aspects are difficult to communicate, e.g. animations.
• P.5: Designers are often not aware the UI implementation.
• P.6: Designers and developers are hesitant to initiate communication.

A artifact was constructed to mitigate the selected problems by enabling designers
to continuously track the UI implementation progress and thus identify errors early
(RQ2). Furthermore, it also aimed to reduce the threshold of initiating communi-
cation to support more frequent collaboration.

The evaluation showed that the artifact is believed to have a positive effect on the
problems it targeted. While errors are not prevented from happening, the artifact
was thought to help catch errors earlier, as intended. For designers and developers,
the artifact was believed to improve awareness, save time and bring an increased
feeling of control. Furthermore, it was also believed to lower the barrier of initiating
communication within the project. However, an evaluation has yet to be performed
as part of a real project, as the findings were primarily based on the personal as-
sessment of a limited number of participants.

55

7. Conclusion

7.1 Significance of the study
This study makes both academic and industrial contributions. To academia, this
study brings an increased understanding of several problems already described in
the literature, primarily by confirming that the problems occur at yet another com-
pany. Furthermore, we identified a few additional problems that were not clearly
described in the literature.

In line with the DSR methodology, we also widen the understanding of how an arti-
fact can be constructed to meet our specific goals, by proposing a potential solution
that aims to mitigate a selection of the identified problems.

To industry in general, and Intunio in particular, this study contributes a concrete
concept of a software artifact that could mitigate a selection of the identified prob-
lems to some extent.

7.2 Future work
The artifact has various practical limitations, as described in 4.2. As the evaluation
indicated that mitigating these would cover a higher percentage of the errors, further
iterations would be desirable. Additionally, the proposed solution only attempts to
mitigate four of the six identified problems. The remaining two problems, P.3 (de-
sign breakdowns) and P.4 (animations), are left for future studies to address.

Two of the problems identified were not sufficiently described in the reviewed liter-
ature. Therefore we request future work to determine if these problems are local to
our company, or if they apply in general.

As noted, we have learned from interviews that the proposed solution is believed
to have a positive effect, yet we have not tested the solution in a real context. It
is critical to perform a naturalistic evaluation as part of a real project to draw any
conclusions about the effect of the solution.

Furthermore, this study was conducted together with just one small company. It is
therefore desirable to evaluate the solution within different organizations, preferably
of different sizes, to determine if the effect of the solution is applicable to other
organizations and team constellations.

56

Bibliography

Akiki, Pierre et al. (2014). “Adaptive model-driven user interface development sys-
tems”. In: ACM Computing Surveys (CSUR) 47.1, pp. 1–33.

Alégroth, Emil (2013). “On the industrial applicability of visual gui testing”. PhD
thesis. Chalmers University of Technology.

Alégroth, Emil et al. (2015). “Conceptualization and evaluation of component-based
testing unified with visual gui testing: an empirical study”. In: 2015 IEEE 8th In-
ternational Conference on Software Testing, Verification and Validation (ICST).
IEEE, pp. 1–10.

Allen, I Elaine et al. (2007). “Likert scales and data analyses”. In: Quality progress
40.7, pp. 64–65.

Alsayed, Alhuseen et al. (Feb. 2017). “IMPROVING SOFTWARE QUALITYMAN-
AGEMENT: TESTING, REVIEW, INSPECTION AND WALKTHROUGH”. In:
International Journal of Latest Research in Science and Technology 6, pp. 2278–
5299. doi: 10.29111/ijlrst..

BBC News (n.d.). Wraith. Retrieved 2020-02-21. url: http://bbc-news.github.
io/wraith/.

Ben Nadel (2020). The most common mistake engineers make during the designer-
developer handoff. Retrieved 2020-04-24. url: https : / / www . invisionapp .
com / inside - design / developer - engineer - handoff - mistakes / ?fbclid =
IwAR2FAePSy0bXZkS3eQMdQLKUys1LwxDsuI8gPw45bqXZJDLwZKfll_unVz8.

