A virtual hand for prosthetic training

Development of a environment for exercising and training patients
with hand prosthesis for Integrum AB.

Joakim Arver

Department of Signals & Systems
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2011

Master’s Thesis EX059/2011

Abstract

Integrum AB has developed a control system for prosthetic devices based on pattern
recognition algorithms (PRAs). Currently the training of the PRAs is done by demand-
ing the patient to perform given movements without any feedback to assure a trustable
correlation between the demanded movement and the recorded bioelectric signals. An
alternative to this procedure is to use an instrumented glove in the healthy hand of a
unilateral amputee in order to facilitate the patient to produce the intended movements
by commanding both limbs in parallel.

A literature study of similar projects is performed. A comparison of the different methods
of developing a Virtual Reality Environment (VRE) is done and the method chosen is to
develop a new system using C++ and the Ogre3D- and Openframeworks frameworks to
show the pose of a sensor glove of the brand AcceleGlove.

The model of a virtual hand is created using Blender and an iterative process improves
the model to a more realistic looking model. The hand is implemented in the VRE and
the result is a VRE capable of reading the accelerometers of the glove and representing
the sampled values as angles of the hand and fingers. The signals from the glove is filtered
by a Kalman- or running average filter to suppress the noise from the sensors.

Acronyms

e ANN - Artificial neural network
e AR - Augmented Reality

e DOF - Degrees of freedom

EMG - Electromyography, electrical signals made by skeletal muscles.

OHMG - Osseointegrated Human-Machine Gateway
e PRA - Pattern recognition algorithm

e VRE - Virtual Reality Environment

Acknowledgements

First I want to thank Integrum AB for letting me write my thesis for them and letting
me have an own place at their office. I also want to thank my supervisor Max Ortiz for
all help and the possibility to always ask questions and for all support throughout the
project. I thank my examiner Tomas McKelvey for all help I have received.

Joakim Arver, Gothenburg, June 3, 2011

Contents

1 Introduction

1.1 Background
1.2 Purpose
1.3 Project goals

1.3.1 Subgoals
1.4 Method
1.5 Outline

2 Integrum project
2.1 Training the ANN using a sensor glove
2.2 Virtual Reality Environments

3 Method evaluation

3.1 Amnewsystem
3.2 Matlab and Simulinko
3.3 Open source software
3.4 Inverse kinematics
3.5 Choice of method

3.6 Conclusion of methods

4 Mapping and modeling
4.1 OgredD
4.2 Blender e
4.3 Modeling of the hand oo
5 Orientation estimation
51 Sensor glove
5.2 Reading the Sensors
5.3 Filtering and angle calculation
5.3.1 Kalman filter
5.3.2 Running average filter o oo
54 Frame update
6 Results and discussion
7 Further development and future work
7.1 Dynamics e
7.2 Communication
7.3 Extensions
8 Conclusions

References

13
13
13
14

18
18
20
20
21
22
22

24

28
28
28
28

30

ii

9 Appendix
9.1 Ogre3D structure
9.2 Sensor functions

1 Introduction

This is the report for the master thesis A virtual hand for prosthetic training performed
at Integrum AB in Gothenburg.

1.1 Background

Integrum AB has developed a control system for prosthetic devices based on pattern
recognition algorithms (PRAs). Currently the training of the PRAs is done by demand-
ing the patient to perform given movements without any feedback to assure a trustable
correlation between the demanded movement and the recorded bioelectric signals. An
alternative to this procedure is to use an instrumented glove in the healthy hand of a
unilateral amputee in order to facilitate the patient to produce the intended movements
by commanding both limbs in parallel. These movements then could be followed by a
virtual hand as an example of how a virtual environment could be used for a more intu-
itive training for prosthetic components. Similar work has been done by Sebelius et al.
[17] where a data glove on one hand is used to sample poses at the same time as signals of
various Electromyographs (EMGs) from the amputated limb are sampled. This resulted
in that the patients could control a virtual hand after having done the same motions with
both "hands" as seen in Figure 1 [17]. In this thesis a similar method is developed which
in the future will be used to train the Artificial Neural Network (ANN) for a robotic
hand prosthesis.

ANN K

Figure 1: Sketch of the training where both hands are to do the same motion to train the ANN.

1.2 Purpose

The purpose of this master thesis is to develop a VRE that is able to show a virtual pros-
thesis controlled by various signals such as from an instrumented glove or pre recorded
poses. Such a system open up possibilities when developing, testing and evaluating
robotic prostheses. A test environment in Matlab is also to be developed to test and
evaluate the code implemented in the VRE.

1.3 Project goals

The goal for this thesis work is to integrate an instrumented glove and a VRE to the
current computer system developed by Integrum AB [14]. A simple GUI should be devel-
oped in Matlab. The virtual prosthetics could be controlled by the instrumented glove,
computer commands or EMGs.

1.3.1 Sub goals

e Literature study on the current state-of-the-art and promising work.
e Create a virtual reality environment.

e Interface an instrumented glove with both Matlab and the VRE.

e Develop a graphical environment where the movements of a virtual hand can be
controlled by an instrumented glove or computer commands.

1.4 Method

At first a theoretical study was performed to learn about similar projects and the
methods chosen. Then a comparison between different solutions was performed and
one method was chosen. The VRE was written in C++ with the aid of graphics
with Ogre3D and the serial communication protocol from Openframeworks. The
sensor values was sampled from an AcceleGlove provided by Integrum AB which
gives six three-dimensional accelerometer readings, one for each finger and one on
the palm. The test environment for calibration and evaluating new code was writ-
ten in Matlab.

