
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Optimization of District Heating Systems 
for Future Uncertain Conditions 
Deterministic and Stochastic Linear Modelling 
Master’s thesis in Sustainable Energy Systems  
 
 
 
 

Fanny Malmgren & Henrik Skoglund 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
DEPARTMENT OF SPACE, EARTH AND ENVIRONMENT 
 

CHALMERS UNIVERSITY OF TECHNOLOGY 
Gothenburg, Sweden 2021 
www.chalmers.se 



 
 
 
 

 
 

Optimization of District Heating Systems for Future Uncertain Conditions, Deterministic and 
Stochastic Linear Modelling 
Master’s thesis in Sustainable Energy Systems 
Fanny Malmgren, Henrik Skoglund 
 
© Fanny Malmgren, Henrik Skoglund, 2021 
 
Department of Space, Earth and Environment 
Division of Energy Technology 
Chalmers University of Technology 
SE-41296 Gothenburg 
Telephone +46 31 772 1000 
 

  



 
 
 
 

 
 

Optimization of District Heating Systems for Future Uncertain Conditions, Deterministic and 
Stochastic Linear Modelling 
Fanny Malmgren, Henrik Skoglund 
Division of Energy Technology 
Chalmers University of Technology 
 

Abstract 
 
In Sweden, the demand for space heating and hot water is mainly supplied by district heating. Factors 
with high uncertainty, such as electricity price, heat demand, policies and climate strategies, affects 
the future development of district heating. The risks associated with these uncertainties must be 
managed while capitalizing on opportunities of improvements and optimization of the district heating 
system.  
 
This thesis investigates to what extent uncertainty analysis is important for district heating system 
planning. To this end, this thesis investigates the sensitivity of operational patterns and investment 
choices of Swedish district heating systems to uncertainty in biofuel costs, electricity price, availability 
of industrial waste heat and the heat demand of the system. This is done by the development of two 
brownfield district heating system optimization models, a deterministic and a stochastic one in the 
modeling language GAMS. The models are linear and optimize investments and dispatch of three 
district heating type systems with respect to minimizing the annualized total system cost. 
 
The conclusion is that technologies with low investment cost, mainly electric boilers, are favored when 
uncertainties are considered. In general, power-to-heat technologies are favorable to give the district 
heating systems the ability to adapt to the electricity and biofuel prices and to be cost-efficient in many 
future outcomes. The electricity production from combined heat and power units varies depending on 
the electricity price, at high electricity price combined heat and power units maximize their electricity 
production and at low electricity prices they refrain from up to 50% of the electricity production, in 
favor of producing additional heat. Furthermore, the sizing of thermal energy storage is sensitive to 
the uncertain parameters, resulting in different storage capacities depending on how the uncertainties 
affect the marginal value of heat. The value of accounting for uncertainties varies between the systems, 
and the system with a greater mix of technologies is less sensitive to the uncertainties applied. A risk 
has been identified that potential economic benefits can be missed out on if uncertainties are not 
considered, either by not meeting the demand due to lack of capacity or by not being able to capitalize 
on low electricity prices. 
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Abbreviations 
BG  Biogas 
BO  Bio oil 
CHP  Combined heat and power 
COP        Coefficient of performance 
DH  District heating  
FLH   Full load hours 
HOB  Heat only boiler 
HP  Heat pump 
PtH  Power to heat 
TES  Thermal energy storage 
VRES  Variable renewable energy sources 
W  Municipal solid waste 
 
Nomenclature 
Sets 
T   Total number of time steps 
t  Set including all hours 
N  Total number of heat generation units in the DH system 
n  Set including all heat generation units 
G  Total number of new heat generation units 
g  Subset to n, including all new heat generation units 
TES  The thermal energy storage 
chp  Subset to n including only the CHP units 
 
Parameters 
Cel  Price of electricity [SEK/MWhel] 
Cfuel   The cost of fuel [SEK/MWhfuel] 
Cinv  Annualized investment cost [SEK/MW] 
CPL  Cost of running at part load [SEK] 
CPLc  Part load cost coefficient [SEK*h/MWh] 
Cstart up  Cost of start up [SEK/MW] 
D  The heat demand [MWh/h] 
fmin gen  Factor for minimum load level of a plant 
ηtot  Total efficiency of the plant. Equal to ηth for non HOBs and COP for HPs. 
ηmin  Efficiency at minimum load level 
ηTES  The charge and discharge efficiency of the TES 
Qmax  Heat generation capacity of existing units. [MW] 
rc  The c-rate of the TES [1/h] 
TESloss  Factor for energy losses in the TES [MWh/h] 
 
Variables 
Ctot   The total annual cost of the DH system [SEK/yr] 
 
Positive Variables 
E  Total energy produced, i.e. heat and electricity [MWh] 
I  Investment capacity for new units [MW] 
P  Electricity produced [MWh/h] 
Q  Heat generation [MWh/h] 
Qspin  Fictive variable used to account for start up and part load costs [MW] 



 
 
 
 

 
 

Qon  Fictive variable to account for changes in Qspin [MW] 
Qmax  Maximum capacity of an existing unit [MWh/h] 
Qmin  Minimum load factor of a production unit 
R  Refraining from electricity production to increase heat generation [MWh/h] 
TESch  Charging of the TES [MWh/h] 
TESdch  Discharging of the TES [MWh/h] 
TESlevel  The energy level of the TES [MWh] 
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1 Introduction 

District heating (DH) is a large-scale method for production and distribution of heat, where the heat is 
produced in one or several centralized production sites and is distributed through a pipe system to the 
consumers. District heating is a resource efficient technique to provide heat for space heating and hot 
tap water. In Sweden the use of district heating accounted for 57% of the supplied heat for space 
heating and hot tap water in 2016 (Energimyndigheten, 2017). District heating is locally bound, since 
heat losses and pump work are increased with increasing distribution distances making DH inefficient 
in rural areas. There is thus often one DH system for each city or town where there is a demand for 
heat. There are approximately 500 DH networks in Sweden and the different networks vary 
considerably in size, geographical location and heat production technologies (Energiföretagen, 2021). 
Traditionally, district heating has been produced via combustion in thermal plants, such as heat only 
boilers and combined heat and power plants, but the future development of the district heating sector 
is uncertain. There is a potential need for new investments in the district heating sector since existing 
units might need to be replaced and since utilizing new technology types can reduce costs. Factors 
such as electricity price, heat demand, policies and climate strategies can affect which investments are 
made and how facilities are operated in the future. A challenge for the district heating companies is to 
ensure that the DH system has long-lasting economical and operational robustness in an uncertain 
future. Investments made today will last for a long time, thus, they must be a good solution also in 
possible future scenarios.  
 
With the integration of variable renewable energy sources in electricity systems, the price of electricity 
is expected to become more volatile. This change might have a direct effect on the district heating 
systems, since there are units that consume electricity, and units that can produce electricity in a DH 
system. Hence, the electricity price is an important factor for the competitiveness of units in DH 
systems that interact with the electricity market, as changes in the electricity price can affect their 
operational cost. As it is difficult to predict what the electricity price will be in the future, it is an 
important uncertainty to take into consideration when making investment decisions in DH systems. 
 
There are further uncertainties in future energy systems, regarding the availability and price of biomass 
and industrial waste heat. With the current decarbonizing and climate policies, the availability of 
industrial waste heat supply for DH might decrease since industries could need to utilize their heat on 
site, e.g. for carbon capture and storage technologies (Bui, et al., 2018) in order to decrease their own 
greenhouse gas emissions. For systems with industrial waste heat, this can have an impact on the 
current merit order and the total cost of the system, since low-cost heat supply needs to be replaced 
with new base load capacity. In the future, the price of biomass might change if the demand for biomass 
increases (Sandin, Sahlén Zetterberg, & Rydberg, 2019), as a consequence of climate policies to 
reduce  the global use of fossil fuels. The cost of biomass is therefore an uncertainty in the future of 
Swedish DH systems, as the operational cost of many existing and new units are dependent on the cost 
of biomass.  
 
Energy system modeling is a tool that can be used to support planning of operational and investment 
decisions in district heating systems. Representing uncertainty in energy system modeling is a common 
problem and can be handled with various methods. A common method of accounting for uncertainty 
is the usage of deterministic models and sensitivity analysis. In deterministic models the uncertain 
parameters are assumed to be known and provided exogenously to the model, and by implementing 
sensitivity analysis the understanding of how individual parameters affect the output can be enhanced 
(Gjorgiev, Sansavini, & Crespo Del Granado, 2017). Uncertainty in energy system modeling can also 
be represented by stochastic modeling. In stochastic models, different scenarios are defined with 
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probabilities for parameters which are considered stochastic in nature in order to incorporate 
parameters which depend on future external factors. There is a structural difference between 
deterministic and stochastic models, as stochastic models consider multiple possible outcomes of 
parameters and are implicitly risk-minimizing (Gjorgiev, Sansavini, & Crespo Del Granado, 2017), 
whereas deterministic models show individual parameter effects. Due to the structural difference 
between the methods, stochastic models are in general more computationally complex and less 
frequently used as it is difficult to estimate probabilities of different outcomes. 
 
Together, the multiple sources of uncertainty connected to DH systems creates an environment that 
can be difficult for an energy company to navigate. Energy companies need to provide reliable and 
cost-effective supply of district heating to their customers. To do this, uncertainties that could affect 
the security of supply and costs of the DH system needs to be understood. Then opportunities of 
improvements can be capitalized on without large economic risk. How different units in a DH system 
affect each other under different circumstances is thus an important issue to understand and to do this 
knowledge is needed about how uncertainties can be handled in DH systems planning. 
 

1.1 Aim 
The aim of this thesis is 1) to investigate methods to handle uncertainties in DH system planning, and 
2) to apply these methods to identify which types of DH investments are robust for future systems 
based on dispatch of units and total system cost. The work considers future investments in three 
existing Swedish DH systems. The thesis investigates the sensitivity of investment choices, operational 
patterns, and total system cost to uncertainty in biofuel costs, electricity price, availability of industrial 
waste heat and the heat demand of the system. Further, the risk on total system cost associated with 
not including uncertainties in investment and operational decisions is estimated. Trends and 
differences in optimal investments and operation between the investigated systems are identified. 
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2 Background 

In this section, relevant background information is presented in short. In 2.1, a background of 
investment decision making is presented. In 2.2, heat production technologies are presented. In 2.3, an 
overview of the current DH systems in Sweden is given. In 2.4, external factors affecting district 
heating systems are introduced and finally in 2.5 the modeling methods used are presented in a general 
form. 
 

