
Machine learning for automotive cyber-
security
Anomaly detection in CAN

Master’s thesis in Complex Adaptive Systems

ELLEN SANDÉN, ARBNOR ZEQIRI

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2021
www.chalmers.se

www.chalmers.se

Master’s thesis 2021

Machine learning for automotive cybersecurity

Anomaly detection in CAN

ELLEN SANDÉN, ARBNOR ZEQIRI

Department of Electrical Engineering
Chalmers University of Technology

Gothenburg, Sweden 2021

Machine learning for automotive cybersecurity
Anomaly detection in CAN
ELLEN SANDÉN, ARBNOR ZEQIRI

© ELLEN SANDÉN, ARBNOR ZEQIRI, 2021.

Supervisor: Martin Fabian, Department of Electrical Engineering,
Sankar Sathyamoorthy, QRTECH, Christoffer Levandowski, QRTECH
Examiner: Martin Fabian, Department of Electrical Engineering

Master’s Thesis 2021
Department ofof Electrical Engineering
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX, template by Magnus Gustaver
Printed by Chalmers Reproservice
Gothenburg, Sweden 2021

iv

Machine learning for automotive cybersecurity
Anomaly detection in CAN
ELLEN SANDÉN, ARBNOR ZEQIRI
Department of Electrical Engineering
Chalmers University of Technology

Abstract
As modern cars get increasingly computerized, they become more susceptible to
hacker attacks. One of the main attack surfaces in a car is the CAN bus, which is
a network that allows all electrical components in the vehicle to communicate with
each other. The lack of encryption in CAN makes it vulnerable and in need of an
external attack detection system. One way such a system can operate is by learning
the normal behavior of the bus, and then analyse the incoming messages to search
for anything that diverges from the norm. Any large enough deviation is deemed a
potential attack.

In this thesis, a two branched anomaly detection system is developed using
several types of machine learning algorithms. The time between the CAN messages,
as well as the two main components of the CAN data: the ID and the data load, are
analysed in real time on both branches simultaneously to see whether the messages
are normal. The branches are combined in two different ways. In the first it is
enough for one branch to interpret messages as anomalous to classify them as an
attack, whereas in the second both branches have to agree on an attack classification.

To cover as many different types of potential attacks as possible, the two
branches are designed to be able to detect different types of anomalies. The first
branch consists of a combination of a one-class support-vector machine and a neu-
ral network autoencoder, where the former is able to detect anomalies in the time
between messages and the latter detects anomalies in the content of the individ-
ual data loads. The second branch consists of a neural network autoencoder with
convolutional and long short term memory layers, which detects anomalies in the
correlations in time between messages, as well as correlations between ID and data
load.

By using two different data sets with very different types of simulated attacks,
it is argued in this thesis that the combined branches approach makes the finished
anomaly detector more robust and secure. It is shown that one branch performs
better on the first data set and the other on the second data set, and by combining
the branches there is an increased protection toward different types of potential
attacks. Separately, the best performing branch on either data set reaches a True
Positive Rate of 1.0 and 0.997 respectively, and False Positive Rates of 0.0 and 0.007.
Through the combined approach, the anomaly detector is able to reach a best True
positive Rate of 1.0 and 0.998 on the two data sets, and a best False Positive Rate
of 0.001 and 0.0, depending on the type of combination of the branches.

v

Acknowledgements
We would like to thank Christoffer Levandowski and Sankar Sathyamoorthy for
giving us the opportunity to work on an interesting project, and everyone else at
QRTECH for providing a fun and welcoming atmosphere from day one. We would
also further like to thank Sankar Sathyamoorthy for much help and valuable inputs,
as well as good advice that has allowed us to move forward when we have been stuck.
Our Chalmers supervisor and examiner, Martin Fabian, has also been of great help
and offered many fruitful discussions as well as useful input on the report.

Ellen Sandén, Arbnor Zeqiri, Gothenburg, June 2021

vii

Contents

1 Introduction 1

2 Theory 5
2.1 CAN . 5
2.2 One-Class Support Vector Machine 5
2.3 Neural networks . 8
2.4 Autoencoder . 10
2.5 Recurrent Neural Networks . 10
2.6 Long Short Term Memory . 12
2.7 Convolutional Neural Networks . 13
2.8 Transposed Convolution . 14
2.9 Convolutional LSTM . 14
2.10 Bidirectional LSTM . 15
2.11 Evaluation Metrics . 15

3 Methods 17
3.1 Data . 17

3.1.1 The original data . 17
3.1.2 Preprocessing of data . 18
3.1.3 New data set . 19
3.1.4 Separation of data . 21

3.2 Evaluating Networks . 21
3.3 Networks . 23

3.3.1 Branch 1 . 24
3.3.1.1 OCSVM . 24
3.3.1.2 The Neural Network Autoencoder 25
3.3.1.3 Combining the OCSVM and NN-AE methods 26

3.3.2 Branch 2 . 26
3.3.2.1 LSTM Autoencoder 27
3.3.2.2 2D Convolutional LSTM Autoencoder 29
3.3.2.3 3D Convolutional Autoencoder 30
3.3.2.4 Convolutional LSTM Autoencoder 31

3.4 Combined Anomaly detector . 32

4 Results 35
4.1 Branch 1 Results . 35

ix

Contents

4.1.1 Results of OCSVM . 35
4.1.2 Results of NN-AE . 36
4.1.3 Combination of OCSVM and NN-AE 40

4.2 Branch 2 Results . 40
4.2.1 New data set . 40
4.2.2 Gear data set . 46

4.3 Results from combined branches . 51

5 Discussion and Conclusions 53
5.1 Branch 1 . 53
5.2 Branch 2 . 54
5.3 The Combined Anomaly Detector . 55

References 60

x

1
Introduction

The future of vehicles is one where they are more and more computerized. The
reason for this is the pressure on manufacturers to deliver vehicles that are more
connected, safer to drive and run more efficiently. Advanced Driver Assistance
Systems (ADAS) technologies such as collision detection and automatic parking
systems [1], together with developments in the Vehicle-To-Everything (V2X) [2]
domain are leading to the increased need of computerization.

In a modern vehicle, the different components are controlled by individual
Electronic Control Units (ECUs) [3]. For these to reliably communicate with each
other in real time, a fast, lightweight network system is needed. One of the most
common communication networks used for this purpose is the CAN (Communication
Area Network) bus [4].

Since the CAN bus was designed to be cheap and lightweight, the available
bandwidth is limited. This makes message encryption difficult, as any encryption
key would be too weak to provide any sort of useful protection. Furthermore, the
safety of a vehicle is dependent on in-vehicle-communication being fast, and encryp-
tion might cause unacceptable delays [5]. Because of this, CAN communication is
completely unencrypted, and can easily be targeted for intrusion.

In [6], researchers show that by using physical connections like the built in
OBD-II port, used for diagnostics and updating the ECUs, they are able to com-
pletely control safety critical functions of the vehicle such as control the brakes, kill
the engine, control the instrument cluster or temporarily boost the engine RPM.
Criticism arose that attackers requiring a physical connection to cause a digital
malfunction could just as well do it by other physical means. This led to [7] sub-
sequently showing that using the large number of attack surfaces, caused by the
increased digitalization mentioned previously, it was possible to achieve the same
control remotely. Other examples of hackers being able to completely control a ve-
hicle are [8], [9]. An intruder could also gain access to sensitive information about
the driver, such as their address or identity [10], [11].

The unprotected nature of CAN buses thus poses an increasing risk to the
safety and privacy of the driver. It also poses a considerable risk to society as a
whole. In [12] it is shown that vehicles have been used by terrorists to cause harm
to the public. In other words, having vehicles that are robust against security threats
is vital for avoiding potential harm to society.

Since the security problem in the CAN bus cannot be solved by introducing
encryption in the traffic of the bus, another solution is needed. One conceivable way
to tackle the problem is building a separate system that can detect any incoming
threats, and subsequently warn the user. Various previous attempts at building such

1

1. Introduction

a system for the CAN bus have been made [5], [13], [14], [15], [16], [17], [18], [19],
[20]. Many intrusion detection systems focus on capturing the normal behaviour
of the CAN bus, rather than directly finding intrusions. This is because malicious
attacks can take practically an infinite number of different forms. If a system focused
on detecting one or a few specific types of known attacks, hackers could just come
up with a different one to outsmart the system. As such, most detection systems are
actually anomaly detectors, rather than intrusion detectors, as the nature of true
intrusions is unknown. Using machine learning algorithms as anomaly detectors
for CAN is then a viable approach since they can be used to predict the normal
behaviour of the CAN traffic. Any large enough deviation from the norm will then
be classified as a possible attack.

Among previous works in CAN bus anomaly detection, there are various dif-
ferent approaches taken. Some use frequency based methods, such as in [13], where
it is assumed that normal messages in the CAN bus occur in a cyclic manner, with
approximately equal amount of time between messages, but that an attacker will
inject messages much faster. If time between messages is shorter than a threshold
value, it is classified as an attack. This system can thus only detect attacks in the
form of rapidly injected messages, and would fail if the injected messages occurred
at the same frequency as the normal data.

There are also specification based models, such as [14], where the authors try
to find specific rules regarding what an allowed message can look like. Differences
from this standard are classified as intrusions.

Statistical methods have also been used, such as in [5], where the authors use
a combination of a Hidden Markov Model and a regression model where the former
is used to capture the normal behavior of the CAN bus and the latter to train a
threshold for what is considered an anomaly.

Information theoretic methods have been used as well, as in [15], where the
authors use an information theoretic view of the normal behavior of the CAN bus,
where normal entropy is measured and deviations from this indicate an attack. They
also use relative entropy of ECUs to determine which ECU is being attacked.

Many works on CAN bus anomaly detection use various kinds of machine
learning approaches. Out of these, several different architectures of neural networks
have been used, such as convolutional neural networks [16], recurrent networks with
Long Short Term Memory units [17], deep feed forward neural networks [18], and
generative adversarial networks [19]. A different type of machine learning algo-
rithm, called hierarchical temporal memory, has also been used to capture CAN bus
anomalies [20].

However, to the best of our knowledge, none of these previous approaches
have included time dependent correlations of both CAN data loads and CAN ID at
the same time, but rather treat each ID as independent. Thus, the current work
takes anomaly detection in CAN further by capturing correlations in time between
different IDs and different data loads, as well as between IDs and data loads.

The number of different types of attacks that can be detected is increased by
using a sophisticated architecture consisting of two different branches. The CAN
messages go through both branches simultaneously, and two different configurations
are used to decide whether or not a message will be deemed an attack. The first

2

1. Introduction

branch will consist of a One-Class Support-Vector Machine [21] that captures time
dependencies between the CAN messages, followed by the data load of the CAN
messages going through a Neural Network Autoencoder [22]. If at any of these two
steps an anomaly is detected, the whole branch will classify the current sequence an
anomaly. The second branch will consist of a combined Convolutional, Long Short
Term Memory Autoencoder network, where the data is divided into time windows
of a certain length, and the convolutional filters will move in the dimensions of ID,
data, and time. In this way correlations are captured between all these.

The thesis is structured as follows. First, Chapter 2 gives a background on
the theoretical framework for CAN, the machine learning algorithm OCSVM, neural
networks and their many variations such as autoencoders, LSTM and CNN. It is
followed by Chapter 3 presenting the CAN data set used in the thesis, the details
of the neural network architectures, the minutiae of the two branches and how we
specifically combine these branches for the problem at hand. Next is Chapter 4,
where the results on how well the branches are able to classify whether an anomaly
has occurred using ROC and other metrics are presented. The thesis is finished
with Chapter 5 where results are reflected upon and where future directions for
CAN anomaly detection are proposed.

3

1. Introduction

4

2
Theory

2.1 CAN
The Communication Area Network (CAN) [4] is a vehicle bus that enables the
different ECUs in a vehicle to communicate with each other. Physically, the com-
munication is realized through a two wire bus. The ISO 11898 standard, that defines
the CAN bus, describes the physical and the data link layers of the OSI model [23].
The higher levels of the communication protocols, such as the application layer, are
vendor and application specific.

