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Abstract

In this thesis driver rated data is studied using data mining techniques. The rated data
consists of roughly 72 hours of data from seven drivers. The ultimate goal is to be
able to identify patterns of high rating and match them towards a reference database
consisting naturalistic driving data. Two segmentations of the drives are used, equilength
subsegments and steering operations. An alternative morphed standardised rating scaled
is proposed.
Two data mining approaches are applied. The first method is based on using an ensemble
classifier on features derived from the CAN-data to predict the rating of each segment
of the data. The second method uses an outlier detection algorithm and a hierarchical
clustering approach on a distance metric based on the angles between the principal
variance components of the observations.
Using the ensemble classifier and general variables a large proportion of rating variance
can be explained when including driver and route factors. Large rating values can be
identified well. For the standardised rating the prediction of high values is worse with
many false positives.
The matching of signals using the covariance structure works well. Using hierarchical
clustering clusters with standardised rating high above average can be obtained. Outliers
with high standardised rating are extracted and matched towards a larger database. The
matches are few but similar to the original situations owing to the fact the matching is
strict.
In conclusion the ensemble classifier works well for predicting rating when driver and
route factors are included. The covariance-based method performs well for situation
matching and clusters with high rating can be identified. It also has potential to be be
used for extracting and matching more sofisticated patterns.
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1
Introduction

Car accidents is one of the leading causes of deaths and injury worldwide. The area
of traffic safety is widely studied and the research field is getting ever more diverse.
Starting from passive safety and damage mitigation research the field has developed to
incorporate collision avoidance and driver assistance systems. The trend is that the
safety systems are designed to reduce risk prior to accidents and intervene at ever earlier
stages in the course of the accident. In order to design and implement such systems an
understanding of driving behaviour is needed. This thesis aims to define boundaries for
normal driving using driver rated data. By studying driving situations of severity lesser
than incidents. To do this driving data rated on a scale from 1 to 100 is used. The
ultimate goal is to be able to identify situations where the driver is experiencing unease.
Once such situations are identified systems could be developed to assist the driver to get
from that state of unease back into states of comfort.

1.1 Background

Motor vehicle traffic lies at the very heart of our society, people depend upon it for
their daily transports as well as logistics on a larger scale. Car ownership statistics show
that the number of cars per capita increases worldwide - and the trend is predicted to
continue[1]. The immense scale of the worldwide vehicle fleet means that a relatively
small risk of injury per kilometer traveled leads to a large absolute number of injurys and
deaths. Each year over 1.2 million people lose their lives in traffic accidents - and only a
fraction of victims perish. This places car accidents as 11th leading cause of death and
9th leading cause of disability-adjusted life years lost according to the WHO[2]. Apart
from the tragedy of lost lives there are large monetary costs coupled with car accidents.
The estimate differs by country but in a 2007 report an estimate based on statistics from
NTSHA the cost of accidents in the US is estimated to be over 4% of the total GDP[3].
This figure includes destruction of physical values, medical costs and lost worktime due
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1.2. THE DATA CHAPTER 1. INTRODUCTION

to resulting congestion. Increasing the safety, improving traffic flow and decreasing con-
gestion in traffic is a high priority both for car manufacters and policy makers around
the world.

The development of vehicle safety systems is moving backwards in the collision phase.
The first safety measures taken where all post-crash and damage mitigation, classically
called passive safety. Such systems include seatbelts, padded dashboards and safety
cages. Subsequent systems focused on assisting the driver to carry out desired oper-
ations in a better way. Examples of such systems include anti-lock breaking systems
(ABS). Today state of the art systems are in collision avoidance such as pedestrian de-
tection and automatic breaking. In order to move active safety systems away from the
domain of imminent crash scenarios into the domain of normal driving a thorough study
of normal driving conditions is necessary. To meet this need Naturalistic driving studies
are performed. These studies are performed by equipping everyday cars with measure-
ment equipment and then allowing people to use the cars as they normally would. Such
datasets include all types of driving data as there are no constraints on driving conditions
in the set-up. Performing the data collection in this way means that the data gathered
have increased representability and causes less bias in data gathering.

1.2 The data

For this thesis two datasets will be used, and are called the Volvo Human Monitoring
dataset (VHM) and the EuroFOT dataset. Both consist mainly of Controller Area
Network (CAN-data) and video data but have some other differences as explained below.
The CAN-data is made up of signals that describe the state of the car. These signals are
measured in while driving and are recorded in a integrated computing unit. Examples
of signals are brake pressure, vehicle speed, steering angle and GPS-data. Three signals
from the CAN-data plotted as a function of time can be seen in Figure (1.1). All CAN-
data used for this study is sampled at 10 hertz.

1.2.1 Volvo Human Monitoring data

The first and most important dataset that will be used for this study is the Volvo Human
Monitoring (VHM) dataset. The data consists of a total of 27 drives by 7 different drivers,
each drive lasting approximately three hours. The drives where scheduled with a mapped
route to drive. The 10 routes where designed to include various types of driving. The
routes are all in the same geographical area around Gothenburg. This means that the
data is not naturalistic driving data. This data was gathered with the goal to measure
and understand the origin of driver workload, cognitive and physical, during different
driving conditions. The distributions of the number of drives per driver and number of
drives per route is seen in Figure (1.2). After driving the drivers where shown video data
from the drive and rated the experienced difficulty of every situation on a scale from 1
to 100, where 100 represents not being able to talk on the phone while driving. The
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Figure 1.1: Three signals from the CAN-data plotted against time. The y-axis is in
different units for the different signals.

length and value of each rated segment was decided by their own choosing. These driver-
specified segments are called Original segments. In this work this rating data is used as
a reference for normality of situations. The original segments are adjacent in time and
can be depicted as a time signal with discrete jumps henceforth called the individual
unease rating function (IURF), also called just rating. There also exists interview data
with a driver comment for each original segment.
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Figure 1.2: The distribution of drives per driver and drives per route.

