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Oskar Fredriksson
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Abstract

With the transition of the 5G core network to a cloud native service-based architecture—
composed of network functions operating through microservices communicating over
the network—there is an increased risk of network failures causing service downtime
unrelated to the applications themselves. In particular, cases of partial and sim-
plex network partitionings have been observed in production systems to produce
silent failures causing severe symptoms. Thus, diagnosing these failures have proven
difficult. As such, the need of monitoring the network between microservices is of
particular interest. In this thesis, we devise a distributed monitoring scheme to
identify and classify network partitionings in a Kubernetes cluster. We implement
and evaluate two approaches of this scheme based on both active and passive mon-
itoring. While both approaches are feasible for our purpose, we conclude that our
approach to passive monitoring struggles with classifying simplex partitions due
to TCP being a two-way protocol. Similarly, operating the passive mode requires
privileges not necessarily suitable for a shared cloud environment. While the active
monitoring scheme is able to infer all types of partitions, it will—unlike the passive
alternative—increase the overall load on the network. We further present how to
make our proof-of-concept implementation scalable when deployed in larger clusters.

Keywords: Network Partitions, Network Monitoring, Distributed Systems, 5G, Cloud
Native, Mobile Networks.
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1

Introduction

The rise in demand for service availability and data durability has led several or-
ganizations to embrace cloud systems. The reason for this is that cloud systems
are designed to be highly available, providing on-demand availability of resources in
terms of storage and computing despite failure of devices, networks, or even entire
data centers [1]. According to IBM [2], 94 % of companies used some form of cloud
computing in 2019 and more than half of them are expected to move towards an
all-cloud infrastructure by 2021.

One area which aims to benefit from the advantages of cloud-native solutions is the
development of 5G. With the promise of offering communication that is highly reli-
able, low-latency, high speed, and facilitates vast numbers of connected devices [3],
the need for a flexible and dynamic infrastructure is crucial for the success of 5G.
Therefore, the proposed 5G standard aims to migrate from the previous monolithic
core network architecture to a cloud-native Service-Based Architecture (SBA). This
architecture allows applications to run in a cloud-native environment using a mi-
croservice architecture—a loosely coupled architecture that provides several benefits
such as scalability, elasticity and flexibility.

However, the way we test and respond to incidents has fundamentally changed with
the introduction of cloud systems. While testing has become an integral part of
the deployment pipeline, the absence of failures cannot be guaranteed. Instead,
the focus has shifted to partly limiting the blast radius, but also shortening the
incident response time—preferably to before the customer even reports the failure—
by continuously monitoring applications [4]. An important part of ensuring the
correct operation of a distributed system is the underlying network. It therefore
stands to reason that the network itself needs to be monitored as well.
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1.1 Context

This thesis is a collaboration with Ericsson, who is in the process of transitioning
their core network (CN) to a cloud-native infrastructure to meet the rising demands
required of 5G systems. With the increasing demands on service availability, 5G
aims to offer an increase in throughput and reduction of latency by 10 times when
compared to 4G. Similarly, the perceived availability of a 5G network should be
99.999%—around five minutes and 15 seconds of downtime per year [5]. Apart from
the general requirements, telecommunications companies also have agreements with
the service users known as Service-Level Agreements (SLAs).

An SLA is a legal agreement between the service provider and the service user
outlining a set of service properties known as Quality of Service (QoS) [6]. The
agreements focus on particular aspects of a service such as the quality, availability
and accountability. Usually, several measurable metrics such as uptime, latency,
throughput, and jitter are used as a reference to ensure that each party fulfill the
required set of conditions. If a violation of QoS occurs, the party accountable will
be liable for penalty fees as per the terms specified in the agreement.

However, as applications move from dedicated hardware to the cloud, the structure
of SLAs change. This is due to cloud environments being more complex in nature
with multiple stakeholders and an increased difficulty in determining the root cause
of service interruptions [7]. One aspect affected by the migration towards the cloud
is the communication between different applications and services, since it more often
transpires over the network in cloud systems. For applications in a cloud-native 5G
environment, disturbances in the network will therefore have a devastating impact
on the performance of the applications, especially with the strict requirement on
service availability. It is therefore vital for both service provider and user, from
a troubleshooting and legal perspective, to monitor the network itself in order to
determine if application downtime originated from issues residing on the application
or network layer.

1.2 Problem Description

In some environments, application failures indicative of partial network partitioning
have been reported [1], [8]. These failures have proven difficult to detect, since their
presence are nearly impossible to identify by use of standard up-time monitoring—all
the while exhibiting symptoms suggesting a fault in the application.

This project aims to define network failures that can occur in cloud-native telecom-
munication networks. From this information, a proof-of-concept (PoC) for a tool
is created that can be deployed in the cloud to detect the presence of network
failures—in particular network partitioning—without prior knowledge of the net-
work topology.
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Research Questions

This project strives to answer the following research questions:

1. How feasible and efficient is it to detect network failures in a production Con-
tainer as a Service platform (CaaS) adapted for 5G applications?

2. How can one introduce alarms that present eventual network partitions as a
result of the failures?

1.3 Goals

In order to answer the research questions, we create a containerized application
that can be deployed as pods in a Kubernetes cluster. Our application can be run
in two modes—active and passive. Using active probing, the application collects
information regarding one-way packet loss and latency. Passive listening enables
the application to detect packet loss by the occurrence of TCP retransmissions from
any container on the host. All measurement data is collected by a Prometheus
server. In addition, a separate application is implemented which visualizes this data
and detects occurrences of network partitioning.

1.4 Limitations

One main limitation of the project is that the Kubernetes clusters used is not run in
a full production-level 5G environment since such an environment was not available
during the time span of the thesis. However, due to the cloud-native nature of
the 5G service-based architecture, components should be able to run on commodity
hardware in any Kubernetes cluster. Thus, during the development of the proof-of-
concept, an already existing staging environment for 5G components is used.

While previous works, such as [9]-[11], use knowledge of the underlying network
topology or configuration to localize faults to a physical link, this project does not
assume that such in-depth information is available. Instead, our implementation can
run on any Kubernetes cluster irrespective of the underlying network architecture.
The purpose of this project is to identify and characterize disturbances rather than
localizing faults. As such, we are only concerned with pod-to-pod connectivity.

1.5 Thesis Outline

The remainder of the thesis is organized as follows: Chapter 2 introduces some
necessary background information, including 5G, cloud systems, theory about and
ways to monitor for network failures, as well as previous works. Chapter 3 describes
the methods taken to implement the PoC developed in this thesis, while Chapter 4
explains how the PoC is evaluated. The results of this evaluation are then presented
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in Chapter 5 and discussed in Chapter 6. Finally, Chapter 7 consists of the overall
conclusions of this thesis.



2

Background

This chapter is divided into five sections containing the necessary background knowl-
edge needed to understand the work presented in this thesis. The first section briefly
introduces the 5G architecture and a more detailed explanation of the new 5G core.
This is followed by an introduction of cloud systems and the different service mod-
els available. The third section introduces the different failures that can arise when
communication occurs over a network, while the fourth presents different techniques
and metrics of interest when monitoring such failures. The fifth and last section
presents previous work in the area of end-hosts distributed network monitoring.

2.1 5G Architecture

With the need of dynamic infrastructure, the 5G mobile network architecture em-
braces cloud-native solutions. As such, the previous monolithic 4G architecture—a
tightly coupled architecture where each component works closely together in an in-
tegrated manner—will be replaced. However, as it will take a considerable amount
of time to implement a fully cloud-native mobile network, the old and new infras-
tructure will have to co-exist for some time. To start the process of moving towards
a fully cloud-native infrastructure, the first point of action is to migrate the core
network.

5G Core

The 5G core network architecture (5GC), issued by the third generation partnership
project (3GPP), is at the heart of the new 5G specification. It serves as the latest
evolution of the 3GPP core network architecture, moving away from the previous
Evolved Packet Core (EPC) which served as the core network in the 3G /4G network
architecture.

The core network is in charge of establishing reliable and secure connectivity to the
network between the Radio Access Network (RAN) and the external access network
(i.e., the Internet) [12], [13]. It handles a wide variety of mobile network functions
such as session and mobility management, authentication and authorization, among
others. Compared to previous generations of core networks, services in the 5G core
network are handled by Network Functions (NF) that are completely software-based

5
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and designed to be deployed in a cloud-native system. This means that the functions
themselves are separated from the underlying cloud infrastructure, allowing for faster
deployment and more flexibility [13].

The migration of the core network to cloud-native has been made possible through
technologies such as Software-Defined Networking (SDN) and Network Function Vir-
tualization (NFV) [3]. SDN introduces a separation of the network’s control logic
(control plane) from the physical devices tasked with forwarding users’ network
packets (user plane) [14]. NFV in turn focuses on the use of virtualization to ab-
stract the NFs (such as those making up the 5G core network) away from expensive
dedicated hardware, and onto virtualized software solutions—referred to as Virtu-
alized Network Functions (VNFs)—running on Commercial-Off-The-Shelf (COTS)
hardware [15]. An added benefit of NFV is that, due to network functions being
implemented in software, managing and making changes to a network is often more
straightforward. All of these technologies thus prompt the need for a new cloud-
native core network standard for 5G—mnamely the 5G Service-Based Architecture
(SBA) [12].

Service-Based Architecture

The new SBA making up the 5G core network consists of decoupled NFs offering
one or more services to other NFs through Application Programming Interfaces
(API). In the SBA, each NF is formed through the combinations of smaller pieces of
interconnected services known as microservices that communicate with each other
through an inter-process communication model, often via the network. Since the
architecture is completely service-based, these microservices can in turn be re-used
in other NFs, which in turn reduces the implementation workload and allows for
easier redeployment when rolling out new functionality [13].

NSSF
Nnsff Nnef Npcf Nudm
Nnef Namf Nsmf
NEF AMF SMF

L UE (R)AN UPF DN
i N3 N6

L

N9

Figure 2.1: 5G Core architecture depicting the service-based control plane and the
SBI between the different NFs [12].

An overview of the new 5GC architecture, from an API point of view, can be seen
in Figure 2.1. The upper half of the figure shows the new control plane which
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implements a service-based architecture consisting of several different NFs, each of
which provides a different service. For example, mobility management is handled
by the Access and Mobility Management Function (AMF). This NF handles the
connection of geographically moving User Equipment (UE) to different base stations
in the Radio Access Network (RAN). The API based communication between the
different NFs is known as a service-based interface (SBI). An NF can utilize an API
call over the SBI in order to invoke a particular service or operation.

2.2 Cloud Systems

Cloud Computing can be considered a fairly new paradigm and involves the on-
demand allocation of resources such as infrastructure, storage, databases and various
application services to users. This is achieved through cloud-native computing—an
approach in software development utilizing cloud computing to allow for organiza-
tions to build and run applications to meet the different requirements of the users.

The Cloud Native Computing Foundation (CNCF), a Linux Foundation project
founded to help advance container technology, defines cloud-native as [16]:

Cloud native technologies empower organizations to build and run scal-
able applications in modern, dynamic environments such as public, pri-
vate, and hybrid clouds. Containers, service meshes, microservices, im-
mutable infrastructure, and declarative APIs exemplify this approach.