Braun, Virginia et al. (Jan. 2012). “Thematic analysis.” In: pp. 57–71. isbn: 978-1-
4338-1003-9.

Budwig, Michael et al. (2009). “When user experience met agile: a case study”. In:
CHI’09 Extended Abstracts on Human Factors in Computing Systems, pp. 3075–
3084.

Cockton, Gilbert et al. (Jan. 2016). Integrating User-Centred Design in Agile Devel-
opment. isbn: 978-3-319-32163-9. doi: 10.1007/978-3-319-32165-3.

DeAmicis, Carmel (2019). “The Decade of Design”. In: IEEE. url: https://www.
figma.com/blog/the-rise-of-ux-ui-design-a-decade-in-reflection/.

Dresch, Aline et al. (Sept. 2014). Design Science Research: A Method for Science
and Technology Advancement. isbn: 978-3-319-07373-6. doi: 10.1007/978-3-
319-07374-3.

Ferreira, Jennifer, James Noble, et al. (Sept. 2007). “Agile Development Iterations
and UI Design”. In: pp. 50–58. isbn: 0-7695-2872-4. doi: 10.1109/AGILE.2007.8.

Ferreira, Jennifer, Helen Sharp, et al. (Aug. 2011). “User experience design and
agile development: Managing cooperation through articulation work”. In: Softw.,
Pract. Exper. 41, pp. 963–974. doi: 10.1002/spe.1012.

57

https://doi.org/10.29111/ijlrst.
http://bbc-news.github.io/wraith/
http://bbc-news.github.io/wraith/
https://www.invisionapp.com/inside-design/developer-engineer-handoff-mistakes/?fbclid=IwAR2FAePSy0bXZkS3eQMdQLKUys1LwxDsuI8gPw45bqXZJDLwZKfll_unVz8
https://www.invisionapp.com/inside-design/developer-engineer-handoff-mistakes/?fbclid=IwAR2FAePSy0bXZkS3eQMdQLKUys1LwxDsuI8gPw45bqXZJDLwZKfll_unVz8
https://www.invisionapp.com/inside-design/developer-engineer-handoff-mistakes/?fbclid=IwAR2FAePSy0bXZkS3eQMdQLKUys1LwxDsuI8gPw45bqXZJDLwZKfll_unVz8
https://doi.org/10.1007/978-3-319-32165-3
https://www.figma.com/blog/the-rise-of-ux-ui-design-a-decade-in-reflection/
https://www.figma.com/blog/the-rise-of-ux-ui-design-a-decade-in-reflection/
https://doi.org/10.1007/978-3-319-07374-3
https://doi.org/10.1007/978-3-319-07374-3
https://doi.org/10.1109/AGILE.2007.8
https://doi.org/10.1002/spe.1012

Bibliography

Friberg, Julia et al. (2017). “Development of a Cooperation Framework for Cross-
Functional Teams”. MA thesis. Sweden: Chalmers University of Technology.

Gillham, Bill (2008). Developing a Questionnaire. Real World Research Ser. Blooms-
bury Publishing Plc. isbn: 9781441154866. url: http://search.ebscohost.
com / login . aspx ? direct = true & AuthType = sso & db = cat07472a & AN = clec .
EBC1644312&site=eds-live&scope=site&custid=s3911979&authtype=sso&
group=main&profile=eds.

Google (2020). Puppeteer | Tools for Web Developers | Google Developers. Retrieved
2020-02-21. url: https://developers.google.com/web/tools/puppeteer.

Jones, Alexander et al. (Jan. 2016). “Collaboration Contrainsts for Designers and
Developers in an Agile Environment”. In: doi: 10.14236/ewic/HCI2016.37.

Knauss, Eric (2020). Constructive Master Thesis Work in Industry: Guidelines for
Applying Design Science Research.

Kotsarenko, Yuriy (2010). “Measuring perceived color difference using YIQ NTSC
transmission color space in mobile applications”. In: Programación Matemática y
Software.

