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Abstract
This thesis project aims at understanding the progression of cognitive decline using
machine learning models. This work acts as a support to the research done in the
Gothenburg Mild Cognitive Impairment study. This clinical cohort focuses on five
disease categories of patients and includes a control group. Specifically, the use
of state-of-the-art CNN models such as ResNet[1] and GoogleNet[2] applied to the
imaging techniques T1, T2 and FLAIR [3] has been investigated. The data posed
some challenges in this work, for instance some patient categories have overlapping
disease features, which could mean that in some patients could share MR features as
well. Additionally, for the patient group Vascular Cognitive Disease, only minuscule
changes in the brain blood vessels distinguish it from other classes. The overlap of
MRI features in addition to the inherent complexity of the patient categories poses
a challenge of being able to separate all six classes from each other. In order to
handle the problem, an extensive search for separability between classes under each
image capturing technique was done where binary classifiers were trained on each
pair of the six classes, a total of 15 binary models trained on two classes at a time.
However, tests concluded that a multi-class model predicting all six classes does not
perform significantly above baseline. It can be seen from the binary models that
many class pairs are not separable under certain image capturing techniques, most
likely, due to feature sharing across classes. However, with other classes such as
Control and AD it was possible to accurately predict and separate around 80% of
the test data, showing a promise that Machine Learning can serve as a useful tool
to better understand the MCI study cohort using available data and hardware.
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1
Introduction

In the following sections more detailed information about the Gothenburg MCI
study, previous work in the field and the context of this report will be presented.

1.1 Gothenburg MCI study
The Gothenburg Mild Cognitive Impairment (MCI) study is a well-defined longi-
tudinal cohort at the Memory Clinic in Mölndal that started in 1999[4]. Patients
were actively recruited until 2015 and already recruited patients are given follow-up
investigations. The cohort contains around 1000 patients seeking help for memory
problems as well as control subjects, between the ages 50 to 79 years. Each patient
file contains neuropsychological, neuroimaging and biomarker/lab data collected re-
peatedly from the same patient over the years (2, 4, 6 and 10 years after baseline).
This makes it possible to follow the progressive development to Alzheimer’s Dis-
ease(AD), from patients reporting subjective cognitive impairment(SCI) or MCI.
As SCI and MCI are regarded as risk factors or early stages of dementia, there is
a high chance that the molecular mechanisms underlying AD or subcortical small
vessel disease (SSVD) onset can be found. Apart from this, data points from 136
controls are available. The cohort also contains patients of related diagnoses, such
as mixed AD/SSVD and pure SSVD cases. This brings a total of six separate classes
that the project actively focuses on.

In the dataset, patients with other forms of dementia (cortical vascular demen-
tia, primary progressive aphasia, Lewy body dementia, frontotemporal dementia,
or unspecified dementia) were excluded. The participants were recruited from the
Gothenburg MCI study, a mono-center study of patients seeking help for cognitive
complaints at the memory clinic at Sahlgrenska University Hospital. The inclusion
and exclusion criteria were designed to exclude somatic and psychiatric conditions
associated with increased risk of cognitive impairment. Thus, the inclusion crite-
ria comprised age > 40 and < 79 years, Mini Mental State Examination (MMSE)
score > 19, and self- or informant-reported cognitive decline with a duration ≤ 6
months. The exclusion criteria included severe somatic disease (e.g., subdural hem-
orrhage, brain tumor, untreated hypothyroid state, encephalitis, and unstable heart
disease), psychiatric disorder (e.g., major affective disorder or schizophrenia), sub-
stance abuse, and confusion. The healthy controls were primarily recruited through
senior citizen organizations, e.g., information meetings on cognitive disorders and
some were relatives of the patients. Present, or history of, cognitive decline was
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1. Introduction

an exclusion criterion in the controls, otherwise the exclusion criteria as well as the
study procedures were similar as those applied for the patients.

For a large portion of the samples from patients and control subjects, the study has
collected T1, T2 and Fluid-Attenuated Inversion Recovery(FLAIR) MRI sequences.
For this project, the assumption is that data collected at different time-points can
be regarded as two separate records. In other words, because the structure of the
brain changes with time, one patient with more than one visit can be regarded as
several independent data samples. Furthermore, not all subjects have the necessary
data collected for all time-points, which is why the number of samples used in this
project is smaller than the total number of records in the cohort. This will be further
explained in section 3.1.1.

1.2 Purpose and research questions
Since the Gothenburg MCI study have collected a lot of data dating back to 1999
and never before used Machine Learning to analyze it, this project will be the first
time the data is processed with ML tools. In order to support the group to research
the ML field a few research questions have been formulated.

1. Can the dataset collected in the MCI study be used for classification with
Machine Learning techniques?

2. Is it possible to use available ML tools in order to classify the diagnosis of the
patients? (and correctly identify control subjects)

1.3 Previous Work
In this section previous related work that has been considered in this project is
presented. The focus will be on binary- and multi-class classification as well as the
differences of working with an open or closed dataset.

1.3.1 Binary classification
Binary classification for medical imaging data is a well researched field, where most
of the work has come in recent years due to the progress of ML and AI techniques[5].
For instance, Tufail et al. [6] achieved a great cross-validation accuracy of 99% when
using an Inception version 3 model. This model was trained on the dataset proposed
by Hon et al. [7]. However, no testing was reported by Tufail et. al. there is no
way to know how well this model would generalize to unseen samples. Therefore,
the result should at its height be regarded as a proof that Inception Version 3 can
at least converge on the training data features.

Sarraf et al.[8] used the two different CNN architectures, LeNet and GoogleNet to
perform binary classification on AD patients and control subjects. They achieved

2



1. Introduction

a great performance of 98.84% accuracy in the best case scenario when training on
structural T1 images from the ADNI dataset[9].

In another binary classification work done by Wang et al. [10] an proposed eight-
layer CNN model. Moreover, they showed that using six layers of convolutional
layers with two fully connected layers and using Leaky ReLU activations was the
best option for their task.

In a paper written by Khagi et al. [11] the authors tried to compare how well
AlexNet, GoogleNet and ResNet could adapt towards medical image classification
tasks, in this case binary classification of AD and control subjects. The goal here
was to utilize transfer learning on the networks to be able to take advantage of
the pre-training the networks can come with from natural image classification tasks.
Even though this task is very different, as natural images often contain very different
features and also come in full color, all three RGB-channels, the authors concluded
that transfer learning could be utilized, successfully transferring weights pretrained
on non-medical images for a medical image classification task. However, as also
stated in the paper, the best accuracy was achieved when the authors did not utilize
a pretrained network, but instead trained a network from scratch. The best accuracy
achieved was 98% for a network trained from scratch and 94% accuracy for a network
pretrained on natural images.

1.3.2 Multi-class classification
Korolev et al. [12] used a custom made model they called VoxCNN that was inspired
by the VGG model as well as the ResNet model [1]. They trained the model on the
ADNI dataset using T1 MRI images and with AD, control, early MCI and late MCI
as their target classes. What they found was that with their proposed method both
networks was able to separate AD and Control subjects but struggled with both
early and late MCI.

Wang et al. [13] proposed a novel multimodal CNN method in order to classify AD,
amnestic MCI and Control subjects. With this proposed method they were able
to achieve a classification accuracy of 92.06% as the highest. This was achieved by
combining diffusion tensor imaging (DTI) and functional magnetic resonance imag-
ing (fMRI) as input to a 2D CNN model simultaneously. When only using DTI or
fMRI the highest achieved accuracy was 87.30% and 82.54% respectively.

Farooq et al. [14] proposed a method utilizing established state-of-the-art network
architectures. In their paper they suggest using Resnet or GoogleNet and training
the from scratch over 100 epochs using ADNI data [9]. Their work targeted 4 differ-
ent classes, namely AD, MCI, late MCI and healthy subjects. Using GoogleNet they
managed to achieve a 4-way classification accuracy of 98.8% and with ResNet they
managed to achieve an accuracy of 98.14% as the highest. This shows that there
is great promise to utilize state-of-the-art architectures even in the field of medical
imaging classification.