CNCEF oversees multiple cloud technology projects used in production systems today.
Some well-known CNCF projects include Kubernetes, Helm, Prometheus, contain-
erd, CoreDNS, LitmusChaos, etc [17].

In order to provide a dynamic environment with capabilities of on-demand resource
allocation, the cloud-native architecture is a Service-Oriented Architecture (SOA),
which provides resources to users in terms of services. These services can take
different forms depending on the degree of management available to the provider
and the degree of control the user wants [18]. Figure 2.2 presents four different
service models and the respective responsibilities of the service provider and user at
the different layers.

Infrastructure as a Service (IaaS)

The IaaS model is the base layer of the different service models and provides users
with computing resources such as virtual machines, servers, storage and networking
to allow users to run arbitrary software, which can include operating systems and
applications [19]. As such, the user is not in control of the underlying infrastructure
but still has to configure the different virtual machines, virtual networks, operating
systems and runtime environments.
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or Containers

or Containers

or Containers

or Containers

Operating System

Operating System

Operating System

Operating System

laaS CaaS PaaS SaaS .
(Infrastructure as a (Container as a (Platform as a (Software as a ReSpOﬂSlb”lty
service) service) service) service)
Functions Functions Functions Functions Service User
Applications Applications Applications Applications Provider/User
Runtime Runtime Runtime Runtime Service Provider
Middleware Middleware Middleware Middleware

Virtualization Virtualization Virtualization Virtualization
Servers Servers Servers Servers
Storage Storage Storage Storage

Networking Networking Networking Networking

Figure 2.2: Service models and the responsibilities of the service provider/user at
the different layers.

Container as a Service (CaaS)

The CaaS model is commonly deployed on top of an existing [aaS model and can be
considered as a subset of [aaS, except that instead of using VMs or bare metal servers
its primary resource is containers. A container is a package of software that includes
all the necessary dependencies, such as code, runtime, libraries, etc., in order to run
on any type of host system. A more detailed explanation of how containers work can
be seen in Section 2.2.1. The benefit of using CaaS is that container platforms can
provide horizontal scaling and migration of services. The platform thus manages the
provisioning of physical or virtual machines and the underlying operating system.
All the while, the user still retains a high degree of control when it comes to runtimes
and other customizations [20].

Platform as a Service (PaaS)

In the PaaS model, a platform has already been configured for the user to deploy
applications. With this model, the user does not need to install any operating
system, runtime environments or databases as all of this is provided by the service
provider. In this type of environment, the user will only focus on building and
delivering applications to the platform and can spend less time on configuring the
different environments.
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Software as a Service (SaaS)

SaaS is the top layer of the different service models, where the provider is respon-
sible for the entire stack, from physical hardware to the application layer. In this
model, the user is provided with applications—usually accessible through web pages
or program interfaces—and is not responsible for any of the underlying cloud infras-
tructure [19].

2.2.1 Containerization

When deploying microservices onto commodity hardware, it is possible to use hard-
ware virtualization in the form of virtual machines (VM). However, this would mean
that each microservice would have to be packaged inside a monolithic disk image also
containing a full guest OS. Such a solution would be characterized by slow startup
performance along with greater memory and disk usage [21]—properties undesirable
in a microservice architecture.

Bins/Lib Bins/Lib Bins/Lib Bins/Lib
Guest OS Guest OS Container Engine
Hypervisor Operating System
Infrastructure Infrastructure
(a) VM (b) Container

Figure 2.3: Example of VM and Container architecture.

The approach containerization takes is also referred to as OS-level virtualization,
instead letting containers execute in isolated user spaces on top of the same ker-
nel. By utilizing modern kernel features, such as namespaces and control groups
(cgroups) in the Linux kernel, groups of processes can effectively be isolated from
each other, and their resource usage can be controlled [21]. A visualization of the
difference between the VM and container architecture can be seen in Figure 2.3,
where instead of having each disk image containing full guest OS as shown in the
VM architecture, the container-based architecture allows applications to share the
host OS kernel and sometimes even binaries and libraries. This allows containers to
be much more lightweight and have faster startup when compared to VMs.
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Writable ¢! Writable ¢! Writable
+ container FS i + container FS : + container FS ;
Application 1 Application 2
Add Python

Add Ubuntu (Base image)

rootfs (Kernel)

Figure 2.4: Example of file system layers of three distinct containers.

Instead of the monolithic approach to disk images often seen with VMs, container
images are usually built in layers, with a new image being made by adding a layer on
top of another image. Using so-called “union mounts” provided by the kernel, each
layer is represented by a read-only file system, with each additional layer describing
the difference compared to the parent image. This is also referred to as a copy-
on-write file system. The consequence is that images can share underlying layers
with other images. The bottom layer is referred to as the base image—often a Linux
distribution such as Ubuntu, but without the rootfs kernel image as it is provided by
the host [21]. In Figure 2.4, we illustrate what a file system may look like with three
containers. The first two of the containers are created using the “Application 1”
image and the third uses the “Application 2” image. When a container is created, a
writable file system is added on top of the image and is part of the container’s state.
In this case, both applications are written in Python, meaning that their images
can be built on top of the same Python runtime image. The Python runtime image
is based on an Ubuntu image in this case. When run, the containers may thus all
mount the two same read-only file systems based on the Ubuntu and Python layers,
while the first two containers also share the “Application 1” file system.

There exist multiple different container systems, one of the most well-known being
Docker [22], which is implemented on top of the open-source containerd container
runtime. containerd follows the Open Container Initiative (OCI) specification. Im-
ages following the OCI Image Format (often referred to as “Docker images”) make
up the vast majority of all container images.

2.2.2 Container Orchestration

By packaging microservices into containers, they can be deployed on a Container
as a Service (CaaS) platform. By forming a cluster of multiple hosts, the container
orchestration functionality of such platforms can automatically scale microservices
horizontally by deploying more containers based on identical images. Such platforms
also offer load-balancing support [21]. Networking functionality ensures containers

10
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may communicate with each other, despite the isolation by the container runtime.
Although containerization is ideal for microservices, containerized monolithic appli-
cations can also see benefits from being managed by a CaaS platform.

One of the most popular options is to build a CaaS platform on top of Kubernetes,
an open-source container orchestration system [23]. In Kubernetes, the minimum
deployable unit is known as a “pod,” which in turn consists of one or more containers
run on the same node in a shared context. Kubernetes supports several container
runtimes, the most common being containerd. Network traffic between pods is
managed by Kubernetes, which assigns a unique IP address to each pod addressable
by the rest of the cluster. It is however possible to deploy network policies dictating
with whom pods may communicate.

2.2.3 Chaos Engineering

Chaos engineering is an emerging discipline of Fault Injection Testing techniques
that preemptively exposes a distributed system to disturbances in a controlled fash-
ion to ensure it can withstand turbulent conditions in production [24]. By doing so,
it helps build confidence in the ability of distributed systems to withstand realistic
disturbances. Similarly, it makes it possible to detect faults in software earlier and
reduce the number of unnecessary faults reported by the user [25].

The concept of chaos engineering was introduced by Netflix, which created some
of the first chaos engineering tools. Omne of the most well-known tools is Chaos
Monkey, an internal service that randomly selects VMs hosting production services
and forcefully terminates them [24]. The introduction of Chaos Monkey has led to
the process of developing software services capable of withstanding failures of entire
VMs.

With the recent development of cloud-native applications, several chaos engineering
tools adapted for container-based deployments have emerged. For Kubernetes, some
common tools include kube-monkey!, Litmus?, PowerfulSeal®>, ChaosBlade?, and

Chaos Mesh®.

Each tool offers different ways of injecting chaos into container-based deployments.
For example, kube-monkey—an implementation of Netflix’s Chaos Monkey for Ku-
bernetes clusters—randomly terminates Kubernetes pods to test if services are re-
silient to unexpected crashes. Other tools providing additional types of disturbances
include Litmus, which offers several chaos experiments on a pod-to-pod or applica-
tion level, but also on a platform or infrastructure level. The former allows for
deleting pods, containers, adding network loss, latency, hogging CPU, etc., whereas

"https://github.com/asobti/kube-monkey
’https://litmuschaos.io/
3https://github.com/powerfulseal/powerfulseal
‘https://github.com/chaosblade-io/chaosblade
Shttps://chaos-mesh.org/
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the latter injects chaos into the node and can exhaust node memory resources, cause
disk corruptions, etc.

2.3 Network Failures

Failures are rampant in large cloud networks. Considering the scale at which some
providers operate, however, this should not be a surprise [26]. In a study performed
on a large group of production servers by Microsoft engineers, it was found that
8% of them experienced failure during one year (most commonly due to faulty hard
drives) [27]. Thus, in order to avoid failures in cloud systems to some degree, fault
tolerance measures must be taken [28]. This also applies to the network.

Before introducing the forms network failures may take, it is appropriate to define
the terminology that will be used throughout the thesis. We define an event to be
any exceptional condition in either hardware or software. Faults are events that are
not caused by another event (also known as the “root cause”). These in turn may
manifest as one or more discrepancies from an expected state or condition known as
errors [28], [29]. We consider network failures to be any error that prevents a system
from functioning correctly and is thus visible to users [29]—also encompassing par-
tial network failures which include degradation and graceful degradation of service.
A network failure can be caused by “malfunction or natural or human-caused dis-
asters” [30]. It can therefore be deduced that even heavy congestion would, by this
definition, cause a partial network failure. Symptoms may be defined as the mani-
festation of failures that are observable as alarms from monitoring systems [29].

2.3.1 Faults in Practice

Similarly to servers, networking equipment is also expected to fail. Another study
in Microsoft data centers [26] points to below 5% of commodity switches failing
annually. However, top-of-rack (ToR) switch failures still account for most of the
downtime. This is attributed partly to their sheer quantity in large data centers, but
interestingly also due to that type of repair being a low priority. Failover techniques,
like replication, are expected to maintain service availability. This can also be
observed in the fact that—similarly to other operators such as Google [31] and
Facebook [10]—redundant ToR switches are not used.

Not all faults are the same. While predictable faults can be modeled statistically,
other faults may cause errors harder to predict and localize. Redundancy has been
shown to not be entirely effective against failures [26]. We will now present a few
types of failures prevalent in the literature. A reoccurring type of failure in liter-
ature is silent packet drops. Due to software bugs or faulty hardware, packets are
dropped without hardware counters incrementing, causing traditional SNMP mon-
itoring systems to not find any fault [32], [33]. In another instance, a popular chip
vendor shipped network cards with a firmware bug causing all ingress packets to be
dropped [1], [34]. Sometimes, routing loops may form between a number of switches
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Figure 2.5: The three variants of partitions identified in [1]. Arrows denote direc-
tional packet flows.

due to software bugs [32], [34]. It is also not seldom that a fault manifests itself
from the control or management plane [35].