1.5 Outline

The introduction chapter describes the background of the project and specifies
purpose, goals and method. In Chapter 2 the Integrum project is described and
in Chapter 3, different methods of developing a Virtual reality environment is de-
scribed and evaluated. In Chapter 4, the modeling of the system is shown and the
different tools used are described and in Chapter 5 the orientation calculations and
methods are shown. Last is the results, discussion, conclusion and future work.

2 Integrum project

This Chapter explains the Integrum project and gives background knowledge of
why the thesis is made.

Integrum AB has developed an Osseointegrated Human-Machine Gateway (OHMG)
that allows recordings from implanted electrodes in muscles and nerves by trans-
ferring them through the osseointegrated titanium implant. This method is out
of the scope for this thesis and will not be further described. Alternatives to the
OHMG are to use skin attached sensors or to use sensors attached to muscles or
nerves inside the body through the skin. By not using the OHMG method there
is a high risk of unstable readings (skin sensors) or infections (through the skin)
and an alternative may be to reposition nerves from one part of the body more
close to the skin to give better readings as described in [12]|. The problem with bad
readings is still present in such a system.

2.1 Training the ANN using a sensor glove

The training will be assisted with the use of a sensor glove named AcceleGlove
described in Section 5.1, if the patient has one healthy hand. The healthy hand
and the amputated hand are to do the same movements and serve as training in-
formation for the Pattern Recognition Algorithms (PRA).

The glove will be used in this thesis to read poses and motions from a healthy
hand to help the robotic prosthesis to learn its motions. Other applications are to
read poses for sign language and being able to both read what the person is saying
such as in Hernandez-Rebollar et al. [11] or to help the person to learn the differ-
ent signs. It is also possible to monitor motion patterns by people with injuries
or disorders. One application might be to monitor the tremors for a Parkinson’s
or stroke patient and give medicine or other treatment and read if any change in
movement and stability is achieved.

The present training for the patients consists of pictures of various poses of the
hand that the patient should try to copy during a time window. This information
in sampled and then processed by the PRA. This method may create problems
while training. One problem is if the patient misunderstands the pose he or she
should copy and the sampled values are used to train the PRA. Then this will make
the neural net to behave in an unsatisfying way. The patient can also have prob-
lems with the time he or she is supposed to do the motion or pose during. Then
the neural net is also trained with non optimal signals. The method of making the
same movements with both the real hand with the sensor glove and the amputated
limb and tracking both at the same time will hopefully help the PRA and thus
giving a better result for the robotic prosthesis. The risk that the patient does not
perform the same motions with both "hands" is of course still possible.

Since the VRE also should be able to take readings or poses from a computer
instead of the sensor glove and illustrate them it is also possible to use it as a tool
to see what the PRA has calculated and see if it matches the desired result. It is
also possible to animate a motion of the hand to help the patient to understand
how a specific motion is done.

2.2 Virtual Reality Environments

Virtual Reality Environments (VREs) are used in various ways. In games, industry,
commercial or medical projects, it is often used as an aid for people to easier control

or observe a task. Some tasks are too abstract to be seen in numbers or even in an
image, and therefore a VRE in three dimensions may be more intuitive and suitable.

In medicine there are many projects that use a virtual environment for rehabil-
itation. Many projects are directed to children that need stimulation to be able to
understand and continue the rehabilitation. They might otherwise not understand
the task or they may think it is too boring to perform it. A game where the child
solves different tasks is a good way to keep their attention high and make them
to be well motivated towards future sessions. A project suited for rehabilitation
for children is the Paediatric Interactive Therapy System (PITS) where different
sensors track the movements of a child’s arms and integrating it in a VRE with
different games [15]. The positive gain in rehabilitation is of course not only for
children, but for all people in need. The game does not need to be very graphically
advanced or have complex tasks. It can also be just a simple GUI to let the user
have visual feedback and track the behavior of the patient. According to Sebelius
[16, 17], their results on hand prosthesis training would not have been as good as
it was without a VRE.

While doing the rehabilitation with a computer, the statistical information and
the measure of improvement is much easier to calculate and analyze than if doing
a for example an off-line test by hand with subjective observations. A shaky hand
movement might be more or less shaky depending on how stable the previous pa-
tient is, or if the rest of the body is moving or not.

In Merians et al. [13] a VRE was used to exercise limbs for upper body recov-
ery and the results were improved proximal stability, smoothness and efficiency of
the movement path of the patients.

In most projects, the researching teams are developing their own GUI and detailed
documentation is normally not available. The environment might be bought from
an external company since the research is the rehabilitation method and not the
graphical environment. They sometimes use a Software Development Kit (SDK)
that includes a graphical environment for the hardware that the patients are using.
Other projects use Matlab which is able to show three-dimensional graphics via
the Simulink 3D Toolbox. Since the GUI most often is not documented, examples
of how other have done is not possible.

According to Churko et al. [10]

"there are nine phases of amputee rehabilitation: preoperative, amputa-
tion surgery, acute post surgical, pre-prosthetic, prosthetic prescription
and fabrication, prosthetic training, community integration, vocational
rehabilitation, and follow-up".

By simplifying or improving any of these phases, the life of someone who needs to
go through them would greatly improve.

Other applications for a VRE has been tried and many projects where stroke pa-
tients have been using such programs have shown satisfactory results [9, 18]. Also
here are simple games or similar used to simplify the task for the patient.

3 Method evaluation

In order to create a Virtual environment for the project, three methods are com-
pared and evaluated. The data acquisition will be done by serial connection to the
data glove that is connected by USB cable. The data sampling method is similar for
most kinds of environment and the following discuss methods to create a graphical
environment. This chapter describes the different methods, compares them and in
the end a method is selected.