CAN works as an open broadcasting medium where each ECU connected to
the network can send and receive any message. Each ECU in the network can then
decide what messages are relevant to receive. Messages sent by the ECU are in the
form of frames. These frames have the following format

• SoF: A ’0’ in the Start of Frame indicates that a node intends to talk.
• ID: Frame identifier - the lower the ID, the higher the priority of the message.
• RTR: The Remote Transmission Request field is used to specify whether a

node sends or requests data from another node.
• Control: Contains the Identifier Extension Bit (IDE) bit. This bit is ’0’ if

an 11-bit ID and ’1’ if 29-bit ID is used. It also contains Data Length Code
(DLC) that specifies the length of the data load (0 to 8 bytes).

• Data: Contains the data load of the message.
• CRC: The Cyclic Redundancy Check ensures the integrity of the data.
• ACK: Indicates whether the node has correctly received and acknowledged the

data.
• EOF: Marks the end of the CAN frame.

From the list above, it is seen that the ID serves both as an identifier of a message
and as an arbitration mechanism.

The main way an intrusion is executed in a vehicle is by sending a package
with a specific ID and a specific data load, as shown in [6]. For this reason, the focus
of this thesis will be limited to analysing the ID and data loads of each message in
the flow of CAN data.

2.2 One-Class Support Vector Machine
The One-Class Support Vector Machine (OCSVM) [21] is a machine learning algo-
rithm that is used for classification tasks where the motive is to classify each sample
as either in or outside a set using only one class as training data. Since OCSVM

5

2. Theory

is an extension and closely related to the normal Support Vector Machines (SVM)
algorithm, a description of SVM will first be presented.

Denote a pair of samples in a data set as (xi, yi), i = 1, . . . n, where yi = ±1.
Let d be the number of features in each xi. Then, xi ∈ Rd. In the context of this
thesis, yi = 1 indicates a sample being classified as "normal" and yi = −1 as an
"attack".

The purpose of the SVM is to create a hyperplane as a classification tool and
should be constructed such that it is halfway between the points in opposite classes
closest to each other. This main hyperplane can be expressed as wTxi − b = 0,
where w ∈ Rd is the normal vector orthogonal to the hyperplane and b ∈ R is the
scalar offset term.

The separation can be done in the form of a hard-margin using two other hy-
perplanes; any point having a value wTxi−b = 1 or larger (hyperplane 1) is labelled
as normal, while a point having a value wTxi − b = −1 or lower (hyperplane 2) is
labelled as an attack. Using this construction, the width of the margin, that is the
distance between hyperplane 1 and hyperplane 2 is 2

||w|| , see Figure 2.1. Maximizing
the width is the same as minimizing ||w||.

Figure 2.1: Figure showing the margin, the main hyperplane and the two separat-
ing hyperplanes for two classes.

Source: [24]

6

2. Theory

The two separating hyperplanes 1 and 2 can be combined with the expression
yi(wTxi − b) ≥ 1. This leads to the optimization problem:

minimize ||w||22
s.t. yi(wTxi − b) ≥ 1.

(2.1)

The requirement of a hard-margin can be loosened by allowing some points
to be in the wrong side of the margin. This is done by instead considering the
optimization problem:

minimize 1
ν

∑
i

ζi + ||w||22

s.t. yi(wTxi − b) ≥ 1− ζi
ζi ≥ 0

(2.2)

where ζi = 1
n

∑
i max(0, 1− yi(wTxi− b)). The parameter ν ∈ (0, 1] in (2.2) controls

the trade-off between increasing the margin and assuring that xi lies on the correct
side of the margin. Solving this optimization problem using Lagrangian duality with
Lagrange multipliers αi leads to the weights w = ∑

i αiyixi. The offset b can be
obtained by getting an xi on the boundary of the margin and solving b = wTxi−yi.
Only points sitting on the boundary of the margin have αi 6= 0 and serve as support
vectors for the separation, hence the term Support Vector Machine. The decision
function for determining whether a new point xnew is in one or the other set is:

f(xnew) = sign
(∑

i

αiyi(xi • xnew)
)
. (2.3)

The algorithm assumes that the two classes, normal and attack, are linearly
separable. To be able to handle non-linearly separable data sets, the Kernel-Trick
[25] is used. The decision function in (2.3) as well as the Lagrange dual formulation
of the optimization problem in (2.2) depend on the dot product xi•xj, i, j = 1,n.
This can be exploited to transform the pairs of data points to a k dimensional space
where they are linearly separable by using kernel functions of the form K(xi,xj) =
Φ(xi) • Φ(xj), Rd → Rk, see Figure 2.2. The decision function is then:

f(xnew) = sign(
∑
i

αiyiK(xi,xnew)− b) (2.4)

An example of a kernel is the radial basis functionK(xi,xj) = exp
(
−γ||xi − xj||22

)
,

where γ > 0 is a hyperparameter that can be adjusted.

7

2. Theory

Figure 2.2: Showcase of the usage of Kernels, where a non-linearly separable data
set is transformed into a linearly separable one through a kernel function ∅(x).

Source: [26]

The One-Class SVM is closely related to the SVM. Just as the SVM, the
OCSVM algorithm transforms the datapoints xi to a feature space Rk using the
kernel function but now tries to maximize the margin between a hyperplane that
the datapoints lie in and the origin. Only one of the two classes is used to train the
algorithm. The optimization problem now takes the form:

minimize 1
ν

∑
i

ζi + 1
2 ||w||

2
2 − b (2.5)

s.t. (w • Φ(xi)) ≥ b− ζi (2.6)
ζi ≥ 0 (2.7)

leading to almost the same decision function as the SVM:

f(xnew) =
∑
i

αiK(xi,xnew)− b. (2.8)

For more information regarding the OCSVM algorithm, see the original paper
from B. Schölkopf et al. [21].

2.3 Neural networks
A neural network is composed of neurons, each neuron in its essense being a com-
putational unit. Each neuron takes one or several inputs, processes them according
to some rule and gives an output. The rule usually encompasses summing the in-
puts, adding a bias term and then applying a non-linear activation function. One
layer of a neural network can have a varying number of neurons. A neural network
typically has multiple such layers, which are connected by having the output of a
neuron in one layer connect to the input of one or more neurons in another layer.
In a fully-connected feedforward neural network, all the outputs of the neurons in
one layer are connected to the input of all neurons in the next layer. A schematic
representation of a simple neural network is shown in Figure 2.3.

8

2. Theory

Figure 2.3: Figure of a simple fully-connected feedforward neural network where
the nodes represent neurons and the edges represent the connections between neu-
rons. In this figure, there is one input layer, one hidden layer and an output layer.

Let p-dimensional input vectors xi with corresponding q-dimensional target
vectors ti, i = 1, . . . , n form a data set. Denote the state of the layers l = 0, . . . , L
in a neural network as Vl

i. The dimension of each Vl
i is determined by the number

of neurons in that layer. Let the 0th layer be the input to the neural network, that
is V0

i = xi. For each input i = 1, . . . , n, the state of the next layer in the neural
network is given by successively calculating:

Vl
i = g(WlVl−1

i + bl) (2.9)

for each layer l in the network. The weights Wl ∈ Rr× s are the connections between
consecutive layers. The dimensions r and s are thus the number neurons in the
previous and next layer respectively. The bl ∈ Rs is the bias terms in each layer.
The activation function g(x) is computed element-wise and is usually a non-linear
function to create non-linearity between the linear argument and the output of the
function. Examples of g(x) are the sigmoid g(x) = σ(x) = 1

1 + e−x
, the hyperbolic

tangent g(x) = tanh(x) and rectified linear unit g(x) = ReLU(x) = max(0, x).
The last layer L of the network VL

i is the output of the neural network and is
denoted as Oi. The goal of the neural network is to match this output to the target
vector ti. An example of a loss function that is used to measure the discrepancy
between the output of the neural network and the target is the mean-squared error
(MSE) loss:

H = 1
2
∑
i

||Oi − ti||22 (2.10)

9

2. Theory

where (|| ||2) is the l2 norm of the argument. Clearly, the lower theMSE the lower
the discrepancy between the output and the target. Any initial weights Wl are with
a large certainty ill-suited to produce the targets. Because of this, the weights are
updated iteratively (after inputs xi has gone through the network) using the rule

W ←− δW +W (2.11)

where the increments δW are given by

δW = −η ∂H
∂wij

. (2.12)

wij in (2.12) is the i, jth weight element in the matrix Wl and η is the learning
rate hyperparameter, where a larger learning rate corresponds to a larger response
relative to the error and hence a larger change in δW . This method of updating
the weights iteratively is called backpropagation through gradient descent. Feeding
all data points (xi, ti) to the network and backpropagating using the loss function is
called batch training. Normally a subset of m samples called minibatches are used
for training and backpropagating. One epoch corresponds to when the entire data
set has been used in the iterative training process.

For more details on neural networks, backpropagation and speeding up the
process of gradient descent (e.g. Adam Optimizer), see [27].

2.4 Autoencoder
An autoencoder [28] is a type of neural network that is used for dimension reduction
and anomaly detection. The autoencoder can be divided into two parts. The first
part is called an encoder that encodes the input data. Denote a vector input to the
autoencoder as x, x ∈ Rd. Then, the encoder can be seen as a neural network with
the output given by z = E(x), z ∈ Rp. The encoded space is referred to as the
latent space. The dimensionality reduction is achieved by having the dimension of
the latent space being smaller than the input dimension, that is p < d. The dimen-
sionality reduction imposed by the encoder can be used as a tool for visualizing high
dimensional data but can also be used as a means to extract important information
from the input data.

The second part of the autoencoder is the decoder. The decoder is also a neural
network that has as input the output of the encoder and outputs o = D(z), o ∈ Rd.

The goal of the autoencoder is to have the input match the output, that is
o = D(z) = D(E(x)) = x. The discrepancy between o and x is used as a measure
of determining the performance of the autoencoder. The behaviour of normal input
data is learned when training the autoencoder on the normal data.

2.5 Recurrent Neural Networks
A major limitation with a standard neural network is that it cannot capture time
dependencies, since there are no connections between different time steps [27]. To do

10

2. Theory

this, another type of network is needed, namely a Recurrent Neural Network (RNN)
[27]. The basis of the RNN is that it gets as input information from previous time
steps, as well as the current time step. The information from previous time steps is
often denoted the hidden state of the neuron [27]. In Figure 2.4, the simplest kind
of recurrent neural network is shown, with only one hidden neuron. In a timestep
t, the state V (t) of this neuron will be dependent on its state in the previous time
step, V (t− 1), as

V (t) = g(wHV (t− 1) + wIx(t)− θH) (2.13)

where g is an activation function, wH is the weight for the hidden state, x(t) is the
input, wI is the weight between the input and the hidden neuron, and θH is the
threshold for the neuron. The output O from the neuron is then calculated as

O(t) = g(wOV (t)− θO) (2.14)

where wO is the weight between the neuron and the output, and θO is the threshold
for the output [27].

The RNN can have much more complex architectures as well, with many neu-
rons and temporal connections between them.

The temporal connections allow the network to take into account or ”remem-
ber” information from previous times and use this to determine the output of the
current time.

Figure 2.4: Two representations of the same, single neuron RNN. The green arrow
represents the hidden state being passed on through time. The leftmost part of the
image shows how the hidden state is looped back to the neuron, and the right shows
the same neuron unfolded in time.

The network is trained using backpropagation through time, which works sim-
ilarly to regular backpropagation mentioned previously. The difference is that the
gradients are propagated backwards through previous time steps, as well as through
the layers. RNNs are even more sensitive to the vanishing or exploding gradient
problem than other NNs. This problem arises from the fact that in backpropaga-
tion, the gradients are multiplied with each other, and gradients less than 1 lead to
smaller and smaller updates, the further back in the network the backpropagation

11

2. Theory

goes [27]. Since an RNN uses the same weights for a given neuron in each time
step, this means that the network fails to store information from many time steps
ago, since these gradients become minuscule. To solve this, more advanced types of
neurons can be used in an RNN, most commonly Long Short Term Memory (LSTM)
units.

2.6 Long Short Term Memory

LSTM was first invented in 1997 by Hochreiter and Schmidhuber [29]. The advan-
tage of using LSTM units in an RNN is that the LSTM unit can regulate what and
how much information from previous time steps will be let through. This means
that the LSTM is trained to decide what information to remember, and what infor-
mation to forget, and the network can thus keep important information even from
many time steps ago.