3



1. Introduction

1.3.3 Open vs closed dataset
Working with open datasets such as Open Acess Series of Imaging Studies (OASIS)
[15] or the Alzheimer’s Disease Neuroimaging Initative (ADNI) dataset [9] comes
with many benefits. The benefits are that the data is highly standardized and con-
trolled such that all images have been captured with the same method and in the
same format. In addition to this these datasets are quality checked several times and
bad datapoints are discarded from the final data. Furthermore, you can get high
quantities of data as these datasets are continuously added to from multiple sources.
Altogether this means that the data is both of high quality and high quantity.

However, both the ADNI and the OASIS dataset only contain control and AD sub-
jects [15], as these are the most commonly studies within medical data pertaining to
mental cognition. The restriction with working with open datasets is thus that one
is limited to what diseases ( classes ) to study. Furthermore, there is a restriction
in which type of data imaging technique you can attain, for instance in the OASIS
dataset there is only T1 MRI images, whilst in the ADNI one could also attain T2
and FLAIR MRI.

With closed datasets there is instead high possibility of customization, at the very
least each closed dataset comes with their own customized target classes and image
capturing techniques. There is also a higher possibility to extend the data and
restructure it to fit ones need. This high customization comes at a cost however,
which is that both the quality and quantity will generally be lower then compared
to an open dataset. As closed datasets often are captured by local institutions or
research groups practices can change over time and thus the data will not always
follow a strict standard. For instance, in long going studies, the doctor/radiologists
appointed to capture datapoints may change and with that comes some variance in
the data gathering procedure. As closed datasets also often follow very strict rules
by internal practices and by law, such as GDPR, it is also hard to outsource or let
external expertise consult on standards. Therefore it is very important that one
keeps this in mind when working with closed dataset and thoroughly look at the
data and go through the necessary pre-processing steps in order to prepare the data.

1.4 Context and scope of this thesis
For this master thesis the aim is to utilize state-of-the-art network architectures, such
as previous work has done [14][11][12]. In this thesis work the number of classes un-
der interest is however extended from alot of previous work. Normally AD, MCI
or some variant of these two diseases are the focus, apart from also having control
subjects to compare with. For the work of this thesis however, the additional classes
SCI, VaD and Mix are also within the scope of focus. More about each individual
class can be read under chapter 2.1.

4



1. Introduction

The reason for this work is that it is intended to help the Gothenburg MCI study
[4], to explore the use of ML tools to understand their data and cohort. In order
to succeed with this, the work should show that available software tools, that can
be handled with available hardware should be able to interpret and handle the data
the group has gathered in a meaningful way. For instance, one should be able to
utilize a ML tool to distinguish between the different classes, as mentioned above,
from one another.

This thesis will utilize previous work and build upon that and at the same time make
use of the data gathered by and that is available from and within the Gothenburg
MCI study. However, it is not intended that this thesis work will make use of
external, open datasets such as ADNI [9] or OASIS [15].

5
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2
Theoretical Background &

Framework

In the following chapter we discuss about the relevant theory behind the target
classes and the utilized methods. In particular the different classes that are to be
distinguished as well as what a CNN is and how transfer learning can be utilized.

2.1 Classes

Figure 2.1: Class distribution of all the six classes in the dataset showing the
number of complete samples with T1, T2 and FLAIR images. Total count of each
class being SCI(226), CTRL(138), AD(109), MCI(201), VaD(26), MIX(56) and To-
tal(756)

Figure 2.1 above depicts the distribution of the six target classes. For each class it
is presented how many complete samples available with T1, T2 and FLAIR images
captured. As it can be seen, the distribution is heavily unbalanced with the smallest
class being VaD, which only has 26 complete samples and the largest class being
SCI with 226 samples.

7



2. Theoretical Background & Framework

This unbalanced problem needs to be addressed properly as it otherwise creates
issues when training a ML model. For instance, if one would run a binary model
with SCI and VaD as the targets one could get an accuracy of roughly 90% by only
predicting SCI all the time. This result could give the appearance of a very good
performance when in reality it is actually only the baseline performance.

There are a number of ways to handle unbalanced class distributions[16]. For in-
stance one can give different weights to the classes when calculating the loss cost
for a wrong prediction. This way one can give the unbalanced data "as-is" and
then specify higher loss cost for the underrepresented classes and lower loss cost
for the large classes. Another method is to utilize under- and over-sampling[17].
By under-sampling one can exclude samples from the larger classes and thus create
a more even distribution. Under-sampling comes with the risk of excluding useful
information from the samples which are removed from the majority classes. When
over-sampling one instead creates new samples from the underrepresented classes.
The most straight-forward approach to do so is to simply make copies of the minor-
ity classes. Copying runs the risk of overfitting the model to the minority classes
however and is therefore not a robust solution. To counter overfitting when over-
sampling one can instead artificially create new samples by augmenting the available
data [18].

2.1.1 Alzheimer’s disease
AD is a cognitive disorder which is related to loss of memory, loss of logical thinking
and other cognitive functions [19]. Even though AD is well studied it is not yet
fully understood, in particular the origins of the disease as well as a fully covering
diagnosis of it has not been established. With a combination of the most advanced
diagnostic techniques one can only achieve around 90% diagnostic accuracy [20].
This accuracy is achieved after a combination of the standard Mini-Mental State
Examination (MMSE) [21] which in itself have an diagnostic accuracy of about 85%.
After the MMSE test additional information of family history, laboratory test as well
as analysis of brain MRI scans can then give a combined accuracy which approaches
90% diagnostic accuracy.

The subjects in the cohort which has been classified as AD patients have been
examined by doctors within the Gothenburg MCI study. The classification of AD
is made by a combination of diagnostic measures. The subject goes through tests
to determine it’s cognitive fitness and memory capacity and also an analysis of the
brain MR images. They also collect data regarding cerebral spinal fluid marker
values for P-tau, T-tau and Beta-Amyloid 1-42 (Aβ1-42). The AD subjects amount
to around 14% of the final data used in the project.

8



2. Theoretical Background & Framework

2.1.2 Control subjects
The control subjects included in the study are subjects which has no identified
disease related to cognitive disability or functional decline. These control subjects
are used in order to verify and compare the gathered data from the patients with
the target diseases.

2.1.3 Subjective Cognitive Impairment
These patients have a self-proclaimed problem with their cognitive abilities and can
in some cases show starter signs of developing a cognitive disease. However, it is
important to note that these individuals do not have an expressed disease, at least
not enough for them to be distinctly diagnosed. However, that they are experiencing
troubles in their daily lives and feel like they have a cognitive impairment qualifies
them to be diagnosed with Subjective Cognitive Impairment. Some causes of SCI
can be due to high stress or depression disorder.

This disease naturally has a lot of connections to the other diseases, even more so
then MCI, since SCI also have connections to the control subjects. It is not entirely
certain that SCI subjects will develop into a distinct cognitive impairment in the
future and thus it is possible for a MCI patient to develop back into a healthy state.
However, the opposite is also true and they might just be a pre-AD or pre-VaD.
This makes the SCI as an ambiguous class and according to recent findings from
the Gothenburg MCI group SCI patients and Control subjects are highly similar in
both MRI and biomarker data, suggesting that a lot of the SCI patients will devolve
in the future and become healthy.

2.1.4 Mild Cognitive Impairment
Mild cognitive impairment is referred to as a circumscribed cognitive syndrome fo-
cused on memory loss or a comprehensive cognitive syndrome irrespective of the
cognitive domains involved [22]. While the cognitive impairment in MCI is objec-
tively measurable it should not constrain daily life. The MCI entity has been used
mainly in the context of AD due to an increased risk to develop the disease but it
has not yet been clarified which of the circumscribed or the comprehensive forms of
MCI that is characteristic for early AD. Cerebrovascular disease, systemic, and other
neurodegenerative disorders may also cause MCI at early stages although there are
hitherto comparatively few studies in vascular and other non-AD forms of MCI.