2.1 Investment Decisioning and District Heating Economics 
In order to have a district heating system, heat producing units are required. The costs associated with 
a production unit can be divided into two parts, investment cost and operational cost. The size of the 
investment cost is proportional to the capacity of the production unit, and the operational cost describes 
the cost to produce one unit of heat. In most cases, production units with a higher investment cost have 
a lower operational cost. District heating companies want to minimize the total system cost, meaning 
that they need to assess whether a unit with a higher investment cost is better or worse than a unit with 
lower investment cost, in order to reduce the operational cost.  
 
In district heating systems with existing heat production units, the investment costs can be considered 
sunk costs, since the investments have already been made. When the heat demand needs to be met, the 
only relevant cost is the operational cost of the units, thus, the units with the lowest operational cost 
are prioritized to produce heat. The order in which units are dispatched in a system is called the merit 
order and the low-cost units in a system place the lowest in the merit order of the system. In Figure 1, 
a simplified load duration curve of a district heating system is visualized. Typically, a unit with low 
operational cost would produce heat for the base load, since capacity is required for many hours, 
making the higher investment cost worthwhile. For the peak load the operational cost is less important 
relative to the investment cost due to the few production hours. This results in peak load units typically 
having a lower investment cost and higher operational cost. 

 
Figure 1: A simplified overview of a merit order in the form of a heat load duration curve. 

In an DH system, existing units can have higher operational costs than a new unit would have. For 
such a system to make an investment, the total savings from the decreased operational costs of the 
system must be larger or at least as big as the investment cost of the new unit. The optimal size of a 
new unit is determined by where the equilibrium between the increased investment costs and decreased 
operational costs minimize the total system cost. 
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2.2 Technologies in District Heating Systems 
Figure 2 presents a general overview of a DH system with different heat generation technologies and 
storage. By having different types of units in a DH system, the heat demand can be supplied for 
different demand levels while keeping the total system cost as low as possible. In this section, common 
technologies used and their role in DH systems are briefly described. 

 
Figure 2: A general overview of a DH system with different heat generation technologies with fuel inputs and 
thermal energy storage. CHP = Combined Heat and Power, HOB = Heat Only Boiler, PtH = Power-to-heat, 
TES= Thermal Energy Storage, Industry = Industrial waste heat. 
 

2.2.1 Heat Only Boiler 
A common technology used for the heat production in a DH system is a heat only boiler (HOB). It is 
a unit where fuel is combusted in a boiler, and the heat released is transferred to an internal energy 
carrier (typically water) which is then coupled to the DH network via a heat exchanger (The Danish 
Energy Agency, 2016). HOB plants have high efficiency and depending on which fuel is used a HOB 
can have different characteristics. If a HOB uses gas, oil or bio oil it is typically only used at peak 
hours when the demand is large since they have an expensive fuel cost but are cheap in investment 
cost. If a HOB uses cheaper fuels like municipal solid waste or wood chips they are typically used 
more as a base load unit, as they have lower variable cost, but higher investment costs. 
 

2.2.2 Combined Heat and Power 
Combined heat and power (CHP) plants are similar to HOBs but with the difference that they produce 
electricity and heat simultaneously. In order to produce electricity, a steam turbine and an electricity 
generator is needed which increases the investment cost of the plant, but by selling the produced 
electricity the operational cost can be decreased, making it suitable as a base load unit. CHP plants 
have a high total efficiency and can use different fuels, such as biomass or municipal solid waste (The 
Danish Energy Agency, 2016). Many CHP plants have the flexibility to refrain from electricity 
production, in favor of increased heat production.  
 

2.2.3 Power-to-Heat Technology 
Another heat generation option is power-to-heat technologies (PtH) i.e. using electricity to produce 
heat. This is mainly done with two technologies, heat pumps (HP) and electric boilers (EB). An electric 
boiler uses electricity directly to produce heat, having efficiencies close to 1 and relatively low 
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investment costs (The Danish Energy Agency, 2016). HPs use electricity in order to utilize low grade 
heat from e.g. sewage- or sea water to generate useful heat at temperature levels suited for district 
heating. A HP can have a coefficient of performance (COP) of 3-4, meaning that for 1 unit of electricity 
3-4 units of useful heat are generated. Heat pumps  are thus very efficient, but they have an increased 
investment cost compared to the electric boilers (The Danish Energy Agency, 2016).  
 

2.2.4 Thermal Energy Storage 
Thermal energy storage (TES) allows heat to be stored and used later and can thus decrease the usage 
of more expensive peak load units (Cabeza, 2012). There are different types of TES with different 
characteristics in terms of (dis)charge-rate and sizes. There are TESs suited for seasonal storage as 
well as TESs storing heat for only a few hours. Examples of seasonal storage technologies are pit-
storage or borehole-storage, which have a low charge- and discharge-rate relative to their size. An 
example of an intermediate storage is a large scale hot water tank which can help during peak hours to 
smoothen the heat production, but also store heat over longer periods up to a couple of weeks  (The 
danish Energy Agency, 2020). 
 

2.3 District Heating in Sweden Today 
The current Swedish DH systems use a wide range of technologies including heat pumps, heat only 
boilers and combined heat and power plants. Many systems also utilize industrial waste heat. Figure 3 
shows the fuel usage in 2019 for district heating purposes in Sweden. In 2019, biofuels and municipal 
solid waste were the most common fuels and provided 65% of the energy (Energiföretagen, 2021). 
There is, however, still some use of fossil fuels which have not been phased out in some of the DH 
systems with the main use being peak capacity.  

 
Figure 3: The fuel use in district heating systems 2019. Based on data from Energiföretagen (Energiföretagen, 
2021). 

As a part of this thesis work, a database was created listing many of the larger DH networks in Sweden 
to get an overview of which technology mixes that exist. The database includes the capacities of 
production units, fuel usage and total energy deliveries. This database is a base for the whole project 
since it gives an understanding of the current situation. The data was mainly collected through the 
energy companies’ websites and by contacting the energy companies directly. In Figure 4, the share 
of the total installed capacity per fuel type unit is presented for 48 large district heating systems in 
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Sweden. In the figure there is a significant amount of capacity reliant on fossil oil. These units are 
typically quite old and might need to be replaced in the coming years to be in line with climate targets. 
By looking at 48 of the largest district heating systems a categorization of the system based on their 
installed capacity could be done.  9 networks mainly consist of heat only boilers. 24 networks consist 
of a mix of heat generation technologies, including HOBs, CHPs and Power-to-heat technologies. 15 
networks consist of mainly CHPs and small amounts of peak generation. 

Figure 4: The share of the total installed capacity per fuel type unit for 48 large Swedish district heating 
systems. 

 

2.4 External System Development 
There are several external factors affecting the future development of district heating. Here, the most 
important ones are briefly described to give the reader a context to why the effect of these external 
uncertainties are further analyzed in the thesis. 
 

2.4.1 Electricity System 
The electricity market in Sweden is changing with an increasing amount of variable renewable energy 
sources (VRES), mainly in the form of wind power and solar PV, and the potential phase-out of nuclear 
power. This is likely to lead to an increasing volatility of the electricity price dependent on how large 
share of the electricity that comes from VRES at a certain time (Romanchenko D. , Odenberger, 
Göransson, & Johnsson, 2017). The electricity price in Sweden from year to year is also dependent on 
the weather. In Sweden there is a significant amount of hydro power where annual precipitation levels 
affect the price by regulating the amount of available hydro power. Also, with increasing amounts of 
wind power the weather will affect the electricity price depending on how much the wind blows during 
a year. Finally, the demand for electricity is (to an extent) indirectly dependent on air temperature due 
to electricity being used for space heating (approximately 20% of the total electricity usage 
(Energimyndigheten, 2020)) meaning that annual average temperatures can have an impact on the 
electricity price (Energimyndigheten, 2019).  
 
As there are units in DH systems that consume and produce electricity, potential changes of the 
electricity price might affect their role in the energy system. Power-to-heat technologies together with 
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TES can have a cost effective synergistic function with a more volatile electricity generation system, 
e.g. to reduce wind power curtailment by utilizing low-cost electricity (Bloess, Schill, & Zerrahn, 
2018) to produce heat and charging the TES when electricity price is low. If the electricity price 
becomes high, PtH units can stop or reduce their production in favor of discharging the storage.  
 
With an increased volatility of the electricity price, the value of controllable electricity production 
from CHP plants might become increasingly valuable for the electricity system and the local power 
balance (Profu, 2019). Historically, the revenues from electricity generation sales from the CHP plants 
has been considered a bonus income in addition to heat sales which is typically the prioritized product. 
Since the revenues from CHP plants are dependent on the electricity price, CHP plants might shift 
towards operating more based on the electricity demand rather than solely on the heat demand if the 
electricity price becomes more volatile (Profu, 2019). In summary, a change in electricity prices can 
impact the competitiveness of units in DH systems connected to the electricity system and, thus, the 
merit order of the DH system. 
 

2.4.2 Biomass Resources 
In Swedish district heating systems, biomass is a commonly used fuel for both CHPs and HOBs. This 
means that the economy of district heating systems will be impacted by the future cost of biomass and 
its availability. In a report from 2019, the Swedish environmental research institute concluded that the 
availability of biomass in Sweden is expected to increase to 2030 and afterwards (Sandin, Sahlén 
Zetterberg, & Rydberg, 2019). The demand for biomass is also expected to increase e.g. in material 
production or in biorefineries to produce chemicals (Takkellapati, Li, & Gonzalez, 2018). With a 
potential future increased demand of biomass, the prices of biomass-based fuels might rise, leading to 
increasing operational cost of units with biomass-based fuels. The increased operational cost of 
biomass fueled units could impact their competitiveness in the DH system, in favor of other heat 
generation options. However, in district heating production, low-grade biomass can be used that few 
others want to use (Krook Riekkola, Wetterlund, & Sandberg, 2017). This low-grade biomass might 
thus experience less competition and not increase in price, while other higher-grade biomass might 
experience competition driving prices higher. 
 

