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Abstract
Sampling-based motion-planners, for example rapidly exploring dense tree (RRT)
based planners, depend on fast proximity queries. Regrettably, bounding volume
tests are significant bottlenecks of proximity queries. Sampling-based motion-planners
are therefore accelerated by reducing the number of bounding volume tests. To this
end, a novel algorithm called Forest Proximity Query (FPQ) is developed. Con-
trary to previous research, FPQ traverses several pairs of BVHs simultaneously,
effectively exploiting an actuality that only a single minimal separation distance —
out of several possible separation distances — is required during sampling-based
motion-planning. An implementation of FPQ show that FPQ performs up to 67%
fewer BV tests in comparison to the well-known Proximity Query Package, increas-
ing proximity querying performance by up to 46%. In conclusion, FPQ is successful
in its attempt at improving performance of sampling-based motion-planners.

Keywords: bounding volume traversal tree, priority directed search, front track-
ing, rectangle swept sphere, proximity query, distance computation, motion plan-
ning, non-convex, geometry, robotics.
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bounding volume (BV) a bounding volume

(BV) is a convex geometry enclosing
some arbitrary geometry

bounding volume hierarchy (BVH) a
bounding volume hierarchy (BVH) is
a tree of bounding volumes enclosing
some geometry

bounding volume traversal tree (BVTT)
a bounding volume traversal tree
(BVTT) is a tree, formed from two
BVHs, whose nodes are pairs of bound-
ing volumes that are traversed and pos-
sibly pruned

bounding volume traversal tree front
(BVTT front) A set of roots of
pruned sub-trees and a set of leaves of
some BVTT, in which traversal termi-
nated

configuration space (C-space) a configura-
tion space (C-space) is a topological
space in which a point represents the
state of some robot or geometry

duplex priority queue (DPQ) A priority
queue with O(1) insertions and dele-
tions under certain access patterns

dynamic geometry geometry which undergoes
rigid transformations

explicit BVTT A BVTT that is (partially)
stored in memory

Forest Proximity Query (FPQ) A method
of traversing a forest of BVTTs in or-
der to efficiently compute a proximity
query

Fraunhofer-Chalmers Centre (FCC) a re-
search company situated in Johan-
neberg Science Park, Gothenburg

front tracking (FT) Caching collisions be-
tween root of BVH and root, internal
or leaf nodes of other BVH

generalized front tracking (GFT) Caching
of either root, internal or leaf nodes in

in a BVTT
geometric object a set of geometric primitives
geometric primitive a set of discs, triangles,

tori or points (or similar)

implicit BVTT BVTT which is generated on-
the-fly

Industrial Path Solutions (IPS) a com-
mercial motion-planning software de-
veloped by Fraunhofer-Chalmers Cen-
tre

optimal front Leaves of a minimal bounding
volume traversal tree

priority directed search (PDS) Using a pri-
ority queue to schedule what nodes to
traverse in BVTTs

Proximity Query Package (PQP) a C++ li-
brary for computing the separation dis-
tance between two geometric objects

rapidly exploring dense tree (RRT) A tech-
nique for sampling points in a con-
figuration space by incrementally con-
structing a space-filling tree

rectangle swept sphere (RSS) A volume
generated from dilating a sphere with
some rectangle

separation distance minimum distance be-
tween two geometries

static geometry geometry which stays put
surface area heuristic (SAH) Splits

bounding-volume nodes into children
as a function of surface area

triangle soup a triangle soup refers to a set of
triangles without any structure or nice
properties

world configuration a point in the world con-
figuration space

world configuration space cartesian product
of all configuration spaces
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1
Introduction

Modern factories rely on robotic arms for assembly, welding, and gluing during
a manufacturing process. Efficient usage of robotic arms contributes directly to
manufacturing costs and manufacturing run times. However, a problem which must
be solved prior to utilizing robotic arms is that of motion-planning. Motion-planning
is the process of running an algorithm, sometimes referred to as a motion-planner,
which outputs a path for some robot arm. This path governs with next to exact
precision the actions of a robot arm at any given time.

A motion-planner is often in need of finding a separation distance between two
objects, for example robotic arms and a car bodies. A separation distance is the
shortest distance between any two points on two separate objects. The problem of
finding separation distances between two objects is also known as proximity query-
ing, a well known problem within the field of computational geometry.

A fast motion-planner is preferable to a slow motion-planner for several reasons,
some of which are:

• Real-time motion-planning
• Decreased down-time for humans waiting for a motion-planning process to

terminate
• Scenes which were previously considered intractable may become tractable

Regrettably, proximity queries are oftentimes significant bottlenecks in motion-
planning software. Therefore, there is a demand for efficient proximity querying
methods. However, the set of available methods for proximity querying depends on
geometry assumptions. Some common assumptions about geometries are: convexity,
closedness or orientability. If these assumptions are valid for a problem at hand, then
there are fast proximity query algorithms available. In practice, these geometrical
properties are not always satisfied.

In a robot-cell context, proximity queries are computed on non-convex and
non-closed polytopes, or more generally triangle soups. In particular, Fraunhofer-
Chalmers Centre (FCC) develops a motion-planning software called Industrial Path
Solutions (IPS) in which robotic arms and end-products are represented (in a virtual
prototyping environment) as triangle soups. Further, the motion-planner shipped
with IPS is a sampling-based motion-planner . Sampling-based motion-planners tries
out several configurations of robotic arms during a motion-planning session. In terms
of triangle soups, this means that the triangle soups which represent robotic arms
or end-products undergo rigid motion. A proximity query is made for each tried out
configuration. In summary, a robot-cell context is assumed to be a scene with rigid
bodies undergoing rigid motion.
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1. Introduction

A smallest distance between any two triangle soups can be found by computing
all pairwise distances. This method scales quadratically with the number of prim-
itives. Instead, a triangle soup is enclosed by a tree of bounding volumes (BVs)
commonly known as a bounding volume hierarchy (BVH). Bulks of triangle distance
computations can be avoided by comparing two BVHs against each other, improving
upon the quadratic complexity of testing each triangle against all other triangles.
Finally, a bounding volume traversal tree (BVTT) defines how any two BVHs should
be tested against each other. Hence, the problem of proximity querying is that of
traversing a, preferably small, BVTT.

Contribution: I developed a novel method, called Forest Proximity Query
(FPQ), which finds a separation distance in a forest of BVTTs where each under-
lying triangle soup undergoes rigid motion. FPQ utilizes two established methods:
Generalized front tracking (GFT) and Priority directed search (PDS). Neither has
previously been adapted to forests of BVTTs. Results show that FPQ reduces
the number of BV-BV distance computations, in comparison to the state-of-the-
art method Proximity Query Package (PQP). For a motion-planning scenario, the
computation-time is reduced by approximately 40% due to a reduced number of BV
tests.

In conclusion, FPQ is a promising method for acceleration of proximity queries
in a robot cell context and especially so for motion-planning scenarios.

1.1 Outline
The thesis is divided into the following sections:

• A literature survey of relevant related methods. See Section 1.5 "Previous
research".

• Preliminary theory required for understanding a formal problem definition and
for understanding FPQ.

• Presentation of FPQ, a novel method for accelerating proximity queries. See
Chapter 3 "Forest proximity querying".

• A set of benchmarks comparing various variants of FPQ against each other as
well as comparing FPQ with IPS is presented in Chapter 5 "Results"

• A discussion FPQ is presented in Chapter 6 "Discussion".
• A conclusion on whether FPQ successfully accelerates proximity queries or not

is presented in Chapter 7 "Conclusion".

In general, each chapter and section is dependent on the previous section or
chapter. It is therefore recommended to read this thesis page by page. Readers
who are familiar with the contents Section 2.1 "Preliminary Theory" may skip said
section.

1.2 Background
Proximity querying can be used as a subroutine within motion-planning. This sec-
tion explains in detail how proximity querying is used in motion-planning. An
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1. Introduction

understanding of how proximity querying is used in motion-planning should help
the reader to understand why some assumptions are in place.

1.2.1 Proximity querying as subroutine of motion-planners

This section expands upon the dependency of proximity querying from a motion-
planning point-of-view.

The problem of motion-planning is that of finding valid paths throughout a space
known as world configuration space or simply configuration space (C-space). A point
in C-space can be thought of as a vector of numbers that uniquely determine a
state of some robotic arm. Therefore, a path throughout C-space correspond to a
motion of a robotic arm. For example, if a robotic arm is governed entirely by three
independent real-valued numbers, then the state of the robotic arm is given by a
point in R3 — the C-space of the robotic arm is R3.

Globally optimal analytic paths from a starting-point to an end-point in a world
configuration space, which may or may not satisfy some given set of constraints,
are difficult to find. Hence, sampling-based motion-planners are introduced. A
sampling-based motion-planner samples points on the world configuration space
manifold. These points are turned into nodes in a graph. A path throughout the
graph corresponds to a path throughout the world configuration space which in turn
corresponds to a path for some robot arm. Edges in a path corresponds to a line
segment throughout world configuration space.

It is crucial to ensure validity of every edge on any computed path, where validity
means that each point on the line segment satisfies a set of given constraints. The
set of given constraints is typically that no collisions between robot arms or end-
products may occur or that some minimum safety distance between two objects
must not be violated. Ensuring validity over a line segment is similar to that of
continuous collision detection, with the exception that validity in this case means a
collision-free and safe path with respect to minimum safety distances. Some motion-
planners, including the motion-planner included in Industrial Path Solutions (IPS),
checks validity of line segments one at a time by sampling points on said line. This
means that most often, the distance between two points successive points qi, qi−1 in
configuration space (C-space) is bounded from above: ‖qi − qi−1‖ < d. A (small)
bounded change in configuration points is commonly referred to as spatial coherence.

One way to ensure that a motion is collision free is to compute a separation
distance between a robot arm and some object. If said separation distance is r ∈ R,
then it is known that a robot arm can move freely within a sphere of radius r.

It is understood that a sampling-based motion-planner does at least two things:
Checks validity of sampled points on the world configuration space and checks valid-
ity of line segments in the world configuration space. In both cases, the problem of
proximity querying arises — efficient proximity queries must be available for quickly
determining if a point or line segment in world configuration space is valid or not,
which is to say that the set of constraints is respected.
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1.2.2 Robot arms as composite rigid bodies
In IPS, there are two sets of geometric objects A and B. A set of objects could
be, for instance, all rigid parts of some robot arm or some machine element. A
minimum distance between A and B corresponds to the smallest distance between
some composite object, for example a robot arm, and some other composite object.
This is precisely the distance which is required by motion-planners.

All independent rigid parts of an ABB robot arm are colored in Figure 1.1.
The whole robot arm corresponds to some set of geometric objects A and its rigid
(colored) parts correspond to elements of A.

(a) ABB robotic arm (b) Colorization of (a)

Figure 1.1: ABB robotic arm with colorized rigid components.

Sampling-based motion-planners tries out many different world configuration
points. Hence, objects may jump around in space over several iterations. For each
world configuration point, a minimum separation distance between two sets of ge-
ometric objects A and B must be found. It follows that computation of successive
proximity queries is of great importance for motion-planners. Hence, I develop meth-
ods for successive computation of the smallest distance between two sets A and B
of geometric objects.
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1.2.3 Preliminaries
The reader of this thesis is expected to have knowledge acquired through any stan-
dard Computer Science programme. In particular, complexity theory, naïve set
theory and some introductory course on data structures and algorithms. Some con-
cepts typically found in a course on Computer Graphics, in particular bounding
volume (BV) and bounding volume hierarchy (BVH), are also of high relevance.
Other relevant concepts are presented in Chapter 2 "Theory".

1.2.4 FCC
FCC is a research centre located in Chalmers Science Park. Its main focus is mathe-
matical problems in the industry. An expansive competence area at FCC is geometry
and motion planning, where virtual assembly, inspection and robot programming is
included. An important industrial application is automatic generation of optimized
and collision free robot motions, where FCC performs a number of research and
development projects in cooperation with customers.

The research partners of this master thesis are FCC and Chalmers.

1.3 Research question
I address the problem of accelerating proximity queries in a robot-cell context. If
dist(i;A,B) is a function which outputs a minimum distance between two sets A
and B of geometric objects on some i:th iteration, then the research question can be
phrased as follows: "What data structures or algorithms are suitable for acceleration
of proximity queries in a robot-cell context? In particular, for successive computa-
tion of dist(i;A,B) where A and B are triangle soups?". Note that this research
question encompass development of a new data structure or algorithm if suitable.

It is premature to rigorously define dist(i;A,B) just yet. A mathematically
rigorous definition of dist(i;A,B) is presented in Section 2.2 "Problem definition",
after the necessary theory has been developed. For now, it is enough to think of
dist(i;A,B) as a function which outputs a minimum distance between two sets of
geometric objects.

1.4 Limitations
This section presents and motivates various limitations.

Many customers of FCC use consumer-level computers. Therefore, FCC re-
stricts usage of general-purpose computing on graphics processing units (GPGPU)
algorithms or distributed computing. Threads should be avoided. This is also a
constraint stemming from IPS which already utilizes most out of the threading ca-
pabilities on a consumer-level machine.

I do not investigate solutions to the problem of finding a separation distance
between two BVs. Several papers have already studied said problem [1][2][3][4].
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Further, FCC has already developed efficient methods for computing the separation
distance between two BVs.

Note that finding the separation distance between two BVs is not the same
problem as computing separation distance between two (or a set of) BVHs. The
latter problem is presented in great detail in Chapter 3 "Forest proximity querying".

Efficient computation of a minimal separation distance between two geometric
primitives, for example two triangles, is out of scope. This is because FCC has
developed efficient methods for distance computations between primitives. Further,
the topic of efficient primitive distance computations has been studied extensively.
Instead, I focus on efficient computation of BVH-BVH tests.

In a virtual prototyping robot-cell context geometric objects may be arbitrary
triangle soups. Hence no assumptions on convexity, closedness or orientabiltiy of
geometry can be made.

1.5 Previous research

In this section, previous research on proximity queries is presented. Research on
collision detection is presented too since the problem of collision detection shares
the structure of proximity queries. Larsen at al. explains said correspondence in
greater detail[1]. I intend to make it clear that there is a wide-range of possible
methods for accelerating proximity queries.

A method by Lin and Canny [5] or another method by Gilbert, Johnson and
Keerthi [6] assumes that all geometries in a scene are convex and exploits the con-
vexity to speed up proximity queries. Ehmann and Lin present a method which
decomposes non-convex geometries into convex geometries and then uses preexisting
methods for convex geometries to solve the proximity query problem [3]. Jyh-Ming
Lien and Nancy M. Amato presents a method for decomposing geometry into ap-
proximately convex components [7]. Convex decomposition of non-convex polygons
has been used for computing Gromov-Hausdorff and Gromov-Fréchet metrics [8].
Convex decomposition is attractive since it enables usage of fast proximity query-
ing algorithms on non-convex geometries. A standard proximity query algorithm
for convex geometries is the GJK-algorithm[6]. However, convex decomposition is
not universally applicable to all types of non-convex geometry. Hollow cylinders,
for instance, are notoriously difficult to decompose into a set of convex geometries.
Proximity queries in a robot-cell context must be applicable and efficient on arbi-
trary triangle soups.

A common approach to proximity querying is that of enclosing triangle soups
within BVHs. Hierarchies of rectangle swept spheres (RSSs) can provide competitive
performance in comparison to alternative methods [1][2][3][9]. The renowned PQP
library[10] implements BVHs of RSSs. PQP does not rely on GPGPU techniques or
other special hardware nor does it assume convexity of geometries. Robotic Prox-
imity Query package (RPQ)[11] is an extension of PQP which utilizes kinematic
information on robotic arms in order to quickly determine if there has been a colli-
sion or not.
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Triangle caching1 is suggested by Larsen et al.[1]. A pair of triangles that gave
the separation distance in a former iteration is cached. This pair of triangles can be
tested directly in a following iteration. If coherence is high, then it is likely that the
obtained distance is also the shortest or at least close to the shortest distance.

Inner Sphere Trees have been suggested by Weller and Zachmann for performing
approximate proximity queries[12]. An Inner Sphere Tree is a tree of spheres whose
union approximates some geometry. This approach could be feasible for geometric
objects with a low surface-area-to-volume ratio. Inner sphere trees reportedly per-
form 50x as fast as PQP with an average error of 0.15%. Inner Sphere Trees has
been used by Kaluschke et al. for computing distances between robotic arms and
point clouds [13]. Unfortunately, geometries in a robot-cell context may have a high
surface-area-to-volume ratio. Further, triangle soups do not lend themselves well to
sphere-packing since triangle soups are not necessarily closed.

Klosowski presents front tracking (FT) in his PhD dissertation. FT is a technique
which may reduce the number of BV-tests by caching BV from a single BV for which
traversal terminated, collectively denoted as a front. Klosowski measures an average
19% increase in performance for a scene containing a moving airplane that is tested
against static geometry [14]. S. Ehmann and M. Lin generalizes FT by considering
pairs of BVs, instead of just BVs, denoting the generalization as generalized front
tracking (GFT).

GFT has been used extensively for collision detection. Otaduy and Lin utilizes
fronts for multiresolution collision detection [15]. Tang et al. presents parallel GFT
[16][17]. L. Yen-Tsai and C. Jin-Shin proposes resetting a front if it remains fixed
over two consecutive frames [18]. O. Tropp et al. suggest to "prune" a front if motion
is sufficiently large, where pruning decreases the size of a front [19]. A localized and
streamed GFT is presented by M. Tang et al.[20], with "localized" meaning that only
a (changed) subset of the GFT initiates traversal in a following iteration.

GFT has been used for distance computations in addition to collision detection.
S. Ehmann and M. Lin studies both collision detection and distance computation by
using fronts with operations "dropping" and "raising", together with a generalized
type of front tracking denoted GFT in which a front is used to initiate traversal
[3]. Said article concludes that GFT it beneficial in all of its tested benchmarks.
Lauterbach et al. studies FT for distance computations, suggesting a GPU-based
FT method and that two sibling nodes within a front can be replaced by their
common parent [9]. To the best of my knowledge, only S. Ehmann and M. Lin with
Lauterbach et al. investigates GFT for distance computations.

T. Akenine-Möller with T. Larsson reports that GFT may not pay off if flat BVHs
are used [21]. However, no assumption on the height of a BVH is made in this thesis.
Hence, GFT could still prove profitable. X. Zhang and Y. Kim highlights memory-
issues which could occur with usage of a front [22]. Memory issues are investigated
in Section 2.4.1 "Memory usage of front tracking".

Some authors and libraries use a broad-phase step for checking collisions. The
SWIFT -library assumes convexity of geometries and applies a Sweep and Prune ap-
proach to cull away uninteresting pairs of geometries and then proceeds to perform
distance-queries with a modified Lil-Canny algorithm [23][24][3]. SWIFT assumes

1A similar technique in a ray-tracing context is known as shadow caching.
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that geometries are orientable 2-manifolds[3]. The ncollide library, developed mostly
by S. Crozet, employs a broad-phase strategy to accelerate proximity queries and
it relies on composition of convex geometries represented by support mappings for
representation of non-convex geometry[25]. I-COLLIDE [26] and Flexible Collision
Library (FCL)[27] uses Sweep and Prune to reduce exact collision tests. Broad-phase
methods are typically employed in scenes with thousands of independent dynamic
geometries. For few dynamic geometric objects it might not be worthwhile to employ
a broad-phase proximity querying. In a robot-cell context, there are indeed many
(millions) of triangles but not necessarily thousands of dynamic independent geome-
tries. The Computational Geometry Algorithms Library (CGAL) project utilizes a
kd-tree to accelerate proximity queries defined on axis-aligned bounding-boxes [28].
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2
Theory

This chapter introduces theoretical concepts which are required for a comprehensive
understanding of this thesis, leading up to a formal problem definition. After a
presentation of the formal problem definition, a foundational concept known as
bounding volume traversal tree (BVTT) is presented. Then, the concept of front
tracking (FT) is presented in terms of BVTTs.

2.1 Preliminary Theory
The purpose of this section is threefold. Firstly, to introduce some simple construc-
tions in graph theory which are used to define the problem in Section 2.2 "Problem
definition". Secondly, I aim to introduce some concepts in computational geometry
used throughout this thesis. In particular, concepts related to proximity query-
ing. Finally, to introduce elementary concepts of topology which are required for
introducing the concept of C-spaces. C-spaces are introduced in Section 2.2 "Prob-
lem definition". The following subsections can be skipped if the reader has prior
knowledge of basic topology, basic graph theory and proximity querying.

2.1.1 Preliminary graph theory
While this thesis does not concern itself with graph theory to any greater extent, a
useful concept called bicliques is used in order to define the problem of this thesis
in Section 2.2 "Problem definition".

One may think of two disjoint sets of nodes with some edges in between said
sets. Formally, a bipartite graph G = (V,E) is an undirected graph where there
exists two subsets of vertices V1, V2 ⊂ V such that V1 ∩ V2 = ∅ ∧ V1 ∪ V2 = V with
every edge e ∈ E connecting one node from V1 to another node from V2.

A bipartite graph can be made into a complete bipartite graph, also known as a
biclique, by connecting all nodes from one set to another set. Formally, a biclique
is a bipartite graph G = (V,E) with E = {ei,j : ∀i ∈ V1, ∀j ∈ V2}. A biclique can
be denoted G = (V1, V2, E). The number of edges in a biclique G = (A,B,E) is
|E| = |A| · |B|. In Section 2.2 "Problem definition" it will be shown that |E| is the
number of proximity queries which has to be computed. The number of nodes in a
biclique is n = |A|+ |B|. See Figure 2.1 for an illustration of a biclique.

See the book by Richard J. Trudeau "Introduction to Graph Theory"[29] for
further introduction to graph theory.

A special case of a graph is a tree. I assume that a reader has previous experience
with trees. In order to avoid any confusion, I present my terminology related to trees
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Figure 2.1: A biclique G = (A,B,E) with |A| = 3, |B| = 3.

used throughout this thesis:

Tree: A tree T = (V,E) is a directed graph without any cycles, where all paths
from one node to another are unique. I occasionally use "v ∈ T " as a shorthand
for "v ∈ V with T = (V,E)".

Root: A node v ∈ T is a root if it has no incoming edges.

Children and parents: A node vc ∈ T is a child of vp ∈ T if there is an edge
going from vp to vc. In this case, I say that vp is a parent of vc.

Sibling: Two nodes vl, vr ∈ V are siblings iff they have the same parent.

Parent set: A parent set P (v) ⊆ T is all nodes on the path from v to the root of
T (not including v but including the root of T . Intuitively, P (v) simply holds
the parent of v and the parent of the parent of v, and so forth, until the root
which is also a member of the parent set.

2.1.2 Preliminary (computational) geometry
The definitions of bounding volume (BV) and bounding volume hierarchy (BVH) are
not mathematically rigorous but instead aim to provide intuition.

Definition 1. Bounding volume: A bounding volume (BV) Abounding is some
convex geometry, oftentimes an sphere, oriented block, or rectangle-swept-sphere,
that bounds some other not necessarily convex geometry A ⊆ Abounding, for example
torii or teapots.

A most common usage of BVs is to first check some distance or collision between
BVs before computing exact and expensive tests between complicated geometries.

Definition 2. Bounding volume hierarchy: A bounding volume hierarchy (BVH)
is a tree of BVs, in which each parent (most commonly) bounds all of its children.

In this thesis it is assumed that every leaf in a BVH holds exactly one triangle.
Further treatment of BVs and BVHs can be found in the book "Real-Time Ren-

dering" by Tomas Akenine-Möller et al.[30, pp.647–650].
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2.1.3 Preliminary topology
The bulk of this thesis does not depend on having solid understanding of the topolog-
ical definitions below. Hence, the definitions below will not be explained thoroughly,
although they are foundational with respect to the problem definition of this thesis.
The reader should be able to understand this thesis by thinking of a C-space as a
set of "states" describing a robotic arm.

