
 

 

 

DIGITAL RECEIVER FOR SALSA 

 

 

 

 

 

Umair Naeem 

Nabeel Ahmed Durrani 

 

 

 

 

 

 

Group of Advanced Receiver Development (GARD) 

Radio and Space Science with Onsala Space Observatory 

CHALMERS UNIVERSITY OF TECHNOLOGY 

Göteborg, Sweden 2010 

 

 
 





 

 

i 

ABSTRACT 

The SALSA receiver uses a 2.3m parabolic antenna steerable in azimuth and elevation by motor driven mount. 

A horn with a probe integrated with a Low Noise Amplifier (LNA) is mounted in the focus of the parabola. The 

horn and the antenna are optimized for 1420 MHz, which is the frequency at which atomic hydrogen in the 

Milky Way is emitting.  

This Master thesis, entitled "Digital Receiver for SALSA", describes the upgrade of the existing receiver and 

antenna control. We designed the new digital receiver system that use a reconfigurable I/O (RIO) FPGA in 

conjunction with antenna control software and a software receiver (Software-Defined-Radio or SDR).  

 

The purpose of upgrading the system was to include some enhancements in the antenna controller as well as 

in the receiver. In the previous system a C program just worked as a GUI for the user, taking data and sending 

it to a microcontroller based hardware system, which decodes this data signal and sends appropriate signal to 

the antenna mount and then reads feedback encoder. In this project, a flexible and scalable software is 

realized to replace this complicated hardware. In the upgraded receiver, a Antenna Motion Controller 

software completely controls antenna. The software is designed in such a way that it does not miss even a 

single feedback pulse (there are 4 feedback pulses in one degree). The accuracy factor of software is 0.25 

degrees.  

The old receiver was hardware-based, thus every new configuration required new hardware. However,  in our 

case, the software receiver is highly flexible in which a wide range of configuration is possible without 

changing or upgrading existing hardware. The new receiver also works in real-time mode (real-time signal 

processing) while the old one used to do store-and-process. This upgrade reduces the user interaction to 

continuously obtain signal spectra, and also minimizes the hardware needs.  

  



 

 

ii 

  



 

 

iii 

ACKNOWLEDGEMENTS 

First of all we would like to thank Almighty ALLAH, the most merciful and beneficent, who always shows us 

path of success and helps us in every moment of life and to whom we have to return one day. We would also 

like to honor our parents who always pray for us and give us courage to work hard in every step of studies. 

 

Special thanks to our supervisor Miroslav Pantaleev and our examiner Vincent Desmaris for supervising us in 

every single stage of work and managing their time from their tight schedule. Many Thanks to Lars Peterson 

and Michael Olberg (in OSO) for providing a great software support and to Magne (in OSO) who not only 

helped us in initial antenna controller design but also gave us time to troubleshoot during the final testing 

stages. Thanks to Cathy Horellou (in OSO), Rune Bystrom (in OSO) and Per Bjorklund (in OSO) for providing 

help regarding antenna pointing towards source, regarding existing receiver, providing feedback on final 

results and regarding amplifier design. Thanks to all of the OSO people for their moral support and for 

providing a good working environment. 

  

 

 

 



 

 

iv 

  

 

 

  



 

 

v 

TABLE OF CONTENTS 
 

CHAPTER 1 __________________________________________________________________ 1 

INTRODUCTION TO RADIO ASTRONOMY RECEIVERS _____________________________ 1 

1.1 TRANSMISSION AND RECEPTION ................................................................................................. 1 

1.2 RADIO ASTRONOMY RECEIVERS ................................................................................................... 1 

1.3 OBSERVING TECHNIQUES ............................................................................................................ 3 

1.4 THESIS MOTIVATION ................................................................................................................... 3 

1.5 THESIS ORGANISATION ................................................................................................................ 3 

CHAPTER 2 ____________________________________________________________ 5 

OVERVIEW OF EXISTING SYSTEM AND SOME OF THE SOFTWARE-DEFINED-RADIO (SDR) 

ARCHITECTURES _________________________________________________________ 5 

2.1 OVERVIEW OF THE EXISTING SYSTEM ........................................................................................... 5 

2.1.1 Feed Horn ..........................................................................................................................................................7 

2.1.2 Parabolic Reflector Antenna ..............................................................................................................................8 

2.2 SOFTWARE-DEFINED-RADIO (SDR) ............................................................................................... 9 

2.3 REVIEW OF AVAILABLE SDR PLATFORMS ...................................................................................... 9 

2.3.1 NI PXIe-5641R [7] ...............................................................................................................................................9 

2.3.2 WinRadio [1] ......................................................................................................................................................9 

2.3.3 Vanu [8] ............................................................................................................................................................10 

2.3.4 Pentek Model 7142-428 [9] .............................................................................................................................10 

2.3.5 USRP and GnuRadio .........................................................................................................................................10 

2.4 CHOICE OF SDR PLATFORM ........................................................................................................ 11 

CHAPTER 3 ___________________________________________________________ 13 

DESIGN FOR THE SOFTWARE RECEIVER USING GNURADIO_______________________ 13 

3.1 INTRODUCTION ......................................................................................................................... 13 

3.2 DESIGN ANALYSIS ...................................................................................................................... 13 

3.3 IMPLEMENTATION IN GNURADIO AND USRP2 ........................................................................... 13 

3.3.1 USRP2 Source ...................................................................................................................................................15 

3.3.2 FFT Filters .........................................................................................................................................................15 

3.3.3 Power Spectrum and Averaging.......................................................................................................................15 

3.3.4 (Signal-Reference)/Reference ..........................................................................................................................15 

3.3.5 Conversion to Time Domain and FFT Scope ....................................................................................................16 

3.3.6 File Save ...........................................................................................................................................................16 

3.4 LAB VERIFICATION ..................................................................................................................... 17 

3.5 TESTING IN REAL ENVIRONMENT ............................................................................................... 20 

  



 

 

vi 

CHAPTER 4 ___________________________________________________________ 23 

ANTENNA MOTION CONTROLLER HARDWARE CONFIGURATION ___________________ 23 

4.1 REVIEW OF THE AVAILABLE HARDWARE .................................................................................... 23 

4.1.1 Rabbit op 7210 eDisplay ..................................................................................................................................23 

4.1.2 Trio Motion CAN 16-I/O ...................................................................................................................................23 

4.1.3 NI compactRIO Series.......................................................................................................................................23 

4.1.4 Galil’s DMC family ............................................................................................................................................23 

4.2 Choice of hardware for Antenna Motion Controller .................................................................... 24 

4.3 SYSTEM BLOCK DIAGRAM .......................................................................................................... 24 

4.3.1 Rio 47200 .........................................................................................................................................................24 

4.3.2 Amplifier Box....................................................................................................................................................25 

4.3.3 Antenna Motor ................................................................................................................................................26 

4.4 CONFIGURATION OF RIO ........................................................................................................... 27 

CHAPTER 5 ___________________________________________________________ 29 

ANTENNA MOTION CONTROLLER SOFTWARE _________________________________ 29 

5.1 OVERVIEW ................................................................................................................................ 29 

5.2 PROGRAM FLOW ....................................................................................................................... 29 

5.2.1 Steering of Antenna .........................................................................................................................................29 

5.2.2 Initialization of Antenna Position .....................................................................................................................30 

5.2.3 Noise Diode ......................................................................................................................................................30 

5.2.4 Saving Coordinates in a File .............................................................................................................................31 

5.2.5 Loading coordinates From File .........................................................................................................................31 

5.2.6 Graphical User Interface ..................................................................................................................................31 

5.3 PROGRAM’S MAIN PARTS .......................................................................................................... 33 

5.3.1 Interfacing With RIO ........................................................................................................................................33 

5.3.2 Detecting feedback Pulses ...............................................................................................................................33 

5.4 Outdoor Testing ........................................................................................................................ 34 

CHAPTER 6 ___________________________________________________________ 35 

CONCLUSION AND FUTURE WORK __________________________________________ 35 

REFERENCES _________________________________________________________ 37 

APPENDIX A __________________________________________________________ 39 

ANTENNA MOTION CONTROLLER C++ CODE ___________________________________ 39 

APPENDIX B __________________________________________________________ 47 

ELECTRICAL DIAGRAM OF AMPLIFIER BOX ___________________________________ 47 

APPENDIX C __________________________________________________________ 49 

INSTALLATION OF SOFTWARES ____________________________________________ 49 

 



 

 

vii 

LIST OF FIGURES AND TABLES 

Figure 1-1: A typical block diagram of a hardware-based Radio-Astronomy-Receiver with Analog or Digital Correlator __ 2 

Figure 1-2: A typical block diagram of a hardware-based Radio-Astronomy-Receiver with digital processing to calculate 

Power Spectrum_____________________________________________________________________________________ 2 

Figure 2-1: Block Diagram of the Existing System __________________________________________________________ 5 

Figure 2-2: Existing SALSA Receiver (Q-Radio) Block Diagram ________________________________________________ 6 

Table 2-1: Specification of the Existing System For Use in the Poject ___________________________________________ 7 

Figure 2-3: Feed Horn Used Mounted Over the Antenna_____________________________________________________ 7 

Figure 2-4: Top and Side View of the Feed Horn ___________________________________________________________ 8 

Figure 2-5: Parabolic Reflector Antenna__________________________________________________________________ 8 

Figure 2-6: Parabola Arc of the Reflector Antenna _________________________________________________________ 8 

Table 2-2: Comparison Between Different SDR Platforms ___________________________________________________ 11 

Figure 3-1: Functional Block Diagram of Software Receiver _________________________________________________ 14 

Figure 3-2: Power Spectrum And Averaging Block _________________________________________________________ 15 

Figure 3-3: Observation Block _________________________________________________________________________ 15 

Figure 3-4: Conversion to Time-Domain Block ____________________________________________________________ 16 

Figure 3-5: Software Receiver Snapshot _________________________________________________________________ 17 

Figure 3-6: Block Diagram of Simulation ________________________________________________________________ 18 