3.1 A new system

A possible method is to develop a new system from scratch in for example C++,
C# and Ogre3D. Benefits by developing a new system are the possibility to tailor
it to the project in the best possible way. A new system enables the possibility to
optimize the methods for the project in the best way. Drawbacks are development
time and the system might not be as optimal as projects developed for a long time
by various people. In comparison with an open source project where many people
is involved and the possibility to gain knowledge and feedback from others, the
system might require more effort to become robust.

Ogre3D is a free 3D engine written in C++ that is designed to help creating
hardware accelerated applications in an easier and more intuitive way. The engine
is scene-oriented and has an interface based on world objects and focuses on the
result rather than the underlying system libraries like Direct3D and OpenGL. The
code is intuitive and is easy to extend further.|3]

Openframeworks is an open source toolkit for C++ functioning as a set of useful
tools for programmers which simplifies making a prototype with graphics, sound,
input and output. It is a package of useful libraries available for several platforms
[4]. The Openframeworks toolkit is an state-of-the-art programming utility used
in many projects dealing with vision systems or graphical applications. It is very
easy to connect to various image sources or sensors, simple to analyze the informa-
tion and present the results in an nice interface. Various projects can be found at
Openframeworks website.|4]

Both Ogre3D and the Openframeworks toolkit are using C++ as language which
enables a fast program able to handle sensor readings and graphical output with
the possibility to implement it in a real time system. The useful visual libraries can
also be used to render the virtual hand in an environment captured by a webcam.
The patient then will see a hand where the prosthesis should be. This method is
called Augmented Reality (AR) and is currently gaining popularity among various
developers in different fields. One popular application is to use the AR with smart

phones and render information on the screen while filming the environment with
the built in camera. This information can for instance be distance to the nearest
cinema or similar(3, 4].

3.2 Matlab and Simulink

An alternative way is to use Matlab and Simulink in collaboration with the Simulink
3D Animation Toolbox (S3A) which is able to render graphics in realtime from
Matlab and connect it using simulink. It is based on the Virtual Reality Modeling
Language (VRML) which is mainly constructed with web development in mind in
the same way as it’s successor X3D [22, 5, 6]. This option simplifies debugging and
evaluation due to Matlab’s error handling methods and Simulink’s intuitive pro-
gramming but may be computational intensive. Due to the fact that Matlab works
on OSX, Linux and Windows it is easy to transfer files and there is no need to
compile for different architectures. S3A can import CAD models and uses textures
to get a more natural look and has compatibility for standard peripherals such as
mouse and keyboard to easy be able to pan and zoom in the environment. It is
included in Simulink. This method is chosen by Tsepkovskiy et al. [19] where a
CAD model of a mechanical hand is implemented in Simulink and animated with
Simulink 3D Animation. It can therefore provide a quite good VRE for the thesis.
As a start, Matlab can be used to sample and analyze data to simplify further
development regardless of future language of the code.

Together with the Matlab real time toolbox [2] it is possible to convert Matlab
and Simulink code to C code and use it in a real time environment. This may be
critical when mapping a motion to the pattern recognition neural net.

3.3 Open source software

The third way is to use an open source environment such as OpenSIM, also known
as Open Simulator which is widely used among researcher groups to build an envi-
ronment for their specific needs. As mentioned earlier the benefit of using an open
source program is that a community is developing the system and if the project is
very active, new features could be added fast and bugs removed in an early stage.
If the project is not so popular you are left on your own and to fully understand
someone else’s code fully without being able to discuss it can be quite cumbersome.
On the other hand if the project is widely used, the possibility to get help and feed-
back could benefit the project. OpenGrasp is also an open source program that is
possible to use.

As an alternative to VRML and X3D mentioned in Chapter 3.2 is COLLADA

which stands for COLLAborative Design Activity and is very similar to the previ-
ous mentioned software. Is also uses XML which is a standard in websites. Users
can for instance drag and drop COLLADA-files directly to google earth or sketchup.
In later versions there is a support for physics and the user can define for example
friction and weight.

Another system that handles COLLADA-files is OpenGRASP which is based on
OpenRAVE. OpenRAVE is a robot planning architecture which handles collision
detection, kinematics and controls. Its extension OpenGRASP, is an adaptation
for grasping robots. They are both open source and free to download.

3.4 Inverse kinematics

In order to make the model behave as realistic as possible it might not be possible
to take raw readings from the sensor glove and map them to a specific pose. One
way to get better values is to use inverse kinematics where constraints of the human
hand are taken into count. Wang and Popovié¢ [21] used a glove with a color pattern
on which was mapped by a webcam. They then used inverse kinematics to get a
better pose of the mapped hand. One method is FABRIK (Forward And Backward
Reaching Inverse Kinematics) algorithm described by Aristidou and Lasenby |[8].

The AcceleGlove values are directly converted to an angle and no more manip-
ulations need to be done if the graphic environment can assign angles directly
to each joint of the virtual hand. The graphical model editor Blender uses a bone
structure called armatures which can be described as a customizable skeleton. Each
bone can have a connection to another bone and will deform the surrounding skin
in a realistic way. This in cooperation with the Ogre3D system gives an easy way
to modify an object according to angles.

3.5 Choice of method

The method chosen should be structured in modules so it can be easier improved
in the future and have the possibility to be separated and let other modules com-
municate with those developed in this thesis. The proposed structure is illustrated
in Figure 2.

Module 1

Acceleglove

Serial port
communication

¢ Raw data

Filter

Raw data

Pre recorded
pose or PRA | 3D environment |——

information
Computer
screen

Module 2

Figure 2: Flow chart of the system

The usage of any of the open source platforms stated in Section 3.3 is not suitable
for the project since they best fit for multiplayer game development (OpenSIM) or
industrial robotics (OpenGRASP). It is possible to have a good structure due to
the frameworks and the possibility to get help by the open source community is an
advantage. The project only needs small parts of the large open source frameworks
such as the parts for rendering graphics. There is specific frameworks that manages
this in a good way described later in the report.

