
Software maintenance for
Discrete-Event Simulation Models
Developments of snippets and a workflow using Git to support
maintenance of discrete-event simulation projects

ANDREAS LU
YULI HUA

Department of Product and Production Development
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2018



Master’s thesis 2018

Software maintenance for
Discrete-Event Simulation Models

Developments of snippets and a workflow using Git to support
maintenance of discrete-event simulation project

ANDREAS LU
YULI HUA

Department of Product and Production Development
Division of Production Systems

Chalmers University of Technology
Gothenburg, Sweden 2018



Software maintenance for Discrete-Event Simulation Models
Developments of snippets and a workflow using Git to support maintenance of
discrete-event simulation project
Andreas Lu
Yuli Hua

© ANDREAS LU & YULI HUA, 2018.

Supervisor:
Camilla lundgren, Department of Product and Production Development
Leo Adelbäck, ÅF Industry

Examiner: Anders Skoogh, Department of Product and Production Development

Master’s Thesis 2018
Department of Product and Production Development
Division of Production Systems
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2018

ii



Software maintenance for Discrete-Event Simulation Models
Developments of snippets and a workflow using Git to support maintenance of
discrete-event simulation project
Andreas Lu
Yuli Hua
Department of Product and Production Development
Chalmers University of Technology

Abstract
In an ever-growing world with various manufactures and industries increasingly striv-
ing to expand and becoming more high-tech and advance, it’s of great importance to
have intelligent and inexpensive tools for decision-making. A powerful tool such as
a discrete event simulation (DES) offer the ability to perform analyses and experi-
ments virtually, avoiding potential damages and cost to the real physical world. The
simulation team at ÅF are looking for ways to improve their way of dealing with DES
projects; mainly developed in AutoMod. With the increasing demand of discrete
event simulations as well as with businesses continuously changing, it’s becoming a
great challenging to maintain a model, from a long-term perspective. Problems such
as making it time-efficient and easy to resume previous models in case of a future
project inheritance or enabling concurrent collaboration among other team members
are essentials topics that are now receiving more importance. The thesis has com-
bined previous experience in developing in AutoMod with a case study, literature
studies and interviewing session with the simulation team at ÅF. The case study
involves an old simulation model developed in AutoMod with a history of multiple
authors, making it hard to break down and update. The results are a variety of
tools designed to be applicable to both previous models as well as new incoming
projects. Key tools developed are the wide range of snippets, customized workflow
using Git, and the incorporated well-defined documentation. Using a version con-
trol system, Git, has proved useful when trying to manage implementation of new
model-features, review changelog, keeping track of bugs and the overall documen-
tation. Snippets have showed tremendous advantages when trying to eliminate the
software related challenges such as inconsistency in writing and reviewing source
code.

Keywords: AutoMod, software maintenance, snippets, Git, discrete event simula-
tion, VS Code.

iii



Acknowledgements
We would like to thank our examiner Anders Skoogh and our supervisor Camilla
Lundgren from Chalmers University of Technology. The door to Camilla Lundgren’s
office was always open whenever we needed help with our research or writing. She
consistently allowed this paper to be our own work, but steered us in the right
direction whenever she thought we needed it. We would also like to thank our su-
pervisor Leo Adelbäck at ÅF Industry who continuously helped us understand both
intricate details of the given simulation model and AutoMod related issues. We are
also thanking the rest of the simulation team at ÅF Industry providing invaluable
feedback and encouragement during the interview process.

Big thanks to the engineers at Arla; Ola Allvin, Peder Jonsson, Shabib Khattak, Ulf
Tollerud and Jonas Granerås, for their great help in explaining the different concept
of their system at their factory. Without their passionate participation and input,
the process of fully understanding the simulation model could not have been made
possible. Finally, we must express our gratitude to Pär Ström from ÅF Industry for
providing us with this thesis proposal.

This accomplishment would not have been possible without the combined help of
the above-mentioned peers. A profound thank you.

Gothenburg, June 2018

Andreas Lu and Yuli Hua

iv



Contents

List of Figures viii

1 Introduction 2
1.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Project aim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Delimiters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Research questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.5 Brief explanation of our "case" . . . . . . . . . . . . . . . . . . . . . . 5
1.6 Report Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Theory background 7
2.1 Discrete event simulation . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Components of DES . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.2 AutoMod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Software maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Software maintenance importance . . . . . . . . . . . . . . . . 9
2.2.2 Software maintenance issues . . . . . . . . . . . . . . . . . . . 9
2.2.3 Differences among operations, development and maintenance . 10
2.2.4 Software developer doing software maintenance . . . . . . . . 10

2.3 Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Using snippets to learn coding languages. . . . . . . . . . . . . 11
2.3.2 Snippets in order to improve compilation time. . . . . . . . . . 12
2.3.3 What to think about writing snippets . . . . . . . . . . . . . . 13
2.3.4 Snippet management . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.5 Snippets in runtime . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.6 Summary snippets . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Version control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.1 Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4.2 Basic concepts of Git . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.3 Commits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4.4 The past . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.5 The present . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.6 Git history and commit log . . . . . . . . . . . . . . . . . . . 17
2.4.7 Git commit messages . . . . . . . . . . . . . . . . . . . . . . . 18

2.4.7.1 Be useful . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.7.2 Be detailed (enough) . . . . . . . . . . . . . . . . . . 18

v



Contents

2.4.8 Be consistent . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.9 Active voice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4.10 Guidelines to writing git commits summarized . . . . . . . . . 19
2.4.11 Branches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.12 Merge branches . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.13 Work-flows . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.4.14 Centralized work-flows . . . . . . . . . . . . . . . . . . . . . . 21
2.4.15 Feature branch work-flow . . . . . . . . . . . . . . . . . . . . . 22
2.4.16 GitFlow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4.17 Summary version control . . . . . . . . . . . . . . . . . . . . . 23

3 Methodology - Work process 25
3.1 Identify problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1.1 Code-related issues . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.2 Documentation-related issues . . . . . . . . . . . . . . . . . . 27

3.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Creation of AutoMod Extension . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 AutoMod Editor limitations . . . . . . . . . . . . . . . . . . . 28
3.4 First generation of snippets . . . . . . . . . . . . . . . . . . . . . . . 29

3.4.1 Snippet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.5 First generation of the workflow using git . . . . . . . . . . . . . . . . 30
3.6 Interview ÅF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.7 Final update to snippets and workflow using Git . . . . . . . . . . . . 32

4 Result 33
4.1 AutoMod language support extension . . . . . . . . . . . . . . . . . . 33

4.1.0.1 Syntax highlighting and auto-completion . . . . . . . 33
4.2 Snippets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.2.1 Snippets for different process types . . . . . . . . . . . . . . . 34
4.3 Workflow using Git . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Anatomy of workflow . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1.1 Bug branch . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.1.2 Quick-fix branch . . . . . . . . . . . . . . . . . . . . 37
4.3.1.3 Features branch . . . . . . . . . . . . . . . . . . . . . 37

4.3.2 Internal rules . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3.2.1 Committing . . . . . . . . . . . . . . . . . . . . . . . 38

4.4 Input from the Interview and final update . . . . . . . . . . . . . . . 38
4.4.1 Regarding the Snippets . . . . . . . . . . . . . . . . . . . . . . 38
4.4.2 Documentation to declaring different processes . . . . . . . . . 39
4.4.3 Regarding the Git workflow . . . . . . . . . . . . . . . . . . . 40
4.4.4 Feature and Bug tracker . . . . . . . . . . . . . . . . . . . . . 41

5 General Discussion 43
5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Interview feedback regarding snippet management . . . . . . . . . . . 44
5.3 Interview feedback regarding version control systems . . . . . . . . . 44
5.4 Why a dedicated software maintenance team is not needed at ÅF . . 47

vi



Contents

5.5 Sustainability aspect . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6 Conclusion 49

7 Future work 51

Bibliography 52

A The interview guide I

B Figures III

vii



List of Figures

2.1 Two examples of low-level programming languages and functions.
Both calculates the n:th Fibonacci number. On the left, code is
written in hexadecimal representation of 32-bit x86 machine code,
whereas on the right code is written in x86 assembly language using
MASM. [1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 The following screenshot explains the file status life cycle [2, p. 14] . 15
2.3 The following diagram explains how commits can be viewed as past

and present [2, p. 18] . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 The following diagram depict a modified working directory and an

empty index [2, p. 19] . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.5 The following diagram depict the result when the modified files from

working directory has been added to the index [2, p. 19] . . . . . . . 17
2.6 The following diagram explains how commits can be viewed as past

and present [2, p. 20] . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 Two examples of git commit logs, 1. has no consistency while 2. uses

conventions which provide more consistency thus improved readability 19
2.8 A common example of how a new and unexperienced user of git will

commit messages. 1. describes the actual commiting, whereas 2. is
how the commit should have been done . . . . . . . . . . . . . . . . . 20

2.9 An abstraction of how branching can be viewed, "C1-C4" represents
commits and "MASTER" and "NEW WORK" are branch names. [2,
p. 31-32] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.10 Centralized work flow example [2, p. 104] . . . . . . . . . . . . . . . . 22
2.11 Example of feature branch based work flow [2, p. 105] . . . . . . . . . 22
2.12 Example of GitFlow [2, p. 106] . . . . . . . . . . . . . . . . . . . . . 23

3.1 Flowchart of the work process . . . . . . . . . . . . . . . . . . . . . . 26
3.2 An example of intellisense, suggestion is automatically inserted upon

selection (auto-completion) . . . . . . . . . . . . . . . . . . . . . . . . 29

4.1 An example of a snippet designed for break down procedures in Au-
toMod. Procedures are automatically inserted upon selection . . . . . 34

4.2 An example of a snippet designed for while loop routines in AutoMod.
Procedures are automatically inserted upon selection . . . . . . . . . 34

4.3 The top part displays the intellisense prompt of the three imple-
mented processes type snippet. Below is the auto-completed version
function, procedure and subroutine snippet content respectively . . . 36

viii



List of Figures

4.4 The final version of process snippets with improved introductory doc-
umentation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.5 An example of a feature tracker sheet in excel. By adding a new
feature through the button "Add new feature", a new row containing
an incremented feature number, current date, status and other place-
holder values are auto-filled. The status colors green, yellow and red
represent done, in progress or not started respectively . . . . . . . . . 41

4.6 An example of a bug tracker sheet in excel. By adding a new bug
through the button "Add new bug", new row containing an incre-
mented bug number, current date, status and other placeholder val-
ues are auto-filled. The status colors green, yellow and red represent
done, in progress or not started respectively . . . . . . . . . . . . . . 42

5.1 An example visualizing a git work flow using no branch features and
no commits token for different types of commit. . . . . . . . . . . . . 45

5.2 An example visualizing a git work flow using branch features and has
commits token for different types of commit. . . . . . . . . . . . . . . 46

5.3 Filtering options of branches . . . . . . . . . . . . . . . . . . . . . . . 46
5.4 Filter out branch f2-storage and shows the commit history included

in f2-storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.1 Flowchart of the work process showing where the main identified is-
sues could be solved . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

B.1 Example of final process specific snippet, function F_CalcDay. Every
subject field is filled except for Private variables, which is left blank . III

B.2 Example of final process specific snippet, function F_CalcTime. Ev-
ery subject field filled . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

1



1
Introduction

In an ever-growing world with various manufactures and industries continuously ex-
panding and becoming more high-tech and complex, it’s highly demanded to have
an intelligent and inexpensive tool for decision-making; a discrete event simulation
(DES) could be such a tool. Some of the prominent usages of a DES is the ability
to perform extensive experiments and analyses in a non-physical environment.