2.4.3 Heat demand 
The Swedish district heating production has expanded for a long period of time,  however, the district 
heating growth rate is gradually decreasing because of energy efficiency measures in buildings and 
households (Sköldberg, Unger, & Holmström, 2015).  As a result of this, Sköldberg et al. conclude 
that the Swedish district heating demand will stagnate or even be reduced in the future. On the other 
hand, there are also indications that the demand for district heating can increase in the coming years. 
For example, Steen et al.  conclude that there is a potential demand for district heating in industrial 
processes as an approach to cost-efficiently reduce the need for fossil fuels (Steen, Sagebrand, & 
Walletun, 2015). The heat demand is also dependent on the ambient temperature, and therefore the 
district heating demand can vary on an annual basis. With future predictions of both increasing and 
decreasing demand of district heating, this is an uncertainty that needs to be considered in order to 
cost-effectively deliver heat to meet different possible demand levels. 
 

2.4.4 The Accessibility of Industrial Waste Heat 
Industrial waste heat can be defined as “excess energy that cannot be utilized internally and where the 
alternative is that the heat is released to the environment” (Byman, Rydstrand, Ilskog, & Åkesson, 
2005). Industrial waste heat is utilized for district heating purposes and in 2019 the total share of 
industrial waste heat in the Swedish district heating systems was 8 % (Energiföretagen, 2021). This 
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utilization is an energy efficiency measure for the district heating systems, as it decreases the need for 
external fuels to provide heat.  
 
To meet climate targets, an important aspect is to decrease the greenhouse gas emissions from 
industrial processes and a promising strategy is to implement carbon capture and storage (CCS) 
technologies to reduce CO2 emissions on site. The application of CCS technologies in industries can 
have an effect on the accessibility of industrial waste heat for district heating purposes, as several of 
the CCS technologies are energy demanding (Cabeza, 2012).  As industries in general always strive 
for further energy efficiency measures, there are possibilities that the industrial waste heat can be used 
“in house” e.g. for drying purposes or as a measure to reduce the usage of fossil fuels (Byman, 
Rydstrand, Ilskog, & Åkesson, 2005). For systems with industrial waste heat, this can have an impact 
on the current merit order and the total cost of the system, since low-cost heat supply needs to be 
replaced with new base load capacity. 
 

2.5 Treatment of Uncertainty in Optimization Models 
Uncertain parameters are important aspects of energy system modeling and hence methods for 
handling uncertainties are needed. In this section the two different modeling approaches applied in this 
work are briefly presented: deterministic and stochastic modeling. 
 
A deterministic model is a model that always generates the same output for a certain input i.e. there is 
no randomness involved and the future can be considered as “known” (Gjorgiev, Sansavini, & Crespo 
Del Granado, 2017). In Figure 5 a general overview of a deterministic model is visualized. In real life 
problems, randomness often influences possible outcomes, and a commonly used way to analyze the 
impact of randomness in a deterministic model is to perform a sensitivity analysis. Sensitivity analysis 
is a method where the model is solved for different values of the input parameters, in order to analyze 
the sensitivity of the output relative to the input (Pichery, 2014). 
 

 
Figure 5: General overview of a deterministic model.  

Stochastic programming is a mathematical approach to account for uncertainties in optimization 
models (Shapiro & Philpott, 2007). One of the most common stochastic programs is the two-stage 
linear program. In Figure 6, an overview of a general two-stage stochastic model is shown. The basic 
idea with the two-stage approach is that variables can be classified into two types; here-and-now 
variables and wait-and-see variables. The first type refers to the decision variables which need to be 
determined before realization of uncertain parameters, and the second type refers to the decision 
variables that are to be determined after the revealing of the uncertain parameters. Hence, the decision 
making regarding the here-and-now variables occurs in an initial stage and the decision making 
regarding the wait-and-see variables in a second stage (Shapiro & Philpott, 2007). The uncertain 
parameters will together form a set of possible scenarios. The stochastic parameters can either have 
discrete probabilities or a probability distribution that is used to weight the scenarios when calculating 
the expected value of the second stage problem. Hence, the model optimizes the first stage decision in 
order to perform averagely best for all scenarios relative to their likelihood.  
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Figure 6: Overview of a general two-stage stochastic model set-up. The input data consists of known parameters 
and stochastic parameters with a known probability. 

The two modeling methods have both advantages and disadvantages. Stochastic models are in general 
more computationally demanding and the considered scenarios increase exponentially with the number 
of stochastic variables. Stochastic models are less frequently used compared to deterministic models, 
since it can be difficult to estimate probabilities of different outcomes. The results of a stochastic 
model, however, are more robust since it considers multiple scenarios, minimizing the risk of 
unexpected outcomes by optimizing the expected value. In deterministic models, only individual 
effects are considered, and therefore there is a potential risk of over-optimizing systems for specific 
cases, in ways that do not perform well under other circumstances. 

  



 
 
 
 

10 
 

3 Method 

The method is divided into three main parts. In the first part, a core DH model is developed which is 
used to describe the dynamics and limitations of DH systems. The core model is a linear programming 
cost-minimizing investment and dispatch model. The model covers one year with a time resolution of 
one hour and is developed in the modeling language GAMS. In the second part, the core model is used 
in a deterministic set-up. A sensitivity analysis of fuel cost, heat demand, and availability of industrial 
waste heat is conducted to investigate the impact of individual uncertainties on DH systems. In the 
third and final part, the core model is used in a stochastic set-up, where the electricity price and heat 
demand are treated as stochastic parameters, to investigate the impact of multiple uncertainties 
simultaneously on DH systems. 
 
The time scope of the analysis is year 2030 and since many existing units are likely to still be in use 
by then, this analysis is a brownfield analysis. As a base for the brownfield analysis, three type systems 
in Sweden are used, which are defined in section 3.1.2. The optimization of the three systems is 
evaluated in terms of investment, operations and total system cost, and the key performance indicators 
are the capacity of investment, full load hours of production units and the electricity production of the 
CHP units.  
 

3.1 District Heating System Optimization Model 
In this section the mathematical formulation of the core model is presented. The techno-economic data 
used in the model is defined in section 3.1.2 and this input data remains constant in both the 
deterministic and stochastic model set-ups. 
 

3.1.1 Mathematical Formulation of the Core Model 
The objective function of the model is to minimize the total system cost and is calculated according to 
equation 1. The objective represents the total cost of heat production, while accounting for profits from 
sold electricity generation from CHP units. The total cost function consists of several terms, i.e., fuel 
costs, fixed variable costs, part-load costs, start-up costs for the units and annualized costs of 
investments. All nomenclature in the following equations is explained in the notation list. 
 

𝐶 = ∑ ∑ (
 ( , )∙ ( )

( )
+ 𝐶 (𝑡, 𝑛) + 𝐶  (𝑡, 𝑛)) + ∑ ∑ 𝑄(𝑡, 𝑛) ∙ 𝐶 (𝑡, 𝑛) +

              ∑ 𝐶 (𝑔) ∙ 𝐼(𝑔) + ∑ 𝐶 (𝑇𝐸𝑆) ∙ 𝐼(𝑇𝐸𝑆) − ∑ ∑ 𝑃(𝑡, 𝑐ℎ𝑝) ∙ 𝐶 (𝑡)                   (1) 
                                           
The objective function is bounded by several constraints. The demand constraint, which is calculated 
according to equation 2, ensures that the sum of heat generation from all units including charge and 
discharge from the TES, is equal to or larger than the heat demand at time t. 
 
 
𝐷(𝑡) ≤ ∑ 𝑄(𝑡, 𝑛) + ∑ 𝑅(𝑡, 𝑛) + 𝑇𝐸𝑆 (𝑡) − 𝑇𝐸𝑆 (𝑡)                              (2)                    
       
The maximum heat output constraint for existing units is defined in equation 3. This constraint ensures 
that existing heat generation units cannot exceed their installed capacities. Q is a positive variable and 
can thus never be less than zero, since a heat generation unit can never produce a negative amount of 
heat. 
 
𝑄(𝑡, 𝑛) ≤ 𝑄 (𝑛)                                                   (3) 
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For the new investments, a similar constraint is added, defined in equation 4. Here I is not predefined 
but is the variable representing the capacity of the new investment. 
 
𝑄(𝑡, 𝑔) ≤ 𝐼(𝑔)                           (4) 
   
The electricity output from CHP units is bounded by the power-to-heat ratio (alpha) and is calculated 
according to equation 5. In this model, the CHP units are allowed some flexibility in their generation 
by refraining from electricity generation in order to increase their heat generation with the same 
amount. This feature is represented by the variable R which is calculated according to equation 6. The 
total energy output can thus be calculated according to equation 7 and for non-CHP units the energy 
output is equal to the heat output. 
 
𝑃(𝑡, 𝑐ℎ𝑝) = 𝑎𝑙𝑝ℎ𝑎(𝑐ℎ𝑝) ∙ 𝑄(𝑡, 𝑐ℎ𝑝) − 𝑅(𝑡, 𝑐ℎ𝑝)                                                                         (5) 
 
𝑅(𝑡, 𝑐ℎ𝑝) ≤ 𝑎𝑙𝑝ℎ𝑎(𝑐ℎ𝑝) ∙ 𝑄(𝑡, 𝑐ℎ𝑝)                         (6) 
 
𝐸(𝑡, 𝑛) = 𝑄(𝑡, 𝑛) + 𝑃(𝑡, 𝑐ℎ𝑝) + 𝑅(𝑡, 𝑐ℎ𝑝)                                                                  (7) 
 
In order to account for cycling properties the variable Qspin denotes capacity which is active and 
available for generation in each technology for each time step according to previous work from 
(Göransson, Goop, Odenberger, & Johnsson, 2017).  
 
𝑄(𝑡, 𝑛) ≤ 𝑄 (𝑡, 𝑛)             (8) 
 
𝑄(𝑡, 𝑛) ≥ 𝑄 (𝑡, 𝑛) ∙ 𝑄 (𝑡, 𝑛)                               (9) 
        
By tracking the change in Qspin with Qon according to equation 10, the startups of a production unit 
can be tracked, and costs considered. 
 
𝑄 (𝑡, 𝑛) ≥ 𝑄 (𝑡 − 1, 𝑛) − 𝑄 (𝑡, 𝑛)                   (10) 
                                                                    
The part load cost and startup cost for each unit is approximated according to equation 11 and 13 
respectively. CPLc is the cost coefficient for the linear interpolation of the part load cost and is 
calculated using equation 12. 
 