Figure 3-7: Test Setup _______________________________________________________________________________ 18 

Figure 3-8: SIGNAL and REFERENCE Spectra Observed in Testing _____________________________________________ 19 

Figure 3-9: Observation of Signal within Noise using (SIG-REF)/REF Technique __________________________________ 19 

Figure 3-10: Testing in Outdoor Environment ____________________________________________________________ 21 

Figure 3-11: Spectra of Hydrogen Line Taken From Existing System (in Units of Temperature) _____________________ 21 

Figure 3-12: Spectra When Antenna is Misaligned FromThe Hydrogen Source __________________________________ 22 

Figure 3-13: Spectra When Antenna is Aligned Towards Hydrogen Source _____________________________________ 22 

Figure 4-1: Block diagram for antenna motion controller ___________________________________________________ 24 

Figure 4-2: Rio 47200 _______________________________________________________________________________ 25 

Figure 4-3: Amplifier Box (inside view) __________________________________________________________________ 25 

Figure 4-4: Amplifier box (front view) ___________________________________________________________________ 26 

Figure 4-5: Opto-couplers and the Wheel Providing Feedback of Antenna Position ______________________________ 26 

Table 4-1: Physical Interfaces Connected to RIO __________________________________________________________ 27 

Figure 5-1: Flow Graph of Antenna Steering _____________________________________________________________ 29 

Figure 5-2: Flow Graph of Resetting Antenna ____________________________________________________________ 30 

Figure 5-3: Flow Graph of Noise Diode __________________________________________________________________ 31 

Figure 5-4: Flow Graph of Saving File ___________________________________________________________________ 31 

Figure 5-5: Flow Graph of Loading File __________________________________________________________________ 31 

Figure 5-6: The Main GUI of Antenna Motion Controller Software ____________________________________________ 32 

Figure 5-7: GUI When Saving Coordinates to a .txt File _____________________________________________________ 32 

Figure 5-8: GUI When Loading Coordinates From a .txt File _________________________________________________ 33 

Figure 5-9: Figure Elaborating Detection of Feedback Pulses ________________________________________________ 34 

Figure 5-10: Antenna Motion Controller software testing in real environment __________________________________ 34 

  



 

 

viii 

 



 

 
1 

CHAPTER 1 

INTRODUCTION TO RADIO ASTRONOMY 

RECEIVERS 

1.1 TRANSMISSION AND RECEPTION 

In typical scenario, Radio Frequency or RF signals are used to communicate information (Audio, Voice, Video, 

Data etc) from one place to another. The Information signal is modulated on a RF carrier wave and 

transmitted using antennas (wireless case) which convert electrical signals into electromagnetic waves that 

can travel though a wireless medium. On the receiver side, the same frequency signal is received using the 

antenna and fed to the receiver consisting of filters, amplifiers, down converters and demodulated to retrieve 

the transmitted information. In radio astronomy, since there are no man-made transmissions, it is usually 

required only to amplify very weak signals from sky and introduce some techniques to remove noise to get 

some sort of profile (frequency, shape, bandwidth etc) of the incoming signal. 

1.2 RADIO ASTRONOMY RECEIVERS 

Radio astronomy is a subfield of astronomy that studies celestial objects at radio frequencies. The initial 

detection of radio waves from an astronomical object was made in the 1930s, when Karl Jansky observed 

radiation coming from the Milky Way. Subsequent observations have identified a number of different sources 

of radio emission. These include stars and galaxies, as well as entirely new classes of objects, such as radio 

galaxies, quasars, pulsars, and masers. The discovery of the cosmic microwave background radiation, which 

provided compelling evidence for the Big Bang, was made through radio astronomy [1]. 

Radio astronomy is conducted using large radio antennae referred to as radio telescopes [1] that detect weak 

signals from the sky. There are two types of receivers: direct detectors and heterodyne detectors. In 

heterodyne detectors one or more mixer stages are involved to down-convert the incoming RF signal to 

reduce processing overheads. After detecting a signal, its power spectrum is calculated using correlators or 

FPGA based Fourier Transform receivers and is used to further process the signal in order to read and get 

information about source of emission. These types of receivers are usually termed as spectrometers.  

Figure 1-1 and 1-2 show typical and simplified low frequency (lower than 100 GHz) Radio-Astronomy-Receiver 

(RAR) or Spectrometer. For higher frequencies and for more sensitive receivers with ultimate performance 

the first stage of LNA is not present [2]. As shown on figure 1-1, a correlator calculates the power spectrum 

based on Wiener-Khinchin-Theorem which states that the power spectrum of a signal is the Fourier transform 

of its autocorrelation function (ACF). The correlator might be analog or digital. For a digital correlator, the 

signal is first digitized using analog-digital converter (ADC). Figure 1-2, shows a digital receiver, which 

incorporates an A/D down-conversion. This type of receiver is built using modern high speed ADCs and 

powerful FPGAs. This works on the principle that the magnitude square of the Fourier transform is the power 

spectrum. 

  



Digital Receiver For SALSA 

Chapter 1: Introduction to Radio Astronomy Receivers 
Umair Naeem 
 

 
2 

 

Figure 1-1: A typical block diagram of a hardware-based Radio-Astronomy-Receiver with analog or digital Correlator 

 

 

Figure 1-2: A typical block diagram of a hardware-based Radio-Astronomy-Receiver with digital processing to calculate Power 
Spectrum 

 

The existing SALSA receiver is based on what is shown in figure 1-1. Figure 1-2 shows the system that is 

implemented in software and will be discussed in detail.  

After being received from antenna (typically parabolic reflector), the incoming signal is amplified by a high 

gain Low Noise Amplifier (LNA) which is down converted to Intermediate Frequency (IF) using mixers in order 

to facilitate further processing. Then, the Analog-to-Digital conversion takes place so that the signal can be 

digitally processed in modern receivers. A Digital-Down-converter down converts the IF signals into baseband 

for processing by dedicated or general purpose (PC) processors. The output can be in the form of display 

showing some spectra and/or data files.  

 



 

 
3 

1.3 OBSERVING TECHNIQUES 

There are different observation techniques to observe weak signals from the sky. These are defined below. 

 Frequency-Switching, in which the spectrum at exactly the frequency of interest is 

observed/calculated first for a certain period of time and stored. Then the local oscillator frequency of 

the mixer is changed to a few MHz away from frequency of interest and then the spectrum is 

calculated at that frequency. The spectrum at exact frequency of interest is termed Signal and the 

spectrum at some offset frequency is termed Reference.  

 Position-Switching, in which first for a few moments the spectrum at exactly the frequency of interest 

and exactly at the right position on the sky is observed/calculated and stored. Then the direction of 

the antenna is changed only to some other position from where there is no emission at the frequency 

of interest and then the spectrum is calculated at the same frequency of interest. The spectrum at 

exact frequency of interest observed from the exact position of interest is termed Signal and the 

spectrum observed from offset position is termed Reference. 

 A signal processing technique is employed to make the weak signal at frequency of interest further 

detectable within the noise which in mathematical form is 

 

1.4 THESIS MOTIVATION 

The usual approach (hardware-based) to detect signals has some limitations like to adapt to new services and 

standards. Each element in the receiver usually works for a particular specification and needs to be changed 

or re-designed or re-purchased if there is some change in the receivers’ pecifications (Frequency, Gain, 

Bandwidth, Weight etc). This increases the hardware cost and is time-consuming (design, purchase and 

installation). Software-Defined-Radio (SDR), as described later, can do almost all of the said processing using 

software running on PCs with a general-purpose single-piece device. Re-designing the software is time and 

cost effective. Considering figure 1-2, the section in dotted lines (a digital acquisition device) is usually 

integrated into a single device (USRP2 in our case) with configurable parameters and all the remaining signal 

processing is done in software which gives more flexibility over the entire-hardware-based approach.  

The second part of the project deals with steering of the antenna, saving and loading antenna position in 

some file (Antenna Motion Controller Software). In the existing system, the control of antenna is divided into 

two parts; the C program and Q-radio (microcontroller based hardware). With the upgrade, the antenna is 

completely controlled by a single C program. This program is flexible enough to easily change the number of 

pulses per degree, position of the closed switches both in azimuth and elevation directions, initial position of 

antenna etc. Also if one wants to reconfigure the interface between antenna and the C program for future 

extensions, one would just need to change some parameters in the program (clearly commented). The 

antenna motion controller software is flexible enough to be used with different antenna mounts due to the 

use fast sampling to read feedback pulses from antenna. 

 

 

1.5 THESIS ORGANISATION 



Digital Receiver For SALSA 

Chapter 1: Introduction to Radio Astronomy Receivers 
Umair Naeem 
 

 
4 

The report comprises of two parts, Antenna Steering and Control Software and a Software-based Digital 

Receiver. These two tasks were completed by Nabeel Ahmed Durrani and Umair Naeem respectively and 

their reporting is organized as follows, 

Chapter 2 gives an overview of the existing system and currently available Software-Defined-Radio (SDR) 

architectures. Chapter 3 covers the design analysis done for the receiver using GNU Radio and future 

possibilities and extension in the system. Chapter 4 covers hardware configuration, physical interfaces 

connected to different hardware and characteristics of hardware components used in this project. Chapter 5 

deals with different aspects of the antenna motion controller software. Chapter 6 includes conclusions and 

suggests future work of this thesis. 

 



 

 
5 

CHAPTER 2 

OVERVIEW OF EXISTING SYSTEM AND SOME 

OF THE SOFTWARE-DEFINED-RADIO (SDR) 

ARCHITECTURES 

2.1 OVERVIEW OF THE EXISTING SYSTEM  
 

 

Figure 2-1: Block Diagram of the Existing System 

Figure 2-1 shows the existing system used for the observation of the hydrogen line. After the amplification in 

the LNA the signal is carried by coaxial cable to a preamplifier box where it is further amplified and filtered in 

a narrow bandwidth filter to remove interference signals around the 1420MHz line. The receiver box (named 

Q-Radio) accommodates the down-conversion circuitry, the driving IC's for the antenna motors, the 

correlator and a micro-controller which controls all functions and communicates with a PC. 