To give an example, one can imagine a warehouse consisting of several aisles of
stocks, where truck drivers move in-between to pick products into their roll cages
or pallets. There are also loading sites where the drivers go to when they are done
order picking. Here they unload their filled roll cages or pallets, which are subse-
quently moved onto trailers for upcoming customer shipment. With a DES model
of this particular warehouse management, one could consider an interesting analysis
to be a scenario where one is constraining the amount of the concurrent and active
trucks. With this restriction, one could study the overall efficiency and throughput,
the amount of less or additional breakdowns or how much time would now be needed
to finish all customer shipments etc. Another analysis could be, to swap the position
of a specific article from one stock to another. By doing so, the drive path to collect
the article would alter; thereby affecting the overall traffic, in a good or bad way.
These are only two examples of analysis which can be experimented thanks to DESs.

By making prompt investments or working in a non-proactive manner, the result
can be highly expensive and eventually lead to trailing consequences. Using a pow-
erful tool such as a DES to setup different scenarios beforehand to both analyze and
confirm certain investments, one can potentially increase the productivity, reduce
the cost, improve the flow in the shop-level or reduce storage capacity demands etc.
These are highly desired and beneficial outcomes.

However, dealing with DES projects are not always an obvious task. In fact, DES
projects can involve many several intricate steps throughout its life cycle. Depend-
ing on the project at hand, varying sub task can be set up differently due to the
handful methodologies that are applicable. Furthermore, bigger DES projects can
be regarded as a software related project, meaning there are additional software re-
lated challenges one has to consider when designing a simulation model. Some of the
software challenges could be ensuring consistency in the source code and developing
an effective workflow. Disregarding these challenges could lead into problems when
handing over or resuming the project in the future.

2



1. Introduction

A great challenge by companies is thus to maintain DES projects in a sustainable
aspect as when project stretches over a longer period of time, it can be hard to
get in contact with the former responsible(s). For instance, a poorly documented
project would mean that one would have to spend valuable time reiterating the same
time-consuming process of understanding all the details of a project. Additionally, if
there are no guidelines as to how projects ought to be carried out in a maintainable
regard, it’s to no one’s surprise that the project will sooner or later self-degenerate
due to lack of consistency and structure. Imagine the consequences of building a
construction using different materials for every sub parts. No consistency will even-
tually cause failure. In general, good documentation encourages improvements and
updates to a DES project. From a simulation standpoint this is important, since
building a good simulation model implies that one allow for both minor and major
updates. In the end, having guidelines for the initial setup procedure, how projects
are to be carried out and continuously documented, are key processes that ensure
more sustainable and manageable DES projects.

Banks methodology is a well-known methodology describing and providing guidance
for modeling a DES project [3]. It covers the various steps of how a simulation study
should be carried out. When it comes to documentation, Banks too, highlights the
importance of it. He argues that with adequate documentation, the future usages
and future developments of a model is vastly facilitated. Moreover, by having an
extensive overview of the project history, in terms of backlogs and changelogs, it
becomes easier for developers to determine whether a project is progressing towards
a set goal or not. However, although the encouragement of rigid documentation by
Banks, his methodology lack the information on how a model ought to be maintained
for continuous improvement and integration. Guidelines and knowledge concerning
how to maintain a model for these causes are essential to develop a relevant, yet
long-lived, model.

With a better maintained model it’s easier to conduct project handovers. And one of
the more important aspect of project handovers includes the knowledge transferring
part. From the article of "knowledge transfer" the author argues that the most ef-
fective way of transferring knowledge is through in-person communications [4]. This
is not always possible though. In fact, when this is not possible, it’s mentioned that
adequate documentation can many be the only or best compensation for this.

Another way of keeping up with the challenge of knowledge transferring is to reduce
the complexity of the knowledge that needs to be transferred in the first place. This
is further discussed in the article of "successful knowledge transfers" [5]. The main
idea is to have standards for how projects ought to be setup, how similar problems
should be solved, and other internal rules for how things ought to be carried out in
general. This provides a more consistent workflow with predefined set of rules that
reoccur in every project. This makes the process of knowledge transfers, as well as
project handovers, simpler, more lightweight and more digestible, as seen from a
long-term perspective.

3



1. Introduction

ÅF, a consultancy company in Gothenburg and the main collaboration for this
thesis, wants to extend their skills in how to properly document simulation models
for future operation and facilitate the accessibility and understanding for future
developers. The main idea is that the research will improve the maintenance of
simulation models and in a long run save valuable time and reduce unnecessary cost
spent on code reviewing.

1.1 Purpose
Utilizing discrete event simulations as a diverse and cost-efficient decision-making
tool is becoming a reality for various businesses in the manufacturing industry. As a
consequence, there is an increasing demand and interest of performing new discrete
event simulations, as well as continuously keeping up with existing ones. Chal-
lenges as to long-term maintain a model are emerging. It’s desired to incorporate
time-efficient and simple work methods to resume previous models in case of a fu-
ture project inheritance, or enabling concurrent collaboration among other team
members. The purpose of the thesis is to study this matter; how different tools
such as snippets and workflows using Git, can help mitigate software maintenance
challenges.

1.2 Project aim
The three main objectives of the project are:

1. Identify the challenges of understanding an inherited simulation model.
• Perform interviews
• Analyze the model from the the case study

2. Discover alternative solutions for maintaining a DES project regarded as a
software related project.

• Develop snippets.
• Develop a workflow for git.

3. Take previous developments and propose a customized solution for ÅF.

1.3 Delimiters

Data collections/observances are solely done on ÅF, hence only issues highlighted
there are considered. This project does not include development or experimentation
of the model, but the simulation model from the case study will be used as an
additional source to identify issues. The decision of what method will be used and
what solution is the best one, will be based on how it suits ÅFs working methods
and the AutoMod language.

4



1. Introduction

1.4 Research questions
The following research questions will be touched upon and are key objectives of the
thesis.

• What are the central topics in order to perform maintenance of a software
project, and how can it be applied to DES projects

• How can software maintenance help cultivate and transfer gained knowledge?
• How can snippets be combined with smart documentation in order to aid the

maintenance work for DES projects.
• How can a workflow using Git be designed to serve useful and effective for

maintaining DES projects, especially for smaller groups of 2-4 persons.

1.5 Brief explanation of our "case"

ÅF has inherited a DES project from Arla Foods. The project involves a simulation
model of their warehouse and distribution center. The model has been handed
over to several developers from different companies throughout its lifetime. During
this time it has become a challenge to keep it structured and easy for the next
developer to continue with the model. Lack of documentation regarding the source
code, project history and general output data, between the different iteration of
the model and between developers are general reasons for the issues. To be able to
start further development in an efficient way as well as to allow for easier transition
for future developers, a maintenance work applied to the model is of interest. The
existing and working model will serve as a perfect inspiration source for this thesis.

1.6 Report Outline
Chapter 1 - Introduction: In this chapter an introduction will be given regarding
the many maintenance challenges of discrete event simulation projects. Addition-
ally, information about the purpose, research questions, delimitation of the thesis,
as well as a description of the case study and the report outline will be given.

Chapter 2 - Theory: All the appropriate theory and material necessary for un-
derstanding the concepts in the subsequent chapters are presented here. The theory
will also serve as discussion material for designing and developing the different im-
plementations. The main material of this chapter will consist of general subjects in
various field that can serve as a foundation to build up a robust maintenance for
DES projects.

Chapter 3 - Methodology:In this chapter, how the work ought to be carried out
are presented in a chronological order. Some of the subjects that will be discussed
are; The VS Code integration, the AutoMod extension and the different generations
of implementations of snippets and workflow using Git. Separate implementation-
specific discussion will be given in order to guide the read to understand why different

5



1. Introduction

approaches was chosen.

Chapter 4 - Result: The result will include the developed AutoMod extension,
created snippets, proposal of a workflow using Git, and finally inputs from the in-
terview and a revamping of the implementations.

Chapter 5 - General Discussion: This chapter gives a more broad and general
discussion of the result and about the feedback and input from the interview. As
well as, general discussion of areas where the researched theory was not directly
applied to the different implementations and the sustainable aspect.

Chapter 6 - Conclusion: The final conclusions to the research questions and the
project as a whole are presented here.

Chapter 7 - Future work: In this chapter a list of future work is listed, both non
finished and non started work.

6



2
Theory background

This chapter describes different theories of subjects that are included in this work.
Mainly tools that can be used for maintenance of a DES project. DES projects
will be regarded more as a software project, as the code base for the simulation
model play a central role. The theories includes Discrete event simulation, Software
maintenance, Snippets and Version control

2.1 Discrete event simulation
A discrete event simulation (DES) is a powerful tool that describe companies’ dy-
namic systems and can be used to perform extensive experiments to evaluate future
implementations or changes in their current layout. As the name suggest, the simu-
lation is performed on discrete time, when events occur. Events, in simulation term,
are changes occurring in the system like movement of a part from machine to trans-
porter or initiating a operation process. That means the time in-between events
are unimportant and not included in the model. Model is a representation of the
real-time system, which also following quote concur, "models address a wide range
of manufacturing system design and operational issues and are therefore essential
tools in many facets of the manufacturing system design process". [6]

The usage of discrete event simulation or simulation in general with computers is
due to time limit when managing large data sets. Using analytical approach is
time-consuming and in some cases impossible. Simulation can be summzarized as,

1. Answers to numerous questions about the system
2. A representation of the system and its behavior
3. Better knowledge of different systems in the world.

[7]

2.1.1 Components of DES
There are several important components in a discrete event simulation model and
the most common one’s are the following. [8]

• Entities are objects that are direct representations from the real-time system.
Changes or activities occurring in the system are due to entities, either by the
entity is making an action, in this case the entity is a human operator, or
action is made on the entity, in this case the entity is a product. Entities can

7



2. Theory background

be operators, product, machines, etc.

• Attributes describes entities. Each entity can have their own unique at-
tributes, but some attribute can also be the same for a group of entities.
Attributes can be size, name, type, etc.

• Events, as mentioned previously, are changes occurring in the system and
what the simulation model is composed of. Commonly there are a list of
events where the time of the event is specified.

• Queue are used to represent buffers and storages. It is also commonly to
use queue to solve some modelling problem, thus it do not has to represent
anything from the real-time system.

• List can be used to control the flow in the system. If the machine should
process the products in any particular order or in different batch-sizes, it can
be setup by a list.

2.1.2 AutoMod
AutoMod is a discrete event simulation tool which is commonly used to simulate
manufacture- and logistic systems. It is used by many companies in diverse field of
area such as, vehicle, traffic, food, medicine, metal, mine, wood industry. AutoMod
is flexible when it comes to being able to model, simulate and analyze both simple
and complex system. [9]

An model in AutoMod can be setup by writing the source code of the different
process. The process includes all the events which are broken down to several of
code lines. The source code is then used to essential build the graphical part of the
model. AutoMod’s library has some base component to represent some entity, such
as trucks and human operator. But component such as the layout of the facility can
be created in another software and then imported to AutoMod. Furtheremore, Au-
toMod has build-in functions to support modelling of system such as, path mover,
conveyer, bridge crane, kinematics, etc.