Matlab with Simulink 3D Animation described in Section 3.2 can be a good and
useful tool with easy debugging and rather fast prototype building. Matlab is ca-
pable of solving very advanced problems but due to its advanced toolbox also very
computationally heavy and is more for analyzing than just representing data. This
might complicate the possibility to get the program to run in real time. The real
time toolbox should be of large help when running the program in real time, but
it is still not as fast as using pure C/C+-+ code. Matlab might still be used as a
prototype and test tool where new algorithms and methods may be tested.

The connection with Simulink gives a good overview of the project and often sim-

10

plifies debugging. This is a good alternative when deciding which foundation the
project will have. One great advantage with Simulink is the ease of plotting and
analyzing the different parts of a project due to the embedded tools and the flow
chart layout of the functions.

To create a new environment using C++ with Ogre3D seen in Section 3.1 gives
the advantage of being computationally very fast and effective, and the time to
get a first prototype will be rather short. The endless possibilities to develop the
project is a large advantage of using an own basis. The community using Ogre3D
also seems to be active and the framework itself is continuously evolving. Further
development of the project will probably be easier with the usage of this method
and the usage of Ogre3D in comparison to use native OpenGL or Direct3D will
save very much time due to good tutorials and the simplicity of the environment.

All methods described are possible to use for this thesis. The usage of C++ gives
the advantages of fast computations and good possibilities for further develop-
ment at the cost of starting from scratch. Matlab has easy prototyping and gives
a intuitive view of the structure due to the graphical environment. The further
development using Matlab might be limited by the computational speed. Both
these languages give possibilities to communicate with the other parts of the whole
project. The Ogre3D seems to be very easy to get started with and to create a
first prototype. People using it are recommending it due to the straightness in the
environment compared to use native OpenGL or Direct3D.

An inverted cost matrix seen in Table 1 is done to aid in the selection of the
method. The different categories of the matrix are explained below. The numbers
refer to the methods placement compared to the other alternatives. The best can-
didate will get 1 and the last 3. If two are equally good they get the same point
and the remaining will get one placement behind.

Speed How fast the system can be and if it is possible to use in real-time.

Potential development What potential the project may have for further devel-
opment. Simpleness of development and how advanced the result can be is
considered mainly.

Time to prototype How early a first prototype can be created.

Support and accessible information How easy it is to find information and to
get help using the method.

Each task is given a placement relative to all other methods. The three methods

11

are generalized even though for example the open source method is many methods.
When a candidate is chosen, a more thorough decision might be done. The can-
didate with the least amount of points should be the best option to choose. Note
that Matlab with S3DA assumed not to have the real time toolbox. Note also that
some Open Source systems might be associated with a cost and some are free.

Speed | Development| Time to first | Support and | Total
potential prototype information
New system | 1 1 1 1 4
Matlab w. | 3 2 1 1 7
S3DA
Open 2 3 2 2 9
Source

Table 1: Comparison matrix between the different methods.

3.6 Conclusion of methods

The new system alternative gets the lowest amount of points and should therefore
be the best method to use. A new system has the most promising conditions. The
computations should go much faster with C++ than with Matlab and the potential
for development and large amount of information on the Internet should be an asset
for the project. The thesis will therefore be created using a new system from the
ground up using Ogre3D for graphical rendering and Openframeworks for the serial
communication.

12

4 Mapping and modeling

4.1 Ogre3D

Ogre3D helps the programmer to render 3D graphics and lets the programmer dis-
regard of many calculations and focus on what the user should see. The program
can be split up in an application and a frame listener. The frame listener takes
care of all inputs and events that either the user or the interface makes and directs
them to the corresponding function. The application is where what the user sees
is defined.

The application consists of a start up routine where all objects are created. It
is here the viewpoint is set up so the correct part of the model is shown and other
simple attributes are declared. One main routine in the application is the cre-
ateScene function where all objects are defined and all attributes to the objects are
declared. It is here where the model of the hand is loaded and all angles to the
fingers are updated. The structure of the program can be seen in the appendix.

4.2 Blender

Blender is a 3D modeling tool similar to any CAD program or 3D Studio Max.
The hand is modeled in this environment and exported via a python script for use
in Ogre3D. The usage of models from Blender in Ogre3D eliminates problems that
might occur when creating the models directly by code. The Blender environment
gives the possibility to test the model before loading it in the VRE. One good
feature in Blender is the usage of armatures. An armature is seen as a bone and
has a tip and root that can be attached to any place in any object and functions
just as a hinge or bone in the human body. Seen in Figure 3 is the armature used
in the VRE. The system of armatures and it’s parts, the bones, are well developed
and each part can be adjusted in a easy way to deform the vertices of the object as
desired. Each armature can be split up in many bones and a parent-child relation-
ship is created between them so when a parent is moved or rotated, all children are
subject to the same transformation. This simplifies a more elaborated model since
the model by itself takes care of all relationships between vertices and bones. The
possibility to easy elaborate the model without altering the basic relationships of
for example each finger greatly aids any future improvements if a more advanced
sensor glove is to be used.[1]

13

4.3 Modeling of the hand

In Ogre3D all objects are assigned a relative position. It could be bound to the
world, a parent or local. Each finger is a child of the palm and thus making the
movement of the fingers relative to how the palm is rotated in space. If this was
not the case, the fingers would bend in unnatural directions while the hand was
rotated. At first a simple hand made by blocks is made to test the glove and see
if all signals are mapped correct. See Figure 4. Since the model is only a shell for
the inside armature, the model can be improved later on and textures, shaders and
other visual effects may be applied to get a more natural and realistic look. Later
a more realistic model was implemented seen in Figure 5 and finally the hand was
extended with an arm seen in Figure 6 and the texturized model is seen in Figure 7.