1.2.2 EuroFOT data

This dataset contains naturalistic driving data. The data was gathered by equipping
100 cars with measurement equipment for CAN- and video data. Data were collected as
the cars were used as everyday cars by families in the Gothenburg area for one year and
consists of over 40,000 hours of data. We will use the EuroFOT data as a reference for
matching patterns that are extracted in the VHM data.
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1.3. OBJECTIVE CHAPTER 1. INTRODUCTION

1.3 Objective

The overall aim of the project is to identify situations in which the driver is experiencing
unease in the VHM database and investigate if similar situations can be found in the
EuroFOT database. The measure used for unease is a high rating scale value. In order
to do this the following subgoals are set:

1. Develop methodology to extract common patterns of uneasy situations from the
VHM data.

2. Investigate partitionings of the data that can quantitatively be compared using
suitable variables.

3. Matching extracted patterns from the VHM data with the EuroFOT dataset to
evaluate the occurence and representability of extracted patterns.

1.4 Thesis outline

The work is structured as follows:
In chapter 2 some work on similar problems is presented. In chapter 3 the general
methodology for this thesis is presented. One method based on ensemble classifiers is
used to investigate the possibility of training a classifier using general variables to identify
patterns of high unease over the whole dataset. The second method is an agglomerative
clustering method with distances based on comparing the direction of variances in the
space spanned by the data. Chapter 4 presents the results of the methods. Chapter 5
offers a concluding discussion on the result, the limitations of the data and the methods.
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2
Similar work

This chapter gives a brief description of work in similar areas and presents some previous
studies.

2.1 Naturalistic Driving studies

The first large-scale naturalistic driving study was performed by Virginia Tech Trans-
portation Institue. In the study 100 cars where equipped to measure CAN-data and
given to everyday drivers. This data is public and avaliable at the institutes website1.
The study got a lot of attention as it was the first of its kind and introduced the option
to study all phases of driving.

The main part of the analysis was annotation-based and focused on driver inattention.
Such studies are in the general case based on defining a boundary or subset of all driving
conditions and annotating the data into discrete classes. The annotated data is analyzed
for differences between the cases present.

One example is the study of relative risk of near-crash and crash under cellphone use
compared to a control group of no secondary task engagement. In the study the accident
and near-accident frequencies are statistically compared between the two groups.

2.2 Other work

An overview of some studies with similar goals are prestented below. A common factor
in these studies is that they are performed on data that is geographically or situationally
controlled.

1http://forums.vtti.vt.edu/index.php?/forum/13-100-car-data/
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In a study[6] Takeda et. al used a composition of braking dynamics and driver voice
utterances to detect annotated hazardous situations and extreme brakings. The method
is based on isolating the operations and using two-dimensional bins of brake pedal pres-
sure and break pedal pressure rate integrated with the energy of the voice utterances to
compare the brakings. The classification rate was high, around 95% with a false positive
rate of 5%. To compare it with this study however, that data was geographically con-
fined to a small area with a large set of data and voice utterance data is not avaliable here.

A number of studies have been performed using Hidden Markov Models (HMM) for
trajectory recognition. HMMs are commonly used for trajectory tracking, where one
example is Clustering Vehicle Trajectories with Hidden Markov Models Application to
Automated Traffic Safety Analysis[7]. This study is also limited to a geographical area
with a larger dataset. These models are very assumption-heavy, making them ill-suited
for problems with a large number of unknown states. Especially as the number of pa-
rameters of the model grows exponentially with the number of possible states[8].

6



3
Method

This chapter is focused on describing the implemented process of obtaining patterns of
unease from the VHM database which is the main body of this work. Before defining
the method a deeper description of the data is given. The signals used are described and
a brief overview of the workflow is also given. Two different methods are tested: One of
general classification using an ensemble classifier to investigate the possibility of training
a classifier to identify patterns of unease. A second approach based on comparing the
direction of data variance using principal components is also implemented. The events
extracted from this algorithm is then used to extract matching patterns in the EuroFOT
database.

3.1 Individual unease rating function and VHM statistics

This section provides a description of the Individual unease rating function (IURF) and
shows some basic statistics for it.
Examples of the IURFs for some drives are shown in Figure (3.1). The distribution of
rating values per driver as a box-plot is shown in Figure (3.3). There one can see that
different drivers use the rating very differently, especially the value range varies a lot,
but also the variance. The distribution of length of the original segments over all the
drives can be seen in Figure (3.2). A majority of the original segments are shorter than
2 minutes and among those a majority is shorter than 40 seconds.

The distribution of rating changes per time unit as a function of speed can be seen
in Figure (3.2a). The fraction of event changes per time unit is larger at lower speed.
This can be interpreted as if there is a larger rating variability at lower speeds.

As is seen in Figure (3.3) there is a large between-subject variation in the usage of
the rating scale. The maximum values for driver 2 and 3 falls within the lower quartile
of driver 1 who uses almost the entire range of the rating scale. Arguably the definition
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Figure 3.1: The individual unease rating function (a) from two different drives. In (b) the
individual unease rating function for two different drivers driving the same route is shown.
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Figure 3.2: (a) The distribution of original segment lengths for all drives. Almost 60% of
the original segments last for under 2 minutes. (b) The number of rating changes per time
unit as a function of speed.

of the rating scale to the drivers as ”value 100 represents not being able to talk on the
phone while driving” is heavily subjected to personal interpretation. The sample pool of
drivers consists of 7 drivers. Therefore the possibility to draw any generalizable conclu-
sion regarding the usage of the rating scale between drivers is highly limited.

Without a significant effort in studying the behaviour of individuals on similar scales
there is no way of knowing if an individual with higher maximum value actually per-
cieves a higher effort or only percieves the scale differently. However a basic assumption
must be that within drivers the values are coherent i.e. a rating value above average for
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Figure 3.3: A boxplot of the rating value distribution per driver and route. The value
range used by the drivers differ a lot.

an individual correlates with a higher than average effort for that driver.

To remove the different value ranges between individuals a morphing of the rating scale
that retains the within individual relations is proposed: a standardised rating scale.