2.1.5 Mixture of diseases
The mixture of diseases are a class where the patient has a combination of both AD
and VaD, such that the cognitive decline cannnot fully be attributed to one or the
other. These patients do not however have to have a worse overall cognitive ability
than that of a patient only suffering from one of the diseases. The mental cognitive
ability might have deteriorated to a point where it is troublesome, but not yet be
an impediment on every aspect of the patients life. A patient only sustaining on of
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the diseases might have worse cognitive decline, as their disease is further gone. The
important aspect here is therefore not that the patient has a severe case of cognitive
decline, rather that the symptoms and diagnose cannot be attributed exclusively to
neither AD or VaD.

2.1.6 Vascular Disease

Vascular cognitive disorder (VaD) and AD belong to the most common cognitive
disorders in the elderly population. Several forms of VaD exist but in this paper
we use the singular denomination for all variants of VaD. VaD is similar to “vas-
cular cognitive impairment” but refer more clearly to phenotypically characteristic
subgroups and is broader than “vascular dementia” as milder forms of cognitive
impairment also are included. The subcortical small-vessel type of disease (SSVD)
has been estimated to be the most common form of VaD [23]. The disease affects
the small vessels deep in the brain, including perforating arterioles, capillaries and
venules. In these patients, magnetic resonance imaging (MRI) reveals increased
occurrence of cerebral microbleeds (CMBs), infarcts and lacunes, as well as white
matter hyperintensities (WMHs) [24] that correspond to lesions of the brain white
matter, see figures 2.2 and 2.3. Moreover, SSVD patients exhibit reduced execu-
tive function, decreased processing speed and only mild memory loss, whereas AD
patients are characterized by disturbances in interpreting sensory information and
pronounced loss of memory. However, the clinical phenotype may resemble that of
AD. Especially, the continuously progressive disease course is characteristic of both
SSVD and AD. There are so far no established disease-specific biochemical markers
for SSVD, but the blood-brain barrier (BBB) has been suggested to be involved in
the pathogenesis of SSVD [23].
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Figure 2.2: The Severity of MRI-detected white matter hyper-intensity in a FLAIR
MRI as given by Chutinet et. al. [25]
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Figure 2.3: An example of a lacune in FLAIR MRI, susceptibility-weighted imag-
ing(SWI) and diffusion-weighted imaging (DWI) MRIs as given by Shi et. al. [26]

2.2 Diagnostic procedures
The subjects that are included in the study and in the Gothenburg MCI studies co-
hort was classified using the Global Deterioration Scale (GDS)[27]. The GDS ranges
between a rating of 1-7, where 1 is a healthy control subject and 7 is very severe cog-
nitive decline. The classification into the different GDS levels were done by 4 main
steps. (1) Using Stepwise Comparative Status Analysis (STEP), where focus was on
disorientation, memory disturbance, poverty of language, reduced abstract thinking,
sensory aphasia, visuospatial disturbance, visual agnosia and apraxia. (2) Through
I-FLEX, which is a shorter version of Executive Interview (EXIT)[28]. EXIT fo-
cuses on anamolies in sentence repetitions, counting tasks, number-letter tasks and
word fluency among others. (3) The Mini-Mental State Examination (MMSE) [21].
Finally, (4) Clinical Dementia Rating(CDR) which is an assessment based on both
the subject being classified and an outside observer and informant. For example,
the guidelines to grade a subject with GDS 4, were that STEP > 1, I-FLEX > 3,
CDR > 1 and MMSE ≤ 25. Once these requirements were met a consensus decision
of each subject was made among the physicians at the Gothenburg MCI Study [23].
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The practitioners at the Gothenburg MCI study who later classified patients into
the specific types of dementia diagnoses used their research protocol and criteria
focused on the clinical symptoms displayed by the subjects and MRI data.

Apart from the MRI images, fluid biomarker data has often been used for AD diag-
nosis as it guarantees a high accuracy value. However, biomarker data was not con-
sidered in the original diagnoses. For instance, when classifying an AD subject, the
National Institute of Neurological and Communicative Disorders and Stroke and the
Alzheimer’s Disease and Related Disorders Association (NINCDS-ADRDA) criteria
was used [29], which means that for a patient to be classified with AD, predominant
parietotemporal lobe symptoms was necessary with non existent or very mild White
Matter Hyperintensities visible with MRI [4].

Although originally the classification of patient diagnosis was not set using the CSF
biomarkers, the classification was later revisited and updated using the criteria de-
veloped for diagnostics with biomarker data. It means that when applicable for
diagnoses such as AD, the diagnosis would have to be in line with the International
Working Group-2 (IWG-2) criteria [30]. This approach gives the possibility to clas-
sify patients into the Mix category. Thus, patients with biomarker data suggesting
a strong AD case that was previously classified with VaD would now be qualified
for a mixed AD/VaD diagnosis[23].
The diagnosis of VaD disease was set according to the Erkinjuntti criteria[31]. The
patients therefore had to have cerebral WMHs detectable by MRI-scans and preva-
lent frontal lobe symptoms. The WHMs had to be classified as mild, moderate or
severe in line with the Fazenka criterion[32]. When it comes to a mild case, the VaD
diagnosis was only determined if lobe syndromes were not marked out. In addition
for an VaD diagnosis to be valid, the biomarker data had to be out-ruled from an
AD diagnosis, otherwise a mixed diagnosis would be set. The classifications set by
the Gothenburg MCI study is aligned with the Vascular Impairment of Cognition
Classification Consensus Study (VICCCS) [33].

2.3 Neuropsychological testing
The Gothenburg MCI study also utilized neuropsychological tests in addition to the
GDS classification test that was used[34]. The neuropsychological tests used was
the Rey Auditory Verbal Learning Test (RAVLT) as well as the Trail Making Test
A (TMT-A) and B (TMT-B). The RAVLT tests was used to assess the episodic
memory of the patients, the TMT-A for visual scanning capabilities and TMT-B for
complex attention span.
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2.4 Convolutional Neural Networks
Convolutional neural network has been widely used in medical image diagnosis field
[35] and [36]. It is found that the paper "A deep CNN based multi-class classification
of Alzheimer’s disease using MRI" [14], mentioned the outstanding classification re-
sult for AD using GoogleNet, GoogleNet has been selected for the project. After the
attempts of using GoogleNet, ResNet34 with Medical Open Network for Artificial
Intelligence (MONAI) library support has also been selected for the project. This
section briefly highlights the theory behind the model architectures of GoogleNet[2]
and ResNet[1].

Both networks utilize the residual network design, which is to have skipped connec-
tion linkage between layers. By having this design, the problem of the vanishing
gradient problem can be reduced to have a more robust model.

2.4.1 GoogLeNet
GoogLeNet is a 22-layer deep CNN developed by Szegedy et. al. [2]. The model
architecture was able to perform state-of-the-art in the ImageNet Large-Scale Visual
Recognition Challenge 2014 [37]. GoogLeNet has also been able to perfrom well in
other domains such as medical image classification for cognitive decline [14]. For an
overview of the model architecture see figure 2.4 below.

Figure 2.4: The GoogLeNet architecture layout as given by Szegedy1 et. al.[2]
depicting the whole layout of the GoogLeNet architecture.

2.4.2 ResNet34
ResNet34 is a 34 layers residental deep CNN developed by Microsoft research team
[38]. See figure 2.5 below. It won the ImageNet competition in 2015 by using the
residual network design. The model has been used in 3D medical image prediction
and it has been used in 3D medical image predictions [39]. There have been previous
papers using ResNet in MRI brain for detecting AD [40] [41].
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Figure 2.5: The resnet34 architecture layout as given by Zhang et. al.[42] depicting
a regular CNN network on the left-hand side and a network with residual connections
on the right-hand side.
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2.5 Transfer Learning
In this section we will go through the different transfer learning approaches that was
researched and implemented in this project. It is considered that transfer learning
is recommended if possible, as it gives your model a better starting point, utilizes
previous work and often leads to better results. In particular it has been shown
that transfer learning from imagenet can give good results in many domains as it
give a good general pretraining on image data [43]. However, when utilizing transfer
learning for medical image task there are a few main challenges that could be to
be addressed, these include converting 2D weights to 3D and utilizing RGB color
images to gray-scale.