𝐶 (𝑛) =  
( . ( ))

∙ (
( )

( )
−

( )

( )
)                                                                                (11)       

                                                                                
𝐶 (𝑡, 𝑛) ≥ 𝐶 (𝑛) ∙ (𝑄 (𝑡, 𝑛) − 𝑄(𝑡, 𝑛))                                                                                  (12)    
  
𝐶  (𝑡, 𝑛) ≥ 𝑄 (𝑡, 𝑛) ∙ 𝐶 , (𝑛)                                                                                                  (13) 
                                                                         
In previous work, Qspin is assumed to represent a technology aggregate so that Qspin   can have any value 
between zero and the maximum capacity. Here it is used primarily for single plants, where Qspin in 
reality only can be zero or equal to the capacity of the plant. This means that cycling costs are 
underestimated since the plants are modeled with increased flexibility compared to real operation, but 
the model will still pay some respect to the cycling costs compared to not using this method at all. 
 
The TES needs additional equations from the production units since its operation is dependent on the 
previous time step. The storage level of the TES is limited by its size and this constraint is defined in 
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equation 14, which ensures that the maximum level is never greater than the size of the TES. Since the 
energy level in the TES is defined as a positive variable it can never be lower than zero. The energy 
level of the storage at each hour is determined with equation 15. This equation relates the energy level 
of each hour to the previous one while taking charging and discharging of the storage into account as 
well as losses. Two different sources of energy losses in the TES have been accounted for. In equation 
15 the last term accounts for losses to the surroundings of the TES and they are assumed to be constant 
and linearly proportional to the size of the TES. Also, the TES have a charge and discharge efficiency, 
𝜂TES, that generate losses when energy is charged to or discharged from the TES. 
 
𝑇𝐸𝑆 (𝑡) ≤ 𝐼 (𝑇𝐸𝑆)                                                                                                                                 (14) 
 

𝑇𝐸𝑆 (𝑡) = 𝑇𝐸𝑆 (𝑡 − 1) + 𝑇𝐸𝑆 (𝑡) ∙ 𝜂 −
( )

− 𝐼(𝑇𝐸𝑆) ∙ 𝑇𝐸𝑆                              (15) 

 
Charging and discharging of the TES is limited by the c-rate of the TES. The c-rate is a measure of 
how much time a full charge or discharge of the storage takes. The charge and discharge rate 
constraints are defined in equations 16 and 17 respectively. 
 
𝑇𝐸𝑆  ≤ 𝐼(𝑇𝐸𝑆) ∙ 𝑟                                                                     (16) 
 
𝑇𝐸𝑆 ≤ 𝐼(𝑇𝐸𝑆) ∙ 𝑟                                                                     (17) 
 
A final constraint for the TES sets the energy level of the first hour equal to the last one according to 
equation 18. This ensures that the ingoing energy at hour 1 is “paid for” while keeping the possibility 
to save energy across years. 
 

𝑇𝐸𝑆 (1) = 𝑇𝐸𝑆 (8760) + 𝑇𝐸𝑆 (1) ∙ 𝜂 −
( )

− 𝐼(𝑇𝐸𝑆) ∙ 𝑇𝐸𝑆                              (18) 

 
3.1.2 District Heating System Description 
In this section the shared input data for the deterministic and the stochastic model is presented. Three 
types of theoretical district heating systems are analyzed, which are based on the plant portfolio of DH 
systems in Finspång, Västerås and Gothenburg. The DH systems existing thermal generation units and 
capacities are presented in Table 1, 2, and 3, respectively. Each DH system is selected from the DH 
network database, in order to represent a variety of common system types, in terms of existing heat 
generation units. Finspång represents systems which only consist of HOBs and industrial waste heat, 
denoted System HOB. Västerås represents systems which only consist of CHPs, called System CHP. 
Gothenburg represents systems with a mix of different heat generation technologies, called System 
Mix. The model does not allow for use of fossil fuels, hence the fossil fuels which are currently utilized 
in some of the existing systems have been substituted to biomass based ones with the assumption that 
the unit is not affected in any other regard than fuel cost. 
 
For each system, the models can choose several heat generation investment alternatives and a TES 
investment, with the corresponding technical and cost data presented in Table 4 and Table 5, 
respectively. Even though the systems might have sufficient existing capacities to meet the peak 
demand, investment in new heat generation capacity can potentially decrease the total system cost as 
new generation units can have lower total cost than older units. Another reason for making new 
investments is that old units might need to be replaced, but this is not considered in this work. Existing 
installations of TES in the DH systems are neglected in order to analyze the optimal size of the storage 
for each system, but also to compare the investment in TES between the systems. All investment data 
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is based on the Danish Energy Agencies catalogue (The Danish Energy Agency, 2016). The exchange 
rate from EUR to SEK is assumed to be 10 SEK/EUR and the discount rate is assumed to be 7%. The 
restriction of fossil fuels also applies to new investments, thus the fuels in the available investment 
alternatives are all non-fossil. The former investment in the existing units in each system is regarded 
as a sunk cost and is therefore not included in this mode 
 
Table 1: Technical data for existing heat generation technologies in system HOB. Based on Finspångs Tekniska 
Verk (Finspångs Tekniska Verk, 2020). *: changed to biobased from fossil fuel. 

Network Unit Name Unit Type Fuel Q [MWth] Q [MWel] Efficiency 
  
System 
HOB  

HOB W HOB Municipal Waste 10 - 0.9 
HOB B HOB Wood chips 14 - 0.9 
HOB BO HOB Bio oil* 39.5 - 0.9 
SSAB  Waste heat 3,4 - 1 

 
Table 2: Technical data for existing heat generation technologies in system CHP. Based on contact with 
Mälarenergi (M. Allmyr, personal communication, February 17, 2021). 

Network Unit 
Name 

Unit Type Fuel Q 
[MWth] 

Q 
[MWel] 

Efficiency 

 
System 
CHP 

Block 6 CHP Municipal waste 133 48 1.03 
Block 7 CHP Recovered Wood 

fuel 
123 54 1.06 

Block 5 CHP Branches 168 50 1.09 
 
Table 3: Technical data for existing heat generation technologies in system Mix. Based on Romanchenko et al. 
(Romanchenko D. , Odenberger, Göransson, & Johnsson, 2017). *: changed to biobased from fossil fuel. 

Network Unit Name Unit 
Type 

Fuel Q [MWth] Q 
[MWel] 

Efficiency 
/COP 

 
 
 
 
System 
Mix 

Renova CHP Municipal 
waste 

130  43 1 

Preem 
 

Waste heat 60 - 1 
ST1 

 
Waste heat 85 - 1 

Säv CHP CHP Wood chips 110 13 1.11 
Rya CHP CHP Biogas* 295 245 0.91 
Högsbo 
CHP 

CHP Biogas* 14 13 0.79 

Rya HP 1-2 HP Electricity  60 - 3.6 
Rya HP 3-4 HP Electricity 100 - 3.15 
Rya HOB 1 HOB Wood pellets 50 - 0.92 
Rya HOB 2 HOB Wood pellets 50 - 0.92 
Säv HOB 1 HOB Biogas* 90 - 1.01 
Säv HOB 2 HOB Biogas* 60 - 0.90 
Ros HOB 4 HOB Biogas* 140 - 0.97 
Ang HOB HOB Bio oil 105 - 0.90 
Rosenlund 
HOB1 

HOB Bio oil* 440 - 0.98 
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Table 4: Technical and economical for possible investment choices available in the model. The technical 
lifetime of the new investments are 25 years, except for New EB which has a technical lifetime of 20 years (The 
Danish Energy Agency, 2016). 

Unit Name Unit 
Type 

Fuel CAPEX 
[MSEK/MWth, 
yr] 

OPEX 
[SEK/MWh] 

Power to 
heat ratio 

Efficiency 
/COP 

New HOB B HOB Wood chips 0.69 34 - 1.15 
New HOB W HOB Municipal 

solid waste 
1.47 82 - 1.06 

New HOB 
BG 

HOB Biogas 0.062 10 - 1.04 

New HOB 
BO 

HOB Bio oil 0.37 15 - 0.9 

New EB EB Electricity 0.067 10 - 0.99 
New HP HP Electricity 0.37 15 - 3.7 
New CHP B CHP Wood chips 0.98 44 0.37 1.14 
New CHP W CHP Municipal 

solid waste 
2.44 244 0.302 1.04 

New CHP 
BG 

CHP Biogas 1.70 42 1.15 0.94 

 
Table 5: Assumed technical and economical for possible TES investment choices available in the model. Based 
on the Danish Energy Agency Catalogue (The Danish Energy Agency, 2016). 

 
For each system, a different heat demand profile is used. For System Mix, a demand profile consisting 
of data from the Gothenburg DH system from 2012 is used. For the other two systems the demand 
profiles are estimated based on simplified equations from (Sirén, 2016) with the assumption that the 
indoor temperature is constant (set to 20℃), and under steady-state conditions. The heat demand can 
be considered linearly dependent on the outside and indoor air temperature difference. From this 
temperature correlation and with the expected total demand of a normal year a heat demand is 
estimated. This is done by first calculating the temperature difference between inside and the outdoor 
temperature for each hour as according to equation 19, where T(t) is the outdoor temperature at hour t 
gathered from (SMHI, 2021). 
 
∆𝑇(𝑡) = 20℃ − 𝑇(𝑡), ∀𝑡 ∈ 𝑇(𝑡) < 17℃  𝑒𝑙𝑠𝑒  ∆𝑇(𝑡) = 3℃                 (19) 
                                         
By limiting the temperature difference to not be lower than 3°C, the need for heating of water during 
warm periods is sufficiently captured. For system CHP the temperature data was collected from 
the closest active measuring station, namely Enköping MO.  As the three reference systems are all 
geographically located in the southern part of Sweden, the temperature data for system HOB was 
collected from the measuring station Skellefteå airport to incorporate a Northern geographical location. 
The temperature difference and total annual demand is used to calculate the heating demand for every 
hour according to according to equation 20, where D(t) is the demand at hour t and Dtot the total annual 
demand. 
 

TES Annualized cost 
[SEK/MWh, yr] 

C-rate 
[h-1] 

Efficiency Losses  
[%/day] 

Large scale tank 
storage 

2340 0.0166 0.98 0.2 
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𝐷(𝑡) = ∆𝑇(𝑡)
∑ ∆ ( )

                                                                                                                         (20) 

 
These constructed demand profiles have a higher diurnal variation than the profile based on 
measurement data, but since the model will underestimate costs of part load and startup this is not 
expected to significantly impact the results 
 

3.2 Deterministic Sensitivity Analysis 
The deterministic sensitivity analysis uses the core model with a deterministic set-up, i.e. the electricity 
price, the hourly heat demand, fuel prices and techno-economical parameters of the available heat 
production units are assumed to be known ahead of the optimization and are provided exogenously to 
the core model. 
 