3.1.1 Within driver normalisation - standardised rating scale

To rescale the value ranges for the individuals a standardisation is done. If we consider
the mean value of the individual unease rating function for a driver to be the baseline
for that person it is logical to rescale the individual to equal means. To handle the
disparity of variances within drivers the rating values are divided by the within driver
standard deviations. This yields a standardised rating scale where values above zero rep-
resents higher than average rating and the disparity of rating values within drivers being
roughly equal. This effectively removes the between driver variance in individual unease
rating function. A boxplot over the standardised rating per driver is seen in Figure (3.4).

More formally the standardisation is done by taking the original rating values Rij for
driver i and segment j and forming the morphed values R̂ij by:

R̂ij =
Rij −Ri·√

1
Nj

∑
j(Rij −Ri·)2

(3.1)

where Ri· denotes the mean rating value of driver i and Nj the number of segments
for driver j. The standardised rating is what is commonly known as the z-score or the
standard score of the rating.
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Figure 3.4: A boxplot over the standardised rating per driver. All distributions have equal
means and standard deviations.

3.2 CAN-data Signals

A number of signals from the CAN-data are used, henceforth called arguments. A brief
list with corresponding explanation for the signals is given below. All derivatives used
are with respect to time. An overview of a coordinate system fixed at the center of the
car describing the signals relation to the car is shown in Figure (3.5).

x

y

z

dL

v

Ω

Figure 3.5: An overview of the coordinate system fixed at the center of the car. The
rotational angle in the plane of motion, called yaw, is measured clockwise around the z-axis
and is denoted Ω. The distance to the left lane marker from the center of the car is denoted
dL.

AbsSteerAng - The absolute value of the SteeringAngle, degrees from the central
position.

AbsSteerAngRate - The derivative of AbsSteerAng, observe that this is not equal to
the absolute value of SteerRate seen below.

AccPedalPos - The position of the accelerator pedal.

AccPedalRate - The derivative of the AccPedalPos.
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BrakePressure - The pressure applied on the brake pedal.

BrakeRate - The derivative of the BrakePressure.

LateralAcc - The lateral acceleration, measured in the axis perpendicular from front
to rear of the vehicle. In the coordinate system of the car in Figure (3.5) this is ÿ.

LongAcc - The longitudinal acceleration, measured in the axis from front to rear of the
vehicle. In the coordinate system of the car in Figure (3.5) this is ẍ.

LeftLaneOffset - The distance to the left lane marker, depicted as dL in figure (3.5).

SteeringAngle - The steeringwheel angle.

SteerRate - The derivative of the SteeringAngle.

VehicleSpeed - The speed of the vehicle.

YawRate - The rotational speed of the vehicle, proportional to the VehicleSpeed times
the SteeringAngle. The time derivative Ω̇ of Ω in Figure (3.5)

3.3 Knowledge discovery in databases

In the last three decades the avaliability of data has increased exponentially, following
the exponential evolution of data storage- and processing capacity described by Moores
Law. At the end of the 1980’s a database of size 1 megabyte was considered large, 10
years later databases with size order in the terrabyte domain were not unusual[4]. The
estimated increase in avaliable information is estimated to double every 20 months[5].

In many areas today the entire state of a system can accurately be measured over a
long period of time. With the growing amount of avaliable data following the cost re-
duction in data gathering, storage and processing new ways of studying systems have
emerged. A few decades ago collecting reliable data was a limiting factor in studies.
Consequently the data gathering and data analysis tools where often designed to mea-
sure specific phenomena. With this increase in dataset size a new interdisciplinary area
known as knowledge discovery in databases has quickly gained popularity [4]. The main
focus is to identify unknown patterns in the data with the objective to extract knowledge
about the system in order to understand mechanics, predict future behaviour and design
strategies to control the system. The steps of the process is depicted as a flowchart in
Figure (3.6).

For this work two separate data mining methods are applied. For each method the
steps in figure (3.6) are applied.

11
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Figure 3.6: (a) A flowchart of the KDD process, it includes the general steps of the
knowledge discovery process with an added feedback. The feedback consists of adjusting the
model by adding new assumptions according to previous results. (b) Shows the details of
the data mining step in (a).

3.4 Approach 1 - Ensemble Classifier

The first part of the thesis is focused on a general model for estimating the rating given
the CAN-data. Another separate approach with a separate problem formulation is given
in the next section.
The driver can be seen as a system reacting to the environment and providing an output
in the form of the rating. A schematic of this is shown in Figure (3.7). The modelling

Environment
Driver

Rating

f(x)
yx

Figure 3.7: A schematic of the real process and the estimation (modelling) of the process.

process consists of two steps. First input data x for the model must be derived from
the representation of reality, the CAN-data. These are the selection and preprocessing
steps. Then the input data x is mapped by a function f(x) to a response ŷ. The success
of the model is measured by the difference in predicted response ŷ and the true response
y. The model is evaluated both for regular and standardised rating.

12
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3.4.1 Data preprocessing

The data preprocessing procedure is divided into two steps. First the drives are divided
into subsegments and each subsegment is taken to be one observation. For the subseg-
ments a set of predictor variables are derived, these are taken to represent reality and are
used as the input of the model. These predictor variables are used to train and evaluate
the model. A description of this process and the segmentation are given below.

Original segments

The first segmentation are the original segments as defined by the drivers. These seg-
ments are of varying lengths as is shown in Figure (3.2). One drive with original segments
marked with vertical dashed lines is shown in Figure (3.9a). The response for each orig-
inal segment is the rating value set by the driver.

Segmentation

Raw signal data

Variable extraction

Output data (X,Y)

Subsegments

Figure 3.8: A flowchart over the data preprocessing. The two main steps are data seg-
mentation and variable extraction. The input is the raw signals and the output is a feature
vector ~x and a response y for every subsegment.