The topological definitions below originate from Steven LaValle’s introduction
to topology and C-spaces in Chapter 4 "The Configuration Space" of the book "Plan-
ning Algorithms"[31, pp.127–155]. Mark de Berg et al. gives an introduction to C-
spaces for undergraduates in Chapter 13 of the book "Computational Geometry"[32,
pp.283–303].

A set X is called a topological space if there is a collection of subsets of X called
open sets for which the following axioms hold:

1. The union of any number of open sets is an open set.
2. The intersection of a finite number of open sets is an open set.
3. Both X and ∅ are open sets.

A homeomorphism is a continuous and bijective function f : X → Y where X and
Y are two topological spaces. Two topological spaces are said to be homeomorphic
if a homeomorphism exists in between them, X ∼= Y . A homeomorphism induces
an equivalence class. Hence, another way of saying that two topological spaces are
homeomorphic is to say that they are topologically equivalent. A common saying is
that coffee cups and doughnuts are equal (homeomorphic) since a coffee cup can be
reshaped into a donut and vice versa.

A topological space M ⊆ Rm is a manifold if for every x ∈ M , an open set
O ⊂M exists such that:

1. x ∈ O
2. O is homeomorphic to Rn

3. n is fixed for all x ∈M

An n-dimensional real projective space RPn is the set of all lines Rn+1 that pass
through the origin. These spaces are used to represent rigid transformations. For
this thesis, n = 3 unless otherwise stated.

2.2 Problem definition
A mathematical formulation of the problem which I address is developed in this
section. The mathematical formulation of the problem depends on some crucial
definitions. These definitions are presented prior to introducing the mathematical
formulation of the problem. Note that these definitions are not necessarily standard.

A geometric object is a set O = {o1, . . . , on} of n geometric primitives o1, . . . , on.
A geometric primitive is just some well-behaved set of points, for example a disc,
triangle, torus or a single point.

11



2. Theory

The separation distance between two geometric primitives oA and oB is defined
as:

‖oA − oB‖ = min
a∈oA,b∈oB

|a− b| (2.1)

A separation distance between two geometric objects A,B is defined as:

‖A − B‖ = min
oA∈A,oB∈B

‖oA − oB‖ (2.2)

Let A,B be two sets of geometric objects and let G = (A,B,E) be the biclique
induced by A and B with undirected edges E. Each undirected edge eA,B ∈ E,A ∈
A,B ∈ B induces a distance measure M where M(eA,B) = ‖A − B‖ between the
two geometric objects A and B. The distance ‖A − B‖ will be referred to as the
separation distance between two geometric objects A and B.

The distance between two sets of geometric objects A,B is defined as

‖A−B‖ = minM(E) (2.3)

A configuration space (C-space) of a geometric object A is a topological space,
usually a manifold, CA. A configuration of some geometric object A is a point
qA(i) ∈ CA that determines the state of aA, for example, its position and orientation.

A world configuration q(i) : N → C outputs a point, in the topological space
called world configuration space C = C1×C2× . . .×Cn, which determines the position
and orientation of all n geometric objects.1 A world configuration q(i) can be thought
of as a complete description of some scene at time or iteration i.

A geometry A is static iff |CA| = 1 ie its configuration qA(i) = qA is a well-defined
constant or dynamic iff CA ⊆ R3 × RP3, i.e. A is a rigid body. For convenience, an
edge eA,B is called static if bothA,B are static (and similarly for dynamic geometry).
Consult Steven LaValle’s book on Motion Planning named "Motion Planning"[31]
for in-depth details of C-spaces or the book "Principles of Robot Motion"[33] by
Choset et al. for a less rigorous introduction to C-spaces.

A technical detail should be illuminated: Now that C-spaces have been intro-
duced, A is no longer a geometric object but a function from a point in the C-space
CA to a geometric object. This should not cause any confusion. A geometric object
given some configuration is simply denoted A(qA). A geometric object without a
configuration is referred to as A.

It is time to define the problem that I address with this master thesis. Let CA

and CB be two world configuration spaces, where geometric objects are either static
or dynamic. The problem is to find an efficient way to successively compute:

dist(i;A,B) = ‖A(qA(i))−B(qB(i))‖, qA(i) ∈ CA, qB(i) ∈ CB, i = 1, 2, . . . (2.4)

The notion A(qA(i)) simply means the i:th world configuration of some set of
geometric objects A. Visually, Equation 2.4 represents the length of the red line
in Figure 2.2 given qA(i) and qB(i). In plain English: the problem definition is to
successively compute the minimum distance between two sets of dynamic geometric
object, where the geometric objects jump around in some scene.

1The continuous function q(t) : R→ C could be defined if the geometries were to move around
continuously. In this thesis, geometries are not assumed to move around continuously in space.
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Figure 2.2: Two ABB robot arms with a red line whose end-points represents the two points
which give the smallest separation distance between the two robot arms. Equation 2.4 represents
the length of the red line for some iteration i.

2.3 Bounding volume traversal trees
This section introduces the concept of a BVTTs, which is crucial for understand-
ing how proximity queries (successive computations of dist(i;A,B)) are computed.
BVTTs are useful since they enable the language of trees (for example: children,
parents, and siblings) to be used when reasoning about a BVH-BVH test. BVTTs
could be considered moderately abstract objects. For this reason, a soft introduction
to BVTTs is given. A formal description of BVTTs is given in Section 2.3.4 "BVTTs
generation".

Before presenting BVTTs, some elementary topics in Computer Graphics are
revisited.

2.3.1 Polygon mesh
Recall Equation 2.1. This equation states that the minimum distance between two
geometric objects is the smallest separation distance over all its geometric primitives.
Triangles are instances of a geometric primitives. A polygon mesh is typically a set
of connected triangles. It is understood that Equation 2.1 in practice describes the
separation distances between two triangles (or points, lines) of any two polygon
meshes. In practice, geometric objects are most often polygon meshes.

2.3.2 Bounding volume hierarchies
Given a polygon mesh A, it is common to compute a BVH which encloses A.
A bounding volume hierarchy (BVH) is a tree of BVs enclosing some geometric
object. Common variants of BVHs include, but are not limited to, axis-aligned
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bounding-boxes (AABBs), oriented bounding-boxes (OBBs), discrete oriented poly-
topes (DOPs) or RSSs. The PQP library uses rectangle swept sphere (RSS) as BVs
to accelerate proximity queries[1]. I do not intend to provide a thorough survey of
BVHs since methods developed throughout this thesis does not depend on a choice
of BV-type.

2.3.3 BVTTs represent BV tests
BVHs are oftentimes concerned with the problem of separation distance as formu-
lated in Equation 2.2, in particular by computing a BVH-BVH test. A BVH-BVH
test can be represented by a bounding volume traversal tree (BVTT)[1][2][3][27][34].

A BVTT is formed from two different BVHs that encapsulates two different
geometric objects. The BVTT determines what pairs of BVs must be tested against
each other prior to testing two geometric primitives. BVTTs has been studied by
various authors [1][2][3][17][27][20][34]. The concept of BVTTs is foundational to
this thesis. See Figure 2.3 for an example of a BVTT formed from two BVHs.

Any BVH-pair gives rise to a BVTT and vice versa. Each node in a BVTT
represents a pair of BVs. Hence, traversal of a BVTT is traversal of pairs of BVs. A
BVTT for two BVHs encapsulating two geometric objects A,B is used to compute
Equation 2.1. When BVTT traversal terminates, a separation distance between the
two underlying geometric objects has been found. More on generation and traversal
of BVTTs in Section 2.3.4 "BVTTs generation" and Section 2.3.5 "BVTTs traversal",
respectively.

Note that a BVTT maps bijectively to an edge eA,B ∈ E,G = (A,B,E) where
A,B are two sets of geometric objects, since an edge e ∈ E corresponds to two
geometric objects which in turn correspond to two BVHs. This means that the
number of BVTTs is |A| · |B|.

2.3.4 BVTTs generation
A node TA,B of some BVTT has a pair of BVs encapsulating two geometric objects
A and B, respectively. For convenience, the distance of a node ‖TA,B‖ in a BVTT
is defined as the distance between its two underlying BVs, ‖A − B‖. This means
computing a BVTT node separation distance is the same as computing a separation
distance between two BVs.

A common property of BVTTs is that if ‖TA,B‖ = d then ‖Tc‖ ≥ d, where Tc is
a child BVTT node of TA,B. Hence if some ‖TA,B‖ > ε then every BV-pair of all
children nodes are farther apart than ε. This property makes it possible to prune
children who can not possibly give rise to a smallest separation distance and is by
some authors referred to as the bounding property[12].

It is now explained how to construct a BVTT with the property mentioned
above. A BVTT-node TA,B is a pair of BVHs-nodes, TA and TB. A left child of
TA,B is TAleft,B, where TAleft

is the left child of BVH-node TA. A right child of TA,B
is TAright

, TB). In order to ensure generation of all BVTT-nodes which represents
leaf-leaf tests, a special rule must be enforced: A left child of TA,B is given from
(TA, TB,left) if TA,left does not exist and if TB,left exists. If neither TA,left nor TB,left

exists, then a left child of TA,B does not exist. In summary:
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(a) First BVH (b) Second BVH
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(c) A BVTT formed from the first BVH in (a) and the second BVH in (b)

Figure 2.3: Illustration of how two BVHs combine into a single BVTT. All combinations of BVH
leaf nodes D,E,C and Y, Z are leaf nodes in the BVTT. In practice, leaf nodes of BVHs are often
triangles. BVTT-leaves are all triangle-triangle tests which has to be carried out in a BVH-BVH
test.

left(TA,B) =


TAleft,B if Aleft 6= ∅
TA,Bleft

if Aleft = ∅ ∧ Bleft 6= ∅
∅ otherwise

(2.5)

A completely analogous rule is enforced for generation of right children within
BVTTs.

Figure 2.3 should help illustrate how two BVHs can be combined into a BVTT.
Note that in general it is not certain that a child BV is enclosed by its parent

BV. Phrased mathematically, ∃BVc : BVc 6⊆ BVp where BVp is a parent of BVc.
For example, BVHs built out of RSSs do not satisfy the bounding property since
RSSs are inflated, during BVHs construction, without respect to parent BVs [1].

If children are not enclosed by their parents, then the bounding property may
not hold. However, it is always true that a parent BV encloses geometric primitives
enclosed by a child BV. Therefore, if some parent BVTT-node has a distance greater
than some d, a child with distance d′ < d can be safely pruned if d > ε although
d′ < ε since geometric primitives within said children are at least d apart. A critical
property has been demonstrated; if some BVTT-node has a distance d > ε then all
children can be safely pruned since no geometric primitive-test can give rise to δ.
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(c) A BVTT formed from the first BVH in (a) and the second BVH in (b)

Figure 2.4: Illustration of an alternative combination of two BVHs in (a) and (b) into a single
BVTT in (c). All combinations of BVH leaf nodes D,E,C and Y, Z are leaf nodes in the BVTT.

Another (equivalent) way to think of this property is that any node can be safely
pruned if it has a parent whose distance is greater than a smallest known distance.

Any BVTT node is a function of two known BVs — given TA,B, its left child is
generated as left(TA,B) and its right child is generated as right(TA,B). Information
available on some parent is sufficient for generating its children.

A parent node of any BVTT-node can be computed in constant time, assuming
that any BVH-node has constant time access to its parent:

parent(TA,B) =


TA,Bparent if Bparent 6= ∅
TAparent,B if Bparent = ∅ ∧ Aparent 6= ∅
∅ otherwise

(2.6)

Any second BV-parent in a BVTT-node takes priority over any first BV-parent
in said BVTT-node. In case no parent exists, then the BVTT-node is a root.

Another BVTT-generation scheme is illustrated in Figure 2.4. An important
observation is that both BVTTs in Figure 2.4 and Figure 2.3 have identical leaves,
but intermediate BVTT-nodes vary. A consequence is that two different generation-
schemes for two BVHs may perform different BV-BV tests and as such have different
pruning capabilities.

MacDonald and Booth has suggested a BVH space subdivision scheme based
on BV surface area [35], commonly known as surface area heuristic (SAH) within
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the ray-tracing community. An approach used by IPS, inspired by MacDonald and
Booth, is the following: Choose AB and AC as children of AX (or equivalently XA)
if and only if the surface area of A is greater than the surface area of X, otherwise
choose AY and AZ as children:

child(TA,X ) =

(TB,X , TC,X ) if A(A) > A(X)
(TA,Y , TA,Z) otherwise

(2.7)

This children generation scheme ensures that nodes with large surface areas
are split into its two children as early as possible. This reduces BV-BV collisions
and increases BV-BV distances, making more BVTT nodes prunable and therefore
reducing the set of traversed nodes on any iteration. Note that parent(TA,B) has to
be adjusted accordingly.

In conclusion: A BVTT is a tree whose nodes represent a BV-BV test. If
‖TA,B‖ > ε then no children need further investigation and consequently all grand-
children representing geometric primitive tests can be omitted.

2.3.5 BVTTs traversal
A depth-first BVTT-traversal scheme, which finds a smallest separation distance δ,
is presented in this section. The depth-first traversal scheme functions as a demon-
stration of how traversal throughout a BVTT can be done. This demonstration also
illustrates exactly how a separation distance can be found given a BVTT root, an
upper bound ε on δ the separation distance δ and a configuration point q. Priority
directed search (PDS) is presented in light of said demonstration.

A BVTT can be traversed by depth-first, breadth-first or by any other traversal
scheme. If any two BVs of a node in a BVTT are farther away than ε, then the
sub-tree with said node as root can be safely pruned, speeding up BVTT traversal.
A distance between two BVs, given a world-configuration point q, on some BVTT
node T is denoted ‖T (q)‖. A depth-first BVTT traversal scheme, which returns
a smallest separation distance, is presented in Algorithm 1 "Depth-first search".
Checking existence of left and right child is omitted for brevity. A distance between
two geometric primitives on a BVTT leaf l is denoted as ‖l‖leaf .

Algorithm 1 Depth-first search
Require: T a node in a bounding volume traversal tree
1: function traverse(T , ε, q)
2: if ‖T (q))‖ ≤ ε then
3: if T is leaf then
4: ε ← min(ε, ‖T (q)‖) . Update ε
5: else
6: εl ← traverse(left(T )), ε, q)
7: ε ← min(ε, εl)
8: εr ← traverse(right(T )), ε, q)
9: ε ← min(ε, εr)

return ε
10: end function
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Note that in Algorithm 1 "Depth-first search", ε may be updated whenever a leaf
has been hit. Also note that pruning of sub-trees is dependent on ε. It is clear that
a small ε would cause many sub-trees to be pruned on line 2. However, it is not
certain that greedily diving into the left-most leaf gives a small ε. It could be better
to have a traversal scheme which intelligently dives towards a small ε, or similarly,
to have a traversal scheme which solely traverses a minimal BVTT.

Definition 3. Minimal BVTT: The set of BVTT nodes of a BVTT T that are
traversed with ε = ‖A − B‖.

A minimal subtree of a BVTT is shown in Figure 2.5.
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Figure 2.5: A full BVTT is shown. It has a minimal BVTT, indicated by thick nodes. Node
distances are indicated within nodes. The smallest leaf has distance ‖A − B‖ = 3.

A smallest separation distance will henceforth be referred to as either the smallest
separation distance or simply δ. The notion of a smallest separation distance δ can
be found in two (closely related) papers by L. Eric et al. [1][2]. In other words, a
minimal BVTT is traversed if Algorithm 1 "Depth-first search" is called with ε = δ.

In practice, it seems that traversing a minimal BVTT necessitates knowledge of
δ a priori, the unknown number which is being computed by Algorithm 1 "Depth-
first search". A traversal scheme called priority directed search (PDS) is presented
in Section 3.3 "Priority directed search". PDS traverses a minimal BVTT without
knowing δ a priori (see proof in Section 2.3.7 "Minimal BVTT forest"). PDS was
first introduced in Larsen et al. [1] and further developed shortly thereafter [2][3].

At its very core, PDS schedules what nodes to visit according to their distances.
Instead of recursively visiting left children followed by right children, PDS inserts
a BVTT root T into a priority-queue sorted on separation distances in ascending
order. The top-node of the priority-queue is popped and a child vc is inserted into
the priority-queue if and only if ‖vc‖ ≤ ε. A lax description of PDS is that it is
similar to Dijikstra’s algorithm on trees with BVTT node distances as edge weights.
A (naïve) pseudocode illustrating PDS is presented in Algorithm 2 "Priority directed
search".
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Algorithm 2 Priority directed search
Require: T a node in a bounding volume traversal tree
Require: PQ a priority queue
1: function traverse(T , ε, q)
2: PQ ← PQ ∪ {T }
3: while PQ 6= ∅ do
4: v ← pop(PQ)
5: if ‖v(q)‖ ≤ ε then
6: if v is leaf then
7: ε ← min(ε, ‖v(q)‖leaf ) . Update ε
8: else
9: PQ ← PQ ∪ {left(v), right(v)}

return ε
10: end function

A better PDS algorithm, with respect to the number of O(log n) insertions and
deletions, is presented in Section 3.3 "Priority directed search".

PDS is not for free. There is a trade-off: Traversal may greedily dive towards
leaves that do not hold a small distance ε or traversal may, instead, slowly explore a
BVTT using O(log n) priority queue operations with the benefit approaching a leaf
with a small distance ε.

2.3.6 Generating BVTTs on-the-fly
Any parent or child of some BVTT node TA,B is well-defined given information
available on T , as shown in Section 2.3.4 "BVTTs generation". This means that if
some traversal algorithm is currently standing on a node TA,B, both children and its
parent can be generated with left(TA,B), right(TA,B) and parent(TA,B), respectively.

Deallocation of right(TA,B) is possible after traversing to a child or parent. Con-
sequently, a complete BVTT need not be stored in memory at all — only a current
node need to be stored. I denote this as an implicit BVTT .

On the other end, explicit BVTTs are traditional trees in which every node has
pointers to their children and optionally a parent. An explicit BVTT consumes
twice as much memory as its implicit counterpart (since BVTTs are binary) and is
capable of storing persistent information.

2.3.7 Minimal BVTT forest
Oftentimes there are several BVTTs, forming a forest F of BVTTs (analogous to the
edge-set E with G = (A,B,E)), each of which may give rise to a smallest separation
distance δ.

Recall from Section 2.2 "Problem definition" that ‖A−B‖ is a minimal separation
distance between two geometric objects and that ‖A − B‖ is a minimal separation
distance between two sets of geometric objects. With this in mind, consider a forest
F of BVTTs. Each member of F has a smallest separation distance. For any
BVTT TA,B ∈ F , a minimal BVTT is obtained by calling the traversal routine given
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in Section 2.3.5 "BVTTs traversal" with ε = ‖A−B‖. However, a smaller BVTT is
obtained if the traverse routine is called with ε = ‖A−B‖ ≤ ‖A−B‖. Consider the
forest of all such smaller BVTTs. I denote this forest as a minimal BVTT forest.

Definition 4. Minimal BVTT forest: The set of BVTT nodes within a forest
F of BVTTs which are traversed with ε = ‖A−B‖.

A minimal forest of BVTTs is illustrated in Figure 2.6.
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Figure 2.6: A forest F of three BVTTs is shown. Its minimal counterpart is indicated by thick
nodes. Node distances are indicated within nodes. The smallest leaf within the forest has distance
‖A−B‖ = 1. Nodes which are members of minimal BVTTs but not members of the minimal forest
of BVTTs are dotted.

Note that a minimal BVTT forest is equally small or smaller than the union of
minimal BVTTs, since nodes of some BVTT TA,B can be more aggressively pruned
with ε = ‖A − B‖ as opposed to ε = ‖A − B‖ since ε = ‖A − B‖ ≤ ‖A − B‖
by definition of ‖A − B‖. These nodes are dotted within Figure 2.6. Hence, it
is preferred to traverse minimal BVTT forests as opposed to unions of minimal
BVTTs.

2.3.8 PDS traverses minimal BVTT forests
Many authors suggests that PDS traverses fewer BVTTs nodes than a depth-first
search [1][2][3]. I make a stronger claim: PDS traverses a minimal BVTT forest. To
this end, I develop a proof of Theorem 1 that support said claim.

Some notations are presented prior to proving lemmas leading up to Theorem 1:

• Let V be the set of visited nodes in a forest of BVTTs F using PDS with
ε =∞

• Let V ∗ be the set of visited nodes of F using PDS with ε = δ = ‖A− B‖ (so
V ∗ is a minimal BVTT forest).

• Let v∗ ∈ V ∗ be a leaf node with ‖v∗‖leaf = δ = ‖A−B‖
• Denote P (v) as the parent set of v (see Section 2.1 "Preliminary Theory").
• Let PQ be the priority queue used by PDS, initially populated by all BVTT

roots of a forest F .

Lemma 1. If P (v∗)∩PQ 6= ∅, then a node which is popped is smaller than or equal
to δ

Proof. Clearly, |PQ ∩ P (v)| ≤ 1 at all times — no two or more parents exists
simultaneously in PQ. Therefore, P (v∗)∩PQ 6= ∅ implies that PQ∩P (v∗) = {v∗p}.
Note that ‖v∗p‖ ≤ δ since leaves are enclosed by parent bounding volumes.
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Now, pop a node v from PQ, then ‖v‖ ≤ min(PQ) ≤ min(PQ ∩ P (v∗)) =
min{v∗p} = ‖v∗p‖ ≤ δ. Hence ‖v‖ ≤ δ.

Note that P (v∗) ∩ PQ 6= ∅ implies that the best leaf v∗ have not been visited
and implies that PQ 6= even if a node is popped (so min(PQ) is well-defined).

The proof that PDS traverses minimal BVTT forests leverages the fact that if
a node v giving a smallest distance δ is yet to be encountered, then a node in its
parent set must exist in PQ and this node must have a distance smaller than δ.
So any node that is popped prior to visiting the node with distance δ must have a
distance smaller than δ (since PQ is a priority queue). Without further ado, the
proof that PDS traverses minimal BVTT forests is now presented:

Theorem 1. V = V ∗

Proof. Let ε = ∞. Assume V 6= V ∗. Assume WLOG that V = V ∗ ∪ {v} with
{v} ∩ V ∗ = ∅, i.e. v is the sole node of in V which is not in V ∗. I deal with the
following two cases separately: P (v∗) ∩ PQ 6= ∅ and P (v∗) ∩ PQ = ∅

Case 1: P (v∗) ∩ PQ 6= ∅: Consider the case where v is about to be popped from PQ.
When any parent of v was popped, then P (v∗)∩PQ 6= ∅ must have been true
too. Hence, all parents of v are smaller than or equal to δ by lemma 1. In
particular, the closest parent vp of v is smaller than or equal to δ. But then
traversal can not terminate at vp even if ε = δ, hence v ∈ V ∗ by definition of
V ∗.

Case 2: P (v∗) ∩ PQ = ∅: If P (v∗) has no nodes in common with PQ, it must be
because (a) v∗ has already been popped so ε = δ or (b) v∗ is the earliest leaf
in PQ. Case (b) is easily transformed to case (a) by continuing the priority
directed search until v∗ is popped. Hence, a treatment of (a) is sufficient.
Now, if ε = δ prior to popping the closest parent vp of v, then ‖vp‖ ≤ δ since
v ∈ PQ. But if ‖vp‖ ≤ δ then v ∈ V ∗ (vp ∈ V ∗ by WLOG-assumption). A
contradiction. Hence, it must be the case that ε > δ prior to popping the
closest parent vp of v. But if ε > δ prior to popping the closest parent vp of v,
then v∗ is yet to be popped. If v∗ is yet to be popped, then we have either (c)
or (d):

(c): P (v∗) ∩ PQ 6= ∅ ∧ v∗ 6∈ PQ at the time of popping the parent vp of v,
thus ‖vp‖ ≤ δ by Lemma 1. Analogously with Case 1, if ‖vp‖ ≤ δ then
v ∈ V ∗.