Transfer learning is a widely used and researched concept in the field of ML and
AI and can often result in faster training times and better end results if positive
transfer can be achieved [44]. It is however possible that negative transfer can be re-
alized, this is a much less studies subject but means that trying to utilize pretrained
networks has a negative impact on the target application. The most common case
where transfer learning can have a positive impact is when the pretrained model is
trained on similar data in both domain and format. However it has been shown that
transfer learning can be used in cross-domain applications with positive transfer ef-
fects [7][11][45].

When utilizing transfer learning in a cross-domain application some challenges might
need to be addressed. One of these challenges is that the data format might be
different. For instance if you have pretrained weights on a 2D image set and want
to utilize it for 3D image classification the weights needs to be changed to handle
a 3D context instead. In a paper by Yang et. al. [46] a proposed technique called
ACS Convolutions was put forward. This method, promises that it is theoretically
possible to convert 2D weights into the 3D domain for any model architecture with
a decrease in model size and computational costs. Yang et. al. also states that
through extensive testing it can be shown that pretrained models converted to 3D
via ACS Convolution outperform 3D CNN networks that are initalized from start.
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3.1 Processing data
In this section we will give a detailed explanation as to which steps were taken and
how the processing of the data applied in this project was done. In order to get an
abstract overview of the steps, see figure 3.1 below.

Figure 3.1: Flowchart giving a high-level overview of the static and dynamic pre-
processing steps performed on the cohort dataset

3.1.1 Retrieving data
The dataset given by the Gothenburg MCI study was unprocessed 3D gray-scale
brain MRI data in DICOM format with their respective biomarker data and diag-
nosis. In this project, in order to maximize the number of records, biomarker data
is not used in the model as it contains many missing data. Only the diagnosis data
and the MRI records have been included in the model.

For the MRI scans, each MRI datapoint was assigned a random number used to
map the images to a specific patient and a specific time point. For instance, the
scan record with random number: 42 could be assigned to patient ID 10 at year 0
visit. This dataset has around 30 scan types which differs in scan angle (sagittal,
axial and coronal angles), MRI sequencing technique (T1, T2 and FLAIR) and dif-
ferent parameters used in the scanning machine to perform the capture such as slice
depth. Every slice from the given scan type has a resolution of 416 x 512 (height x
width). There are 1155 scan records given by 576 patients. The number of patients
is less than the number of scan record because some patients have conducted the
MRI scan test for more than 1 times as mentioned. Note that each patient can only
participate in the test at least 2 years after their last scan. Additionally, scan data
from each visit has been treated as completely different records regardless of the
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time points. This assumption is made so that it is possible to have more records of
each individual disease type.

Apart from this, it is found that for each visit, the types of MRI scan each patient
has conducted can be different because there could be some patients only agreed to
participated in certain brain scan operations but not every type. Thus, to handle the
high data inconsistency, a bash program has been written to analyse the dataset and
decide the best scan types for the machine learning model. In total, 30 different MRI
sequencing techniques was used, most of these were incompatible with each other
and the sequencing techniques with the most amount of data coverage was chosen.
It was possible to retain over 90% of the original data with the most commonly used
T1, T2 and FLAIR sequences.

3.1.1.1 Structuring data & Selecting data

Figure 3.2: An example of DICOM file structure

As the DICOM images save each slice image into a separate .dicom file as shown
above in figure 3.2, it will be possible to use a terminal bash script program to
count the number of slices from each MRI sequencing technique group for each pa-
tient and calculate the numbers of patients in each group. The overview result was
been printed and exported into a csv file for further analysis in Excel spreadsheets,
see figure 3.3. By doing so it was possible to get an overview of the data coverage as
shown below for each MRI sequencing technique and thus make a selection of which
part of the data to be used.
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Figure 3.3: The statistic data of the given MRI dataset featuring the selected scan
types.

When analysing the data it was also discovered that for roughly 15% of the data
samples duplicate records was captured in the final T1, T2 and FLAIR sequences.
The exact reason why this duplicating was done was never found as it may have been
done several years ago and no documentation of it is available. Together with the
group and with manual overview of the samples the correct duplicate was extracted
from the data such that no duplicates was included in the final versions.

T1_mpr_se_cor are MRI scans captured using T1 technology, coronal angle and
with 192 slices taken for each patient. FLAIR_cor_dark-fluid and FLAIR_cor_dark-
fluid_4mm are FLAIR MRI scans taken from coronal angle. Both scan type contains
around 28 slices. The difference between these 2 scan types is the parameter to de-
cide the distance between each discrete brain scan. As images taken using coronal
angle scan the patient’s brain from top to bottom, the parameter, slice depth, will
be used to control the vertical resolution of the 3D scan data. Samples taken in-
side FLAIR_cor_dark-fluid_4mm used 4mm and scans in FLAIR__cor_dark-fluid
used 5mm as the parameter. However, as it is observed that patients either has data
inside FLAIR__cor_dark-fluid_4mm or FLAIR__cor_dark-fluid, these 2 data has
been merged together for further usage. A function to align the number of slices for
each scan type will be introduced in later preprocessing section. T2_tse_tra and
T2_tse_tra_ are scans taken from T2 scanning method, axial angle and with 23
slices taken for each brain.

3.1.2 Static Pre-processing
There are 2 types of data preprocessing, static and dynamic. Static data prepro-
cessing are one-off procedures, which will be implemented directly on the dataset
stored inside disk space. While dynamic data preprocessing procedures changes
with the hyper-parameter selected for the run. Static preprocessing procedures con-
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sists of 4 parts, which are Nifti conversion, Skull-stripping, Normalization and Data
Reorganization.

3.1.2.1 Nifti conversion

First, instead of directly using multiple DICOM slices as inputs, the files have been
converted into Nifti format (.nii) using a C++ based library named dcm2niix [47].
The new input format can increase the overall I/O speed during data access as
the program can now directly read the scans as a whole. Another reason for the
conversion will be the extensive amount of support offered by existing frameworks
such as FSL[48] for brain scan data in Nifti format instead of DICOM.

3.1.2.2 Skull-stripping

As an brain scan contains an extensive amount of unrelated information such as the
eyes and the skull, which will make the model hard to focus on the brain pixels. The
C++ based program BET2 [49] provides with a tool to perform skull-stripping for
the purpose. Apart from this, because the skull-stripping process replaces a huge
amount of non-brain pixels by zero pixels. And therefore the resulting images would
contain more zero pixels compared to the original slices. See figure 3.4 below for
before and after skullstripping.
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(a) Before Skull-stripping

(b) After Skull-stripping

Figure 3.4: Showing a raw MR Image with 64 slices in (A) and the skull-stripped
with 64 slices In (B)

Hence, compression can therefore effectively reduce the overall size of the dataset for
further purposes. It can especially further improve the I/O speed when the model
loads the 3D images into the RAM during the training process. The BET program
gives a skull-stripped and compressed Nifti 3D images as outputs (.nii.gz). The
zipped Nifti will be unzipped during training, testing and validation phase when the
data needs to be loaded.
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3.1.2.3 Normalization

As it is observed the dataset does not have a common pixel intensity range across
records, a python based normalization process of min-max scaling on pixel intensity
has been implemented. Individual normalization for each sample has been used in
this project, which is to normalize sample using the highest and lowest values from
the 3D slices of the same patient. It is believed that per sample normalization will
be better than per dataset normalization because the process will not be greatly
affected by outlier samples. An intensity range of [0,255] and [0,1] have been used
as different parameters during the training phase to search for the model with the
best performance. The slices are normalized to [0,255] in this step, whether to use 0
and 255 for further min-max scaling to convert the range to be [0,1] has been placed
as one of steps in dynamic preprocessing.