Equilength subsegments

An alternative segmentation to the original segments is the division of the drives into
equilength subsegments of chosen length dt seconds. Each such segment is taken as one
observation and the rating is formed as the average of the rating values over the segment.
The partitioning of one drive into such segments can be seen in Figure (3.9b). This
means effectively ignoring the original segmentation defined by the driver and looking
for general correlations between driving conditions and rating. For a given drive of length
T the segments are given by:{

[0,dt[,...,[(i− 1)dt,idt[...,[(N − 1)dt,Ndt[,[Ndt,T ]
}

N =

⌊
T

dt

⌋
.
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Where b·c is the floor operator.
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Figure 3.9: (a) The individual unease rating function (blue) and markings of start and end
of the original segments (dashed vertical lines). (b) The individual unease rating function
for one drive (solid) and the division of it into equilength subsegments of length dt = 400
[s].

3.4.2 Predictor variables

The subsegments are now defined by a time interval [t1,t2]. For each subsegment a set
of real-valued predictor variables are derived.

Driver data

As is shown Figure (3.3) there is a large difference between drivers and routes for the
value range and usage of the individual unease rating function. That is, a large between-
subject variance which must be accounted for. The individual effects are included in the
model with the following categorical features:

1. Driver index

2. Gender

3. Route

These features are included as predictors, coded by the driver number {1,2,..,7}. The
routes are coded by the route number {1,2,...,10}. The routes contain the same propor-
tion of different driving conditions but differ in the layout.
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Regulars

The variables for a segment [t1,t2] are derived by applying some arithmetic operations
on the arguments over that segment. This includes the mean, max and min value as:

[mean(argument([t1,t2])) max(argument([t1,t2])) min(argument([t1,t2])) ]

The mean value is a description of the activation in the argument over the segment. The
max and min values represent the most extreme occurences during the segment. Some
signals have a range including both positive and negative values. In those cases the
mean of the absolute value of the signals is used. For example using the absolute value
of the argument SteeringAngleRate, then the mean value represents the average degree of
activation of the steering wheel for the segment. An example of these operations applied
to signals is shown in Figure (3.10).
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Figure 3.10: Examplification of the variables described in section (3.4.2). The right plot
(a) shows the result of applying arithmetic operations and the left (b) shows the results of
calculating the variability. The segment length is one minute.

Variability

The variability of a segment [t1,t2] is a measure of the total amount of change in the
argument. This is calculated as the piecewise differences over the smallest time intervals,
corresponding to the sampling frequency, of length ∆:

δi = oArg(t1 + (i+ 1)∆)− oArg(t1 + i∆)

i ∈ {1,2,...N − 1}; N s.t t1 +N∆ = t2.

Then all positive increases are summed to form the positive variability V +:

V +(t1,t2) =
∑
δi>0

δi (3.2)
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in a similar fashion we can form V − as:

V −(t1,t2) =
∑
δi<0

δi. (3.3)

The variability, postitive and negative, for one signal is shown in Figure (3.10). The
difference V + − V − is the total activation in the argument over the segment.

Arguments Mean(| · |) Max(·) Min(·) Mean(·) Variability

VehicleSpeed x x x x

AbsSteeringAngle x x x x

AbsSteerRate x x x x

BrakePressure x x x x

BrakeRate x x x x

YawRate x x x x

LateralAcc x x x x

LongAcc x x x x

RightLaneOffset x x x x

Variable

Proportion still

Proportion reversing

Proportion accelerating

Proportion decelerating

Table 3.1: The variables included for the equilength and original segments. MeanAbs
denotes taking the absolute value of the signals before performing the mean operation.
Fields marked x indicates variable obtained using operation included. The bottom variables
are the proportion of the segment that those operations are active. When segments are of
unequal length the variability is divided by the segment length to form the variability per
time unit.

3.4.3 Decision trees

The model used for analyzing this data is an ensemble classifier of bagged decision trees
in the form of classification and regression trees (CART). The specific implementation
used is MATLABs ’TreeBagger’ function. A table over the variables used for this analysis
is seen in Table (3.1). The classifier is evaluated with regards to both the rating and the
standardised rating.
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Classification and Regression Trees (CART)

The CART classifier operates by making a number binary of cuts of the n-dimensional
space defined by the n predictor variables. These are also called decision splits. In two-
dimensional space this can be seen as cutting the whole space into two regions estimates
rating by the average rating in each region. Every new observation is thus assigned as
having the rating of the majority in the region it is assigned to. For continous response
variables the corresponding majority vote is the mean value of the response of the ob-
servations in the region. The regions are split serveral times giving a finer partitioning
of the predictor variable space. This is applied until no decision split can be made that
separates the data such that the error is reduced. The reason for chosing this classifier is
that it returns a variable importance measure which increases interpretability. Further
with bagging it has small classification bias and works well with variable selection[9].

Ensemble classifier

The ensemble classifier is a scheme that is applied to counter bias from the classifier
resulting from over- and underfitting. Instead of training only one classifier a number
(N) of classifiers are trained. The output is the weighted average of all the classifiers
trained. The result is a less biased classification that is often more accurate than the
results of a single classifier.

The ensemble classifier uses bootstrap aggregation. For each individual tree trained
a sample X ′ is bootstrapped uniformly from the original sample X. This introduces a
randomness in the construction of every decision tree that reduces over- and underfit-
ting that may occur when using single classifiers on all data. In this application the
bootstrapped sample X ′ is of the same size as the original sample X. An effect is that
it is possible to form the out-of-bag training error (OOB err.) while training. The OOB
error is formed by evaluating the classifier on the unseen observations that lie in X but
not in X ′.

The number of variables used for each decision split are a settable parameter for the
method. In this application all variables are used at every split. This is motivated by
that variable selection will be applied removing variables that are not useful.

As a complement to the out of bag error during training 20% of the data, chosen ran-
domly, is held out for final validation. The final error η is measured as the average
quadratic distance between the real rating value Rj of the observation and the esti-
mated rating value ŷj for the held out data:

η =

∑
j(ŷj −Rj)2

Nj
(3.4)

where Nj is the number of observations in the validation data. This is compared to the
variance of the rating for all observations which is the worst the model could perform.
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The model is run and evaluated both for the normal rating and the standardised rating.

Variable selection

To select valuable variables and remove variables containing no information a forward
variable selection scheme is applied. Each variable is assessed individually and the best
one is chosen. Iteratively every new variable is evaluated with the previous chosen
variable(s) and the best variable is added. This is repeated until the error increases or
the maximum chosen number of variables are obtained.