In the deterministic model, the electricity price of 2019 is used. The electricity price is taken for the 
SE3 region from Nord pool SE3 region from Nord Pool (Nord Pool, 2021) and is shown in Figure 7. 
 

 
Figure 7: The electricity price in Sweden (SE3) 2019 that is used in the deterministic model. The mean price 
was 405 SEK/MWh this year. 

The deterministic model is applied to the three DH systems in order to evaluate the sensitivity of 
investments, operations, and total system cost when the following cases are analyzed: 

 Base case: Current (Year 2019) levels of biofuel prices, heat demand and the availability of 
industrial waste heat. 

 Cold winter: The heat load is increased with 20% during hours 1-1500 and 7500-8760.  
 High biofuel cost: The price of biofuels is increased according to Table 6. 
 No industry: The availability of industrial waste heat is removed 

 
Table 6: The assumed cost of biofuels used in the sensitivity analysis. The base price is used in all cases except 
the high biofuel cost case, where the higher price is used. The increased prices represent an estimation of future 
prices for 2030 according to (Sandin, Sahlén Zetterberg, & Rydberg, 2019).  

Type Base price [SEK/MWh] High price [SEK/MWh] 
Wood chips 200 400 
Bio oil 596 800 
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Biogas 480 770 
Recovered wood fuel 90 90 
Branches 198 400 

 
3.3 Stochastic Uncertainty Analysis 
The core model described in 3.1.1 is further developed by incorporating stochastic programming. An 
overview of the stochastic model set-up is visualized in Figure 8. The stochastic parameters in this 
model are the electricity price and the heat demand. Only these two are included as stochastic 
parameters since they are inherently stochastic, due to their weather dependency and annual variations 
described in Section 2.4, in contrast to e.g. the availability of industrial waste heat, for which changes 
are usually known ahead of time. In the stochastic model, the 1st stage variables are the investment 
decisions, since investment decisions must be made before the realization of the stochastic parameters, 
due to long construction times before actual commissioning. The 2nd stage variables are the 
operational decisions, since the operational decisions typically are made in near-time hour by hour 
when the stochastic parameters are better known. P(si) denotes the probability of scenario si. As it is 
difficult to estimate which of the scenarios is more likely to occur, in this model all scenarios have 
equal probability and, thus, the probability is equal to one divided by the number of scenarios for each 
scenario. 
 

 
Figure 8: Overview of the stochastic model set-up. The input data consists of known parameters and uncertain 
parameters with a known probability. The model minimizes the expected cost of the two-stage problem and an 
output is received of what the optimal investments are as well as how the systems should operate in the different 
scenarios. 

3.3.1 Stochastic Model Adaptation 
In this section a general mathematical description of how the stochastic program works will be 
presented. 
 
If s denotes a realization of the stochastic variables and S = {s1, s2…, si} is the set of possible outcomes, 
the model adaptation for the stochastic program can be written: 
 
   𝑀𝑖𝑛  𝐶 =  𝐶 𝐼 +  𝔼[𝑌(𝐼, 𝑠)] 

s.t.  𝐼 ≥ 0  
              (19) 

where   𝑌(𝐼, 𝑠)   =  𝑀𝑖𝑛  𝑦   
s.t.   ℎ          =  𝑇 𝐼 +  𝑊 𝑄(𝑠),      𝑄(𝑠) ≥ 0, ∀𝑠 ∈ 𝑆. 
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Here the first two lines define the first-stage problem and the third and fourth lines the second-stage 
problem. Ctot is the objective function to be minimized, I is the here-and-now decision variables of 
how large investments should be and Cinv the cost coefficient of the decision variables. 𝔼[Y(x,s)] is the 
expected value of the optimal solution to the second-stage problem. In the second stage, the stochastic 
variables are determined, and the objective is to minimize the variable cost during a year, while 
meeting the constraints defined in section 2.2. In the fourth row hs are the constraints, Ts the transition 
matrix and Ws are the cost coefficients of the second stage decision variable Q(s) which is the heat 
generation for each production unit for each scenario s. 

 

3.3.2 Stochastic Scenarios 
The stochastic DH system model is applied to systems HOB, CHP and Mix, respectively. Each system 
has the same existing units and investment options as in the deterministic model. What changes with 
the stochastic model compared to the deterministic one is that the heat load and electricity price profiles 
now are stochastic parameters instead of known parameters. The profiles consist of 8760 joint random 
variables (one for every hour) meaning that there is a probability for a profile and not a random 
electricity price at every hour. 
 
For the electricity price there are five possible outcomes with different mean prices and variability. 
The first outcome is the same electricity price profile used in the deterministic model from Nord Pool 
2019. The other four prices are constructed generic price profiles presented in Table 7. They are step 
functions that have a period of a week between having high or low electricity prices. There are two 
different average prices and for each average price there are also two different amplitudes of the step 
function to increase the variations of the electricity price. The electricity price is lower in the middle 
third of the year to show the seasonal variations. Together the four generic prices capture differences 
in how large and small variations, as well as higher and lower average prices affect the systems. 
 
Table 7: The price levels used in the created electricity price profile. The period between high and low prices 
is a week. The annual average price is 600 SEK/MWh and 300 SEK/MWh for the high and low average 
respectively. 

 
The heat load profile has 3 different outcomes. The first one representing a “normal” year for each DH 
system as in the base case in Section 3.2. For the other two profiles, hours 1-1500 and 7500-8760 are 
either 15% higher or 15% lower, representing a cold and a warm winter respectively. The demand is 
only changed during the winter hours of the year since the demand is less dependent on outdoor 
temperatures during the summer hours, when the use of hot water is a more significant share of the 
demand. Together, the 5 different electricity prices and the 3 different heat demands create 15 
scenarios, which the stochastic model optimizes for.  
 

3.3.3 Value Assessment of Uncertainty Analysis 
To investigate the economic value of taking uncertainties into account when making investment 
decisions, the investments from the deterministic base case optimization are used as input for all the 
stochastic scenarios. This means that no further investments are allowed and only the dispatch of the 
units is optimized for all scenarios. Since the investments made in the base case of the sensitivity 
analysis do not take uncertainty into account and the stochastic optimization do, the two optimizations 
are compared to analyze the economic risk on total system cost associated with not including 

Electricity prices High avg - Low var High avg - High var Low avg - Low var 
Low avg - High 
var 

Hours 1-2920 and 
5841-8760 640±60 640±180 355±105 355±315 
Hours 2921-5840 515±65 515±195 187.5±62.5 187.5±187.5 
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uncertainties in investment and operational decisions. The comparison is done by calculating the 
difference in total system cost for each scenario according to equation 21, where s denotes the specific 
scenario.  
 
∆𝐶 (𝑠) = 𝐶 , (𝑠) − 𝐶 , (𝑠)                 (21) 
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4 Results & Analysis 

In this section the results of the models are presented and analyzed. First, the results from the 
deterministic sensitivity analysis are presented then the results of the stochastic optimization. The 
results are presented in terms of investments, dispatch and total system cost. 
 

4.1 Investments in Deterministic Uncertainty Analysis 
The investments made in the optimization of the deterministic model for each case and system are 
shown in Figure 9 as percentage of the peak demand of the base case. For all systems and cases there 
are investments made in TES.  The reason that the TES technology is applied to such a great extent is 
that the TES is used to smoothen out the production and thus reduce the need for expensive peak 
generation units cost-effectively. When looking at the specific case high biofuel cost, the TES size 
increases for the all three systems compared to the base case. This is due to the marginal cost of heat 
increases when biofuels are on the margin, which leads to the TES becoming more valuable. For 
system CHP the TES size increases the most in the cold winter case. In this case there is a need for 
additional heat generation capacity and therefore the model also invests in a biogas HOB. By 
increasing the size of the TES, the full load hours and invested capacity of the new biogas HOB can 
be kept lower, but at this capacity for the TES it stops being cost-effective to make an even larger TES 
compared to the biogas HOB. 
 

 
Figure 9: Investments made in the deterministic model for each case in the three systems. The values are 
presented as percent of the maximum load hour for the systems of 41, 1313, and 630 MW for systems HOB, 
Mix, and CHP respectively. For TES it is the output capacity that is shown which is linearly related to its size 
in energy [MWh] with a factor of 0.0166 as explained in Section 3.1.2. 

In both the HOB and Mix systems, investments into new HPs are made in all cases. With the electricity 
prices of 2019, the HP with a COP of 3.7 has a relatively low operational cost with only the industrial 
waste heat and municipal waste CHPs or HOBs having a lower operational cost for most hours. This 
low operational cost is the driving factor for making the investments in HP, and since the HP also has 
a comparatively low investment cost, it is possible to invest in the HP even though there are other units 
available for production, in order to reduce the total cost of the heat generation. In the cold winter case, 
the investment in HP is increased in the HOB and Mix systems compared to the base case. This occurs 
since when the heat demand is increased in the cold winter case, a larger capacity of HP can be cost-
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effectively utilized. When removing the industrial waste heat from the HOB and Mix systems, it was 
replaced by investing more into larger HP capacity. In both systems, the HP capacity increased almost 
exactly as much as the size of the industrial waste heat capacity that was removed, meaning that in 
terms of capacity, the HPs cover the lost capacity as a base load unit. In the high biofuel cost case, a 
similar trend could be observed of increased investments in HPs, but in this case the HP is not replacing 
base load, instead it is replacing peak and mid load units together with the TES. These results regarding 
the HP investments show that HPs can be invested in both as a base load unit and to reduce the use of 
peaking units if they become too expensive. 
 
There are some investments in peak units in the cases. For system HOB, a biogas HOB is invested in 
the cold winter case. The biogas HOB is not necessary for its capacity to meet the demand during the 
cold year since there still exists spare capacity, but rather it is invested in since it has a lower variable 
cost than the existing bio oil units. During such a cold year, there are enough hours where peak capacity 
is needed for the biogas HOB investment to be beneficial. For system Mix in the high biofuel cost case 
an investment is made into an electric boiler. This is done to reduce the use of the now even more 
expensive biomass fueled peak units in the system to reduce the total system cost. For system CHP in 
the cold year case an investment was made into a biogas HOB. This investment is made since the 
system cannot otherwise meet the heat demand of the maximum load hours, but with the slightly larger 
TES and the biogas HOB the system can meet the demand for all hours. The two reasons for further 
peak generation investments are seemingly either to handle high load cases or to reduce costs of 
existing expensive peak generation. Which unit that is invested in to reduce the cost of expensive peak 
generation, depends on the ratio between the electricity and biogas price during the hours it is 
producing. 
 