3.1.2.4 Data Reorganization

In a brain MRI there is a varying amount of images/slices of the brain depending
on the thickness of each slice going through the brain. Since the human head is not
completely symmetric from all sides and the brain is in the top of the head, the slices
that you capture with MR will contain varying amounts of useful images. That is,
in the start and the end of the slices there will always be less brain and more skull
or organs such as the eyes or neck. So naturally, in the beginning and end of each
brain MRI you have either a lot of black pixels or a very small sample of the end
of the brain. This means that there will be a lot of redundant slices which were
to be removed. Removing the redundant slices comes with the multiple benefits of
speeding up training time, reducing memory usage and at the same time making it
easier for the ML model to converge and not interpret nonsensical black images as
valuable input.

Because we are dealing with gray scale images which have a possible value range of
[0, 255] ranging from black(0) and white(255) it will be possible to set up a threshold
using the sum of pixels to decide whether a slice will be discarded from the data. The
possible range for the sum of pixels in an image is [0, 416x512x255=54,312,960] so if
the sum of the pixels in an image is 0 then it should obviously be discarded. How-
ever, as mentioned, the edge images will also contain very little information as they
will have a very small percentage of the image containing actual brain matter, so a
threshold can be used to determine whether or not a slice should be discarded. In
order to this empirical searches were done to find that a threshold value of 2,000,000
representing about 3.5% of the max value was a good threshold. It is observed that
slices with enough information are greater than this threshold, and thus images with
a sum less than 2,000,000 will be discarded. See Figure 3.5(a) and (b).

In addition to completely removing slices, the brains can also be observed to be
positioned in different parts of the image. In order to remedy this and also remove
even more excess information an optimal frame size was calculated and each and
every brain is then placed in the center of this frame. Both the removal of slices
with threshold value and the center & cropping was done by writing python scripts
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(a) Before removing slices 192 slices in total

(b) After removing slices, 107 slices remaining to be used

Figure 3.5: Showing an original MR Image with all the slices in (A) and the
processed MR Image with the black slices and any slice with a pixel sum of less then
3.5% of the maximum value. In (B) all the brain scans have also been centered in
the middle.
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and iterating over all the images to perform the operations.

In addition to this, the labels for each and every sample had to be gathered through
Excel sheets as they were not readily available for use in combination with the MRI
images. In order to do so a combination of BASH and Excel scripts was used as the
MRI images was labeled with a random number which was connected to a certain
patient ID in combination with the visit that the patient was on. For example,
random number 25 and 512 could both be patient ID 2 but at the first and second
visit. In addition to this, some of the diagnosis was missing for certain patients after
the first visit that they made. However, this is expected since if there is no diagnosis
filled in at the second visit, this then means that the doctor responsible determined
that no change in diagnosis was done and the diagnosis from the previous visit could
be considered as the correct one. However, if a diagnosis changed between two visit
then a new diagnosis was filled in at the most recent visit. So in order to create the
label data for this project the random number assigned to the MRI was extracted
using BASH scripts and later combined with Excel scripts in order to find which
random number was connected to which patient and visit together with the correct
diagnosis at that time point.

3.1.3 Dynamic Preprocessing
Dynamic preprocessing procedures are steps that can be different from trials to trials.
It is controlled by hyperparameters that can be dynamically changed between runs.

3.1.3.1 Preprocessing steps

First, as instructed by the Gothenburg MCI group, duplicated records inside the
dataset has been disregarded during the run. And then, Because the model will use
both 3 types of scan type images, only records with diagnosis data and all 3 scan
types ready will be performed in training and testing process.

3.1.3.2 Monai preprocessing

Then, because the scan data is too large to be fitted inside RAM, the actual images
will only be loaded from the paths in this step. After the images are loaded, a Win-
dows method will be used to sample brain scans from the loaded 3D volumes, this
step can also handle the problems occurred when merging both FLAIR__cor_dark-
fluid_4mm and FLAIR__cor_dark-fluid scan type together.

The step is to ensure all the data shares the same numbers of slice by sampling.
Therefore, individual image’s resolution has been aligned from the step of Data
Reorganization and the numbers of slice has been aligned in this step. Given 3 pa-
rameters: window_size_t1, window_size_t2 and window_size_FLAIR to control
the numbers of slice used for each scan type volume, the program will sample a
certain amount of continuous brain scans from the raw data.
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The following python function was used in order to cut away slices from the start
and the end of a image sequence. This way more control over how many slices that
should be used for each image sequencing technique can be gained. The parameter
window_size controls how many slices of an image that should be included and the
parameter skew takes an input between [0,1] and controls what proportion of these
slices should be cut from the top or bottom. Setting skew to zero would start the
selected slices from the bottom and setting it to one would end the sequence at the
last slice.
class Window( Transform ) :

def __init__( s e l f , window_size , skew ) :
s e l f . window_size = window_size
s e l f . skew = skew

def __call__( s e l f , inputs ) :
s e l f . n_s l i c e s = inputs . shape [ −1]

# Determining the c u t t i n g and window s i z e
cut_s ize = s e l f . n_s l i c e s − s e l f . window_size
start_cut = cut_s ize ∗ s e l f . skew
end_cut = s e l f . n_s l i c e s − cut_s ize ∗(1− s e l f . skew )

# Handling uneven numbers
s tart_cut = int (np . f l o o r ( s tart_cut ) )
end_cut = int (np . f l o o r ( end_cut ) )

# Return the cut f i l e
return inputs [ : , : , s tart_cut : end_cut ]

As it is found that the brain scans contain the most amount of information in the
middle of the scans. Thus, the program will always extract middle slices from the
raw data, leaving out some unused slices from the start and from the end of the 3D
brain slices. Normally, these 2 amount will have a ratio closed to 0.5, but this will
be controlled by the parameter skew. For example, by setting skew parameter to
0.9, 90% of the unused slices will be assigned to be start of the raw data while only
10% will be from the end of the record, which means by setting a high skew value,
slices from the end will have a greater weight than that from the start.

As mentioned in static preprocessing, whether to use the intensity range of [0,1]
or [0,255] will be controlled as one of the parameters. The parameter will control
whether to apply min-max scaling using the range [0,255] to [0,1].
Then, the preprocessing procedure focuses on loading the input images with an
appropriate input size for the model. First, as the input images are all in gray-scale
images, the images will be added with only one color channel. Second, the program
will convert the data to be tensor for the PyTorch’s library setting.
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3.2 Model choice and architecture
When choosing the model architecture, the motivation was to not start from scratch.
The field of CNN networks is not new and a lot of work has been done by many tal-
ented researchers before. In addition to this, the aim of the project is to support the
Gothenburg MCI study in their approach of using Machine learning tools. Therefore
a decision was made where the implementations would be done with models that
have showed a proof of concept in similar task previously. By that motivation the
two model architectures chosen was GoogLeNet[2] and ResNet[1].

3.2.1 Binary model
Binary classification has been implemented to demonstrate the separability between
classes under each scan type. To obtain the binary results, the ResNet34 model was
chosen with 100 epoches and learning rate being 1e-6. This model was initialized by
the orginial ResNet34 architecture described in section 2.4.2. As stated before this
model was and is a state-of-the-art model for image tasks, including but not limited
to classification tasks. ResNet34 was initalized from the Monai[50] library with 3D
components, 1 in channel and 2 outchannels for the binary classification task. New
copies of the model was created for T1, T2 and FLAIR sequences and saved back
into local files in order to load the models at a later stage.

3.2.2 Multiclass ResNet Ensamble
In this section we go through the architecture and training method of the multiclass
ResNet ensamble (MRE) model. This model was made out out three separate
ResNet34 models, one for each image sequencing technique (T1, T2 and FLAIR)
and one aggregating model which was a custom made model consisting of fully
connected layers as well as ReLU activation functions. The model was built such
that the output from all three sub-models for the imaging techniques as well as the
final output from the aggregating model was outputted from the forward function.
This way separate loss value could be fed back into different parts of the model
depending on the individual outputs.
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Figure 3.6: Model architecture of the multiclass ResNet ensamble, utilizing differ-
ent loss values for different parts of the network.