2.3.2 Partitioning Failures

While the symptoms of a network failure presented by the network layer may appear
“as simple as” packet loss or latency anomalies, the fact that nodes occasionally lose
connection with each other plays a central role when designing distributed systems.
In particular, distributed systems have to consider partitioning, where one group
of nodes loses connection to another group of nodes (see Figure 2.5a). Large-scale
cloud providers have emphasized the importance of partition tolerant applications,
hinting that it is a common occurrence at their scale, while simultaneously designing
distributed systems where partition tolerance is an essential design criterion [34].

While network partitioning and partition tolerance have been explored for decades
within literature and can be considered common knowledge, it was only recently
that partial network partitioning was described in literature [1]. It is a phenomenon
where, while packet reachability between nodes form a connected graph it is not
a complete graph, as seen in Figure 2.5b. In other words, while two groups of
nodes cannot communicate with each other, both can still communicate with a
third group of nodes. Along with complete (Figure 2.5a) and partial (Figure 2.5b)
partitioning, the authors also identify a third type referred to as simplex partitioning,
where communication only in one direction is interrupted (Figure 2.5¢). Because its
effects are not considered when designing some systems, partial /simplex partitioning
has been shown to break correctness and cause data loss in popular database and
message-passing systems used today in cloud applications. That being said, some
systems also include mitigations against partial partitioning [1], [8].
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Based on the descriptions given by Alquaraan et al. [1], we formally define the
types of partitions as used throughout the thesis. We consider a directed graph
G = (V, E), where if there exists an edge (u,v) € E where u,v € V', packets can be
successfully sent from node u to node v. In the general case, a network partitioning
has occurred if there exists any two nodes u,v € V where (u,v) ¢ E. A complete
network partitioning exists iff G is disconnected (i.e., all nodes cannot be part of
the same weakly connected component). Furthermore, a partial network partitioning
exists if (u,v) ¢ E while another directed path from u to v exists. Lastly, a simplex
partitioning exists iff for any two nodes uw,v € V, (u,v) € E but (v,u) ¢ E. We
note that by these definitions, multiple types of partitions may exist simultaneously.

While a general solution to partial partitioning is specifically proposed in [8], it
is based on routing network traffic through other nodes by deploying OpenFlow-
based virtual switches on them. In Figure 2.5b all traffic between the left and right
groups would in that case travel through the lower middle group—in essence building
another routing layer on top of the physical network. While this possibly could be
a suitable solution for certain low-volume traffic, it may lead to scalability issues
if networks and nodes are not designed to handle the resulting traffic pattern—in
turn prompting new congestion-related failures. Furthermore, it requires software
and virtual switches to be deployed on all nodes, which itself could cause faults.
To this end, designing applications with partition tolerance in mind would be the
ideal solution. Until then, however, there must be a way to correlate failures with
potential partitioning events—which is the intended purpose of the proof-of-concept
produced in this thesis.

2.4 Network Monitoring

Continuous detection and localization of network faults in data-center settings is not
a new topic. Diagnosing a network fault usually involves three steps: (1) identifying
that a fault has occurred, (2) localizing/isolating a set of possible faults, and (3)
confirming that the actual fault was found [29], [32]. Network monitoring tools may
assist in one or more of these steps. In this thesis, we are primarily interested in
identifying the occurrence of faults presenting themselves as network failures.

Some authors identify important properties desirable in data-center monitoring sys-
tems. In particular, such systems incur low overhead on networks and hosts, are
continuously monitoring for and presenting disturbances, and are simple to configure
and use [33], [36].

Network tomography is a field of research referring to the act of reconstructing some
internal state of a network using a limited number of monitors (i.e. nodes collecting
metrics). The main sub-field is referred to as network performance tomography and
primarily entails how to reconstruct per-link metrics (such as latency and packet
loss) in a network, given measurements from a limited number of monitors. Fun-
damentally, this is a matrix inversion problem. For this problem to be solvable,
however, the topology and routing paths of the network must be known before-
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hand [37, pp. 1-2]. While network topology tomography aims to reconstruct the
network topology using measurements from monitors—and could theoretically help
quantify the performance of individual links when the topology is not known—this
method can only recover a logical topology that is equivalent performance-wise to
the physical topology [37, pp. 218-220].

Monitoring systems are usually categorized into two groups depending on the way
they obtain data: active and passive monitoring [33], [38]-[41]. Their scopes do not
completely overlap and could therefore be considered complementary.

2.4.1 Active Monitoring

Active monitoring uses end-to-end measurements or “active probes” to estimate
performance characteristics, such as the packet loss and latency, of links in the
network [40] (or sometimes even to infer the network topology). It does so by
producing and sending its own synthetic packets to endpoints in the network to
ascertain network conditions. An example of this is the ubiquitous ping utility
that traditionally sends “ICMP echo requests,” to which target hosts respond with
“ICMP echo responses.” Active monitoring typically produces results in real-time.

The use of active monitoring can be expensive in terms of the equipment necessary
to manage the increased load across the network. Additionally, some resources
are also consumed by end hosts actively generating and receiving this traffic [41].
With this in mind, it is common when using an active monitoring approach to
design systems that can ascertain as much information about network conditions as
possible while applying a small amount of strain to the network. This is however
made harder by the fact that a vast majority of active monitoring applications
have scalability limitations on large managed networks, due to many systems being
centralized and/or having to actively probe every node [40].

In data centers, equal-cost multi-path (ECMP) routing is prevalent [9]-[11], [42],
[43]. When there exist multiple optimal routes to a destination with equal routing
priorities, networking equipment with ECMP enabled load-balance incoming pack-
ets among the relevant outgoing interfaces by applying a hash function on part of a
packet—most often the packet header. This may however prove problematic for the
detection and localization of failures since the hash functions may be proprietary
and/or incorporate randomness [11]. In the literature, this has been overcome by
either ensuring header fields (on which the hash function operates) in probes are
alternated by changing port numbers [36] such that all paths are “probably” cov-
ered, or by “steering” probes by encapsulating them in IP-in-IP packets destined for
supported switches which decapsulate the probes [33]. Of these methods, the latter
requires functionality that may not be available in all environments but provides
better precision than the former.
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2.4.2 Passive Monitoring

With passive monitoring, the monitoring application itself does not inject new pack-
ets onto the network. Instead, such solutions rely on listening to existing network
traffic [41]. Thus, while active monitoring schemes can guarantee theoretical full
coverage of all paths in a network, passive monitoring instead only interact with
paths carrying “real” network traffic. A few of the advantages of this approach
are that it does not add additional load to the network, it presents data of actual

user experiences as opposed to synthetic packets, and low-rate errors are not being
masked by ECMP routing [33].

Contrary to the active solutions with packets purpose-crafted for performing spe-
cific measurements, passive solutions rely on generic network traffic. For this reason,
measurements may not be as precise. Since capturing and analyzing all network traf-
fic will lead to more data to process, many implementations adapt by instead relying
on analyzing accumulated statistics or listening to certain events. However, in some
instances, the act of passively monitoring network traffic will produce statistics not
accessible by active solutions—most notably the current network throughput.

2.4.3 Metrics

This section presents several different metrics of interest when monitoring the perfor-
mance of a network. It focuses primarily on metrics relevant to the measurements
taken in this thesis. Other examples of metrics not discussed in this section are
packet corruption rate and throughput.

Round-Trip Time (RTT)

The Round-Trip Time (RTT) is the duration from a request being sent by a client,
until the client receives a response from the target. Measuring the RTT is often
an uncomplicated process in the case of active monitoring and can be performed
manually with the ping utility. Passive solutions may acquire the RTT by listening
to existing TCP traffic and are used in, for example, the networking stack of the
Linux kernel to estimate a socket’s RTT.

One-Way Delay (OWD)

The One-way Delay (OWD) is similar to that of the round-trip time in principle,
except we are only interested in the delay from when a sender transmits a packet
until the receiver receives it. RFC 7679 [44] describes motivations for measuring the
OWD instead of the RTT. One motivation is asymmetric queuing, meaning that
the forward and reverse paths experiencing different levels of congestion. Another
reason is and asymmetric paths, implying that the forward and reverse paths are
not physically identical due to routing differences or asymmetrical link capacities.
Thus, while the OWD often is approximated as RT7T/2, it may be undesirable for
some types of measurements.

Accurately measuring the OWD, however, is not straightforward in practice. While
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measuring the RTT can be done solely with the clock of the sender (assuming lim-
ited clock drift), measuring the OWD requires the clocks of the sender and receiver
to be synchronized [44]. Time synchronization is a classical problem in computer
science and can either take place via special-purpose hardware such as radio/satellite
receivers and specially designed networking equipment or via clock synchronization
algorithms that fundamentally rely on RTT measurements. The latter method may

not always be appropriate for OWD measurements in the case of asymmetric laten-
cies [45]-[47].

Packet Loss

Packet loss refers to the event where a packet has failed to reach its target destination
either due to being dropped or becoming malformed when traversing the network.
Packet loss is measured as a percentage of lost packets with respect to the number
of packets sent.

One-Way Packet Loss

One-way packet loss is similar to regular packet loss except that we only focus on
the loss between a sender and a receiver in one direction, instead of the overall
round-trip loss. In RFC 7680 [48], motivations for using one-way packet loss are
similar to those of OWD.

With the interest of monitoring different types of network partitioning, the use of
round-trip packet loss is insufficient as a simplex partitioning (illustrated in Fig-
ure 2.5¢) exhibits traits of network loss only affecting one direction. Two-way mea-
surements may not be able to determine in which direction a loss occurred.

2.5 Related Work

In this section, we present previous systems implementing distributed end-host net-
work monitoring. We divide the works into active and passive solutions depending
on whether failures are identified by introducing new probe packets or listening to
existing network traffic, respectively. A summary of the works are presented in
Table 2.1.

2.5.1 Active Monitoring

Pingmesh [9] is an application measuring end-to-end latencies between servers in
Microsoft datacenters. Pingmesh agents are deployed on all servers and follow a
“pinglist” decided by the Pingmesh controller. The controller considers a hierarchy
of graphs. The first level of the hierarchy consists of graphs where vertices represent
all servers under the same top-of-rack switch. The second level of graphs, in turn,
consists of vertices representing all top-of-rack switches in a data center. The last
level is a single graph where each data center is a vertex. The pinglist is constructed
such that, for each graph in the hierarchy, the probe traffic between the vertices
forms a complete graph.
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Table 2.1: Overview of related work.

Name Type Probes

Pingmesh [9] Active | TCP (HTTP)

NetBouncer [43] | Active | UDP/IP-in-IP

NetNORAD [42] | Active | UDP

PTPmesh [36] Active | UDP (PTP messages)

deTector [33] Active | UDP

007 [11] Passive | N/A (TCP/ICMP for localization)
Roy et al. [10] Passive | N/A

NetPoirot [49] Passive | N/A

Everflow [32] Passive | Any

NetBouncer [43] is another application deployed in Microsoft data centers, focusing
on localizing links with an elevated packet loss ratio. Probes are encapsulated in
IP-in-IP packets destined for a target switch, which in turn decapsulates the packet
and “bounces” the probe back to the sender. Due to the datacenters’ architecture,
only one path exists to an upper-level switch (although this theoretically could be
generalized upon by encapsulating packets more than once). A central controller
constructs a probing plan in such a way that a single faulty link can—with the
probing data from individual nodes—be identified by a central processor.