The simulation can then be conducted in AutoMod Runtime where the animation of
the system can be viewed. Various kinds of reports are presented in Runtime, such
as total throughput, utilization statistics, waiting time, etc. To simulate different
experiments or scenarios in a more efficient way, there exist a add-on to AutoMod
called AutoStat. Multiple simulation can be setup and run with different settings,
and the outcome of those can easily be compared.

2.2 Software maintenance
There are many various definitions of software maintenance. Here are some quotes
presented to name a few:

8



2. Theory background

• “changes that are done to a software after its delivery to the user” [10]
• “a software product does not wear out from repeated usage, hence does not

need to be ’maintained’ the way a car or a TV does. In fact, the word is used by
software people to describe some noble and some not so noble activities. The
noble part is modification: as the specifications of computer systems change,
reflecting changes in the external world, so must the systems themselves. The
less noble part is late debugging: removing errors that should never have been
there in the first place.” [11]

• “The totality of the activities required in order to keep the software in opera-
tional state following its delivery” [12]

• “Maintenance covers the software life-cycle starting from its implementation
until retirement” [13]

As can be read above, many sources state that the software maintenance definition
involves the process of making modifications after the delivery of a product, but
there are also sources [14] that state that software activities are not only performed
on the post delivery stages, but could also be done during the pre-delivery stages.
In summary, software maintenance is a part of a Software Development Life Cycle.
Its main purpose is to modify and update software application after or berfore
delivery to correct faults and to improve performance. A software is a model of the
real world. When the real world changes, the software requires alteration whenever
and wherever possible [14].

2.2.1 Software maintenance importance
Due to various reasons such as a growing number of programmers and the popularity
of digitization among other things, new software projects are being born and devel-
oped on a regular basis. Hence, the need for comprehensive software maintenance
has never been greater. Lehman [15] states that “it’s unavoidable; changes force
software applications to evolve, or else they progressively become less useful and
obsolete”. For an ever changing organization with employees using their application
software(s) on a daily basis, it is essential to have software maintenance as a part of
the organization.

2.2.2 Software maintenance issues
While a software is in operation, a natural fallout is failures. Failures can be re-
garded as defects that have been unintentionally implemented into production by
the developers. In many cases rigid testings and verification efforts have been car-
ried out to mitigate failures but it’s both difficult and time-consuming, therefore
costly, to develop and perform testing. Failures can also be discovered as a result of
subsequent implementation, where the customer has requested new features or re-
quirements that was not considered in the previous specification and infrastructure.
Maintaining software projects is a complicated procedure and in bigger projects it’s
not uncommon to have specialized software maintainers.

9



2. Theory background

2.2.3 Differences among operations, development and main-
tenance

There is sometimes confusion and one can experience hard times in differentiat-
ing who is supposed to conduct the maintenance work. Where does it start and
end? According to [16] in an organizational context, the daily maintenance and
development of a software developed internally are typically the responsibility of
an operational support unit within the software organization. Whereas, software
acquired externally typically need maintenance done by the original developers and
not the organization using the software.

2.2.4 Software developer doing software maintenance
In the early days of the software industry, there was no difference between software
development and software maintenance. In the beginning, legacy source code was
rather small and one could rewrite it every time there was a big change needed.
Only in the 1970s the life-cycle models specific to the software maintenance process,
as well as the software maintainers started to appear [16].

Nowadays software maintainers are essential for bigger software organizations. In
fact, there are a number of disadvantages to letting the development team maintain
the software after it has been put into production.

• Developers do not like performing maintenance and are more likely to leave
for more interesting work.

• New hires in the development team will be both surprised and dissatisfied to
discover that they also need to maintain existing software.

• Developers are often re-assigned to other development projects and prefer this
kind of work.

• When the individuals who developed the software leave the other employees
will probably not be qualified to maintain it.

Maintainers are often confronted with hundreds or even up to million lines of code.
Source code mostly written by somebody else. Within a short period of time they
have to quickly familiarize themselves with the code and data. To make it all more
challenging, and if the software is newly developed, a number of urgent changes
might be pending because the developers could not include in the initial imple-
mentation, due to either time constraint or other prioritization. From an optimal
perspective the software maintenance is managed on an organizational level. It re-
quires that a management system for software maintenance is in place, and in order
for the best impact and to optimize the cost of software maintenance activities, it is
required that the whole organization are committed to the continuous improvement
of software maintenance.

10



2. Theory background

2.3 Snippets
Writing code can many times be a rather tedious and an error prone process. De-
pending on the programming language and author, the code can be difficult to read
and break down. One way of solving this is to use snippets. According to Liu
[17] snippets are chunks of source code which can be organized for copy and paste
usage, among other things. The overall goal is to ease the process of writing code
and mitigate the error prone mistakes. With snippets the manual effort to type in
(repetitive) source code is eliminated, and instead it is possible to re-use well defined
and developed existing lines or blocks of code.

Jiang [18] states that snippets can be used in any software projects where there is
a need of producing portion of code content more than once, rather than rewriting
it all over. A snippet can be as short or as long as you want. They can contain just
a few words, a couple lines of codes or even a whole paragraph (class). Snippets are
not limited to it’s content type, in fact, except for plain text they can also include
images, lists or even other snippets. [18]

There are various types of snippets. Snippets are typically classified as static, dy-
namic or scriptable. [17] Static snippets are normally associated with the fixed
chunk of source code or text that can be copied and pasted directly. It’s normally
inserted at the cursor position at the same pace someone is typing code. Dynamic
snippets contain dynamic elements which are filled upon insertion of the snippet.
The dynamic elements can be placeholder values that are computed depending on
the users input or the context of the code. Finally, scriptable snippets are dynamic
snippets that can invoke other snippets or internal commands. Presented below are
example snippets of each individual category.

• Static snippet: static for-loop, while-loop, template for a code function.
• Dynamic snippet: user is presented with options to fill in placeholder values

that yield in a final encompassed snippet.
• Scriptable snippet: math operation is inserted or casting is done dependent

on the context of code.

2.3.1 Using snippets to learn coding languages.
As mentioned in [18] developers are often put against programming tasks where
the implementation of the given task is an unfamiliar process. They normally face
a problem where they start to search for code examples online and try to learn the
usage patterns by studying the related Application Program Interfaces (APIs) from
the corresponding homepages. After finding the code examples, they then proceed to
copy-paste it in their code environment and start modifying it as desired. However,
Jiang [18] argues that snippets can be a solution for this problem. He argues that
snippets can function as high-quality code examples, specially designed to teach and
demonstrate a particular purpose, whether it be a snippet whose purpose is to teach

11



2. Theory background

how a typical function or method ought to be written in a particular language, or
simply a snippet that explains the process of implementing a specific task following
a predefined architecture.

2.3.2 Snippets in order to improve compilation time.
According to [1] a low-level programming language is a programming language
that provides little or no abstraction from a computer’s instruction set architecture.
Meaning, commands or functions to the corresponding languages map closely to the
processors instructions. Common examples of low-level programming languages are
machine code or assembly languages.

f i b :
mov edx , [ esp +8]
cmp edx , 0
ja @f
mov eax , 0
r e t

@@:
cmp edx , 2
ja @f

8B542408 83FA0077 06B80000 0000C383 mov eax , 1
FA027706 B8010000 00C353BB 01000000 r e t
B9010000 008D0419 83FA0376 078BD989
C14AEBF1 5BC3 @@:

push ebx
mov ebx , 1
mov ecx , 1

@@:
l e a eax , [ ebx+ecx ]
cmp edx , 3
jbe @f
mov ebx , ecx
mov ecx , eax
dec edx

jmp @b

@@:
pop ebx
r e t

Figure 2.1: Two examples of low-level programming languages and functions. Both
calculates the n:th Fibonacci number. On the left, code is written in hexadecimal
representation of 32-bit x86 machine code, whereas on the right code is written in
x86 assembly language using MASM. [1]

In contrast to low-level programming, in computer science high-level programming
language has a strong level of abstractions. For a human it’s easier to manage and
the language is overall more understandable, relative to a low-level language. But
due to possible use of natural language elements and the diversity in the language,
the code readability can vary depending on the code author.

According to [1] it is possible to utilize and produce snippets than can be used to
provide prepared and specialized designed blocks of source code, that are carefully

12



2. Theory background

designed in order to effectively improve memory allocation or other compiler specific
advantages. In some programming language it can be difficult to express semantics
of high level programming languages in a concise manner. But, by using specially
designed snippets these problems can be alleviated, and the end result can minimize
the overall the compilation time overhead. On the contrary, writing semantics in
a low-level programming language can be difficult due to the poor abstractions.
Having snippets that will provide you with the appropriate code upon request will
evidently save you a lot of time. Ultimately, snippets can also express low-level
semantics of high-level operations, and vice versa. This can serve useful if the
snippets are written in the same level as the compiler is compiling.

2.3.3 What to think about writing snippets
The snippet should be developed in a generic manner [18]. When using a snippet
on multiple locations, a change in the snippet context will result in a global change
to all places where the snippet is used. This prevent you from making same changes
on multiple locations.

2.3.4 Snippet management
The term snippet originates from the domain of text editors [17]. Today, most text
editors allow for viewing, editing, categorizing, and storing snippets in a repository
of re-usable source code fragments. Depending on the text editor or Integrated
Development Environment (IDE) the management and the diversity of functionally
of snippets can vary.

2.3.5 Snippets in runtime
Recent research shows a number of snippet implementation programs that generate
evaluates snippets at run time. For instance, in [19] Galen talks about their program
that, at runtime can quickly evaluate and generate an appropriate list of suggested
snippets for the user. From the same source it is argued that these snippets tools
improves the programmers productivity by more than a factor of two. The user can
save immense time by avoiding searching and studying APIs or the web, instead
the tool does it using its own algorithms. It can pre-set the snippets with variable
values, which in turn help the user to decide which snippet is most appropriate for
the situation. The tool is also interactive which makes the result more accurate, as
the user can connect more constraints and information, to refine the candidate code
fragments. [19]

2.3.6 Summary snippets
Snippets will be a valuable and one of the core tool for this thesis. The concept
of snippets will support and guide the software maintenance goal towards the right
direction. The initial designs of the snippets will involve a combination of static and
dynamic architecture. The are aimed to be both educational, short and concise.

13



2. Theory background

2.4 Version control
The concept of version control is a well-known subject that has its origin from
software management [2, p. 1]. Most (software) developers has been using it to
some extent, whether it be an amateur or a professional. Having the flexibility to
add new features, fix broken ones, or stepping back to previous states of a project
are important steps and daily routines to anyone working with digital copies. For
this reason, a powerful tool that can allow a team to move and manage a project
quick- and easy is of high value. On the market there are many tools for this job.
Both open source and proprietary. Two common systems are Centralized Ver-
sion Control Systems (VCS) and Distributed Version Control Systems
(DVCS). The tools are normally categorized as either centralized or decentralized.
Some examples of centralized tools are Concurrent Version System (CVS) and
Subversion (SVN). While some examples of DVCS are Mercurial and Git. The
main difference between the two families is the constraint of centralized systems.
To have a remote server, a directory and location where you put all your files, it is
essential and required to have the network enabled. If it is down, no communication
with the server can be done in a centralized system. On the contrary, in DVCSs
network availability is not an as crucial factor. One can decide to have none, a
single or even several remote servers, while also not having to rely on the network
availability. It is possible to work online as well as offline in DVCSs. The beauty
of DVCSs is that all modifications are locally recorded and stored, and can at any
time be synced online at a later time [2, p. 1].