In the receiver box, the signal from the preamplifier box is further amplified and then down-converted to an 

Intermediate Frequency (IF) and a total bandwidth of 2,4 MHz using Side Band Separation technique. The 

microcontroller performs auto-correlation of the signal with a resolution of 12,5 kHz and also gives the 

possibility to integrate over a certain period of time. This pattern is sent to the PC via serial port. A Linux 

based software calculates the frequency spectrum and logs the data. The user enters the azimuth and 

elevation coordinates for the observation in the software and then the computer communicates with the 

microprocessor which commands the mount motors and reads its current position. Figure 2-2 shows the 

detailed block diagram of the existing receiver in Onsala Space Observatory developed by Rune Byström (Åre 

Elektronik). It can be seen that the RF signal is split in two branches and are mixed with a sinusoidal signal 



Digital Receiver For SALSA 

Chapter 2: Overview Of Existing System And Some of the SDR Architectures 
Umair Naeem 
 

 
6 

from a local oscillator with a frequency of about 1418 MHz which are phase shifted with 90 degrees. After 

mixing, both signals are digitized and then added together after introducing additional 90 degrees phase shift 

in the corresponding channel to cancel the unwanted side band. 

 

Figure 2-2: Existing SALSA Receiver (Q-Radio) Block Diagram [3] 



Digital Receiver For SALSA 

Chapter 2: Overview Of Existing System And Some of the SDR Architectures 
Umair Naeem 
 

 
7 

One of the main objectives for this thesis is to replace the correlator with a general purpose digital front-end 

device named USRP2 from Ettus Research and implement a new software for data analysis based on GNU 

radio. The hardware specifications of the existing system available for the project, are summarize in the table 

below. 

Table 2-1: Specification of the existing system for use in the project 

Components Specification 
2.3m Antenna F/D : 0.4 

LNA Gain: 28 dB, NF: 0.34 dB, 1420 MHz 

Amplifier/Filter Range: 1000-2000 MHz, Gain: 24 dB 

Feed Horn Inner Dia: 15.5 cm/0.733 , 1420 MHz 

 

2.1.1 Feed horn 

 

 

Figure 2-3: Feed horn used mounted over the antenna 

The feed horn is a corrugated aperture-controlled horn in which the phase variation over the aperture is 

small. By referring the design graph in [4, page 339], the directivity was calculated to be about 6 dB. 



Digital Receiver For SALSA 

Chapter 2: Overview Of Existing System And Some of the SDR Architectures 
Umair Naeem 
 

 
8 

 

Figure 2-4: Top and Side View of the Feed Horn 

 

2.1.2 Parabolic Reflector Antenna 

 

Figure 2-5: Parabolic Reflector Antenna 

The Antenna is a parabolic mesh-surface reflector having the diameter of 2.3 meters. Following is the 

parabola arc of the reflector. From this graph, the F/D ratio was calculated to be about 0.4. 

 

Figure 2-6: Parabola Arc of the Reflector Antenna 

-1500 -1000 -500 0 500 1000 1500
-400

-300

-200

-100

0



Digital Receiver For SALSA 

Chapter 2: Overview Of Existing System And Some of the SDR Architectures 
Umair Naeem 
 

 
9 

2.2 SOFTWARE-DEFINED-RADIO (SDR) 

A software-defined radio (SDR) system is a hardware-cum-software-based radio communication system 

which can tune to any frequency band and decode different modulations/encoding schemes across a large 

frequency spectrum by means of a programmable hardware, which is controlled by software. An SDR 

performs significant amounts of digital signal processing in a general purpose computer (PC), or a 

reconfigurable piece of digital electronics [5]. SDR has evolved with advancement in computing machines and 

high-speed analog-digital (A/D) and digital-analog (D/A) converters. Thus SDR allows a single device to 

support a wide range of capabilities previously available only through multiple products. 

Usually it is required that signals received by an antenna should be digitized so that SDR may use these 

digitized samples at RF frequencies (around GHz frequencies) to perform further signal processing steps (IF 

conversion, filtering, baseband conversion etc). But due to certain limitations like unavailability of  A/D 

converters at very high frequencies (starting from a few GHz) and very high speed general purpose 

computers, digitization takes place after the IF or baseband demodulator stage. That typically means that 

hardware is still required to convert the signals of interest into and out of the “baseband” frequencies in the 

digital domain, but all of the complex processing performed at baseband is handled in the digital software 

domain [6]. Yet, such hardware is usually fairly simple comprising of a local oscillator and mixer, and a pair of 

low-pass filters.  

2.3 REVIEW OF AVAILABLE SDR PLATFORMS 

There are many platforms or architectures available to perform signal processing together with software 

domain. A brief introduction to some of the devices that use SDR is given below: 

2.3.1 NI PXIe-5641R [7] 

The NI PXIe-5641R uses LABView software to develop signal processing algorithms and applications. The NI 

PXIe-5641R is an intermediate frequency (IF) transceiver for applications such as radio-frequency 

identification (RFID) tests, spectral monitoring, real-time spectrum analysis, RF dynamic test, and software-

defined radio (SDR). It features: 

 100 MS/s A/D converters with 20 MHz bandwidth digital down-converters (DDCs). 

 200 MS/s D/A converters with 20 MHz bandwidth digital up-converters (DUCs). 

 Radio frequency (RF) applications at frequencies up to 2.7 GHz with bandwidths up to 20 MHz. 

2.3.2 WinRadio [1] 

WiNRADiO is the name of a manufacturer of radio communication equipment as well as a brand name of 

applied software radio receivers, antennas and accessories. Applications of WiNRADiO receivers include 

general purpose radio, radio astronomy, or SETI (Search for Extraterrestrial Intelligence). 

WinRadio has developed its own receivers (G303 etc) with software to digitize the signal coming from 

antenna and process it in software domain. This includes tuning the receiver, controlling the attenuator 

and gain, as well as reading the signal strength. To complete a third-party software-defined receiver based 

on hardware platform, all that is needed is DSP software (running on the PC), to filter and demodulate the 

low IF (12 kHz) signal made available by the receiver. This 12 kHz IF signal is available at the output of the 

http://www.astro.helsinki.fi/~lehtinen/mettheory.html


Digital Receiver For SALSA 

Chapter 2: Overview Of Existing System And Some of the SDR Architectures 
Umair Naeem 
 

 
10 

receiver, and is usually externally connected to the line input of the sound card. For standard USB-

connected G303e receivers, the IF signal is available via the USB interface. 

2.3.3 Vanu [8] 

Vanu is a software radio that is primarily used for mobile communication. It utilizes a software radio base 

station to form software RAN (Radio Access Network) solutions.  Vanu also developed MultiRAN to 

support multiple virtual base stations (vBTS) running on a single BTS hardware platform. Different 

resources like antennas, BTS electronics, and backhaul can all be shared. MultiRAN allows multiple 

operators to virtually share a single physical network. This allows operators to experience the cost benefit 

of shared infrastructure without the cost, complexity and risk associated with traditional network sharing 

arrangements. 

2.3.4 Pentek Model 7142-428 [9] 

Digital transceiver with digital down converter and interpolation filter is a complete software radio system 

in a PMC/XMC module with a decimation range from 2 to 65,536 and interpolation range from 2 to 32,768. 

It includes four A/D and one D/A converters with bandwidths up to 40 MHz and above for connection to 

HF or IF ports of a communications or radar system. 

2.3.5 USRP and GnuRadio 

GnuRadio (http://www.gnu.org/software/gnuradio) provides a comprehensive toolkit for the 

experimentalist in SDR to produce applications in a variety of disciplines.  The work originated at MIT, 

with Eric Blossom shepherding its emergence as a GPL-licensed toolkit that is seeing significant usage by 

RF experimenters and engineering students worldwide [6]. 

The GnuRadio project resulted in the Universal Software Radio Peripheral (USRP) which is a digital 

acquisition (DAQ) system containing four 64 MS/s, 12-bit A/D converters (ADCs), four 128 MS/s, 14-bit 

D/A converters (DACs), and supports USB 2.0 interface. The USRP is capable of processing signals with 16 

MHz of bandwidth.  

The USRP takes daughter-cards to map the frequency ranges of interest into the “baseband” that is visible 

by the A/D hardware. Several different daughter-cards are available, but the cards of most interest to 

amateur radio astronomy enthusiasts would be [6]: 

● DBS_RX  - RX only, covers 850-2250 MHz 

● TV_RX – RX only, covers 50-800Mhz 

 

The DBS_RX converts the incoming RF into complex signals in a direct-conversion approach (with  the 

signals extending from DC up to the low-pass cut-off of the receive converter) [6]. 

The TV_RX converts the incoming signal into a 5.75MHz IF. The desired frequency and bandwidth are 

settable using the GnuRadio toolkit and GUI [6]. 

The USRP was developed by Matt Ettus [1]. Later on the USRP2 was built on the success of the original 

USRP, and added new features [10] like Gigabit Ethernet, 25 MHz bandwidth etc. 

http://www.pentek.com/products/Detail.cfm?Model=7142-428
http://www.gnu.org/software/gnuradio
http://en.wikipedia.org/wiki/Universal_Software_Radio_Peripheral
http://en.wikipedia.org/wiki/Data_acquisition
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Digital-to-analog_converter
http://en.wikipedia.org/wiki/USB
http://en.wikipedia.org/w/index.php?title=Matt_Ettus&action=edit&redlink=1


Digital Receiver For SALSA 

Chapter 2: Overview Of Existing System And Some of the SDR Architectures 
Umair Naeem 
 

 
11 

GnuRadio is an open-source SDR toolkit which contains a library of signal processing blocks (like in 

Simulink/Matlab) which are interconnected like a flow graph. Each signal processing block is written in 

C++. The processing blocks in GnuRadio are arranged or organised with a Python-based applications 

framework. The Python code manages interconnection of processing blocks, and also provides user-

interface functions. Table 2-2 shows the comparison between different SDR platforms. 