3.5 Approach 2 - Situation matching with signal covariate
structure

As a complement to the general model above a separate more situation-specific approach,
based on indirect matching of signal covariate structure, is applied. Similar methods are
generally used for multivariate time series clustering and pattern recognition, for in-
stance in climate models [11]. SVD-based methods for analysis of similar, but unrated,
data has also been proposed[12]. An agglomerative clustering approach is applied to
detect clusters. Further, as the data is sparse in comparison to the large variation of
situations that exists during driving and many situations occur only once, an outlier
detection algorithm is applied to detect observations that are significantly different from
the rest of the data. There is no guarantee that deviating situations have a high rating.
Therefore a rating threshold is applied on the filtered situations. Once these situations
are identified they can be matched to situations in the larger EuroFOT database and
the matches are manually evaluated.

This method is applied for two different segmentations: The equilength segments de-
scribed above. The second segmentation is into steering operations.

3.5.1 Steering operations

An alternative segmentation is used namely steering operations. Steering operations are
filtered out and used as segments. There is practically always activation to some degree
on the steering-wheel. This is an effect of road curvature and the need to correct the
vehicles lane position. Therefore, a minimum threshold of 15 degrees of activation is
used for filtering steering events. One example of two isolated steerings can be seen in
Figure (3.11).

3.5.2 Covariance structure comparison

For these segmentations the covariance structure of signals is studied. The covariance
structure can be described as the relation between the signals. For this the following
signals are used:
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Figure 3.11: Two separate steering events with dashed line as event delimiters.

The signals have very different value ranges, therefore a normalisation is done. As in
Section (3.1.1) standard score is used for each signal. In this case the standard score is
global, i.e. each value for a signal is standardised with respect to every other value for
that signal in the dataset. For each segment a matrix Xi with the respective signals as
columns is formed:

Xi =


x1,1 x1,2 · · · x1,n

x2,1 x2,2 · · · x2,n
...

...
. . .

...

xm,1 xm,2 · · · xm,n

 (3.5)

where m is the number of timesteps and n is the number of signals. This matrix Xi can
be decomposed into three separate matrices using singular value decomposition (SVD)
as:

Xi = UiSiV
T
i . (3.6)

19



3.5. APPROACH 2 - SITUATION MATCHING WITH SIGNAL COVARIATE
STRUCTURE CHAPTER 3. METHOD

The numerical details of the singular value decomposition are lengthy and are not given
in detail. These can be found in virtually any book on linear algebra, where one example
is the book by Lay[10]. The matrix Ui contains the left singular values, these are not
of interest here and will not be explained further. The matrix Vi contains the right
singular values. The columns of Vi are orthonormal eigenvectors forming a basis for the
n-dimensional space spanned by the colums of Xi. The eigenvectors are such that the
data variance in their direction is maximized. These are the principal components of the
data. These can be viewed as the directions of the variance in the data. Matrix Si is a
diagonal matrix where each diagonal element Si(k,k) is proportional to the square root
of the variance in the direction formed by the eigenvector given by the k:th column of Vi.

The measure of similarity for two event matrices Xi and Xj is given by the compar-
ison of the direction of the eigenvectors. Meaning that if the direction of variance for the
two matrices are equal they are considered equal. Similar events have similar variance
structure in n-dimensional space and thus the corresponding eigenvectors should be in
the same direction.

To reduce the dimensionality and only include eigenvectors with a large proportion of
variance connected to them the eigenvalues are studied. The distribution proportion of
total variance per eigenvalue for the equilength segments can be seen i Figure (3.12).
After the fourth eigenvalue little variance remains. Therefore only the first four eigen-
vectors are used for the comparison.
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Figure 3.12: The distributions of proportional variance per eigenvalue after the singular
value decomposition. Generally after the fourth eigenvalue very little variance remains.
Therefore only the four first eigenvectors are used for comparing bases.

The measure of similarity for two matrices is formed by comparing their respective
bases given by Vi and Vj . Formally the similarity S(i,j) of the two bases is given by
the sum of the squares of the cosines of the smallest angles between all the eigenvectors.
This is calculated as:

S(i,j) =
1

4
trace((V T

i Vj)(V
T
j Vi)). (3.7)
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The value S(i,j) lies in the range of [0,1]. It is informally described as total difference
between the directions of variances between the two events. From the similarity measure
a distance matrix D can be calculated where each value D(i,j) is the distance between
event i and j. The elements are given by:

D(i,j) =
1

S(i,j)
. (3.8)

This gives the pairwise differences in coviariate structure between the all the events in the
data. These pairwise distances are used to form clusters using agglomerative clustering
and detect outliers in the data.

3.5.3 Clustering

To detect clusters an agglomerative clustering approach is applied. The hierarchical tree
is formed using complete linkage. Meaning that for every observation the distance to
every other observation is used when forming the tree. The tree is pruned top down into
N subclusters. For each cluster the mean standardised rating and number of observations
are calculated and extracted.

3.5.4 Outlier detection

To detect outliers a simple scheme is used. For each observation i the average distance
to the 5 closest neighbours d5(i) is formed:

d5(i) =
1

5

∑
j∈min5(i)

D(i,j). (3.9)

Where min5(i) denotes the set of the 5 closest neighbours to i. An outlier is then defined
as a point with a large distance d5(i).

3.5.5 Situation matching

The extracted situations from the outlier detection algorithm are used for situation
matching in the EuroFOT database. The same distance measure as in equation (3.8)
and (3.7) is used. The minimum distance between two events Xi and Xj is 1. The
following criteria is used for a match:

dist(Xi,Xj)− 1 < ε (3.10)

where epsilon is chosen to be 0.005.