2.4.1 Git
Git is today the DVCS that has grown from being a niche tool to becoming the main-
stream. It has grown rapidly and gained public favor compared to other DVCSs. It
is the second famous child of Linus Torvalds, who, after creating the Linux kernel,
forged this versioning tool. Git is essentially a tool for versioning files, originally
designed as a tool to let hundreds of contributors help and work on Linux kernel. It
is understandable that Git has been built up with collaboration in mind, and there
is a very robust consideration behind sharing data among computers. In Git, like in
many other DVCSs it is possible to work both locally and remotely. A Git remote
can be another computer that has the same repository you have on your computer.
In basic terms, every computer that hosts the same repository on a shared network
can also be the remote of other computers. As already mentioned, a great difference
between Git, and other DVCSs, to classical centralized versioning systems such as
SVN, is that there is no central server where you can give custody of your repos-
itory. However, in DVCSs you can have many remote servers. This yield a more
fault tolerant and more flexible system, as there are multiple working copies where
one can communicate and get information from. Using remote servers as a contact
point for different developers promote work done in a distributed manner. There are
many remotes and free online services that offer room for Git repositories. GitHub
and Bitbucket are two commonly used remotes [2, p. 53-54].

14



2. Theory background

2.4.2 Basic concepts of Git
In Git context, a folder that contains an initialized Git repository is called a work-
ing directory. Initially, files and folders are untracked in the working directory.
This means Git has no idea of what files are important and which one should be
treated and perhaps synchronized. However, the fact that files are untracked don’t
mean that Git is not noting that there is something new or changed in the work-
ing directory, in fact, Git is still monitoring everything. However, in order to start
tracking a file and include it in a repository, it is required to stage the file using
an add-command. Once added, the file enters the staging area (also called index).
When a repository is created for the first time and subsequently added, the files
are in the state unmodified, but once they become edited they switch status to
modified. That a file is in the staging area basically means that the file is ready
to be committed to the repository. The staging area is a virtual place that holds a
collection of all the desired files and modifications, before next commit. So a rule of
thumb is: any modified or created files that is desired to be committed needs to be
staged first [2, p. 13-14]. The following screenshot explains the status life cycle of
a file:

Figure 2.2: The following screenshot explains the file status life cycle [2, p. 14]

2.4.3 Commits
Another central concept in the context of Git are commits. Every commit build up
the repository. They are in a ordered sequence and can be identified as an acyclic
directed graph. Below is a more detailed explanation to commits given by doing a
time metaphor.

15



2. Theory background

2.4.4 The past
Previous commits can be represented as “the past”, as shown by the commits C1
and C2 in the diagram below, (figure 2.3). A reference to the last commit as well
as the parent of the next commit is called the “HEAD” pointer. By knowing the
position of the HEAD pointer, one can step back and navigate in the past.

Figure 2.3: The following diagram explains how commits can be viewed as past
and present [2, p. 18]

2.4.5 The present
As shown in the consecutive diagrams below (figure 2.4-2.5), the “next commit” is
the child of HEAD pointer, and encircles both working directory and items in the
staging area (index). Files that are created or modified can be marked and added
to the index using the “git add” command. The next commit will only consider the
modifications collected in the index and the rest non staged items remains in the
working directory as is.

Figure 2.4: The following diagram depict a modified working directory and an
empty index [2, p. 19]

16



2. Theory background

Figure 2.5: The following diagram depict the result when the modified files from
working directory has been added to the index [2, p. 19]

Finally, once the commit operation is executed, the processed commit becomes the
new HEAD reference as well as part of the past. The index is emptied and the
working directory comes back to the initial state and everything can repeat, as
shown in figure 2.6:

Figure 2.6: The following diagram explains how commits can be viewed as past
and present [2, p. 20]

2.4.6 Git history and commit log
A commit can be regarded as a snapshot that wraps all the bundled files collected in
the index during that specific commit. In order to review and back track the life of
a file one can browse and go back to the different commits in the past. Furthermore,
every time a commit is done, a commit message is needed. Commit messages can
give a brief explanation and some context to the added files or modifications. This in
turn provides a more detailed and easy to follow changelog/history of the life cycle
of a working directory. The historical collection of Git commits are called commits
log.

17



2. Theory background

2.4.7 Git commit messages
In the book "Git for Humans [20], David Demaree argues that a Git’s commit log
can be viewed as though it was a newsfeed for your project. He gives the similarity
that a commit can be regarded as a headline in a newspaper. The same way a good
headline doesn’t tell you about the whole story, but sufficient enough to describe
what the story is about (without the need of having to read it), is the same way a
commit message should be formulated. He also continues to say that if the project it
worked by one person alone, or a minor group, the commit log may seem interesting
for a historical purpose, but when it comes to bigger collaborations then the commit
logs become more valuable as it can be a way to check-in and see what have happened
while you haven’t been active within the project.
Strictly speaking, there is no hard limit when to comes to character or line numbers
when committing a commit message. It can be as detailed and as long as you
want [20], [2]. There are a few hard rules for crafting effective commit messages
that David is recommending. He argues that with good practice and obedience to
the rules below, one can master the elements of producing long lasting and effective
commit messages. Below are the interpretation of the rules and guidelines explained
by David Demaree[20].

2.4.7.1 Be useful

The principal purpose of a commit message is to summarize a change, in a way that
help you and your team members to understand what is going on in a project. The
information must be valuable and useful to the people who will read it. In addition,
the messages should be as short and as clear as possible. No messages should in-
clude text like "stupid bug solved" or "fixing a bug". These are examples of commit
messages that are rather useless and will degenerate the project history over time.
It’s also common to involve a bug or issue number if the team is incorporating a
bug tracking system in their work-flow. Like this:

"Add miss ing a t t r i b u t e ( A_foo ) ; f i x e s #1357"

Some bug trackers, like the one built-in into every GitHub project, are hooked into
Git so a commit message like above would automatically mark the bug 1357 as done,
after merging into master.

2.4.7.2 Be detailed (enough)

Although the temptation to include lots of details it’s highly recommended to refrain
from this. While details can be very important for understanding a change, there’s
almost always a more general reason for a change that can be explained succinctly.
Another reason to why it’s recommended to write meaningful, yet short, messages
is because of the environment the commit log is displayed. A normal Git user will
be using the terminal window and due to lack of space a commit log consisting of

18



2. Theory background

short commit messages is much easier to scan. And then there is the space issue,
shorter messages also save space. A good rule of thumb is to keep the "subject"
portion of a commit message to one line, roughly 70 characters. Exceeding details
worth including can still be included as an separate paragraph, however, the subject
line is the primary message that will be displayed. Below is an example of a commit
message including a short subject line and a trailing paragraph.

$ : g i t commit −m " Updated Ruby on R a i l s v e r s i o n because s e c u r i t y

Bumped R a i l s v e r s i o n to 3 . 2 . 1 1 to f i x JSON s e c u r i t y bug .
See a l s o http :// weblog . r u b y o n r a i l s . org /2013/1/8/ Rai l s −3−2−
11−3−1−10−3−0−19−and−2−3−15−have−been−r e l e a s e d /"

2.4.8 Be consistent
Although commit messages may seem very short, there are minor conventions and
consistency applicable. Having a short template or wiki page with some examples of
good and bad commit message will help things run more smoothly. With a small set
of rules it will become easier to write commit messages as well as review them. Be-
low is an examples of 3 commit messages written without consistency or convention,
followed by a more consistent way. It gives an understanding to why consistency in
writing commit message can be of advantage.

∗ 1 .
" added a f u n c t i o n F_foo that can convert d o l l a r s to sek "
" Adding a new f u n c t i o n F_foo2 that can round up i n t e g e r s . "
" f i x i n g bug #314 by adding a new f u n c t i o n F_foo3 that c a l c u l a t e s remainder . "

∗ 2 .
"Add f u n c t i o n F_foo to convert d o l l a r to SEK. "
"Add f u n c t i o n F_foo2 to round up to i n t e g e r s "
"Add f u n c t i o n F_foo3 to c a l c u l a t e remainder ; f i x e s #314"

Figure 2.7: Two examples of git commit logs, 1. has no consistency while 2. uses
conventions which provide more consistency thus improved readability

2.4.9 Active voice
Both Santacroce and David recommend writing commmit messages with a impera-
tive present tense. This is because it’s basically shorter. Example: "Fix xxx" rather
than "fixing xxx" or "fixed xxx". Of course, any tense is allowed, the key is to always
stick with the same one.

2.4.10 Guidelines to writing git commits summarized
Ultimately it’s up to the team to decide what conventions and rules is most suitable
for a particular project. But by trying to incorporate these rules, will most likely
support and make the committing more painless. Resulting in a more clean and

19



2. Theory background

easy to follow commit log that can be very valuable for both current and future
colleagues.

∗ 1 .
# Making the l a s t homepage update b e f o r e r e l e a s i n g the new s i t e
$ : g i t commit −m " Vers ion 1 . 0 "
# Ten minutes l a t e r , a f t e r d i s c o v e r i n g a typo in your CSS
$ : g i t commit −m " Vers ion 1 .0 ( smal l e r r o r ) "
# Forty minutes l a t e r , a f t e r d i s c o v e r i n g another typo
$ : g i t commit −m " Vers ion 1 .0 ( oh , another e r r o r ) "

∗ 2 .
$ : g i t commit −m " Update homepage f o r launch "
$ : g i t commit −m " Fix typo in s c r e e n . s c s s "
$ : g i t commit −m " Fix m i s s p e l l e d name on about page "

Figure 2.8: A common example of how a new and unexperienced user of git will
commit messages. 1. describes the actual commiting, whereas 2. is how the commit
should have been done

2.4.11 Branches
Git also allows for branching of a repository. This come handy when one want to
make experimental changes to the files in a working directory. As a programmer,
branching a repository is useful because there might already exist working code, and
by having the opportunity to perform a branch, it is possible to try something new
without fearing to break the existing working code. In [2] Santacroce argues that
there are no exact rules on how to use branches, in fact one can use them to keep
track of extensive work, for development of a new feature or a way to structure and
maintain different versions of releases of a project.

Initially the default branch, by convention, is the master branch. This means that
the first commit in a brand new repository is done in the master branch. A common
habit is to branch from the master branch as soon as possible and only work directly
in the master branch if necessary. [2, p. 29]

Differently from other versioning systems like Subversion, a new branch, would re-
sult in a new folder. For Git it’s different. Branches are interchangeable and, files
and folders of the previous branch are replaced with the content of the "swtiched-to
branch". In order words, the working directory is constantly a mirror of the current
branch. To view the content of another branch one has to “check out”, switch, to
another branch [2, p. 28-33].