Table 2-2: Comparison between different SDR platforms 

NI PXIe-5641R WinRadio Vanu 
Pentek Model 

7142-428 
USRP2 and 
GNURadio 

 2 IF inputs and 
2 IF outputs 

 20 MHz real-
time IF 
bandwidth 

 Xilinx Virtex-5 
SX95T FPGA 
optimized for 
DSP 

 100 MS/s 14-bit 
ADC 

 200 MS/s 14-bit 
DAC 

 Built-in digital 
upconverters 
and 
downconverter
s 

 >76 dB input 
SNR 

 250 kHz to 80 
MHz IF center 
frequency 

 -143 dBm/Hz 
input noise 
density 

 

 IF of 12 kHz 

 USB interface 

  Extraordinary 
sensitivity 

  Real-time 
spectrum 
analyzer 

 Spot-on tuning 
in 1Hz steps 

 Accurate signal 
strength 
indicator 

 Very low phase 
noise 

 DRM decoder 
option  

 Continuously 
variable IF 
bandwidth 1Hz 
- 15kHz 

 User adjustable 
filter selectivity 

 Built-in test and 
measurement 
instrumentatio
n 

 Interactive 
block diagrams  

 Frequency: 850 MHz, 
1800 MHz, 1900 MHz 

 Output Power: 20W per 
carrier 

 Backhaul: IP over 
Ethernet or E1/T1 

 Interfaces: Antenna ports 
(50 ohm N female), GSM 
– BTS to BSC (GSM A-bis 
over IP), 

 CDMA – BTS to BSC 
(CDMA A-bis over IP) 

 Supported Standards: 
GSM/GPRS/Edge/CDMA2
000 1xRTT 

 Sensitivity: GSM (-112 
dBm), CDMA (-126 dBm) 

 Capacity: GSM (upto 48 
carriers), CDMA (upto 24 
carriers) 

 Full scale input: 
10 dBm into 50 
ohms 

 3 dB passband: 
250 kHz to 300 
MHz 

 ADC: Sampling 
rate (1 MHz to 
125 MHz) 

 Resolution: 14 
bits 

 Decimation: 1 
to 4096 

 Input B/W: 40 
MHz 

 Upconverte 
Sample Rate: 
500 MHz max. 
and resolution 
16 bits 

 Interface: PCI 
Bus (64-bit, 66 
MHz), DMA: 9 
channel 
demand-mode 
and chaining 
controller 

 Gigabit 
Ethernet 
interface 

 25 MHz of RF 
bandwidth 

 Xilinx Spartan 3-
2000 FPGA 

 Dual 100 MHz 
14-bit ADCs 

 Dual 400 MHz 
16-bit DACs 

 1 MByte of 
high-speed 
SRAM 

 Locking to an 
external 10 
MHz reference 

 1 PPS input 

 Configuration 
stored on 
standard SD 
cards 

 The ability to 
lock multiple 
systems 
together for 
MIMO 

 

2.4 CHOICE OF SDR PLATFORM 

Comparing the different SDR platforms available, GnuRadio with USRP2 was chosen in this thesis to develop 

SDR for the astronomical spectrometer for the detection of Hydrogen line at 1420 MHz. For this purpose, 

DBS_RX daughterboard is used to get RF and convert it to IF and baseband for further processing. USRP2 and 

Gnuradio were chosen for the following reasons,  

 Input signal frequency from 800 MHz to 2.4 GHz 

 Largest Single Sided bandwidth of 25 MHz 

 Open-Source (Cost-effective and expandable) solution 

http://www.pentek.com/products/Detail.cfm?Model=7142-428
http://www.pentek.com/products/Detail.cfm?Model=7142-428


Digital Receiver For SALSA 

Chapter 2: Overview Of Existing System And Some of the SDR Architectures 
Umair Naeem 
 

 

12 

 
  



 

 

13 

CHAPTER 3 

DESIGN FOR THE SOFTWARE RECEIVER 

USING GNURADIO 

3.1 INTRODUCTION 

Keeping in mind the main goals of the project, the whole existing correlator receiver was converted into 

software receiver using the GnuRadio software platform. The USRP2 serves as an RF front end to get the 

digital signals for GnuRadio.  

3.2 DESIGN ANALYSIS 

The signal flow in the existing receiving system was as follows, 

 The RF signal coming from the antenna, amplified through the LNA (and pre-amplified as necessary), 

is fed into an IF stage which converts RF into IF. 

 This IF is used to calculate the frequency content of the signal hence the power spectrum is calculated 

in the correlator and fed into an accumulator to integrate several spectra for averaging purpose. This 

averaging ensures the removal of as much random noise as possible. 

 The observations were done using frequency-switching. The spectrum at exactly the Hydrogen line 

(1420MHz) is calculated and stored for a certain period of time. Then the local oscillator frequency of 

the mixer (IF stage) is changed to a few MHz away from Hydrogen line and then spectrum is 

calculated at that frequency. The Spectrum at exact the Hydrogen line is termed Signal and spectrum 

at some offset frequency from Hydrogen line is termed Reference. 

 A signal processing technique is employed to make the weak Hydrogen line signal further detectable 

within the noise which in mathematical form is 

 

 

3.3 IMPLEMENTATION IN GNURADIO AND USRP2 

According to the above methodology for the receiver, the digital software receiver was implemented in the 

chosen SDR architecture as follows, 

 The RF signal coming from Antenna, amplified through LNA (and pre-amplified as necessary), is fed 

into USRP2 which has a DBS_RX daughter board that contains an IF stage for converting RF into IF and 

then baseband with a maximum bandwidth of 50 MHz. This baseband signal is available through 

Ethernet interface to GnuRadio running on a PC for further processing. GnuRadio makes use of 

software filters and FFT to calculate and display the power spectrum. 

 There is some limitation in GnuRadio. It works well in real-time, not in store-and-process method. In 

order to have two slightly different frequency signals (Signal and Reference), frequency switching is 

not used. Instead, the whole band consisting of the signal as well as the reference was obtained for 

processing. In our case this was as follows 

 Signal at 1420.4 MHz with 2.5 MHz bandwidth (1419.15 – 1421.65) MHz. 



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

14 

 Reference at 1417.9 MHz with 2.5 MHz bandwidth (1416.65 – 1419.15) MHz. 

 Total bandwidth comprising of Signal and Reference thus became 5 MHz. 

 The signal and reference signals are then filtered through separate filters, their FFT is calculated, 

averaged and finally the above mathematical equation is applied to detect the required signal. 

Figure 3-1 Functional block diagram of the developed software receiver. 

 

 
Figure 3-1: Functional Block Diagram of Software Receiver 

  



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

15 

3.3.1 USRP2 Source 

This source block defines the parameters to get signals from USRP2. “Source” refers to the signal flow 

starting from USRP2 as seen from the GnuRadio point of view. Parameters are defined below, 

Frequency: This is the frequency which will be down-converted to 0 Hz (baseband). It was set to the center 

of Reference frequency band i.e. 1417.9 MHz. 

Decimation: This parameter sets the decimation that USRP2 should perform. Normally since the USRP2 

provides a bandwidth of 50 MHz it means that the sample rate of the output signal from USRP2 is at 100 

Msamples/sec (twice of bandwidth according to Nyquist Theorem). We require 5 MHz of bandwidth so we 

need 10 Msamples/sec of sample rate. Therefore decimation should be 100/10 = 10.  

3.3.2 FFT Filters 

There are two FFT filters to filter out Reference and Signal. The  FT filter performs filtering in frequency 

domain which is faster than time domain filtering. 

3.3.3 Power Spectrum and Averaging 

 

Figure 3-2: Power Spectrum and Averaging Block 

These blocks calculate the Fast-Fourier-Transforms (FFT) of both Reference and Signal and then take the 

square of the magnitude to get the power spectrum. Averaging filters perform averaging to smoothen the 

signals and remove as much random noise as possible. 

3.3.4 (Signal-Reference)/Reference 

 

Figure 3-3: Observation Block 

These blocks actually perform the mathematical operation described above. They are implemented with 

the following simplification, 

 

 

 



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

16 

3.3.5 Conversion to Time Domain and FFT Scope 

 

Figure 3-4: Conversion to Time-Domain Block 

This block converts the frequency domain signal back into time domain. For this, it takes the inverse FFT, 

since we need to display the power spectrum of (Sig - Ref)/Ref and the FFT scope does this on time domain 

signal. The FFT Scope also provides with additional averaging options to smoothen the signal as much as 

required. 

The complex conjugate block takes the complex conjugate of the incoming time domain signal. This is to 

invert (flip) the spectra. The previous blocks actually process the signals and the resultant signals’ spectra 

is flipped to negative side of the frequency scale. In order to re-flip it to positive side of the frequency 

scale, this block is added here. 

3.3.6 File Save 

This sink block is used to store the time domain signal in binary file format. This file can be read by a File 

Source block. 

Following figure shows the software receiver made in a tool (named GnuRadio Companion or GRC) of 

GnuRadio which provides graphical user interface to design systems.   



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

17 

 

Figure 3-5: Software Receiver Snapshot 

 

3.4 LAB VERIFICATION 

Before testing the receiver in real environment, a setup was made to test the software receiver for eventually 

debugging the software, checking each of the receiver blocks and investigating the sensitivity issues since it 

would be a cumbersome job to setup the PC with all the wiring connections in real outdoor environment 

directly. The purpose of this setup was to test the USRP2 for its sensitivity to weak signals and to check 

whether a weak signal hidden in the noise is detectable by the software receiver or not. The USRP2 was seen 

to have a sensitivity of around -60 dBm which means it cannot detect signals below this level. For detecting 

lower level signals (that would be the case for astronomical objects) we need pre-amplifiers and set some gain 

of USRP2 device as well to amplify the incoming signal as much as it can be seen by the receiver (to have the 

signal greater than -60 dBm).  