In addition to the hidden state being passed along through time and used to
update the recurrent neuron, as in standard RNN, LSTMs also have an internal
cell state. The cell state gets updated and passed along through time, just like the
hidden state. The LSTM unit has four internal layers with trainable parameters,
where the calculation of the new cell state and hidden state takes place each time
step.

Figure 2.5 illustrates an LSTM cell. The four internal layers are shown as
circles, with their respective activation functions (sigmoid and tanh) written out.

Figure 2.5: An illustration of an LSTM cell. The green arrows represent the
information that is being passed through time, in the form of the cell state and the
hidden state.

12

2. Theory

2.7 Convolutional Neural Networks
A Convolutional Neural Network, CNN, is an architecture that, as opposed to a
standard neural net, captures spatial correlations from the input data [27]. Because
of this property, it is extensively used for image recognition [30], [31], [32], and the
three dimensional variant is also used for video analysis [33], [34], [35], as it captures
time correlations as well as spatial correlations.

The way CNN works is by applying a set number of filters, which are matrices
filled with trainable weights, that slide over the image and take the dot product of
the filter with sections of the input. The resulting value of each section is stored
in an output matrix. How much the filter moves over the image after each dot
product operation is determined by the stride parameter [27]. An illustration of the
convolutional process is shown in Figure 2.6 where the stride is 2.

Figure 2.6: Illustration of applying a convolutional filter to a 2-dimensional input.
The output from the filter is shown through corresponding colors in the input.

In the 3-dimensional case, the filters are composed of cubes and can slide in
all three dimensions of the input.

Usually, after applying a filter to the input, pooling will be performed to
decrease the dimension further. The pooling filter will slide over the data similarly
to the convolution filter, and give one output per section it covers. The output
from the pooling is decided by what type of pooling filter is used, and there are
therefore no trainable parameters in this step. For example, if max pooling is used,
the maximum value of the section is taken to be the pooling output, and if average
pooling is used, the average of the section is the output.

Like in other neural network architectures, an activation function is often ap-
plied to the data in each layer. An activation function often used in CNNs is ReLU,
Rectified Linear Unit, mentioned in Chapter 2.3.

13

2. Theory

2.8 Transposed Convolution

Transposed Convolution [36] can be viewed as the opposite of regular convolution, as
the dimensions of the input are increased instead of decreased while convolutional
operations are performed. Similarly to normal convolution, a filter is applied to
the input. Now, instead of taking the dot product, each element of the input is
multiplied with each element of the filter, and the output is stored in a new matrix.
Thus, for each input element an output of the same size as the applied filter is
created [37]. An illustration of this is shown in Figure 2.7.

Figure 2.7: Illustration of applying a transposed convolutional filter to a 2-
dimensional input. The output from the filter is shown through corresponding colors
in the input.

Transposed convolution is often used in the decoding part of autoencoders [38],
[39], as a way to increase the dimension back to the original input dimension in a
way that incorporates trainable parameters.

2.9 Convolutional LSTM

Convolutional LSTM was first presented in [40] and uses convolutional operations
within the LSTM unit. This allows the network to capture both spatial and temporal
correlations. The convolutional LSTM, denoted by the inventors as ConvLSTM,
takes as input 3-dimensional data instead of 1-dimensional data as in regular LSTM.
To handle the extra dimensions in the LSTM unit, the normal matrix operations
are replaced by convolutional operations.

14

2. Theory

2.10 Bidirectional LSTM
Bidirectional LSTM [41] is a type of LSTM network that trains on both the forward
and backward direction of an input sequence. This is done by splitting the network
up into one part that deals with the reversed sequence, and one that deals with
the forward sequence. By utilizing both past and future information to compute
an output, bidirectional LSTM often perform better than regular LSTM on certain
tasks [42], [43].

2.11 Evaluation Metrics
This section presents metrics that are used in the thesis. Most of the metrics here
can be found in [44]. Whenever there are two classes to predict, depending on
whether the prediction was right or not, a confusion matrix can be created, which
is shown in Table 2.1.

Predicted Positive Predicted Negative
Actual Positive True Positive TP False Negative FN
Actual Negative False Positive FP True Negative TN

Table 2.1: Confusion matrix.

The True Positive Rate (TPR) is a measure of how many correct positive
predictions a classifier has made compared to all actual positive instances and is
defined as

TPR = TP
TP + FN . (2.15)

The False Positive Rate (FPR) on the other hand is a measure of how many
actual negative instances were misclassified as positive and is defined as:

FPR = FP
FP + TN . (2.16)

The True Negative Rate (TNR) is the ratio of the correctly predicted negatives
compared to all actual negatives:

TNR = TN
TN + FP . (2.17)

The Positive Predictive Value (PPV) is defined as the ratio between the cor-
rectly predicted positives versus all predicted positives:

PPV = TP
TP + FP . (2.18)

From these metrics, several other metrics can be calculated. The first is the
Fβ-measure, which is defined as:

Fβ = (1 + β2) PPV · TPR
β2 · PPV + TPR , β > 0. (2.19)

15

2. Theory

The Fβ-measure is defined in such a way that it attaches β times the weight to
TPR compared to PPV. A large β thus would lead to each instance of false negative
affecting the Fβ more compared to a false positive. The converse is true for small β.

The accuracy metric is one of the more common metrics and is defined as the
ratio between the correct predictions and the overall data, that is:

accuracy = TP + TN
TP + FP + FN + TN . (2.20)

The accuracy metric has a flaw, namely that for unbalanced data sets, the
accuracy score is close to one even when classifying every point to one class. The
balanced accuracy score [45] is less sensitive to unbalanced data sets and is defined
as:

balanced accuracy = TPR + TNR
2 . (2.21)

One important evaluation curve to mention is the Receiver Operating Char-
acteristic (ROC) curve. It is a graphical plot that shows the False Positive Rate
(FPR) versus the True Positive Rate (TPR) for varying thresholds. Given a thresh-
old separating the two classes, the model will have varying pairs of FPR and TPR
and a curve plotting the pairs can be obtained. The best model is one that has no
false positives and 100 % TPR which is the point (0, 1) in the ROC curve. The Area
Under Curve (AUC) metric is defined to be the area under the ROC curve. It is an
important metric that shows how well a discriminator can perform given a number
of different thresholds. The perfect discriminator has an AUC = 1 since there exists
a threshold which gives a perfect TPR and FPR.

16

3
Methods

3.1 Data
The data used in this thesis is available online [46]. On the website there are in total
5 different data sets. In this thesis, the two data sets fetched from the website are:

1. Gear data set
• This data set has attack messages that are injected every 0.001s having

ID ’043f’ and a constant data load which is supposed to alter the vehicles
gear information. In order to speed up the process of training the models,
only the first million messages were used in the analysis.

2. Attack-free
• A data set without any injected attack data.

The Gear data set has prevously been used in [16], [19]. For illustration, a
small portion of the Attack-Free data set is shown in Figure 3.1. The figure clearly
shows the time dependent nature of the CAN bus. The attributes of each message
in the data sets are:

• Timestamp (formatted as UNIX TIME).
• The ID of the message.
• DLC, integer indicating the number of pairs of hexadecimal numbers in the

data field. The DLC can be 2, 5 or 8. Most messages have DLC=8.
• Data load, where each data message data[i], i = 0, ..., DLC contains the data

in the data field, given in hexadecimal form.
• Attack, whether the message is injected or part of the normal data. The

Attack-free data set does not have this attribute.

Figure 3.1: A small screenshot of the Attack-Free data set.

3.1.1 The original data
The Gear data set was obtained from a car being turned on and standing still for 30
to 40 minutes. The data was sniffed using the OBD-II port. During the acquisition
of the data, attack messages were injected through an ECU. The Attack-free data set
was obtained similarly from another vehicle by standing still for around 10 minutes

17

3. Methods

and without injecting any attack messages. The total number of messages and the
IDs in the data sets (after only using a portion of the Gear data set) are shown in
Table 3.1.

Data set Normal
Messages

Attack
Messages IDs

Gear 826793 173207
0140 02c0 0350 0370 043f 0440 0316 018f 0002
0153 0260 0130 0131 02a0 0329 0545 04f0 0430

04b1 01f1 05f0 00a0 00a1 0690 05a0 05a2

Attack-free 988871 -
0350 02c0 0430 04b1 01f1 0153 0002 018f 0130
0131 0140 0260 02a0 0316 0329 0545 02b0 043f
0370 0440 04f0 05f0 05a0 05a2 0690 00a0 00a1

Table 3.1: Table showing the number of normal and attack messages together with
a list of IDs in the data sets.

3.1.2 Preprocessing of data
As with all data, some preprocessing of the data was done for the different algorithms
to work.

• CAN messages having less than 8 pairs of hexadecimal data loads (having
DLC < 8) were converted to having DLC = 8 by setting all the pairs above
DLC to a constant ’00’. For example, if the CAN message had DLC=2 and a
data load ’1A B4’, the data load of this message was converted to ’1A B4 00
00 00 00 00 00’.

• The data load entries were then converted from hexadecimal to binary data.
For example, a data load being ’0A B1, ..., 29’ is converted to its binary rep-
resentation ’00001010 10110001, ..., 00101001’. This resulted in each message
having a 64 bit data load.

• To each message, a feature δp is added. This feature is the time difference
between the previous and current message. The distribution of δp for each
data set is given in Figure 3.2.

Figure 3.2: A boxplot of the time between messages δp.

18

3. Methods

3.1.3 New data set

Attack messages were simulated using the entire Attack-Free data set. Several prob-
lems arose when trying to inject attack messages. The first is what message should
be injected. The other parameter is the insertion time window, when should the
messages be injected and for how long? The last parameter is the insertion fre-
quency, that is, how often should the data be injected with an attack during the
insertion time window.

Firstly, what attack message should be injected? The messages should test the
detectors on different types of anomalies and hence include a variety of message data
loads and IDs. Some data loads in each message should be injected such that they
have been seen before in the flow of CAN messages and some that have not. Attack
messages which have a data load that is the same as the message data loads seen
in the normal data would only be anomalous with respect to time, while messages
that have a data load differing from the normal data would then be anomalous
with respect to time and data load content. This tests the ability for the detectors
to detect different type of anomalies. With this in mind, Algorithm 1 is used to
create attack messages to be inserted in the Attack-free data set. For each ID, the
algorithm takes all the messages in the Attack-free data set having that ID. Then,
the mean of each bit in the 64 bit data loads of these messages are calculated. If
the mean of the bit is equal to or above 0.5, the bit is set to 1, else it is set to 0.
Thus, a 64 bit data load containing zeros and ones is created for each ID.

Algorithm 1: Algorithm to create messages to be injected as attack.
Data: The Attack-free data which contains messages having 64 bit data

loads and one out of 27 unique IDs.
Result: A message matrix containing for each of the 27 IDs the 64 bit

data load to be inserted as attack data load.
/* Create message matrix ←− [27 by 64] matrix of zeros */
for i = 1 to i = 27 do

current ID data ←− all the data messages of ID i;
for j = 1 to j = 64 do

column ←− current ID data[:, j];
mean of column ←− Mean of column;
if mean of column ≥ 0.5 then

message matrix[i, j] ←− 1
else

message matrix[i, j] ←− 0
end

end
end

How common is it for each ID to have a data load created by the algorithm
to contain exactly the same data load in the normal data? To answer the question,
the ratio of data loads for each ID in the Attack-free data set that have the same
data loads as the data loads created by the algorithm is calculated. The result is

19

3. Methods

given in Table 3.2. As seen from the table, depending on the ID, messages that will
be inserted will be exactly the same, some of them will be the same or none of them
will be the same compared to the ones encountered previously in the normal CAN
data.

ID 0350 02c0 0430 04b1 01f1 0153 0002 018f 0130
Ratio 0.0 1.0 1.0 0.0 0.0 1.0 0.0 0.006 0.0
ID 0131 0140 0260 02a0 0316 0329 0545 02b0 043f

Ratio 0.0 0.0 0.0 0.047 0.0 0.028 0.289 0.001 0.0
ID 0370 0440 04f0 05f0 05a0 05a2 0690 00a0 00a1

Ratio 0.265 0.0 0.0 1.0 1.0 0.0 0.668 0.0 0.025

Table 3.2: Table showing the ratios of the data loads that are the same when
comparing all the the 64 bit data loads for an ID to the data loads created by using
Algorithm 1 for the same ID. A ratio of 0.0 for an ID means that none of the data
loads created by the algorithm for that ID are the same in the normal data.