4.2 Dispatch in the Deterministic Study 
The operations in the district heating system is linked to the investments made in the deterministic 
model and by the different cases. In Figure 10, the full load hours (FLH) for some units in system Mix 
can be seen for all four cases. The units excluded from the figure are peak units with very few FLH. 
Data of FLH for the units in the remaining systems can be found in the Appendix A. 
 
In the cold winter case, many units are operated with a reduced number of FLH even though the 
demand is increased. The heat output is increased from the HP investment, but as the HP capacity is 
significantly increased in the cold winter case compared to the base case, the full load hours actually 
decreases. As the investment in the new HP is larger in the cold winter case than in the base case, the 
need for additional heat generation from the other HPs is decreased, and therefore the FLH of these 
units are decreased. This result is also seen in system HOB, where the FLH of the large wood chip 
HOB is reduced. In system HOB most of the additional energy needed in the cold winter comes from 
the increased HP investment. For systems HOB and Mix, a general increase can be seen in the 
utilization of peak units, but they are still few. For system CHP in the cold winter case, the base load 
units remain largely unaffected. A larger difference can be seen in the “peak” CHP plant, which 
increases its FLH from about 940 in the base case to 1700. The new biogas HOB is used only at very 
high demands and generates heat corresponding to 80 FLH. 
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Figure 10: Full load hours of some units in system Mix for each case. Units not included in the figure are the 
ones with very few FLH. Note that the size of the new HP changes between cases so the energy produced is not 
linear to the amount of FLH. Also note that RYA HOB 1 and 2 follow each other since they have similar technical 
parameters. 

In the no industry case, a prominent trend for systems with HP capacity is that the heat output from 
the HP units is increased. For system Mix, the investment in HP is larger compared to the base case, 
which allows the new HP to make up for almost all the lost waste heat from the industry. The only unit 
which is placed below the new HP in the merit order (i.e. has a lower operational cost), namely the 
waste-fired CHP Renova, is already producing at its rated capacity and can therefore not increase its 
production making the new HP the cheapest way of producing additional heat. In system HOB, 
however, the HP does not produce as much heat as the lost industrial waste energy. Instead the extra 
heat production required to meet the demand is shared between the waste HOB and the HP. They share 
this extra heat production since the waste HOB is lower in the merit order than the HP and therefore 
will produce more heat whenever it can. Since the waste HOB was already producing at its rated 
capacity during some parts of the year in the base case, the HP will produce more heat to cover for the 
lost industrial waste heat at those hours. No significant change in the other units in the systems was 
observed when removing industrial waste heat. This can be put in contrast to the cold winter case, 
where there were similar actions taken in order to adapt to the case, i.e. similar investments, but the 
operations of the other units in the system were affected more than in the no industry case. 
 
A common trend in all cases for systems with capacity in both HP and biofueled units is that the merit 
order between these units change depending on the hourly electricity price, as the price ratio between 
electricity and biofuels changes. At hours with a high electricity price, the HP units can decrease their 
heat production in favor of an increasing heat production from bio fueled units and vice versa, since 
the operational cost of HPs is increased with an increasing electricity price. By changing the merit 
order between electricity fueled units and biofueled units, the total system cost can be kept down. In 
system HOB, the operational cost of the HP becomes larger than the wood chip HOB when the 
electricity price is over 775 SEK/MWh. This results in hours where the HP either reduces its 
production or shuts off, until the electricity price returns to lower values. For those hours, the TES is 
used to support the wood chip HOB to produce the lost heat from the HP. In system Mix the same 
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behavior is observed, but for different values since another biofueled unit is competing, namely Säv 
CHP. Säv CHP also utilizes wood chips as fuel, but since the unit is a CHP it also generates revenues 
from electricity generation sales, thus, the operational cost of Säv CHP decreases with an increasing 
electricity price. The breakpoint in electricity price where Säv CHP becomes cheaper than the HPs in 
system Mix is between 440 SEK/MWh and 500 SEK/MWh for the HPs.  The breakpoints are different 
for the HPs in system Mix since they have different COP and, thus, operational costs. The breakpoint 
of when the merit order is shifted occurs at different values for the two systems and even different 
values within the same system. This means that these shifts can vary considerably between different 
systems making them sensitive to different ratios between electricity and biofuel price. 
 
In the high biofuel cost case, all systems adapt dispatch of units to reduce the use of biofuels. In system 
Mix the increased HP capacity is used together with the electrical boiler and TES investments to reduce 
the use of the bio fueled units such as the wood chip fired Säv CHP and many of the HOBs (especially 
the peak units) in order to reduce costs. The same results can be seen for system HOB, where peak 
generation (which uses bio oil) is almost completely removed and the use of the wood chip HOB is 
roughly halved. For system CHP the increased cost of biofuels decreases the use of the CHP unit Block 
5, which is the only plant that has an increased operational cost. For Block 5 to reduce its heat 
production, heat needs to be produced somewhere else. In system CHP this extra production comes 
partially from increasing the TES size and using the other CHP plants for more hours during low-
demand periods, but this measure is limited by the fact that the other two CHP units often already are 
producing to their maximum capacity. Instead the main source of extra heat production comes from 
increasing the heat output from the CHP units by refraining from electricity production to a greater 
extent than in the base case, i.e. using the R variable described in Section 3.1.2. This can be seen in 
Figure 11 where the sum of R divided by the sum of all electricity production in each scenario is shown 
for system Mix and system CHP. For system CHP there is a large increase in the use of the R variable 
in the high biofuel cost case compared to the other two cases, due to the increased operational cost for 
Block 5. 
 

 
Figure 11: This figure shows the sum of R divided with the sum of P, i.e. extra heat produced from CHP plants 
by refraining from electricity production divided with the amount of electricity produced in each case. System 
HOB is not included since it does not have any CHP units. 

In the two systems with CHP units, refraining from electricity generation in order to produce more 
heat is done in all cases. This flexibility measure is used at hours where the marginal cost of producing 
heat exceeds the marginal cost of electricity, and it becomes more economical to produce heat than 
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electricity. During these hours the CHP units which refrain from electricity production can fulfill the 
role of a peak PtH unit, such as an electric boiler. 
 
4.3 Impact on Total System Cost in Sensitivity Analysis 
The total system cost for each case and system, normalized to each system's base case, is presented in 
Figure 12. For system CHP the total cost is negative due to electricity sales generating more income 
than the expenses, meaning there is an annual profit generated. The three systems show similar trends 
regarding the total system cost between cases. When industrial waste heat is removed, low-cost heat 
needs to be replaced either by increasing production from existing units or by making new investments. 
In system Mix the total system cost in the no industry case is increased nearly with a factor 2 compared 
to the base case, whereas in system HOB the no industry case is only changed with a factor of 
approximately 1.3. The share of industrial waste heat is larger in System Mix and therefore the change 
in total system cost is greater. Since low-cost heat needs to be replaced, the no industry case is the 
most expensive even though there are cases where more new investments are made. In system HOB 
for example, the cold winter case has the most investments made without being the most expensive 
case. This is since the investments in this case decrease the use of high variable cost units, unlike the 
no industry case. In the cold winter and high biofuel cost cases, all three systems follow the same trend. 
The systems show greater sensitivity to the increase in demand than the increase in biofuel costs. The 
reason for this trend is that in the cold winter case more heat needs to be produced and therefore the 
usage of peak units is increased, which affect the total system cost more than the increase in operational 
cost for the high biofuel case.  
 

 
Figure 12: Total cost of the systems in each case. For system CHP the total cost is negative due to electricity 
sales generating more income than the expenses, i.e. there is an annual profit. A greater negative value indicates 
a higher annual profit.  System CHP does not have a No industry case since the system does not have existing 
industrial waste heat. 

4.4 Investments with Stochastic Uncertainty 
The investments made in the optimization when the heat demand and electricity price was treated as 
stochastic parameters can be seen in Figure 13 together with the investments from the deterministic 
base case. In the stochastic optimization, the expected value of the total cost is minimized, meaning 
that the resulting investments are the ones that perform averagely best for the defined scenarios.  
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Figure 13: Investments made in the stochastic model and the deterministic model for each system presented as 
percent of the peak heat demand of the base case for the system. For TES, the output effect of the TES is used 
to show the investment size, which is linearly related to the size of the TES in MWh as described in Section 
3.1.2. 

For the systems, an increased amount of investments can be seen in capacity with low investment cost 
(i.e. electrical boiler and biogas HOB) and for systems HOB and Mix, a decreased amount of 
investments into HP. Factors decreasing the amount of HP invested in are low demand and high 
electricity prices, where the HP either produces less heat or for a higher price (i.e. HPs are less 
competitive). By investing in EB instead, the benefit of using power-to-heat technology in scenarios 
with low electricity price can still be capitalized on. In the scenarios with many hours of low electricity 
price the higher efficiency of a HP is not that beneficial when compared to a EB since the fuel cost 
becomes small relative to the investment cost. System Mix does not invest as much as system HOB in 
EB, and that is partially since the large waste CHP plant can refrain from electricity production at 
hours where selling electricity is not beneficial in order to produce heat. This measure is comparable 
to using EB, since electricity is traded for heat at about a one-to-one ratio. 
 
CHP units refraining from electricity is also done in system CHP, but in system CHP investments need 
to be made in order to have enough capacity to meet the demand at peak hours for the scenarios with 
a higher demand during the winter hours. Since there is a need for additional capacity in system CHP, 
the stochastic model invests in two different peak units, a biogas HOB and an EB, as well as a larger 
TES which can complement the existing production depending on what is the most cost-efficient in 
each scenario. 
 