Worth noting is that a repository is a sequence of ordered commits, when a new
branch is created, all commits prior to the creation is passed on to the new branch.
This is depicted in figure 2.12

20



2. Theory background

Figure 2.9: An abstraction of how branching can be viewed, "C1-C4" represents
commits and "MASTER" and "NEW WORK" are branch names. [2, p. 31-32]

2.4.12 Merge branches
It is often desired to implement the modifications of a feature branch to the original
master branch. This concept is called merging. However, this can sometimes be
a complex procedure depending on the amount of developers working on the same
repository at the same time. For instance, someone might have edited the same
file at the same line number as someone else. This will cause a conflict or colli-
sion. In this case, Git is unable to do an auto-merge, which basically means Git
merge commits from different branches as they were done subsequently in the same
branch. Upon collision, Git provide special conflict markers to the affected areas
of the file(s), where the user can then manually solve the situation by editing to
one’s need. To avoid conflicts and major manual work, it is recommended to merge
branches frequently. It’s not needed to wait before complete work is “done” on a
branch prior to merging. Because merging after a few week or months where lots
of modifications have been done, can result in a very intricate situation. Too many
changes, additions or deletions are happening in the same files etc [2, p. 37-39].

2.4.13 Work-flows
Git is essentially a versioning tool, and there are many well-known and designed
work-flows adopted for using Git. Common ones are centralized work-flow , feature
branch work-flow and GitFlow among others.

2.4.14 Centralized work-flows
Even in Git one can adopt a centralized way of working. In teams, it is common
and often necessary to share repositories with one another. Having a common point
of contact is essentially indispensable. A scenario where this work-flow can be used
is when you have multiple developers in an office. Someone usually initializes the
remote repository on a local Git server such as GitHub or Bitbucket, and other team
members clone the original repository on their computer and start working. Work
is then pushed to the remote once it is ready/done, to make it available for other
colleagues. This method of work-flow require internal rules and detailed defined
patterns or else it can be hard to manage and keep every file in sync [2, p. 104].

21



2. Theory background

Figure 2.10: Centralized work flow example [2, p. 104]

2.4.15 Feature branch work-flow
A feature branch based work-flow is all about branching. Every single feature the
developer is working on require its own branch and when the work is ready, the
feature branch is merged onto the master branch.

Figure 2.11: Example of feature branch based work flow [2, p. 105]

2.4.16 GitFlow
A more sophisticated work-flow using git is the so called GitFlow. This work-
flow has gained success over the years, to the point that many developers, teams
and companies are starting to use it [2, p. 105]. Similar to the first work-flow
presented, Gitflow also embeds a centralized work-flow. The core concept of GitFlow
are the “main branches”, that is master-, hotfix- , development- , release and feature
branches etc. Each main branch hold a specific role. The master branch is the so
called, production-ready branch, which means when you fix or add something new in
either a feature branch or bugfix branch, and then merge it onto the master branch,
one can assume the changes will be up and running in a matter of hours. The hotfix
branches is always derived from the master branch and are, by definition, created

22



2. Theory background

to resolve bugs. The development branch is a sort of staging branch, a platform for
a feature branch. And, finally, the release branch contains the next release and one
may not add new feature to this branch. The GitFlow approach can be regarded
as having different departments with specific roles but are simultaneously closely
collaborating with one another. In general, GitFlow, is highly dependant on the
team members and “the social contract”, meaning members continuously support,
comment and test each others code before merging onto the master branch [2, p.
105-109].

Figure 2.12: Example of GitFlow [2, p. 106]

2.4.17 Summary version control
In this thesis a customized work-flow will be designed appropriate to discrete event
simulation projects. A particular interest of the development will be in regard to a
work flow suitable for the simulation team at ÅF. An initial version of git work-flow
will combine a centralized and feature branch approach. And, depending on the

23



2. Theory background

feedback from ÅF and with the experience gained out of the first version, a more
sophisticated approach such as GitFlow will be considered.

24



3
Methodology - Work process

In this chapter , the steps that are included in the methodologies are presented in a
chronological order. All the theories applied here are derived from the theory chap-
ter, unless referred explicitly. Shorter but more detailed discussions will be given
for each implementations.

Important to note is that the implementations have revolved around the inherited
discrete event simulation model issued by the simulation team at ÅF Industry. The
model has involved several hand-overs from different authors and companies, thus
with the years has become self-degrading. Moreover, the implementations and work-
flow have been appropriately adopted to incorporate AutoMod.

The work have been divided in the following steps can be seen in the flowchart 6.1

1. The identification and categorization of maintenance challenges with the model
2. A literature review about software maintenance
3. The creation of AutoMod Extension
4. The first version of snippets
5. The first version of workflow using Git
6. Interview at ÅF regarding maintenance of DES projects using AutoMod.
7. Final version of snippets and workflow using git, with the interview feedback

taken into account

25



3. Methodology - Work process

Figure 3.1: Flowchart of the work process

3.1 Identify problems
The initial step of the work involved actions such as extensively identify and an-
alyze the simulation model. The most immediate and apparent issues, as well as
potential red flags, were documented and categorized as either "code related issues"
or "documentation related issues".

3.1.1 Code-related issues
The main targeting questions for the source code of the simulation model was "What
affected the source code’s readability negatively, making it hard to break down?".

One of the more contributory cause to the code-related issues were the apparent
presence of multiple authors. This in itself, resulted in major inconsistency prob-
lems, Meaning, there were difference in naming conventions, different ways of solving
problems and varying ways of writing comments etc. Below are the most elevated
code-related issues due to inconsistency of the source code:

1. Different way of naming variables
• Mixing lower- and upper case for both prefixes and sufixes

(E.g. v_item, v_Item2, V_item3, V_Item4)
• Inconsistency in using prefixes

26



3. Methodology - Work process

(E.g. 'V_time', 'Vi_time')
2. Different way of naming entities (same as above)
3. Different way of writing code to solve the same problem
4. Different choices in choosing data structures for similar problems
5. Inconsistency in using placeholder variables
6. Redundant and lengthy code (both vertically and horizontally)

3.1.2 Documentation-related issues
From the examination of the simulation model it was further observed that the
overall documentation of the model could be improved. A big challenge involved
navigating and tracing different items from the project. There were no primary or
comprehensive documentation of the project history, and no details or guidelines de-
scribing how work ought to be carried out in order to secure a maintainable project.
Below are the documentation-related issues, or items missing, that made the trace-
ability of the simulation project difficult.

1. A general change-log for waiting, pending or fixed bugs
2. A general document for all previously (frequently) asked questions
3. A document explaining the different terminology
4. Flow charts illustrating the whole- or sub systems
5. More documentation to previous states and versions of the simulation model

3.2 Literature review
When the challenges had been identified the next step was to carry out a literature
review in order to research different fields of theory that could help resolve and mit-
igate these issues. Relevant literature and other sources was found mainly using the
following:

• Chalmers library databases
• Google Scholar
• Research Gate
• ProQuest

The three main keywords that were look into were:

• Software maintenance
• Snippets
• Git

27



3. Methodology - Work process

3.3 Creation of AutoMod Extension
It was decided that a few actions and tools had to be developed and incorporated
with AutoMod.

Methods and tools such as snippets and git integration are software maintenance
tools that would serve very useful later on, but before any of those techniques were
introduced there was a prominent bottleneck that had to be taken care off. Al-
though AutoMod’s powerful ability to describe and simulate discrete event systems,
it was argued that it had a flaw in terms of its developing environment. It was early
on in the project concluded that in order to apply the different software mainte-
nance tools, something had to be done with the way of programming in AutoMod.
The default AutoMod editor was regarded as too limited in terms of flexibility and
customization and would only prevent the implementation of desired maintenance
techniques. Below are some of the limitations of AutoMod’s editor described. Some
arguments are also given as to why a third party editor was consequently chosen.

3.3.1 AutoMod Editor limitations
While programming in the AutoMod language it is recommended that one uses the
AutoMod naming conventions. For instance, common entities and parameters are
recommended to be named with the following prefixes:

• P_ (Process)
• R_ (Resource)
• F_ (Function)
• V_ (Variable)
• A_ (Load Attribute)

This will ensure that the AutoMod editor is able to recognize the specific standard
prefix for entity names, and consequently help speeding up the variable declaration
process [21]. This constraint is helpful and will mitigate the concerns regarding in-
consistency in naming variables. However, this rule is not mandatory, and by simply
failing to follow the rule will yield in a misinterpretation by the AutoMod compiler
and the user has to manually declare the variable with the original intention. In
a big project where new variables have to be introduced and the dimensions have
to be adjusted regularly, this process will eventually become tedious. Fortunately,
AutoMod is not limiting developers to only develop code inside the AutoMod editor.
In fact, AutoMod allow developers to program in any preferred text editor.

The example above is only one scenario where the AutoMod editor is limited. In fact,
being able to work outside AutoMod’s editor will not only result in a quicker way of
programming, as declaring variables, modifying the data structures such as dimen-
sion and type can instead be done directly in the source code from the text editor.
Additional advantages are the possibilities to refractor names of entities efficiently

28



3. Methodology - Work process

and to use popular text editor features such as intellisense and auto-completion. The
two latter features encourages and enables a more consistent programming manner.
This is because names of variables are predicted and offered as the user is typing. By
being provided with predictions, valuable time is saved from searching or coming up
with a new name. Also by selecting the proposed auto-completion suggestion, one
eliminate common mistakes such as misspellings. To see an example of intellisense,
also known as intelligent code completion, see figure 3.2.

Figure 3.2: An example of intellisense, suggestion is automatically inserted upon
selection (auto-completion)

3.4 First generation of snippets
With a more flexible and richly featured developer environment as well as having
identified the most prominent and observable problems of the simulation model, it
was time to start the process of development that could help prevent the remaining
challenges.

It is argued that issues 1-2 from the code-related issues list presented previously,
will be alleviated more or less thanks to the built-in features such a intellisense and
auto-completion in VS Code. Unfortunately these features will not be sufficient
enough for issues such as 3-5 in the list.

Instead, snippets are introduced. With snippets one can implement education-
al/guiding templates that can be used consistently throughout the source code.
Preventing issues such as coding differently for solving the same problem and incon-
sistent choice of data structures etc.

3.4.1 Snippet
From the observation of the source code of the simulation model, there were quite a
few of inconsistencies noticed. First of all, there were misleading and poorly named

29



3. Methodology - Work process

placeholder variables and counter indexes. For instance, variables were named dif-
ferently but had the same purpose:

E.g. 'V_temp', 'Vs_String', 'Vi_i', 'j', 'V_i' etc.

One can argue that these placeholder variables and index counters are not so self-
explanatory and it’s required that the code reviewer holds some prior knowledge
or has a good understanding of the code, in order to analyze the given content.
The main consequence of having inconsistencies and misleading information like
this yields a situation where unnecessary time is put on understanding things that
could have been self-explanatory in the first place.

Another observation made was the numerous occurrences of code written differently
but ultimately solved the same problem, e.g. something that could and had been
solved in 5 steps was solved with 7 or 15 steps later on elsewhere. This obviously
caused some confusion and made the code more lengthy than needed. To help mit-
igate these two challenges, snippets proved to be very successful.