The insertion time window is chosen such that a burst of attack messages with
a specific ID are inserted at specific times while at the same time retaining a large
ratio between normal and attack data. The IDs of the messages to be inserted follow
the order of the Attack-free data set shown in Table 3.1, beginning in the top-left and
continuing to the right. In the first time window, the 64 bit message corresponding
to ID ’0350’, which is found in the first row of the message matrix in Algorithm 1
is inserted at a specific insertion frequency. This is done for all IDs twice. The time
between windows is set to 4s. Each window is 0.2s long. A summary of the details
of the insertion time window is shown in Table 3.3.

ID 0350 02c0 ... 00a1 0350 0545 ... 00a1
Start Time (s) 260 264 ... 364 368 372 ... 472
End Time (s) 260.2 264.2 ... 364.2 368.2 372.2 ... 472.2

Table 3.3: Details of insertion time windows.

Regarding the insertion frequency, the following is argued. The lower an in-
jection frequency is, the harder it is for any detector using a window to correctly
classify an anomaly. To put it another way, it is harder to detect a window of say
40 messages as anomalous if only one of the messages in the window is an attack
compared to when 30 of them are attacks. As an overview, the median time between
each message for each ID is given in Figure 3.3.

The median time difference between each message is around 0.01s for most
of the IDs. Thus, an insertion frequency of 0.04s is chosen as a balance between
having a lower frequency than the normal messages but having enough attack data
messages to make inferences on.

20

3. Methods

Figure 3.3: The median time between messages for each ID in the Attack-free data
set.

3.1.4 Separation of data
In order to test the generality of the models, the data was divided into training,
validation and test subsets. Figure 3.4 shows the divisions and the labels of the
Attack-free and Gear data sets.

Out of the 988871 messages in the Attack-free data set, 50% were split for
training and the other 50% were split for validation and testing purposes. From the
validation and testing messages, 70% were split to use for validation containing only
normal messages. The attack messages from the previous chapter were injected into
the validation and test portion of the Attack-free data set. Henceforth, the entire
Attack-Free data set together with the inserted attack messages is referred to as the
“New data set”.

A similar approach was done for the Gear data set. Since attack-messages
were injected continuously, the entire data set is a mixture of both normal and
attack data. The first 40% of the data set was split for training, the next 35% for
validation and the last 25% for testing. Whenever needed, only normal messages
from the training and validation subsets were used, which are labeled as "Training
Normal" and "Validation Normal" in the Gear data set portion of Figure 3.4.

For the different upcoming methods of anomaly detection, the messages in the
subsets were divided into windows. A number of L = 40 messages were taken at
a time in the same order as they appear in the subsets. If one of the messages in
the window had an attack, the whole window was labeled an attack. The number
of attack and normal windows in each subset is shown in Table 3.4.

3.2 Evaluating Networks
In this chapter, a list of the different metrics used to evaluate and design the models
will be given. Positive (+1) and negative (-1) labels are given to attack and normal
windows respectively.

In this thesis, the metrics to evaluate the networks on are chosen to be the
TPR, FPR, balanced accuracy and Fβ with β = 0.1 and β = 10. The TPR is used to

21

3. Methods

Figure 3.4: Showcase of the subsets created after dividing the Attack-free and
Gear data sets. The number of messages in each subset is shown in each box. A
green box means that the data has exclusively normal data, while the gray boxes
represent mixed normal and attack data.

Subset
Training
Normal

New

Validation
Normal

New

Validation
Mixed
New

Test
Mixed
New

Training
Gear

Validation
Gear

Test
Gear

Normal
Windows 12360 8652 8400 3644 4557 3737 2990

Attack
Windows - - 258 66 5443 5013 3260

Table 3.4: Table showing the number of normal and attack windows for each
subset.

show how well the detectors are able to correctly predict attack windows. The FPR
is used since the metric shows how prone the detector is to falsely classify normal
windows as attacks. The balanced accuracy is a way of generally seeing how many
true attack and normal windows the detectors find. Lastly, the Fβ with β = 10 is
used to indicate how good the detectors are when 10 times the importance is given
to false negatives. This means that the larger β grants higher weight to attacks
being classified as normal. The converse holds for β = 0.1.

The error measure used in the different neural networks for each sample through-
out the thesis is defined as the l1 norm:

esample = ||X− X̂||1 (3.1)

where X is the input sample which can be a vector, matrix or a tensor depending
on the input to the neural network, and X̂ is the predicted output sample which
has the same dimensions as the input sample. Given a threshold, this error can be
used to classify the input as either being an attack or normal. Thus, in connection
to this metric and given a threshold, the ROC curve explained in Chapter 2.11 is
used to show the performance of the neural network predictions.

22

3. Methods

Finally, the loss the neural networks use for training is binary cross entropy
loss:

loss = − 1
batch size

∑
i

yi · log(ŷi) + (1− yi) · log(1− ŷi) (3.2)

where i is the index over each element in a batch. yi and ŷi are the true and predicted
values of the element respectively.

Two ways of visualising the esample will be done by showing box plots and
scatter plots. The orange lines in the box plots represent the median of a distribution
and the whiskers represent the 1st and 99th percentile of a distribution. Points below
or above the whiskers are shown as black circles.

3.3 Networks

To capture the normal behavior of the CAN bus, several different networks were
created and tested. These all built upon the idea that if the network could be
trained to reproduce normal data well enough, any successive data that was not
reproduced well by the network would be deemed an anomaly. The detected anomaly
could then be flagged as a potential attack. For the neural networks, the difference
between the network considering data to be normal or anomalous would be the
value of the reconstruction error. Normal data would give a lower loss compared to
anomalous data. To this end, all networks were exclusively trained on normal data,
but validated and tested on both anomalous and normal data.

When training the networks, the optimizer used was the Adam Optimizer with
the learning rate parameter fixed to 0.001. Early stopping was employed to avoid
overfitting. This means that if the validation loss did not decrease after a certain
number of consecutive epochs, the training was stopped. The number of epochs
allowed before stopping the training is determined by the patience parameter.

Two different approaches were taken regarding how to design the anomaly de-
tector networks. The first one, Branch 1, combined a neural network with OCSVM.
The description of how this was done can be found in Chapter 3.3.1. The second
one, Branch 2, used only a neural network. The description of how this was done
can be found in Chapter 3.3.2.

For both branches thresholds to distinguish normal data from attack were
optimized for each network and data set. This was because the different data sets
were quite different in nature since they were obtained from different vehicles, and
yielded different results when being reconstructed by the networks, as can be seen in
Chapter 4. Furthermore, because of the varying nature of CAN for different vehicles,
it is argued that any anomaly detector would first need to be trained on normal data
from a specific vehicle before being implemented into it. This would also mean that
different thresholds would need to be set for different types of vehicles, since the
thresholds are based on the normal data. It is therefore natural in this case to use
different thresholds for the different data sets.

All networks were created using Keras [47] and Tensorflow [48] in Python.

23

3. Methods

Figure 3.5: Flow diagram showing the flow of Branch 1 method.

3.3.1 Branch 1
Branch 1 of the anomaly detector proposed in this thesis contains two different
methods to detect injected messages. In the CAN flow, attacks can happen in several
ways. A message is inserted at a different time compared to normal, a message can
be inserted at a normal time but the data load of that message is harmful or both
the timing and the data load of the message is abnormal. To solve for a message
being an anomaly with respect to time the OCSVM algorithm is used. To detect
intrusions where only the data load of a message is changed, an Neural Network
Autoencoder (NN-AE) is used. A flow diagram showing the overall structure of
this branch is shown in Figure 3.5. All models are trained, validated and tested
separately on the New and Gear data sets.

3.3.1.1 OCSVM

The input to this branch is a window of L = 40 CAN messages which contained the
following attributes

• An ID.
• A 64 bit CAN data load.
• δp The time difference between the previous message and itself.

The OCSVM algorithm is heavily inspired by [49]. From each window, a vector
vO with the following features was collected as an input to the OCSVM algorithm

• The sample mean µ = 1
L

L∑
l=1

δl of all the messages in the window.

• The sample variance σ = 1
L− 1

L∑
l=1

(δl−µ)2 of all the messages in the window.

There are thus 2 features used in the OCSVM classifier.
The data sets used for training the OCSVM were the training normal subsets.

24

3. Methods

Figure 3.6: Figures showing the architectures of the different autoencoders. Each
box in the figure represents a neural network layer. In each box, the type, the
number of neurons and the activation function used in a layer is shown.

For the OCSVM algorithm, the radial basis function is used as a kernel to allow non-
linearity in the distribution of the training data. Also, a soft margin is used to allow
some data points in the OCSVM to be misclassified (leading to higher generalization
of the data). The hyperparameters to be adjusted for this algorithm are γ and
ν. These hyperparameters were adjusted iteratively such that they maximized the
balanced accuracy score in the mixed validation subsets. First, a grid containing
many (γ, ν) pairs of values was created. Based on the balanced accuracy score using
the hyperparameter values from the grid, the interval for both γ and ν values was
adjusted until the score did not increase further.

3.3.1.2 The Neural Network Autoencoder

Autoencoders as noted in Chapter 2.4 can be used as a method for anomaly detec-
tion. If the OCSVM deems the window as normal (-1), the window (that is, the 40
messages of a window) is given as input to an autoencoder, which henceforth will be
called the Neural Network Autoencoder (NN-AE). The 64 bit data load of these 40
messages are evaluated individually on the NN-AE. Since the data load of a message
is 64 bit, the input to the NN-AE is 64 bit. Also, since it is an autoencoder, the
output has the same dimensions as the input, that is 64 elements.

X and X̂ defined in (3.1) are thus 64 dimensional vectors. Since the error
scalar esample is computed message-by-message and a window is of size 40, it leads
to there being a total of 40 errors esample. If any of these 40 errors are above a
certain threshold thN or thG for New and Gear data sets respectively, the message
and thus the entire window is deemed as an anomaly. These thresholds were chosen
such that they are larger than any of the errors of normal messages.

The loss used for this neural network is the binary crossentropy loss defined

25

3. Methods

in (3.2). The NN-AEs are trained on the training subsets containing only normal
messages. The validation data when training the NN-AEs are the validation subsets
containing normal messages. The different tested architectures compared are given
in Figure 3.6. The final architecture that is chosen for the New and Gear data set
respectively is the architecture having the lowest validation loss. The data used to
set the thresholds thN and thG were the mixed validation subsets.

Shared parameters for all the NN-AEs is a batch size of 400, the maximum
number of epochs to 400 and the patience parameter set to 20.

3.3.1.3 Combining the OCSVM and NN-AE methods

The combination of this branch is straightforward and shown in Figure 3.5. Each
window with size L = 40 messages is first sent to the OCSVM. If the OCSVM given
the window input vO outputs +1, the whole window is classified as an anomaly
and the final label of the window is (+1). If it outputs (-1), the input window of
L = 40 messages is sent as input to the NN-AE. Again, this is motivated by the fact
that the data loads of the messages in the window can be malicious even though
the messages within the window are normal with respect to their order and time of
appearance. The data load of each message is fetched and the esample is calculated.
If any of the 40 esample values are above the threshold thN or thG for the New and
Gear data set respectively, the window is deemed as an anomaly, that is (+1). Else,
the window is deemed to be normal (-1). The output of this branch is then later
combined with Branch 2, see Chapter 3.4. The final performance of this branch on
the unseen test subsets will be presented in Chapter 4.1.3.

3.3.2 Branch 2
For Branch 2, several different architectures of neural networks were tested, to see
which would work best for the task at hand. The aim was to have a network that
would recreate the normal CAN input as well as possible, while also failing to recre-
ate the anomalous data. For each type, many different experiments were performed,
to find the most suitable number of layers, hyperparameter values, activation func-
tions and so forth. The best versions of each type is presented here. The different
types presented are LSTM Autoencoders, 2D Convolutional LSTM Autoencoders,
3D Convolutional Autoencoders, and convLSTM Autoencoders. When training the
networks, a batch size of 100 was used, and early stopping with patience = 10. De-
tails on how the networks were designed are presented below. For each architecture
tested, an illustration of the network is shown together with details on parameters
used in each layer. Only the parameters values that differed from the Keras [47]
default values are shown. Each network was trained, validated and tested sepa-
rately on the New and the Gear data sets. For the New data set, the networks
were trained on the normal training subset, using the normal validation subset as
validation during training to avoid overfitting, and then tested on the mixed valida-
tion subset. The best performing network on the mixed validation subset was then
further tested on the mixed test subset. For the Gear data set, all networks were
trained on the training normal subset, using the normal data from the validation
subset as validation during training. These were then all tested on the full mixed

26

3. Methods

validation subset, and one network was chosen to be tested on mixed test subset as
well.