3.6 Other models tested

In complement to the methods above some other possible methods and methodologies
have been investigated. A small overview of these methods are presented below. However
those methods where either such that the basic assumptions proved to not be met or the
results where not good enough to be worthy of full presentation.
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3.6.1 Situationally limited study and Logistic Regression Models

The initial idea was to limit the study situationally. The situations considered was
those revolving around pedestrian crossings. After annotation and filtering it turned
out that the number of such situations in the VHM database was 16 and all situations
occured at different geographical areas. The possibility of fitting a logistic regression
model to those situations was studied and passages over the same areas in the EuroFOT
database was filtered out using GPS coordinates. The occurence of such situations in
the EuroFOT database was also low. With a limited rated sample and a limited amount
of complementary unrated situations this method was deemed a dead end.

3.6.2 Mixed Models

Mixed models are a common approach for studying treatment effects in clinical trials.
The model has great flexibility as it includes both individual and common effects be-
tween subjects. All unexplainable variance is modeled as an error term that is assumed
to be normally distributed. This allows for identifying effects in the chosen variables
on serveral levels and the effects that cannot be accounted for by the fixed effects are
accounted for in the random effect.

Different segmentations such as the equilength subsegmentation was considered. At
implementation the common effect for various variables, such as speed, was small and
insignificant. The model showed some significance for individual effects but the error
terms included almost all of the total variance and did not meet requirements for normal
distribution so no statistically sound conclusions could be drawn.

3.6.3 Extreme values

The third and last of the methods applied was focused on extreme values. The main idea
was to study extreme occurences in the different arguments. The assumption was that
extreme argument values (for instance upper x%) at different speeds would correlate
with deviating situations that would correspond to high rating. For example the mini-
mum longitudinal acceleration as a function of speed was studied. The extreme values
corrected for speed showed little or no correlation to high rating values.
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4
Results

In this chapter the results for the respective methods are presented.

4.1 Approach 1 - Decision trees

The decision trees algorithm was run on the original segments and the equilength sub-
segments of length t = 60 seconds. The variables included in the process are shown in
table (3.1). The plots show the OOB error and any figures given are from the validation
data. The OOB error is very close to the validation error in all cases.

4.1.1 Original segments

The results for the original segments are presented here. In total there are 950 such
segments. The results from the decision trees on the original segments before and after
the variable selection is shown in figure (4.1). The original number of variables are 49,
the number of variables after variable selection are 5. With all variables included the
final error is 166, which is not reduced notably by variable selection.

4.1.2 Equilength Segments

The equilength segments are of length 60 seconds giving a total of 4681 segments. The
results from the treebagging on the equilength segments before and after the variable
selection for the rating is shown in Figure (4.2). The same results for the standardised
rating can be seen in Figure (4.3). The initial number of variables are 49. The variables
obtained from variable selection with variable importance for the respective cases is
shown in table (4.1).
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Figure 4.1: (a) The training error for the classifier model on the original segments on
the rating function. Roughly 60% is explained by the model. Including the route does not
affect the results. (b) The training error for the classifier on the original segments with
standardised rating. Without the route 30% of the variance is explained. With the route
32% of the variance is explained.

Case: Rating Standardised rating

Var name Var. Importance Var name Var. Importance

Driver 23.4 Driver 7.4

Gender 0.6 Gender 0.6

Route 9.5 Route 8.3

min Speed 7.1 min Speed 7.8

var YawRate 1.9 var SteerAng 1.8

min AbsSteerAng 2.1 min LongAcc 1.1

var AbsSteerAng 1.2 mean Brake 0.8

N/A N/A min BrakeRate 0.7
Table 4.1: The variables selected for the model for the rating and standardised rating
including the route. The variable importance is a relative number for the importance of the
variable for the classification error. Values above 0 represent positive influence.
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Figure 4.2: (a) The training error for the ensemble classifier model on equilength segments
on the rating function. More than 65% of the variance can be explained without the route.
With the route inclued 82% of the variance is explained. (b) The predicted values plotted
against the true values with a horizontal and vertical line at value 65.
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Figure 4.3: (a) The training error for the classifier model on equilength segments on the
standardised rating function. Roughly 30% of the variance can be explained without the
route. With the route inclued 55% of the variance is explained. (b) The predicted values
plotted against the true values with a horizontal and vertical line at value 1.5.
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4.2 Approach 2 - Covariate structure

The results from the outlier detection for the steering events and equilength subsegments
is presented here. Some examples of matched events and subsegments can be seen in
appendix B.2.

4.2.1 Steering Events

The variables used for the steering events are given in section (3.5.1). There is a total
of 5112 steering events in the data. A scatterplot of dist5 versus rating for all steering
events are shown in Figure (4.4a). In (4.4b) a scatterplot of the mean standardised rating
plotted against the number of members for a set of 60 clusters obtained by pruning an
agglomerative complete linkage tree top down is shown. Four clusters have an average
rating of greater than 1 and one cluster have an average rating of greater than 1.5.
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Figure 4.4: (a) Shows a scatterplot of the rating versus dist5 for the steering events. (b)
Shows the number of members plotted against the mean rating for 60 clusters obtained by
pruning an agglomerative complete linkage tree top down.

4.2.2 EquiLength

The total number of equilength segments in the data is 4682. A scatterplot of dist5 versus
rating for all equilength segments are shown in Figure (4.5a). In (4.5b) a scatterplot
of the mean standardised rating plotted against the number of members for a set of 60
clusters obtained by pruning an agglomerative complete linkage tree top down is shown.
Eight clusters have an average rating of greater than 1 and two clusters have an average
rating of greater than 1.5.
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Figure 4.5: (a) Shows a scatterplot of the rating versus dist5 for the EquiLength segments.
The Red line is the best linear fit to show the trend. (b) Shows the number of members plot-
ted against the mean rating for 60 clusters obtained by pruning an agglomerative complete
linkage tree top down.

4.3 Event matching EuroFOT data

Some high rating equilength segments matched against the EuroFOT database to in-
vestigate if simular situations can be found. The unease and similarity of the matched
situations is estimated by the author. For this four segments are chosen from the equi-
length segments that have significantly higher standardised rating than average and a
large distance to the nearest 5 events. A brief description of the situations are:

Event 1 - Driver is overtaking a lorry on a highway and is experiencing unease due to
limited vision.