(d): P (v∗) ∩ PQ = ∅ ∧ v∗ ∈ PQ at the time of popping the parent vp of v so
‖vp‖ ≤ ‖v∗‖ = δ and hence v ∈ V ∗.

This concludes Case 2.

In conclusion, v ∈ V ∗ for both Case 1 and Case 2, contradicting the assumption
that V 6= V ∗.

Theorem 1 states that it does not matter if an ε is initialized to δ or∞— the two
sets of visited BVTT nodes are equivalent, regardless. In particular, this theorem
states that PDS traverses minimal BVTT forests. Nevertheless, initialization of ε
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Figure 2.7: Filled nodes are members of a BVTT front. A triangle denotes some arbitrary
BVTT-subtree.

is important for other reasons than that of visiting few BVTT nodes, which are
presented throughout Section 3.3 "Priority directed search".

A simple corollary follows:

Corollary 1. Let V be the set of visited nodes of T using PDS with ε =∞ and let
V ∗ be the set of visited nodes of T PDS with ε = ‖A−B‖, then V = V ∗

Proof. Apply theorem 1 with F = {T }.

Corollary 1 is not surprising. If PDS traverses minimal BVTT forests, then it is
not a long stretch to guess that PDS also traverses minimal BVTTs.

2.4 Front tracking
FT and variants thereof are techniques which reduce the number traversed BVs by re-
membering where queries terminated in previous iteration(s) [18][14][3][19][21][9][17].
The method of GFT saves a BVTT node v to a bounding volume traversal tree front
(BVTT front), if traversal terminates on v due to ‖v‖ ≥ ε. In other words, a bound-
ing volume traversal tree front (BVTT front) consists of cached BVTT nodes. In
Figure 2.7, a BVTT front is shown as filled nodes. GFT initiates traversals from
each node of a front instead of starting traversal from a BVTT root. For binary a
BVTT, this could reduce the number of traversed nodes by at most half the front
size and hence halves the number of BV-BV tests.

A BVTT front can be equipped with two operators:

Sprout operator: A sprout operator moves a front "downwards". Sprouting can be
thought of as traversing a BVTT, saving nodes for which traversal terminated.
This increases the size of a front.

Raise operator: A raise operator is the opposite of a sprout operator — it moves
a front "upwards". A raise operator decreases the size of a front.

In coherent scenes where motions of geometric objects are small, it is expected
that a BVTT front need only undergo minor changes — the set of pruned nodes

22



2. Theory

AX

BX

BY BZ

CX

CY CZ

AX

BX

BY BZ

CX

CY CZ

(a) Before updating the front (b) After updating the front

Figure 2.8: A BVTT front which undergo minor changes, (a) shows a front before updating it
and (b) shows a front after updating it

is almost identical in a following iteration, as illustrated in Figure 2.8. Hence, it
seems unnecessary to start traversal from a BVTT root when a BVTT front is a
good guess of where traversal will terminate.

If traversal always starts at a BVTT front and if the BVTT front is always
extended by nodes at which traversal terminates, then the BVTT front increases in
size until it consists of all BVTT leaves. GFT has then degenerated into the very
O(n2) case which BVHs are designed to avoid. The problem is that the front no
longer approximates the set of nodes at which traversal terminates. This explains
why a front must be raised by some raise operator — otherwise the front no longer
provides an accurate guess of where traversal will terminate.

A formalization of the notion of an accurate guess follows:

Definition 5. Optimal front (single BVTT): The set of leaves in a minimal
BVTT.

This definition is inspired from O. Tropp et al. [19], who introduce optimal fronts
although their definition differ. Note that set of leaves in a minimal BVTT, i.e. an
optimal front, is precisely the set of BVTT nodes at which traversal would terminate.
Indeed, an optimal front is a perfect guess of where traversal will terminate (by
definition).

An optimal front on a forest of BVTTs is defined analogously:

Definition 6. Optimal front (forest of BVTTs): The set of leaves in a mini-
mal forest of BVTTs.

Figure 2.9 depicts an identical situation as in Figure 2.6 but the optimal front is
indicated as filled nodes.

A front F is said to lie below an optimal front if nodes of the optimal front is a
subset of the parents of F .

In conclusion, a good front tracker provides a good estimate of an optimal front,
preferably with negligible overhead.
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Figure 2.9: A forest F of three BVTTs is shown. An optimal front over F is indicated by filled
nodes.

2.4.1 Memory usage of front tracking
Denote a maximal front of a BVTT as the set of all leaves in a BVTT. Consider two
identical binary BVHs with n leaves respectively. There are n2 pairings of leaves
so there are n2 leaves in the corresponding BVTT. Hence the memory usage of
a (maximal) BVTT front is O(n2). Assuming that the front stores BVTT nodes
which hold 64bit pointers to two underlying bounding volumes or triangles, then a
maximal front for two 10k meshes occupies 100002 · 128 bit ≈ 1.6 GB.

In a robot-cell context there can be several BVHs with possibly (much) more
triangles than 10k. If |A| = |B| = 10 then |A| · |B| = 100 maximal fronts may
be kept in memory in a worst-case scenario, occupying 100 · 1.6 GB = 160 GB of
memory. This may cause worry that FT is intractable. Experiments show that
fronts are, in practice, consistently several orders of magnitudes smaller than the
their maximal counterparts. See Section 5.8 "Front size and memory usage".

2.4.2 Invalid and redundant fronts
I introduce two front-properties: Invalid fronts and redundant fronts. These two
definitions are convenient to be equipped with when discussing sprouting and raising
operators.

Invalid front

A front F is invalid if there exists a leaf which is unreachable from a front. This
could happen due to usage of incorrect sprouting or raising operators. A front should
be neither invalid nor redundant if proximity queries should be correct and efficient.
This bounds the design space of sprouting and raising operators.

Definition 7. Invalid front: A front F over a forest F is invalid iff

∃l ∈ F ∧ l 6∈ subtree(T ), ∀T ∈ F

If traversal starts from an invalid front, then it is possible that a leaf node
lunvis is not visited after traversal ends. This is incorrect since if ‖lunvis‖ = δ, then
an algorithm starting traversal from a front will not be able to return the correct
separation distance. A invalid front is illustrated in Figure 2.10.
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AX
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BY BZ

CX

CY CZ

Figure 2.10: An invalid BVTT front. A dashed node denotes the missing node, i.e. the node
which must be a member of a valid front.

AX

BX

BY BZ

CX

CY CZ

Figure 2.11: A redundant BVTT front. A child BZ and its parent BX are members of the
illustrated front and hence the front is redundant.

Redundant front

A front F is redundant if there exists a node v in F and a node from its parent set
P (v) also exists in F .

Definition 8. Redundant front: A front F over a forest F is redundant iff

∃v ∈ F : P (v) ∩ F 6= ∅

A redundant front is unwanted because it makes it possible to initiate two differ-
ent traversals which have a set of reachable leaves in common, introducing a risk of
visiting some BVTT nodes v twice. A redundant front is shown in Figure 2.11, which
can be made non-redundant by either removing BX and adding BY or removing
BZ.
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3
Forest proximity querying

I develop a novel method denoted Forest Proximity Query (FPQ) throughout sec-
tions under this chapter. FPQ aims to improve upon present state-of-the-art meth-
ods for distance computations by reducing the number of BV-tests, without resorting
to approximate or special-purpose methods.

FPQ is a simple method that enables usage of established proximity querying
methods on forest (collections of trees) of BVTTs. Conceptually, FPQ connects all
BVTT roots in a forest of BVTTs to a super-root. Established BVTT techniques, for
example generalized front tracking (GFT) or priority directed search (PDS), can then
be applied to several BVTTs simultaneously by initiating traversal at the super-root.

I propose (and later on explain) two core benefits of FPQ: it explores a minimal
forest of BVTTs when used in conjunction with PDS and it can reduce BVTT front
size. These core benefits have potential to accelerate successive computations of
dist(i;A,B) (by reducing the number of distance computations between bounding
volumes), and therefore, answers the research question of this thesis.

An implementation functions as a proof of concept (by demonstration) and is
vital in comparing FPQ with PQP. Said implementation of FPQ benefits FCC,
whom are eager to speed up their proximity queries — a major bottleneck in their
motion-planner — within the Industrial Path Solutions (IPS) software. Indeed,
proximity querying is typically a bottleneck in rapidly exploring dense tree (RRT)
based motion-planners. For example, collision detection may amount up to 99%
of total running time of RRT based motion-planners [36]. In summary, a reduced
number of distance computations in between BVs targets a significant bottleneck of
RRT based motion-samplers and is therefore believed to accelerate proximity queries
in a robot cell context.

I answer the research question by developing and demonstrating FPQ, which is
integrated within IPS. PQP is used by IPS, hence, a fair comparison between FPQ
and PQP is possible. I will refer to my implementation as simply FPQ.

I choose to use distance routines within PQP for computing distances between
BVs and between geometric primitives. A short presentation of how PQP is used
within IPS is given in Chapter 4 "PQP". Using PQP within FPQ allows for a fair
comparison with IPS. Otherwise, it would be difficult to tell if performance of FPQ is
due to underlying BVHs and BVs or due to FPQ. Further, PQP uses RSSs which are
regarded as a solid choice of BV-type for proximity querying. Some other possible
choices of BVHs are hierarchies of AABBs, OOBs or k-DOPs, but I have not tried
various types of BVHs since FPQ does not depend on some particular BVHs.
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3.1 Ordering bounding volume traversal trees
Consider a forest of BVTTs (which have not been connected to a super-root), that
each of which may give rise to a separation distance between two sets A,B of geo-
metric objects. An ordering of BVTTs computations must be made. In other words,
each edge e ∈ E with G = (A,B,E) must be assigned a rank determining the order
of evaluation.

The ordering matters because BVTT traversal can be greatly accelerated given
an upper-bound ε on the separation distance, due to Line 2 that enables pruning of
BVTT subtrees if ε is sufficiently small. Naturally, if it is known that the separation
distance must be smaller than some ε, then there is no need to examine BVTT nodes
with distances larger than ε. Hence, the order of evaluation of BVTTs matters.

A most simple ranking is a fixed ranking where all BVTTs are of fixed order. This
means that any pair of BVHs are always tested against each other in a fixed order.
This ordering is not ideal since a BVTT that frequently gives rise to a minimum
distance may be tested after testing other BVTTs.

IPS uses an ordering scheme which schedules a BVTT T to be examined first if
T gave rise to the shortest distance in the previous iteration. Mathematically, T is
examined first on iteration i if ‖T (qi−1)‖ = δi−1, where δi−1 denotes the separation
distance of the previous iteration. More on this in Chapter 4 "PQP".

A clever ordering scheme ensures that a BVTT TA,B with TA,B = δi is tested
first on iteration i. However, it is not clear-cut how to determine which BVTT
in a forest of BVTTs gives a smallest separation distance without computing the
separation distances of all BVTTs.

Since FPQ connects all BVTTs to a super-root, an ordering of BVTTs correspond
to an ordering of edges between said super-root and BVTT roots. But it is the job
of traversal algorithms to decide what edges to descend. Hence, FPQ implicitly uses
a ordering scheme as a function of some traversal algorithm.

Depth-first search and breadth-first search are two well-known traversal algo-
rithms. It is far from apparent that they visit BVTTs in a good order. Some
authors suggests using PDS[2] instead of a depth-first search throughout a BVTT.
PDS is particularly interesting when used with FPQ, since it traverses all BVTTs
simultaneously. I proved that PDS traverses minimal forests of BVTTs if a priority
queue is initialized with all BVTT roots. Hence, FPQ traverses minimal forests of
BVTTs if all edge-weights in between a super-root and BVTT roots are set to zero.
In practice, it is clearly sufficient to initialize a priority queue used by PDS with
BVTT roots.

3.2 Depth-first search
Until this point, a lot of theory on BVTTs and FT has been presented. Prior to
introducing FPQ with depth-first search, a brief summary of important key ideas
that I have already presented follows:

1. Geometric objects consists of geometric primitives (see Section 2.2).
2. Each geometric object is associated with a BVH (see Section 2.3.2).

28



3. Forest proximity querying

3. A BVTT is formed given two BVHs and each BVTT node represents a BV
test or a geometric primitives test (see Section 2.3.3).

4. The problem of distance computation can be solved by computing BVTT node
distances.

5. BVTT subtrees can be pruned if an small upper-bound ε on the shortest
distance δ is known (see Line 2 of Section 1).

6. PDS with FPQ traverses minimal forests of BVTTs.
7. A robotic arm is a composition of rigid bodies, each of which is encapsulated

by a BVH. Thus, the problem of computing separation distances between
various robotic arms or static geometric objects is that of traversing a a forest
of BVTT (see Section 1.2 and 2.3).

8. Separation distance computations constitute a bottleneck of RRT based motion-
planners. Therefore, traversing small BVTTs may relieve said bottleneck and
hence proximity queries in a robot cell context may be accelerated by travers-
ing small BVTTs.

9. A point C-space determines the state of a geometric object (see Section 2.2).
10. The problem I address is how to efficiently find a minimal separation distance

between two sets of geometric objects for given a sequence of world configura-
tion points qo, qi, . . . qn (see Section 2.2).

The list above summarizes core ideas presented so far. With these ten key ideas
in mind, I make the purpose of this section explicit: To weave previously presented
ideas into a coherent whole, presented as an algorithm with well-defined inputs and
outputs. In particular, a method for computing ‖A(qi)−B(qi)‖, given a sequence of
points in C-space q0, q1, . . . , qn, using FPQ with depth-first traversal is now described.
Finally, pseudocode for FPQ with depth-first traversal is presented.

FPQ aims to reduce the number of BV-BV tests, i.e. the number of times ‖v‖
has to be computed where v is a BVTT node. In order to accomplish this, a front
consisting of BVTT nodes within a forest of BVTTs is used. The front makes it
possible to avoid traversing BVTT nodes which lie in between the front and the
BVTT roots. The number of BV tests are halved if a front is optimal. However,
FT relies on coherence in scenes. Fortunately, a distance between two successive
C-space points qi and qi+1 is bounded from above ‖qi − qi−1‖ < d, ensuring at least
partial coherence.

A list of symbols used throughout this section follows:

Symbols
A,B: Sets of geometric objects

δ: A separation distance between A and B, ‖A−B‖
ε: Upper-bound on δ (shortest distance known so far)

Front F : A set of BVTT nodes approximating an optimal front
Leaf front L: All leaf members of F belong to a leaf front L ⊆ F

Sproutees S: Subset of F that is sprouted
Sprouted front SF : Subset of F that was sprouted in the previous iteration

Rest front RF : All members of F which are not member of either L or SF .

The algorithm is fairly large and therefore it is presented in independent frag-
ments, in a chronological (with respect to execution) order. Finally, the fragments
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are pieced together into a coherent whole.

3.2.1 Initialization
Initialization happens on two occasions:

A per BVTT forest initialization: An initialization is required every time a
new set of geometric object A or B is given. These two sets remain fixed
— geometric objects are by assumption rigid hence not deformable. Further,
no geometric objects are added to said sets during motion-planning run-time
(A and B can be regarded as constants). Therefore, this initialization-step
occurs only once.

A per C-space point initialization: This type of initialization occurs every time
a C-space point from the sequence of C-space points q0, q1, . . . qn is processed.
This initialization occurs n times.

One-time initialization

Two sets of geometric objects A and B are given prior to computing dist(i;A,B).
All edges in G = (A,B,E) correspond to the initial forest F of BVTTs. All roots
within the initial forests are added to the front F .

Note that a super-root is a theoretical object which is not part of initialization (or
other parts of FPQ). Instead of adding a super-root to a front, all BVTTs of F are
added to the same front F . This is completely analogous to adding a hypothetical
super-root to a front.

Per call initialization

PQP is used for computing BV distances and distances in between two geometric
primitives. World transformations are computed in a O(|A| · |B|) pass. PQP relies
on world transformations when computing BV distances and distances between two
geometric primitives.

An introduction to world transformations is given in Chapter 4 "PQP". For now,
it is enough to know that a world transformation must be updated for ‖v(q)‖ and
‖v(q)‖leaf to be correctly computed.

3.2.2 Initializing an upper-bound on a separation distance
via a leaf front

It is good to have a small upper-bound ε on a separation distance δ, sooner rather
than later, since if ‖v‖ > ε for a BVTT node v, then all leaves below v have distances
that are greater than ε. Therefore, traversal may terminate on v. For this reason, all
BVTT leaves that are visited in one iteration are cached in a leaf front L, including
the leaf which gave rise to the separation distance. This can be viewed as generalized
triangle caching. Figure 3.1 illustrates a leaf front L ⊆ F , indicating members of L
with a leaf-symbol.
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F

â â

Figure 3.1: A forest F of three BVTTs is shown. A front is indicated by filled nodes. Members
of the subset L ⊆ F are indicated by a leaf-symbol.

A dynamic array is used for representing L because insertion at back is O(1) and
there is no need for deletion.

At the start of the main routine, all leaf distances are computed in a O(|L|) pass,
giving a smallest known upper-bound on the separation distance δ, denoted as ε.
See Algorithm 3 "Initialization of ε".

Algorithm 3 Initialization of ε
1: function init_eps(L, q)
2: ε ← ∞
3: for ∀v ∈ reverse(L) do
4: if ‖v(q))‖ ≤ ε ∧ ‖v(q))‖leaf ≤ ε then
5: ε ← ‖v(q))‖leaf

return ε
6: end function

The leaves are traversed in a reversed order. This is because any leaf which is
inserted into L is, at the time, smaller than ε. This means that small leaves are
likely to be found in the right-most part (back) of L while larger leaves are likely to
be found in the left-most part (front) of L.

The notion of ‖T (q))‖leaf is introduced to disambiguate between geometric prim-
itive distance computations and BV distance computations. A geometric primi-
tive distance computation is only carried out if the leaf node passes the (relatively
cheaper) BV test.

It is not clear cut if it is beneficial to test a BV distance against ε, which may
or may not allow us to discard a geometric primitive test, but benchmarks showed
that it is slightly better to perform BV tests. A rationale for this is that geometric
primitives tests are more expensive than BV tests, so if sufficiently many geomet-
ric primitive tests at leaf level are discarded due to BV tests yielding distances
larger than ε, then a BV test at leaf level can prove beneficial (which it did). Said
benchmark is not presented for it is a very minor result.

Finally, a cause for concern is initialization of ε via a leaf front is expensive —
geometric primitives tests are expensive. This is not a problem in practice. Results
indicate that initialization of ε correspond to roughly 1% of total running times (see
Section 6.1 "Main results").
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3.2.3 Leaf front, sprouted front, and rest of the front
A simple idea is to keep all of front nodes in one dynamic array. However, as already
shown, a partitioning of the front can be beneficial — a leaf front is used to iterate
over all leaves of the front instead checking for each front member if it is a leaf and
if so, update ε.

Indeed, the front is partitioned further into a sprouted front SF , leaving a leftover
part of the front denoted as rest front RF . The sprouted front is the set of leaves at
which traversal terminated in the previous iteration. Therefore, SF can be regarded
as the part of a front F which causes F to increase in size and, if coherency is high,
the part of the front which is moving downwards. Consequently, RF can be regarded
as the part of the front which is either fixed or moving upwards.

F = RF ∪ SF ∪ L with RF, SF, L mutually exclusive (3.1)

where L is as before, with SF and RF :

SF = Set of nodes for which traversal terminated (3.2)
RF = F \ (SF ∪ L) (3.3)

A front is partitioned into SF and consequently RF for this reason: If traversal
terminates on node v at iteration i − 1, i.e. v is a member of SF on iteration i,
then v is likely to become further sprouted on iteration i, possibly reaching a leaf
node l with ‖l‖ < ε. Hence, by recalling what nodes were sprouted on iteration
i− 1, these nodes can be traversed prior to traversing other nodes. This motivates
a partitioning of the front into SF .

It should be noted that this technique assumes that sprouted nodes have a higher
probability of becoming sprouted in successive iterations. This is not a wild assump-
tion in a robot-cell context. Consider a tool equipped at the tip of a robotic arm.
All distances on BVTT nodes, representing a tool and a surface of some product,
decreases as the tool approaches the product surface. These sprouted BVTT nodes
may become further sprouted such that a leaf lsprouted with ‖lsprouted‖ < minl∈L ‖l‖
is visited, causing ε to be updated.

A stack S of sproutees, nodes for which a depth-first traversal must be initiated,
is populated with BVTT nodes from RF and SF .

S = {‖v‖ < ε : ∀v ∈ RF ∪ SF} (3.4)

Nodes from RF are inserted into S if it is possible that their children give rise
to a smaller ε, i.e. if ‖v‖ < ε, v ∈ RF . Nodes from SF are inserted after nodes from
RF has been inserted. The stack S will hence traverse nodes from SF first.

Pseudocode describing how a front is partitioned is found in Algorithm 4 "Front
partitioning". Note that SF is cleared at the end. This is because SF is rebuilt
during sprouting (sprouting is presented in Section 3.2.5 "Sprouting"). However, no
node v from SF is lost since it keeps living in either SF or RF , depending on if it
may have a child c with ‖c‖ < ε or not.
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Algorithm 4 Front partitioning
1: function Partitioning(RF, SF, q, S)
2: for ∀v ∈ RF do
3: if ‖v(q))‖ ≤ ε then
4: S ← S ∪ {v}
5: RF ← RF \ {v}
6: for ∀v ∈ SF do
7: if ‖v(q))‖ ≤ ε then
8: S ← S ∪ {v}
9: else

10: RF ← RF ∪ {v}
11: SF ← ∅
12: end function

After Algorithm 4 "Front partitioning" have been executed, all front nodes with
‖v‖ < ε are members of S and it is precisely those nodes which must be sprouted
in order to obtain a better approximation of the optimal front.

Note that nodes are removed from RF if they have a distance smaller than or
equal to ε. Hence, after Algorithm 4 "Front partitioning" has been executed, RF
consists of all nodes which are must be raised in order to better approximate the
optimal front.

3.2.4 Raising
A simple raise operator is a sibling-raise operator. This type of raise operator is
described by several authors [14][19][9]. A sibling-raise operator on F raises F by
identifying sibling BVTT nodes of F and replace them by their common parent.
Hence, raising siblings within a front is the problem of finding all sibling pairs: of
nodes (v1, v2) with:

{(v1, v2) ∈ RF ×RF : parent(v1) = parent(v2)} (3.5)

A front shown before raising and after raising, using a sibling-raise operator, is
shown in Figure 3.2.

A sibling raise operator can never make a front invalid or redundant. Consider
a front F , which is not invalid or redundant, and a raised front Fi+1. All reachable
nodes of Fi are trivially reachable from Fi+1. Therefore Fi+1 is valid. Further, both
children of any (new) parent in Fi+1 are removed from Fi+1, hence no child has a
parent in Fi+1. Hence Fi+1 is not redundant.

I apply a sibling-raise operator on RF post partitioning. All nodes of RF post
partitioning constitutes the subset of F with distances greater than ε, i.e. those
nodes which lie below an optimal front and thus those nodes which must be raised
in order to obtain a better approximation of the optimal front.

I present an algorithm for raising a front F , with average time complexity O(n)
and worst-case time complexityO(n2), where n = |RF |, which utilizes a hash mapH
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û û û û Raise−→
(a) Before raisal (b) After raisal

Figure 3.2: A BVTT front before and after applying a sibling-raise operator. Nodes which are
members of the BVTT front are filled with black. Nodes which are members of RF are marked
with up-arrows.

to detect siblings in RF in Algorithm 5 "Raising". To the best of my knowledge, no
authors have previously provided algorithmic descriptions of a sibling raise operator.

The algorithm traverses each element vi of RF and inserts (parent(v), i) into H.
However, if parent(vj) of vj ∈ RF, i < j is already present inH then vi is overwritten
in-place by the common parent of vi and vj, parent(vi) = parent(vj). The latter
sibling vj is finally removed from RF in O(1) time using the swap-and-pop idiom1.