Regarding the investments in TES there is a general trend that TES is always invested in, regardless 
of system and uncertainty analysis method. However, no general trend can be seen when comparing 
the results of the deterministic and the stochastic optimizations in terms of the sizing of the storage. 
The sizing of the TES is thus seemingly system dependent and scenario dependent. A possible 
explanation for the lack of common trends of TES investment between the systems is that there are 
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different factors that decide the marginal value of the TES for each system. In system CHP, the reason 
for increasing the investment in TES could be due to that there is a need for additional capacity, which 
is partially achieved by investing in a larger TES. Another reason could be that the larger TES allows 
the system to sell more electricity from the CHPs instead of producing heat, which can increase the 
profit from the CHP plants. Increasing the TES size can also reduce the use of peak units which are 
more expensive than base load units. The reason for the decreased size of the TES in system HOB, 
could be the investment in an EB. The peak production in a system with an EB and bio oil HOB will 
always produce from the cheapest alternative, resulting in a peak production that is less expensive or 
as expensive as a system with only one option. Hence, the profit generated by the TES from reducing 
the use of peak units is reduced as an EB is introduced to the system. Why this trend is not seen in 
system Mix, could be because of that system Mix already could utilize CHP plants to refrain from 
electricity production, and this system therefore was not affected as much by the introduction of an 
EB. Since system Mix has a wide range of units, there are many factors, such as the ones described 
above for system HOB and CHP, that affect the sizing of the TES in the stochastic model and the 
balance between different benefits and costs. Thus, the TES is beneficial in all system contexts to some 
extent, although the exact use of the storage is system specific and related to the other types of units 
available. 
 

4.5 Dispatch in the Stochastic Study 
In the stochastic model, the operation of the DH systems differs between the scenarios that the 
stochastic optimization is based on. In Figure 14, the full load hours (FLH) of the units that change the 
most between the scenarios in system Mix are shown. When two units change in which one has more 
FLH, it means that they have swapped positions in the merit order of the system for most of the hours 
in that scenario. In the figure, the scenarios are ordered by their electricity price in descending order. 
For the same electricity price there are three different heat demand scenarios ordered from a low 
demand scenario to a high demand scenario. Data of FLH for all units and all systems can be found in 
Appendix B. 
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Figure 14: A plot of full load hours for a selection of the units in system Mix for each scenario from the 
stochastic model. The units shown are the ones most dependent on the electricity price variation in the system. 
Within an electricity price the scenarios are ordered from low demand to high demand. 

In Figure 14 the wood chip fueled Säv CHP has a lot more FLH in the six scenarios with a high average 
electricity price than in the other scenarios, since a higher average electricity price is favorable for 
CHP operations. This is also seen for the CHPs in system CHP and is thus a general trend. The bio gas 
fueled CHPs in system Mix do not see the same increase in FLH for the scenarios with high electricity 
prices, they are instead more demand dependent and have more FLH in scenarios with high heat 
demand, acting as peak units since their operational costs are higher than the wood chip fueled CHPs. 
Säv CHP notably also has more FLH in scenarios 13-15, where the variation of the electricity price is 
high, than in scenarios 7-9 where the average price is higher. This is due to the high variation in 
electricity price in scenarios 13-15 resulting in more hours where the electricity price is high enough 
for the unit to be cost efficient, even though the average price is lower meaning that electricity price 
volatility matters for operating wood chip fueled CHPs. 
 
The new investment in HP has more FLH in all scenarios compared to the two existing HPs in the 
system since the new HP has a higher COP. However, the three HPs in system Mix follows the same 
pattern regarding the FLH in each scenario. The FLH of all the HPs increases in scenarios 7-12 
compared to scenario 1-6, since a lower average electricity price favors the production of HPs 
compared to CHPs as the running cost for HPs is decreased. In scenarios 13-15 the FLH of the HPs is 
decreased compared to scenarios 7-12. This is due to the high variations in the electricity price creating 
hours where the Säv HOB has a lower operational cost than the HPs, as described in the paragraph 
above. During half of the hours in the last three scenarios the electricity is significantly lower compared 
to all the other scenarios due to higher variations of the electricity price. This results in more FLH for 
the new EB since the running cost of this unit is decreased. In Figure 14 it can also be seen that all the 
PtH units are somewhat demand dependent, as the full load hours are increased with an increasing 
demand. The above-mentioned trends regarding the operations of the PtH units in system Mix can also 
be seen in the other two systems, it can therefore be a technology specific trend rather than system 
specific. 
 
One operational parameter that undergoes significant change when the uncertain factors are considered 
is the R variable, which represents CHP units refraining from electricity use in favor of more heat 
production. The sum of R divided by the sum of all electricity production in each scenario is shown in 
Figure 15 for system Mix and system CHP, which have CHP units in their systems. In scenarios with 
a high average electricity price, electricity production is dominating, due to the large value of selling 
electricity. In scenarios with low average electricity prices however, a big shift occurs and up to half 
of the electricity that could be produced is instead sacrificed to produce heat. This is due to the marginal 
value of electricity at many hours is lower than the marginal cost of producing heat. The ability of a 
CHP to refrain from electricity production is thus a useful strategy in order to be cost efficient in 
multiple scenarios by either producing electricity or low-cost heat and the operations of CHP units are 
sensitive to the electricity price. 
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Figure 15: This figure shows R/P, i.e. extra heat produced from CHP plants by refraining from electricity 
production divided with the amount of electricity produced in each scenario. Within the same electricity price 
category, the heat demand goes from low to normal too high in the three respective sub-scenarios. In scenarios 
with low electricity prices, the model uses the flexibility of the R variable more since there is less value in 
producing electricity for a large portion of the year. 

4.6 Value of Accounting for Uncertainty in DH System Planning 
To evaluate the value of accounting for uncertainties in DH system planning, the investments made in 
the deterministic optimization of the base case are used as fixed investments for all the 15 scenarios 
that the stochastic model is optimized for. The resulting differences in total system cost per scenario 
for system HOB and system Mix can be seen in Figure 16. A positive value indicates that the 
deterministic optimization generates lower total system cost in the individual scenario and a negative 
value indicates that the stochastic optimization generates a lower total system cost. The blue dot marks 
the average difference between the models. In Appendix C data of total cost for each scenario can be 
found. 
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           System HOB      System Mix  

 
Figure 16: The difference in the total system cost between the investments from the stochastic optimization and 
the deterministic optimization for each scenario. Positive values indicate that the deterministic scenario is less 
expensive and vice versa. For perspective, the total system cost in the deterministic base case for system HOB 
is 1.3e7 SEK/year and for system Mix 1.9e8 SEK/year. 

For system HOB, in 4 out of 15 scenarios the optimal investment from the stochastic solution is less 
expensive compared to the deterministic. The stochastic solution for this system is less expensive in 
the scenarios where the electricity price has a low average value and high variation, regardless of the 
demand. This is mainly due to the electric boiler from the stochastic optimization which is being used 
effectively in these cases with many hours of low-cost electricity. The investments from the stochastic 
optimization for System HOB is also less expensive in the scenario where the electricity price has a 
low average value and low variation with a high demand. In this scenario the EB also has advantages, 
as more peak units are required with the high demand and with the low average electricity price, the 
EB is a good option. For the remaining cases the stochastic optimization generates total costs higher 
than the deterministic base case. One contribution to this comes from that the total annualized 
investment cost is higher in the stochastic optimization, but only 46 000 SEK/year, which is not as 
much as the difference. The larger difference in total system cost comes from having increased 
operational costs by having a smaller HP and a smaller TES. 
 
For system Mix, there are 8 out of the 15 scenarios where the investments from the stochastic 
optimization costs less than the deterministic optimization. In comparison with System HOB, the 
scenarios where stochastic optimization is less expensive than the deterministic one is more evenly 
spread out between the scenarios. For every scenario with low heat demand, the solution from the 
stochastic optimization is less expensive. This is since the total annualized cost of investments is 6.7 
million SEK/year lower for the stochastically optimized investments, and the additional HP capacity 
from the deterministic optimization is not useful enough in these scenarios to make up for the 
investment cost. Further, the stochastic optimization is less expensive in the scenarios where the 
electricity price has a low average value and high variation, for similar reasons as for system HOB 
described above, but to a lesser relative extent due to the relatively smaller EB.  
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Even though there are several scenarios where the investments from the deterministic base case 
generates lower total system cost for the stochastic scenarios, the average total system cost for all the 
scenarios is lower for the stochastic solution for the Mix and HOB systems. This is to be expected 
since the purpose of the stochastic optimization is to minimize the expected value of the total system 
cost, which is the average total system cost since all stochastic variables have the same probability. 
 
For system CHP, the fixed investment from the deterministic optimization proved infeasible for the 
scenarios with high demand. This is because the optimal investment for the deterministic base case 
cannot fulfill the requirement of meeting the heat demand for all hours in the scenarios with higher 
heat demand. This happens since the deterministic optimization is done for only one heat demand 
which does not have as high peaks as the high demand scenarios from the stochastic model, and it is 
in the deterministic model not optimal to invest in reserve capacity for the system since there is no 
current constraint or incentive to do so. 
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5 Discussion 

In this analysis, the effect that different uncertainties have on DH systems are investigated. The 
analysis is not intended to be a predictive study on how DH systems should be designed, but rather to 
understand the effects and importance of uncertainty analysis for district heating system planning. If 
the intention is to make a predictive model of how district heating systems should be constructed, more 
detailed input data is needed in terms of the uncertain parameters and importantly also their probability 
distribution. In the stochastic optimization, generic electricity prices have been used, which does not 
give an accurate picture of future electricity prices, but they do give a good indication on how the DH 
systems are affected by possible changes in average price and variability.  
 
In terms of evaluating the different optimization approaches to handle uncertainties, deterministic 
sensitivity is a time-efficient method to investigate changes in individual parameters. Each 
optimization took approximately 10 minutes, but as there is manual work for every parameter change 
and the model must be run several times (one time for each case) and the total computer time can be 
considered longer. The stochastic optimization model requires significantly longer computational 
time, e.g. one of the stochastic optimizations took approximately 5 hours to run. However, as each 
system is only optimized one time, it requires less manual work when the model is fully developed. 
As the stochastic approach required more computational time, it also required more computer capacity 
and therefore it was quickly realized that the stochastic approach was not laptop friendly. As both 
optimization approaches are linear, the development can be considered quite straightforward if the 
developer is somewhat familiar with using GAMS for energy system modeling purposes.  
 