3.5 First generation of the workflow using git
Further challenges with the given simulation model was the documentation of the
source code. It was argued that the project history and change log were inadequate.
Inside the folder of the simulation model there were existing documentation with
the intent to keep track of these changes, but due to reasons such as time constraint
or poor habits they were neither complete nor up to date. With a continuously up-
dated change log it is possible for the developer to easily stay up to date with what
has been implemented or is currently on the pending list. If a developer is inactive
or have to come back to a project after a couple of weeks the developer can easily
catch up by reviewing the change log. This also means that a future colleague less
familiar to the project, or any code reviewer really, can more easily and quickly dive
into the project and understand what still needs to be done or is already marked as
finished.

Another observation of the given simulation model, was the amount of inconsistency
in commenting in the source code. There were occurrences where code-comments
were both verbose and redundant, but also times were crucial and appropriate com-
ments were missing. Due to lack of proper guidelines of commenting, different
developers had aggravated the source code of the simulation model by coding "quick-
and-dirty" workarounds. As a result new features and solutions problems were built
on top of each other rather than re-using and incorporating the already existing
code foundation. This have made the source code much longer and more complex
than needed. Again, the main reason for this was the lack of documentation and an
inadequate change log record.

Tools such as intellisense, auto-completion and snippets are useful for alleviating the

30



3. Methodology - Work process

coding challenges in 6. But in order to solve for the challenges such as recording and
tracking an updated change log will require other means. The distributed version
control system Git is chosen as a candidate to help solve this.

Git provides good support for a change log (commits logs), and it is also designed to
be developer-friendly, meaning it is aimed to reduce the effort and create intuitive
habits for the developer to document changes of a project. By following a set of
best practices a developer can effortlessly and efficiently commit changes or imple-
mentations to the project, thereby contributing to a continuous and rigorous record
of changes.

Git will also help the developer to be more descriptive thanks to the commit mes-
sages. More crucial and explanatory comments can now be found in the commits
logs rather than inside the source code. There are many different workflows that
are applicable using Git as stated in the theory. The chosen one will be presented
in the result chapter

3.6 Interview ÅF

The developers of ÅF’s simulation team presented a couple of issues revolving simu-
lation model maintenance and project inheritance, and suggested some part-solution
and research area to look into. That together with literature study form the first ver-
sion of AutoMod extension, snippets and Git workflow, presented previously. Later
on in the project, an more planned and well-thought interview was held with same
team from ÅF to gather more information. Since the different tools and method
are developed solely for the usage of the ÅF individually, their opinions are vital
when forming the solution. There are to no use if the developer has misinterpret the
issues and the solution does not give any value, or if they find it to be redundant or
bothersome to use. The goals of the interview were to:

• Get their experience on dealing with model maintenance and project inheri-
tance.

• Get their feedback/input on what has been researched/developed. Let them
emphasize additional issues that have surface.

• Summarize the feedback and develop the final solution accordingly to the in-
put.

Since the interviewers at that state had a solid knowledge about issue from studying
literature and by speaking to the individual in ÅF, the questions was designed heav-
ily focused on getting the data needed but still letting the participants give their
personal opinions. Therefore, the interview was conducted as a Semi-structured in-
terview. [22]

An interview guide was created before the interview and had the purpose to keep

31



3. Methodology - Work process

the interview going in the right direction and have questions to fall back on. The
interview guide follows the guidelines presented in [22] and is presented fully in the
appendix A.

3.7 Final update to snippets and workflow using
Git

A final update to the snippets and workflow using Git was carried out with the focus
of satisfying the feedback given during the interview and these are presented in the
Result chapter.

32



4
Result

The following sections presents the developed AutoMod extension, developed snip-
pets, proposal of a workflow using Git and a final update considering the given
feedback from the interview.

4.1 AutoMod language support extension
The programming environment of choice for this thesis is a continuously growing
and popular text editor called Visual Studio Code (VS Code). The choice of editor
was chosen due to it’s flexibility in managing and implementing personal extensions.
Moreover, VS Code is a free and open source text editor that have all the features
described above, smart refractoring, intellisense, auto-completion, and many more.
Using VS Code as the primary development environment also give the developer the
opportunity to run and compile AutoMod code directly in a integrated terminal,
and finally, VS Code also allow for easy implementation of custom snippets and
integration of Git. That being said, an AutoMod language support extension was
created in order to primary incorporate syntax highlighting, auto-completion rules
and snippets management.

4.1.0.1 Syntax highlighting and auto-completion

Syntax highlighting is the feature that displays certain text or source code in dif-
ferent colours and fonts according to a set of rules and predefined keywords [23].
When coding outside of AutoMod’s editor there is no syntax highlighting available
by default. However, in VS Code one can implement a custom syntax highlighting
grammar by following their Application Programming Interface (API). In addition
to AutoMod’s editor it is now possible to modify syntax color or even apply new or
modify the rules of the syntax highlighting, as preferred. All of the figures involving
snippets show an example of the syntax highlighting that has been created.

In addition to the syntax highlighting feature a library of all AutoMod’s reserved
keywords were added to the VS Code extension. The result can be regarded as an
extended database of auto-completion words, meaning the developer is now able to
look up AutoMod’s keywords directly from VS Code and insert it upon selection.
Being able to look up and auto-complete keywords mitigate common errors such as
misspelling a keyword. This also adds the possibility to search for a specific action
on the fly. Some of the beginning reserved keywords of AutoMod starting with the

33



4. Result

letter "a" are the following:

'absent','absolute','ac','acc','acceleration','activation','active',
'after','aisle','aisles','align','all','along','among', ... etc

4.2 Snippets
The first generation of snippets have been designed to be guiding, yet easy to follow,
short and concise. The example in figure 4.1 and figure 4.2 below are great examples
of how using snippets can aid the developer in avoiding variable misuse and overall
inconsistency and uncertainty when coding.

Figure 4.1: An example of a snippet designed for break down procedures in Auto-
Mod. Procedures are automatically inserted upon selection

Figure 4.2: An example of a snippet designed for while loop routines in AutoMod.
Procedures are automatically inserted upon selection

4.2.1 Snippets for different process types
Creating processes (procedures, functions, subroutines etc) is one of the building
blocks in AutoMod programming, to make the procedure of creating processes more

34



4. Result

autonomous, efficient and less error prone some specialized snippet templates have
been designed. "The different process snippets" are built up in three separate parts,
see figure 6.1. The first line is the code for declaring the process, the next block
of code is the introductory-documentation and the rest is the body content. The
snippets are also a combination of static and dynamic. Static in the sense that
the majority of the content is always the same, and dynamic in a sense that minor
parts of the content is also dynamically changing. These minor text spots are situ-
ated at different locations of the content, and as the user is typing the input values
are altered across the multiple occasion inside the content. For instance, if "be-
gin_function" were to be selected in the figure 6.1, then the snippet content would
be auto-completed and the "<F_Name>" would be highlighted and selected on two
locations (row 6 and row 12). If the user would start typing then "<F_Name>"
would be replaced on the two locations according to the user edited input. The
placeholder text "<F_Name>" is to inform the user that the function name should
be starting with the prefix "F_".

35



4. Result

Figure 4.3: The top part displays the intellisense prompt of the three implemented
processes type snippet. Below is the auto-completed version function, procedure and
subroutine snippet content respectively

4.3 Workflow using Git
The git workflow is currently non-existent and is designed to be dedicated to discrete
event simulation projects, in particular the team at ÅF, was based on the two first
concepts presented in the version control section of the theory. In other words, it
combines a centralized- and a feature-branch based workflow. The chosen remote
server is a platform called Bitbucket, and is already used at ÅF, and will hereby
serve as the central contact point for this particular simulation project.

Worth noting is the fact that the workflow will be designed in consideration to Au-
toMod being the main programming language.

36



4. Result

4.3.1 Anatomy of workflow
The workflow is designed to require new branching of the master branch for every
considered feature, bug fixes and quick-fixes. The principle is that the master branch
should always have the latest stable version in order to always have a latest working
version of the project, which multiple developers can access. Therefore it is impor-
tant to always pull from the remote master branch before merging and pushing to it,
in case changes have been made to the master branch. In order to keep the project
history clean and easily traceable for the future, it is required that a branch is only
limited to a single change (e.g. single bug or single feature).

Although the possibility to include two features in a branch it’s required to either
first merge the current feature branch or to branch out from the feature branch it-
self. Having too many commits waiting to be pushed on a branch can be an example
and signal that the branch needs to be merged or branched out further. When the
content in a branch is ready to be merged, it should be merged to the "closest branch
(the branch it has been branched out)" for better structure and easier for tracking.

4.3.1.1 Bug branch

A bug branch is where the developer handle all the bugs throughout the project.
Since a bug is usually solved by a single developer, the branch does not need to
exist on the remote server. Furthermore, a project may include countless of bugs
and "make no sense to push all the bug branch to the remote server, unclear, a lot of
branches". Commits on bug branch shall start with a commit token followed up with
the commit message; b<number>: <subject line>. Once the bug has been solved,
the commits message of the merging process shall include "b<number> solved". The
index number in the commit message can be tracked to an excel-document where a
more detailed explanation about the bug is presented.

4.3.1.2 Quick-fix branch

A quick-fix branch is used to solve minor changes of the code such as; Deletion
of code, code refactoring, replacing names of data structure or entities, comment-
ing/uncommenting etc. Similar to bug branch, a quick-fix branch is shall only be
created as a local branch and merge into master once changes are done. Commits
on quick-fix branch shall start with a commit token followed up with the commit
message; qf: <subject line>.

4.3.1.3 Features branch

New features shall be handled in individual feature branches. Depending on the
feature size and if multiple people are collaborating on that feature, the branch
shall be pushed to the remote server. Thus the master branch will not be affected
by the development of the feature and the feature branch on the remote server
can be used as a access point for the involved developer. Bugs and quick-fixes
within a feature should be branched out further and "follow the same procedure,

37



4. Result

above". Commits on feature branch shall start with a commit token followed up
with the commit message; f<number>: <subject line>. Commits on bug and
quick-fix branches follows the same structure adding feature token in front, e.g.
f<number1>/b<number2>: <subject_line>.

4.3.2 Internal rules
In order to keep the communication and structure maintainable it is required to
introduce some internal rules in addition to the information above [2, p. 37-39].

4.3.2.1 Committing

From the theory in section it’s advised to keep a detailed and structured way of
performing commits. Here is a set of best practices for commits designed for this
workflow.

• Should have a length limited to 70 characters
• Should answer "I just did a thing, a thing I did was:"
• Should be written in imperative present tense
• Should start with lower case character, e.g. "fix breakdown of clamp truck"
• Common starting verbs of subject lines: Fix, Add, Replace, Remove, Refractor
• Issue number will be written in the beginning, e.g "f/b<#>:<subject_line>"
• If commit involved something "missing", add what is missing to the subject

line
• If something was solved, point out what was solved rather than how it was done

In VS Code there is a integrated GUI panel that cover and offer the most common
commands of Git. Among other commands, there is a message field specially ded-
icated for commit messages. This field will prompt a warning as soon as the user
exceeds 70 characters.

4.4 Input from the Interview and final update

The interviews were held with two members from ÅF’s simulation team. It was
held individually and both answered all the questions listed in appendix A and gave
their personal opinions on the matter. Following sections describes the summarized
outcome of the interviews, regarding the snippets and proposed workflow using Git,
and final updates that was done according to the feedback.