The armature from Blender works like a bone structure and Ogre3D uses this
information to manipulate the model in a kinematically correct way. There are no
boundaries for how the joints can be rotated, only that they are attached to a bone
and not able to translate in space if the parent bone is static. These boundaries can
be programmed but it is, instead the actual physical hand that limits the move-
ment of the hand. A person is not able to rotate his or hers fingers in an unnatural
way and no calculations for this has to be done. The actual inverse kinematics and
calculations of how the hand and fingers are rotated in space is calculated natively
by Ogre3D.[1, 3]

Figure 3: The bone structure of the hand.

14

Figure 4: Early hand model and the bone structure inside.

Figure 5: A more advanced hand model.

15

Figure 6: The final arm and the bone structure.

16

Figure 7: The final arm with texture.

17

5 Orientation estimation

As seen in Figure 8, pitch is the rotation around the x axis and roll around the y
axis. Yaw is the angular offset from the gravitational z-axis and the accelerometer.
These are also called Euler angles and are chosen for the simple calculations. It
would be possible to use quaternions or similar to eliminate possible singularities
and gimbal lock. The VRE does not need to be very accurate since the representa-
tion is mainly for visual feedback to the user and the raw values itself will be used
for the neural training. Since the training is not in the scope for this thesis, it will
not be further described. Using the pitch and roll values gives a good representa-
tion if neither the hand nor the fingers rotate more than approximately 85 degrees
(theoretically 90 degrees). The yaw value in this application is not the rotation of
the z-axis as in ordinary flight rotations but as described the angular offset from
the z axis. Using the yaw offset value the model is able to tell if it is upside down
or not. Even though this is calculated for all sensors, the fingers are flipped only if
the palm is upside down since the joints for the fingers would be inverted otherwise.
The environment will only handle static poses and not any dynamic poses since it
does not integrate the accelerometer values.|20]

yaw

pitch
N
roll L 4

y

Figure 8: The relationship between pitch, roll and yaw.

5.1 Sensor glove

There are many sensor gloves on the market and they use various methods for sens-
ing the pose of the hand. Some use resistors to read if the hand is open or closed
and others use gyroscopes and accelerometers. The AcceleGlove used in this thesis
uses accelerometers is seen in Figure 9 and have six sensors (one on each finger and
one on the palm), all reading the acceleration in three axes. Each sensor reads the
acceleration of the object it is attached to. It the object is static it will only read
the gravity vector and from this information it is possible to calculate the orienta-
tion of the object. The placement of the sensors on the glove is seen in Figure 10.

18

This gives an 18 DOF system able to get an accurate pose of the hand, even while
rotated. Each sensor has an orientation range of 180 degrees and an acceleration
range of +/ — 1.5g. They measure data with a sensitivity of 0.0287m/s? and has
a resolution of 10bits from the A/D-converter. The maximum sampling rate from
the glove is 35 Hz, which means 630 axes per second.

Figure 9: AcceleGlove sensor glove.

19

Figure 10: AcceleGlove sensor placement. One on each finger and one on the hand.

5.2 Reading the Sensors

The AcceleGlove sends an array of values if a letter is sent to the device [7]. The
array is received by a buffer that is read by the software. In order to make sure all
values are captured a loop is defined to receive a pre set number of values and if
not all are received, the function tries again until all information is captured. This
method assures that each sensor is placed in the right location in the value array
and prevents mismatching due to any offset. The Openframeworks package is used
to open the serial port and the framework sends error messages if something is
wrong.

5.3 Filtering and angle calculation

The raw signals from the accelerometers on the hand need to be filtered to avoid
a shaky appearance of the hand in the VRE. The noise from the accelerometers
is about 1 degree while being static. This might not be much for this application

20

but the vibrations created in the model gives a unrealistic look of the VRE. If you
slowly move your hand you will affect the accelerometers and a fast movement will
give an unreliable result. A simple running average- and a Kalman filter is imple-
mented. The running average filter was chosen for the simple implementation and
the Kalman filter for its good noise reduction properties. The Kalman filter tracks
the movement and calculates with statistics how the hand can be moved and how
it is most probable to do. The program can easily be switched between different fil-
ter algorithms to evaluate which is the best one for the current task to be performed.

After the filter of choice has removed some noise from each sensor the orienta-
tion of each accelerometer set is calculated as

pitch = —tan"*(a,/\/a2 + a2) (1)

roll = tan"(ay/ a2 + a?) (2)

yaw = tan"'(y/a2 + a2/a.) (3)

where a,, ay and a, are the accelerometer values from each axis. The yaw value
is as stated not the rotation around the z-axis as usual in flight orientation calcu-
lations but the angular offset from the z-axis. This gives information if the sensor
is held upside down or not. By removing the noise before the angle is calculated,
the influence of the noise is less than if the angles are calculated before the noise
is removed. This is due to the non linear calculations from accelerometer values to
orientation angles.

5.3.1 Kalman filter

A Kalman filter was implemented and uses the accelerometer readings as input.
The model the filter is following is a signal with added noise. Since the sensors
are workingindependent of each another it is sufficient to assume this very simple
model. This also makes the filter very fast. The linear Kalman filter thus only
handles tilt in one dimension and this value is later used together with the other
sensors to calculate the orientation of the three-dimensional accelerometer.