Figure 3.6 above depicts the high-level design of the MRE model. As can be seen
from the Image the ResNet34 models and the aggregating model received different
loss values depending on their respective output. The way this was built was that the
submodels for T1, T2 and FLAIR could output different size vectors depending on
if they were to be fed to the aggregation model or to be outputted for classification.
In the last layer of each ResNet34 the fully connected layer took an input of 400
logits and outputted 6, one for each class. This output was modified depending
on if it was to be outputted to the aggregating model, in which case the full 400
logits vector was outputted or if it was to be outputted to for classification and
loss value calculation, in which case a 6 logits vector was outputted. The reason
why a SoftMax layer was not used in the final output was because the loss function
utilized was the pytorch CrossEntropyLoss function [51] which performs a SoftMax
operation on the input that it get.
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4
Experimental setups

This section goes through some of the experimental setups that was tried along the
way. These vary from different types of pre-processing steps, architecture structures
and hyper-parameter configurations.

4.1 Weight initialization
As mentioned earlier in the report, the data is highly unbalanced with the Mix
and VaD classes being particularly underrepresented. The first attempt at fixing
this issue was to utilize weight initialization when creating the loss function. The
weights was initialized proportionally to the amount of samples each class contained.
The weights was then inputted in two versions, the "raw" proportional weights and
a normalized version of the weights where the sum of the weights was one.
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ci

(4.1)

Equation 4.1 depicts the calculation used for the raw proportional weights, which
will give a higher value for the underrepresented classes. However, as it was noticed
that inputting these weights, which have a value range of between
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Equation 4.2 shows how we can then use the raw weights and normalize them such
that the sum of

−→
W 1 becomes one.

These weights are then inputted to the loss function in order to control how much
loss that should be attributed to each class label. In our case we used the Pytorch
library [52] to determine our loss function which was set to Softmax loss.

4.2 Loss function tweaking
Changing the way that the loss was fed back to the model was experimented with
quite a bit. There was attempts to modify, change, enhance, interpolate between
states and many other attempts. No tweaking of the loss function however yielded
significant results.

29



4. Experimental setups

4.3 Window size
After the preprocessing procedures, T1 MRI has reduced the number of slices from
192 to around 100 slices. The window size parameter for T1 has been chosen to be
70. A windows size test from 20 to 100 has been made using AD vs CTRL in T1.

Figure 4.1: Linechart showing the accuracy and weighted mean F1 score as a
function of the window size, i.e. the amount of slices used from each sample. The
best metrics was obtained with a window size of 40 and 70.

It is clear that the accuracy reaches the best in 40 and 70. And it is believed that
70 slices allows the model to have more information for the learning process, 70 has
been selected for T1. As unlike T1, these T2 and FLAIR scan types only have 23
to 30 slices for each record. Thus, For T2 and FLAIR, windows size 20 has been
chosen for both image type as it ensures the model to obtain enough information
from the dataset. However, as it is observed that from the the starting slices and
the ending slices from T2 suffers from skull-stripping preprocessing artifacts, binary
test with windows size being 10 and 20 for T2 have both been executed.

4.4 Model architecture choice
Seeing that AD vs CTRL has been implemented from previous research mentioned
and a results with high level accuracy has been obtained, AD vs CTRL in this
project has been used to validate whether it is possible to use the dataset for the
classification tasks. Using ResNet34, a result with around 80% testing accuracy has
been obtained using AD vs CTRL in T1 from the dataset. Thus, it demonstrates
the level of correctness and the data integrity of the dataset. Then, attempts to use
GoogleNet for the prediction has been made.
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4.4.1 Googlenet
Since GoogLeNet is a well know high performing model that was originally created
to be used on natural image classification [2], there exists pre-trained version of the
model. These pre-trained models come with varying amounts of training on natural
images, meaning real-world objects in the from of three channel RGB images from
the Imagenet dataset [37]. Since it has been shown in previous work that using these
pre-trained version can be utilized on medical imaging data via transfer learning,
this was the approach chosen in this project as well.

Since the Imagenet dataset only contains 2D images and the MRI scans in the
Gothenburg MCI cohort are 3D. The first step needed in order to use GoogLeNet
for this project was to convert the pre-trainined weights from the 2D to 3D domain.
This was performed using the method proposed by Yang et. al. [46] discussed in
section [44]

In addition to converting the 2D weights in the GoogLenet model one also have to
consider that the original model was pretrained on natural images in RGB. One
therefore have to make a conversion of the three channeled input into one-channel
gray scale images. There is no commonly accepted way of making this conversion
that guarantees that the three channel input layer will be able to make sense for
one channel gray-scale images. There is a number of proposed ways of doing these
that have been explored in this project. Those are (1) inputting three copies of the
image into each channel and giving the correct value for each channel corresponding
to the RGB value of the gray-scale image. This way one can artificially utilize all
three RGB channels and create the correct corresponding gray-scale image. For this
project however we also have three different image capturing sequences T1, T2 and
FLAIR. Therefore the second approach (2) was to input all three image sequences
T1, T2 and FLAIR directly into the three channels of the model.

After applying the ACS conversion and trying both (1) inputting three copies and (2)
to input T1, T2 and FLAIR into the GoogLeNet the training showed that the model
did not converge/learn on the training data. The model struggled to even perform
at baseline performance suggesting that it confused different classes with each other,
see 5.3 and 5.2 for more details. Because the model was pretrained on natural 2D
images and since it struggled with learning the experiments with GoogLeNet was
quickly discontinued. This is because the error source becomes multi-fold as it could
either be the 2D to 3D or three to one channel conversion, it could also be that the
cross-domain transfer has a negative transfer effect, or it could be a problem with
the data. To eliminate the source of error for easier analysis ResNet34 was chosen
instead.

4.4.2 ResNet
The ResNet architecture was initalized using the MONAI library. The model there
is adapted from the paper by Kaiming et. al. [38] and pretrained ResNet for 3D
medical imaging context can be downloaded manually from the work done by Chen
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et. al. [53]. As we wanted to utilize transfer learning to the extent possible, ResNet
was firstly initialized from the pretrained weights available from the work done by
Chen et. al. these weights, albeit from medical imaging data, was originally trained
to perform lung segmentation. However, since it is still MRI gray-scale images within
the medical field and pretrained on 3D CNN this seemed like a better starting point
then that of pretrained models on imagenet [37].

The pretrained ResNet34 did not however have any positive transfer effects for this
thesis. The initial starting point was as good as the random initialization that one
gets when just starting the training from scratch. Therefore the attempts of trying
to use a pretrained version was discontinued as loading the weights requires time
and memory usage, which was not put to any good use.
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5.1 Multi-class results
The first attempt for the multi-class model was to utilize the GoogleNet architec-
ture pretrained on the Imagenet dataset [2]. As described in section 4.4.1 these
required to transform the 2D weights in the model to 3D. Additionally since it was
pre-trained on three channel RGB images it also required conversion to gray-scale
images.

Figure 5.1: Linechart showing the performance of the multi-class model, y-axis
depicting the F1-score over epoch 1-500 compared to baseline of 0.17. As can be
observed, the performance is very unstable and does not seem to converge over time.
The best result obtained was an F1-score of 0.36. This result was obtained using a
multi-class model consisting of an ensemble of ResNets with an aggregation layer.

The above result in figure 5.1 was achieved using the architecture described in section
3.2.2.
However, the model was unfortunately not significantly better than baseline. Despite
multiple trials with different model architectures, none of the trials was able to go
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above 0.36 in F1-score. See figure 5.1 below for the performance of the best multi-
class model over 500 epochs.

5.2 Binary results
As mentioned above, the project then focuses on investigating the separability be-
tween labels using binary models. The result obtained from the binary test uses
both F1 score and the accuracy values as the measure of performance. Both valida-
tion and testing dataset has been included into the result. Noted that according to
the MCI study group, it is expected that a real-world doctor can have a diagnosis
with around 80% accuracy. It is considered that the result follows the underlined
assumptions from previous research done within the field of cognitive impairment.