4.4.1 Regarding the Snippets
From the interviewing session it was learned that there were already some preex-
isting snippets available from ÅF’s part. There were only a few of them and they
were still not officially distributed to the team. There were future intentions of
implementing more ones and undeveloped snippet concepts pending. One challenge

38



4. Result

regarding the snippets, however, was the management and integration of it. The
distribution of the snippets among team members were currently non-existent due
to lack of centralized repository. A suggestion was given to the simulation team
at ÅF. In order to manage the snippets in a distributed way, the snippets ought
to be stored on a Git repository on Bitbucket or similar. This way anyone with
access to the repository can contribute to changes, new implementation or dele-
tion of snippets. Furthermore, because Git integrates nicely with VS Code it is also
possible to easily access the repository and different snippets directly from VS Code.

Some of the pending ideas as well as already developed snippets were some concepts
of shorter control flow statements like: for-each loops and while loop and order-list
statements. Other pending snippet concepts they had were ideas such as larger
modules and sub-system that could prove handy and save a lot of time if designed
as snippets. E.g. conveyor system, scheduling systems or sub systems.

4.4.2 Documentation to declaring different processes
Special focus and input was given towards the snippets of different processes. Pre-
viously the process snippets, see figure 6.1, had all the same type of introductory
documentation. In other words they contained the topics "Descriptions, Parameters
and Example". However, from the interview some feedback was given regarding this.
Because the processes have different main purposes the introduction documentation
should be distinct depending on the process type.

The following final updates were made to the process snippets:

39



4. Result

Figure 4.4: The final version of process snippets with improved introductory doc-
umentation.

4.4.3 Regarding the Git workflow
There were less feedback given towards the thesis’s suggestion of workflow for using
Git. The simulation team were still deciding on a version control system appropriate
for their working method, and they had only started to experiment with Git. Hence,

40



4. Result

there were neither a workflow adapted nor internal rules set up yet, and when they
were using Git they had previously only committed on the master branch. For that
reason, the initial impression of the suggested workflow was mixed feelings. They
saw positively on the intention of the workflow, that is, to create more structure and
offer a better history of projects. However, having no experience with branching and
the requirement to follow internal rules made the whole workflow suggestion also
somewhat discouraging. A more rigid discussion concerning this is given in the
Discussion chapter.

4.4.4 Feature and Bug tracker
It was further discussion in the interview that in order to implement Git rigorously,
then it was needed that internal rules had to be formed. Among other things the
commit messages had to be short and concise, and because of this it was decided
that a bug and feature tracking system will be needed. This means that for each
bug and feature that is added to the model there will be a new item added to a
database. The database is nothing but an excel document containing the bug or
feature identification number, description/explanation of the bug or feature and
other comments. See figure 4.5 and figure 4.6 below.

Figure 4.5: An example of a feature tracker sheet in excel. By adding a new feature
through the button "Add new feature", a new row containing an incremented feature
number, current date, status and other placeholder values are auto-filled. The status
colors green, yellow and red represent done, in progress or not started respectively

41



4. Result

Figure 4.6: An example of a bug tracker sheet in excel. By adding a new bug
through the button "Add new bug", new row containing an incremented bug number,
current date, status and other placeholder values are auto-filled. The status colors
green, yellow and red represent done, in progress or not started respectively

42



5
General Discussion

In the following sub sections there will be discussions given regarding the result,
some further comments concerning the interview feedback, topics where the imple-
mentation didn’t fully apply the researched theory and the sustainability aspect.

5.1 Results
Banks [3] is helpful for describing and initially defining a discrete event simulation
model, but when it comes to project handovers or maintaining them, the method-
ology can be rather insufficient. It has been previously mentioned by Lehman that
software maintenance is highly important due to the fact that when the real sys-
tem changes the corresponding software system needs alteration accordingly [15]. In
other words, the model/source code of a DES project of a manufacture needs to be
updated and modified as the manufacture itself is implementing new changes. The
reason is to keep the model active and up to date, making it possible to continuously
perform relevant analyses and experiments. Lehman [15] and Jiang[18] have both
argued that Snippets support software maintenance by reducing the manual effort
of carrying out repetitive tasks required for building DES models. With this reduc-
tion it also help mitigate easily done mistakes and more frequent human errors such
as misspelling and inconsistent coding. From an industrial point of view, snippets
are valuable thanks to the less time spent coding recyclable and error prone code,
and by having an overall more consistent source code the model end up being more
maintainable. This encourages quick and continuous improvements which in the
long run save time and money [18].

At the same time from an industrial point of view, git as a version control tool [2],
keeping files stored on a shared directory as well as allowing high flexibility in terms
tracing files and saving them in different "states", support the software maintenance
work additionally. This may many times be a major lifesaver and can nevertheless
contribute advantageously for the knowledge keeping and knowledge transfer.

With both snippets and Git as software maintenance tools integrated to bank’s
methodology, one can argue that the outcome is an extended version of bank’s
methodology that support the insufficient parts of software maintenance challenges
involving DES models.

43



5. General Discussion

5.2 Interview feedback regarding snippet manage-
ment

During the interview it was discussed whether it should be a single person, multiple
persons or the whole team who ought to be handling the snippet management. Pre-
viously, there were no centralized directory for keeping the snippets. In fact, they
were stored locally as text files and when needed the snippets were introduced to a
project/model by a copy-and-paste method. In other words, if a developer "Mr. X"
had 1-3 snippets then the same developer had to be responsible for distributing the
snippets among the team members. At the same time, the team members had to
make sure they had the latest version of the corresponding snippet from "Mr. X",
in order to avoid using an outdated snippet. The distribution of the snippets was
normally done by email, and that way of handling snippets was impractical when it
came to regular modification of the snippets. Thanks to the proposal of integrating
the snippet management in VS Code these issues are mitigated. The snippets are
instead stored on a Bitbucket repository using Git and there is no need to manually
look for the separate snippet text files. The snippet integration will now prompt the
user with any appropriate snippet option, directly in VS Code. Having the library
of snippets stored online on a Git repository makes it easy to add, modify and delete
snippets by any liable developer. This also means it’s easy to pull down the latest
modification from the repository, making it easy to make sure one have the latest
snippets available. It’s is also argued that having a web page explaining basic best
practices of how to create snippets makes it easy for a developer to add new ones
without spoiling the consistency. This will be regarded as one of the desired future
work.

5.3 Interview feedback regarding version control
systems

When the subject of version control systems arose during the interview it was said
that Git had been used previously. However, the simulation team at ÅF were still
experimenting with various version control systems, and the experience of using Git
to manage a simulation model was minor. But they were looking forward and gave
promising feedback towards a better Git integration in their team. Prior to any of
their version control systems, there had been mostly email communication in order
to distribute different simulation model versions among another. This was a non
sustainable solution, in regard to keeping the model up to date and easily accessible.
The minor experience with Git also meant that the simulation team at ÅF had little
experience with Git and had not yet a workflow for Git nor any internal rules to
commit messages or branching etc. When the thesis’s workflow of using Git and
the accompanying internal rules were presented, it gave rise to mixed opinions. The
team at ÅF argued that there had been challenges of even introducing Git among
all team members, and thus far committing from a single branch (master) had been

44



5. General Discussion

sufficient.

There were discussion of whether the mentioned branches (feature, bug, quick-fix)
were needed at all, as these could possible cause confusion and eventually end up
spoiling the infrastructure or deterring team members to start using Git.

The main purpose of the workflow is designed to keep a project more maintainable
both for current usage and future resuming work. However, if the internal rules are
not explicit and clear enough this can spoil the essence of the workflow. To give an
example, if the internal rules regarding merging are not followed correctly due lack
of understanding or poorly formulated guidelines, this can cause merge conflicts in
the simulation model which will eventually cause bottlenecks in developing code.

One of the major obstacles from ÅF’s side was the introduction of using branches
versus performing all the commits on a single (master) branch. It was debated
though that if a model contain a lot of different sub systems, these systems should
be branched as a separate feature branch. By doing so it’s much cleaner and easier to
read the commit logs for each and individual sub system. With just a single master
branch all of these information would be cluttered and there wouldn’t be possible
to filter the logs in any way. Below are examples given illustrating the advantages
and clarity using branches.

Figure 5.1: An example visualizing a git work flow using no branch features and
no commits token for different types of commit.

45



5. General Discussion

Figure 5.2: An example visualizing a git work flow using branch features and has
commits token for different types of commit.

Figure 5.3: Filtering options of branches

46



5. General Discussion

Figure 5.4: Filter out branch f2-storage and shows the commit history included in
f2-storage

The simulation team at ÅF agreed that with a mutually developed guide line for
internal rules, it was worth putting the master thesis’s workflow to a test. The
agreement was to initially try to make everyone start using Git, and to begin with,
have most work on a master branch with no mandatory branching. When everyone
has become more comfortable with the fundamentals of Git, such as how and when
to commit, it’s believed that the remaining essentials of the proposed workflow will
come naturally.

5.4 Why a dedicated software maintenance team
is not needed at ÅF

From the theory chapter about software maintenance it was mentioned that it’s
recommended to have a software maintainer or even a whole team dedicated for
software maintenance. This is because of reasons such as developers not being fond
of the maintenance work or there’s a lack of knowledge of how the work is done etc.
At ÅF the situation is currently limited and introducing a whole division dedicated
for software maintenance is not a viable option. Instead, it’s argued that if the
maintenance work can be made in a more simplistic and more intuitive manner,
using snippets and incorporating Git among other things, this will yield a very good
initial foundation for maintaining the DES projects. Moreover, the size and work of
the DES projects are often manageable by 2-3 persons alone and the team normally
stay within close range among each other so the communication is fairly easy and
practical. If the project required many more developers and if the developers were
situated at scattered locations, then it would be helpful with someone or multiple
individuals dedicated to software maintenance. But that is something that ÅF can
and will look into in the future.

47



5. General Discussion

5.5 Sustainability aspect
The proposed thesis solution contributes to an improvement of simulation regarding
development and long-term usage of a simulation model. Making simulations more
viable in terms of being more time-efficient and less work-intensive, make them more
attractive in the market for other companies.

Simulations can be used for analyzing and performing experiments of a non-physical
system without affecting the real systems. Therefore, costs from test failures, stop
of productions, bad investment, etc. can be reduced. Radical changes can be thor-
oughly thought-out using simulations prior to having them applied, which can be
regarded as positively from an environmental perspective.

With that said, this project was set to improve simulation in ÅF and through that
increases the usage of simulation, and doing so a contribution has been made.

48



6
Conclusion

The project started out with the challenges such as long-term maintaining a simula-
tion model and the desire of incorporating a time-efficient and simple work method
for both resuming less active simulation models while also enable concurrent collab-
oration among multiple colleagues. In order to come up with a solution for these
challenges research were carried out combining literature studies, examination of a
simulation model and an interviewing study. The main results were tools such as
an AutoMod extension for VS Code, a wide range of snippets and a workflow using
Git including internal rules and a bug and feature tracker systems. These have been
developed with the aim to mitigate maintenance challenges that arise when working
with discrete event simulation projects. It has been proven and demonstrated that
snippets and Git can be used to educate or guide new incoming developers as well as
helping them to quickly put themselves into an old simulation model. Furthermore,
special types of snippets were carefully designed with documentation blocks, making
code reviewing, less painful, easy and more effective, see figure 4.4. With a clean
and extensive record of the project history, thanks to Git integration, it’s easy to
gain knowledge as a new developer, and likewise, as easy for a previous developer to
transfer knowledge on the go. Having all these tools gathered at one single location,
that is in the VS Code editor, makes the workflow seamlessly and more stimulating.