The data model used for the static pose is

z(k+1) = Ax(k)+w(k) (4)
y(k) = Cux(k) +v(k), (5)
where x is the state, A is the state-transition matrix, y(k) the measurement, C

the measurement matrix, w(k) the state noise and v(k) the measurement noise.
Since only one state is handled at a time and the model only assumes noise, the

21

state-transition matrix A and the measurement matrix C are set to one.

The noises v and w are assumed to be drawn from a zero mean multivariate distri-
bution with their corresponding covariances R and Q.

The filter is initiated with zp and Py as 0 and the covariance R as 0.01 and Q
as 0.001 and the Kalman gain is calculated

K = Py(P.+R)™ (6)
which is used to correct the estimated state
B = Ky —) (")

where the Kalman gain K is used to update the estimate by modifying the difference
between the measured value from the accelerometer y or the calculated angle and
the previous estimated value. Finally the covariance value (a matrix if more states
were taken into account) is updated:

Pl =P, — KP,. (8)
The time update for the next state is

P, = PF+Q (9)
iy = & (10)

5.3.2 Running average filter

As a complement to the Kalman filter a simple running average filter was imple-
mented. The running average filter is a FIR-filter of low pass kind that takes the
latest readings from the sensors in a list and calculates the total average as output.
In the next iteration the last sample is discarded and the newest sample is taken
into account when calculating a new average, thus making a running average. If
using a short filter length the filter removes small vibrations but if the filter is to
long the result is going to be a much delayed motion and not very useful.

5.4 Frame update

The filtered angle values are sent to the Ogre3D VRE and each angle is set as an
property of each bone in the hand and the view is then rendered. The Ogre3D

22

environment uses the bone armature to update the current pose of the hand and
the result is shown to the user. This is done as fast as the VRE can and assumes
all frames as static poses. It does not take any dynamics between the frames into
account more than the Kalman filter calculations.

23

6 Results and discussion

The VRE is working satisfactory and samples all 18 states of the AcceleGlove and
rendering them in the 3D model of the hand. The result can be seen in Figure 11.
The system is able to render a model of a left or right hand and sample signals
from either a left or a right glove. It is possible to use the right glove and render a
left hand to simulate a non existing hand of the patient. The environment is also
capable of taking signals from the user to state a specific pose or render a desired
motion to show a patient how it is supposed to look.

Figure 11: The VRE in use.

The environment is capable of receiving values from the glove but also commands
directly from the user and pre recorded values. EMGs can be converted to poses
by the PRA and then sent to the environment in the same way as user commands.

24

The environment is also able to record motions from the user and play them at any
time. Static poses are of course also possible to show.

A GUI in Matlab has also been developed to sample data from the sensors and
plot the signals from each axis. The GUI can be seen in Figure 12. This simplifies
testing new filters and methods before it is implemented in the VRE or any of the
other parts of the hand prosthesis project. From Matlab, the Kalman filter was
evaluated and in Figure 13 a plot with samples from pitch, roll and yaw from one
sensor can be seen with their corresponding Kalman filtered values. The motions
made are normal motions of the hand with a pitch motion followed by roll. The
quotient of Kalman filter parameters q and r control the behavior of the filter.
Particularly the trade-off between noise reduction and delay. A reduction in the
quotient will lead to shorter signal delay but less noise reduction.

YV]
I e NG D

FIPMARM W A, i

e~]

AT
R ™]
e A T

Figure 12: GUI in Matlab.

25

RV S S e
[
e R e
A

Pitch

| \ | /\‘ﬁ‘\' | | / .ﬁwwﬁ
: + Rawdata

Degree
o
T

5ol ‘X& «V/‘.\‘v&
* Kalman filtered data

~100 1 1 1 1 1 1 1 1 1 |
0 100 200 300 400 500 600 700 800 900 1000

RS oy
50 oF W . 4;"}\(s
3 ij“ ;;,’W‘) & 'ymm\\’—_
5 IV £ w
g ° o/
-50- W g
100 | | | | L | | | | |
0 100 200 300 400 500 600 700 800 900 1000
Sample
Yaw
200
150~ ;/‘.\'\ R It
8 \ F oo L F S
o o p i ;
S 100 7 K N et A
a . Vfi Lo Y 1, AAM’?? L
sol- ued "‘J}ﬁ\ Jk‘_‘/",“ : W
ol =~ | | | | | | | |)
0 100 200 300 400 500 600 700 800 900 1000
Sample

Figure 13: The kalman filtered signals from pitch, roll and yaw angles together with their corresponding
raw values.

The filters are working and removes noise sufficiently for the application. The run-
ning average filter removes almost all noise if the filter is of length 4 or more. A
higher value makes the hand move with a large delay and becomes more and more
useless due to the long time between movement and rendering. The Kalman filter
can be calibrated to reduce more noise if necessary for any other task but the noise
reduction is sufficient for the representation of the model.

Since the VRE is mainly for visual feedback of static poses to the user, the values
does not need to be very accurate and the most important is to make the repre-
sentation smooth which the Kalman filter does.

Due to the fact that the glove only has one sensor on each finger and not placed at
the tip, there is no way to track the movement of the separate joints of the finger.
This leads to problems showing for example a grasping behavior as illustrated in
Figure 14. To solve this, your glove must have more DOF than now available or
a kinematic model of the finger movements must be employed. This is only a cos-
metic problem and not useful for the PRA at this point. The VRE has no limits
in improving the model to accept more states such as joint sensors or similar. The
bone armature is very easy to split to include more bones using Blender and thus

26

be able to as mentioned above to show a grasping hand. Another issue concerning
the sensors is the fact that they sample acceleration. As well as sensing the direc-
tion of the gravitational field the sensor will also pick up the acceleration when the
hand moves. This is not a major problem but if moving horizontally, e.g. paral-
lel to the gravitation the sensors are not able to notice any change. This makes
many poses or changes impossible to observe without including a dynamic model
of the movements of the hand and estimate absolute position by integrating the
sensor signals. The VRE has not any limitations and is able to show any pose given.