Figure 5.2: Figure showing part of the performance in VaD or Mix prediction in
terms of accuracy, individual F1 score and weighted mean F1 score in both testing
and validation.

First, given underrepresented VaD and Mix labels, it is obvious that VaD and Mix
prediction test pairs suffers from insufficient amount of training, validation and test-
ing data in VaD and Mix labels. However, the model still seems to be able to pick
up features from VaD to classify the disease from AD or CTRL in FLAIR with 81%
accuracy and 65% accuracy respectively. This result is considered to follow the med-
ical field’s knowledge on FLAIR sequencing and the disease types. As mentioned
before, according to [24], WMHs and lacunes has been recognized as the features
that distinguishes VaD disease the most. And according to Norcliff et. al. [54] and
Wardlaw et. al. [55], WHMs and lacunes are particularly visible from FLAIR.

Despite of the high accuracy in certain VaD pairs using FLAIR, the issue of insuf-
ficient data in VaD still plays an essential role. The F1 scores for VaD or Mix in
those pairs are still not as high as the other labels. However, this value is already
considered to be much bigger than that in T1 and T2. For example, in T1’s CTRL
vs VaD or T2’s SCI vs VaD, although both pairs reveal good testing accuracy val-
ues, the F1 scores for VaD are still low (around 0.25). It is also considered to follow
medical field’s knowledge on T1 and T2 image that both image types are not used
for VaD classification.
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Figure 5.3: Figure showing test pairs with a good performance, i.e. >0.6 testing
accuracy and >0 in both testing F1 scores.

It is defined that with an accuracy value >0.6, it reveals that the model is capable
of extracting some features and learn from the training samples to perform a pre-
diction. To be considered as high degree of separability to be used for multi-class
classification, it is believed that it should be over 70% accuracy. Thus, from the re-
sult presented, only 6 pairs reveals an accuracy > 0.7. Hence, the experiment shows
the reason why Multi-class label classification does not behave well with this dataset.

For this model, it shows from the result that the model can perform well in AD
vs CTRL. It matches with the expectation as there have been research papers sug-
gesting the possibility of the classification using AI models. As it is believed that
AD diagnosis is mostly related to the overall mass of the whole brain, it should be
possible for the model to capture this feature from these 3 scan types. In the results
presented above, the model demonstrates the ability to classify AD patients from
healthy subjects with all three scan types. FLAIR can obtain up to 80% testing ac-
curacy with 0.8 F1 weighted score. T1 and T2 can both about 65% testing accuracy
for the prediction.

Then, for SCI, as mentioned in the theory section 2.1.3, it is reported that the SCI
label in this dataset is highly similar to CTRL. Thus, the fact the model does not
perform well in SCI vs CTRL from all 3 scan types follows the expectation. Because
of that, note that for the SCI vs other labels pairs, the model behaves similarly as
CTRL vs other labels.

Lastly, for MCI, it is believed that the model in most cases does not separate between
MCI, SCI and CTRL. As almost all the MCI vs SCI and MCI vs CTRL pair does
not obtain an accuracy value >0.6 and also the model seems to perform well in
MCI vs AD pairs, MCI has expressed a high similarly as CTRL, which matches
with the speculation for the disease. As mentioned from 2.1.4, MCI means mild
cognitive impairment and therefore it should share a certain amount of similarity
with CTRL because the disease does not constrain daily life. Apart from this, MCI
should still be considered as an early stage from Cerebrovascular disease, systemic,
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and other neurodegenerative disorders including AD. Hence, it stands to reasons
that the MCI class can be seen as a composite type of early diseases and thus, it
is possible to have different features across samples. Therefore, it is believed that
it can be possible to improve the accuracy by further dividing the MCI class into
different groups such as pre-AD or pre-VaD by using some common features such
as WHMs, lacune, cerebrovascular microbleed and perivascular space.

5.3 Separability
To assist in the separability analysis, graphs have been created showing the con-
nection between each class pair. Note that it may not be completely accurate to
determine whether VaD and Mix can be separated considering the amount of these
2 labels inside testing and Validation dataset. It is defined that for a pair to be
separable, it should performed >0.6 in their mean F1 score while each individual F1
score cannot be lower than 0.4. And then, solid line (separable) is used to present
whether a pair shows separability both in testing data and validation data. For the
dashed line (often separable), the pair shows separability in only one of the testing
or validation dataset. And lastly red dotted line is used to denoted non-separable
pairs, see figures 5.4 5.5 and 5.6 below for the separability graph of T1, T2 and
FLAIR respectively.
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Figure 5.4: Figure showing separability of classes in T1 images
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Figure 5.5: Figure showing separability of classes in T2 images
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Figure 5.6: Figure showing separability of classes in FLAIR images

As mentioned in 5.2, the model is unable to tell the difference from SCI, MCI and
CTRL classes but mostly able to separate them from AD. Then, although there is
not enough VaD and MIX data, the model also shows the better performance from
FLAIR when it tries to predict VaD or Mix from the other 4 classes.

5.4 Possible improvements
There are a number of ways that we would like to improve on our results and
experiments that we would like to run but due to time and/or resource limitations
was not able to during this project. The improvements mentioned below is mainly
in order to improve the multi-class model, if not otherwise mentioned.

39



5. Results and Discussion

5.4.1 Further diagnosis
As mentioned in 5.2, if the MCI class can be further diagnosed and divided into sub-
groups, it would be able to perform more tests on the label and possibly separate the
MCI from CTRL or SCI. Second, instead of 3D images, if it is possible to have slices
that demonstrates features from the 5 diseases, it would be possible to create a 2D
classifier for the diagnosis. As it is observed that most sub-features for the target
diseases including WHMs, lacune, cerebrovascular microbleed and perivascular space
can be seen from 2D images, it should be able to train a machine learning model
using key 2D slices instead of the whole 3D volumes. Then, by training the model
with these 2D slices, it may be possible for a model to provide with a probability of
the diseases by iterating the incoming 3D volumes. This vector can be used on it
own or concatenated into the feature vector of the 3D prediction model for a better
classification result.

5.4.2 Transfer learning
Transfer learning is as described in section 2.5 a very useful concept in order to
not start over from scratch. In this project there was attempts at utilizing trans-
fer learning, however, no specific pre-trained model on gray-scale 3D medical brain
MRI data was found. The best approximation to the task was to utilize a ResNet
pre-trained on medical imaging data, but for another task, namely medical imaging
segmentation. When initializing with these weights however, it was found that the
model did not perform better or worse than initializing from start. This seems to
indicate that medical imaging segmentation does not carry over to diagnosis of brain
MRI for cognitive decline.

There are however other ways one might utilize pre-training, especially since the
dataset from the Gothenburg MCI cohort is relatively small. One could utilize an
open source dataset such as ADNI [9], in order to pre-train a model on medical
imaging data which is closely related to the task. This way the model might be
able to pick up on important features at least of what constitutes a brain structure.
Since the open-source datasets usually only have Control subjects, AD and in some
cases MCI patients it is not presumed to give a large improvements to the task at
hand but might nonetheless give some improvement or at least a better starting
point when training.

5.4.3 Time and computational resources
A large bottleneck for this project has been that the time for running a training
episode was long, a training of 100 epochs had a runtime of 18hrs. Additionally
computational resources such as GPU memory was also restraining. In order to run
the model on the data the batch size of each epoch had to be set to one, meaning
that every data sample was processed one at a time. When only using one sample
at a time the GPU memory was just enough to handle the computations but any
larger batch size was not possible. Each processed sample consists of 70 T1 images,
20 T2 and 20 FLAIR, a total of 110 images per data sample. In our final ResNet
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ensamble model we there was a total of around 190M parameters to be trained. So
combining the amount of parameters needed to be trained and limiting the process-
ing to one sample at a time naturally bring very long processing times. The GPU
RAM available during this project was 12GB working memory on a NVIDIA Tesla
K80. If the computational resources were higher then more experiments and faster
progress could have been done.