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

18 

 

Figure 3-6: Block Diagram of Simulation 

 

Figures 3-6 and 3-7 show the block diagram and the photograph respectively, of the setup in which a noise 

diode (10,000o K). In addition a test signal at 1420.4 MHz was injected through pre-amplifier(s) to have a total 

gain of around 70 dB including the USRP2 gain. The noise floor showed up above the -60 dBm which means 

that the incoming signal has been provided sufficient with gain to cross the -60 dBm sensitivity limit and is 

detectable. The weak test signal (around -125dBm) was not detectable from within the noise diode’s noise as 

it has very low level (see figure 3-8). To detect this test signal the (sig-ref)/ref method (see figure 3-9) was 

performed and the test signal appeared, verifying that the new system is now ready to test for Astronomical 

sources. 

 

Figure 3-7: Test Setup 



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

19 

 

Figure 3-8: SIGNAL and REFERENCE Spectra Observed in Testing 

 

 

Figure 3-9: Observation of Signal within Noise using (SIG-REF)/REF Technique 



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

20 

3.5 TESTING IN REAL ENVIRONMENT 

The whole setup was assembled outdoor in order to test the system for Hydrogen line detection. This testing 

in real environment would be validating that all the components are placed in the right order. (antenna, LNA, 

power supply etc).  

First the antenna was pointed in a random direction and the power level of the signal was noted. Then the 

antenna was pointed towards the sun and power spectrum lifted a little showing that all the connections 

were fine and that the pre-amplifier and software receiver is working properly in accordance with the lab test 

results. Then the antenna was pointed towards the hydrogen line source. Figures 3-10, 3-12, 3-13 show the 

setup and the difference in the spectrum of (sig-ref/ref) without and with the antenna pointed towards the 

Hydrogen line source respectively. It can be seen from the figures 3-12 and 3-13 that the receiver worked 

properly as the signal is differentiable from noise.  

Comparing the spectrum taken with the old configuration of SALSA ([11], figure 3-11) pointed toward the 

same direction of the galactic plane (Galactic longitude l=120 degrees, Galactic latitude b = 0) and the 

spectrum (figure 3-13), obtained with the upgraded digital software receiver pointing in the same direction, 

clearly shows the functionality of the upgraded digital receiver. The difference is spectrum can be explained 

by the approximate pointing during our experiment, but it certainly looks like a detection! It would also have 

been useful to observe in a slightly larger or shifted (towards right) band [11]. 

The observed spectrum range seems far wider than the actual spectrum band needed to observe (within red 

circle in figure 3-13). This is due to the FFT Scope block of the GnuRadio, where no zooming on a particular 

section of the spectrum is possible; hence we have to see the whole band which is being translated from 

analog to digital domain through sampling. To observe only a small part of spectrum, one could decimate the 

(SIGNAL-REFERENCE)/REFERENCE signal to a point where the bandwidth is half the decimated sampling rate 

(Nyquist Theorem). Actually, a small decimation is performed here if we compare figures 3-13 and 3-9 to see 

the difference. 



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

21 

 

 

Figure 3-10: Testing in Outdoor Environment 

 

Figure 3-11: Spectra of Hydrogen Line Taken From Existing System (in Units of Temperature) 

 



Digital Receiver For SALSA 

Chapter 3: Design For The Software Receiver Using GnuRadio 
Umair Naeem 
 

 

22 

 

Figure 3-12: Spectra When Antenna is Misaligned towards Hydrogen Source 

 

 

Figure 3-13: Spectra When Antenna is aligned from the Hydrogen Source 

 



 

 
23 

CHAPTER 4 

ANTENNA MOTION CONTROLLER 
HARDWARE CONFIGURATION 

4.1 REVIEW OF THE AVAILABLE HARDWARE 

In our application, there were many options for choosing hardware for controlling the motors and reading the 

feedback encoders. Different vendors provide such hardware with different features. This section describes 

some of the available hardware and motivates our choice of Galil RIO 47200 because of its advantages over 

other available hardware. 

4.1.1 Rabbit  op 7210 eDisplay 

Rabbit provides op 7210 eDisplay Ethernet/intelligent operator interface. It provides 16 digital inputs and 8 

digital outputs. Digital outputs are individually configurable in software for different current and voltage 

outputs. Current and voltage can be set up to 350mA and 36VDC respectively. It provides Ethernet as well 

as two RS-232 or one RS-232 (with CTS/RTS) interfaces. Programs are developed for the op 7210 using 

Rabbit’s industry-proven Dynamic C software development system. This development system offers almost 

all the capabilities like pop-up menus, onscreen keypads, data transmission/reception over TCP/IP and 

serial connections, analog volt meter display, and many more [12]. The main disadvantage of op 7210 is its 

number of digital outputs; it has only 8 digital outputs. This project utilizes 5 digital outputs, but such a 

short number of digital outputs will limit the possibility of future expandability. 

4.1.2 Trio Motion CAN 16-I/O 

The CAN 16-I/O module from Trio Motion Technologies allows the 24volt digital inputs and outputs of the 

Motion Coordinator to be extended in blocks of 16 bi-directional channels. It provides its own made 

Motion Perfect software for programming and analyzing I/O status. However, this module does not 

provide the flexibility to be used with most widely used languages like MATLAB, C++ etc. It supports G 

code, which is one of the standard languages that is widely used in CNC machines [13]. 

4.1.3 NI compactRIO Series 

National Instruments provide a series of compactRIO components. These series provide the control to a 

variety of hardware types with the integration of the very popular LabView software. The main drawback 

in NI compactRIO series is that it only supports single axis devices while the antenna mount used in this 

project utilizes two axes motion. Using these compactRIO just increases un-necessary components and so 

the cost will also increase [14]. 

4.1.4 Galil’s DMC family 

Galil’s DMC family is also a strong candidate for our application. The DMCs are specialized motion 

controlling boards. They have 32 bit processor and provide standard PCI and ISA slots for communication. 

They also provide different modes of motion like point to point positioning, jogging etc [15].  

 

http://www.rabbit.com/products/dc/


Digital Receiver For SALSA 

Chapter 4: Antenna Motion Controller Hardware Configuration 
Nabeel Ahmed Durrani 
 

 
24 

4.2 Choice of hardware for Antenna Motion Controller 

The main reason for choosing the RIO family is its simplicity. It provides number of digital outputs which are 

perfectly matching our application in which we have to give commands to the azimuth and elevation motors. 

It also has digital inputs which makes easy to read feedback encoders to get azimuth and elevation pulses 

from the motor. It also provides standard 100Base-T Ethernet and RS-232 options to interface with PC. Galil 

provides its own made C++ communication library which makes it really easy to communicate with RIO and 

interrogating about its I/O status. It provides on board programming which can be a very important feature 

when using RIO as standalone motion controller. It provides flexibility to add more RIO units with it via 

Ethernet or RS232 port [16]. 

4.3 SYSTEM BLOCK DIAGRAM 

 

Figure 4-1: Block diagram for antenna motion controller 

One of the main goals of this master thesis is to minimize the hardware used in the previous system (Q-radio). 

In the previous system, a C program just provides GUI to the controller (Q-radio). The C program, which 

controls Q-radio, sends commands in string format to the Q-radio, in which a microcontroller decodes these 

commands and send appropriate signal to antenna motors. Then Q-radio reads feedback pulses from the 

antenna feedback mechanism and sends the number of feedback pulses to the C program (again in string 

format). The main idea of this master thesis is to replace this complicated hardware by simplified software 

and to minimize the hardware needs; therefore the system block diagram is very simplified. 

The mount of the antenna is provided by Alfa Radio Ltd. It’s a heavy duty antenna rotator. Each axis uses a 

double worm gear drive system. Two windshield motors are used as drivers. Motors operate on ±12-24V, 

2,5A, with peak starting current of 4A. Motors have two limit switches in each axis. One limit switch is at a 

complete rotation in azimuth (360 degree) and the other is on 95-100 degrees in elevation [17]. 

4.3.1 Rio 47200 

Rio 47200 has multiple digital inputs and multiple digital outputs. As shown in block diagram, Rio is 

connected to the PC via Ethernet 100Base-T, which takes care of the communication part between the PC 

and the Rio board. Two wires for azimuth control and two wires of elevation control of the motor are 

connected to the digital outputs of the RIO and these outputs are controlled by the Antenna Motion 

Controller software (defined in next chapter). To control the rotation of the antenna, there are feedback 

pulses for azimuth and elevation from the motors which rotate the antenna. These feedback pulses wires 

are connected to the digital input of the Rio, as these are TTL pulses of 8-12Hz frequency. 



Digital Receiver For SALSA 

Chapter 4: Antenna Motion Controller Hardware Configuration 
Nabeel Ahmed Durrani 
 

 
25 

 

Figure 4-2: Rio 47200 

4.3.2 Amplifier Box 

The output from the Rio are TTL levels, but the motors which rotate the antenna requires at least ±18V 

with a continuous current of ±2.5A and a ±4A peak current, so there is an considerable need of amplifier 

between Rio and antenna motor.  

 

Figure 4-3: Amplifier Box (inside view) 

Furthermore, the direction of steering is changed by changing the polarity of the power supply, and this is 

accomplished by creating a control signal with the power supply, which when enabled, delivers power with 

positive polarity and when disabled, delivers power with negative polarity. 

The amplifier front panel contains discrete input connection from Rio to the amplifier and amplified output 

azimuth and elevation control signals (marked by solid black boxes in figure 4-4) to the antenna motors. 

 



Digital Receiver For SALSA 

Chapter 4: Antenna Motion Controller Hardware Configuration 
Nabeel Ahmed Durrani 
 

 
26 

 

Figure 4-4: Amplifier box (front view) 

4.3.3 Antenna Motor 

The antenna motors which rotate the antenna have a feedback mechanism, which is fairly simple. A 12 leg 

wheel (as shown in figure 4-5) is mounted on a shaft in one of the gearboxes of antenna motor, so 

whenever the antenna moves, it also rotates this wheel. There is an opto-couple behind this wheel, so that 

TTL pulses are created when light from the opto-couple falls on it. These are TTL pulses and have 

frequency ranges from 8 to 12Hz. One degree rotation in azimuth or elevation generates 4 feedback 

pulses, which gives an angular accuracy of 0.25 degree (the full moon has an angular diameter of about 

half a degree [18]). The angular resolution of the 2.3m SALSA antenna is about 7◦ at the frequency of the 

HI line, 1420 MHz [18]. These pulses directly go to the digital input of the Rio which is then read by the 

antenna motion controller software. 