NetNORAD [42] is an open-sourced application developed for use in Facebook data-
centers, measuring both the packet loss ratio and latency for various QoS classes. A
processes referred to as the reponder is deployed on all end hosts, while pinger pro-
cesses are only deployed on relatively few to reduce resource consumption. Metrics
are aggregated by “proximity tags” in a hierarchical fashion by rack clusters, data
center, and region. Localization of faults is thus relatively coarse-grained compared
to other solutions and relies on comparison of proximity tags.

PTPmesh [36] explores the idea of using the Precise Time Protocol (PTP)—a clock
synchronization protocol—and the open-source implementation PTPd to measure
network conditions in cloud data centers. The findings are that, after a five-minute
convergence period, the one-way delay (OWD) can be measured by PTP. By intro-
ducing an asymmetric load from the slave to the master clock using the iperf tool,
the OWD in that direction is increased. However, due to how PTP continuously
synchronizes clocks (as briefly discussed in Section 2.4.3, this type of synchroniza-
tion is fundamentally dependent on RTT measurements), the OWD in the opposite
direction “appears” to increase as the clock offset changes. This makes the mea-
surements unreliable after some time of heavy asymmetrical congestion in terms of
finding the actual OWD. Delay and packet loss measurements are performed and
analyzed at three large cloud providers. Despite its name, PTPmesh operates in a
master-slave configuration.

The purpose behind deTector [33] is to both detect and localize failures with a mini-
mal number of probes, specifically claiming to do this more efficiently than Pingmesh
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and NetNORAD. Using knowledge of the full network topology, a “pinglist” can be
generated for each pinger by the controller. These lists—while minimizing the num-
ber of probes—also guarantee identifiability of up to § link failures while each link
is covered by at least a distinct probe paths. Pingers send probes to responders
using IP-in-IP encapsulation to impose a certain probe path. Lastly, data is sent to
the diagnoser, which it stores and analyzes in order to find links exhibiting packet
losses and an estimate of the loss rate.

2.5.2 Passive Monitoring

007 [11] takes a mixed approach, using passive monitoring for identification and
active monitoring for localization of faults. It operates by passively monitoring
for TCP retransmissions using the event tracing functionality built into Windows.
When a retransmission is detected, the affected network path is discovered using
a traceroute analogue utilizing identical packet headers to ensure ECMP issues
are circumvented. Every link in the route is assigned a proportional “blame” value,
which are tallied up by an analysis agent to find a faulty link. The advantage of this
solution is that no changes in the network or host are needed to deploy this solution
while still providing low overhead.

A solution described by Roy et al. [10] uses both knowledge of the network topology
of Facebook data centers along with packet marking functionality of core routers to
infer the path of a flow. Packet markings are read by end hosts using a custom kernel-
level program implemented using eBPF sandboxing technology. By comparing OS-
level TCP metrics of a flow with other flows that should theoretically be equivalent
performance-wise, end hosts produce a verdict of whether a route is faulty. This
also means that if at any moment the performance of all flows is degraded equally,
no fault will be detected. This verdict is later sent to a central controller that can
filter false positives and produce a final set of faulty network components.

In NetPoirot [49], TCP statistics are collected and run through a machine learning
model that attempts to assign blame to either the server application, client appli-
cation, or network. The focus is thus not restricted to network failures. By using
supervised learning attained by the use of fault injection (of for example high 1/0,
memory or CPU load on the client/server, high disk latency, sporadic packet drops,
random connection drops, and high latency), the model is trained offline before be-
ing deployed. However, the model has to be re-taught for every new application
that it monitors.

Everflow [32] can be hard to categorize as strictly passive, but does nevertheless
primarily depend on listening to existing traffic. Furthermore, it does not operate
on end-hosts and is thus outside of the scope of this thesis, but deserves a mention
due to its similarities with other previous work. Having been designed for and
deployed in Microsoft datacenters, a subset of packets is captured, mirrored and
encapsulated by supported switches. This subset consists of TCP segments with
the SYN, FIN, or RST flags set, every n packet in a flow, all network protocol
traffic (e.g., BGP and PFC messages), and packets with an explicit “debug” flag
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in the header. The encapsulated packets are forwarded to the processing pipeline’s
first component—the re-shuffler. Consisting of a network switch, the re-shuffler
hashes the headers of the encapsulated packet in order to decide which analyzer
to forward the packet to, ensuring that the same flow is always sent to the same
analyzer. Analyzers are a set of distributed servers that reassemble packet traces and
aggregate link-level statistics. If a packet trace includes a packet loss or loop, the
full trace is stored. To circumvent the limits of passive tracing, the controller may
send out “guided probes.” For example, because switches typically do not possess
timestamping ability, a guided probe can be used to find a link’s RTT. Consider a
packet instructed to traverse S; — S — S1. We note that because the delay of the
path from S7 and S5 to the analyzer is unknown, the OWD cannot be measured.
Instead, the analyzer measures the time between the two arrivals at S;.

2.5.3 Our Work

The work done in this thesis consists of two separate solutions—one based on active
probing and one on passive listening. Unlike many of the related works presented,
our application will not exploit any preexisting knowledge of the network topol-
ogy. The only other works with this limitation are 007 [11], which relies on passive
listening to detect failures, and PTPmesh [36], which currently only operates in a
master—slave configuration and—contrary to its name—is not organized in a mesh.
Furthermore, none of the systems based on active probing can differentiate between
one-way and two-way packet loss, which our implementation based on active prob-
ing can. This functionality is needed when detecting simplex partitionings. Finally,
none of the other implementations presented in this section have the tooling to
identify partitions.
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Implementation

In this chapter, we will describe the implementation of a proof-of-concept moni-
toring system that is able to monitor one-way packet loss and identify the three
partitioning failures presented in Section 2.3.2 (complete partitions, partial parti-
tions, and simplex partitions). First, a general overview of the system and general
design considerations are presented, followed by a more detailed description of its
“pinger” and “visualizer” components.

3.1 Overview

The implementation of the proof-of-concept is based on three distinct subsystems
able to be containerized, as well as Kubernetes’ service discovery. The pinger either
sends and receives “ping” messages to/from other pingers and/or listens for TCP
retransmissions—and records those events. Prometheus is an off-the-shelf event
monitoring system, pulling the recorded data from all pingers and storing it in
Prometheus’ time series database. The wisualization component can in turn pull
data from Prometheus which it can visualize, as well as analyze in order to find
partitioning events. Kubernetes’ service discovery is presented by the Kubernetes
API, used for presenting the IP addresses of the active pingers used in the Pinger and
Prometheus subsystems to discover pods to ping and scrape data from respectively.

«Subsystem»
> Kubernetes <
Service Discovery
«Subsystem» - «Subsystem» - «Subsystem»
Pinger o~ Prometheus Server o~ Visualizer

Figure 3.1: Overview of the subsystems. The pinger and visualizer subsystems
are implemented as part of this thesis.
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The system components and how they interact with each other can be seen in
Figure 3.1.

3.2 Pinger

The “pinger” subsystem consists of two distinct parts—the active pinger and the
passive monitor. By contacting the Kubernetes API, other pods also running the
pinger can be acquired. From this, each pinger is able to identify targets to ping or
monitor for TCP connections from/to.

3.2.1 Design Considerations

There are a few requirements when designing the application. Most of these re-
quirements arise from the fact that the application needs to work in any Kubernetes
cluster. In particular,

o the network topology is not known beforehand,

o the configuration or character of network devices is not known beforehand,
meaning that approaches utilizing traceroute-like approaches such as [9] may
not produce a consistently satisfactory result,

o the application should run and be trivially deployable on any Kubernetes clus-
ter.

While active network latency measurements may be improved with the help of frame-
works such as DPDK, it would mean traffic in part bypass the kernel’s and Kuber-
netes’ networking stack. Since the goal is to monitor failures emanating not only
from the network—but the entire CaaS platform—using frameworks that bypass the
networking stack would be counterproductive.

Programming Language

In order to decide on the programming language to use for the pinger, the perfor-
mance of three different programming languages were compared. While not precise,
these tests should provide an indication of practicality from a performance stand-
point. A small prototype of the final proof-of-concept built upon active probing is
implemented in each language, while ensuring each prototype maintains function
parity. Specifically, each prototype is a single executable that is able to:

1. use a static number of processes and threads,
2. ping multiple processes simultaneously using a single UDP socket,
3. store a timestamp of the time at which a ping message is sent,

4. respond to ping messages from other identical processes with pong messages,
and
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Langauge | Median p90 p99

Python 0.31 ms | 0.31 ms | 1.06 ms
Java 0.21 ms | 0.28 ms | 0.33 ms
CH++ 0.12ms | 0.14 ms | 0.39 ms

Table 3.1: Latency measurements (50th, 90th and 99th percentile) for the proto-
types. Tests were performed on the same machine.

5. via the standard output either print the latency if a response arrives or indicate
a packet loss if a response is not received within a predefined timeout.

The test is conducted using two processes with identical binaries on the same ma-
chine. One process sends ping message to the other process every second, to which
it responds to with pong messages. The distribution of the resulting latencies from
the comparison are presented in Table 3.1.

The greatest performance in the 50th and 90th percentiles was obtained using C++.
While a scripting language such as Python might be beneficial due to its simplicity,
performance in the 99th percentile indicates that significant jitter is introduced.
Thus, C++ is the language chosen for implementing the final PoC.

3.2.2 Active Measurements

Due to the earlier described design constraints, active measurements are done in a
full-mesh configuration to ensure full coverage of all network paths.

Pinger A Pinger B

Figure 3.2: Normal operation of two pingers.

An overview of how the different pingers interact with each other can be seen in
Figure 3.2. In the figure, one can see how pinger A sends a probe to another pinger
B at time t;, after which pinger B reports that a message is received at time t5. In
this case, pinger B later independently sends a probe at t3 in the opposite direction
to pinger A.

One-way packet loss measurements are performed in such a way that both nodes
do not need to be able to both send and receive probes—only that there is at least
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one pinger that is able to send probes and another pinger that can receive these
probes. In other words, replies are not necessary. As such, we describe the process
of sending and receiving probes separately.

Sending Probes

Every node sends UDP datagrams in the form of pings to all other nodes each
time step. This implies a message complexity of O(n?), where n is the number of
nodes. The period of a time step—how often a probe is sent—can be changed. A
longer period will utilize fewer system resources, but also increase the amount of
time required to detect low-frequency partial packet loss.

In order to find which nodes to ping, a discovery mechanism is needed—of which
the pinger has two. The first relies on occasionally querying the Kubernetes API to
find other pods running the pinger. This is needed since Kubernetes is a dynamic
environment where pods can be removed, added or even restarted which will alter
their current IP address. The second is based on a static list of socket addresses
passed as command line arguments, potentially enabling the pinger to be run outside
of Kubernetes as a stand-alone application.