3.3.2.1 LSTM Autoencoder

When designing the LSTM Autoencoder (LSTM-AE), inspiration for the architec-
ture was taken from [50] and [51]. Only the CAN data loads where used. The time
sequence of 64 bit loads was then divided into time windows of size L time steps,
with an overlap between consecutive windows of size m. An illustration of this is
shown in Figure 3.7, with a window size of 4 and an overlap of 2. No overlap was
used during inference. Like in [50], a window size of L = 40 was used. An overlap

Figure 3.7: A representation of how the data was divided for the LSTM AEs.

of 20 was used to not lose correlations between different windows during training.

27

3. Methods

Figure 3.8: The architecture of Large LSTM.

Figure 3.9: The architecture of Small LSTM.

For the LSTM-AE, two different architectures were tested. The first one is
denoted Large LSTM and is very similar to the one used in [50]. Its architecture
is shown in Figure 3.8. However, this architecture does not press down the input
dimensions in the encoder part, and thus loses some of the advantage of a traditional
Autoencoder. With this in mind, the network shown in Figure 3.9 was designed, in
which there are only 40 LSTM units in each LSTM layer, instead of 128. It thus got

28

3. Methods

the name Small LSTM. Furthermore, unlike in [50], both networks were trained and
tested on all data together, and not separately for each CAN ID. Thus, one model
was created per data set used.

3.3.2.2 2D Convolutional LSTM Autoencoder

To capture correlations between IDs and data loads as well, a convolutional LSTM
Autoencoder was built. The idea behind this was to capture correlations between
IDs and data loads with 2d convolutions, then capture time correlations with LSTM,
and then use transposed convolution to get the dimension of the output to be the
same as that of the input. The final layer was set as Dense since this was found to
improve performance.

To this end, each ID was transformed into 16 bit binary form, as this was
found to work better than decimal form. After this, the data was divided into one
2d matrix for each time step, to be able to perform 2d convolutions. Each matrix
consisted of 64 columnwise copies of the current 16 bit ID above its 64 bit data loads.
This is illustrated in Figure 3.10. Similarly to the LSTM AE data, an overlap in
time of 20 messages was used when training the networks.

Figure 3.10: A representation of how the data was divided for the 2D CNN LSTM.

Two different configurations of this network were tested. In the first one,
illustrated in Figure 3.11, the convolutions were performed by letting each time step
be a channel, similarly to how in 2d convolutions over color images, each color is a
channel [52]. To match the input dimensions to how they are supposed to be stated
in Keras [47] in this case, the input data was transposed to get the dimensions
64 ·17 ·40. Using this configuration meant that there were separate weights for each
channel, but since the filters only slide over the first two dimensions, no correlations
were captured between channels. This network is denoted 2D CNN LSTM.

In the second one, the convolutional and transposed convolutional layers as
well as the dense layer were put within a Time Distributed wrapper. What this
does is it applies the layer within to each time step matrix independently, but using

29

3. Methods

the same weights [53]. To this end, the input data was transposed and an extra
dimension was added, to get the dimensions 40 · 64 · 17 · 1.The network is illustrated
in Figure 3.12 This network is denoted TimeDistributed 2D CNN LSTM.

Figure 3.11: The architecture of the 2D CNN LSTM.

Figure 3.12: The architecture of the TimeDistributed 2D CNN LSTM.

3.3.2.3 3D Convolutional Autoencoder

To test whether it would be possible to capture correlations in the time dimension
without using LSTM, a 3D Convolutional Autoencoder was built, denoted 3D CNN.

30

3. Methods

For this network, the same data preprocessing as is shown in Figure 3.10 was used.
However, the time dimension was now included in the convolution, using three
dimensional filters. Similarly to the TimeDistributed 2D CNN, the input data was
made to have the dimensions 40 · 64 · 17 · 1. The architecture of the 3D CNN is
shown in Figure 3.13.

Figure 3.13: The architecture of the 3D CNN

3.3.2.4 Convolutional LSTM Autoencoder

The Convolutional LSTM networks used ConvLSTM units to capture correlations
in time, ID, and data loads. Both a unidirectional and a bidirectional version were
tested. Both used the same type of input data as the 3D CNN and TimeDistributed
2D CNN, namely with dimensions 40 · 64 · 17 · 1. The unidirectional network is
illustrated in Figure 3.14 and is denoted ConvLSTM and the bidirectional network
is illustrated in Figure 3.15. This is denoted Bidirectional ConvLSTM.

31

3. Methods

Figure 3.14: The architecture of the ConvLSTM.

Figure 3.15: The architecture of the Bidirectional ConvLSTM. Since the time
sequence is processed both forwards and backwards, there are two cell states and
two hidden states in each unit.

3.4 Combined Anomaly detector
For each window of L = 40 messages, from both Branch 1 and 2, a prediction on
whether the window is normal (-1) or an anomaly (+1) is made. The way these two

32

3. Methods

branches are combined is by using two logical operators, see Table 3.5. To gauge
which operation is best, the two operators will be compared using the different
metrics defined in Chapter 3.2. In words it means the AND operation labels a
window as an attack only if both Branch 1 & Branch 2 agree that it is an attack
whereas the OR operation labels a window an attack whenever either Branch 1 or
Branch 2 deems the window as an attack.

Branch 1
Output

Branch 2
Output

AND
Combination

OR
Combination

-1 -1 -1 -1
-1 1 -1 1
1 -1 -1 1
1 1 1 1

Table 3.5: Table showing the two combinational methods AND and OR to be used.

33

3. Methods

34

4
Results

4.1 Branch 1 Results

In this chapter, the final selection of the OCSVM and NN-AE models together with
the thresholds thN and thG, closely following Chapter 3.3.1, will be motivated and
presented. This chapter ends with showing the performance of this Branch on both
the New and Gear data sets.

4.1.1 Results of OCSVM

The (γ, ν) pairs that were tested according to the methodology of Chapter 3.3.1.1
and iterated on to achieve the largest possible balanced accuracy score are shown in
Table 4.1.

Iteration
Number ν range γ range Best ν Best γ

Best
Balanced
Accuracy

New Dataset

1 0.0001 0.0002 ... 0.01
10 60 100 600 1000
3000 5000 7000 9000,

10000 20000 30000 40000
4 · 10−4 9000 0.99994

2 3 · 10−5 4 · 10−5 ... 5 · 10−4 8500 8510 ... 9500 4 · 10−4 8800 8810 ... 9020 0.99994
Gear Dataset

1 0.1 0.2 ... 0.9 1000 2000 ... 10000 0.1 1000 0.88561
2 0.05 0.051 ... 0.15 1000 2000 ... 10000 0.066 10000 0.89793
3 0.06 0.061 ... 0.07 8000 9000 ... 24000 0.066 10000 11000 12000 0.89793

Table 4.1: The iterations of hyperparameter tuning of the OCSVM algorithm for
both datasets.

The final parameters (γ = 8900, ν = 0.0004) and (γ = 11000, ν = 0.066)
defining the optimized OCSVM models for the New and Gear data sets respectively
were chosen.

The final scores on the mixed validation subsets for the optimized OCSVM
models are given in Table 4.2. As the table shows, the OCSVM alone performs
very well on the mixed validation subset of the New data set with very low FPR
and a perfect TPR score. On the mixed validation subset of the Gear data set, the
performance is not as impressive, but it is still good with a TPR larger than 0.83
and an FPR lower than 0.04.

35

4. Results

Data set Accuracy Balanced
Accuracy TPR FPR Fβ=0.1 Fβ=10

Gear 0.89269 0.89793 0.83768 0.04181 0.95839 0.83874
New 0.99988 0.99994 1.0 0.00012 0.99618 0.99996

Table 4.2: The final metric scores on the mixed validation subsets using only the
OCSVM algorithm.

4.1.2 Results of NN-AE
This chapter shows the results using the methodology of Chapter 3.3.1.2 and the
final NN-AE architectures chosen to use later on for combining the OCSVM and
NN-AE. Running the three different NN-AE architectures shown in Figure 3.6 on
the subsets of training and validation containing only normal messages, Table 4.3
was obtained.

New data set Gear data set
Early

Stopping
Validation

Loss
Early

Stopping
Validation

Loss
NN-AE-1 37 8.2× 10−2 54 2.2× 10−4

NN-AE-2 25 7.8× 10−4 35 1.2× 10−4

NN-AE-3 400 7.4× 10−8 42 2.1× 10−4

Table 4.3: Table showing the performance of the NN-AE models on the normal
validation subsets. The Early Stopping columns show the number of epochs the
neural networks ran until the validation loss did not increase in patience number of
epochs.

Clearly the NN-AE-3 and NN-AE-2 models gave the best validation loss for
the New and Gear data sets respectively. These models were chosen for further
inference. Notice that stopping was never achieved on the NN-AE-3 for the New
data set, that is, this model could have achieved even further validation loss. Since
the last layer of the NN-AE-3 is a sigmoid function, each element predicted will,
unless it is extremely close to 0, never reach zero. Thus, the result is satisfactory
and the the model is said to be trained.

After obtaining the final NN-AE models, each message from the mixed valida-
tion subsets, which contained both attack and normal data, were used to calculate
the esample. A boxplot and scatterplot where the errors of normal and attack mes-
sages were plotted separately together with an ROC plot showing the performance
of the NN-AE model as a discriminator are shown in Figure 4.1 and 4.2.

Figure 4.1 shows that the NN-AE is worse performing on the New data set
than a classifier that would randomly classify windows as normal or attack with
probability 0.5. In fact, the AUC score would increase to 1 − 0.37330 = 0.62670
only by reversing the predictions of the NN-AE from attack to normal and from
normal to attack for each window. Figure 4.2 shows that the NN-AE is almost
perfectly able to discriminate between attack and normal windows in the Gear data
set, except for a few normal message errors still being larger than attack ones.

36

4. Results

The largest errors of the normal messages were eN = 0.03866 and eG = 6.03454
for the New and Gear data sets respectively. Thus, the thresholds are chosen to be
thN = 0.05 and thG = 6.2 for the New and Gear data sets.

37

4. Results

(a) Boxplot of the error per message.

(b) Scatter plot of the errors per message.

(c) ROC curve obtained from different thresholds
between the normal and attack messages. The
AUC score is 0.37330.

Figure 4.1: Results using NN-AE-3 on the mixed validation subset of the New
data set.

38

4. Results

(a) Boxplot of the error per message.

(b) Scatter plot of the errors per message.

(c) ROC curve obtained from different thresholds
between the normal and attack messages. The
AUC score is 0.99901.

Figure 4.2: Results using NN-AE-2 on the mixed validation subset of the Gear
data set.

39

4. Results

4.1.3 Combination of OCSVM and NN-AE
For clarity, the final selected models and their parameters are shown in Table 4.4.
Running this branch on the untouched mixed test subsets gives the metric values in
Table 4.5.

Data set Architecture Threshold γ ν
New NN-AE-3 0.5 0.0004 8900
Gear NN-AE-2 6.2 11000 0.066

Table 4.4: The final chosen models and parameters for each data set.

Data set Accuracy Balanced
Accuracy TPR FPR Fβ=0.1 Fβ=10

New 1.0 1.0 1.0 0.0 1.0 1.0
Gear 0.88320 0.88417 0.86943 0.10109 0.90718 0.86980

Table 4.5: The final metric scores on the test data sets using Branch 1.

From Table 4.5, it is noted that Branch 1 performs perfectly on the New data
set in all metrics. This branch performs well even though the NN-AE part of the
branch performed poorly on the mixed validation subset. For the Gear data set,
Branch 1 was able to perform well, but far from perfect, even though the NN-AE
performed really well on the mixed validation subset. In other words, the NN-AE
fails to contribute on the final result of the branch.