Event 2 - Driver is driving in a central area and passes a crowded pedestrian crossing.

Event 3 - Driver taking a left turn at a traffic crossing with a tramline through the
center.

Event 4 - Driver is driving on a rural road and at a sharp left turn a meeting with an
oncoming car driving in the center of the road takes place catching the driver by
surprise.

For event 1 over 300 matches are found. These are all similar to the original event and
takes place on the highway with a file change or a slight turn. However a large majority
of the events seem casual and cannot be deemed uneasy.

For event 2 the number of matches are 6, one of these is basicly identical to the original
situation and takes place at the same location. Of the six situations four are deemed to
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be uneasy.

For event 3 the number of matches are 4 of which all are deemed uneasy.

For event 4 no matches are found.
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5
Conclusion and Discussion

In this chapter the conclusions for the respective approaches are given. This is followed
by a discussion on the data, the methods and possibilities for future work.

5.1 Conclusion

5.1.1 Approach 1 - Ensemble classifier

From the results of the ensemble classifier it can be seen that a large proportion of the
variance in the individual unease rating function can be explained using a few variables.
The variable selection does not affect the proportion of explained variance much but it
reduces the number of variables by a large factor.

There is a large difference between individuals as can be seen by the variable impor-
tance of the individual driver factor in the model. On the case with the original rating
function this is partly explained by the discrepancy in value ranges between individuals.
However the effect persists with standardised rating, indicating that there is a significant
difference in experienced unease between drivers in different situations. Similarily when
a variable for the route is included in the model the results are improved significantly.
Speed has by far the largest effect of the driving parameters, followed by variables de-
scribing the steering behaviour.

As can be seen in Figure (4.2b) high values can accurately be predicted when including
the route in the model. For the standardised rating seen in (4.3) high values are harder
to predict. Without the route factor the model performs worse. Therefore the model is
not suitable for filtering situations in the EuroFOT database as no routing exists there.
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5.1.2 Approach 2 - Covariate structure

Using covariate structure for measuring similarity of situations works well. Some exam-
ples of matched events and subsegments can be seen in appendix B.2.

Using an agglomerative clustering approach is possible to detect a few clusters with
much higher than average standardised rating both for the equilength events and steer-
ing events.

The matching of situations to the euroFOT data indicate that it is possible to detect
situations similar to those in the VHM data that in most cases are uneasy and in all
cases are very similar to the original situations in signal values.

The main conclusion here is that clusters with high rating and high representability
can be achieved. This opens the door for further work with this method.

5.2 Discussion

This section offers a general discussion on the work process and the results.

5.2.1 The data

There is an issue with the rating function being so subjective as the discrepancy between
individual value ranges is very large. One approach worth considering is having categor-
ical rating levels with an explanation for each level to reduce subjectivity. This would
open up for other methods of analysis between the categories.

Further for situation matching there is an issue with the representability between the
EuroFOT and VHM data sets. The routing in the VHM data poses a limitation as it
exposes the drivers to driving under conditions they are not used to. The routing also
introduces other forms of bias. At times the drivers are unsure about the route which
causes stress that leads to a large increase in rating value. These situations are not
easily separated from the purely traffical high-rating situations. With that said it is not
certain that such situations need to be separated.

The VHM data is also relatively sparse. Considering all situations that can occur while
driving, and levels of severity of these, and the large set of environmental factors 72
hours of data over 7 individuals is not much. Many situations occur only once or twice
in the data, giving no way to compare such situations between individuals and between
levels of severity.

30



5.2. DISCUSSION CHAPTER 5. CONCLUSION AND DISCUSSION

5.2.2 Chosing Models

As can be seen from section (3.6) a lot of different approaches and models was considered.
It is not trivial to chose a suitable model for a problem of this type. It would have been
desirable to limit the study to some situation, however as has been noted the data is
sparse in comparison to the wide range of situations occuring. This makes it difficult to
limit the study in such a manner that other factors can be kept constant. An alternative
would have been to focus on a single event in the VHM data and focus on filtering out
similar events in the EuroFOT database, using annotation based techniques.

5.2.3 Approach 1 - Ensemble classifier

The adaptable structure of ensemble classifiers makes them highly suitable for multivari-
ate problems with high complexity. The downside is that the complexity of the classifier
makes it difficult to extract any directly applicable knowledge of the partitioning of the
predictor space.

The proportion of variance explained by the model is large. The single most impor-
tant variable in the model is the driver factor. This is explained partly by the different
scales of the rating function. However when using the standardised rating the driver
factor still has the largest effect indicating a difference between individuals apart from
the usage of the rating scale.

The results are signficantly improved when including the route factor in the model.
Therefore it can be said that similar situations as measured by the variables in the
model are not (perceived) equal over different days by the drivers. Without further
studies it is impossible to say what the cause of this effect is.

From the variables the minimum vehicle speed has the largest effect. This indicates
that the current speed is the largest factor effecting the rating. Intuitionally this is
logical since the speed limits are heavily correlated to the complexity and risk level at
the road. The second largest effects are regarding the steering activation. This could be
due to the fact that the low speed driving is in central areas where complexity of task is
higher.

5.2.4 Approach 2 - Covariate structure

The covariate structure proved good for matching situations. However it also holds some
limitations. Mainly that situations must be very similar to be matched. However with
a larger amount of data more and better subclusters could be detected to which the
matching could be done. Matching situations to a cluster means a less strict match-
ing and possibly classification of previously unseen situations by assignment to clusters
instead of matching to individual situations.
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5.2.5 Validation

A stricter validation of the results could have been done by showing the test subjects
video footage from the extracted situations and asking them to rate it. This rating value
could be compared to the predicted rating. However the subjects where unavaliable. Us-
ing other subjects than those included in the study is not desirable due to the difference
in the usage of the rating scale. Then a baseline would have to be established for each
subject to be used for evaluation.