The statistic sent to Prometheus regarding probe transmission is

o the number of probes sent for every sender—receiver pair.

Receiving Probes

Based solely on the received pings, every pinger node reports two pieces of statistics
per transmitting node to Prometheus, namely:

o the number of received pings, and
o the number of pings that are assumed lost.

While the former statistic of the two is relatively straightforward to measure, the
latter relies on detecting gaps in the sequence numbers received. An example of this
is illustrated in Figure 3.3, where the message with sequence number 3 is received,
even though a message with sequence number 2 is not. Thus, a certain time after
message three is received, the receiving pinger can assume that message two is lost.
While this could be accomplished with timers, it is difficult to determine a fair
timeout since transmission times of probes vary and the pingers’ clocks are not
synchronized. Instead, we decide that the datagram with sequence number n is
considered lost when receiving a datagram with sequence number m, where

TTOJ
> —_— 1.
m_n—i—{T +

In this case, T signifies the period at which packets are sent and Tro is a lower
bound for the timeout.
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Pinger Pinger
Ij\ping, seq 1

Figure 3.3: Lost ping message. The loss can be inferred by the receiver by com-
paring the sequence numbers.

Latency Measurement

While network latency measurements are not required in order to detect packet loss,
the pinger does present these measurements to Prometheus if available. To enable
this, each active probe contains an additional two fields containing high precision
timestamps. These fields are (1) the timestamp at which the probe was sent and (2)
the time difference between when the probe was sent and when the most recent probe
arrived from the recipient, subtracted from the first field in the most recent probe
from the recipient. Thus, one-way packet loss measurements need to be enabled
bidirectionally (i.e., both from pinger A to B as well as from B to A).

To illustrate a latency measurement, we consider the execution in Figure 3.2 con-
taining four highlighted events, which occur at times t; through ¢4. First, note that
instead of measuring a RTT as t4 — ¢; by assuming t3 — ¢, is sufficiently small (i.e.,
pinger B responds immediately to probes), we can instead calculate the network
transmission delay as (4 — t1) — (t3 — t2). At t;, pinger A sends a probe containing
{tl, O}. The second field is set to zero because no previous probe from B to A exists.
At ty, pinger B stores ¢, and t,. Later at time ¢3 (occurring exactly one time step from
the last transmission of a message from B to A), the times ¢; and ¢, are popped from
the temporary store and a probe containing {tg, t1+(ts —tg)} is sent. When it arrives
to pinger A at time t,4, a latency measurement of t4— (t1+(t3—t2)) = (t4—t1)—(t3—t2)
is reported to Prometheus. We note that this method will work even when the clocks
of A and B are not synchronized. Also note that at t3, another measurement is
started by pinger B equivalent to that of node A at ty. Thus, at time t4, t3 together
with ¢4 is temporarily stored by pinger B. Interestingly, due to each UDP datagram
being used for up to two different latency measurements, the amortized number of
messages per measurement will converge at one message—given that the time steps
at which the pingers send messages are identical.
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3.2.3 Passive Measurements

For the sake of comparing a solution based on active probing with one based on
passive listening, the pinger application is augmented to also passively listen for
network traffic.

Instead of sending and receiving UDP probes—as in the case of the active monitoring—
socket-level TCP statistics are polled from the Linux kernel’s networking stack. This
is similar to the method used by Roy et al. [10] to collect statistics. In our case, the
statistics are sampled and collected at a predetermined interval using the ss utility
(which is similar to the netstat utility).

Before sending data to Prometheus, socket statistics are grouped together by the
sending and receiving pod. In particular, the statistics collected for each sender—
receiver tuple are:

e the number of segments sent,

e the number of bytes sent,

o the number of segments received, and
o the number of retransmitted segments.

We note that the number of retransmitted segments may not correspond to the
number of lost packets.

Since containerization implies that programs are isolated from each other, the pinger
needs additional privileges in order to access the networking namespaces used by
other pods on the node. As such, the pinger containers are configured in Kubernetes
to run in “privileged mode”. However, we note that this option may not be available
on managed CaaS platforms since this breaks down the container sandbox.

3.2.4 Software Architecture

The Pinger is comprised of several software components, each of which is in charge
of handling certain functionalities within the system. An overview of the parts of the
software architecture used for active probing in the form of a UML class diagram can
be seen in Figure 3.4. The architecture of the part responsible for passive monitoring
is mostly similar.

The core component in the system is the Healthcheck class. It is tasked with ini-
tializing the socket for communication and to send and receive pings. To accomplish
this, it relies on a PingStore object to remember the sent and received sequence
numbers for each peer, as well as the timestamps needed for latency calculation
described in Section 3.2.2. In order to discover the IP address of other pingers,
an instance of a class extending the Discovery interface is also provided. This
can either be a StaticDiscovery object providing a static list of socket addresses
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defined in the startup arguments, or a KubernetesDiscovery object continuously
communicating with the Kubernetes API in order to always provide an up-to-date
view of the current pods. Finally, the Reporter class is responsible for reporting
statistics. The base class only prints the statistics to the standard output. This
behavior is extended by the PrometheusReporter class, which also reports them to
a dynamically linked Prometheus client.

; <<struct>>
PingStore PingValue
+ m_val: map<addr, PingValue> )
Healthcheck 0..n | +seq_sent: int
+ sockfd: int P 1 |+ pingReceived(...): bool + seq_received: set<int>
- store: PingStore + getValue(addr): PingValue& + received_sent: timepoint
. ) + timeoutOld(): vector<addr> + received_arrived: timepoint
- serverListen(): void
- sendPings(): void
<<interface>> I StaticDiscovery
1 Discovery - m_addresses: vector<addr>
+ addresses(): vector<addr> <t KubernetesDiscovery

1

Reporter <<struct>>
PrometheusReporter MetricWrapper
+ pingReceived(addr): void - m_counter: map<addr, MetricWrapper> 0.1 | + pings_sent: prom::Counter
+ reportLost(addr): void <+ . . < - -
. _ - m_exposer: prom::Exposer + pings_receive: prom::Countt
+ pingSent(addr): void - m_registry: shared_ptr<prom::Registry: + pings. lost: prom::Counter
+ pingLatency(addr, float): void B

+ latency: prom::Summary

Figure 3.4: UML class diagram of the pinger.

3.3 Visualizer

The visualizer is the application responsible for visualizing the collected data. Addi-
tionally, it also analyzes the data in order to find and alert about network partitions.
It is a web-based application built in TypeScript using the React! library. Data is
fetched from Prometheus using its HTTP API.

3.3.1 Visualization

An important part of understanding how a cluster and its applications are affected
by a partitioning is to visualize the state of the network, which is accomplished by
the use of the Sigma.js? graph drawing library. A screenshot of the visualizer can
be seen in Figure 3.5, to which we will refer to multiple times in this section.

The visualizer has three different views: the active view, the passive node view, and
the passive pod view. The view can be selected in a drop-down menu (Figure 3.5g).
In both passive views, the option to filter by Kubernetes namespace appears. In

"https://reactjs.org/
’https://www.sigmajs.org/
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Figure 3.5: Visualization of a “healthy” Kubernetes cluster with six nodes.
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Figure 3.6: Visualization of a Kubernetes namespace using the “passive pod view”.

the active and passive node view, each physical node monitored by our application
is drawn as a node in the graph placed in a circle. In passive pod view, however,
each Kubernetes pod is instead drawn as a node and placed by the ForceAtlas2
algorithm [50]. An example of the passive pod view—filtered by the namespace
in which our application is deployed—can be seen in Figure 3.6. Directed edges
between graph nodes represent the flow of ping messages or TCP segments.

As the level of packet loss or retransmission increases between the nodes in the graph,
the hue of their related edges will transition from green to red. When an edge is
red, it is considered “unhealthy.” This color transition can be performed smoothly
using the HSL (hue, saturation, lightness) representation of the RGB color model
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by fading the hue from 120° to 0°. Thus, the color of an edge can be described as

HSL = <max {O, 120 - (1 — ;)}, 100, 50>

where L is the packet loss rate and 1" is the detection threshold. In the user interface,
the slider called “detection threshold” (Figure 3.5b) decides the proportion of packet
loss necessary for an edge to be considered “unhealthy.” The screenshot in Figure 3.5
shows a healthy cluster of six pingers. Note that the bidirectional arrows each
consist of two independently drawn half-length unidirectional edges. Additionally,
two special colorings exist—gray edges representing no probes sent and black edges
representing missing data due to unresponsive pingers.

Two parameters can be set in the user interface to adjust the time series used for
visualization: the evaluation time of the query (Figure 3.5¢) and the duration of the
sliding window (Figure 3.5a). Only information that falls in-between the evaluation
time and a certain number of minutes back, as indicated by the sliding window
selector, is considered when drawing the graph. If the checkbox named “Real-time”
(Figure 3.5¢) is checked, the evaluation time is continuously updated to reflect the
current time.

When clicking on one of the edges in the active view, a modal appears containing
the latency measurements between the given pair of nodes, as shown in Figure 3.7.
The latency is presented as different percentiles.

3.3.2 Finding Partitions

Since our assumption is that all instances of network partitioning is characterized
by the loss of packets sent between nodes, data scraped from our application can be
used to infer partitioning events.

Using the criteria for the three types of partitionings we defined in Section 2.3.2,
three functions are implemented that each test the criteria of one type of partition-
ing on a given graph. Since we assume a full-mesh topology, a naive approach will
be sufficient. As such, the graphs in question are identical to those used for visual-
ization (e.g. as shown in Figure 3.5), with the difference being that edges considered
“unhealthy” (as decided by the “detection threshold” slider) are removed.

Partitionings are presented in two ways—Dby a message in the sidebar if the currently
viewed state of the cluster contains a partitioning, or as an entry in the table of his-
torical partitionings (reachable by a button in Figure 3.5f). Historical partitionings
are found by querying Prometheus for discrete times (as defined by Prometheus’
global evaluation interval) at which “unhealthy” links are present. By applying the
three partition tests at these times, we can find the type of partitionings present.
Lastly, to decide the duration of a partitioning event, consecutive time steps where
partitionings occur are merged.
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Figure 3.7: Latency between a pair of nodes for a few percentiles as shown by the
visualizer.

3.3.3 Data Collection Delay

There are multiple stages that theoretically induce a delay between a 100% packet
loss failure taking place and it being reflected in the visualizer. Save for the length
of the visualizer’s sliding window, these stages are illustrated in Figure 3.8. Thus,
we only consider the delay until the first loss/retransmission is received by the
visualizer here. In the figure, all the known delays depicted in parentheses can be
configured, but currently show default values. We consider program execution delay
and network delay to be negligible.

The delay-inducing stages up until the pinger has acknowledged a loss or retransmis-
sion differ depending on whether active or passive monitoring is being used. When
using active probes, we specifically have to consider the interval between each probe
and the timeout period of the probes. Indeed, in the worst case it may take up to
the sum of those two durations until the pinger assumes a packet loss has occurred.
When passively listening, we remark that the interval between segments as well
as the criteria for a retransmission is not in our control, ultimately depending on
the containerized applications and TCP stack. Statistics are however being scraped
from the kernel by the pinger at a set interval.