 

Figure 4-5: Opto-couplers and the Wheel Providing Feedback of Antenna Position  



Digital Receiver For SALSA 

Chapter 4: Antenna Motion Controller Hardware Configuration 
Nabeel Ahmed Durrani 
 

 
27 

4.4 CONFIGURATION OF RIO 

The following table contains physical interfaces which are connected to Rio. A small description of every 

interface is also given in the table below. 

Table 4-1: Physical Interfaces Connected to RIO 

Wire 
colour/number 

Connected to Description 

Red RET +18-36V Power Supply 

Black AGND Ground for Power Supply 

Blue Op0A +12-24V Output Power Supply for DO[0-7] 

Pink Op0B Output Power GROUND for DO[0-7] 

Brown DO5 Direction signal for azimuth 

Yellow DO6 Motion signal for azimuth 

Gray DO7 Direction signal for elevation 

White DO8 Motion signal for elevation 

Wire # 1 INC1B To enable IN jumpers 

Wire # 2 DI9 Elevation feedback 

Wire # 3 INC1A Input common DI[8-15] 

Wire # 4 DI8 Azimuth feedback 

Noise diode D02 Noise diode control 

 

Rio has two power options; external power supply and PoE (Power over Ethernet). When external power 

supply is used then four jumpers are placed at pins labelled as AUX on Rio (default setting) and when 

power over Ethernet is required then instead of placing 4 jumpers on AUX, 4 jumpers are placed at pins 

labelled as PoE on Rio. 

The INC jumpers can be used when an external power supply is not desired for digital inputs 0-15. These 

inputs can use the internal +5V from the RIO instead. To do this, place a jumper on the pins labelled INC 

[16]. 

 

  



Digital Receiver For SALSA 

Chapter 4: Antenna Motion Controller Hardware Configuration 
Nabeel Ahmed Durrani 
 

 
28 



 

 
29 

CHAPTER 5  

ANTENNA MOTION CONTROLLER 
SOFTWARE 

5.1 OVERVIEW 

Antenna motion controller software is developed using C++ language and used for steering of the antenna in 

azimuth and elevation directions, resetting the antenna to the north and zenith positions, enabling and 

disabling noise diode, saving azimuth and elevation coordinates in a .txt file. The User can also load the 

coordinates from a saved file. The GUI (Graphical User Interface) is built mainly by means of the C++ Qt library 

which is specially developed for graphics in C++ language.  

5.2 PROGRAM FLOW 

5.2.1 Steering of Antenna 

The antenna motion controller software enables the user to steer antenna in both azimuth and elevation 

directions from GUI. The user can give azimuth values form 0-360 degrees and elevation values from 0-90 

degree in double spin box created using Qt library. The flow graph of the program to steer the antenna in 

desired directions is presented below.  

 

Figure 5-1: Flow Graph of Antenna Steering 



Digital Receiver For SALSA 

Chapter 5: Antenna Motion Controller Software 
Nabeel Ahmed Durrani 
 

 
30 

5.2.2 Initialization of Antenna Position 

The software enables the user to the reset antenna to the north direction in azimuth (i-e 0 degree) and to 

the zenith in elevation (i-e 90 degree). The antenna has its close switches both in horizontal and vertical 

directions. The antenna is mounted so that it has its horizontal close switch at North and vertical close 

switch at zenith direction. Indeed the vertical close switch is not exactly at 90 degree, it is around at 95 

degree elevation, so when performing the reset function, software moves the antenna 5 degrees from its 

close switch to get the actual zenith position. The flow graph of reset function, is presented below. 

 

Figure 5-2: Flow Graph of Resetting Antenna 

5.2.3 Noise Diode 

A noise diode is a device used to simulate the atmospheric noise. It is turned on for calibration and 

simulation purposes. The control signal of the noise diode is connected to one of the outputs of the Rio 

board, and it can be turned on or off just by sending 0 or 1 at this output. A Boolean variable is declared for 

the noise diode, whenever the GUI sends this Boolean variable as true, a 1 is sent to the output of the RIO 

and the noise diode is turned on, and when it is false, a 0 is sent to the output of RIO and noise diode is 

turned off. 



Digital Receiver For SALSA 

Chapter 5: Antenna Motion Controller Software 
Nabeel Ahmed Durrani 
 

 
31 

 

Figure 5-3: Flow Graph of Noise Diode 

 

5.2.4 Saving Coordinates in a File 

The antenna motion controller software enables the user to save the current coordinates (azimuth and 

elevation values) to a text file, as illustrated in the flow chart below. 

 

 

Figure 5-4: Flow Graph of Saving File 

 

5.2.5 Loading coordinates From File 

The software also has an option of loading coordinates (azimuth and elevation) from a saved text file; Flow 

of the procedure is illustrated below. 

 

 

Figure 5-5: Flow Graph of Loading File 

 

5.2.6 Graphical User Interface 

The GUI of the software is developed by using the C++ Qt library. The main window of the software has 

double spin boxes for getting the azimuth and elevation values. Text boxes are used to show the actual 

values after steering of the antenna. Push buttons are used to perform several tasks like saving and loading 

of file etc. A check box is used to activate and deactivate the noise diode. 



Digital Receiver For SALSA 

Chapter 5: Antenna Motion Controller Software 
Nabeel Ahmed Durrani 
 

 
32 

 

Figure 5-6: The Main GUI of Antenna Motion Controller Software 

When the user clicks on the save button, a windows method is invoked which shows a dialog window 

whose parameters are set so that the file is saved to the specified folder. 

 

Figure 5-7: GUI When Saving Coordinates to a .txt File 



Digital Receiver For SALSA 

Chapter 5: Antenna Motion Controller Software 
Nabeel Ahmed Durrani 
 

 
33 

The following window is shown when user clicks load button. Again a windows method is invoked whose 

parameters are set to show only .txt files. 

 

Figure 5-8: GUI When Loading Coordinates From a .txt File 

 

5.3 PROGRAM’S MAIN PARTS 
 

5.3.1 Interfacing With RIO 

Rio uses Ethernet 100Base-T to interface with a PC. The manufacturer provides the libraries to use Rio with 

languages like C++, C#, VB etc. Galil.h is used to interface and interrogate RIO in Linux environment. This 

library function provides simple functions to perform complicated tasks. Like a simple command 

“g.command (“SB4”)” is used to set high the digital output 4. A simple command like “Galil g(“ip address”)”  

is used to perform a very complicated part of connecting the PC with Rio. This command takes care of all 

the overhead information used to connect the PC Ethernet port to the RIO. The user does not have to take 

care of these overhead and flag information. This library function eases the programming of RIO. 

5.3.2 Detecting feedback Pulses 

The main problem in the project is to detect feedback pulses, as the frequency of the feedback pulses is 

not constant. It varies from 8 to 12Hz, and it depends upon the motor speed which can vary due to wind 

speed and direction. The solution to this problem is to sample the incoming pulses as fast so that not a 

single pulse would be missed.  



Digital Receiver For SALSA 

Chapter 5: Antenna Motion Controller Software 
Nabeel Ahmed Durrani 
 

 
34 

 

Figure 5-9: Figure Elaborating Detection of Feedback Pulses 

In the program the incoming pulses are sampled so fast that there would be a stream of around 70 ones or 

zeroes under normal conditions. Then the program looks for the consecutive 1 and 0 or in order words 

going down pulses (as marked by a bold square in figure 5-9). The sampling is so fast that we are confident 

that not even a single feedback pulse is missed; therefore the program and pointing are so accurate. 

5.4 Outdoor Testing 

The software was tested thoroughly in lab with real antenna mount but without the antenna load on it. After 

completing all the coding and testing all the software parts in lab, an outdoor testing was conducted. An 

antenna mount with a parabolic antenna (shown in Figure 2-7) was placed in a windy environment and 

hardware is setup (as shown in Figure 5-10) to test the Antenna Motion Controller Software in real 

environment. 

 

Figure 5- 10: Antenna Motion Controller software testing in real environment 

The antenna is mounted in such a way that the horizontal close switch is in north direction and vertical close 

switch is in zenith direction. The main problem in the outdoor testing is the windy environment. In order to 

compensate the behaviour of the windy environment, the sampling of the incoming feedback pulses is kept 

very fast so that, even not a single feedback pulse would be missed. Every part of the software was 

thoroughly checked, tested and verified in the lab, so the software worked perfectly in real conditions. 



 

 
35 

CHAPTER 6 

CONCLUSION AND FUTURE WORK 

A software receiver for SALSA and a new antenna motion controller we designed, realised and successfully 

tested under real operation condition. The antenna motion controller is fully functional and flexible, the 

software receiver is performing far better than the existing one with real-time signal processing, less 

hardware resources and with the advantage of re-configurability. All the parts of the project/thesis are now to 

be integrated to have a fully functional operating system with Software Receiver and Antenna Control 

Software running on a PC and to have a single piece of enclosure for all the necessary hardware. This will 

ensure maximum integrity and minimum parts in the surroundings of the antenna.  

The software receiver shows real time signals (Signal and Reference) which can also be set by the user. 

Observations can be made using the (Signal-Reference)/Reference technique which is shown in separate tab 

in the software. The software receiver is highly flexible in terms of changing frequency, gain, bandwidth 

without changing hardware components. It is not required to switch the frequency from Signal to Reference 

because both are shown simultaneously in real time. 

In the antenna motion control software, the user enters azimuth and elevation to direct the antenna in the 

proper direction (towards Hydrogen line source). The software controls completely the steering of the 

antenna, initializing the antenna position, controlling of noise diode and saving and loading antenna position 

in some file. In the previous system, the control of antenna is divided in two parts; the C program and Q-radio 

(a microcontroller based hardware). But now the antenna is completely controlled by a single C program. This 

program is flexible enough that most of the things like number of pulses per degree, position of the closed 

switches both in azimuth and elevation directions, initial position of antenna etc can be easily changed. 