4.2 Branch 2 Results
The results of testing the branch 2 networks on the New and Gear data sets are
presented in the form of AUC scores as well as box plots and scatter plots for the
reconstruction errors per sample and bit. One sample is one box with 40 messages, or
time steps, times 17 times 64, as shown in Figure 3.10, and thus contains 40·17·64 =
43520 bits. The normal data is shown on the left in the box plots, and in magenta
in the scatter plots. The attack data is shown on the right in the box plots, and in
blue in the scatter plots.

Different networks performed best on the different data sets. The Large LSTM
was the best on the New data set and the 2D CNN LSTM was the best on the Gear
data set. For comparative reasons, both of these networks were tested on test data
from both data sets by optimizing a threshold and calculating metrics. It can be
seen in the following Chapters that the networks generally perform much better on
the Gear data set than on the New data set.

4.2.1 New data set
The reconstruction errors when testing the networks on the mixed validation subset
after training and validating on the normal training and normal validation subsets
are shown in figures 4.3 through 4.9 in the form of box plots and scatter plots.

40

4. Results

(a) Box plot for Large LSTM reconstruc-
tion errors for normal and attack data.

(b) Scatter plot for Large LSTM recon-
struction errors for normal and attack
data.

Figure 4.3: Plots for Large LSTM reconstruction errors for normal and attack
data.

(a) Box plot for Small LSTM reconstruc-
tion errors for normal and attack data.

(b) Scatter plot for Small LSTM recon-
struction errors for normal and attack
data.

Figure 4.4: Plots for Small LSTM reconstruction errors for normal and attack
data for the New data set.

41

4. Results

(a) Box plot for 2D CNN LSTM recon-
struction errors for normal and attack
data.

(b) Scatter plot for 2D CNN LSTM re-
construction errors for normal and at-
tack data.

Figure 4.5: Plots for 2D CNN LSTM reconstruction errors for normal and attack
data for the New data set.

(a) Box plot for 3D CNN reconstruction
errors for normal and attack data

(b) Scatter plot for 3D CNN reconstruc-
tion errors for normal and attack data.

Figure 4.6: Plots for 3D CNN reconstruction errors for normal and attack data
for the New data set.

42

4. Results

(a) Box plot for TimeDistributed 2D
CNN LSTM reconstruction errors for
normal and attack data.

(b) Scatter plot for TimeDistributed 2D
CNN LSTM reconstruction errors for
normal and attack data.

Figure 4.7: Plots for TimeDistributed 2D CNN LSTM reconstruction errors for
normal and attack data for the New data set.

(a) Box plot for Bidirectional ConvL-
STM reconstruction errors for normal
and attack data.

(b) Scatter plot for Bidirectional Con-
vLSTM reconstruction errors for normal
and attack data.

Figure 4.8: Plots for Bidirectional-ConvLSTM reconstruction errors for normal
and attack data for the New data set.

43

4. Results

(a) Box plot for ConvLSTM reconstruc-
tion errors for normal and attack data.

(b) Scatter plot for ConvLSTM recon-
struction errors for normal and attack
data.

Figure 4.9: Plots for ConvLSTM reconstruction errors for normal and attack data
for the New data set.

The AUC scores for the networks are shown in Table 4.6. The best score is
shown in bold text.

Network AUC
Large LSTM 0.53247
Small LSTM 0.50707

2D CNN LSTM 0.82729
3D CNN 0.54769

TimeDistributed 2D CNN LSTM 0.54476
Bidirectional ConvLSTM 0.51295

ConvLSTM 0.577

Table 4.6: AUC for the different networks. The best result (0.82729 for 2D CNN
LSTM) is printed in bold.

As can be seen in Figure 4.5 as well as in Table 4.6, the network that is best
at separating normal and attack data for the new data set is 2D CNN LSTM. The
ROC curve for this network, , is shown in Figure 4.10 together with the ROC curve
for the best performing network on the Gear data set: Large LSTM. The optimal
decision thresholds for these networks were decided by taking the threshold in the
ROC curve where the True Positive Rate minus the False Positive Rate was as large
as possible. The scatter plots for the 2D CNN LSTM and Large LSTM with the
chosen thresholds included are shown in Figure 4.11. During inference, all values
above the threshold will be labeled as attack and all below will be labeled normal.

44

4. Results

(a) ROC curve for 2D CNN LSTM. (b) ROC curve for Large LSTM.

Figure 4.10: ROC curves for 2D CNN LSTM and Large LSTM for the New data
set .

(a) Error per sample and bit for 2D CNN
LSTM with optimal calculated thresh-
old.

(b) Error per sample and bit for Large
LSTM with optimal calculated thresh-
old.

Figure 4.11: Error per sample and bit for 2D CNN LSTM and Large LSTM for
the New data set with optimal calculated thresholds.

The best performing network 2D CNN LSTM as well as Large LSTM was
tested on the mixed test subset of the New data set, using the thresholds optimized
with the mixed validation subset to label data samples as normal or attack. The
results for this can be found in Table 4.7.

Network Accuracy Balanced
Accuracy TPR FPR Fβ=0.1 Fβ=10

2D CNN LSTM 0.89488 0.63407 0.36364 0.09550 0.06505 0.34768
Large LSTM 0.94420 0.51041 0.06061 0.03979 0.02699 0.05986

Table 4.7: Evaluation metrics for 2D CNN LSTM and Large LSTM when testing
on the mixed test subset using thresholds optimized with the mixed validation subset
from the New data set.

45

4. Results

4.2.2 Gear data set

The reconstruction errors when testing the networks on the Gear data are shown in
figures 4.12 through 4.18 in the form of box plots and scatter plots. The networks
were trained and validated on the normal data from the training and validation
subsets of the Gear data, and tested on the full validation subset.

(a) Box plot for Large LSTM reconstruc-
tion errors for normal and attack data.

(b) Scatter plot for Large LSTM recon-
struction errors for normal and attack
data.

Figure 4.12: Plots for Large LSTM reconstruction errors for normal and attack
data for the Gear data set.

(a) Scatter plot for Small LSTM recon-
struction errors for normal and attack
data.

(b) Scatter plot for Small LSTM recon-
struction errors for normal and attack
data.

Figure 4.13: Plots for Small LSTM reconstruction errors for normal and attack
data for the Gear data set.

46

4. Results

(a) Box plot for Bidirectional ConvL-
STM reconstruction errors for normal
and attack data.

(b) Scatter plot for Bidirectional Con-
vLSTM reconstruction errors for normal
and attack data.

Figure 4.14: Plots for Bidirectional ConvLSTM reconstruction errors for normal
and attack data for the Gear data set.

(a) Box plot for 2D CNN LSTM recon-
struction errors for normal and attack
data.

(b) Scatter plot for 2D CNN LSTM re-
construction errors for normal and at-
tack data.

Figure 4.15: Plots for 2D CNN LSTM reconstruction errors for normal and attack
data for the Gear data set.

47

4. Results

(a) Box plot for 3D CNN reconstruction
errors for normal and attack data.

(b) Scatter plot for 3D CNN reconstruc-
tion errors for normal and attack data.

Figure 4.16: Plots for 3D CNN reconstruction errors for normal and attack data
for the Gear data set.

(a) Box plot for TimeDistributed 2D
CNN LSTM reconstruction errors for
normal and attack data.

(b) Scatter plot for TimeDistributed 2D
CNN LSTM reconstruction errors for
normal and attack data.

Figure 4.17: Plots for TimeDistributed 2D CNN LSTM reconstruction errors for
normal and attack data for the Gear data set.

48

4. Results

(a) Box plot for ConvLSTM reconstruc-
tion errors for normal and attack data.

(b) Scatter plot for ConvLSTM recon-
struction errors for normal and attack
data.

Figure 4.18: Plots for ConvLSTM reconstruction errors for normal and attack
data for the Gear data set.

The AUC scores for the networks are shown in Table 4.8. The best score is
shown in bold.

Network AUC
Large LSTM 0.99990
Small LSTM 0.99963

2D CNN LSTM 0.99556
3D CNN 0.99966

TimeDistributed 2D CNN LSTM 0.99949
Bidirectional ConvLSTM 0.99944

ConvLSTM 0.98702

Table 4.8: AUC for the different networks. The best result (0.99990 for Large
LSTM) is printed in bold.

As can be seen in Figure 4.12 as well as in Table 4.8, the network that is best
at separating normal and attack data for the New data set is Large LSTM. The
ROC curve for this network is shown in Figure 4.19 together with the ROC curve
for the best performing network on the Gear data set: 2D CNN LSTM. The scatter
plots for the 2D CNN LSTM and Large LSTM with the optimal thresholds included
are shown in Figure 4.20.

49

4. Results

(a) ROC curve for 2D CNN LSTM. (b) ROC curve for Large LSTM.

Figure 4.19: ROC curves for 2D CNN LSTM and Large LSTM for the Gear data
set.

(a) Error per sample and bit for 2D CNN
LSTM with optimal calculated thresh-
old.

(b) Error per sample and bit for Large
LSTM with optimal calculated thresh-
old.

Figure 4.20: Error per sample and bit for 2D CNN LSTM and Large LSTM for
the Gear data set with optimal calculated thresholds.

The Large LSTM and 2D CNN LSTM were tested on the mixed test sub-
set, using the thresholds optimized with the mixed validation subset to label data
samples as normal or attack. The results for this can be found in Table 4.9.

Network Accuracy Balanced
Accuracy TPR FPR Fβ=0.1 Fβ=10

2D CNN LSTM 0.95173 0.94998 0.97649 0.07653 0.93615 0.97607
Large LSTM 0.99520 0.99507 0.99700 0.00685 0.99404 0.99697

Table 4.9: Evaluation metrics for 2D CNN LSTM and Large LSTM when testing
on the mixed test subset using thresholds optimized with the mixed validation subset
from the Gear data set.

50

4. Results

4.3 Results from combined branches
Combining Branch 1 with Branch 2, where in Branch 2 the 2D-CNN model is used
(which performed best on the New data set) using the combinations in Table 3.5 on
the mixed test subsets of the New and Gear data sets, the results shown in Table
4.10 were obtained.

Accuracy Balanced
Accuracy TPR FPR Fβ=0.1 Fβ=10

New Data set
Branch1 1.0 1.0 1.0 0.0 1.0 1.0
Branch 2 0.89488 0.63407 0.36364 0.09550 0.06505 0.34768

AND 0.98868 0.68182 0.36364 0.0 0.98297 0.36594
OR 0.90620 0.95225 1.0 0.09550 0.16076 0.95038

Gear Data set
Branch1 0.88320 0.88417 0.86943 0.10109 0.90718 0.86980
Branch 2 0.95173 0.94998 0.97649 0.07653 0.93615 0.97607

AND 0.91067 0.91476 0.85293 0.02342 0.97512 0.85400
OR 0.92427 0.91940 0.99300 0.1542 0.88126 0.99174

Table 4.10: The metrics scores of the two different data sets using Branch 1,
Branch 2 and their combinations OR and AND. The Branch 2 scores are obtained
using the 2D CNN LSTM model.

Combining Branch 1 with Branch 2, using the Large LSTM model in Branch
2 (which performed best on the Gear data set) using the same combinations and
tested on the same subsets, Table 4.11 was obtained.

Accuracy Balanced
Accuracy TPR FPR Fβ=0.1 Fβ=10

New Data set
Branch1 1.0 1.0 1.0 0.0 1.0 1.0
Branch 2 0.94420 0.51041 0.06061 0.03979 0.02699 0.05986

AND 0.98329 0.53030 0.06061 0.0 0.86695 0.06118
OR 0.96092 0.98010 1.0 0.03979 0.31494 0.97871

Gear Data set
Branch1 0.88320 0.88417 0.86943 0.10109 0.90718 0.86980
Branch 2 0.99520 0.99507 0.99700 0.00685 0.99404 0.99697

AND 0.92907 0.93336 0.86843 0.00171 0.99680 0.86955
OR 0.94933 0.94589 0.99800 0.10623 0.91547 0.99710

Table 4.11: The metrics scores of the two different data sets using Branch 1,
Branch 2 and their combinations OR and AND. The Branch 2 scores are obtained
using the Large LSTM model.

51

4. Results

52

5
Discussion and Conclusions

5.1 Branch 1
Branch 1 was able to perform well on both data sets after optimization. It was
able to reach balanced accuracy scores of above 0.8 for the Gear dataset and perfect
scores for the New data set.