Krueger, Richard A. et al. (2015). Focus groups : a practical guide for applied re-
search. Sage Publications. isbn: 9781483365244. url: https://www.sagepub.
com/sites/default/files/upm-binaries/24056_Chapter4.pdf.

Leiva, Germán et al. (2018). “Montage: A Video Prototyping System to Reduce
Re-Shooting and Increase Re-Usability”. In: Proceedings of the 31st Annual ACM
Symposium on User Interface Software and Technology, pp. 675–682.

Longhurst, Robyn (2003). “Semi-structured interviews and focus groups”. In: Key
methods in geography 3, pp. 143–156.

Mapbox (Apr. 2020). mapbox/pixelmatch. url: https://github.com/mapbox/
pixelmatch.

Maudet, Nolwenn et al. (2017). “Design Breakdowns: Designer-Developer Gaps in
Representing and Interpreting Interactive Systems”. In: Proceedings of the 2017
ACM Conference on Computer Supported Cooperative Work and Social Comput-
ing, pp. 630–641.

– (2019). “Enact: Reducing designer–developer breakdowns when prototyping cus-
tom interactions”. In: ACM Transactions on Computer-Human Interaction (TOCHI)
26.3, pp. 1–48.

Meszaros, Gerard (2003). “Agile regression testing using record & playback”. In:
Companion of the 18th annual ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pp. 353–360.

Myers, Brad et al. (2008). “How Designers Design and Program Interactive Be-
haviors”. In: Proceedings of the 2008 IEEE Symposium on Visual Languages and
Human-Centric Computing. VLHCC ’08. USA: IEEE Computer Society, pp. 177–
184. isbn: 9781424425280. doi: 10.1109/VLHCC.2008.4639081. url: https:
//doi.org/10.1109/VLHCC.2008.4639081.

Pries-Heje, Jan et al. (2008). “Strategies for Design Science Research Evaluation.”
In: ECIS, pp. 255–266.

Rivero, José Matías et al. (2014). “Mockup-Driven Development: Providing agile
support for Model-Driven Web Engineering”. In: Information and Software Tech-
nology 56.6, pp. 670–687. issn: 0950-5849. doi: https://doi.org/10.1016/

58

http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07472a&AN=clec.EBC1644312&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07472a&AN=clec.EBC1644312&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07472a&AN=clec.EBC1644312&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
http://search.ebscohost.com/login.aspx?direct=true&AuthType=sso&db=cat07472a&AN=clec.EBC1644312&site=eds-live&scope=site&custid=s3911979&authtype=sso&group=main&profile=eds
https://developers.google.com/web/tools/puppeteer
https://doi.org/10.14236/ewic/HCI2016.37
https://www.sagepub.com/sites/default/files/upm-binaries/24056_Chapter4.pdf
https://www.sagepub.com/sites/default/files/upm-binaries/24056_Chapter4.pdf
https://github.com/mapbox/pixelmatch
https://github.com/mapbox/pixelmatch
https://doi.org/10.1109/VLHCC.2008.4639081
https://doi.org/10.1109/VLHCC.2008.4639081
https://doi.org/10.1109/VLHCC.2008.4639081
https://doi.org/https://doi.org/10.1016/j.infsof.2014.01.011
https://doi.org/https://doi.org/10.1016/j.infsof.2014.01.011
https://doi.org/https://doi.org/10.1016/j.infsof.2014.01.011

Bibliography

j.infsof.2014.01.011. url: http://www.sciencedirect.com/science/
article/pii/S0950584914000226.

Runeson, Per et al. (2012). Case Study Research in Software Engineering. JohnWiley
Sons Inc. isbn: 9781118104354. url: http://www.egov.ee/media/1267/case-
study-research-in-software-engineering.pdf.

Schwaber, Ken et al. (2017). The Scrum Guide. Retrieved 2020-02-21. url: https:
/ / www . scrumguides . org / docs / scrumguide / v2017 / 2017 - Scrum - Guide -
US.pdf.