5.4.4 Additional data collection
If it would be possible to collect more data then the obtained results would become
more robust and the assumption is also that the accuracy and F1 score would in-
crease. This is particularly true for disease type VaD and Mix as these have very few
samples to begin with. With more data collected it is assumed that the model would
be able to distinguish out even more what features are really relevant for each class.
Thus the accuracy scores and weighted mean F1 scores would increase for each class.

For this project however, targeting Mix and VaD would yield the best marginal value
since therse is only 56 and 26 samples of these classes respectively. This means that
during training the model only has 34 and 16 samples to train on and during valida-
tion and testing only 22 (11 for validation and 11 for testing) and 10(5 for validation
and 5 for testing) samples to evaluate on. The assumption is that this leads to a
bad performance for two main reasons, the model does not have sufficient amount
of samples to pick up features that will generalize to all cases of Mix and VaD. It is
highly unlikely that within these small number of samples the model have enough
information about the disease types in order to generalize to any instance of these
disease. To begin with, the medical fields knowledge of the disease types are not
fully mapped out such that all the relevant features of brain MRI scans are known.
Secondly the small amount of validation and testing samples leads to big variations
within the evaluation metrics. For instance, during training it could happen that
the model classifies four VaD samples correctly and with only 5 samples available
would then output a validation accuracy of 80%. This result seems very good but
with such small amounts of validation samples it is impossible to say if the result
is robust or not. It can also be seen from the test runs that for the Mix and VaD,
the testing accuracies and weighted mean F1-score vary a lot from the validation,
suggesting that the model indeed has not learned to correctly identify these classes,
but rather due to the low amount of validation data shows good results.

The datapoints however are hard to get as it requires a patient to re-visit the Gothen-
burg MCI studies clinic, meet with a doctor and capture new brain MRI sequences.
This is a time intensive and costly procedure that would require months in order to
acquire new data with. Therefore it was not possible during this project to acquire
new data related to these disease types but would be of interest in future studies on
the cohort data.
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6
Conclusion

Previous work within the same field but with fewer target labels had shown great
promise for a multi-class model to work. However the multi-class model was not
able to perform significantly above baseline. Further research would be needed in
order to see if a multi-class model would be able to distinguish between all six target
classes. One main area of focus for future work would be to ensure that there are
more samples across the underrepresented classes in the dataset. As of now there is
just not a sufficient amount of data in order to train and perform robust tests on.

As mentioned in section 5.2, the F1 score offered from the pair tests, especially AD
vs CTRL, validates the correctness of the dataset in certain extents as it matches
the underlying expectation of the diseases classification. Thus, it is concluded that
machine learning approaches can be used on the Gothenburg MCI study cohort to
further their research. Then, it also reveals that even without sufficient amount of
VaD and Mix labels, the model can still in certain level, demonstrates the separabil-
ity between these 2 labels and the other 4 labels. It also indicates that given more
VaD and Mix samples, it should be able to create a more robust prediction model
for the diseases. Apart from that, it can be concluded that more research is needed
to understand and possibly resolve the feature sharing, in particular between SCI,
MCI and CTRL.
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Appendix

Details Validation Test

A B Scan Type Acc F1 score A F1 score B Mean F1 Acc F1 score A F1 score B Mean F1

AD MCI FLAIR 0.74 0.77 0.70 0.73 0.42 0.31 0.50 0.44
AD MCI T1 0.64 0.55 0.70 0.63 0.68 0.45 0.78 0.67
AD MCI T2 0.69 0.40 0.79 0.65 0.71 0.48 0.80 0.69
AD MIX FLAIR 0.57 0.50 0.63 0.56 0.35 0.24 0.43 0.31
AD MIX T1 0.68 0.61 0.73 0.67 0.55 0.64 0.40 0.56
AD MIX T2 0.57 0.67 0.40 0.53 0.50 0.62 0.29 0.50
AD VaD FLAIR 0.71 0.71 0.71 0.71 0.81 0.89 0.40 0.79
AD VaD T1 0.50 0.42 0.56 0.49 0.31 0.42 0.15 0.37
AD VaD T2 0.64 0.44 0.74 0.59 0.25 0.25 0.25 0.25
CTRL AD FLAIR 0.71 0.74 0.67 0.70 0.80 0.83 0.75 0.80
CTRL AD T1 0.71 0.72 0.69 0.70 0.67 0.72 0.58 0.66
CTRL AD T2 0.68 0.75 0.55 0.66 0.63 0.62 0.65 0.63
CTRL MCI FLAIR 0.58 0.27 0.70 0.49 0.55 0.00 0.71 0.42
CTRL MCI T1 0.64 0.55 0.71 0.64 0.57 0.00 0.73 0.43
CTRL MCI T2 0.62 0.65 0.58 0.62 0.62 0.58 0.65 0.62
CTRL MIX FLAIR 0.74 0.76 0.71 0.73 0.46 0.58 0.24 0.48
CTRL MIX T1 0.68 0.52 0.76 0.64 0.42 0.42 0.42 0.42
CTRL MIX T2 0.47 0.53 0.40 0.46 0.50 0.63 0.25 0.52
CTRL VaD FLAIR 0.82 0.79 0.85 0.82 0.65 0.75 0.46 0.70
CTRL VaD T1 0.76 0.79 0.73 0.76 0.75 0.85 0.29 0.76
CTRL VaD T2 0.62 0.61 0.63 0.62 0.50 0.67 0.00 0.57
MCI MIX FLAIR 0.68 0.70 0.65 0.68 0.69 0.79 0.38 0.70
MCI MIX T1 0.68 0.53 0.76 0.64 0.53 0.57 0.48 0.55
MCI MIX T2 0.70 0.69 0.71 0.70 0.53 0.65 0.29 0.57
MCI VaD FLAIR 0.38 0.42 0.34 0.38 0.36 0.47 0.18 0.44
MCI VaD T1 0.50 0.67 0.00 0.33 0.94 0.00 0.89 0.84
MCI VaD T2 0.52 0.43 0.59 0.51 0.39 0.51 0.19 0.48
SCI AD FLAIR 0.64 0.64 0.64 0.64 0.66 0.72 0.56 0.67
SCI AD T1 0.64 0.55 0.71 0.63 0.56 0.57 0.55 0.56
SCI AD T2 0.74 0.81 0.59 0.74 0.73 0.80 0.59 0.73
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Details Validation Test

A B Scan Type Acc F1 score A F1 score B mean F1 Acc F1 score A F1 score B mean F1

SCI CTRL FLAIR 0.57 0.59 0.56 0.57 0.40 0.47 0.31 0.41
SCI CTRL T1 0.55 0.62 0.47 0.54 0.53 0.67 0.22 0.53
SCI CTRL T2 0.57 0.59 0.56 0.57 0.40 0.47 0.31 0.41
SCI MCI FLAIR 0.59 0.68 0.44 0.56 0.66 0.74 0.53 0.64
SCI MCI T1 0.57 0.57 0.57 0.57 0.42 0.49 0.31 0.41
SCI MCI T2 0.55 0.50 0.59 0.54 0.55 0.56 0.54 0.55
SCI MIX FLAIR 0.57 0.70 0.25 0.48 0.80 0.89 0.00 0.71
SCI MIX T1 0.52 0.49 0.54 0.52 0.51 0.60 0.37 0.51
SCI MIX T2 0.82 0.84 0.80 0.82 0.66 0.78 0.25 0.67
SCI VaD FLAIR 0.64 0.72 0.50 0.61 0.87 0.93 0.00 0.84
SCI VaD T1 0.94 0.97 0.50 0.92 0.87 0.93 0.00 0.84
SCI VaD T2 0.59 0.68 0.44 0.56 0.81 0.89 0.25 0.83
VaD MIX FLAIR 0.71 0.67 0.75 0.71 0.50 0.29 0.62 0.52
VaD MIX T1 0.79 0.77 0.80 0.78 0.50 0.00 0.67 0.47
VaD MIX T2 0.50 0.36 0.59 0.48 0.40 0.00 0.57 0.40

Table A.2: Table showing the full binary test result with the validation dataset
and the testing dataset. Each row presents a test pair using class from A against
the class from B column. Acc denotes accuracy.
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