Algorithm 5 Raising
1: function raise(RF )
2: i ← 0
3: while i < |RF | do
4: vi ← RF (i)
5: if is_root(vi) then
6: continue
7: else if parent(vi) 6∈ H then
8: H ← H ∪ {(parent(vi), i)}
9: i ← i+ 1
10: else
11: R(H(parent(vi))) ← parent(vi)
12: swap(vi, back(RF ))
13: pop_back(RF )
14: clear(H) . Prevents false sibling-detections in a following iteration
15: end function

An illustration of Algorithm 5 "Raising" is shown in Figure 3.3.
Note that Algorithm 5 "Raising" is compatible with both implicit and explicit

BVTTs. It does not use any persistent information of BVTT nodes since no persis-
tent information on BVTT nodes is available for implicit BVTTs. A more efficient
algorithm which is compatible with solely explicit BVTTs is devised in Section 3.4
"Efficient sibling-raise with explicit BVTTs".

1The swap-and-pop idiom: An element v of RF is swapped with the back element of RF .
Popping the back element, which is now v, effectively erases it from the array without moving or
copying ranges as per textbook deletion from dynamic arrays
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Contiguous array RF The hash map H
Initial state.

1 2 3 4 5 6 71
CX BX v

H = {}
Iterate forward. Iteration arrives at CX.

1 2 3 4 5 6 72
CX BX v

H = {}
Insert (parent(BX), 2) into H

1 2 3 4 5 6 72
CX BX v

H = {(AX, 2)}
Iterate forward. Iteration arrives at BX.

1 2 3 4 5 6 75
CX BX v

H = {(AX, 2)}
(parent(BX), 2) ∈ H ⇒ RF (1) = parent(BX)

1 2 3 4 5 6 75
AX BX v

H = {(AX, 2)}
Swap element at current position with back

1 2 3 4 5 6 75
AX v BX

H = {(AX, 2)}
Pop the back element

1 2 3 4 5 65
AX v

H = {(AX, 2)}

Figure 3.3: Illustration of how two siblings BX and CX are merged into their common parent
AX within a contiguous array RF . The back node is some arbitrary BVTT node denoted v.

Two improvements

Let d(v) ∈ N denote the depth of v ∈ T where T is a BVTT. Then two simple
invariants about sibling nodes hold:

• w = sibling(v) =⇒ d(v) = d(w).
• v ∈ T =⇒ sibling(v) ∈ T

In other words, two nodes can only be siblings if they are members of the same
BVTT T and have the same depth in T . This enables using a hash map H per
BVTT and per depth-level.

It is beneficial to have a hash map H per BVTT and per depth-level since
insertions and lookups in hash maps are on average O(1) but worst-case O(n). By
using several small hash maps instead of a single large hash map, the worst-case
scenario is mitigated.

In terms of Algorithm 5 "Raising", the hash map H is retrieved from a two-
dimensional dynamic array A after retrieving vi from RF . Pseudocode of a sibling-
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raise method utilizing several hash maps is presented in Algorithm 6 "Raising with
several hash maps".

Algorithm 6 Raising with several hash maps
1: function raise(RF )
2: i ← 0
3: H ← A(d(vi), Get_bvtt_ID(vi))
4: while i < |RF | do
5: vi ← RF (i)
6: if is_root(vi) then
7: continue
8: else if parent(vi) 6∈ H then
9: H ← H ∪ {(parent(vi), i)}
10: i ← i+ 1
11: else
12: R(H(parent(vi))) ← parent(vi)
13: swap(vi, back(RF ))
14: pop_back(RF )
15: for H ∈ A do
16: clear(H) . Prevents false sibling-detections in a following iteration
17: end function

A subtle consequence of using several hash maps is that a BVTT node must
allocate 8 bits for storing d(v) and 16 bits for storing its BVTT ID, assuming that
d(v) < 28 and that |A| · |B| < 216. This increases memory consumption of FPQ.

I take all hash maps to be flat hash maps2.

3.2.5 Sprouting
Conceptually, sprouting is the opposite of raising — sprouting moves a BVTT front
downwards. Figure 3.4 illustrates how sprouting affects a BVTT front. In practice,
sprouting is BVTT traversal. A presentation of depth-first sprouting follows.

A (naïve) depth-first traversal algorithm was previously presented in Algorithm 1
"Depth-first search". A depth-first sprouting operator behaves conceptually similar
to said algorithm and works as follows: Take the top sproutee v of sproutees S, pop
it from S, and feed it into a (modified) depth-first traversal algorithm. Whenever
traversal terminates on a node, add it to SF . Repeat this process until S is empty.

The modified depth-first traversal algorithm works as follows: distances on two
children vl, vr of a node v ∈ S are computed. The smallest child v< is examined
first. If ‖v<‖ < ε, then check if v< is a leaf and if so, proceed to compute its leaf
distance ‖v<‖leaf . Update ε if necessary. Proceed to examine v> in a similar fashion.
If it turns out that both children are leaves with v> being the smaller leaf (although
v> has a larger BV-BV distance), insert v< into L prior to inserting v> into L.
Otherwise, insert v> into L prior to inserting v< into L.

2https://probablydance.com/2017/02/26/i-wrote-the-fastest-hashtable/
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ø ø

Sprout−→ − − − −

(a) Before sprouting (b) After sprouting

Figure 3.4: A BVTT front before and after sprouting. Nodes which are members of the BVTT
front are filled with black. Nodes which are members of S are marked with up-arrows. Nodes
which became members of SF after sprouting are marked with Ä.

Indeed, there are many possible execution branches, each of which could lead to
further sprouting of either vl or vr, updating ε, inserting either v> or v< into L, or
rebuilding SF .

In fact, there are 19 possible interesting outcomes given in Table 3.1. Needless to
say, most branches are omitted for brevity in Algorithm 7 "Sprouting". Regardless,
this pseudocode should give the reader a thorough understanding of how the depth-
first sprouting algorithm works.

Pseudocode is given in Algorithm 7 "Sprouting". It is possible to construct the
complete pseudocode by enumerating all cases in Table 3.1 mechanically in addition
to keeping the following guidelines in mind:

• Examine the smallest nodes first
• Never compute leaf distances which can not be smaller than ε
• Update ε whenever a leaf-test has been made
• If a smallest leaf-child is known, insert it into L last
• If a smallest intermediate node is known, insert it into S last
• Never compare any two distances more than once

Note that in practice, ‖v‖ is only computed once per node and iteration — it is
cached on v the first time ‖v‖ is computed.

3.2.6 Complete FPQ with depth-first search
Initialization, partitioning, raising and sprouting are now woven together into a
coherent algorithm represented as pseudocode in Algorithm 8 "Complete FPQ with
DF search". This algorithm is a complete example of using FPQ for computing
a separation distance between two sets of geometric objects, for successive points
q1, q2, . . . , qn in C-space.

Algorithm 8 "Complete FPQ with DF search" initializes ε, partitions the front
into nodes which must be either raised or sprouted in order to obtain a better
approximation of the optimal front. Since leaves must be eligible for raisal too, they
are temporarily copied to RF prior to raising RF . All leaves which did not get
raised are copied back into L.
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Table 3.1: Enumeration over possible sprouting cases for which comparisons are either True,
False or Irrelevant. Irrelevant cases occur if (1) it is not relevant to perform a comparison due to
termination of traversal at the node in question or (2) computing a leaf distance can not possibly
yield a smaller ε. Columns with leaf distances are irrelevant if a corresponding node is not a leaf.
On columns ‖v>‖ < ε and ‖v>‖leaf < ε it is implicit that a comparison againt ε is a comparison
against ‖v<‖leaf if ‖v<‖leaf < ε is true

Case ‖v<‖ < ε v< leaf ‖v<‖leaf < ε ‖v>‖ < ε v> leaf ‖v>‖leaf < ε
1 T T T T T T
2 T T T T T F
3 T T T T F I
4 T T T F T I
5 T T T F F I
6 T T F T T T
7 T T F T T F
8 T T F T F I
9 T T F F T I
10 T T F F F I
11 T F I T T T
12 T F I T T F
13 T F I T F I
14 T F I F T I
15 T F I F F I
16 F T I F T I
17 F T I F F I
18 F F I F T I
19 F F I F F I
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An improvement which eradicates copying on line 9 and line 11 in Algorithm 8
"Complete FPQ with DF search" is suggested in Section 6.7 "Avoiding copy-overhead
during raisal".

3.3 Priority directed search
In this section, I present FPQ with PDS in light of FPQ with depth-first search.
The two methods are, as we shall see, similar.

As suggested by [1], PDS guides BVTT traversal towards a small ε, promoting
exploration of a BVTT closer to the minimal BVTT. GFT and PDS have been
combined and found efficient when applied to a single BVTT[3].

FPQ with PDS is an adaption of GFT with PDS to a forest F of BVTTs,
exploiting the fact that only a single smallest distance, rather than all smallest
distances, is requested. I showed, in Section 2.3.8 "PDS traverses minimal BVTT
forests", that PDS explores a minimal forest of BVTTs. Hence, PDS is a motivated
approach for reducing BV-BV tests in any forest of BVTTs.

However, a single yet significant negative consequence is introduced with PDS:
Insertion and deletion from S becomes O(log n). Yet, there are several benefits of
using PDS since a front may never sprout below that of the optimal front:

• Fewer BV-BV tests are performed
• Fewer geometric primitives tests are performed
• Front memory consumption decreases (ameliorating possibly intractable mem-

ory consumption, as presented in Section 2.4.1 "Memory usage of front tracking")
• Raise-operator does not have to work as hard
• Theorem 1 states that PDS traverses minimal forests of BVTTs although ε is

initialized to ∞. Hence, PDS is expected to perform well in situations even
when ε >> δ, i.e. in low-coherence scenarios.

FPQ with PDS complement each other since FPQ is expected to work well with
high-coherence scenarios and PDS is expected to ameliorate low-coherence scenarios.
Indeed, I propose that the relationship is symbiotic — PDS helps a front F to remain
small, increasing likelihood of F being close to an optimal front, while a front offloads
several O(log n) operations from PDS by skipping top-level BVTT nodes.

Nonetheless, it is possible that a front lie below that of an optimal front due
to conservative raising. Therefore, using a front with PDS destroys any guarantees
that minimal forests of BVTTs are visited. I make no attempts at estimating if the
positive consequences outweigh the negative consequence. Instead, both versions
(depth-first and PDS) are implemented.

3.3.1 Complete FPQ with PDS in terms of FPQ with DFS
All hard work has already been dealt with in either Chapter 2 "Theory" or Section 3.2
"Depth-first search" — PDS traverses minimal forests of BVTTs and the core FPQ
algorithm has been presented. Using FPQ with PDS requires one trivial change in
Algorithm 7 "Sprouting": Let S be a priority queue, sorted on distances in increasing
order, instead of a stack.

39



3. Forest proximity querying

3.3.2 Partitioning is particularly important with PDS
Insertions and removals are slow with PDS. This further motivates a partitioning
of the front. A priority queue PQ used by PDS is kept small by ensuring that no
leaves nor node v with ‖v‖ > ε are inserted into PQ.

One approach3 is to avoid partitioning. Simply insert all BVTTs nodes, including
raised nodes post raisal, into a priority queue and sprout. Encountered leaves are
also inserted into PQ. However, this approach can be inadequate beyond usability
since |PQ| becomes large.

3.3.3 PDS allows for early traversal termination
PDS guarantees that a node v∗ with ‖v∗‖ < ε can never be popped from a priority
queue PQ used for PDS if a node v with ‖v‖ > ε has been popped. This follows
from Lemma 1.

But if v∗ can not be popped after popping ‖v‖ > ε, then it is not useful to
continue sprouting the front since it will not approach an optimal front. Hence,
traversal may terminate when ‖v‖ > ε is encountered although S is not empty,
saving O(n log n) pop-operations where n denotes |S| at the time v is encountered.

All remaining elements of S must be copied into SF in order to ensure that the
front F = RF ∪ SF ∪ L remains valid. This must be done in a pass linear in the
number of remaining elements of S. Regardless, an O(|S|)-pass without computing
any BV-BV tests is more efficient than continued computation of BV-BV tests during
O(|S| log |S|)-traversal.

A single simple modification to Algorithm 7 "Sprouting" realizes this optimization
— after line 30, copy remaining elements in S into SF and break out of the while-
loop.

3.3.4 Analysis of FPQ vs GFT
A single large priority queue can be used to explore a minimal forest of BVTTs
or several small priority queues can be used to explore several minimal BVTTs. I
proved, in Section 2.3.7 "Minimal BVTT forest", that a minimal forest F of BVTTs
is smaller than the union of minimal BVTTs. But it is not clear if a single large
priority queue is beneficial over several smaller priority queues.

A (rough) analysis of when it is expected to benefit from FPQ in comparison
to GFT when using PDS follows. Let n denote the number of BVTTs and let k
denote the average number of sproutees per BVTT fronts, using GFT. Let k′ denote
the average number of sproutees per BVTT in a front using FPQ. GFT uses n
priority queues to maintain k elements each while FPQ uses one priority queue to
maintain nk′ elements, hence GFT with PDS is O(nk log k) and FPQ with PDS is
O(nk′ log nk′). It follows that if nk′ log nk′ < nk log k, then FPQ is expected to be
beneficial.

Let c = k
k′ ≥ 1. A quick calculation which hints of a necessary condition follow:

3the approach which was initially implemented in early stages of this master thesis
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nk log k > nk′ log nk′ ⇔ c log k > log nk′ ⇔ kc > nk′ ⇔ ckc−1 > n

From this calculation it is understood that the ratio c must be sufficiently large,
which is to say, the set of sproutees with GFT which are not sproutees with FPQ
must be sufficiently large.

For example, if FPQ manages to move the BVTT front up one level in comparison
to the union of smaller GFT fronts, then c = 2 (since BVTTs are binary trees and
the number of sproutees is assumed to be proportional to the front size). It follows
that a sufficient condition is k > n

2 when c = 2. However, if c < 2, then the
condition may or may not be fulfilled. For example, if k = 27 and n = 5 then
3
2(27) 3

2−1 = 9
2 6> 5.

A conclusion which can be made from this brief calculation is that FPQ can
be more costly than GFT since FPQ must maintain a single large priority queue
instead of n smaller priority queues — but FPQ is expected to pay off if the set of
sproutees with FPQ is sufficiently smaller than the union of all sproutees obtained
with GFT.

3.4 Efficient sibling-raise with explicit BVTTs
It has been previously stated, in Section 2.3.6 "Generating BVTTs on-the-fly", each
child is completely determined from its parent and each parent is completely deter-
mined from its children. This makes it, at a first glance, attractive to use a implicit
BVTT as opposed to a explicit BVTT since there does not seem to be any need to
store nodes that lie in between roots and front nodes.

A sibling-raise routine, which is applicable to both implicit or explicit BVTTs,
was presented in Algorithm 5 "Raising". It detects siblings by generating parents
and storing them in a hash map H. However, this is a source of overhead.

If we limit ourselves to solely explicit BVTTs, then it is possible to get rid of
the hash map H for detecting siblings: siblings of visited nodes can be marked with
some stamp k ∈ N, and check for each visited node if its sibling is marked. If so,
the two siblings can be merged into their common parent at the position of the first
encountered sibling, effectively raising the front in a linear pass. The second sibling is
removed with the swap-and-pop idiom. Complexity-wise, the sibling-raise algorithm
has been transformed from an average O(n)-algorithm to an always O(n)-algorithm.

A more efficient sibling-raise strategy, which relies on usage of explicit BVTTs,
has been described and is presented as pseudocode in Algorithm 9 "Raising (explicit
BVTTs)".

Compare Algorithm 9 "Raising (explicit BVTTs)" with Algorithm 5 "Raising".
All traces of the hash mapH is gone, thanks to the possibility of persistently marking
nodes with mark and storing sibling-indices sibidx.

An integer stamp k is necessary, as opposed to just marking nodes as visited
with some boolean, since the raise-routine is called in all iterations (i.e. for each
given C-space point qi). A mark must not be kept over iterations, since a sibling
which was encountered on a previous iterations could have been sprouted on the
current iteration — invalidating the mark. However, it is possible to reset marks in
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a linear pass, but this introduces unnecessary overhead. Hence, an integer stamp k
is used to mark siblings in the front.

In conclusion, usage of explicit BVTTs enables removal of H which in turn
increases performance at the cost of increased memory consumption. This result is
presented in Section 5.10 "Raising and sprouting on implicit and explicit BVTTs".

3.5 Recursively raising siblings
A recursive raisal scheme is presented in this section. It is a generalization of the
previously introduced raise-sibling strategy, in which raised parents are further raised
if their sibling exist in the front.

Raising siblings a single level is viable whenever the decrease in size, over iter-
ations, of an optimal front is sufficiently bounded. If nodes need only be raised a
single level in order to obtain an optimal front, then a single level raisal routine is
sufficient. However, if an optimal front does decrease in size more rapidly, then a
single level raisal routine functions as a friction for a front that is trying to keep up
with the optimal front. For this reason, a recursive sibling-raise routine is developed.

3.5.1 A O(n2) recursive sibling-raise routine
A simple approach is to apply either Algorithm 5 "Raising" or Algorithm 9 "Rais-
ing (explicit BVTTs)" to RF until RF does not change in size any longer. Both
algorithms are, at least on average, linear-time algorithms.

A worst-case scenario is that only a single pair of siblings is raised on each
recursion, effectively decreasing |RF | by one per recursion. Mathematically, the
number of visited nodes during a naïve recursive raisal algorithm is bounded from
above by:

n+ (n− 1) + . . .+ 1 = n2 (3.6)

where n denotes the size of RF at each recursion. It follows that this naïve
approach to recursively raising siblings has quadratic time-complexity O(|RF |2).

3.5.2 A O(n) recursive sibling-raise routine
I developed an algorithm which performs a recursive raise in O(n), where n =
|RF |. Due to time constraints, only a recursive raise routine for explicit BVTTs was
implemented.

The linear-time recursive raise algorithm works as follows: Traverse all elements
of RF as usual and mark their siblings. If some node v is marked, replace its
sibling by the common parent, erase v from RF and call a recursive subroutine on
vp = parent(v). The recursive subroutine checks if vp is marked and if so, merge
vp and its sibling into their common parent and apply the recursive subroutine on
the former back element and then on parent(vp), otherwise mark the sibling of vp

and terminate the recursion. See Algorithm 10 "Raising (explicit BVTTs)" for a
pseudocode description.
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There are two recursive calls of the recursive raise subroutine. The latter corre-
spond to the straight-forward recursive call where a raised parent is further raised.
The former call, however, is made to ensure index validity.

It is important that the sibling index sibidx on any node remains valid, even
after removing elements from RF . Otherwise, it is possible that an arbitrary node
is overwritten by a parent of two siblings. Only back nodes are deleted from RF .
Hence, it is a left-most sibling node vs = sibling(BACK(RF )) which may get an
invalidated sibling index. However, by visiting the (former) back node at RF (r)
first, there is no risk that the invalid index on vs is used, since vs is overwritten
directly by parent(RF (r)). This is the reason why the recursion recurses into former
back nodes prior to recursing into parent nodes.

Each node of RF is visited at most once. In addition to nodes of RF , all nodes
of the parent set image P (RF ) are visited at most once, i.e. all nodes "above" RF
are visited at most once. Note that |P (RF )| = |RF | − 1 since BVTTs are binary.
It follows that at most 2|RF | − 1 nodes are visited. Hence Algorithm 10 "Raising
(explicit BVTTs)" is O(n) where n = |RF |.

3.5.3 Anchor nodes
It might appear that a recursive sibling-raise always raises a front into BVTT roots.
BVTT roots does, usually, not constitute a good approximation of some optimal
front. However, thanks to anchor nodes, a recursive sibling-raise does not raise a
front into the set of roots in a BVTT forest.

An anchor node va is any node which is not a member of RF during raisal.
Hence, any sibling of va can not become raised, effectively "anchoring" the front at
va. See Figure 3.5 for an illustration of anchoring nodes which prevents a front from
becoming raised to forest roots.

û û û ï û û û û Raise−→ ï

(a) Before recursive raisal (b) After recursive raisal

Figure 3.5: A BVTT before raising and after raising. Nodes which are about to become raised
are marked with up-arrows. An anchor node is marked with an anchor.

3.6 Resetting a front
An O(n) recursive raise strategy, where two sibling nodes are raised into a common
parent, has been presented in Algorithm 10 "Raising (explicit BVTTs)". However, a
recursive raise may "over-raise", that is, raise a front F far above that of an optimal
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front F ∗. In that case, it could have been more efficient to raise the node into its
root node and sprout it instead.

Some authors suggests resetting a front, according to some heuristic, to either
get rid of a raise-operator all together or to complement a sibling-raise strategy
[16][17][9]. In the context of FPQ, resetting a front replaces all front nodes by all
BVTT root nodes, after which an approximation of an optimal front is rebuilt.

Ideally, a front F is reset whenever it is computationally cheaper to approximate
an optimal fronts by sprouting from BVTT roots than it is to approximate an
optimal front by raising F . A heuristic must decide when a front should be reset,
however, it is far from obvious what heuristic should be used.

I have experimented with several simple heuristics, all of which decide if a front
should be reset or not. A simple heuristic that performs decently is:

do_reset :=

true, if the number of raised nodes exceeds 9% of the total front size
false, otherwise

(3.7)

The rationale for this heuristic is that if an optimal front F ∗ decreases in size, a
raise routine will cause an approximation F to decrease in size, however, the rate of
decrease may not be as rapid as that of F ∗. Hence, if a measured decrease in F is
sufficiently large, then |F ∗| � |F | such that a reset is efficient. The magic threshold
number 9% was found, through a binary search, to minimize the total number of
BV-BV calculations for a particular scene.

There are possibly better heuristics for resetting a front [17]. However, advanced
reset methods have not been prioritized and hence not implemented.

A heuristic determining if a front should be reset has been presented. However,
it is not clear when Equation 3.7 should be evaluated nor when the front should be
reset in terms of Algorithm 8 "Complete FPQ with DF search". A front could be
reset either immediately or post ε initialization, post partitioning, post raising or
post sprouting.

3.6.1 Evaluating heuristic during raisal
It is unnecessary to raise nodes if a front-reset is inbound. A parent need only be
raised if Equation 3.7 is false. This motivates marking a front for reset during raisal,
since only then are unnecessary raisals avoidable.

A simple counter is maintained in all raise routines, which keeps tracks of the
number of raised nodes. Prior to merging two siblings into their common parent,
Equation 3.7 is evaluated with said counter. If true, no nodes are further raised and
the front is marked for reset. Otherwise, the algorithm proceeds to raise nodes as
usual.

3.6.2 Reset after initializing ε

It is important for partitioning and sprouting to initialize an upper-bound ε on the
separation distance δ ≤ ε 6= ∞ since more BVTT nodes can be pruned. This is
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intuitively true for depth-first traversal, but also for a PDS traversal despite that
PDS traverses minimal forests of BVTTs.

With PDS, the number of popped nodes (deletions) from a priority queue PQ
does not depend on an initial value of ε. However, the number of insertions decreases
if ε 6= ∞ since insertions into PQ can be avoided for several execution branches,
given in Table 3.1. Hence it is important to initialize ε 6=∞, even though minimal
forests of BVTTs are visited when using PDS.

In conclusion, a front is reset after initializing ε with INIT_EPS but before
front partitioning, if and only if Equation 3.7 evaluated to true during the previous
iteration.

3.7 Duplex priority queue
Depth-first search traverses more nodes than PDS in a forest of BVTTs or as many
nodes (by Theorem 1). However, the number of visited BVTT nodes is for some
test-scenarios only marginally larger with depth-first in comparison to the number
of visited nodes when using PDS). This is a result, that is presented in Section 5.5
"Bounding volume and triangle distance computations", that motivates development
of duplex priority queue (DPQ).

A hypothesis which provides an answer as to why this is the case follows: A
depth-first search, in which the child with the smallest distance is traversed first,
generates a path throughout the forest of BVTTs which is roughly the same as a
path generated by PDS.