The reason as to why Branch 1 performed perfectly on the New data set was
that the 0.04s insertion time of malicious messages was not common in the original
Attack-Free data set. The OCSVM, which only uses the time between the messages,
was able to leverage this distinction and score perfectly on the data set. The NN-AE
was not able to produce large errors for the attack messages. The hypothesis is that
the errors are low for the attack data because many of the attack messages are very
similar to the normal messages since they were created based on the normal data.

The OCSVM was not able to reach the same performance in the Gear data
set. The insertion time of 0.01 of the attack messages in this data set made it hard
for the OCSVM to make any clear distinctions. The NN-AE scored very well on the
Gear data set, but it was unable to contribute to Branch 1 for two reasons. The first
is because this part of the branch is only applied to a window if the OCSVM deems
the window as normal, thereby removing its ability to have any decision making
on what OCSVM deems as anomaly. The other reason, and the largest one, is due
to the threshold being set above the maximum normal message error. Since the
maximum message error for the normal messages is eG = 6.03454, it is larger than
any attack error. The same argument goes for the New data set. This makes the
design of this branch somewhat obsolete. A better approach might have been to
have the NN-AE be parallel to the OCSVM and combine the ±1 decision through
an AND or OR operation.

A question arises, is NN-AE necessary to be used at all in the current setting?
If we focus on dataset New, comparing the median of the attack and normal errors,
it is 3 ·10−8 and 1.7 ·10−7 for the attack and normal errors respectively, again aiding
the conclusion that using the NN-AE is unnecessary. What would happen if the
autoencoder received input very distinct from the any message it had seen before?
To test this, 4 data loads shown in Table 5.1 were generated and predicted using the
NN-AE-3 model trained previously on the New data set. Their corresponding esample
shown in the same table, show that the errors are larger than normal messages for
unknown messages. This motivates the usage of the NN-AE.

53

5. Discussion and Conclusions

Data load label 64 bit pattern esample
Simulated Data Load 1 0000111100001111...00001111 6.9
Simulated Data Load 2 0101...0101 4.3
Simulated Data Load 3 10011001...1001 4.5
Simulated Data Load 4 11111111...11111111 9.4

Table 5.1: The packets simulated to use for NN-AE-3 and their errors esample.

5.2 Branch 2

The results for the branch 2 networks were very different for the different data sets.
All networks performed much better for the Gear data set than the New data set,
as can be seen by comparing Tables 4.6 and 4.8. One reason for this might be
that a distinguishing feature for most of the anomalies in the New data set was the
frequency of the messages which none of the branch 2 networks include. It is also
interesting to note that the best performing networks were different for the two data
sets. In the Gear data set, where only a single ID included anomalous messages,
ID was seemingly a superfluous feature, as the best network here was the Large
LSTM, which did not include this feature. In the New data set, however, including
ID was seemingly necessary, as the two pure LSTM networks did not perform well
there. It is difficult, however, to know why the 2D CNN LSTM performed so much
better than all the other networks on this data set, since many of them included
the same features. The 2D CNN LSTM might have performed better than the
TimeDistributed 2D CNN LSTM because the former does not share weights between
time steps, while the latter does. Perhaps this allowed the former to capture the
time dependent CAN data better. As for the other CNN based networks it is more
difficult to speculate. One difference between the 2D CNN LSTM and the others is
that it has more trainable parameters, which might have helped it to adapt well to
the normal data.

As can be seen in the Figures in Chapter 4.2, some networks that get a lower
reconstruction error per sample and bit, still perform worse than others that get
a higher reconstruction error per sample and bit when it comes to AUC. This is
because they manage to reconstruct not only the normal data well, but also the
attack data. For the New data set, the ConvLSTM has a much lower average re-
construction error than all the other networks, but it is only the third best, and not
much better than a random classifier, in AUC. Another example is the TimeDis-
tributed 2D CNN LSTM for the two data sets. For the New data set, the normal
reconstruction errors for this network (Figure 4.7) are lower than those for the Gear
data set (Figure 4.17), but since it also gives low reconstruction errors for the at-
tack data, the AUC for the network is much lower for the New data set (AUC =
0.54476, Table 4.6) than for the Gear data set (AUC = 0.99949, Table 4.6). This is
an indication of the complexity of the problem. It is desirable to build a network
that can generalize and reconstruct different parts of the CAN data flow well, but
not so well as to also reconstruct anomalous data. The nature of the data makes
this very difficult, since there can be much variation depending on the activity of
the vehicle: is it idling, accelerating, driving carefully on a small winding road or

54

5. Discussion and Conclusions

cruising down the highway? How much variability is normal, and how much could
be a sign of a malicious attack?

5.3 The Combined Anomaly Detector
Perhaps the most difficult part of the project is to answer the question: what is an
attack? In this thesis, we tried to work around this question as much as possible
by focusing mainly on normal data, but some sort of simulated attack data is still
needed for validating and testing. As was made clear by the usage of the two different
data sets, different types of anomaly detector architectures perform very differently
on different types of simulated attacks. This poses the question of whether to try to
find a single anomaly detector that performs quite well on both data sets, or whether
to always optimize and use the specific architecture that proves most efficient for a
specific data set. The danger with the first option is of course that the performance
might be lower. This can be seen in Table 4.11 in the chapter for the New data set
versus the same chapter in Table 4.10. In Table 4.11 the Large LSTM is used instead
of the for the New data set optimal 2D CNN LSTM, whereas in Table 4.10 the 2D
CNN LSTM is used. The results in the latter chapter are significantly better. The
second option on the other hand, might mean that one would need to spend a large
amount of time testing out different configurations before implementing the anomaly
detector. Furthermore, different detectors might be optimal for different parts of the
data, for example when the car is idling versus when it is driving. Moreover, looking
at the Branch 2 results (for example comparing Figures 4.9 and 4.18), it can be seen
that there is not a large difference between how well the networks reconstruct the
two types of normal data, but the difference rather lies in how well the simulated
attacks are reconstructed. This, of course, depends on what type the attacks are,
which in a real setting would be unknown. It could thus be dangerous to favour one
network over another for a data set based on how well it performs when validating
on simulated anomalies. For this reason, branch 2 is made in a way that would
make it easy to omit simulated attack data in an actual implementation. Instead of
using attack data when optimizing the threshold, one would use only normal data,
and set the threshold based solely on this. Some ways to do this could be to set the
threshold slightly above the maximum normal reconstruction error, or to assume a
Gaussian distribution of the errors and calculate their mean and standard deviation.
The threshold could then be set at two or three standard deviations above the mean,
and anything above this would be regarded an anomaly. One could also calculate
anomaly scores for the errors, as in [51], and decide how large of an anomaly score
is allowed before the current error is regarded as indicative of an attack.

It is of course desired for any discriminator to have a perfect false positive and
true positive rates of 0 and 1. However, neither Branch 1 nor Branch 2 is able to
score perfectly on both data sets. As seen in tables 4.10 and 4.11, high true positive
rates go hand in hand with higher false positive rates, since when detectors classify
more windows as anomalies there is always a chance that the anomaly actually is a
normal window.

The importance of having high TPR is obvious. The higher the rate of TPR,
the lower the likelihood of missing an attack, which of course is an important secu-

55

5. Discussion and Conclusions

rity aspect when designing of the different detectors since missing an attack would
potentially have serious consequences for the vehicle user.

The importance of FPR is more subtle since having a higher FPR would just
mean that more normal messages would be labeled as an attack. Suppose that there
is a detector that continuously reads the CAN bus, takes 40 messages at a time and
outputs these messages as either being an anomaly or part of the normal CAN flow.
The issue with having an FPR rate has to do with the fact that even at a very
small FPR, the detector would frequently label the input as an attack. Since the
CAN bus outputs approximately 1 million messages every 10 minutes, the number
of windows with 40 messages produced is 25000. A false positive rate of for example
0.0001 would a still give at least 2 false positives. If this detector was to be installed
in a vehicle and a warning would be sent each time an anomaly was classified, the
user would eventually learn to ignore these warnings.

Here is where the Combined Anomaly Detector could be of use. In tables 4.10
and 4.11, it is seen that using the AND operation maintains or even reduces the
FPR rate of the best performing branch in both New and Gear data sets, since this
operation only outputs an anomaly if both branches agree that it is an anomaly. The
same goes for the TPR using the OR operation. In both data sets, the true positive
rate is at least maintained compared to the best TPR rate of both branches and for
both the New and Gear data sets. Thus, depending on whether an implementer of
this detector finds the FPR or TPR to be of more importance, the implementer can
control this trade-off by simply choosing between the AND or OR operations.

We conclude that the chosen method is a promising way of detecting anomalies
in a CAN bus. Using the combined-branches architecture we are able to provide
protection against various types of incoming threats, and for different types of data.
The chosen time window of 40 messages corresponds to roughly 1 millisecond which
is deemed to be well within the necessary response time. Although further training
and fine tuning of the models would be needed before real life implementation, we
believe the use of machine learning for CAN bus anomaly detection could lead to
safer driving, in an evermore computerized world.

56

References

[1] The Rise of Advanced Driver Assistance Systems (ADAS) and Autonomous
Driving (AD). [Online]. Available: https://www.ericsson.com/en/internet-of-
things/platform/iot-ecosystem/partners/veoneer

[2] Automotive, Telecom and ITS companies launch C-V2X trials in Japan.
[Online]. Available: https://www.itsinternational.com/its7/news/automotive-
telecom-and-its-companies-launch-c-v2x-trials-japan

[3] What Is an Electronic Control Unit? [Online]. Available: https:
//www.aptiv.com/en/insights/article/what-is-an-electronic-control-unit

[4] M. Di Natale, H. Zeng, P. Giusto, and A. Ghosal, Understanding and using the
controller area network communication protocol: theory and practice. Springer
Science & Business Media, 2012.

[5] M. Levi, Y. Allouche, and A. Kontorovich, “Advanced analytics for connected
car cybersecurity,” in 2018 IEEE 87th Vehicular Technology Conference (VTC
Spring), 2018, pp. 1–7.

[6] K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. Mc-
Coy, B. Kantor, D. Anderson, H. Shacham, and S. Savage, “Experimental Secu-
rity Analysis of a Modern Automobile,” in 2010 IEEE Symposium on Security
and Privacy, 2010, pp. 447–462.

[7] S. Checkoway, D. Mccoy, B. Kantor, D. Anderson, H. Shacham, S. Savage,
K. Koscher, A. Czeskis, F. Roesner, and T. Kohno, “Comprehensive experimen-
tal analyses of automotive attack surfaces,” in USENIX SECURITY. USENIX,
2011.

[8] C. Valasek and D. Miller, “Remote exploitation of an unaltered passenger
vehicle,” 2015. [Online]. Available: https://ericberthomier.fr/IMG/pdf/
remote_car_hacking.pdf

[9] Car Hacking Research: Remote Attack Tesla Motors. [Online].
Available: https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-
of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/

[10] Y. Xun, J. Liu, N. Kato, Y. Fang, and Y. Zhang, “Automobile driver fingerprint-
ing: A new machine learning based authentication scheme,” IEEE Transactions
on Industrial Informatics, vol. 16, no. 2, pp. 1417–1426, 2020.

[11] M. Bozdal, M. Samie, and I. Jennions, “A Survey on CAN Bus Protocol: At-
tacks, Challenges, and Potential Solutions,” in 2018 International Conference
on Computing, Electronics Communications Engineering (iCCECE), 2018, pp.
201–205.