Figure 14: A problem concerning the use of few DOF.

The use of Ogre3D has been convenient due to its very intuitive objective pro-
gramming. The framework is well arranged and tested which is noticeable when
developing the environment due to very useful functions and good structure of the
system. This will probably aid in any further development of this VRE. It is well
known that it can be hard to jump in to another person’s code but due to the easy
layout of the framework the future development will probably be easier.

The usage of Ogre3D gives a useful base for further development and good possi-
bilities to make the hand model more realistic and might help the patient to better
accept the environment or to better understand the various poses and motions to
be performed.

An arm, from wrist to shoulder, is included in the model even if it does at this
time not have any sensors to control it. The AcceleGlove has a connection to a arm
sensor embedded on the circuit board. However the arm sensor is not available on
the market today.

27

7 Further development and future work

7.1 Dynamics

The accelerometer values can be integrated and thus provide a more dynamic be-
havior of the motions and then also be able to handle non static poses. This can be
implemented to give a better visual feedback but it is not sure it it will give better
values for the neural training.

7.2 Communication

The communication between different parts of the code and the other project at
Integrum is not yet developed but will in the future be done using sockets. The
sockets consist of a server and a client part. One server can be connected with
many clients and new modules can be constructed if new methods or systems are
to be evaluated. The socket communicates using packets that are pre defined and
contains just the information needed for the system. This information is for ex-
ample orientation of the sensors, if it is the right or left hand and other similar
descriptors. One advantage of using sockets is that it is possible to communicate
between various platforms such as Macintosh, PC and different programming lan-
guages such as C/C++, Java and Matlab. This makes it possible to have some
parts of the project written in for instance C in an embedded environment and
try new code developed in Matlab. This also gives the benefit of having different
teams to try code in their favorite language and environment. Since the protocol
were not operational during the time the VRE was developed, the sockets is not
used but is relatively easy to implement when it is ready thanks to the modular
structure of the environment.

7.3 Extensions

In the future it will be possible to observe the patient using a webcam and render
a 3D figure of the virtual hand in connection with the patients limb using Open-
frameworks and its AR toolbox. A sketch of this can be seen in Figure 15. This
gives the effect that a hand is attached to the limb and the patient is able to move
the hand using his or hers healthy hand. If both hands are missing, the virtual
hand can be controlled using a animation or with the EMG signals. A possibility
is that the patient accepts the training program easier.

28

2 \Wekom

Figure 15: A sketch of the AR concept. The red ring shows what the AR toolbox adds to the user view.
The left hand is a computer model added to let the user experience a hand. The tag tells the AR toolkit
where the model should be attached.

29

8 Conclusions

The VRE meets the specifications that was set and will probably be tested with
patients in a near future. To get it more integrated in the Integrum project, the
communication protocol between the VRE and the ANN and the rest of the parts
of the project has to be developed, i.e using sockets.

The use of the AcceleGlove was sufficient for the use for the project but to get
more reliable poses and a more reliable graphical representation, a glove with more
sensors has to be used. The fact that accelerometers are not affected by horizon-
tal movement if the samples are not integrated (which will demand a much more
comprehensive model) makes them less suited for more complex motions.

Ogre3D has been a very suiting environment in cooperation with the Blender tool.
The intuitive structure and simpleness of importing new models has made the
model of the hand graphically more realistic. Some problems with the export from
Blender to Ogre3D took long time to solve but the usage of the two tools is recom-
mended.

Even though Openframeworks is only used now as a serial port communications
controller it can be of great usage in future development due to its large library.
The AR package would be a good extension of this project to help the patient in
the training.

There is still need for user or patient testing to evaluate the VRE and modifi-
cations will be done according to the feedback received.

30

References

[1]
2]

3]
4]
5]

(6]

7]

18]

9]

[10]

[11]

[12]

Blender.org, May 2011. URL http://www.blender.org/.

Matlab real time toolbox, January 2011. URL http://www.mathworks.com/
products/rtw/.

Ogre3d webpage, Feb 2011. URL http://www.ogre3d.org/.
Openframeworks, January 2011. URL http://www.openframeworks.cc/.

Simulink 3d animation, January 2011. URL http://www.mathworks.com/
products/3d-animation/index.html.

Adel Al-Jumaily and Ricardo A. Olivares. Electromyogram (emg) driven sys-
tem based virtual reality for prosthetic and rehabilitation devices. In Pro-
ceedings of the 11th International Conference on Information Integration and
Web-based Applications & Services, iiWAS ’09, pages 582-586, New York, NY,
USA, 2009. ACM.

Inc. AnthroTronix. Acceleglove manual, January 2011. URL http://www.
acceleglove.com/AcceleGloveUserGuide. pdf.

A. Aristidou and J. Lasenby. Motion capture with constrained inverse kine-
matics for real-time hand tracking. In Communications, Control and Signal
Processing (ISCCSP), 2010 4th International Symposium on, pages 1 =5, 2010.

J. Broeren, A. Bjorkdahl, L. Claesson, D. Goude, A. Lundgren-Nilsson,
H. Samuelsson, C. Blomstrand, K. S. Sunnerhagen, and M. Rydmark. Virtual
rehabilitation after stroke. Stud Health Technol Inform, 136:77-82, 2008.