If the hypothesis holds true, then PDS oftentimes traverses down a child v of
the current node as opposed to jumping to a different place in the BVTT forest.
In particular, ‖v‖ < top(PQ). Inserting v into PQ only to remove it is of no use.
Hence, it could be beneficial to avoid a costly O(log n) insert and simply insert it
into a stack instead.

A priority queue, which I call DPQ4, with O(1) insertion iff ‖v‖ < min{PQ}
and O(1) deletion if the stack is not empty is presented in Algorithm 11 "DPQ".
Three standard operations are presented: insert, top and pop. The underlying stack
of DPQ is denoted DPQS and the underlying priority queue of DPQ is denoted
DPQP Q.

Note that DPQ is a priority queue since a smallest BVTT node is read or deleted
at all times.

Under the following access pattern, DPQ performs insertion and deletion in O(1)
time:

1. Insert a BVTT node v with ‖v‖ ≤ min{DPQ} into a DPQ
2. Pop a node from said DPQ

In essence, DPQ attains the efficiency of a fast depth-first search whenever PDS
traversal coincide with depth-first traversal. This comes at the cost of if-check
overhead during insertion and deletion.

4To the best of my (lacking) knowledge, this type of priority queue is novel. However, I strongly
believe this has been done before and I do not claim myself as the inventor
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It is, perhaps contrary to intuition, crucial to perform the distance comparison
in POP and TOP since DPQPQ may hold smaller nodes than DPQS even though
the smallest nodes are always inserted into DPQS. This occurs in the following
scenario:

1. Insert a BVTT node v0, with ‖v1‖ = 3.0 (inserts into DPQS)
2. Insert a BVTT node v1, with ‖v2‖ = 1.0 (inserts into DPQS)
3. Insert a BVTT node v2, with ‖v3‖ = 2.0 (inserts into DPQP Q)
4. Pop a node (pops v2 from DPQS).

At this state,DPQS = {v1} andDPQP Q = {v3} so min{DPQP Q} < min{DPQS}.
Hence it is possible that min{DPQP Q} < min{DPQS} which warrants a distance
comparison in POP and TOP.

Remark: Two children vl and vr of a BVTT node v may both be of smaller
distance than ε. If the larger child is inserted into first then both children can be
inserted into the underlying stack in O(1)-time — otherwise, the smallest node is
inserted first, after which the larger node is inserted into the underlying priority
queue in O(log n)-time. Hence, the order of insertion into S during Algorithm 7
"Sprouting" matters if S is a DPQ. In terms of pseudocode, changes are superfluous
since the ordering warranted by DPQ coincide with the previous order of insertion,
as presented in Section 3.2.5 "Sprouting".

3.8 Sampling points in Cobs
The sampling-based motion-planner used in IPS is based on RRTs. IPS may sample
points in the obstacle-region Cobs ⊂ C, which is a subset of C-space where geometric
objects collide [31]. By definition of Cobs:

∃v : ‖v(q)‖leaf = 0,∀q ∈ Cobs (3.8)

This is trivially true, since if there does not exist a leaf with distance zero, then
the configuration point can not possibly lie in Cobs.

Since no separation distances are negative, any BVTT node v with ‖v(q)‖leaf = 0
gives a smallest separation distance δ. Searching for a smaller upper-bound ε > δ or
a smaller δ is futile. Therefore, FPQ may terminate early whenever a BVTT node
v with ‖v(q)‖leaf = 0 is encountered.

I suggest two places in which early termination, due to collision, is possible:

• Return δ = 0 immediately if a leaf with distance zero is encountered in Algo-
rithm 3 "Initialization of ε"

• Check if ε = 0 before line 3 in Algorithm 7 "Sprouting". If true, break out
of the while-statement and copy remaining elements of S into SF in order to
preserve front validity. Otherwise, continue traversal as usual.

These optimizations are only fruitful if FPQ is used for points in C-space which
are also members of Cobs.
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3.9 A safe ε
In this subsection, a method of computing a safe initial ε1 is presented. Here, safe
means that it is guaranteed that no minimum distance between two sets of geometric
objects can be greater than ε1.

Two static geometric objects, A and B, have a fixed minimum distance for all
world configurations:

‖A(qA(i))− B(qB(i))‖ = ‖A(qA)− B(qB)‖ = c (3.9)

This gives a simple method for finding a safe ε. If the following holds:

∃A ∈ A : |qA| = 1 ∧ ∃B ∈ B : |qB| = 1 (3.10)

then simply compute the minimum distance for every static edge. Take the smallest
minimum distance and denote it εsafe.

It is geometrically obvious why εi ≤ εsafe: Two objects which stays put forever
has some fixed minimum distance εsafe in between them — a minimum distance
εi can not exceed εsafe for then it would not be the minimum distance. Finding
εsafe can be done naïvly in O(n · d) where n = |{eA,B ∈ E : A,B static}| and d is
the time complexity for computing the separation distance. A safe εsafe can in an
initialization phase and proceeds to set ε0 := εsafe. Further, it is safe to always set
εi := min(εi, εsafe). If Equation 3.10 is false, set εsafe :=∞.

Another way to compute a possibly smaller εsafe is compute a smallest max-
imal distance between two geometric objects A ∈ A and B ∈ B over all world
configurations:

εsafe := min
A∈A,B∈B

max
qA∈CA,qB∈CB

‖A(qA)− B(qB)‖ (3.11)

Unfortunately, it is not straight-forward how to compute Equation 3.11. Naïvly,
every point q ∈ CA × CB must be examined.

Further, I believe that εsafe is never smaller than ε, post ε-initialization as pre-
sented in Algorithm 3 "Initialization of ε", if a minimum over static edges is used
to initialize ε prior to calling Algorithm 3 "Initialization of ε". However, it is dif-
ficult to estimate how often a εsafe, computed by Equation 3.11, is smaller than
ε post ε-initialization. Regrettably, due to the sheer complexity of Equation 3.11,
computation of Equation 3.11 it not considered.

3.10 Correctness of FPQ
This section briefly presents a list of tests that are used to verify correctness of FPQ
and its subcomponents.

Correct distance: Check if the distance output by FPQ coincides with the dis-
tance output of IPS for all configuration points. This test is clearly sufficient
for determining if FPQ returns a correct distance on some scene, given a se-
quence of configuration points.
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Necessary-test for forest equivalence: Exhaustively traverse all BVH-pairs with
IPS and count all visited BVH-pairs and check if the count match the number
of counted BVTT nodes visited during exhaustive search with FPQ. This test
is a necessary-test which does not necessarily guarantee that the traversed
BVTT correspond to the traversed set of BVH-pairs. However, if this test
fails, it means that the forest of BVTTs which FPQ traverses is not the same
as the forest of BVTTs which IPS traverses. This test is only enabled for small
scenes, for exhaustive enumeration of large BVTTs is practically intractable
as hinted by Section 2.4.1 "Memory usage of front tracking".

Front redundancy: Recursively enumerate all parents and denote the set of vis-
ited parents as P . Then P ∩ F = ∅ must hold. By definition 8, this test is
sufficient for determining if a front is redundant or not.

Front correctness #1: Check that there are no duplicate nodes in a front F . This
test is a necessary-test.

Front correctness #2: Recursively enumerate all parents of a front F , denote
the set of visited parents as P . Then |P | − |F | = |E| must hold, where
G = (A,B,E) as usual. If |E| = 1, then this check ensures that the number
of visited parents of a sole BVTT is precisely the size of the front minus unity,
which must be the case since BVTTs are binary. In general |E| 6= 1, which
explains why unity is exchanged for |E|. This test is a necessary-test.

DPQ correctness: Generate a set S of 10k random floating point values in range
[0, 1]. Insert each element of S into a known working implementation of a
priority queue ( std::priority_queue ) and into an instance of DPQ. Check
if the two sequences of popped floating-point numbers are equivalent.

I conjecture that front correctness #1 and #2 combined constitute a sufficient-
test for front correctness.

All of the listed tests are implemented in C++ in order to ensure that FPQ
behaves as expected.
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Algorithm 7 Sprouting
1: function Sprout(S, SF, L, q, ε)
2: while S 6= ∅ do
3: v ← top(S)
4: pop(S)
5: if ‖v(q)‖ < ε then
6: vl ← left(v), vr ← right(v)
7: v< ← smallest(vl, vr, q), v> ← largest(vl, vr, q)
8: if ‖v<(q)‖ < ε then
9: if leaf(v<) then

10: if ‖v<(q)‖leaf < ε then
11: ε ← ‖v<‖leaf

12: if ‖v>(q)‖ < ε then
13: if leaf(v>) then
14: if ‖v>(q)‖leaf < ε then . Case 1 in Table 3.1
15: ε ← ‖v>(q)‖leaf

16: L ← L ∪ {v<}, L ← L ∪ {v>}
17: else . Case 2 in Table 3.1
18: L ← L ∪ {v>}, L ← L ∪ {v<}
19: else . Case 3 in Table 3.1
20: L ← L ∪ {v<}, S ← S ∪ {v>}
21: else
22: if leaf(v>) then . Case 4 in Table 3.1
23: L ← L ∪ {v>}, L ← L ∪ {v<}
24: else . Case 5 in Table 3.1
25: L ← L ∪ {v<}, SF ← SF ∪ {v>}
26: else. . .
27: else. . .
28: else. . .
29: else
30: SF ← SF ∪ {v}
31: return ε
32: end function
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Algorithm 8 Complete FPQ with DF search
1: function one_time_init(A,B, SF )
2: for ∀A ∈ A do
3: for ∀B ∈ B do
4: SF ← SF ∪ {Create_BVTT_root(A,B)}
5: end function
6: function dist(L, SF,RF, qi)
7: ε ← Init_eps(L, qi)
8: Partitioning(RF, SF, q, S, ε)
9: RF ← RF ∪ L

10: Raise(RF )
11: L ← RF ∩ L
12: ε ← Sprout(S, SF, L, q, ε)
13: δ ← ε
14: return δ
15: end function

Algorithm 9 Raising (explicit BVTTs)
1: function raise(RF, k)
2: i ← 0
3: while i < |RF | do
4: vi ← RF (i)
5: if is_root(vi) then
6: i ← i+ 1
7: else if sibling(vi)mark 6= k then . True if vi has not been visited by

raise-routine on this iteration
8: sibling(vi)mark ← k
9: sibling(vi)sibidx ← i

10: i ← i+ 1
11: else . Sibling of vi has been visited so both exist in front
12: R(RF (i)sibidx) ← parent(vi)
13: swap(RF (i), back(RF ))
14: pop_back(RF )
15: end function
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Algorithm 10 Raising (explicit BVTTs)
1: function base_raise(RF, k)
2: while i < |RF | do
3: vi ← RF (i)
4: if is_root(vi) then
5: i ← i+ 1
6: else if sibling(vi)mark 6= k then
7: sibling(vi)mark ← k
8: sibling(vi)sibidx ← i
9: i ← i+ 1
10: else . Sibling of vi has been visited so both exist in front
11: j ← RF (i)sibidx

12: R(j) ← parent(vi)
13: swap(RF (i), back(RF ))
14: pop_back(RF )
15: recursive_raise(RF, k, j)
16: end function
17: function recursive_raise(RF, k, j)
18: if j ≥ |RF |∨ is_root(RF (j)) then
19: return
20: else if sibling(RF (j))mark 6= k then
21: sibling(RF (j))mark ← k
22: sibling(RF (j))sibidx ← j
23: else
24: l ← RF (j)sibidx

25: RF (j) ← parent(RF (j))
26: swap(RF (l), back(RF ))
27: pop_back(RF )
28: recursive_raise(RF, k, l) . Recurse into former back node first
29: recursive_raise(RF, k, j) . Recurse into parent last
30: end function
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Algorithm 11 DPQ
1: function insert(DPQ, v)
2: if PQ(DPQ) 6= ∅ then
3: if ‖v‖ ≤ ‖TOP(DPQS)‖ then
4: DPQS ← DPQS ∪ {v} . O(1)
5: else
6: DPQP Q ← DPQP Q ∪ {v} . O(log n)
7: else if DPQP Q = ∅ ∨ ‖v‖ < ‖TOP(DPQP Q)‖ then
8: DPQS ← DPQS ∪ {v} . O(1)
9: else

10: DPQP Q ← DPQP Q ∪ {v} . O(log n)
11: end function
12: function top(DPQ)
13: if DPQP Q = ∅ ∨ (DPQS 6= ∅ ∧ ‖TOP(DPQS)‖ ≤ ‖TOP(DPQP Q)‖ then
14: return TOP(DPQS)
15: else
16: return TOP(DPQP Q)
17: end function
18: function pop(DPQ)
19: if DPQP Q = ∅ ∨ (DPQS 6= ∅ ∧ ‖TOP(DPQS)‖ ≤ ‖TOP(DPQP Q)‖ then
20: POP(DPQS)
21: else
22: POP(DPQP Q)
23: end function
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The Proximity Query Package (PQP) is used by internally IPS for computing sep-
aration distances between two BVs and for computing them between two geometric
primitives. In particular, for computing separation distances between two rectangle
swept spheres (RSSs) and for computing them between two triangles. I also use
PQP for the aforementioned computations.

PQP is capable of computing ‖A − B‖ where A and B are two geometric ob-
jects. In other words, PQP can compute a separation distance between two BVHs.
However, PQP does not provide any means to compute a distance ‖A−B‖ between
two sets of geometric objects A and B. Analogously, PQP does not provide any
means for computing a separation distance between sets of rigid bodies (for exam-
ple robotic arms). FCC has developed an algorithm which enables PQP to compute
‖A−B‖. I present that algorithm in Section 4.2 "IPS traversal algorithm over forests
of BVTTs" and I will refer to this extended version of PQP as simply IPS. IPS can
be regarded as a superset of PQP that is capable of traversing forests of BVTTs.

In summary, PQP has three relevant use cases: (1) to compute a separation
distance between two BVs (2) to compute a separation distance between two geo-
metric primitives and (3) for comparing FPQ with IPS. This chapter settles how
a separation distance between two BVs ‖v(q)‖ is computed and how a separation
distance between two triangles ‖v(q)‖leaf is computed with PQP. I also present how
IPS uses PQP for computing ‖A−B‖.

4.1 Computing separation distances
This section describes how separation distances between either two BVs or two geo-
metric primitives are computed in terms of algorithms of Chapter 3 "Forest proximity
querying" by using PQP. Some brief presentations of two PQP technicalities follows:

• PQP computes distances under the assumption that one RSS volume out of
two is axis-aligned [2].

• A BV is expressed relative its model space via a local transformation L.

A transformation M1→2 ensures that the first bullet-point is satisfied:

M1→2 = L−1
2 ×Mworld × L1 with Mworld = M−1

world,2 ×Mworld,1 (4.1)

Equation 4.1 takes the first BV from its local space to its BVH model space via
L1, then takes it to model space of second BVH via a world transformation Mworld
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and finally to the local space of the second BV, in which the second BV is axis
aligned.

An algorithm for computing a real number representing a separation distance
between two BVs on a BVTT node v is given in Algorithm 12 "Computing RSS
distances".

Algorithm 12 Computing RSS distances
1: function dist(v, q)
2: M1→2 ← L2(v)−1 ×Mworld(q)× L1(v)
3: return PQP_RSS_DIST(BV1(v), BV2(v), M1→2)
4: end function

Separation distances between geometric primitives are computed analogously by
replacing instances of BV-calls by geometric primitive-calls and finally replacing the
RSS distance call with a geometric primitive distance call.

Note thatMworld depends on a C-space point q but L1 and L2 does not depend on
q. This is because geometric objects are by assumption rigid and therefore BV nodes
within BVHs remain fixed in relation to BVH roots. In practice, a representation
of a C-space point is not present in any implementation presented in this thesis1.
Instead, each BVTT nodes owns pointer to its corresponding Mworld, all of which
are updated in a O(|A| · |B|) pass.

In conclusion, any BVTT node v must store:

• A pointer to a transformation Mworld

• Two pointers to underlying BVHs, granting access to underlying BVs with
local transformations

Pseudocode for computing ‖v(q)‖ = dist(v, q) has been presented and a method
for computing ‖v(q)‖leaf in terms of Algorithm 12 "Computing RSS distances" has
been presented, effectively covering two out of three use cases of PQP.

4.1.1 Transformations are relative to parents in IPS
All calculations of M1←2 within FPQ are computed according to Equation 4.1, for
a total of two transformation multiplications per BVTT node. IPS does a single
transformation multiplication per BVTT node. This is achieved by letting BV
nodes within BVHs own a transformation which takes any child to its parent space,
instead of model space. This allows for computation of M1←2 by using the following
equation, which depends on if a child of BVH1 or BVH2 is descended:

M1→2,i =


L−1

1 ·M1→2,i−1 if descending the first BVH
M1→2,i = M1→2,i−1 · L2 if descending the second BVH
M1→2,0 = Mworld if i=0

(4.2)

1The notion ‖v(qi)‖ and ‖v(qi)‖leaf is used to emphasize that that distances depend on a current
iteration.
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L1 denotes the transformation of the current BV of BVH1 and similarly for L2.
Exactly one of the equations are computed on visiting a BVTT node with IPS,

effectively updating M1→2 instead of recomputing it. However, this trick is not used
by FPQ since a combination of sprouting and raising implies several transforma-
tion multiplications back and forth, introducing a risk of numerical instability. A
numerical instability could cause two severe issues:

• BVTT distances become either too large or too small, causing both false pos-
itives and false negatives with respect to BVTT-subtree pruning.

• BVTT leaf distances become inaccurate. This is critical since exact distances
(with only a very small error) must be returned in all situations.

All FPQ algorithms under Chapter 3 "Forest proximity querying" use Equa-
tion 4.1 instead of Equation 4.2.

4.2 IPS traversal algorithm over forests of BVTTs
This section describes how IPS computes separation distances over forests of BVTTs
by utilizing PQP[1][2]. An understanding of how IPS performs proximity queries is
necessary since IPS is compared against FPQ in Chapter 5 "Results".

IPS uses the following techniques for computing proximity queries:

Common: Tests between geometric primitives.
C: Test between BVs. In particular, tests between RSSs.
C: BVTTs are generated with the SAH-inspired technique, described by Equa-

tion 2.7.
C: A smallest sibling is traversed first.

Different: Depth-first traversal (PQP) over a forest of BVTTs, where a BVTT giving rise
to a smallest separation distance is ordered first in the following iteration by
swapping it with the (former) first BVTT.

D: Triangle caching per BVTT.

A bold C indicates that FPQ uses the listed method too, whereas a bold D
indicates that FPQ does not use the listed method.

All listed methods, but the swapping scheme, originate from PQP[1][2][3]. A
swapping scheme, in which the previously best BVTT is tested first, is used to guess
what BVTT will give a smallest separation distance in a following iteration. This is
plausible since ‖qi−1−qi‖ < d: a BVTT which gave the smallest separation distance
in the previous iteration is likely to give a smallest separation distance in the current
iteration.

A comparison between IPS and FPQ is fair since they traverse identical BVTTs
forests, using the same PQP-routines for computing distances in between BVs and
geometric primitives. The two differences is that of traversal, where PQP creates an
ordering of BVTTs in contrast to FPQ which creates an ordering of BVTT-subtrees,
and that of triangle caching as opposed to using a leaf front.

IPS computes ‖A(qA(i))−B(qB(i))‖ according to the pseudocode in Algorithm 13
"IPS distance routine", by calling PQP_DIST on each BVH-pair of a ordered set P .
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PQP_DIST checks if A and B are leaves and if so, computes a test between the two
corresponding geometric primitives. Otherwise, two pairs of BVHs are generated
according to Equation 2.7 and descend down the pair with the smallest distance.
Finally, check if further traversal is necessary and if so, recurse and update ε.

Algorithm 13 "IPS distance routine" is simplified: In reality, computed distances
are cached in temporaries in order avoid duplicate distance computations.

This concludes the presentation of how IPS performs proximity queries with
PQP.
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Algorithm 13 IPS distance routine
1: function INIT(A,B)
2: P ← ∅ . Populated with pairs of BVHs (BVTTs)
3: T ← ∅ . Will hold cached triangle pairs per BVH-pair
4: for ∀A ∈ A do
5: for ∀B ∈ B do
6: P ← P ∪ (A,B)

return (P, T )
7: end function
8: function IPS_DIST(P, T, qi)
9: ε∗ ← ∞

10: ibest ← 0
11: for i = 0, . . . , |P | do
12: (A,B) ← P (i)
13: ε ← PQP_DIST(A,B, qi, ε

∗, T, i)
14: if ε < ε∗ then
15: ε∗ ← ε
16: ibest ← i

17: i ← i+ 1
18: swap(first(P ), P (ibest))
19: swap(first(T ), T (ibest))
20: δ ← ε∗ return δ
21: end function
22: function PQP_DIST(A,B, qi, ε, T, i)
23: if A and B are leaves then
24: d ← ‖A(qi)− B(qi)‖leaf

25: if d < ‖T (i)(qi)‖leaf then
26: T (i) ← (A,B) . Cache triangles between the two BVHs A and B

return d
27: (cleft, cright) ← child((A,B)) . See Equation 2.7
28: if ‖cleft(qi)‖ < ‖cright(qi)‖ then
29: if ‖cleft(qi)‖ < ε∗ then
30: ε ← min(ε, PQP_DIST(left(cleft), right(cleft), qi, ε, T, i))
31: if ‖cright(qi)‖ < ε∗ then
32: ε ← min(ε, PQP_DIST(left(cright), right(cright), qi, ε, T, i))
33: else
34: if ‖cright(qi)‖ < ε∗ then
35: ε ← min(ε, PQP_DIST(left(cright), right(cright), qi, ε, T, i))
36: if ‖cleft(qi)‖ < ε∗ then
37: ε ← min(ε, PQP_DIST(left(cleft), right(cleft), qi, ε, T, i))

return ε
38: end function
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Results

I have motivated development of Forest Proximity Query (FPQ) which on some
occasions performs better than state-of-the-art methods of proximity querying, in
particular, better than Industrial Path Solutions (IPS) with respect to the number
of rectangle swept sphere (RSS) tests and time. This is done by reducing the number
of RSS calculations. FPQ variations are compared with each other using IPS as a
reference point where applicable. Several measurements which helps understanding
characteristics of FPQ and its variants are presented in this section. I explicitly
point out for each figure what is particularly interesting.

Chapter 3 "Forest proximity querying" described and motivated FPQ, whose key
selling-point is that it traverses fewer bounding volume traversal tree (BVTT) nodes
than IPS, which in turn uses the well-known PQP library. I have implemented FPQ,
using C++, and integrated it with the IPS software. The FPQ algorithm outputs
a separation distance on any IPS-compatible scene with dynamic rigid bodies. An
implementation within IPS enables a range of complex test-scenarios as well as a
fair comparison of FPQ with PQP.

All results presented in this chapter are referenced in Chapter 6 "Discussion",
which summarizes results as necessary.

5.1 Variations
I have developed variations of FPQ. The variations are:

• Implicit versus Explicit
• Single sibling raise versus Recursive sibling raise
• Depth first search versus Priority directed search (with DPQ)
• (Optionally) No reset — front-resetting is used unless explicitly stated other-

wise.1

For example, I+S+P indicates that measurements are generated using an im-
plicit BVTT where a front is (1) raised using the single level raise strategy and (2)
sprouted using PDS.

Further, I present measurements for which front tracking has been disabled. I
then write either D or P as in depth-first or priority directed search, respectively.

1A subtle detail is made explicit: If reseting is disabled, then raise routines still terminate early
if the number of raised nodes exceeds 9% as described in Section 3.6.1 "Evaluating heuristic during
raisal". This effectively limits the number of raised nodes per iteration.
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FPQ with disabled front tracking is Algorithm 7 "Sprouting", with the minor mod-
ifications of (1) initializing S with all BVTT roots of a forest of BVTTs and (2)
omitting insertions into L and SF .