Overall the group of snippets that has been developed handles the inconsistency
issues when it comes to naming conventions, choice of solutions for the same problem
or data structure and the way of commenting. Meanwhile the proposed work-flow
using Git solves the documentation-related issues, mainly when it comes to having a
better trace-ability option. Figure 6.1 shows which of the implemented tools solves
the respective identified issues.

49



6. Conclusion

Figure 6.1: Flowchart of the work process showing where the main identified issues
could be solved

This thesis has served very helpful for our personal development. Additionally, it
has resulted as a feasible decision material for the growing simulation team at ÅF
Industry and shown the great importance and indisputable challenges emerging from
software maintenance.

50



7
Future work

Most of the methodologies and tools developed in this thesis are still in its infancy
stage, meaning there is still a lot of testing and future evaluation to be done. Hence,
future work could be to study different outcomes and reaction resulting from the
usage of the tools. Subsequently perform recursive analyses and additional research
to further improve the tools.

There are already a set of internal rules developed for the workflow using Git. But
there are currently no place where the instructions are stored online. Thus, it’s
desired to create a web page dedicated to the enlisting the following:

• Internal rules for the workflow using Git
– How/When to write commits
– How/When to branch and merge

• Snippets
– How to add/delete/update snippets

• Other
– How to incorporate AutoMod with VS Code
– Installation of AutoMod extension

Finally, there is also a desire in the future to implement a linter tool to the AutoMod
VS Code extension. A linter is basically a tool to analyze the source code to flag
programming errors, bugs, stylistic error and suspicious constructs [24]. Thus, with
a linter one would add yet another layer of protection in regard to mitigating the
code related challenges listed in list 6. For instance, if developers are still mixing
lower- and upper case, or naming entities and variables inconsistently or any of
the other code related issues for that matter, then a linter will be helpful. It will
help mark the code with an error in the same manner a spell checker shows a red
wriggled underline under a misspelled word in any common text editor, e.g. MS
Word. It could also be useful to have the linter intelligently provide the developer
with information where and when an appropriate snippet should be used.

51



Bibliography

[1] Doug Simon, Christian Wimmer, Bernhard Urban, Gilles Duboscq, Lukas
Stadler, and Thomas Würthinger. Snippets: Taking the high road to a low
level. ACM Transactions on Architecture and Code Optimization (TACO),
12(2):20:1–20:25, 2015.

[2] Ferdinando Santacroce and Ebook Central (e-book collection). Git essentials:
create, merge, and distribute code with Git, the most powerful and flexible ver-
sioning system available. Packt Publishing, Birmingham, [England], 2015.

[3] Jerry Banks. Discrete-event system simulation. Pearson Education, Upper
Saddle River, N.J, 5., international edition, 2010.

[4] Chung-Jen Chen, Yung-Chang Hsiao, and Mo-An Chu. Transfer mechanisms
and knowledge transfer: The cooperative competency perspective. Journal of
Business Research, 67(12):2531–2541, 2014.

[5] Jeffrey L. Cummings and Bing-Sheng Teng. Transferring r&d knowledge: the
key factors affecting knowledge transfer success. Journal of Engineering and
Technology Management, 20(1):39–68, 2003.

[6] Ronald G Askin and Charles R Standridge. Modeling and analysis of manufac-
turing systems. John Wiley & Sons Inc, 1993.

[7] Lars Holst, Lund University, Department of Electrical, and Information Tech-
nology. Discrete-Event Simulation, Operations Analysis, and Manufacturing
System Development: Towards Structure and Integration. PhD thesis, 2004.

[8] George S. Fishman. Discrete-event simulation: modeling, programming and
analysis. Springer, New York, 2001.

[9] AutoMod simulering av produktion och logistik. http://www.automod.se/
index.html. Accessed: 2018-06-10.

[10] J. Martin and C.L. McClure. Software maintenance: the problem and its solu-
tions. Prentice-Hall, 1983.

[11] B. Meyer. Object-oriented software construction. Prentice-Hall international
series in computer science. Prentice-Hall, 1988.

[12] N.B. Standards, National Institute of Standards, and Technology (U.S.). Fed-
eral Information Processing Standards Publication: Guideline on Software
Maintenance. NIST federal information processing standards publication; NIST
FIPS. U.S. Department of Commerce, National Institute of Standards and
Technology, 1984.

[13] A. Von Mayrhauser. Software Engineering: Methods and Management. Suny
Series Frontiers in Education. Academic Press, 1990.

[14] A. Abran and J.W. Moore. Guide to the software engineering body of knowledge.
IEEE Computer Society, 2004.

52

http://www.automod.se/index.html
http://www.automod.se/index.html


Bibliography

[15] M. M. Lehman. Programs, life cycles, and laws of software evolution. Proceed-
ings of the IEEE, 68(9):1060–1076, 1980.

[16] Alain April, Alain Abran, and IEEE Xplore e-books (e-book collection). Soft-
ware maintenance management: evaluation and continuous improvement. Wi-
ley Interscience, Hoboken, N.J, 1 edition, 2008.

[17] Ling Liu, M. T. Özsu, and SpringerLink (e-book collection). Encyclopedia of
database systems. Springer, New York, 2009.

[18] He Jiang, Liming Nie, Zeyi Sun, Zhilei Ren, Weiqiang Kong, Tao Zhang, and
Xiapu Luo. Rosf: Leveraging information retrieval and supervised learning
for recommending code snippets. IEEE Transactions on Services Computing,
pages 1–1, 2016;2017;.

[19] Joel Galenson, Philip Reames, Rastislav Bodik, Björn Hartmann, and Koushik
Sen. Codehint: dynamic and interactive synthesis of code snippets. pages
653–663. ACM, 2014.

[20] David Demaree. Git For Humans. Jeffrey Zeldman, 2016.
[21] Applied automod 12.6.1 user’s guide. pages 2.23–2.24. Applied Materials, 2015.
[22] Chauncey Wilson, Books24x7 (e-book collection), ScienceDirect (e-book collec-

tion), and Inc Books24x7. Interview techniques for UX practitioners: a user-
centered design method. Morgan Kaufmann, Amsterdam;Boston;, 2014;2013;.

[23] J. D’Anjou, S. Fairbrother, D. Kehn, J. Kellerman, and P. McCarthy. The Java
Developer’s Guide to Eclipse. Addison-Wesley, 2005.

[24] I.F. Darwin. Checking C Programs with Lint. C programming utility. O’Reilly
& Associates, 1991.

53



A
The interview guide

This is the interview format used during the interview and all the questions that
were asked:

Introduce the subject: The subject of this interview is about maintenance of a
simulation model and how it can be affected by different matters.

Explain the purpose of the interview: The purpose of the interview is to im-
prove the current solution by gathering information of the participants experiences
and opinions of the subject.

Present the setup of the questions: The questions are divided into two waves.
The first wave of questions are general questions about how the participants expe-
rience and how they have dealt with maintenance of simulation mode. The second
wave of questions mainly focuses on gathering their inputs on the suggested solution.
The questions itself are bunched together in different categories.

Questioning:

General in DES-project:
• How do you guys work in bigger projects (at least two developer for the simu-

lation model) in regard to maintenance of simulation model (documentation,
version control, workflow, etc.).

• What do you want/What do you think is important, as a developer, when you
take over a DES-project?

• What is your experience of inheriting a project from another developer? Fol-
lowing question, Did you use any tool/method to ease the process of under-
standing the model?

Code-related:
• Have you use any method/tool when you develop a model in order to facilitate

understanding of logical expression, automatize workflow, avoid miss-spelling
or miss-usage of variables, etc.?

• How do you solve coding similar logic multiple times?
• How do you avoid solving similar problems differently? (E.g. using different

data structure)
• How do you avoid writing long codes?

I



A. The interview guide

• How do you avoid inconsistent variable- entities naming such as mix of lover/up-
per case or inconsistent prefix?

• Do you have any experience on using/creating snippets? Following question,
to what purpose?

Version control tools:
• What version control tool are you using/have you used? Following question,

Pros and cons of the following tools?
• How much experience do you have with git? Following question, Are you using

git regular for all the DES-project? Are you using en git work-flow?

Snippets
• What do you think about our current snippets?
• Are there any standard functions/process that you could think of, adding to

the snippets?
• Do you have any other snippets idea?

Git workflow
• What do you think of using a combination of git feature branch based and

centralized workflow?
• Can you see any prons and cons using this method?
• Do you think our git workflow will satisfy the need in ÅF regarding version

control?
• Do you have any idea or suggestion on how to improve our git workflow and

make it more appealing for users to manage?
• Do you have any idea or suggestion on different approach?

Finish the interview: Ask the participants for any final comments. Let them
highlight any issues that was not considered by the interviewees or if the find issues
particular important which was not shown during the interview.

II



B
Figures

Figure B.1: Example of final process specific snippet, function F_CalcDay. Every
subject field is filled except for Private variables, which is left blank

III



B. Figures

Figure B.2: Example of final process specific snippet, function F_CalcTime. Every
subject field filled

IV


	List of Figures
	Introduction
	Purpose
	Project aim
	Delimiters
	Research questions
	Brief explanation of our "case"
	Report Outline

	Theory background
	Discrete event simulation
	Components of DES
	AutoMod

	Software maintenance
	Software maintenance importance
	Software maintenance issues
	Differences among operations, development and maintenance
	Software developer doing software maintenance

	Snippets
	Using snippets to learn coding languages.
	Snippets in order to improve compilation time.
	What to think about writing snippets
	Snippet management
	Snippets in runtime
	Summary snippets

	Version control
	Git
	Basic concepts of Git
	Commits
	The past
	The present
	Git history and commit log
	Git commit messages
	Be useful
	Be detailed (enough)

	Be consistent
	Active voice
	Guidelines to writing git commits summarized
	Branches
	Merge branches
	Work-flows
	Centralized work-flows
	Feature branch work-flow
	GitFlow
	Summary version control


	Methodology - Work process
	Identify problems
	Code-related issues
	Documentation-related issues

	Literature review
	Creation of AutoMod Extension
	AutoMod Editor limitations

	First generation of snippets
	Snippet

	First generation of the workflow using git
	Interview ÅF
	Final update to snippets and workflow using Git

	Result
	AutoMod language support extension
	Syntax highlighting and auto-completion

	Snippets
	Snippets for different process types

	Workflow using Git
	Anatomy of workflow
	Bug branch
	Quick-fix branch
	Features branch

	Internal rules
	Committing


	Input from the Interview and final update
	Regarding the Snippets
	Documentation to declaring different processes
	Regarding the Git workflow
	Feature and Bug tracker


	General Discussion
	Results
	Interview feedback regarding snippet management
	Interview feedback regarding version control systems
	Why a dedicated software maintenance team is not needed at ÅF
	Sustainability aspect

	Conclusion
	Future work
	Bibliography
	The interview guide
	Figures