When the pinger is made aware of a statistic, it is immediately sent to its bundled
Prometheus client. The Prometheus server scrapes the clients” HT'TP endpoint
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Figure 3.8: Steps which contribute to the delay between a 100% loss event and
the first loss being received by the visualizer. Durations in parentheses represent
default values.

with a predetermined interval. After this, the visualizer will pull data from the
Prometheus server with its own interval. With the default configuration, the worst-
case delay until a failure is propagated to the visualizer is 13.5 seconds for active
monitoring and—excluding the unknown factors—11.5 seconds for passive monitor-
ing. Assuming faults occur at random times, the average delays are 6.75 and 5.75
seconds, respectively. However, a single loss/retransmission does not warrant the
visualizer to assume a link is unhealthy and a partitioning has occurred, meaning
the duration of the visualizer’s sliding window must be added on top of this.
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Evaluation

This chapter presents the basis of how we evaluate the performance of our proof-
of-concept monitoring system. The first section presents an overview of the chaos
testing tool used and how it injects network disturbances into Kubernetes. The
following sections cover the different test experiments used to obtain quantitative
data. This data is then used to evaluate the performance of the monitoring system.

4.1 Chaos Testing

To ensure that the system can measure metrics such as latency and packet loss while
also being able to identify the three types of network partitioning failures presented
in Section 2.3.2, we need to be able to simulate disturbances that characterize these
types of faults in the network.

Chaos engineering tools (as explained in Section 2.2.3) are usually used to inject
faults in order to determine if a system in production and its services are resilient to
failures. In this case, we are not so interested in the resilience of a production system
and its services, but rather to inject network chaos to ensure that the monitoring
application measures the changes in network performance and asserts whether a
partition has occurred. For this purpose, we opted to use Litmus to simulate network
disturbances for Kubernetes.

With the Litmus toolset deployed in the cluster, it is possible to orchestrate and run
experiments. Litmus offers a wide selection of pod-to-pod level experiments such
as packet duplication and increased latency. In this case, we only focus on latency
and packet loss as well as how these can be used to simulate network partitions. To
inject packet loss targeting a specified pod-to-pod link, Litmus uses the tc utility
(traffic control) to add netem (network emulator) rules. The tc utility is used to
configure the traffic control facilities of the Linux kernel [51], while netem consists
of the kernel component that provides network emulation functionality. To decide
whether to drop a packet affected by random packet loss, a Bernoulli test using a
provided probability is performed. Litmus allows for adjustment of parameters such
as the probability of random packet loss, the duration of the test experiment, the
ramp-up time before the chaos is injected, and which Kubernetes pods to target.
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4.2 Control Simulation

The motivation behind this experiment is to find the viability of active and passive
monitoring for estimating the frequency of packet loss in a healthy cluster. A com-
parison is performed using the ping utility from the iputils! package. Furthermore,
a comparison in latency measurements between the active monitoring solution and
the ping utility is performed (the passive mode is not able to monitor latencies).

Each of the tools under evaluation measures packet loss in a different way—the active
solution measuring one-way packet loss, ping measuring two-way packet loss, and
TCP retransmissions measured by the passive solution depending on the applications
using the network and the OS’ network stack implementation. Multiple estimators
can be used to infer elevated packet loss from passive data. In this case, we focus on
two specific ones—namely the number of retransmitted segments as a proportion of
transmitted segments as well as the number of retransmitted bytes as a proportion
of transmitted bytes.

The experiment is performed twice. First when (1) no additional load is applied to
the cluster and subsequently when (2) a synthetic load is applied to the cluster. No
deliberate disturbances are added in either case. While no load is applied in the
former case, the clusters used still have monitoring tools that generate some traffic.
To generate a synthetic load that is characteristic of that demanded by the 5G, an
in-house load testing tool injects synthetic 5G signaling traffic.

4.3 Induced Packet Loss

To test how well the application can estimate certain levels of packet loss, we (1)
inject a specific percentage of random packet loss using Litmus over a period of
time. When running the test, we (2) observe if the number of detected losses cor-
rectly converges towards the expected level of loss. In this case, we will be running
experiments with both a 25% and 75% random packet loss over one hour.

The experiment will be repeated twice, once with and once without simulated traffic.
Measurements will—similarly to the control experiment—be performed by both the
active and passive mode of the application developed in this thesis, in addition to
statistics gathered from the ping utility. From this, we compare the results from
the two different monitoring solutions and ping in order to determine their level of
accuracy when detecting packet loss.

4.4 Network Partition

In this experiment, different types of partitionings are simulated. Using both the
active and passive probing mode of our application, we ensure that the visualizer
(1) can accurately visualize the connectivity of the cluster and (2) automatically

https://github.com/iputils/iputils
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correctly identify partitionings. The visualizer is set to a sliding window of 15
seconds, and the state of the cluster is captured 30 seconds after the experiments
are applied. The synthetic load from the control simulation (Section 4.2) is applied
when testing the passive probing mode.

Loss of network connectivity between two nodes can be envisioned as a 100 % (or at
least close thereto) packet loss on the path between them. Because involuntary loss
of connectivity induces partitioning, we opt to use the same packet loss experiment
outlined in Section 4.3 with some modifications. One of these modifications is to
have 100 % packet loss to represent the complete loss in connectivity between pods
or nodes. Additionally, loss is selectively applied to a subset of sender-receiver pods
in order to simulate specific types of node-to-node level partitionings.

We focus on the three types of partitions described in Section 2.3.2 simulated by
using the packet loss experiment—complete partitioning, partial partitioning, and
simplex partitioning. The only difference between the different partition experiments
is which pods to apply the partitioning to. For complete partitions, the nodes are
divided into two groups of equal size—where connectivity within each group forms a
clique, but the groups are disconnected. A partial partitioning is created similarly,
save for the addition of a third group of nodes that communicates freely with the

other two groups. Finally, in the case of simplex partitioning, ingress traffic is
blocked for a node.
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Results

This chapter presents the results of the experiments used to evaluate the overall
performance of the monitoring application. The following sections correspond to
the tests outlined in Chapter 4 and show the overall outcome of each experiment.
Our application is set to send active probes once a second per link and scrape TCP
statistics every four seconds. Thereafter, the Prometheus instance will scrape data
from each client every five seconds.

5.1 Control Simulation

The result of the control simulation experiment, detailed in Section 4.2, is presented
in this section. The following subsections cover the packet loss and latency results
respectively.

The experiment was performed twice on a cluster with six nodes—once without
additional load and once with the synthetic load. The duration of each experiment
is 24 hours. In each case, only links originating from one of the six nodes is included
(due to data collection and processing constraints arising from the ping utility). All
graphs show per-link data calculated over a sliding window of one minute, which is
then averaged over all links monitored.

5.1.1 Packet Loss

Packet retransmission rates from passive monitoring, both in terms of the number
of segments and aggregate payload sizes, are presented in Figures 5.1a and 5.1b
respectively. Our application polls socket statistics every four seconds. As can be
seen in the figures, both monitoring the number of segments and the sum of their
sizes yield mostly identical results. When no load is applied (referred to as “baseline
traffic”), the ratio of traffic retransmitted—while generally being much higher—also
fluctuates heavily as compared to the case where simulated traffic is present.

In parallel to the passive monitoring, active monitoring also takes place using the
active monitoring mode of our application and ping. Both tools send a probe every
second to each receiver. The active mode did, however, not record a single case
of packet loss on the links under inspection, even when running with simulated
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Figure 5.1: TCP retransmission rates recorded by passive monitoring. The test
is performed twice (once with no additional traffic and once with simulated traffic)
over a 24-hour period on a cluster of six nodes.
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Figure 5.2: Packet loss over five days with a one hour sliding window on a larger
cluster.

traffic. In a similar fashion, ping did not record any loss when running the baseline
traffic. Although, when it comes to the simulated traffic, losses in the single digits
were recorded. However, since these findings are not statistically significant and
represent a fraction of the total traffic, this data is not illustrated.

Loss In A Large Cluster

Since the results do not conclude a ratio of packet loss for the active monitoring
solution, we perform a follow-up experiment. The experiment is performed using
the same methodology, but using a cluster of twelve nodes, a probe periodicity of
100 ms per node—node pair, and a duration of five days. However, we only had the
opportunity to test the cluster under simulated load. The result of this experiment
is seen in Figure 5.2. In total, 11006 packet losses were detected, resulting in a
packet loss of around 0.002%.

5.1.2 Latency

This section will cover the latency results of the control experiment. The latency
for both the baseline and simulated traffic over the course of 24 hours are recorded
by ping and our active monitoring tool. Latencies in the 50th and 99th percentile
are presented. As mentioned in Section 4.2, the latency results do not include any
measurements from passive monitoring.

The latency measurements obtained in the 50th percentile are visualized in Fig-
ure 5.3a. We observe that using our tool, the baseline latency lies around 0.45-0.5
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Figure 5.3: Active latency measurements by our application and ping over 24
hours. The experiment is performed twice—once with and once without simulated
traffic.
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ms whereas after injecting a synthetic load, the latency decreases and averages to
around 0.35-0.4 ms. This behavior is amplified using ping, where the baseline la-
tency of around 0.45—0.5 ms drops down to around 0.25 ms. We also observe that
ping yields results with less minute to minute jitter.

Latency measurements in the 99th percentile can be seen in Figure 5.3b. Compared
to the 50th percentile, the difference in latency between the baseline and simulated
traffic is more substantial. Looking at the figure, the baseline latency for both our
application and ping are within the range of 0.8-1.5 ms (excluding outliers). After
introducing traffic, this increases to around an average of 6-8 ms. However, it is
quite clear that the latency is volatile after introducing the load, as it often ranges
from 3 to 14 ms.

5.2 Induced Packet Loss

This section contains the results of injecting random packet loss in a Kubernetes
cluster of six nodes, following the methodology presented in Section 4.3. Using our
tool, we record data using both the active and passive monitoring. In addition, we
collect the same data using the ping utility. For the active monitoring, the statistics
are calculated over a five-minute sliding window whereas the passive solution, data
is calculated over a one-minute sliding window.

5.2.1 Active Monitoring

Figure 5.4a presents the results of actively monitoring using our application while
injecting both 25% and 75% random packet loss on all nodes for an hour. Values are
calculated over a five-minute sliding window and a probing interval of one second.
When inspecting the results, we see the change in percentage of one-way packet loss
for one of the (n — 1)? links. Looking at the results we see that over the course of
one hour, the packet loss corresponds to roughly the induced level of one-way loss.

In a similar fashion to our active monitoring tool, ping measures the packet loss on
the same link with a transmission interval of one second and a sliding window of five
minutes. Because ping relies on the receiver responding with an “ICMP echo reply”
message—which also can get lost—ping is only able to record two-way packet loss.
With a one-way packet loss of 75%, only (25%)% = 6.25% of probes make it back
and forth whereas for a 25% one-way loss this results in 56.25%. However, if we
assume the loss is symmetric, we can use 1 —+/success rate to estimate the one-way
packet loss. This estimate is shown in Figure 5.4b. The induced one-way losses are
also presented in the figures as a reference.