There are four variations, three scenarios and eleven measures — in total 24 · 3 ·
11 = 528 combinations — thus an exhaustive examination is impractical. Instead,
combinations that emphasize how different methods affect end-results are presented.

Finally, note that I+S+P often overlap exactly with E+S+P. This should not
be surprising since they visit identical BVTTs. These two variants do not overlap
for all timing results.

5.2 Benchmarking environment
Several benchmarking libraries are available for C++, such as Nonius, google/bench-
mark, Hayai and Celero. However, for the purposes of this thesis, no micro-benchmark
library has been used since benchmark most often takes more time than 100ms.
Instead, a simple timer based on std::chrono::high_resolution_clock::now()
is used for all reported timings.

All measurements are averaged over 20 independent runs, unless explicitly stated
otherwise. All measurements are conducted on a Windows 10 64bit computer with
the Intel Core i7-7700k 4.20GHz processor and with 32GB of RAM installed.

A test scene from Volvo Cars has been granted to FCC for demonstration of
various projects and is shown in Figure 5.1. This test-scene models a real-world
robot-cell in which four different ABB robot arms, composed of several rigid bodies,
perform stud-welding on a car body. The Volvo test-scene induces various scenarios
by letting the two sets of geometric objects A and B contain different combinations
of robot-arms (dynamic) and car bodies (static) with static geometry, respectively.

There are four robotic arms in said test-scene, labeled IRB71, IRB72, IRB73
and IRB74. For all intents and purposes, they are to be regarded as identical. For
the sake of simplicity, I write A = {IRB71} when A holds all geometric objects that
compose IRB71.

There are in total 2.5 million triangles, out of which 0.3 million triangles con-
stitute robotic arms, 0.9 million are used by the car body and 1.3 million triangles
comprise the static environment (some pillars, the assembly line and miscellaneous
geometry). In Figure 5.2, a robotic arm is close to a car body. A close-up of said
situation is shown together with an image showing a wireframe of the robotic arm
and an imposed wireframe of the car body. The wireframe image demonstrates a
high triangle resolution of the geometric objects.

The car body and the static environment are merged into a single large geometric
object for which a single large BVH of RSSs is built. All four robotic arms are
composed of rigid parts (see Section 1.2.2 "Robot arms as composite rigid bodies"),
where each rigid part is represented as a BVH of RSSs.

Computing a minimum separation distance between a robotic arm and the car
with static geometry corresponds to computing dist(i;A,B) with A being the set of
rigid parts and B being the car geometry with static geometry.
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(a) back view (b) side view

(c) top-down view (d) isometric view

Figure 5.1: Scene consisting of four ABB robotic arms. Each arm is stud-welding on a car body.
All measurements and benchmarks are performed on this scene. Geometry by courtesy of Volvo
Cars.
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(a) Overview of robotic arm (b) Close-up of robotic arm shown in (a)

(c) Wireframe of robotic arm with imposed wireframe of the car body

Figure 5.2: Demonstration of triangle resolution of geometries in the test-scene. Geometry by
courtesy of Volvo Cars.
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5.2.1 Scenarios in a Volvo Cars test scene
Within the Volvo Cars test-scene, several scenarios are tested by varying A, B and
the sequence of C-space points q1, q2, . . . , qn. The set of scenarios is:

Play-forward: A play-forward scenario where rigid bodies undergo continuous mo-
tion. In particular, robot arms of the scene are animated to perform stud-
welding on a car body. A sequence of C-space points q1, q2, . . . , qn, that give a
highly coherent scenario, govern robot arm configurations. The set of geomet-
ric objects A and B is taken to be the set of all rigid parts of each robot arm
and the car body with miscellaneous geometry, respectively. That is to say,
A = {IRB71, IRB72, IRB73, IRB74} and B = {car,miscellaneous geometry}.

Sampling-based motion-planning: Amedium-coherence scenario where rigid bod-
ies undergo non-continuous motion. A sequence of C-space points q1, q2, . . . , qn,
satisfying ‖qi−1− qi‖ < d for almost all i where d is some small constant, gov-
ern robot arm configurations. This sequence is the sequence of C-space points
which the IPS motion-planner generate during motion-planning. The two sets
of geometric objects A and B are taken to be a single the set of rigid parts be-
longing to a single robot arm and the car body with miscellaneous geometry, re-
spectively. In particular, A = {IRB72} andB = {car,miscellaneous geometry}.

No-coherence: A non-coherence scenario is taken to be the play-forward scenario
but the sequence q1, q2, . . . , qn is randomly permuted.

Note that detail within time series for the motion-planning scenario and the non-
coherent scenario are of little interest. Rather, it is the general behaviour of time
series that is interesting. Yet, I provide detailed time series as is. This gives the
reader an opportunity to verify that methods behave as expected.

5.3 Minimal separation distances
Minimal separation distances, per scenario, are not interesting results in the sense
that they do not help towards a comparison of FPQ and IPS. However, minimal
separation distances do help towards gaining an intuition of the level of coherency
in a scenario. For this reason, minimal separation distances per scenario are shown
in Figure 5.3.

In subplot (a) of Figure 5.3 indicate that coherence is indeed high for the play-
forward scenario.

The motion-planning scenario in subplot (b) of Figure 5.3 indicate that a sampling-
based motion-planner generate configuration points that causes separation distances
to vary wildly, but there are some iteration-intervals for which there is some coher-
ence. Unfortunately, a distance series does not capture a complete behaviour of
geometry during a motion-planning scenario. I assure the reader that some level
of coherence is observable when visually examining the motion-planning scenario
within IPS.

Finally, separation distances of subplot (c) in Figure 5.3 do indicate that coher-
ence is low for the non-coherent scenario.
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(a) Minimal separation distances, play-forward scenario

(b) Minimal separation distances, motion-planning scenario

(c) Minimal separation distances, non-coherent scenario

Figure 5.3: Minimal separation distances for the (a) play-forward scenario, (b) motion-planning
scenario and the (c) non-coherent scenario. Minimal separation distances are naturally equal for
all methods. Note that separation distances jumps more with lower coherency levels.
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5.4 Timings
Timings of FPQ variants and IPS are measured on several scenarios. Timing results
for each scenario and a subset of variants is shown in Figure 5.4. Timing results for
recursive raise strategies is presented later. A clipped version of timing results for
the play-forward scenario is shown in Figure 5.5.

The fastest reported method for the play-forward scenario is E+S+D. This
indicates that overhead associated with a front is smaller than the gains of using a
front, if a scenario is coherent.

Observe that P is the fastest reported method for the motion-planning scenario
and the non-coherent scenario, but it is the slowest reported method for the play-
forward scenario. This indicates that PDS is improves upon depth-first search (which
is used by IPS) when coherency is low, but that it does not improve upon a depth-
first search when coherency is high.

Compare I+S+P with E+S+P and conclude that explicit BVTTs are capable
of reducing run-times, as shown by subfigures (a) and (b) of Figure 5.4. This is
expected — Section 3.4 "Efficient sibling-raise with explicit BVTTs" presents a raise
routine Algorithm 9 "Raising (explicit BVTTs)" that is only compatible with explicit
BVTTs. Said raise routine is capable of raising any two siblings without using a,
possibly inefficient, hash map H. Recall that H is used with implicit BVTTs in
Algorithm 5 "Raising". However, E+S+P is slower than I+S+P for the non-
coherent scenario. This is further discussed in Section 6.4 "Raise times and memory
usage with implicit and explicit BVTTs".

Finally, there are observable spikes in timing results (and in other figures as well).
This is due to front resetting. Later, in Section 5.11 "Disabling front resetting", we
shall see that there are no spikes if front resetting is disabled.

5.5 Bounding volume and triangle distance com-
putations

A proposed benefit of FPQ is that it may perform fewer BVTT node distance com-
putations, which is a major bottleneck of traditional proximity querying algorithms
and in turn a major bottleneck of sampling-based motion-planners. A key measure-
ment is the total number of BVTT node distance computations, i.e. RSS tests or
triangle tests.

RSS test results are presented in Figure 5.6. The time series show the number of
RSS tests per iteration. The total number of RSS tests is shown in the upper right
corner for each scenario. Triangle test results are presented in Figure 5.7.

Compare the general shape of all RSS series in Figure 5.6 with corresponding
time series previously presented in Figure 5.4. The RSS series and the time series
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(a) Timings, play-forward scenario

(b) Timings, motion-planning scenario

(c) Timings, non-coherent scenario

Figure 5.4: Timing results for the (a) play-forward scenario, (b) motion-planning scenario and
the (c) non-coherent scenario. Timing results per iteration is shown in the time-series. Total
times are shown in the upper-right corners. Note that E+S+D is slightly faster than IPS in the
play-forward scenario but that P is significantly faster than IPS for the other two scenarios.
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(a) Timings, play-forward scenario (clipped)

Figure 5.5: A clipped version of subplot (a) of Figure 5.4

resemble each other. While this does not conclude that run-times are dominated by
RSS tests, it does indeed indicate that run-times are dominated by RSS tests.

5.6 Leaf front measurements
Section 3.2.2 "Initializing an upper-bound on a separation distance via a leaf front"
presents a method for initializing ε. This method may incur additional overhead
due to a increase in the number of RSS tests or triangle tests. Figure 5.8 show
how much time is spent traversing the leaf front during initialization of ε, for each
iteration. Timings include the time spent computing triangle tests during traversal.
Figure 5.9 show how the size of the leaf per iteration.

Leaf front timings shown in Figure 5.8 demonstrate that leaf front traversal, for
all methods in all scenarios, are fast in comparison to corresponding total run-times,
shown in Figure 5.4. This is not surprising since the number of triangle tests, shown
in Figure 5.7, are few in comparison to the number of RSS tests shown in Figure 5.6.

Further, the number of triangle tests shown in Figure 5.7 demonstrate that FPQ
does not trade RSS tests for more triangle tests since the number of triangle tests is
lower for all FPQ methods, in comparison to IPS, with the exception of E+S+D
under low-coherency scenarios. The E+S+D exception is further discussed in Sec-
tion 6.1 "Main results".
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(a) RSS tests, play-forward scenario

(b) RSS tests, motion-planning scenario

(c) RSS tests, non-coherent scenario

Figure 5.6: Number of RSS tests for the (a) play-forward scenario, (b) motion-planning scenario
and the (c) non-coherent scenario. The number of RSS tests per iteration is shown in the time-
series. Total number of RSS tests are shown in the upper-right corners. Note that these curves
resembles timing results in Figure 5.4, which could mean that RSS tests are indeed bottlenecks of
separation distance computation.
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(a) Triangle tests, play-forward scenario

(b) Triangle tests, motion-planning scenario

(c) Triangle tests, non-coherent scenario

Figure 5.7: Number of triangle tests for the play-forward scenario, motion-planning scenario and
the non-coherent scenario. The number of triangle tests per iteration is shown in the time-series.
Total times are shown in the upper-right corners. Note that the number of triangle tests per variant
is always small in comparison to the number of RSS tests shown in Figure 5.6 69
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(a) Leaf front timings, play-forward scenario

(b) Leaf front timings, motion-planning scenario

(c) Leaf front timings, non-coherent scenario

Figure 5.8: Time spent traversing leaf fronts, computing triangle tests, when initializing ε for the
(a) play-forward scenario, (b) motion-planning scenario and the (c) non-coherent scenario. Time
spent per iteration is shown in the time-series. Total times are shown in the upper-right corners.
This means that time spent initializing ε small in comparison to total timings shown in Figure 5.4
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(a) Size of leaf front, play-forward scenario

(b) Size of leaf front, motion-planning scenario

(c) Size of leaf front, non-coherent scenario

Figure 5.9: Number of elements within leaf fronts, per iteration, for the (a) play-forward scenario,
(b) motion-planning scenario and the (c) non-coherent scenario. Note that depth-first causes leaf
fronts to become large in comparison to priority directed search.
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Finally, leaf front sizes shown in Figure 5.9 indicate that a depth first search is
more likely to traverse BVTT leaves than a priority directed search. This is expected
since a PDS traverse minimal forests of BVTTs by Theorem 1, which is not certain
for depth first search — PDS traverses few leaves regardless of coherency while depth
first search degenerates with decreased coherency levels.

5.7 Minimal forests has fewer nodes than sets of
minimal BVTTs

A relevant comparison with respect to to Section 3.3.4 "Analysis of FPQ vs GFT"
is that of traversing a minimal forest of BVTTs in contrast to traversing a forest of
minimal BVTTs. Table 5.1 is generated by traversing a forest BVTTs using solely
Algorithm 7 "Sprouting".

Table 5.1: A comparison of traversing several minimal BVTTs against a minimal forest of BVTTs.
Statics are used to denote the car body and the static geometry. The measurement is carried out
on the play-forward scenario, using the P variant of FPQ (only PDS without FT) on a forest of
BVTTs.

Robot arm identifier Number of RSS tests
IRB71 against statics 4304365
IRB72 against statics 3461201
IRB73 against statics 3519009
IRB74 against statics 3298305

Total amount of RSS tests 14582880
All IRBs against statics 6760936

As is seen from Table 5.1, the number of RSSs tests when traversing a minimal
forest of BVTTs is roughly half of that of traversing four minimal BVTTs for the
play-forward scenario. Results in Table 5.1 motivates FPQ — performing a prox-
imity on a whole forest of BVTTs in concert, in comparison to treating BVTTs
independently, is clearly beneficial with respect to the number of RSSs tests (since
an upper-bound ε on a separation distance δ is "shared" within the forest).

Finally, there is no reason to suspect that this ratio is a function of scene-
coherency, due to Theorem 1, which is why no measurements on the motion-planning
scenario nor the non-coherent scenario is presented.

5.8 Front size and memory usage
A large front causes high memory usage. Memory usage is a concern with FT, GFT
and especially FPQ. Two techniques ameliorates memory usage of FPQ:

• Implicit BVTTs
• PDS

72



5. Results

Figure 5.10 shows memory usage per iteration for I+S+P,E+S+P andE+S+D.
Memory usage is approximated. For implicit BVTTs, memory is approximated by
multiplying the bytesize of an implicit BVTT node with the front size. For explicit
BVTTs, memory is approximated by multiplying the bytesize of an explicit BVTT
node with twice the front size.2. Front sizes for each method and for each scene is
shown in Figure 5.11.

Note that memory usage of P is not defined in terms of a front size, since P does
not utilize a front at all. Instead, memory usage of P is approximated by multiplying
the bytesize of an implicit BVTT node with the largest size of the priority attained
during an iteration.

(a) Memory usage per iteration, play-forward scenario

(b) Memory usage per iteration, motion-
planning scenario

(c) Memory usage per iteration, non-
coherent scenario

Figure 5.10: Approximated memory usage per iteration for the play-forward scenario, motion-
planning scenario and the non-coherent scenario. Note that P has the smallest memory usage.
Note that out of the variants that use fronts, I+P+S has the smallest memory usage.

Figure 5.10 shows that memory usage does not exceed 10 MB for any method
in any scenario. Any concerns that FT is intractable due to memory issues can be
discarded (unless triangle counts become sufficiently large).

2Recall that BVTTs are binary, so the total number of allocated BVTTs nodes is exactly 2·|F |−1
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(a) Front size per iteration, play-forward scenario

(b) Front size per iteration, motion-
planning scenario

(c) Front size per iteration, non-coherent
scenario

Figure 5.11: Front sizes per iteration for the play-forward scenario, motion-planning scenario
and the non-coherent scenario. Note that these curves are proportional to corresponding memory
curves in Figure 5.10. Note that priority directed search variants have smaller front sizes.
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I+S+P front size series are not visible in Figure 5.11 since they overlap exactly
with E+S+P front size series. This is expected since the two methods are equivalent
with respect to members of a front and traversal. However, they differ with respect
to memory usage. I+S+P need not store a BVTT in memory and hence it has
lower memory usage than E+S+D, although it is true that their front sizes are
equivalent.

Lastly, fronts become large with depth-first search when coherence is low, as
indicated by E+S+D curves of subplots (b) and (c) in Figure 5.11. This motivates
that if a front is used in a low coherency scenario, then PDS can reduce the size of
the front.

5.9 Single raise and recursive raise

A sibling raise-operator can raise nodes one level or several levels, as described in
Section 3.5 "Recursively raising siblings". I present timing results and RSS-test
results for E+S+P, E+S+D with E+R+P and E+S+D. Timing results and
the number of RSS tests can be seen in Figure 5.12 and Figure 5.13, respectively.

Timings results in subplot (a) of Figure 5.12 show that a recursive raise algo-
rithm can be beneficial in comparison to a single level raise algorithm. However,
this claim does not carry over to depth first variants for the motion-planning sce-
nario and the non-coherent scenario, for which a recursive raise algorithm degrades
performance with respect to time. An optimal front varies rapidly for scenarios with
low coherency, so it becomes increasingly difficult to approximate an optimal front.
For example, if a front is recursively raised on iteration i such that it approaches the
optimal front on iteration i, then the lack of coherence makes the front less useful
on iteration i+1 — the additional overhead caused by a recursive raise does not pay
off as much for incoherent scenarios. Finally, this is not observed when using PDS
since there is no great need for raisal to begin with since PDS traverses minimal
forests of BVTTs (PDS does not "over-sprout" as much as a depth-first search).

It is of interest to compare differences between PDS and depth-first traversal,
since depth-first traversal may sprout below that of an optimal front (over-sprout),
causing more raise-operations. Raise times for E+S+P, E+S+D, E+R+P and
E+S+D are presented in Figure 5.14.

Note that raise times are lower for all recursive variants R in comparison to
their single level raise variants S. I discuss and explain in Section 6.5 "Recursive
raisal decrease raise times" why total raise times are lowered with recursive raisal,
in comparsion to single level raisal.

Raise-operators may raise an approximate front F above an optimal front F ∗,
causing more sprout-operations by F . Sprout times are presented in Figure 5.15.

A recursive raise algorithm can "over-raise", i.e. raise nodes above an optimal
front (more so than a single level raise algorithm can!). This causes sprouting
algorithms to work more. This may explain why sprout times, shown in Figure 5.15,
are consistently higher for FPQ variants using a recursive raisal algorithm than FPQ
variants using a single level raisal algorithm.
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(a) Time spent per iteration, play-forward scenario

(b) Time spent per iteration, motion-planning scenario

(c) Time spent per iteration, non-coherent scenario

Figure 5.12: Timing results comparing a single level raise operator with a recursive raise operator,
using either PDS or depth-first search, over all three scenarios. Note that E+R+D attains the
smallest running time out of the other recursive variants.
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(a) Single raise vs recursive raise RSS tests, play-forward scenario

(b) Single raise vs recursive raise RSS tests, motion-planning scenario

(c) Single raise vs recursive raise RSS tests, non-coherent scenario

Figure 5.13: Number of RSS tests. These results compare a single level raise operator with a
recursive raise operator, using either PDS or depth-first search, over all three scenarios. Note that
no variant that uses front tracking performs fewer RSS tests than E+R+D
in any scenario.
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(a) Single raise vs recursive raise raise-times, play-forward scenario

(b) Single raise vs recursive raise raise-times, motion-planning scenario

(c) Single raise vs recursive raise raise-times, non-coherent scenario

Figure 5.14: Raise-times per iteration, for each method, are shown in the series. Total raise-time
per method is shown in upper-right corners. These results compare a single level raise operator
with a recursive raise operator, using either PDS or depth-first search, over all three scenarios.
Note that recursive raisal is consistently faster than single level raisal with respect to raise times.
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(a) Single raise vs recursive raise sprout-times, play-forward scenario

(b) Single raise vs recursive raise sprout-times, motion-planning scenario

(c) Single raise vs recursive raise sprout-times, non-coherent scenario

Figure 5.15: Sprout-times per iteration, for each method, are shown in the series. Total sprout-
time per method is shown in upper-right corners. These results compare a single level raise operator
with a recursive raise operator, using either PDS or depth-first search, over all three scenarios. Note
that recursive raisal is consistently slower than single level raisal with respect to sprout times.
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5.10 Raising and sprouting on implicit and ex-
plicit BVTTs

A key motivator for explicit BVTT is that they enable storage of persistent data
which in turn allows for O(n) raisal as opposed to average O(n) raisal, as stated in
Section 3.4 "Efficient sibling-raise with explicit BVTTs".

Time spent raising using I+S+P, E+S+P and E+S+D, for all levels of co-
herency, is shown in Figure 5.16. Time spent raising is captured by measuring time
spent within raise routines. Time spent sprouting using I+S+P, E+S+P and
E+S+D, for all levels of coherency, is shown in Figure 5.17. Time spent sprouting
is captures by measuring the time spent in Algorithm 7 "Sprouting" (including RSS
tests).

Raise times shown in Figure 5.16 show that explicit BVTTs allows for lower raise
times, as anticipated due to the efficient raise algorithm for explicit BVTTs presented
in Section 3.4 "Efficient sibling-raise with explicit BVTTs". However, sprout times
are increased with explicit BVTTs, as shown by Figure 5.17. This is discussed in
Section 6.4 "Raise times and memory usage with implicit and explicit BVTTs".

5.11 Disabling front resetting
The impact of front resetting can be discussed if there are results for which front
resetting is activated and if there are results for which front resetting is inactivated.
Until now, all results of Chapter 5 "Results" are generated with front resetting
enabled. This section presents results for which front resetting has been disabled.

Figure 5.18 shows timing results, Figure 5.19 shows the number of RSS tests,
Figure 5.20 shows the number of triangle tests and Figure 5.21 shows front sizes.

Compare timing results in subplot (a) of Figure 5.18 have a half-life characteristic
in comparison to the main timing results obtained with reset enabled in Figure 5.4.
This indicates that a front eliminates iteration intervals where half-life characteristics
emerge, as intended.

By comparing the number of RSS without front resetting, shown in Figure 5.19,
with the number of RSS tests with front resetting, shown in Figure 5.6, we see that
all methods for all scenarios perform better (with respect to the number of RSS
tests) when front tracking is enabled — except for depth-first variants. I will not
provide any in-depth explanation to this observation. A brief explanation is that
front resetting triggers too often for depth-first variants if coherency is low, causing
traversal to visit large BVTTs.

This brief explanation is supported by comparing the number of triangle tests
without front resetting, shown in Figure 5.20, with the number of triangle tests with
front resetting, shown in Figure 5.7. The number of triangle tests in the motion-
planning scenario and the non-coherent scenario is higher, for E+S+D, when front
resetting is enabled. A front reset replaces a front F with the initial set of BVTT
roots. There is no guarantee that an ordering of BVTTs is beneficial after a reset
and there is no guarantee that a leaf-front is relevant for low coherency scenarios.
Hence, it is possible that a large portion of several BVTTs are visited before a small
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(a) Time spent raising, play-forward scenario

(b) Time spent raising, motion-planning scenario

(c) Time spent raising, non-coherent scenario

Figure 5.16: Time spent raising with play-forward scenario, motion-planning scenario and the
non-coherent scenario. Note that explicit BVTT total timing results are lower than implicit BVTT
timing results. Effects of resetting is also apparent — the sudden drops in raise-times could be
due to front resets, which causes no node to be raised in the following iteration.
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(a) Time spent sprouting, play-forward scenario

(b) Time spent sprouting, motion-planning scenario

(c) Time spent sprouting, non-coherent scenario

Figure 5.17: Time spent sprouting with (a) play-forward scenario, (b) motion-planning scenario
and (c) the non-coherent scenario. Note that I+S+P is always faster than E+S+P and that
E+S+D is fast for the play-forward scenario but degrades in the motion-planning scenario and
the non-coherent scenario.
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(a) Time spent per iteration, play-forward scenario

(b) Time spent per iteration, motion-planning scenario

(c) Time spent per iteration, non-coherent scenario

Figure 5.18: Timing results with front resetting disabled. Timing results per iteration is shown
in the time-series. Total times are shown in the upper-right corners. Note that the shown time
series has a half-life characteristic. Compare this figure with Figure 5.4 and Figure 5.12. Note
that the total timings for all variants in this figure are greater than their corresponding series
(with front resetting enabled) in Figure 5.12, except depth-first variants for the motion-planning
scenario. This is discussed in Section 6.6.2 "Enabled front resetting".
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(a) Number of RSS tests per iteration, play-forward scenario

(b) Number of RSS tests per iteration, motion-planning scenario

(c) Number of RSS tests per iteration, non-coherent scenario

Figure 5.19: Number of RSS tests with front resetting disabled. The number of RSS tests per
iteration is shown in the time-series. Total number of RSS tests are shown in the upper-right
corners. Again, note that depth-first variants in the motion-planning scenario are outliers —
disabled front reseting reduces the number of RSS tests in comparison (compare with Figure 5.13).
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enough ε, that enables any significant pruning, is found. This manifests itself as an
increase in the number of triangle tests.