[12] As ISIS Promotes Vehicle Attacks, Terrorists Strike In Europe And U.S.
[Online]. Available: https://www.npr.org/sectiowns/thetwo-way/2017/11/01/

57

https://www.ericsson.com/en/internet-of-things/platform/iot-ecosystem/partners/veoneer
https://www.ericsson.com/en/internet-of-things/platform/iot-ecosystem/partners/veoneer
https://www.itsinternational.com/its7/news/automotive-telecom-and-its-companies-launch-c-v2x-trials-japan
https://www.itsinternational.com/its7/news/automotive-telecom-and-its-companies-launch-c-v2x-trials-japan
https://www.aptiv.com/en/insights/article/what-is-an-electronic-control-unit
https://www.aptiv.com/en/insights/article/what-is-an-electronic-control-unit
https://ericberthomier.fr/IMG/pdf/remote_car_hacking.pdf
https://ericberthomier.fr/IMG/pdf/remote_car_hacking.pdf
https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
https://keenlab.tencent.com/en/2016/09/19/Keen-Security-Lab-of-Tencent-Car-Hacking-Research-Remote-Attack-to-Tesla-Cars/
https://www.npr.org/sectiowns/thetwo-way/2017/11/01/561327621/as-isis-promotes-vehicle-attacks-terrorists-strike-in-europe-and-u-s?t=1612190335893
https://www.npr.org/sectiowns/thetwo-way/2017/11/01/561327621/as-isis-promotes-vehicle-attacks-terrorists-strike-in-europe-and-u-s?t=1612190335893
https://www.npr.org/sectiowns/thetwo-way/2017/11/01/561327621/as-isis-promotes-vehicle-attacks-terrorists-strike-in-europe-and-u-s?t=1612190335893

References

561327621/as-isis-promotes-vehicle-attacks-terrorists-strike-in-europe-and-u-
s?t=1612190335893

[13] H. M. Song, H. R. Kim, and H. K. Kim, “Intrusion detection system based
on the analysis of time intervals of can messages for in-vehicle network,” in
2016 International Conference on Information Networking (ICOIN), 2016, pp.
63–68.

[14] U. E. Larson, D. K. Nilsson, and E. Jonsson, “An approach to specification-
based attack detection for in-vehicle networks,” in 2008 IEEE Intelligent Vehi-
cles Symposium, 2008, pp. 220–225.

[15] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle net-
works,” in 2011 IEEE Intelligent Vehicles Symposium (IV), 2011, pp. 1110–
1115.

[16] H. Song, J. Woo, and F. F. Li, “In-vehicle network intrusion detection using
deep convolutional neural network,” 11 2019.

[17] A. Taylor, S. Leblanc, and N. Japkowicz, “Anomaly detection in automobile
control network data with long short-term memory networks,” in 2016 IEEE
International Conference on Data Science and Advanced Analytics (DSAA),
2016, pp. 130–139.

[18] M.-J. Kang and J.-W. Kang, “Intrusion detection system using deep neural
network for in-vehicle network security,” PLOS ONE, vol. 11, no. 6, pp. 1–17,
06 2016. [Online]. Available: https://doi.org/10.1371/journal.pone.0155781

[19] E. Seo, H. M. Song, and H. K. Kim, “GIDS: GAN based Intrusion Detection
System for In-Vehicle Network,” in 2018 16th Annual Conference on Privacy,
Security and Trust (PST), 2018, pp. 1–6.

[20] C. Wang, Z. Zhao, L. Gong, L. Zhu, Z. Liu, and X. Cheng, “A Distributed
Anomaly Detection System for In-Vehicle Network Using HTM,” IEEE Access,
vol. 6, pp. 9091–9098, 2018.

[21] B. Schölkopf, J. Platt, J. Shawe-Taylor, A. Smola, and R. Williamson, “Es-
timating support of a high-dimensional distribution,” Neural Computation,
vol. 13, pp. 1443–1471, 07 2001.

[22] Introduction to autoencoders. [Online]. Available: https://www.jeremyjordan.
me/autoencoders/

[23] ISO 11898-1:2015. [Online]. Available: https://www.iso.org/standard/63648.
html

[24] Larhmam. [Online]. Available: https://commons.wikimedia.org/wiki/File:
SVM_margin.png

[25] B. Scholkopf and A. Smola, Learning with Kernels: Support Vector Machines,
Regularization, Optimization, and Beyond, ser. Adaptive Computation
and Machine Learning. MIT Press, 2018. [Online]. Available: https:
//books.google.se/books?id=7r34DwAAQBAJ

[26] Alisneaky. [Online]. Available: https://commons.wikimedia.org/wiki/File:
Kernel_Machine.svg

[27] B. Mehlig, “Machine learning with neural networks,” 2021.
[28] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data

with neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.
[29] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural compu-

58

https://www.npr.org/sectiowns/thetwo-way/2017/11/01/561327621/as-isis-promotes-vehicle-attacks-terrorists-strike-in-europe-and-u-s?t=1612190335893
https://www.npr.org/sectiowns/thetwo-way/2017/11/01/561327621/as-isis-promotes-vehicle-attacks-terrorists-strike-in-europe-and-u-s?t=1612190335893
https://www.npr.org/sectiowns/thetwo-way/2017/11/01/561327621/as-isis-promotes-vehicle-attacks-terrorists-strike-in-europe-and-u-s?t=1612190335893
https://www.npr.org/sectiowns/thetwo-way/2017/11/01/561327621/as-isis-promotes-vehicle-attacks-terrorists-strike-in-europe-and-u-s?t=1612190335893
https://doi.org/10.1371/journal.pone.0155781
https://www.jeremyjordan.me/autoencoders/
https://www.jeremyjordan.me/autoencoders/
https://www.iso.org/standard/63648.html
https://www.iso.org/standard/63648.html
https://commons.wikimedia.org/wiki/File:SVM_margin.png
https://commons.wikimedia.org/wiki/File:SVM_margin.png
https://books.google.se/books?id=7r34DwAAQBAJ
https://books.google.se/books?id=7r34DwAAQBAJ
https://commons.wikimedia.org/wiki/File:Kernel_Machine.svg
https://commons.wikimedia.org/wiki/File:Kernel_Machine.svg

References

tation, vol. 9, pp. 1735–80, 12 1997.
[30] W. Hao, R. Bie, J. Guo, X. Meng, and S. Wang, “Optimized CNN Based

Image Recognition Through Target Region Selection,” Optik, vol. 156, pp.
772–777, 2018. [Online]. Available: https://www.sciencedirect.com/science/
article/pii/S0030402617315735

[31] L. Shang, Q. Yang, J. Wang, S. Li, and W. Lei, “Detection of rail surface defects
based on CNN image recognition and classification,” in 2018 20th International
Conference on Advanced Communication Technology (ICACT), 2018, pp. 45–
51.

[32] R. Chauhan, K. K. Ghanshala, and R. Joshi, “Convolutional Neural Network
(CNN) for Image Detection and Recognition,” in 2018 First International Con-
ference on Secure Cyber Computing and Communication (ICSCCC), 2018, pp.
278–282.

[33] K. Hegde, R. Agrawal, Y. Yao, and C. W. Fletcher, “Morph: Flexible Ac-
celeration for 3D CNN-Based Video Understanding,” in 2018 51st Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO), 2018,
pp. 933–946.

[34] A. Diba, A. M. Pazandeh, and L. V. Gool, “Efficient Two-Stream Motion and
Appearance 3D CNNs for Video Classification,” 2016.

[35] “Temporal 3D ConvNets: New Architecture and Transfer Learning for Video
Classification, author=Ali Diba and Mohsen Fayyaz and Vivek Sharma and
Amir Hossein Karami and Mohammad Mahdi Arzani and Rahman Yousefzadeh
and Luc Van Gool,” 2017.

[36] Keras, “Keras documentation: Conv2dtranspose layer.” [Online]. Available:
https://keras.io/api/layers/convolution_layers/convolution2d_transpose/

[37] M. Zeiler, D. Krishnan, G. Taylor, and R. Fergus, “Deconvolutional networks,”
in 2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2010, ser. Proceedings of the IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition, 2010, pp. 2528–2535,
2010 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, CVPR 2010 ; Conference date: 13-06-2010 Through 18-06-2010.

[38] X. Liu, Q. Zhou, J. Zhao, H. Shen, and X. Xiong, “Fault Diagnosis of Rotating
Machinery under Noisy Environment Conditions Based on a 1-D Convolutional
Autoencoder and 1-D Convolutional Neural Network,” Sensors, vol. 19, no. 4,
2019. [Online]. Available: https://www.mdpi.com/1424-8220/19/4/972

[39] D. Kim, H. Yang, M. Chung, S. Cho, H. Kim, M. Kim, K. Kim, and E. Kim,
“Squeezed Convolutional Variational AutoEncoder for unsupervised anomaly
detection in edge device industrial Internet of Things,” in 2018 International
Conference on Information and Computer Technologies (ICICT), 2018, pp. 67–
71.

[40] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W. kin Wong, and W. chun Woo,
“Convolutional LSTM Network: A Machine Learning Approach for Precipita-
tion Nowcasting,” 2015.

[41] M. Schuster and K. Paliwal, “Bidirectional recurrent neural networks,” Signal
Processing, IEEE Transactions on, vol. 45, pp. 2673 – 2681, 12 1997.

[42] A. Graves and J. Schmidhuber, “Framewise phoneme classification with

59

https://www.sciencedirect.com/science/article/pii/S0030402617315735
https://www.sciencedirect.com/science/article/pii/S0030402617315735
https://keras.io/api/layers/convolution_layers/convolution2d_transpose/
https://www.mdpi.com/1424-8220/19/4/972

References

bidirectional LSTM and other neural network architectures,” Neural Networks,
vol. 18, no. 5, pp. 602–610, 2005, iJCNN 2005. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0893608005001206

[43] S. Siami-Namini, N. Tavakoli, and A. S. Namin, “The Performance of LSTM
and BiLSTM in Forecasting Time Series,” in 2019 IEEE International Confer-
ence on Big Data (Big Data), 2019, pp. 3285–3292.

[44] C. Sammut and G. I. Webb, Encyclopedia of machine learning. Springer
Science & Business Media, 2011.

[45] J. P. Mower, “Prep-mt: predictive rna editor for plant mitochondrial genes,”
BMC bioinformatics, vol. 6, no. 1, pp. 1–15, 2005.

[46] CAR-HACKING DATASET. [Online]. Available: https://ocslab.hksecurity.
net/Datasets/CAN-intrusion-dataset

[47] Keras, “Keras.” [Online]. Available: https://keras.io/
[48] Tensorflow, “Tensorflow.” [Online]. Available: https://www.tensorflow.org/
[49] A. Taylor, N. Japkowicz, and S. Leblanc, “Frequency-based anomaly detection

for the automotive can bus,” in 2015 World Congress on Industrial Control
Systems Security (WCICSS), 2015, pp. 45–49.

[50] S. Longari, D. H. N. Valcarcel, M. Zago, M. Carminati, and S. Zanero, “Can-
nolo: An anomaly detection system based on lstm autoencoders for controller
area network,” IEEE Transactions on Network and Service Management, pp.
1–1, 2020.

[51] P. Malhotra, A. Ramakrishnan, G. Anand, L. Vig, P. Agarwal, and G. Shroff,
“Lstm-based encoder-decoder for multi-sensor anomaly detection,” 2016.

[52] Keras, “Keras documentation: Conv2d layer.” [Online]. Available: https:
//keras.io/api/layers/convolution_layers/convolution2d/

[53] ——, “Keras documentation: Timedistributed layer.” [Online]. Available:
https://keras.io/api/layers/recurrent_layers/time_distributed/

60

https://www.sciencedirect.com/science/article/pii/S0893608005001206
https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset
https://ocslab.hksecurity.net/Datasets/CAN-intrusion-dataset
https://keras.io/
https://www.tensorflow.org/
https://keras.io/api/layers/convolution_layers/convolution2d/
https://keras.io/api/layers/convolution_layers/convolution2d/
https://keras.io/api/layers/recurrent_layers/time_distributed/

DEPARTMENT OF ELECTRICAL ENGINEERING
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden
www.chalmers.se

www.chalmers.se

	Introduction
	Theory
	CAN
	One-Class Support Vector Machine
	Neural networks
	Autoencoder
	Recurrent Neural Networks
	Long Short Term Memory
	Convolutional Neural Networks
	Transposed Convolution
	Convolutional LSTM
	Bidirectional LSTM
	Evaluation Metrics

	Methods
	Data
	The original data
	Preprocessing of data
	New data set
	Separation of data

	Evaluating Networks
	Networks
	Branch 1
	OCSVM
	The Neural Network Autoencoder
	Combining the OCSVM and NN-AE methods

	Branch 2
	LSTM Autoencoder
	2D Convolutional LSTM Autoencoder
	3D Convolutional Autoencoder
	Convolutional LSTM Autoencoder

	Combined Anomaly detector

	Results
	Branch 1 Results
	Results of OCSVM
	Results of NN-AE
	Combination of OCSVM and NN-AE

	Branch 2 Results
	New data set
	Gear data set

	Results from combined branches

	Discussion and Conclusions
	Branch 1
	Branch 2
	The Combined Anomaly Detector

	References