As the results from the classifier show the route has a large effect on the results. The
route data is not avaliable in the EuroFOT database and the settings are significantly
different from naturalistic studies. From the comments of the drivers it is clear that the
ability to navigate the route is a large factor in the experienced unease while driving
coupled with driving in central areas of Gothenburg that they are not used to. Further
the driving in central areas might be very similar to driving in familiar low-speed areas
such as the subjects local neighbourhood. Such situations are not accounted for in the
VHM data but numerous in the EuroFOT data.

5.3 Future work

If any future work is to be done the following is proposed:

The issues regarding the difference in rating scale values between individuals should
be adressed. A more standardised scale could be introduced or a study regarding the
usage of the rating scale could be performed. A more standardised scale could be cate-
gorical with fewer values and a stricter explanation for each value.

Controlling for setting and increasing representability of the study data with naturalistic
driving data could be done. A novel way to do this is to extract a number of situations
of interest from the naturalistic data. The video from this data could be shown to a
number of subjects and rated. This would mean a loss of the first hand experience from
the driver but would also greatly reduce the cost of data gathering and increase control
of situations.

Using the covariate model and a method for averaging of the subspaces of principal
components could be constructed. Using such a method a set of reference clusters could
be extracted. This would open up for the possibility of mapping up driving into a set of
categories. Further clustering could then be performed within these clusters, or a study
of the time spent in these clusters by different drivers could be used to understand the
driving habits of individuals. That is a study of intra- and inter-individual effects.
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A
Implementation appendix

This chapter provides an overview of matlabs TreeBagger, the implementation used. As
the function is versatile and have a wide variety of settings the used settings are given
and explained. The input data is given as a matrix X with each row corresponding to
one observation and each column to one variable. The response vector Y is of the same
length as the columns of X and contains the mean rating for that segment. The specific
call used is:

B = TreeBag-
ger(nTrees,X,Y,’Method’,’regression’,’NVarToSample’,’all’,’OOBVarImp’,’on’);

Which returns a trained tree structure B. The first parameter nTrees is the number of
trees to train. This value is set with respect to the convergence of the training error. The
Method is either regression for numeric classes or classification for categorical classes.
The NVarToSample option is the number of variables to select randomly at each split
and all is the default setting. OOBVarImp is either on or off and indicates wether to
form the out of bag training error at every tree trained.
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B
Covariance matching principal

components and matchings

In this appendix the principal components for the clusters with highest rating are given.
Some matched signals using the covariance based method are also shown.

B.1 Principal components

B.1.1 Equilength Segments

The principal components for one observation from each of three clusters with average
standardised rating above 2 are given in Tables (B.1), (B.2) and (B.3).

B.2 Matching examples

Some examples of matched sequences from the matching algorithm are given here.

B.2.1 Steering event

The two closest matches obtained using the covariance matching for four steering events
are presented below.

B.2.2 Equilength event

The two closest matches obtained using the covariance matching for four equlength
events are presented below.
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B.2. MATCHING EXAMPLES
APPENDIX B. COVARIANCE MATCHING PRINCIPAL COMPONENTS AND

MATCHINGS

Var Comp 1 Comp 2 Comp3

VehicleSpeed 0.26 -0.30 0.29

BrakePressure -0.28 0.15 0.07

BrakeRate 0.13 0.01 -0.76

SteeringAngle 0.13 -0.23 0.27

SteerRate -0.41 -0.84 -0.26

LongAcc 0.73 -0.14 -0.26

LateralAcc 0.08 -0.20 0.20

YawRate 0.14 -0.18 0.26

AccPedalPos 0.29 -0.17 0.15

AccPedRate -0.05 -0.10 0.03

Table B.1: The principal components of one observation in a cluster with standardised
rating larger than 2 for the equilength segments.

Var Comp 1 Comp 2 Comp3

VehicleSpeed 0.17 -0.01 0.32

BrakePressure -0.02 0.10 -0.25

BrakeRate 0.09 -0.08 -0.88

SteeringAngle -0.90 0.08 -0.05

SteerRate 0.01 0.96 0

LongAcc -0.11 -0.18 0.13

LateralAcc -0.08 0.01 0.10

YawRate -0.36 -0.17 0.03

AccPedalPos 0.05 -0.05 0.19

AccPedRate -0.02 0.02 0

Table B.2: The principal components of one observation in a cluster with standardised
rating larger than 2 for the equilength segments.
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B.2. MATCHING EXAMPLES
APPENDIX B. COVARIANCE MATCHING PRINCIPAL COMPONENTS AND

MATCHINGS

Var Comp 1 Comp 2 Comp3

VehicleSpeed 0.64 -0.05 0.34

BrakePressure -0.45 0.41 -0.22

BrakeRate -0.02 0.03 0.14

SteeringAngle 0.49 0.64 -0.49

SteerRate -0.02 -0.10 -0.14

LongAcc 0.10 -0.57 -0.74

LateralAcc -0.07 0.06 -0.06

YawRate 0.13 0.21 -0.07

AccPedalPos 0.34 -0.18 0.01

AccPedRate -0.01 -0.01 0.02

Table B.3: The principal components of one observation in a cluster with standardised
rating larger than 2 for the equilength segments.
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Figure B.1: The two closest matches for two steering events obtained using the covariance
matching algorithm. The leftmost event is the original. The red signal is the steering angle,
the blue is the vehicle speed and the green is the brakepressure.
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B.2. MATCHING EXAMPLES
APPENDIX B. COVARIANCE MATCHING PRINCIPAL COMPONENTS AND

MATCHINGS
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Figure B.2: The two closest matches for two steering events obtained using the covariance
matching algorithm. The left event is the original. The red signal is the steering angle, the
blue is the vehicle speed and the green is the brakepressure.
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Figure B.3: The two closest matches for two equilength segments obtained using the
covariance matching algorithm. The left event is the original. The red signal is the steering
angle, the blue is the vehicle speed and the green is the brakepressure.
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B.2. MATCHING EXAMPLES
APPENDIX B. COVARIANCE MATCHING PRINCIPAL COMPONENTS AND

MATCHINGS
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Figure B.4: The two closest matches for two equilength segments obtained using the
covariance matching algorithm. The left event is the original. The red signal is the steering
angle, the blue is the vehicle speed and the green is the brakepressure.
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