Finally, compare Figure 5.21, that show front sizes obtained when front resetting
is disabled, with Figure 5.11, that show front sizes obtained when front resetting
is enabled. Note that front resetting causes front sizes to fluctuate for the motion-
planning scenario and the non-coherent scenario, but that front sizes overall are
higher without front resetting.

5.12 A bad and coherent scenario for E+R+D
E+R+D performs on par with IPS for the play-forward scenario, with respect to
timings. I present a new scenario, denoted IRB72+IRB73, for which E+R+D
performs worse in comparison to IPS with respect to time.

The scenario is the play-forward scenario but with A = {IRB72} and B =
{IRB73}. Coherency can be considered lower than the play-forward scenario since
two moving robotic arms are tested against each other. Yet, coherence is still higher
than the motion-planning scenario and the non-coherent scenario.

A sense of coherency for the IRB72+IRB73 scenario can be provided by the min-
imal separation distance measures, given in Figure 5.22. Timing result are presented
in Figure 5.23 and the number of RSS tests computed is presented in Figure 5.24.
Finally, the number of triangle tests computed is presented in Figure 5.25.

Recall that timing results shown in Figure 5.4 and Figure 5.12 indicate that
E+R+D is faster than all FPQ variants as well as faster than IPS. Figure 5.23 show
that IPS performs better than E+R+D for the IRB72+IRB73 scenario. Therefore,
E+R+D is not always faster. This is discussed in Section 6.1.1 "A brief discussion
on the IRB72+IRB73 scenario".

5.13 Two new motion-planning scenarios
Two new motion-planning scenarios are devised in an attempt to understand how P
scales in comparison to IPS. They are similar to the previously presented motion-
planning scenario but static geometry is made to consist of either more or fewer
triangles. The two motion-planning scenarios are:

40m MP: A motion-planning scenario where static geometry consists of 40 million
triangles.

44k MP: A motion-planning scenario where static geometry consists of 44k trian-
gles.

The 40m MP scenario is shown in Figure 5.26 and the 44k MP scenario is shown
in Figure 5.27. Timings, number of RSS tests and number of triangle tests are shown
in Figure 5.28, 5.29 and 5.30, respectively.
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(a) Number of triangle tests per iteration, play-forward scenario

(b) Number of triangle tests per iteration, motion-planning scenario

(c) Number of triangle tests per iteration, non-coherent scenario

Figure 5.20: Number of triangle tests with front resetting disabled. The number of triangle
tests per iteration is shown in the time-series. Total number of triangle tests are shown in the
upper-right corners. Compare this figure with Figure 5.7, which shows leaf tests with enabled
front resetting, and note that E+S+D performs more triangle tests with front resetting enabled
for the motion-planning scenario and the non-coherent scenario.
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(a) Front size per iteration, play-forward scenario

(b) Front size per iteration, motion-
planning scenario

(c) Front size per iteration, non-coherent
scenario

Figure 5.21: Front size per iteration, for each variant, is shown in the time series. Front resetting
is disabled. Compare this figure with Figure 5.11 and note that front sizes become larger without
front resetting
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Minimal separation distance per iteration, IRB72+IRB73 scenario

Figure 5.22: Minimal separation distance measurements for the IRB72+IRB73 scenario. Note
in particular that the minimal separation distance increase and decrease rapidly during early and
late iterations, respectively.

Time spent per iteration, IRB72+IRB73 scenario

Figure 5.23: Timing results for the IRB72+IRB73 scenario. Note that E+R+D was for the
play-forward scenario faster than IPS, but this is not the case for the IRB72+IRB73 scenario.
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RSS tests per iteration, IRB72+IRB73 scenario

Figure 5.24: Number of RSS tests for the IRB72+IRB73 scenario.

Triangle tests per iteration, IRB72+IRB73 scenario

Figure 5.25: Number of RSS tests for the IRB72+IRB73 scenario. Note that E+R+D calculated
fewer RSS tests for the play-forward scenario faster compared with IPS, but this is not the case
for the IRB72+IRB73 scenario.
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Figure 5.26: Overview of the 40m MP scenario. Geometry by courtesy of Volvo Cars.

Figure 5.27: Overview of the 44k MP scenario. Geometry by courtesy of Volvo Cars.
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(a) Timings, 40m MP scenario

(b) Timings, 44k MP scenario

Figure 5.28: Timing results for (a) the 40m MP scenario and (b) the 44k MP scenario. The
series show timing results per iteration. Time spent in total is shown in upper right corner. Note
that P is faster than IPS in both scenarios.
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(a) Number of RSS tests, 40m MP scenario

(b) Number of RSS tests, 44k MP scenario

Figure 5.29: Number of RSS tests for (a) the 40m MP scenario and (b) the 44k MP scenario.
The series show the number of RSS tests per iteration. The total number of RSS tests is shown in
upper right corner. Note that P performs fewer RSS tests than IPS in both scenarios.
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(a) Number of triangle tests, 40m MP scenario

(b) Number of triangle tests, 44k MP scenario

Figure 5.30: Number of triangle tests for (a) the 40m MP scenario and (b) the 44k MP scenario.
The series show the number of triangle tests per iteration. The total number of triangle tests is
shown in upper right corner. Note that P performs fewer triangle tests than IPS in both scenarios.
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For now, it is enough to gather that measurements of timings, RSS tests, and
triangle tests are smaller for P in comparison to IPS without exception for the 40m
MP and the 44k MP scenarios. A discussion on how P scales in comparison to IPS,
with respect to said scenarios, is presented in Section 6.2.2 "Scaling of PDS with
respect to triangle counts".

5.14 DPQ versus std::priority_queue

A DPQ is used by FPQ in contrast to a C++ standard priority queue. A comparison,
with respect to timing results and number of RSS tests, between DPQ (denoted as
P) and the C++ standard priority queue std::priority_queue (denoted as STD)
is presented in figures within this section.

Timing results, per scenario, of STD and P, are shown in Figure 5.31. These
timing results show that DPQ perform better than STD without exception, for the
scenarios at hand.

The number of RSS tests, per scenario, for STD and P is shown in Figure 5.32.
Note that the number of RSS tests is equivalent for the play-forward scenario and the
non-coherent scenario, regardless of using DPQ or std::priority_queue . This is
expected due to Theorem 1. However, for the motion-planning scenario, DPQ and
std::priority_queue deviate with respect to the number of RSS tests. This is
discussed in Section 6.8.2 "DPQ traverses few nodes if q ∈ Cobs".
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(a) DPQ vs STD timings, play-forward scenario

(b) DPQ vs STD timings, motion-planning scenario

(c) DPQ vs STD timings, non-coherent scenario

Figure 5.31: Timing results for the play-forward scenario, motion-planning scenario and the
non-coherent scenario. The series show timing results per iteration. Time spent in total is shown
in upper right corner. DPQ is denoted as P and the standard priority queue is denoted as STD.
Note that DPQ is faster than STD for all scenarios.
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(a) DPQ vs STD RSS tests, play-forward scenario

(b) DPQ vs STD RSS tests, motion-planning scenario

(c) DPQ vs STD RSS tests, non-coherent scenario

Figure 5.32: Number of RSS tests for the play-forward scenario, motion-planning scenario and
the non-coherent scenario. The series show the number of RSS tests per iteration. The total
number of RSS is shown in the upper right corner. DPQ is denoted as p and the standard priority
queue is denoted as STD. Note that the number of RSS tests vary only for the motion-planning
scenario.
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6
Discussion

In this chapter, I discuss the results of this thesis and how they answer the research
question as posed in Section 1.3 "Research question".

Sampling-based motion-planners are used to find paths throughout C-spaces that
govern motions of robotic arms. Sampling-based motion-planners depends on prox-
imity queries, which constitute a major bottleneck of the IPS motion planner. For
this reason, acceleration of proximity queries translates to acceleration of the IPS
motion-planner.

A major bottleneck of proximity querying is that of BV-BV separation distance
computations. IPS uses PQP for proximity queries and hence BVs are taken to be
RSSs. Therefore, a reduction in the number of RSSs tests may reduce the compu-
tational time of motion-planning within IPS.

To this end, I developed a method called Forest Proximity Query (FPQ) together
with a depth-first and a priority directed search (PDS) algorithm for BVTT traversal.
A depth-first algorithm may be faster than PDS due to O(log n) overhead associated
with priority queues but I suggested a symbiotic relationship between FPQ and PDS
in Section 3.3 "Priority directed search" which may cause FPQ with PDS to perform
better than FPQ with depth-first search.

Timing results are presented in Figure 5.4. These timing results indicate that
using a front together with depth-first search is viable in comparison to IPS. How-
ever, FPQ with PDS reduces the number of RSS tests, for coherent scenarios, more
than any other FPQ-variant or IPS. Yet, a front with depth-first search perform
better with respect to time, in comparison to using a front with PDS. In conclusion,
overhead associated with O(log n) insertion and deletions cancels any performance
gains obtained from a reduced number of RSS tests.

In the motion-planning and the non-coherent scenario, PDS without FT (P)
compares favorably against all other presented methods with respect to time and
the number of RSS tests. This discussion is continued in Section 6.1 "Main results".

There are several minor techniques whose results, in isolation, are minor. How-
ever, when combined, these results form an algorithm which performs on par with
IPS for the play-forward scenario and performs better than IPS for motion-planning
and non-coherent scenarios with respect to time. Yet, the following techniques are
discussed in isolation such that it is possible to understand how much they contribute
to the final results:

• Depth-first versus PDS. In short, depth-first performs better than PDS for
coherent scenes but worse on non-coherent scenes.

• Explicit BVTTs are intended to reduce raise-times. Results indicate that
explicit BVTTs are successful in doing so, however, memory usage increases
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by up to x25 in comparison to implicit BVTTs.
• A recursive raise strategy and front resetting is supposed to help an approxi-

mate front approach a rapidly changing optimal front. The interplay between
raise strategies and front resetting is discussed in Section 6.6 "Single raise,
recursive raise and reset".

• DPQ was introduced to alleviate overhead of PDS in coherent scenarios. DPQ
performs better than a C++ standard priority queue implementation in all sce-
narios. However, performance gains are relatively lower with DPQ in the non-
coherent scenario in comparison to the play-forward scenario and the motion-
planning scenario. This is not because DPQ is particularly bad when coher-
ence decreases below some threshold, its because DPQ is better for coherent
scenarios by design and better for motion-planning scenarios by a fortunate
coincidence. A discussion on DPQ is presented in Section 6.8 "DPQ"

Without further ado, main results are discussed.

6.1 Main results
The FPQ-variant notation from Chapter 5 "Results" is reused in this section. An
acceleration of proximity queries is naturally measured by timing a proximity before
and after some change of method. The change of method in question is that of
BVTT traversal by using FPQ for traversal, instead of the IPS traversal algorithm,
effectively reducing the number of RSS tests.

Fewer RSS tests may entail increased performance. However, decreasing RSS
tests with FPQ implies front-overhead or priority queue overhead. Timing results
indicate if benefits of FPQ outweigh drawbacks of FPQ, or vice versa. Two core
results are therefore (1) timings and (2) number of RSS tests.

RSS tests form an upper-bound on the potential performance gain. For example,
if FPQ computes half the number of RSS tests that IPS computes, than FPQ can
potentially be, at most, twice as fast as IPS. Results shows conclusively that the
number of RSS tests is reduced significantly, by up to 60%, with FPQ.

The research question is "What data structures or algorithms are suitable for
acceleration of proximity queries in a robot-cell context? [...]" (see Section 1.3 "Re-
search question"). Table 6.1 summarizes, for a given scenario, what method is
suitable with respect to either time or the number of RSS tests. Table 6.1 motivates
the following answer to the research question: It depends on the scenario at hand.
I briefly motivate the entries in Table 6.1:

High-coherency scenarios: IPS is a solid choice for high-coherency situations
where triangle soups undergo continuous rigid motion, as displayed by Fig-
ure 5.4. Nonetheless, E+R+D can possibly become more robust with further
development. Indeed, results in Figure 5.12 show that E+R+D takes approx-
imately 602 ms and results in Figure 5.4 show that IPS takes approximately
637 ms. Hence, E+R+D takes 35 less milliseconds than IPS.
On the other hand, Figure 5.23 show that E+R+D (572 ms) can be signifi-
cantly worse than IPS (396 ms) with respect to time. In summary: E+R+D
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Table 6.1: A summarizing table that recommends which method to use with respect either time or
the number RSS tests (column). Note that suggested method vary depending on scenario (rows).
All entry-methods are minimal with respect to the corresponding measure for the correspond-
ing scene, except the Play-forward/Time entry for which I explicitly recommend IPS instead of
E+R+D due to robustness.

Scenario Time RSS tests
Play-forward IPS E+R+D

Motion-planning P P
Non-coherent P P

can be 35 ms faster than IPS on one scenario but IPS can be 396 ms faster
than E+R+D. In this regard, IPS is more robust than E+R+D.

Low-coherency scenarios: PDS, without FT, on forests of BVTTs is a solid
choice for scenarios where coherency is low. One such scenario is motion-
planning, for which PDS finishes at 511 ms while IPS finishes at 953 ms. This
shows that PDS on a forest of BVTTs can accelerate proximity queries by up
to 46%. This gain in performance is most likely due to the decreased number
of RSS tests carried out when using PDS in comparison to IPS (from 11816218
tests with IPS to 3893885 tests with RSS, i.e. a 67% decrease in the number
of RSS tests). Two synthetic test scenes with lower and higher triangle counts
indicate that PDS scales favourably against IPS. No motion-planning scenario
where IPS is advantageous in comparison to PDS on forests of BVTTs has
been found.

A minor remark on the main results is that FPQ does not merely reduce the
number of BVTT tests by increasing geometric primitive tests. On the contrary,
all FPQ variants computes fewer geometric primitive tests in comparison to IPS, as
shown by Figure 5.7. Two exceptions are E+S+D and E+R+D for the motion-
planning scenario and the non-coherent scenario. More geometric primitive tests
are computed with either E+S+D or E+R+D than IPS. Needless to say, neither
E+S+D nor E+R+D trade fewer RSS tests for more geometric primitive tests —
they’re not suitable for scenarios without high-coherency.

Compare Figure 5.9 with Figure 5.11 and note leaf front sizes are arguably smaller
than total front sizes. It should follow that time spent initializing ε is small in
comparison to total timings. This is supported by a comparison of Figure 5.4 with
Figure 5.8, which show that E+S+D is the variant with the largest fraction of time
spent initializing ε: 11.310 ms/614.739 ms ≈ 0.018. This shows initialization of ε
constitute a small fraction of total running times.

6.1.1 A brief discussion on the IRB72+IRB73 scenario
The IRB72+IRB73 scenario consists of two robotic arms performing stud-welding on
a Volvo car body. E+R+D performs badly with respect to time for this scenario,
as shown by Figure 5.23. On the other hand, Figure 5.24 shows that E+R+D
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still performs approximately 20% fewer RSS tests in comparison to IPS. Further,
E+R+D computes approximately 2% more geometric primitive distances than IPS,
as shown by Figure 5.25.

It is no easy task to conclusively state why E+R+D is better (with respect to
time) for the play-forward scenario but worse for the IRB72+IRB73 scenario (again,
with respect to time). A possible explanation is that coherency is low during early
iterations and late iterations since both robot arms move towards their first and last
stud-welding jobs, respectively.

Finally, the IRB72+IRB73 indicate that E+R+D is potentially a bad fit for
general-purpose proximity querying since possible losses with respect to time is large
in comparison to possible gains with respect to time. In particular, Figure 5.23 show
that possible losses, using E+R+D in comparison to IPS, amount to 572.393 ms−
395.613 ms = 176.78 ms longer computation times (45% increase in computation
times), while Figure 5.4 with Figure 5.12 show that a possible gain, using E+R+D
in comparison to IPS, amounts to 636.934 ms − 602.168 ms = 34.766 ms shorter
computation times (5% decrease in computation times). Hence, possible gains are
significantly smaller than possible losses and therefore I consider IPS more robust.

6.2 Depth-first and PDS
Timing results in Figure 5.4 indicate that depth-first search is generally better on
the play-forward scenario. This is not surprising — a depth-first search traverses a
close to minimal forest of BVTTs if coherency is high. High coherency implies ε ≈ δ
due to either triangle caching (as used by IPS) or leaf fronts (as used by FPQ).

In Figure 5.6, it is clear that E+S+P visits fewer nodes than E+S+D at all
times. This is not surprising due to Theorem 1. Yet, in Figure 5.4 it is shown that
E+S+D performs slightly better than E+S+P, with respect to time, for the play-
forward scenario. The time difference is due to sprout-times, shown in Figure 5.17,
which are higher for PDS due to O(log n) priority queue operations. Note that raise-
times are higher for E+S+D than for E+S+P. Raise-times are, evidently, small
in comparison to sprout-times. Hence E+S+D performs better than E+S+P for
a coherent scenario. Raise-times are shown in Figure 5.16.

Results obtained for the motion-planning and the non-coherent scenario share
many characteristics. Both scenarios have low levels of coherency but the motion-
planning scenario generates points in obstacle-region Cobs ⊆ Cspace (recall, from Sec-
tion 3.8 "Sampling points in Cobs", that Cobs is the subset of a C-space that contains
all C-space points with collisions, i.e. the region of a C-space where a robot arm
path is "blocked"). While E+S+D is seemingly competitive for coherent scenarios,
E+S+D is the worst method with respect to all presented measures when coherence
is low. A single exception is sprout-times, for which I+S+P is worse.

6.2.1 Depth-first and front tracking combines poorly for for
low-coherency scenarios

E+S+D performs poorly for low-coherency scenarios. This is expected due to the
following two reasons:
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• A low-coherency scenario may render a leaf front close to useless since ε is not
necessarily a small upper-bound on δ. In turn, this could cause a depth-first
search to traverse far below an optimal front, provoking further costly RSS
tests.

• A single level raise does not help towards moving upwards an optimal front in
case of over-sprouting.

In short, E+S+D has a hard time approximating an optimal front that undergo
rapid changes.

A consequence is that the front size is increased, see Figure 5.11, which in turn
creates an abundance of BVTT nodes which must be raised in a following iteration.
This increases raise-times. The front becomes a worse approximation of an optimal
front while causing even more overhead. Therefore, it is plausible to state that no
front is better than a bad front. I firmly conclude that front tracking with depth-first
search should not be used for low-coherence scenarios.

6.2.2 Scaling of PDS with respect to triangle counts
P performs well in comparsion to IPS, with respect to the number of RSS tests, for
motion-planning scenarios. Two new motion-planning scenarios, a 40 million triangle
motion-planning scenario and a 44.000 triangle motion-planning, are introduced in
Section 5.13 "Two new motion-planning scenarios". Hence, I have presented three
motion-planning (MP) scenarios: A 44k MP scenario, a 2.2m MP scenario and a
40m MP scenario. These three scenarios can provide a sense of how PDS scale, in
comparsion to IPS, with respect to triangle counts.

Table 6.2 compares timings results for the 44k MP scenario, the 2.2.m MP sce-
nario, and the 40m MP scenario, for both PQP and P. Results of Table 6.2 are
found in Figure 5.4 and Figure 5.28.

Table 6.2: Timings results for P and IPS in the motion-planning scenario as well as the 40m MP
scenario.

Scenario 44k MP Motion-planning (2.2m) 40m MP
P 376 ms 511 ms 1363 ms

IPS 663 ms 953 ms 3726 ms
Speedup 43% 46% 63%

The summary provided in Table 6.2 indicates that the performance gap between
P and IPS increases with the number of triangles. This can be explained due to
Theorem 1 — P will visit a minimal forest of BVTTs regardless of coherence, while
IPS may explore much larger forests. This claim is supported by Figure 5.29 and
Figure 5.30, both of which show that P visits fewer BVTT nodes in total than IPS.
In a sense, it is not P that becomes arbitrarily fast with increasing triangle counts.
Rather, it is IPS that is having increasing difficulties navigating a (large) forest of
BVTTs when coherence is low.
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6.3 FPQ and GFT
Recall the analysis of FPQ versus GFT (Section 3.3.4 "Analysis of FPQ vs GFT").
It was stated that the ratio of pruned BVTT nodes had to be sufficiently large in
order for FPQ to be better than GFT with respect the number of to priority queue
operations. This ratio has not been measured nor are timing measurements are
available on GFT versus FPQ.

However, the number of RSS tests for both methods are roughly halved with FPQ
in comparison to GFT, as shown by Table 5.1 (1458288/676093 ≈ 2.16). Further,
the number of insertions i on a priority queue used by PDS is equal to the number
of RSS tests t = i. The number of deletions r is trivially bounded from above by the
number of insertions i. Hence the number of operations is at most 2i = 2t ≥ i + r,
i.e. the number of operations on the priority queue is at most twice that of the
number of RSS tests. But since the ratio of RSS tests is approximately 2.16 > 2, it
follows that FPQ does fewer priority queue operations GFT since GFT does at least
twice the amount of RSS tests i.e. at least twice as many priority queue operations
as FPQ.

This discussion showed, with help of experimental results, that the number of
priority queue operations must be smaller with FPQ than with GFT for coherent
scenarios. There is no reason to believe that other levels of coherency destroy this
result, due to Theorem 1. It follows that FPQ reduces overhead associated with
PDS in comparison with GFT.

6.4 Raise times and memory usage with implicit
and explicit BVTTs

Explicit BVTTs were introduced in order to improve raise times at the cost of
increased memory usage. From Figure 5.10 we gather that memory usage is increased
in all scenarios when using explicit BVTTs. At best, explicit BVTTs quadruples
memory usage in comparison to implicit BVTTs. At worst, memory usage increases
by roughly x25 in comparison to implicit BVTTs.

For coherent scenes, memory usage of FPQ remains relatively small but as coher-
ence decreases, memory usage increases. This is not a surprising result since fronts
become large in scenarios with low coherence, as shown by Figure 5.11. Yet, mem-
ory usage never exceeds 10 MB in any scenario, which is tractable on any consumer
level computer.

Fortunately, the increased memory usage improves upon raise-times as antici-
pated. In Figure 5.16, we observe that raise times are significantly reduced with
E+S+P and E+S+D in comparison to I+S+P for all scenarios. In the end, time
spent in the play-forward scene is reduced from 0.703594 to 0.647196 (see Figure 5.4),
improving total performance by roughly 13%.

As for the motion-planning scenario and the non-coherent scenario, no significant
net-gain in performance is observed in Figure 5.4, despite the fact that raise-times
are reduced, as shown in Figure 5.16. This could be because BVTT bytesize increases
with explicit BVTTs, causing copy operations and move operations, commonly used
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when sprouting, to become slightly more expensive. Sprout-times are presented
in Figure 5.17. Observe that sprout-times for the motion-planning and the non-
coherent scenario increases about as much as the decrease in raise-times, effectively
cancelling gains obtained by smaller raise times.1

In conclusion, explicit BVTTs increases total performance for coherent scenar-
ios but no significant gain is observed for the motion-planning scenario nor the
non-coherent scenario. Nevertheless, the relative increase of memory usage is high
but negligible in comparison to modern day capacities of consumer level laptops.
Concerns raised in Section 2.4.1 "Memory usage of front tracking" are relieved.