5.2.2 Passive Monitoring

This section covers results from passively monitoring a cluster experiencing elevated
packet loss. This experiment is repeated with both a 75% and 25% random packet
loss. The data—presented as both a ratio of retransmitted segments and a ratio of
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Figure 5.4: Packet loss experienced when injecting a 75% random packet loss over
one hour.
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retransmitted bytes—is collected over a period of one hour and averaged across all
nodes with a one-minute sliding window.

Unlike the last experiment performed using active monitoring, passive monitoring
requires traffic to already run between the nodes due to not generating any traffic
of its own. Therefore, simulated traffic is introduced. Since most of the traffic
transpires over TCP, the pinger can use passive monitoring of TCP statistics to
gather data. Specifically, this is done by parsing the TCP socket statistics available
in the Linux kernel, from which the rate of retransmissions can be determined.

Looking at the results of the separate packet loss experiments in Figure 5.5, the
percentage of packet retransmissions do not directly correspond to the set level of
packet loss. The segment retransmission rate, as seen in Figure 5.5a, lies around
20% and 50% for the 25% and 75% experiment repetitions respectively. For the
lower levels of simulated loss, the percentage of retransmissions are much closer
together. However, as the simulated loss increases, the percentage of retransmissions
do not increase to the same extent causing them to be much further away from the
percentage of simulated packet loss.

Compared to the packet retransmission rate, the byte retransmission rate in Fig-
ure 5.5b is generally at a higher level for both experiment repetitions but still do
not directly correlate to the set level of packet loss. One observation to take note of,
is that for lower levels of simulated loss, the actual byte retransmissions exceeded
the simulated values of loss.
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Figure 5.5: Passively collected data of two independent repetitions of the packet
loss experiment, performed with a 75% and 25% random packet loss respectively.
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5.3 Network Partition

In order to demonstrate the ability to create, visualize, and categorize network
partitions, the methodology described in Section 4.4 is applied to a Kubernetes
cluster with six nodes with a pinger deployed on each of them. Screenshots from
the visualizer are taken 30 seconds after the experiment has started with the sliding
window set to 15 seconds.

5.3.1 Active Monitoring
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Figure 5.6: Three classes of partitionings recreated in a Kubernetes cluster and
detected by the active monitoring mode.

In Figure 5.6a, two disconnected strongly connected components—meeting our def-
inition of a complete partitioning—are created. The visualizer correctly identifies
this as a complete partition. Similarly, Figure 5.6b shows another cluster where the
same setup as in the previous case, except all network restrictions are lifted from
one node in each partition—essentially creating a partial partition. The visualizer
also correctly identifies this as a partial partitioning. Finally, a simplex partitioning
is created by restricting ingress traffic on one of the nodes in an otherwise healthy
cluster, as shown in Figure 5.6c. The visualizer correctly identifies this as a simplex
partitioning.
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close |
Historic disturbances
From Until Complete |Partial | Simplex
Apr 25, 2022, 4:09 PM|Apr 25, 2022, 4:10 PM|Yes Yes Yes
Apr 25, 2022, 4:12 PM|Apr 25, 2022, 4:13 PM|- Yes -
Apr 25, 2022, 4:18 PM|Apr 25, 2022, 4:19 PM|- Yes Yes

Figure 5.7: Partitioning history after simulating a (1) complete partitioning, (2)
partial partitioning, and (3) simplex partitioning with active monitoring.

In Figure 5.7, a screenshot of the partitioning history after applying the three types
of partitionings is depicted. We observe that some partitioning events include “false
positives” in terms of multiple types of partitionings detected. Watching a playback,
all of these false positives are briefly detected in the transient states when packet
loss is being rolled out to the pods or the pods are recovering after the packet loss.

. . 10.1.145.9

10.1.111.201

10.1.86.199

Figure 5.8: Visualizer after creating a partial partition, monitored in active mode,
with the Prometheus server as one of the targets.

During the previous partition experiments, the communication between the Prometheus
clients and server is maintained. In Figure 5.8, the same partial partitioning experi-
ment as performed earlier (see Figure 5.6b) is applied to the cluster, while ensuring
the Prometheus server is also affected by the network partitioning. If the Prometheus
server is unable to reach a client, the color of the node’s representation in the visu-
alizer changes to red. We would also like to point out that, as earlier explained in
Section 3.3.1, ingress edges of unavailable nodes cannot be calculated and appear
black while gray edges indicate that no traffic traveled nor was excepted to travel
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along the edge. We observe that two of four nodes still receive traffic from the two
nodes unreachable by the Prometheus server.

5.3.2 Passive Monitoring

Now we introduce the same partitionings as above but monitored passively under
a synthetic load. The health of the edge is in this case defined as 1—retransmitted
segments /sent segments. As can be seen in Figure 5.9a, the outline of a complete
partitioning is present. However, while the number of transmitted segments on
affected edges is greatly decreased and the number of retransmissions is increased,
the ratio between them is not over 50%, and thus not significant enough to label
some affected edges as “unhealthy.” Therefore, even though it visually appears as
a complete partition, the visualizer identifies this instance as a partial and simplex
(but not a complete) partitioning. However, by adjusting the threshold slider it is
possible to alter the level of retransmission required to consider links to be unhealthy.
By changing the threshold to e.g., 25%, the same complete partition experiment was
correctly identified as a complete partition by the visualizer. Similarly, by increasing
the threshold, the hue of the links would gradually turn greener as the threshold for
a partition would become stricter.

In Figure 5.9b, the partitioning is identified both as a partial and simplex parti-
tioning even though some links are not completely red. Similar to the complete
partition, the detection changes depending on the threshold value. When increasing
the threshold, the detection is still the same as for 50% except for the slight change
in colors of each link. However, when decreasing to 25% the false-positive simplex
label disappears, and the partition is only considered to be a partial one.

When it comes to the simplex partitioning visualized in Figure 5.9c, where ingress
traffic to the “worker-1” node is blocked, the results greatly differ from the case of
active monitoring. Fgress traffic appears to experience a higher rate of retransmis-
sions, while the edges between “worker 1”7 to “worker 3”7 and “worker 6” appear to
not be as affected by the levels of retransmissions resulting in the detection of both
simplex and partial partitionings. Unlike the other partition experiments, adjusting
the threshold will not alter the visualizer’s ability to identify the partition to be
simplex. This is especially seen when decreasing the threshold as at some point,
the visualizer would consider the cluster to be completely partitioned due to both
ingress and egress experiencing retransmissions.
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Figure 5.9: Three classes of partitionings recreated in a Kubernetes cluster and
detected by the passive monitoring mode.
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Discussion

This chapter contains an evaluation of the results and suggestions for further improv-
ing the proof-of-concept application developed in this thesis. Section 6.1 presents
a discussion based on the results of the baseline simulation, whereas Section 6.2
and Section 6.3 discuss the results of the packet loss and network partition exper-
iments respectively. The final section provides a discussion about future work and
suggestions on how the proof-of-concept can be improved upon.

6.1 Control Simulation

This section provides a discussion regarding the results of the control simulation
experiment presented in Section 5.1. Section 6.1.1 provides a discussion about the
findings of the packet loss experiment while Section 6.1.2 introduces a discussion
based on the results of the latency experiment.

6.1.1 Packet loss

Neither the active monitoring solution nor ping detects a significant level of packet
loss over the span of 24 hours—both with and without simulated traffic. The main
reason for this is that the number of samples—approximately 432000—is not suffi-
cient to discern a loss ratio. As a comparison, Guo et al. [9] detect a baseline packet
loss of around 1075 to 107* (0.001%-0.01%) in a data center network under normal
conditions. While the fact that our active monitoring scheme does not noticeably
exaggerate the number of packet losses is a sufficient conclusion for this experiment,
we also perform another experiment with a slightly different setup. In this case,
where the number of probes exceed half a billion, we detect a packet loss of around
0.002%.

Unlike the active monitoring tools, the passive alternative managed to record a
significant number of packet and byte retransmissions. With no simulated traffic,
regular spikes in retransmission can be seen in both the segment and byte retrans-
mission rate. This is most likely due to TCP’s congestion control interacting with
bursts of traffic from background services. Therefore, by basing the passive mode on
TCP retransmissions, we always expect some retransmissions to be recorded. With
that in mind, it is harder to distinguish between links exhibiting a slightly elevated
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rate of packet loss and various applications interacting with congestion control. The
fact that the rate of retransmission subsides after traffic is injected into the cluster
can also be expected. When simulating many 5G sessions, our belief is that traffic
will overall be less dominated by bursts.

As can be seen, there are differences between actively and passively monitoring for
packet loss. We expect the active UDP probes to give a more accurate charac-
terization of network links, while passive monitoring yields results based on what
applications are deployed on the cluster experience. We therefore believe these two
methods to be complementary under normal conditions, with the more favorable
method depending on the use-case. We will later discuss how these methods stack
up in the case of induced packet loss.

6.1.2 Latency

The latencies in the 50th percentile measured by ping and our active monitoring
mode without simulated traffic (referred to as “Baseline Traffic”) generally coincide
with each other. When adding simulated traffic, both our application and ping
detect an overall decrease in the median latency—made especially evident in the
measurements from ping where the latency halves. The reason for this latency
decrease when increasing traffic is mostly unknown to us, and could be the result of
several different factors, such as better cache coherency or the receive queue being
processed more often.

For the 99th percentile, both tools manage to record latencies within close proximity
of each other. For the baseline experiment, the measured values are quite similar
for both tools. However, adding simulated traffic causes a drastic impact on the
latency measured by both tools. As depicted in the results, the latencies in the 99th
percentile increase drastically with a significant amount of jitter. This is however
expected, as it is generally known that tail latencies in a distributed system are
disproportionally affected by an increase in load.

Another observation is—similarly to the 50th percentile under load—that the ping
utility generally estimates the latency to be lower (albeit slightly) than that of our
application. The root cause of this is unknown as it can depend on multiple factors.
Some examples include ICMP and UDP being layer 3 and 4 protocols respectively,
how different protocols traverse the underlying network, CPU process time of our
application or even differences in packet sizes for the ICMP and UDP probes. Similar
discrepancies were measured by [52] who analyzed the RTT latency between NetPerf
and ping in a Google Cloud environment. They noted, similarly to what we saw
in our results, that latency was estimated to be slightly lower for ping. However,
the size of the discrepancy depended on the transmission interval of the different
tools. Additionally, they conclude that even though ping measurements were lower,
NetPerf was still their primary choice of monitoring tool as it is TCP based and
therefore exhibits patterns of delay similar to that of actual real-world applications.
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6.2 Induced Packet Loss

The induced packet loss experiment, unlike the control experiment, focuses on the
monitoring tools’ ability to detect a known level of random packet loss. When
inspecting the percentage of loss after running both a 25% and 75% random packet
loss for one hour, our active monitoring tool was able to accurately measure the
actual induced link-loss. However, the values measured over the five-minute sliding
window are not consistent throughout the course of the experiment and fluctuate
to some degree—which can be expected since the method used for discarding the
packets is a Bernoulli process.