Further, if one wants to reconfigure RIO for future extensions, one would just need to change some numbers 

in program (clearly commented). Antenna motion controller software is also sufficiently flexible to be used 

with different antenna mounts because sampling which is used to read feedback pulses is fast enough to 

accommodate high frequency feedback pulses as well. 

The current receiver system has an option to save the spectrum in a binary format. There are a few extensions 

that could also be made to make it a little more versatile. Currently the GnuRadio itself is in development 

stage and the save data procedure could be optimized, keeping smooth running of the program when saving 

data. The software could also be upgraded for supporting different file formats, save the spectrum that is 

currently shown etc, by the use of Python or C++ programming. 

The current receiver is designed for the detection of the Hydrogen line and may be slightly modified to detect 

some other lines. A new receiver can be built to detect Pulsars based on either filter-bank or employing a 

reverse channel filter. A filter-bank consists of a number of narrow-band filters or channels, the output of 

each of which is delayed separately by different amount and then are added. This is to remove dispersion 

effects that are caused to pulsar signals during their journey through dispersive medium. The other way to 

remove dispersion is to employ and anti-dispersive or reverse channel filter that has the characteristics just 

opposite of the dispersive medium or channel and will reshape the Pulsar signals. Finally, since Pulsar signals 

arrive in the form of pulses with highly accurate timing, one has to take each pulse and add them together to 

have enough energy to be detectable. 



Digital Receiver For SALSA 

Chapter 6: Conclusion And Future Work 
 

 
36 

The following consideration could be taken into account for the extension of the antenna motion controller 

software. 

First, in the current software files can be saved in standard .fits format, but because of the time limitation of 

the project, reading the antenna positions from this standard .fits format is not implemented yet. Second, the 

interface between the software receiver developed in GNU radio and the antenna motion controller software, 

could be improved even though it is functional as it is. Third, a tracking part could be included in the software 

which can lock an object and then track it automatically. Last, there is a possibility of creating interferometer 

with two antennas. 

 

  



 

 
37 

REFERENCES 

[1] http://en.wikipedia.org/wiki/ 

*2+ Bhushan Billade, “Design of Dual Polarization Sideband Separation Mixer for ALMA Band 5”,   

        Department of Radio and Space Science, Chalmers University of Technology, Sweden, 2009 

[3] Courtesy of Onsala Space Observatory 

[4] Per-Simon Kildal, “Foundations of Antennas”, Spring 2009 

*5+ Naveen Manicka, “GNU RADIO TESTBED”, University of Delaware 

[6] Marcus Leech, VE3MDL, “GnuRadio and USRP: Solderless Breadboarding for the 21st Century” 

[7] http://sine.ni.com/nips/cds/view/p/lang/en/nid/207050 

[8] http://www.vanu.com/technology/sdr.html 

[9] www.pentek.com 

[10] www.gnuradio.org  

[11] Private Communication with Cathy Horellou, Onsala Space Observatory 

[12] http://www.rabbit.com/products/op7200/ 

[13] www.triomotion.com 

[14] http://sine.ni.com/np/app/main/p/ap/motion/lang/en/pg/1/sn/n17:motion,n24:cRIO/ 

[15] http://www.galilmc.com/products/dmc-17x0.php 

[16] User manual for 74xxx series. 

[17] http://www.alfaradio.ca/ 

[18] http://www.oso.chalmers.se/~horellou/OUTREACH/SALSA/radiosweden.pdf 

 
 
 
 
 
  

http://en.wikipedia.org/wiki/
http://sine.ni.com/nips/cds/view/p/lang/en/nid/207050
http://www.vanu.com/technology/sdr.html
http://www.pentek.com/
http://www.gnuradio.org/
http://www.rabbit.com/products/op7200/
http://www.triomotion.com/
http://sine.ni.com/np/app/main/p/ap/motion/lang/en/pg/1/sn/n17:motion,n24:cRIO/
http://www.galilmc.com/products/dmc-17x0.php
http://www.alfaradio.ca/
http://www.oso.chalmers.se/~horellou/OUTREACH/SALSA/radiosweden.pdf


Digital Receiver For SALSA 

Chapter 6: Conclusion And Future Work 
 

 
38 



 

 
39 

APPENDIX A 

ANTENNA MOTION CONTROLLER C++ CODE 

A.1: mainwindow.h 

#ifndef MAINWINDOW_H 

#define MAINWINDOW_H 

#include <QMainWindow> 

namespace Ui { 

    class MainWindow; 

} 

class MainWindow : public QMainWindow { 

    Q_OBJECT 

public: 

    MainWindow(QWidget *parent = 0); 

    ~MainWindow(); 

protected: 

    void changeEvent(QEvent *e); 

private: 

    Ui::MainWindow *ui; 

private slots: 

    void on_load_clicked(); 

    void on_azimuth_valueChanged(double ); 

    void on_save_2_clicked(); 

    void on_track_clicked(); 

    void on_noise_clicked(bool checked); 

    void on_OK_clicked(); 

}; 

#endif // MAINWINDOW_H 

A.2: main.cpp 

#include <QtGui/QApplication> 

#include "mainwindow.h" 

#include "Galil.h" 

 

int main(int argc, char *argv[]) 

{ 

    QApplication a(argc, argv); 

    MainWindow w; 

    w.show(); 

    return a.exec(); 

} 

 

A.3: mainwindow.cpp 

#include "mainwindow.h" 

#include "ui_mainwindow.h" 

#include<stdio.h> 

#include<stdlib.h> 

#include <math.h> 

#include <ctype.h> 

#include <unistd.h> 

#include <string.h> 

#include <fcntl.h> 

#include<iostream> 

#include<sstream> 



Digital Receiver For SALSA 

Appendix A 
 

 
40 

#include<cstring> 

#include<cstdlib> 

#include<fstream> 

#include<qfile.h> 

#include<qtextstream.h> 

#include<qdir.h> 

#include<qapplication.h> 

#include<QFileDialog> 

#include<fstream> 

#include "Galil.h" 

float actual_az = 0; // CLOSE SWITCH AZIMUTH 

float actual_el = 95;  // CLOSE SWITCH ELEVATION 

using namespace std; 

 

MainWindow::MainWindow(QWidget *parent) : 

    QMainWindow(parent), 

    ui(new Ui::MainWindow) 

{ 

    ui->setupUi(this); 

} 

 

MainWindow::~MainWindow() 

{ 

    delete ui; 

} 

 

void MainWindow::changeEvent(QEvent *e) 

{ 

    QMainWindow::changeEvent(e); 

    switch (e->type()) { 

    case QEvent::LanguageChange: 

        ui->retranslateUi(this); 

        break; 

    default: 

        break; 

    } 

 

} 

 

/*------------------------------- Steering Part-------------------------------------*/ 

 

void MainWindow::on_OK_clicked() 

{ 

    /*------------connection with Rio-------*/ 

 

    Galil g("192.168.0.24"); // check whether works with global dec 

 

    /*-----------getting values from form (.ui)--------- */ 

 

    float az;   //Azimuth 

    float el;   //Elevation 

    az = ui->azimuth->value();      // picking azimuth value from form 

    el = ui->elevation->value();    // picking elevation value from form 

 

 

    /*---------------- Azimuth Tracking-------------*/ 

 

    float totalP_az;    //for checking with 3 pulses 

    int feedbackP_az = 0; 



Digital Receiver For SALSA 
Appendix A 
 

 
41 

    int i = 0; 

    double feedback_az [99999]; //feedback pulses for azimuth 

    //if (az >  360.0) az -= 360.0; 

    //if (az <    0.0) az += 360.0; 

    //totalP_az = (az-actual_az) * 4; // 4 feedback pulses in 1 degree 

    totalP_az = (az-actual_az) * 3; // 3 feedback pulses in 1 degree (change to any 

 number when known) 

    if (totalP_az<0) 

    { 

    totalP_az = totalP_az*(-1); 

    } 

    int totalP_az1 = static_cast <int> (totalP_az + 0.5); // converting float to the 

 nearest integer 

    while(totalP_az1 != feedbackP_az){ 

        if (az < actual_az){ 

            g.command("SB4"); // Right movement 

            g.command("SB5"); 

        } 

        else{ 

            g.command("SB4"); // Left movement 

            g.command("CB5"); 

            } 

 

        std::string num = g.command("MG@IN[8]");// acquiring feedback pulses from RIO 

        feedback_az[i] = ::strtod(num.c_str(),0);// converting std::string into float 

        cout<<feedback_az[i]; 

        if ((feedback_az[i-1] == 1) & (feedback_az [i] == 0))//detecting feedback 

pulses 

        { 

            feedbackP_az++;     // counting feedback pulses 

            cout<<endl; 

        } 

            i++; 

            } 

    cout<<feedbackP_az<<endl; 

    actual_az = az;     // storing current value of azimuth in actual azimuth 

    g.command("CB4"); // resets Rio 

    g.command("CB5"); // resets Rio 

 

    /*------------putting values in form---------*/ 

 

    ui->actualaz->setText(QString::number(actual_az, 'f',2)); 

 

 

 

    /*-------------------elevation Part---------------------*/ 

 

    float totalP_el;       //for checking with 3 pulses 

    int feedbackP_el = 0; 

    int j = 0; 

    double feedback_el [99999]; // feedback pulses for elevation 

        //if (el >  90.0) az -= 90.0; 

        //if (el <    0.0) az += 90.0; 

        //totalP_el = (el-actual_el) * 4; // 4 feedback pulses in 1 degree 

        totalP_el = (el-actual_el) * 3; // 3 pulses per degree (change to any number  

       when known) 

        if (totalP_el<0) 

        { 

        totalP_el = totalP_el*(-1); 