6.5 Recursive raisal decrease raise times
Interestingly, Figure 5.14 show that recursive raisal reduce total raise times for all
scenarios, no matter the traversal algorithm, contrary to intuition. It seems valid
to argue that a recursive raisal algorithm should increase raise times since it may
traverse more nodes than a single level raisal.

This is incorrect reasoning — while it is true that a recursive raisal may traverse
more nodes in a single iteration, it may raise only a select few nodes in a following
iteration. Single level raise, on the other hand, may traverse n nodes and raise
one pair of siblings. On the next iteration, it traverses n − 1 nodes and raise on
pair of siblings. This argument is highly similar to that of the näive recursive
raisal algorithm presented in Section 3.5.1 "A O(n2) recursive sibling-raise routine".
Hence, a single level raise may behave like a naïve recursive raise spread across
several iterations.

This explains why Figure 5.14 show that recursive raisal is consistently beneficial
over single level raisal with respect to total raise times.

6.6 Single raise, recursive raise and reset
A problem with front tracking is that a front may linger below an optimal front
unless an aggressive raise strategy or a reset strategy is adapted. This is measurable
by examining the size of a front — a large front which slowly decreases over iterations
is likely a front that lie below an optimal front.

I compare the single level raise strategy with the recursive raise strategy in
a reset-free context. Thereafter, I compare the two strategies with enabled front
resetting. There are two motivations for comparing raise strategies with and without
front resetting:

1. Front resetting may obfuscate a comparison between a single level raise strat-
egy and a recursive raise strategy

2. The impact of front resetting emerges when comparing raise strategies with
and without front resetting.

1The arithmetical reader notices that summing raise-times, sprout-times and leaf-times do not
sum up to the total measured time. This is because time measurements do not cover all lines
within the C++ implementation. For example, front partitioning is not timed.
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As we shall see, front resetting significantly improves upon performance.

6.6.1 Disabled front resetting
Raising one level at a time with a sibling raise strategy causes front sizes, shown
in Figure 5.21, to have half-life characteristics — front sizes decrease rapidly at
first, after which decrease rates diminishes. This phenomena is especially visible in
subplot (a) of Figure 5.21, by examining the E+S+D+N curve.

The corresponding variation using a recursive raise strategy, E+R+D+N, seems
to have a half-life characteristic that is less pronounced. Instead, E+R+D+N
seems to approach the optimal front more rapidly, as intended. This indicates that
a recursive raise strategy does indeed help a front approach an optimal front more
swiftly. It remains to discuss if a recursive raise strategy pays off in terms of time.

Table 6.3: A table summarizing differences between the single raise strategy and the recursive
raise strategy, for each scenario and for both traversal methods, when front resetting is disabled.

Play-forward Motion-planning Non-coherent
PDS DF

S 822 ms 857 ms
R 784 ms 798 ms

Diff. 38 ms 59 ms

PDS DF
1117 ms 1746 ms
1114 ms 1778 ms

3 ms 32 ms

PDS DF
2647 ms 6056 ms
2723 ms 5714 ms

76 ms 342 ms

Timing results obtained with disabled front resetting, shown in Figure 5.18,
are summarized in Table 6.3. The I+S+P+N variant is not represented in said
table, since it behaves similarly to E+S+P+N, with exceptions already discussed
in Section 6.4 "Raise times and memory usage with implicit and explicit BVTTs".

Table 6.3 indicates that a recursive raise is more beneficial when using depth-first
search in comparison to when using PDS (for all scenarios). This is not surprising.
A depth-first search may sprout below minimal forests of BVTTs, warranting an
aggressive raise strategy in order to compensate for over-sprouting.

Differences between the single level raise strategy and the recursive raise strat-
egy may be considered small. I speculate why the difference is small: The lack of
difference is perhaps due to early termination of raise routines, as described by Sec-
tion 3.6.1 "Evaluating heuristic during raisal". If there is little next to no coherency
in the motion-planning scenario or the non-coherent scenario, it could be that 9% of
front nodes are raised regardless of using a single level raise or recursive raise. This
may explain why the differences are relatively small.

6.6.2 Enabled front resetting
I have compared the single raise strategy with the recursive raise strategy when front
resetting is disabled. It is of high interest to see what happens when front resetting
is enabled. Table 6.4 summarizes timing results from Figure 5.12.

Note that all entries of Table 6.4, disregard Diff. entries, are smaller than their
corresponding entries of Table 6.3 except depth-first search for the motion-planning
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Table 6.4: A table summarizing differences between the single raise strategy and the recursive
raise strategy, for each scenario and for both traversal methods, when front resetting is enabled.

Play-forward Motion-planning Non-coherent
PDS DF

S 638 ms 612 ms
R 633 ms 602 ms

Diff. 5 ms 8 ms

PDS DF
617 ms 2369 ms
605 ms 2517 ms
12 ms 148 ms

PDS DF
1106 ms 3338 ms
1083 ms 3340 ms

23 ms 2 ms

scenario. This means that resetting is beneficial except for the motion-planning
scenario with depth-first search.

At a first glance, this is surprising. However, there is an intuitive explanation:
Early termination is always possible if there exists a collision, i.e. that q ∈ Cobs. This
was shown in Section 3.8 "Sampling points in Cobs". However, a reset annihilates a
leaf front that could otherwise hold a BVTT node v with ‖v‖ = 0, which is to say,
a reset could forcefully remove an opportunity of early termination.

Note that the argument above is applicable to the PDS variant too. However,
PDS does indeed benefit from front resetting in the motion-planning scenario. This
oddity is due to DPQ and is thoroughly explained in Section 6.8.2 "DPQ traverses
few nodes if q ∈ Cobs".

Regardless, Table 6.4 and Table 6.3 in conjunction show that front resetting is,
in general, beneficial as a complement to either a single level raise strategy or a
recursive raise strategy.

Finally, observe that the depth-first entry on the play-forward scenario, using
recursive raisal, finishes in 602 ms while IPS finishes in 637 ms (see Figure 5.4). I
have demonstrated that E+R+D can, on some occasions, be 5.5% faster than IPS.

6.6.3 Reset reduces BV tests for BVHs lacking the bound-
ing property

Front resetting was introduced to assist raise-operators. A reset ought to be ben-
eficial if it is cheaper to sprout from BVTT roots (performing RSS calculations
during sprouting) than it is to raise (without performing any RSS calculations). In-
tuitively, it seems that in most cases it should be cheaper to raise rather than reset.
Yet, resetting arguably increases performance, perhaps more than expected.

The bounding property does not hold for RSS hierarchies. This means parents
may have larger distances than their children. Hence, it is possible that traversal
may terminate at a parent parent(v) with ‖parent(v)‖ > ε but termination is not
possible at v, since ‖v‖ ≤ ε. Hence, if a front is raised to v but no further due to
anchor nodes, pruning is not possible. But if the front would approach parent(vc)
from above, then v and its subtree could be pruned. A reset forces a front to
approach nodes from above.

This argument explains why a reset is particularly important for BVHs for which
the bounding property does not hold. In particular, this argument motivates why
resetting is as beneficial as indicated by Table 6.4 and Table 6.3.
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6.7 Avoiding copy-overhead during raisal
Copying on line 9 and line 11 in Algorithm 8 "Complete FPQ with DF search" is
unnecessary. An improved raise algorithm could pop and swap from two different
containers (RF and L) without resorting to copying L to RF . I briefly outline the
improved raise algorithm now:

First, raise RF with Algorithm 5 "Raising" as usual. Then raise leaves as usual
with the following modification: If the first encountered sibling lie in RF and second
encountered sibling lie in L, pop and swap second sibling and overwrite first sibling
in RF by their common parent.

The second encountered sibling can never lie in RF when traversing over L since
RF is traversed prior to traversing L.

The complete (improved) FPQ with depth-first search algorithm is seen in Al-
gorithm 14 "Complete FPQ with DF search (improved)". Compare Algorithm 8
"Complete FPQ with DF search" with Algorithm 14 "Complete FPQ with DF search
(improved)" — line 9 and line 11 in Algorithm 8 "Complete FPQ with DF search"
are no longer present in Algorithm 14 "Complete FPQ with DF search (improved)".

Algorithm 14 Complete FPQ with DF search (improved)
1: function one_time_init(A,B, SF )
2: for ∀A ∈ A do
3: for ∀B ∈ B do
4: SF ← SF ∪ {Create_BVTT_root(A,B)}
5: end function
6: function dist(L, SF,RF, qi)
7: ε ← Init_eps(L, qi)
8: Partitioning(RF, SF, q, S, ε)
9: Raise(RF )

10: Raise_leaves(RF,L)
11: ε ← Sprout(S, SF, L, q, ε)
12: δ ← ε
13: return δ
14: end function

This concludes the suggested improvement of the raisal operator.
The improved raise algorithm was not implemented due to other more pressing

issues taking priority over implementation of this algorithm. Results presented in
Chapter 5 "Results" does not use Algorithm 14 "Complete FPQ with DF search
(improved)".

6.8 DPQ

A DPQ is used to reduce the number of O(log n) insertions and deletions when
using PDS. Timing results shown in subplots (a-f) of Figure 5.31 show that DPQ
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is faster than std::priority_queue for all scenarios. Table 6.5 summarizes time
differences between DPQ and std::priority_queue .

Table 6.5: A table summarizing differences between DPQ and std::priority_queue

.

Play-forward Motion-planning Non-coherent
std::priority_queue 958 ms 605 ms 1067 ms

DPQ 830 ms 516 ms 906 ms
Relative gain with DPQ 13.3% 14.7% 15.1%

Table 6.5 seem to be some (weak) correlation between timings results and co-
herency, however, these results might just as well be due to measurement inaccura-
cies.

6.8.1 DPQ hypothesis
I considered DPQ due to a hypothesis stating that a path traversed by PDS is close
to a path traversed by depth-first search (see Section 3.7 "Duplex priority queue").
This hypothesis stemmed from Figure 5.6, in which it is apparent from subplot (a)
that PDS visits somewhat fewer nodes and from (b) it is apparent PDS and IPS
computes close to equally many RSS tests per iteration, even when the number
of RSS tests is decreasing or increasing. Note that subplot (a) and subplot (b)
correspond to the play-forward scenario, which has high coherence for successive
C-space points qi, qi+1.

Since PDS traverses a minimal forest of BVTTs but IPS traverses almost as
few nodes as PDS, then IPS must traverse a close-to minimal forest of BVTTs or
conversely, PDS must traverse a close-to depth-first path. This makes PDS compare
unfavorably for high-coherence scenes, not because PDS fails to traverse minimal
forests of BVTTs, but since depth-first searches traverses close to minimal forests of
BVTTs.

Comparative results on DPQ and std::priority_queue , presented in Fig-
ure 5.31, is strengthening the aforementioned hypothesis since an increase in perfor-
mance is obtained with DPQ over std::priority_queue . Further, DPQ internally
depends on std::priority_queue and std::stack , so the improved results can
not be due to a better priority queue implementation within DPQ. Hence, the results
presented in Figure 5.31 are fair and hence strengthens the hypothesis.

6.8.2 DPQ traverses few nodes if q ∈ Cobs
DPQ and std::priority_queue visit equally many RSS for the play-forward sce-
nario and the non-coherent scenario but DPQ traverses fewer nodes for the motion-
plannings scenario (see Figure 5.32) — the motion-planning scenario is an exception.
This was, at the time of result-generation, an unexpected result. It seems incorrect
that either DPQ or std::priority_queue does not traverse a minimal forest of
BVTTs. However, there is an explanation:
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DPQ performs a depth-first search if BVTT nodes have equal distances, whereas
std::priority_queue may traverse nodes with equal distances in an undefined
order. Therefore, DPQ hits leaves quickly while std::priority_queue may visit
several intermediate nodes prior to hitting a leaf. In addition, hitting a leaf l with
‖l‖leaf = 0 allows for early termination, as described by Section 3.8 "Sampling points
in Cobs", causing DPQ to terminate earlier than std::priority_queue .

Now, any colliding BVTT node is a member of of a minimal BVTT, by Defini-
tion 4, because a node is traversed if it has a distance which is less than or equal to
‖A − B‖. If l is a colliding BVTT leaf, then ‖A − B‖ = 0 and all parents of l are
colliding too. Hence l is always traversed and hence always a member of a minimal
forest of BVTTs. However, early termination is possible if ε = 0, as described in
Section 3.8 "Sampling points in Cobs". For this reason, a forest of BVTTs smaller
than that of a minimal forest of BVTTs is (oftentimes) traversed by DPQ and
(seldomly) traversed by std::priority_queue if q ∈ Cobs. Hence, DPQs are, un-
expectedly, particularly good for motion-planning scenarios if techniques presented
in Section 3.8 "Sampling points in Cobs" are used.

I have discussed why both DPQ and std::priority_queue can traverse forests
of BVTTs that are smaller than minimal forests of BVTTs and I have discussed why
DPQ does so more frequently than std::priority_queue .

On a side note, one may think of a strictly minimal forest of BVTTs, generated by
nodes which are traversed if ‖v‖ < ε as opposed to ‖v‖ ≤ ε (see Algorithm 1 "Depth-
first search"). Both DPQ and std::priority_queue , with techniques presented in
Section 3.8 "Sampling points in Cobs", may never traverse a forest of BVTTs which
is strictly smaller than a strictly minimal forest of BVTTs.

6.9 FPQ with other BVs than RSSs
FPQ does not exploit many properties of RSSs. There are two properties which
FPQ rests upon:

• Surface areas of RSSs are well-defined and computable, enabling the SAH.
• BVs must enclose their leaves.2

Therefore, any two BVHs that consists of BVs with (1) well-defined surface areas
and of (2) enclosing BVs, can be tested against each other with FPQ. Needless to
say, BVs usually enclose geometric primitives and have well-defined surface areas.
Hence, FPQ is usually applicable to any type of BVHs.

Since FPQ reduces BV tests at the price of overhead, it would be interesting
to check if another type of BVH could prove more efficient for motion-planners.
A traditional equation, introduced by S. Gottschalk, M. Lin and D. Manocha[37],
models cost of interference detection (in this case, proximity querying) as follows:

T = Nv × Cv +Np × Cp (6.1)

2This ought to be a universal property of bounding volumes
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where

• T : cost function for proximity querying
• Nv: number of RSS tests, i.e. number of visited intermediate BVTT nodes
• Cv: cost of a RSS test, i.e. ‖v‖
• Np: number of geometric primitives pairs, i.e. number of visited BVTT leaves
• Cp: cost of testing a pair of geometric primitives, i.e. ‖v‖leaf

A slightly modified version of this cost function when using FPQ is:

T = Nv × Cv

rv

+ Np × Cp

rp

+ Co, with rv, rp ≥ 1 (6.2)

where rv ≥ 1, rp ≥ 1 are ratios of pruned RSS tests and triangle tests, re-
spectively, with Co denoting overhead cost induced by FPQ. For example, if FPQ
computes half as many RSS tests and half as many triangles tests, then rv = rp = 2.

It seems plausible that a tighter BV decreases the size of some front F , in turn
decreasing the Co-term. It is difficult to argue that rv and rp should increase or
decrease significantly with a changed type of BV. I conjecture that they remain
largely the same regardless of BV type.

Now, an argument against tight and expensive BVs is that CV becomes to large,
causing Nv×Cv to become large. However, FPQ reduces the rate at which Nv×Cv

grows at the cost of some overhead term that is believed to become smaller if a
tighter BV type is used. Therefore, the total cost T may become smaller with BVs
that are tighter than RSSs.

6.10 Parent-relative transformations

In Section 4.1.1 "Transformations are relative to parents in IPS", an optimization
used in IPS was presented. The optimization reduces the number of transformation
multiplications from two to one per BVTT. However, this optimization is not used
in any variant of FPQ due to a possibility of numerical issues that may arise with
sprouting and raising back and forth.

It is possible to use a parent-relative transformation solely when sprouting, pos-
sibly speeding up RSS tests: use Equation 4.2 per default but whenever a node is
raised, revert back to using Equation 4.1, avoiding numerical issues. This could pos-
sibly improve on sprout-timings, shown in Figure 5.17, since fewer transformation
multiplications are carried out during sprouting.

However, an incremental transformationM1→2,i has to be stored on BVTT nodes,
increasing memory usage. All in all, it is unclear if this optimization would be
beneficial when fronts are used since it may improve sprout-timings due to fewer
multiplications but may decrease total timings due to increased BVTT node size.
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6.11 Ethical considerations
Acceleration of proximity queries have no obvious direct ethical impact, with respect
to either societal or gender considerations. However, there is a clear ecological
benefit of acceleration of proximity queries — acceleration of proximity queries can
reduce energy spent per proximity query, in turn reducing energy consumption of
algorithms that depend on computation of separation distances. This is arguably a
positive consequence.

On the other hand, efficient separation distance computations may be an enabler
of real-time motion-planning for mobile robots. Therefore, acceleration of proximity
queries may indirectly help advancement in the field of autonomous robotics. This
field in itself is problematic due to several reasons, some of which are: (1) possibility
of machines replacing humans in various industries, causing either temporary or
lasting unemployment, (2) autonomous warfare robotics that in worst-case go rogue
or (3) increasing difficulties in determining if it the manufacturer, the owner or the
user of an autonomous robot that should be held accountable whenever something
bad happens. Still, it is difficult to estimate to what extent acceleration of proximity
queries contributes to these possible end.

The set of jobs that could be destroyed by autonomous robotics may, in general,
be dominated by either males or females. If so, then there are ethical issues with re-
spect to gender. I shall make no attempt at estimating if it is either males or females
that to any greater extent become unemployed with advancements of autonomous
robotics.

In conclusion, I believe that acceleration of proximity queries may in turn ac-
celerate development of autonomous robotics. This latter development may in turn
cause various ethical problems, some of which I have highlighted within this section.
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Conclusion

I have investigated methods of accelerating proximity queries in a robot cell context.
In particular, separation distance computations in between two sets of rigid bodies.
Acceleration of proximity queries enables motion-planners to compute paths more
rapidly. Possible benefits of sufficiently efficient motion-planners include:

• Enabling of real-time motion-planning
• Decreased down-time for humans waiting for a motion-planning process to

terminate
• Scenes which were previously considered intractable may become tractable

I found that performance of proximity querying as a subroutine of sampling-
based motion-planners can be increased by up to 46% in a real-world robot-cell, in
comparison to the well-regarded Proximity Query Package (PQP), by using priority
directed search (PDS) on several BVTTs. The performance gain stems from reducing
the number of bounding volume (BV) tests by approximately 67%. In addition, PDS
scales better with respect to increasing triangle counts than PQP when coherence
is low.

Front tracking (FT) reduces BV tests on highly coherent scenarios and in turn
reducing computation time by up to 5.5% in comparison to IPS. FT introduces
overhead due to raising and sprouting operators. This overhead is significant on low-
coherence scenarios. Further, overhead associated with FT may become significant
even for highly-coherent scenarios. I show that FT may decrease performance by
up to 45% for another coherent scenario. In conclusion, FT is capable of increasing
performance marginally but it may hurt performance severely.

A specialized priority-queue called duplex priority queue (DPQ) was developed.
It improves performance by approximately 14% for a motion-planning scenario in
comparison to using a standard priority queue implementation available in the C++
standard library.

In conclusion, using a DPQ on a forest of BVTTs is a competitive approach to
proximity querying as a subroutine of sampling-based motion-planners.

7.1 Future research

This section briefly presents some deprioritized ideas which could either improve or
generalize FPQ. Some ideas for further measurements are presented too.
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7.1.1 Front memoization
A, to the best of my knowledge, novel idea which could ameliorate situations where
‖qi − qi−1‖ < d is close to d, i.e. where temporal coherency is relatively low, is to
associate every i:th front with qi. A previous BVTT front could be re-used if qi is
sufficiently close to some previous configuration point, otherwise a new front is built.
This would require a nearest neighbour search in C-space and memory for storing all
previous BVTT fronts. However, C = C1 × C2 × . . .× Cn can be of high dimension.
It has been showed a sequential scan is often faster than space-partitioning methods
for d > 10[38].

A simple way to reduce the memory consumption of memoizing BVTT fronts is
to limit the number of saved BVTT fronts. This could be done by deleting a front
in a FIFO-manner or deleting a front with lowest access-frequency, or some merge
thereof.

Hence, a simple spatial memoization of fronts could be made by storing k fronts
in a FIFO-manner and finding the closest k:th previous q if |qi − qi−1| > d for some
fixed d. It is unclear if the cost associated with this technique is smaller than the
gain from having a better BVTT front in low-coherent scenarios.

A possible extension of this technique is to avoid a point-location search through-
out C-space by letting a motion-planner actively select what front to use. If a
motion-planner knows that points are generated from some j:th neighbourhood of
C-space, then the motion-planner could select the j:th front, effectively emulating
coherence from a FPQ point-of-view.

7.1.2 FPQ for other problems within computational geom-
etry

A brief discussion on applicability of FPQ to other problems within computational
geometry follows. It would indeed be interesting to investigate how FPQ compares
with existing methods in other domains of computational geometry.

Collision detection

FPQ could be transformed into a method for collision detection, by replacing in-
stances of ‖v(qi)‖leaf by a boolean function ‖v(qi)‖col which returns true if the un-
derlying geometric primitives of the BVTT node v collides, or false if the underlying
geometric primitives does not collide. FPQ would answer the decision problem which
yields true if there exists a collision in a forest of BVTTs or false otherwise.

Instead of sorting a priority queue on distances, the priority queue could be
sorted on BV penetration distances. However, it is unclear if this method is feasible
since penetration distances can take O(n2) time even for convex geometries[39]. For
guiding a search throughout a forest of BVTTs, it is not a strict requirement to
have exact penetration distances. Therefore, approximate methods for penetration
distance computation could be used instead.

FPQ would guide a search in a forest of BVTTs in a completely analogous fashion
as with FPQ for distance computations.
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Tolerance verification

Tolerance verification is a decision problem which yields true if some given geome-
tries are at least δ apart [3][11]. Minor changes can be introduced to FPQ, using
PDS, for it to handle tolerance verification:

• Let ‖v(qi)‖tol = ‖v(qi)‖ − δ and replace all instances of ‖v(qi)‖ by ‖v(qi)‖tol.
• Instead of checking if some distance is smaller than ε, check if ‖v(qi)‖tol is

positive (farther than δ apart) or negative (closer than δ).
• If some leaf l ∈ L satisfy ‖l‖tol < 0, return false.
• If some leaf l has negative distance during sprouting, move all elements within
S to SF and return false.

• If a BVTT v with ‖v‖tol > 0 is popped during sprouting, then no node may
have a negative tolerance and then early termination, akin to what is described
in Section 3.3.3 "PDS allows for early traversal termination", is possible.

These minor changes (along with possibly other minor changes) makes FPQ solve
the tolerance verification decision problem.

7.1.3 A safe ε revisited
It would be interesting to further investigate, possibly existing, methods for com-
puting Equation 3.11. If Equation 3.11 could be used to find a safe ε which is
occasionally smaller than ε post ε-initialization, then both FPQ and IPS could per-
form fewer BV-BV computations.

7.1.4 More measurements
There are many possible measures which may provide further insights into FPQ. A
brief list of measures which would be interesting to look at is presented below:

Size of front partitions per iteration: Observing how the sizes of SF,RF and
L evolve over time could provide new insights into their interplay.

Time consumption by sprouting, raising, RSS tests and others: A deeper
investigation on time consumption of front-operators and other parts of FPQ
would be interesting, since it could direct further developments of FPQ to be
precise and well-motivated.

Distance between a front F to an optimal front F ∗ over time: A distance be-
tween two fronts could be defined as ‖F − F ∗‖ = |F | − |F ∗|. The problem of
front tracking is then the problem of minimizing ‖F −F ∗‖. By inspecting this
metric, various raising techniques or reset strategies could be more accurately
evaluated.
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