Selenium (2020a). Selenium automates browsers. That’s it! Retrieved 2020-02-21.
url: https://selenium.dev/.

– (2020b). Understanding the components. Retrieved 2020-03-30. url: https://
www . selenium . dev / documentation / en / webdriver / understanding _ the _
components/.

Silva, Tiago Silva da et al. (2013). “Ten lessons learned from integrating interaction
design and agile development”. In: 2013 Agile Conference. IEEE, pp. 42–49.

Vaishnavi, Vijay K. et al. (2015). Design Science Research Methods and Patterns:
Innovating Information and Communication Technology, 2nd Edition. 2nd. USA:
CRC Press, Inc. isbn: 1498715257.

Vanderdonckt, Jean (Jan. 2008). “Model-Driven Engineering of User Interfaces:
Promises, Successes, Failures, and Challenges”. In: Proceedings of Annual Ro-
manian Conference on Human-Computer Interaction.

Venable, John et al. (May 2012). “A Comprehensive Framework for Evaluation in
Design Science Research”. In: vol. 7286, pp. 423–438. doi: 10.1007/978-3-642-
29863-9_31.

Vyšniauskas, V (2009). “Anti-aliased Pixel and Intensity Slope Detector”. In: Elek-
tronika ir Elektrotechnika 95.7, pp. 107–110.

WebDriver (2018). Retrieved 2020-03-30. url: https://www.w3.org/TR/webdriver1/.
Wiegers, Karl E (1995). “Improving quality through software inspections”. In: Soft-
ware Development 3.4, pp. 55–64.

Yeh, Tom et al. (2009). “Sikuli: using GUI screenshots for search and automation”.
In: Proceedings of the 22nd annual ACM symposium on User interface software
and technology, pp. 183–192.

Zeplin (2020). Zeplin. Retrieved 2020-03-24. url: https://zeplin.io/.

59

https://doi.org/https://doi.org/10.1016/j.infsof.2014.01.011
https://doi.org/https://doi.org/10.1016/j.infsof.2014.01.011
https://doi.org/https://doi.org/10.1016/j.infsof.2014.01.011
http://www.sciencedirect.com/science/article/pii/S0950584914000226
http://www.sciencedirect.com/science/article/pii/S0950584914000226
http://www.egov.ee/media/1267/case-study-research-in-software-engineering.pdf
http://www.egov.ee/media/1267/case-study-research-in-software-engineering.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://www.scrumguides.org/docs/scrumguide/v2017/2017-Scrum-Guide-US.pdf
https://selenium.dev/
https://www.selenium.dev/documentation/en/webdriver/understanding_the_components/
https://www.selenium.dev/documentation/en/webdriver/understanding_the_components/
https://www.selenium.dev/documentation/en/webdriver/understanding_the_components/
https://doi.org/10.1007/978-3-642-29863-9_31
https://doi.org/10.1007/978-3-642-29863-9_31
https://www.w3.org/TR/webdriver1/
https://zeplin.io/

Bibliography

60

2020-05-18 Intunio - baseline questionnaire

https://docs.google.com/forms/d/1QxiTnmy_nUO6QqwEgiNWtvKjXSmVipaFkAKprzjOhGA/edit 1/4

1.

2.

Markera endast en oval.

Designer

Developer

Both designer & developer

3.

Övrigt:

Markera alla som gäller.

Slack

BitBucket

Trello

Jira

Zeplin

4.

Markera endast en oval.

Never

Once per sprint

A few times per sprint

Daily

Intunio - baseline questionnaire
*Obligatorisk

What is your name? *

Do you primarily identify yourself as a designer or developer? *

What collaboration software do you normally keep up with during a project? *

How often do you communicate, outside of process related meetings (e.g.
Scrum), with the opposite role (designer, if you work as developer, or vice versa)
during a project? *

A
Appendix 1 - questionnaire

I

2020-05-18 Intunio - baseline questionnaire

https://docs.google.com/forms/d/1QxiTnmy_nUO6QqwEgiNWtvKjXSmVipaFkAKprzjOhGA/edit 2/4

5.