J.M. Churko, A. Mehr, A.G. Linassi, and A. Dinh. Sensor evaluation for track-
ing upper extremity prosthesis movements in a virtual environment. FEngineer-
ing in Medicine and Biology Society, 2009. EMBC 2009. Annual International
Conference of the IEEE, pages 2392 —2395, september 2009.

J.L. Hernandez-Rebollar, N. Kyriakopoulos, and R.W. Lindeman. A new in-
strumented approach for translating american sign language into sound and
text. In Automatic Face and Gesture Recognition, 2004. Proceedings. Sixth
IEEFE International Conference on, pages 547 — 552, May 2004.

T. A. Kuiken, G. Li, B. A. Lock, R. D. Lipschutz, L. A. Miller, K. A. Stub-
blefield, and K. B. Englehart. Targeted muscle reinnervation for real-time
myoelectric control of multifunction artificial arms. JAMA, 301:619-628, Feb
2009.

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Alma S Merians, Gerard G Fluet, Qinyin Qiu, Soha Saleh, Ian Lafond, Amy
Davidow, and Sergei V Adamovich. Robotically facilitated virtual rehabil-
itation of arm transport integrated with finger movement in persons with
hemiparesis. Journal of NeuroEngineering and Rehabilitation, 8(1):27, May
2011.

Max Jair Ortiz C. Biosignals acquisition and pattern recognition for robotic
prostheses. M.sc. thesis, Department of Applied Physics, Chalmers University
of Technology, Goteborg, Sweden, Jan 2010.

P. Pyk, D. Wille, E. Chevrier, Y. Hauser, L. Holper, I. Fatton, R. Greipl,
S. Schlegel, L. Ottiger, B. Ruckriem, A. Pescatore, A. Meyer-Heim, D. Kiper,
and K. Eng. A paediatric interactive therapy system for arm and hand reha-
bilitation. In Virtual Rehabilitation, pages 127 —132, 2008.

Fredrik Sebelius. Myoelectric control for hand prostheses. Technical report,
Department of Electrical Measurements, Lund Institute of Technology, 2004.

Fredrik Sebelius, Birgitta N. Rosén, and Goéran N. Lundborg. Refined myo-
electric control in below-elbow amputees using artificial neural networks and
a data glove. The Journal of Hand Surgery, 30A(4):780-788, July 2005.

S. Subramanian, L.A. Knaut, C. Beaudoin, B.J. McFadyen, A.G. Feldman,
and M.F. Levin. Virtual reality environments for rehabilitation of the upper
limb after stroke. In Virtual Rehabilitation, 2006 International Workshop on,
pages 18 —23, 0 2006.

Y L Antonov Tsepkovskiy, CV Kocev, and N Shoylev F Palis. Development of
a 3d and vrml virtual hand models. In Journal of the University of Chemical
Technology and Metallurgy, 43(1), pages 159-164, 2008.

Kimberly Tuck. Tilt sensing using linear accelerometers. Technical Report
Rev 02, Accelerometer Systems and Applications Engineering Tempe, AZ,
June 2007.

Robert Y. Wang and Jovan Popovi¢. Real-time hand-tracking with a color
glove. ACM Trans. Graph., 28:63:1-63:8, July 2009.

Wikipedia. Wikipedia - vrml, January 2011. URL http://en.wikipedia.
org/wiki/VRML.

i

9 Appendix

Module 1

Acceleglove

Serial port Raw data
communication
¢ Raw data
Filter

Pre recorded
pose or PRA | 3D environment |———

information
Computer
screen

Module 2

Figure 16: The overall modular structure of the software.

9.1 Ogre3D structure

Pseudo code of the functions concerning the Ogre3D functions.

iii

main

Create
window
Start Ogre3D

v

Setup
Openframeworks

> Run

program?

Update readings

v

Render one
frame

Figure 17: Main loop for the VRE.

iv

MyApplication

loadResources

startUp

renderOneFrame

keepRunning

createScene

Figure 18: The functions for MyApplication.

MyFrameListener

bool frameStarted

void updateAnimationPose

handPose calculateStepSizePose

void setPose

void getPose

Figure 19: The functions for MyFrameListener

frameStarted

Key

pressed? Process key

resetOrientation | <———————————r

v

getPose

setPose

Figure 20: Flow chart for frameStarted.

vi

setPose

For each struct

resetOrientation

v

setManuallyControlled

v

set pitch

v

set yaw

Figure 21: Flow chart for setPose.

getPose

For each struct and sensor object

actualPose = getPitch/Roll/Yaw

Figure 22: Flow chart for getPose.

9.2 Sensor functions

Pseudo code of the functions concerning the processing of the sensor signals.

vil

getSensorValues

Send
command to

Acceleglove

Bytes false

remaining >
0

Serial
information
available?

false

Recieve
information

v

Subtract recieved
bytes from bytes
remaining

Assign
information to
each sensor

object

Y

calculateOrientati
on

v

setFilterType

v

setSampleLength

v

calculateFilteredV
alues

Figure 23: Flow chart for getSensorValues.

viil

calculateOrientation

Calculate
pitch, roll and
aw

Store values in a
list

v

if the list is full,
remove the oldest
sample

Figure 24: Flow chart for calculateOrientation.

setFilterType

Store choice and
length in object

setSampleLength

‘ Store length in object)

clearSamples

Clear lists

Figure 25: Flow chart for setFilterType (top), setSampleLength (middle) and clearSamples
(bottom).

ix

calculateFilteredValues

No filter Running Average Kalman

filteredValue = S
Sum all elements Initialize
unprocessed o S
in list estimation
value

v v

filteredValue =
sum/number of
elements

Calculate Kalman
gain

v

Calculate
estimate

v

Update variables

Figure 26: Flow chart for calculateFilteredValues.