The ping utility is not able to measure one-way packet loss. However, by assuming
that the level of loss is symmetrical (i.e., the same in both directions), it is possible
to infer the one-way loss. In this case, the inferred loss is close to the expected
induced loss and quite similar to what the active mode measured. However, in envi-
ronments where disturbances may affect both directions asymmetrically, assuming
the one-way loss would not be appropriate. This is especially true in the case of
simplex partitions, where the ping utility would assume there is a complete loss in
connectivity.

TCP retransmission data were collected using passive monitoring while inducing a
25% and 75% random packet loss. Some general observations are that the rate of re-
transmissions do not quite converge to the induced packet loss rate. However, there
is a clear correlation between an increased packet loss rate and increased retrans-
mission rate, making it viable for detecting more severe disturbances in production
environments.

Interestingly, the retransmission rate is less than the rate of induced two-way loss,
even though TCP is a two-way protocol. We believe this may be caused by multiple
phenomena. Firstly, even if a TCP ACK disappears, a retransmission may not be
needed since subsequent ACKs with higher sequence numbers implicitly acknowl-
edges previous bytes. Secondly, ACK segments with an empty data field may drive
down the segment retransmission rate. Thirdly, due to TCP being a streaming proto-
col, a single segment may contain data of multiple segments that are lost—although
this should not affect the number of bytes retransmitted. However, even with all of
the above reasons combined, we would not see the number of retransmitted bytes
fall short of the induced one-way packet loss of 75%. Therefore—lastly—we remark
that the application receiving the traffic may close sockets it deems “problematic”
before a retransmission can occur.

6.3 Partition Detection

The visualizations created by the visualizer are generally satisfactory. The general
impression is that it is easy to see visually which links are problematic.
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6.3.1 Prometheus and Partitions

One significant issue with using Prometheus is that if packet loss occurs, there is a
chance that our application is partitioned from the Prometheus server, as demon-
strated in Figure 5.8. While our system will continue to operate, some data may be
lost. This is because Prometheus clients do not retain data in the temporal dimen-
sion. Instead, the Prometheus server is responsible for assigning scraped data with
a timestamp. This means that while counters containing information such as if a
ping is received will still be recorded correctly, it is not possible to determine when
during the period between two successful scrapings such an event occurs. We note
that because our application is tasked with collecting data regarding communica-
tion failures, it can be assumed that following the progress of a failure temporally
is beneficial—even if some data would only be available post mortem.

6.3.2 Partition Threshold

The detection threshold and sliding window sliders in the visualizer are directly
responsible for determining whether a link between two nodes is “healthy”—an
integral part of partition detection. The behavior of the threshold slider when using
active monitoring is well understood and—as we have shown in this experiment—
offers accurate partition detections. This is not surprising since the measured packet
loss rate is directly related to the packet drop rate of the network. However, the
same cannot be said in the case of passive monitoring.

The rate of TCP retransmissions—both in terms of the number of segments and
number of bytes—is not as easily understood. For example, it may depend on how
networking is implemented in a particular application or the operating system. As
depicted in the results, outlines of both a complete and partial partitioning are
properly depicted. However, the rate of retransmission is not measured as being
above 50% between some unconnected nodes, and thus not significant enough to
cause all affected links to be considered unhealthy (even though the packet loss
is 100%). Thus, a low detection threshold is needed for detecting partitionings,
although this potentially may prove to cause more false positives. Furthermore,
contrary to our active probes, the passive mode detects retransmissions in both
directions during a simplex partitioning. This is expected since acknowledgments
cannot be sent, but proves that a more thorough analysis of TCP statistics—possibly
reporting the number of segments received to Prometheus—is needed in order to
accurately identify simplex partitions.

Apart from the detection threshold slider, the sliding window also affects partition
detection. By lowering the sliding window, a lost packet has greater significance
on the percentage of packet loss whereas for a greater sliding the percentage will
be much lower. If we use a sliding window of one hour and a complete partition
occurs during one minute, this will be deemed insignificant by the visualizer as
during the course of the hour the percentage of loss was not greater than 50%. As
such, it is important to correctly configure the values to make sure that the levels
of false-positives are minimized.
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In summary, the implementation of the passive mode is not the most suitable one
when the end goal is to categorize network partitions or links exhibiting a low
packet loss rate, but can nevertheless give insight into traffic patterns of existing
applications. Therefore, we find that active monitoring may be the most appropriate
when detecting network failures. We would nevertheless like to point out that there
exist other passive monitoring schemes that use less simple approaches for detecting
packet loss, such as those presented in “Related Work” (Section 2.5.2). However,
while the other end-host based passive monitoring schemes [10], [11], [49] can identify
partial packet loss, they are not constructed for presenting the specific loss rate of
a link.

6.4 Future work

This section presents some of the current limitations of the proof-of-concept applica-
tion developed in this thesis and based on this, suggests possible paths of improve-
ment which can be pursued in future works.

6.4.1 Scalability

While our current solution easily handles tens of nodes, one downside of our solution
is that it is not designed for scalability. In fact, the upper bound for both the number
of probes used for active monitoring and the amount of data produced by both the
active and passive solution scales with the number of links. If n is the number of
nodes, there can exist O(n?) links if no redundancy is assumed.

While the number of probes can be reduced to zero with passive monitoring, there
are other alternatives. While this thesis has worked under the assumption that
the network topology is ordered in a full mesh, data center networks are hardly
configured this way. By assuming each physical link only needs to be probed once,
knowledge of the physical network topology could eliminate superfluous probes. In
general, we make the observation that the number of messages necessary to ensure
coverage is bounded by the number of links.

Another issue for scalability comes from the analysis of large volumes of data. Cur-
rently, all data is collected by a single Prometheus server, preventing horizontal
scaling. While a distributed time series database could be utilized, it is also pos-
sible to deploy multiple independent Prometheus servers in a tree structure, since
Prometheus is designed to be able to scrape other Prometheus servers. However, as
the depth of the tree increases, the aggregate metrics near the root must be made
more concise by means of aggregation.

6.4.2 Partition Detection

A significant cause for concern is the reproducibility of our results in relation to
passive monitoring. Preferably, more experiments should be performed under dif-
ferent load levels and different types of application workloads. It is possible that
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the simulated traffic we introduced is especially suitable for passively monitor for
network partitions.

As it stands, the current implementation of the partition detection scheme relies fully
on the data scraped by Prometheus. However, as explained earlier in Section 6.3.1,
there is a risk of data not being collected during a partition. Therefore, it follows
that some other scheme—such as a push-based one as opposed to the currently
pull-based scheme—would be more appropriate for our use.

On another note, the visualizer does not use any persistent storage and does therefore
not retain any data concerning the partitions that have occurred in the past. As
such, a large amount of data will need to be processed by the Prometheus server each
time the window containing historic partitionings is opened, resulting in significant
loading times. Ideally, information regarding past partitionings should be retained.

As a final note, the current partition detection scheme is currently handled by the
visualizer application. While we have seen no performance issues in the application
(apart from the listing of historical partitions), it is hard to tell what the effect
on performance will look like given how the number of links scales quadratically
to the number of nodes. As such, it might be of interest to move the partition
calculation away from the visualizer. This would allow the visualizer to be a more
light-weight application as it would not be required to perform any calculations
while simultaneously illustrating the health of each link in the cluster.

6.4.3 Container Privileges

While the active solution has no extra requirements in terms of privileges, the pinger
needs to run in “privileged mode” in order to access socket statistics from the Linux
network stack. Additionally, in order to capture all traffic between nodes, an es-
cape from the application’s container environment—in particular its current Linux
network namespace—is necessary. In many circumstances, this will not be allowed.
In cloud systems with multiple stakeholders and an assortment of deployed applica-
tions, an application with full access to the underlying host may not be permissible—
especially if applications are delivered by different stakeholders.

In environments where running pods in “privileged mode” is not a viable solution
for passive monitoring, there exist other possible alternate solutions for the passive
monitoring scheme. One of them is to deploy the pinger as a side-car container on a
pod which has other containers sending traffic. From there, it is possible to measure
statistics tied to the specific pod. However, this solution is very tightly integrated
with the application and might not be the optimal solution with the purpose of
detecting network partitions.

6.4.4 Measurement Improvements

On a more general note, there are some possible improvements that can be made
to the measurements collected by the application. In this case we have identified
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one possible measurement improvement for the active monitoring scheme and one
for the passive as well.

The active monitoring scheme is currently able to monitor one-way packet loss but
not one-way delay, as only the RTT is measured. The reason for this, as mentioned in
Section 2.4.3, is due to one-way delay being quite difficult to monitor as clocks might
not be synchronized. However, it is an interesting metric to monitor since similar
to the reason we use one-way packet loss, delay might present itself asymmetrically
across the path between two nodes.

When it comes to the passive monitoring scheme, TCP statistics are currently gath-
ered from the Linux kernel at a four second sampling rate. While this is not some-
thing we have investigated, the sampling rate might not be the most optimal one,
especially in the case of short-lived TCP connections. As such, it would be interest-
ing to do an investigation into which sample rate is most suitable when monitoring
TCP statistics.
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Conclusion

This thesis sets out to explore the feasibility of detecting network failures in a
production Container as a Service (CaaS) platform adapted for 5G applications and
how to introduce alarms that present eventual network partitions as a result of
these failures. In this case, the aim was to be able to detect three different types of
partitions: complete, partial and simplex.

In order to achieve the goals stated above, a proof-of-concept monitoring applica-
tion is developed and deployed in a Kubernetes cluster. The implementation has
two modes—active and passive monitoring—both of which provide a different so-
lution to monitor packet loss between nodes in the cluster. These statistics are
collected and stored in a Prometheus time-series database and scraped by a front-
end application—called the visualizer—to illustrate the health of individual network
links in the cluster and to detect whether any partitions have occurred. The delay
from a network failure to the visualizer acknowledging it is theoretically bounded
by 13.5 seconds for active monitoring and 11.5 seconds from a TCP retransmission
for passive monitoring, but is configurable.

To evaluate the performance of the different modes, as well as their ability to mon-
itor for network failures and the network partitionings they induce, we ran multiple
experiments and compared the results. Both monitoring solutions are capable of
presenting network partitions as a result of these failures. However, while never-
theless able to detect significant failures, the two-way nature of the TCP protocol
prevents the passive mode from inferring all types of partitionings. Furthermore,
the rate of retransmission detected when using our passive solution is not directly
proportional to the packet loss on that link and requires certain container privileges
which might not be suitable in a cloud environment. A comparison between ping
and our active implementation concludes that our tool is as reliable, and—unlike
ping—is able to identify one-way loss required for detecting simplex partitionings.

In conclusion, we see that it is feasible to detect network failures in a Container as
a Service (CaaS) platform adapted for 5G applications. With further refinements to
the partition detection methodology and scalability of our solution, we believe that
a similar system can successfully be deployed and operated on a larger scale.
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