Digital Receiver For SALSA 

Appendix A 
 

 
42 

        } 

        int totalP_el1 = static_cast <int> (totalP_el + 0.5); 

        while(totalP_el1 != feedbackP_el){ 

            if (el > actual_el){ 

                g.command("SB6"); // counter clock wise 

                g.command("SB7"); 

            } 

            else{ 

                g.command("SB6"); //clockwise 

                g.command("CB7"); 

                } 

 

            std::string num2 = g.command("MG@IN[9]"); 

            feedback_el[j] = ::strtod(num2.c_str(),0); 

            cout<<feedback_el[j]; 

            if ((feedback_el[j-1] == 1) & (feedback_el [j] == 0)) 

            { 

                feedbackP_el++; 

                cout<<endl; 

                cout<<feedbackP_el<<endl; 

            } 

                j++; 

 

                } 

        cout<<feedbackP_el<<endl; 

        actual_el = el; 

        g.command("CB6"); // resets Rio for elevation 

        g.command("CB7"); // resets Rio for elevation 

 

        /*------------putting values in form---------*/ 

 

        ui->actualel->setText(QString::number(actual_el, 'f',2)); 

        cout << "end" << endl; 

 

} 

 

/*------------------------------- Noise diode Part----------------------------------*/ 

 

void MainWindow::on_noise_clicked(bool noise) 

{ 

    /*------------connection with Rio-------*/ 

    Galil g("192.168.0.24"); // check whether works with global dec 

    if (noise) 

        g.command("SB2"); //noise diode is on on DO2 

    if (!noise) 

        g.command ("CB2"); // noise diode is off on DO2 

} 

 

/*-----------------------------------Reset Part-------------------------------------*/ 

 

void MainWindow::on_track_clicked()     // when reset button clicked (It resets  

         antenna to 0 degree azimuth (North)  

   and 90 degree elevation (zenith)) 

{ 

    /*-------------connection with Rio--------*/ 

 

    Galil g("192.168.0.24"); // check whether works with global dec 

 

    /*---------------azimuth reset ----------------*/ 



Digital Receiver For SALSA 
Appendix A 
 

 
43 

        double reset_az[99999]; 

        int k = 0; 

        int sum = 1;    // making do-while in this way 

        g.command("SB4"); // right movement 

        g.command("SB5"); // right movement 

 

        while((sum != 0) & (sum != 48))     // if a contineous stream of 0s or 

contineous stream of 1s occurs,  

it comes out of loop 

        { 

 

        std::string num3 = g.command("MG@IN[8]");//acquiring azimuth pulses 

        reset_az[k] = ::strtod(num3.c_str(),0);// converting std::string into double 

        cout<<reset_az[k]; 

 

        if (k>50)       // counting number of zeros or ones at close switch 

        { 

        sum = 0; 

        for (int l=50; l>1; l--) 

        { 

            sum += reset_az[k-l]; 

            cout<<sum<<"    "; 

        } 

 

        } 

        g.command ("WT5"); 

 

        k++; 

 

        } 

        g.command("CB4"); // resets Rio for elevation 

        g.command("CB5"); 

 

        cout<<"azimuth is reset to 0 degree"<<endl; 

 

 

        /*-------------- Elevation reset --------------*/ 

 

        double reset_el[99999]; 

        int m = 0; 

        int sum2 = 1; 

        g.command("SB6"); // right movement 

        g.command("SB7"); // right movement 

        while((sum2 != 0) & (sum2 !=48)) 

        { 

        std::string num4 = g.command("MG@IN[9]"); 

        reset_el[m] = ::strtod(num4.c_str(),0);         

        cout<<reset_el[m]; 

 

        if (m>50) 

        { 

        sum2 = 0; 

        for (int n=50; n>1; n--) 

        { 

            sum2 += reset_el[m-n]; 

            cout<<sum<<"    "; 

        } 

 

        } 



Digital Receiver For SALSA 

Appendix A 
 

 
44 

        g.command ("WT5"); 

        m++; 

 

        } 

        g.command("CB6"); // resets Rio for elevation 

        g.command("CB7"); 

 

        cout<<endl<<"elvation is reset to 100 degree"<<endl; 

 

        /*-----------Moving 5 degrees more--------*/ 

 

 

        float totalP_el; 

        int feedbackP_el = 0; 

        int j = 0; 

        double feedback_el [99999]; //can be array of bool 

        float el = 90; 

        float actual_el = 95; 

        totalP_el = (el-actual_el) * 3; // 3 feedback pulses in 1 degree (change to 

 any number when known) 

        //totalP_el = (el-actual_el) * 4; // 4 feedback pulses in 1 degree 

        totalP_el = totalP_el*(-1); 

        int totalP_el1 = static_cast <int> (totalP_el + 0.5); 

        while(totalP_el1 != feedbackP_el){ 

                g.command("SB6"); //clockwise 

                g.command("CB7"); 

 

            std::string num2 = g.command("MG@IN[9]"); 

            feedback_el[j] = ::strtod(num2.c_str(),0); 

            cout<<feedback_el[j]; 

            if ((feedback_el[j-1] == 1) & (feedback_el [j] == 0)) 

            { 

                feedbackP_el++; 

                cout<<endl; 

            } 

                j++; 

 

                } 

        cout<<feedbackP_el<<endl; 

        actual_el = el; 

        g.command("CB6"); // resets Rio for elevation 

        g.command("CB7"); // resets Rio for elevation 

        cout <<endl<<"the actual elevation is 90 now"<<endl; 

 

} 

 

/*-------------------------------Save file Part-------------------------------------*/ 

 

void MainWindow::on_save_2_clicked() 

{ 

 

    //opening file dialog to save file 

    QString fileName = QFileDialog::getSaveFileName(this,tr("Save File"), 

                                                    "/home/salsa/banade/files", 

                                                    tr ("Text Files (*.txt)")); 

    // creating file with the name given by user 

    QFile file(fileName); 

    file.open(QIODevice::WriteOnly | QIODevice::Text); 

    QTextStream out(&file); 



Digital Receiver For SALSA 
Appendix A 
 

 
45 

    // putting data in file 

    double d1=(ui->azimuth->value()); 

    double d2 = (ui->elevation->value()); 

    QString s1; 

    QString s2; 

    s1.sprintf("%.5f", d1); 

    s2.sprintf("%.5f",d2); 

    out<<s1<<endl<<s2; 

    //close file to save 

    file.close(); 

 

} 

 

/*-------------------------------load file Part-------------------------------------*/ 

 

void MainWindow::on_load_clicked() 

{ 

    // opening file dialog to load file 

    QString fileName; 

    fileName = QFileDialog::getOpenFileName(this, 

         tr("Open File"), "/home/salsa/banade/files", tr("Text Files (*.txt)")); 

    FILE *in = fopen(fileName.toAscii(), "rt"); //converting Qstring into c string 

    // read the first line from the file 

    char buffer[100]; 

    char buffer2[100]; 

    fgets(buffer, 50, in); 

    fgets(buffer2, 50, in); 

    // display what we've just read 

    printf("first line of \"fred.txt\": %s\n", buffer); 

    printf("first line of \"fred.txt\": %s\n", buffer2); 

    double f = atof(buffer); 

    double f2 = atof(buffer2); 

    cout<<f<<endl; 

    cout<<f2<<endl; 

    //putting values in form 

    ui->azimuth->setValue(f); 

    ui->elevation->setValue(f2); 

    // close the stream 

    fclose(in); 

} 

  



Digital Receiver For SALSA 

Appendix A 
 

 
46 



 

 
47 

APPENDIX B 

ELECTRICAL DIAGRAM OF AMPLIFIER BOX 

 

  



 

 
48 

  



 

 
49 

APPENDIX C 

INSTALLATION OF SOFTWARES 

GnuRadio was installed on Linux-Fedora Core operating system. Following links were used to install and 

configure GnuRadio and GRC. 

 http://gnuradio.org/redmine/wiki/gnuradio 

 ftp://ftp.gnu.org/gnu/gnuradio/gnuradio-3.2.2.tar.gz 

 http://gnuradio.org/redmine/wiki/1/GNURadioCompanion 

Once everything is installed, the file receiver.grc can be open in GRC and can be run from there. Alternatively, 

the python code that is also generated, can be run directly from terminal by typing (in the directory 

“RA_Receiver”) 

 python top_block.py 

Following are the instructions to install Antenna Motion Controller software on computer. 

 Pre-requisite is a personal computer on which Linux (any version) is already installed. 

 Copy and paste antenna motion controller software along with all of its files in to home folder (copy 

folder “banade”). 

 To download Qt SDK, go to http://qt.nokia.com/downloads. Choose LGPL open source license. Click 

the version which suits your machine type (32 or 64 bit) and start download. 

 After downloading, install QT SDK on your machine. Installation instructions are given on download 

page. 

 This will install Qt library 4.6 and also an editor Qt creator 1.3.1 on your computer. This Qt creator 

have already added all the paths and libraries, you don’t have to worry about it anymore. 

 Now install Galil Tools. Go to http://www.galilmc.com/support/software-downloads.php and click on 

link install files under Linux tab. It will lead you to the registration page. Register yourself, its free. 

 After registration, download and install the latest version of GalilTools. Installation instructions are 

available on the same page. 

 After installation search for “Galil.so”, copy it and paste it in to /usr/lib. This is the easiest way to 

locate Galil communication library, otherwise you have to give complete path of “Galil.so” in 

banade.pro 

 Now Antenna Motion controller software is ready to run on this computer. You can directly run 

executable file “banade” in the folder “banade” which you have pasted in home folder in step 2 OR 

you can load file “banade.pro” in Qt creator and then press Ctrl+R to run the project. 

 Now you are ready with Antenna Motion Controller Software. 

 

 

http://gnuradio.org/redmine/wiki/gnuradio
ftp://ftp.gnu.org/gnu/gnuradio/gnuradio-3.2.2.tar.gz
http://gnuradio.org/redmine/wiki/1/GNURadioCompanion
http://qt.nokia.com/downloads
http://www.galilmc.com/support/software-downloads.php