Markera endast en oval.

Unaware

Quite unaware

Neutral

Quite aware

Aware

6.

Markera endast en oval.

Unconfident

Quite unconfident

Neutral

Quite confident

Confident

7.

Markera endast en oval.

Unconfident

Quite unconfident

Neutral

Quite confident

Confident

To what extent are you aware of the implementation progress of your co-workers
during a project? *

If you're a designer, how confident are you that the design of a feature will be
correctly implemented by a developer, with your current level of communication
and feedback? If you're a developer, how confident are you that you implement
the design of a feature correctly (from the designer's perspective), with your
current level of communication and feedback? *

How would you answer the previous question again, without the possibility of
communication and feedback during the implementation process? *

A. Appendix 1 - questionnaire

II

2020-05-18 Intunio - baseline questionnaire

https://docs.google.com/forms/d/1QxiTnmy_nUO6QqwEgiNWtvKjXSmVipaFkAKprzjOhGA/edit 3/4

How often do the following situations occur during the implementation of a design?
This question applies to both developers and designers. If you're a designer, how
often have you experienced that the developer asked for clarification or made
his/her own solutions where your design was not sufficient?

8.

Markera endast en oval.

Never

1 2 3 4 5

Very often

9.

Markera endast en oval.

Never

1 2 3 4 5

Very often

10.

Markera endast en oval.

Never

1 2 3 4 5

Very often

– Missing information: the designer has not fully specified the looks or
interactions of certain parts, e.g. how a button should look while being hovered. *

– Edge cases: the designer have not considered extreme or problematic
situations for instance empty states or very long usernames. *

– Technical constraints: the designer has not considered the technical
limitations, leading to extra development time or complexity, e.g. having to
implement an entirely custom UI component despite a slightly similar ready-
made UI component being available in the system. *

A. Appendix 1 - questionnaire

III

2020-05-18 Intunio - baseline questionnaire

https://docs.google.com/forms/d/1QxiTnmy_nUO6QqwEgiNWtvKjXSmVipaFkAKprzjOhGA/edit 4/4

11.

Det här innehållet har varken skapats eller godkänts av Google.

Are there any other types of problematic situations that you have experienced
during developer-designer collaboration?

 Formulär

A. Appendix 1 - questionnaire

IV

	List of Figures
	List of Tables
	Introduction
	Statement of the problem
	Purpose of the study
	Research questions
	Disposition

	Background
	Related work
	About Intunio
	Designer-developer collaboration
	Current practices
	Design hand-off
	Design breakdowns
	Feedback and review procedures

	Continuous pipelines
	Headless browsers
	GUI testing
	Manual reviews
	Automated functional tests
	Automated visual tests

	Image comparison

	Methods
	Design science research
	Data collection methods
	Literature review
	Focus group
	Questionnaire
	Analysis of chat history
	Simulation
	Interviews
	Demonstration

	DSR iterations
	Awareness of problem
	Suggestion
	Development
	Evaluation
	Conclusion

	The Artifact - Screeny
	Architecture overview
	Continuous pipeline script
	Temporary project deployment
	Screenshot automation
	Configuration

	Web application
	Front-end
	Back-end

	External interface (Slack)

	Practical limitations

	Results
	Findings per iteration
	Iteration 1
	Literature review
	Focus group
	Questionnaire
	Demonstration

	Iteration 2
	Analysis of chat communication
	Demonstration

	Iteration 3
	Simulation
	Interviews

	RQ1 (Problems)
	RQ2 (Solution Candidate)
	Proposed solution
	Evaluation

	Discussion
	Contributions
	Implications for practitioners
	Threats to Validity
	Internal validity
	External validity
	Construct validity

	Conclusion
	Significance of the study
	Future work

	Bibliography
	Appendix 1 - questionnaire