5.1 Dispatch and Investments 
A prominent trend from the results is that all systems invest in a TES, regardless of case or scenario. 
In the sensitivity analysis it was observed that the investment size of the TES was increased with 
increasing biofuel prices. This is due to the marginal cost of heat increase more for peak units than 
base load units in the analyzed systems, which leads to the TES becoming more valuable. A conclusion 
from this is that if the difference in marginal price of heat between base and peak load units were to 
increase, more TES could be introduced. It is also observed from the stochastic optimization that 
investments in TES have a system and scenario dependency, as there are no apparent common trends 
in the stochastic optimization. A possible explanation for the lack of common trends of TES investment 
between the systems in the stochastic optimization is that there are different factors deciding the 
marginal value of the TES for each system. It is therefore important to account for uncertainties when 
it comes to the optimal size of TES investments, to understand underlying factors which determine the 
value of the TES for an individual DH system. However, it should be noted that the utilization of TES 
could be enhanced further if the variety of the TES technologies was more thoroughly investigated for 
each system. In this thesis only one type of TES technology is included, namely a large-scale tank 
storage. A greater variety of TES options could allow the model to choose the cost-optimal c-rate and 
add seasonal storage to a greater extent, creating a further optimized TES strategy.   
 
A common trend for the systems is investment in PtH technologies, which mainly takes place as 
investment in HPs for the deterministic optimization and HPs in combination with EB in the stochastic 
optimization. As there are investments in PtH for most of the uncertainties applied, it is a useful 
technology for DH systems to adapt to future uncertainties. By having capacity in both PtH and 
biomass-based units, the systems can choose the less expensive production option at a specific hour 
and electricity price. This gives the systems more flexibility in their operations that can assure cost-
efficiency when the cost of biofuels and electricity is changing. A system including biofueled and PtH 
units, is what in this work is defined as a Mix system. With the investments made in the sensitivity 
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analysis and the stochastic optimization, we can see that system HOB is becoming more of a mixed 
system instead of a pure biomass HOB system that it was initially.  
 
When investing in PtH technologies, possible limitations that has not been considered are the effect 
on the local power balance and for HPs the availability of a sufficient heat source. The heat source of 
the HP needs to be at sufficient temperatures and have enough energy for the HP to be efficient. A 
lack of a good heat source would lead to decreasing efficiency and thus less investments in HP for the 
systems. If the local electricity grid has issues with supplying enough electric capacity and energy, an 
investment in PtH technologies might not be possible even if it would otherwise be profitable. If new 
power cables are required for PtH to be expanded, the investment cost would increase, and this might 
affect the profitability of the PtH. On the other hand, it has been observed that the HPs and EBs stop 
or reduce their production and electricity use if the electricity price is high. This means that if the 
electricity price manages to signal issues in the electricity grid, the HPs will use less electricity and 
help the electricity grid during strained hours. However, the heat demand must be met regardless of 
electricity price. If high load hours coincide with high electricity prices, the PtH units might not be 
able to refrain from producing even if they are very expensive to run if there is no other spare capacity. 
 
Another aspect regarding the local power balance is the effect that CHP units refraining from electricity 
production has. There is a risk that the hours with high heat demand coincides with hours where the 
power market is strained. Hence, the future possibility to refrain from electricity production without 
restrictions might not be an option in order to sustain the local power balance. If there were to be 
restrictions regarding refraining from electricity production, it would probably have a direct effect on 
the investment strategies in systems which rely on that flexibility measure. In the stochastic 
optimization it was observed that CHPs refraining from electricity production is sensitive to the 
electricity price, as the scenarios with higher prices have much more electricity production than the 
cases with low prices and that the variations of the electricity prices had an effect on the electricity 
production. This means that if the electricity price successfully manages to signal issues in the local 
power balance, CHP units should act to help the balance by producing electricity.  
 

5.2 Value of Accounting for Uncertainty 
When looking at the difference in total system cost between the stochastic and the deterministic 
optimization, it is observed that the difference in total system cost can vary considerably within a 
system and between systems. In system HOB there is a significant difference in the investments made 
in the deterministic base case and the stochastic optimization. This shows that the uncertainty of 
demand and electricity price of the stochastic model affected the system a lot and thus, the system is 
sensitive to the uncertainties, not only in the size of investment, but also in what technology that was 
invested in. The difference in the investments from the two optimizations approaches leads to 
differences in the total system cost in the scenarios, that in some scenarios are large (up 11% of total 
cost). This shows that system HOB is sensitive to the uncertainties applied in the stochastic model. By 
not taking the uncertainties into consideration, i.e. only using the investments of the deterministic 
optimization, great opportunities to lower the total system cost can be missed out on even if the 
deterministic optimization is a good option in many of the possible scenarios. 
 
For system CHP, the investments from the deterministic optimization proved infeasible for the 
scenarios with high demand from the stochastic model, since there is insufficient capacity in system 
CHP. This shows the importance of taking high load cases into consideration, so that the risk of not 
being able to meet the demand can be minimized, since not being able to meet the demand can be very 
economically damaging in terms of reputation and loss of customers. This could for example be done 
by including an additional constraint in the model that assures that sufficient capacity exists in the 
system to always meet the demand or by including scenarios with the highest possible (within 
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reasonable probability) heat demand in a stochastic model. Such an extreme demand should have a 
low probability so that the model does not overreact to the unlikely scenario. In reality, however, most 
systems have some reserve capacity and often in the form of fossil oil fueled HOBs, in contrast to 
system CHP which initially does not have any reserve capacity. In the cold winter case for the 
deterministic model, peak capacity was invested in the form of biogas HOB. In the stochastic study 
peak capacity was invested in the form of small amounts of biogas HOB, but mainly EB. The 
difference between which option is the most economical in the two models is the electricity price.  
 
In this work, the use of electricity in DH is assumed to not impact the price of electricity, but especially 
with an increased amount of PtH units, this assumption could become less valid. It could be that 
electricity prices are more likely to be high at hours when the heat demand is larger (due to electricity 
being used for heat) which then could incentivize not having EB as reserve capacity. Similar problems 
concern the operations of CHP units, since the option to refrain from electricity production in favor of 
additional heat production can occur at hours where both heat demand and electricity prices are high. 
In order to fully understand and find the optimal solution to the electricity and DH system dynamics, 
both systems need to be modeled simultaneously, but it is clear that the DH system is sensitive to the 
electricity price when the demand of heat is high.  
 
For system Mix, the investments from the deterministic base case and the stochastic optimization are 
relatively similar. This shows that the combination of technologies in system Mix already give the 
system the ability to adapt to the uncertainties applied in the stochastic optimization. The adaptation 
can be seen both in how the full load hours change between the scenarios and in how electricity 
production from CHP units change. The small differences in investments is why the difference in total 
cost in Figure 16 is relatively small and evenly distributed. Hence, in system Mix the economic risk is 
not as large and the importance of uncertainty analysis is smaller compared to the other systems. This 
means that stochastic optimization is less important for system Mix, but this is of course difficult to 
know before doing the stochastic optimization.  
 

5.3 Recommendations for Future Work 
For future work, it would be interesting to see what the results of a more predictive study of DH 
systems would be if it were to be made, i.e. to use predictions of the uncertain parameters, and possibly 
apply some other probability distribution instead of the more generic inputs used in this thesis. Further 
a continued development of the stochastic program into a multi-stage program instead of only two-
stage program would be interesting. This way, development could be tracked over time to find out 
more about when investments should be made. A multi-stage program would also have the possibility 
to model units being decommissioned which could be useful for DH system owners.  
 
In cities where the availability of electricity capacity is a limiting factor, it is likely a good idea to 
analyze the impact of this in modeling, since the optimizations from this thesis suggests that PtH units 
should be invested in.  
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6 Conclusions 

This thesis investigates the importance of uncertainty analysis in district heating system planning by 
evaluating the sensitivity of operational patterns, investment choices and total system cost of Swedish 
DH systems to uncertainty in biofuel costs, electricity price, availability of industrial waste heat and 
the heat demand of the system. The uncertainty analysis was conducted on three DH systems with two 
optimization approaches, a deterministic sensitivity analysis and a stochastic program, which 
minimizes the total system cost by optimizing the investments and dispatch of units. 
 
The study shows that when uncertainty in parameters is considered, the optimal investments may differ 
both in technology type and size. Based on the results, a conclusion can be drawn that technologies 
with low investment cost, mainly electric boilers, are favored to a greater extent when uncertainties 
are considered. Large heat pump investments were made for two of the three systems. The heat pumps 
decreased slightly in size in the stochastic optimization where uncertainties are considered, in favor of 
said electric boilers. Furthermore, important investments in thermal energy storage are a prominent 
trend throughout this study. The sizing of the storage capacity is sensitive to the uncertain parameters, 
resulting in different capacities depending on how the difference in operational cost between base and 
peak load is affected by the uncertainties. The resulting investments of the stochastic optimizations 
give all the systems the ability to use both electricity and biofuels to produce district heat, and a thermal 
energy storage that can shift the production in time.  
 
In terms of sensitivity in operational patterns, outcomes of uncertain parameters may change the 
existing merit order between power-to-heat and biofueled units. The district heating systems can in 
that way adapt to be cost efficient in many future outcomes. The electricity production from CHP units 
varies depending on the electricity price outcomes in the stochastic optimization. At high electricity 
price CHP units maximize their electricity production and at low electricity prices they refrain from 
up to 50% of the electricity production, in favor of producing additional heat.  
 
In terms of sensitivity of total system cost, the uncertainty analysis gives different results for each 
district heating system. Hence, the systems are sensitive to uncertainties to varying extents. A risk has 
been identified that potential economic benefits can be missed out on if uncertainties are not 
considered, either by not meeting the demand due to lack of capacity or by not being able to capitalize 
on low electricity prices. The system with a greater mix of production technologies was less sensitive 
in terms of investments and total system cost, to the uncertain parameters. 
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Appendix 

A. Full load hours from deterministic optimization 
 
Full load hours of the units in system HOB in the cases from the deterministic optimization. 

 
 

Full load hours of the units in system CHP in the cases from the deterministic optimization. 
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B. Full load hours by scenario from stochastic optimization 
 
FLH in system HOB in each of the scenarios from the stochastic optimization. Within an electricity 
price the demand goes from low to high in the three scenarios. 

 
FLH in system HOB in each of the scenarios from the stochastic optimization. Within an electricity 
price the demand goes from low to high in the three scenarios. 
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C. Total system cost  
 
Table of the total system cost in each scenario from the stochastic model. The cost is normalized to 
the deterministic optimization of the base case. The fixed investments are fixed from the deterministic 
optimization while the stochastic is the investments from the stochastic optimization. 
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