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Road geometry estimation for longitudinal vehicle control
A method of using stationary detections for road geometry estimation
ADAM PETTERSSON
VIKTOR SVENSSON
Department of Signals and Systems
Chalmers University of Technology

Abstract

The presence of Advanced Driver Support Systems (ADAS) in vehicles on the roads
today is constantly increasing. These types of systems don’t only make the vehicles
safer, they also increase the comfort of the driver. The Adaptive Cruise Control
(ACC) function consists of a number of steps, of which the road modelling and
the threat assessment are two of the most important parts. To do a reliable threat
assessment, an accurate model of the road ahead is necessary. The process of creating
a road model takes into account multiple sources of information, such as lane marker
detections and guardrail estimations.

This thesis investigates the potential of using stationary targets detected by the
sensor system to enhance the predicted road model. The aim is to derive and im-
plement an algorithm to estimate the road geometry by utilizing the information of
lane marker detections, guardrail estimations, preceding vehicles and single station-
ary objects. The implemented method uses a Bayesian filter which has curvature
sampled at fixed distances as states. The Extended Kalman Filter (EKF) is used
for the non-linear models.

The result of the thesis shows that using all available information sources greatly
improves the road geometry estimation, compared to only using the lane marking
detections as an estimate of the road ahead. The addition of using single stationary
object detections is shown to have little or no effect on the Root-Mean-Square Error
(RMSE) of the estimated road. Non obstructing stationary objects, for example
overhead road signs or bridges, are being detected on the road which are causing the
estimated road geometry to deviate. Without more information about the stationary
objects, such as the elevation, only using the stationary object detections to create
an accurate guardrail estimate is concluded to be a more useful method for the road
geometry estimation problem.

Keywords: Advanced Driver Support Systems, Road geometry, Adaptive Cruise
Control, Bayesian filter, Extended Kalman Filter
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1
Introduction

Advanced Driver Assistance Systems (ADAS), are becoming increasingly common in
vehicles seen on our roads. Functions as Automatic Emergency Braking (AEB) and
Blind Spot Detection (BSD) have the potential to reduce the number of accidents
and systems like Adaptive Cruise Control (ACC), Traffic Jam Assist (TJA) and
future highway pilot functions can reduce the stress level of drivers and increase
safety. In this way, the driving experience becomes more relaxed and less tired,
leading to more observant drivers.

The early ADAS systems have been used on the roads for several years and the
statistics show that the systems are effective. In a European research project, per-
formed in 2012, it is shown that even the convenience functions, such as ACC, can
reduce the number of critical situations on a motorway scenario with as much as
70% [1]. The Insurance Institute for Highway Safety (IIHS), which is a non profit
U.S insurance organisation, have compared insurance claims from owners of a Volvo
XC60 to other mid size luxury SUVs with data from the years 2009-10. The result
shows that the Volvo equipped with a version of city safety has a 27% lower property
damage liability rate, 51% lower bodily injury liability and a 22% lower collision rate
compared to the other SUVs [2]. These systems have since improved and are active
in a wider range of scenarios.

Delphi Corporation is a diverse company, developing and manufacturing components
to different automotive manufacturers and for different purposes. A department of
Delphi is developing sensors and software used for ADAS. Electronically Scanning
Radar (ESR) and Intelligent Forward View (IFV) cameras are two products in the
company’s portfolio. These products enables features like AEB, ACC and Automatic
Headlight Control (AHC).

The requirements from customers are increasing and requests that the supplier
should handle more of the complete function, not only the sensing part, but also the
target selection and controller design, are more frequent. Therefore suppliers, like
Delphi, need to cover a larger scope with their products.

The ACC function, also called longitudinal vehicle control, consists of a number of
steps, from sensing and fusion of data to target selection and vehicle control. The
step of choosing a target includes several sub-functions. Two of the most important
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1. Introduction

parts are the road modelling and the threat assessment.

In order for the function to do an accurate threat assessment, a good model of
the road ahead is necessary. Especially the lateral position of the road at different
longitudinal positions is important information for the threat assessment step. To be
able to determine which lane a certain target vehicle in-front is placed, the position
of the road ahead is critical information. If the position estimate from the road
modelling step is more than a lane width wrong, the target selection step will not
be able to do a correct lane assignment.

The process of creating a road model takes into account multiple sources of informa-
tion. The sources include lane marker information, movement of other vehicles and
estimations of the guardrails. There are several ways of combining these information
sources and research is being performed within the area [3].

This thesis investigate the possible methods and potentials of using stationary tar-
gets detected by the sensor system to enhance the predicted road model. There exist
methods to use stationary targets to estimate guardrails and barriers, but few or no
methods to take single stationary targets, such as posts or road signs, into account
when estimating a road model. The positions where such targets are located are
likely to be outside of the road, providing information to the road modelling about
where the road is likely not to be.

1.1 Problem formulation

The problem in this project is to estimate the shape of the road ahead of the vehicle
equipped with a radar and a camera sensor. The shape is supposed to be estimated
at a distance up to 200 meters in front of the vehicle and the estimate should
be focused on performance needed for longitudinal vehicle control. Figure 1.1 is
showing an example scenario and the geometry to be estimated in this case. The
blue vehicle symbolize the host vehicle and the red dotted line is the road shape
which is supposed to be estimated.

Figure 1.1: Illustration of the geometry to be estimated.
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1. Introduction

As mentioned in the introduction, a road model can be created using multiple sources
of information. Typically the following sources are used:

1. Current motion of host vehicle, e.g. speed, yaw rate, slip angle etc.

2. Observation of lane markings

3. Estimation of guardrails or barriers

4. Properties of vehicles ahead

There is, however, situations when this information is not enough to make an accu-
rate road model. Examples of these situations are:

• Roads where the curvature changes rapidly

• One or more of above information sources are missing

• One or more of above information sources are inaccurate

In these situations it would be beneficial to use other sources of information. With a
radar sensor, stationary objects can be detected, examples of these are posts, fences
and buildings. This information can be used to estimate where the road is likely
not to be, rather than where it is. While the stationary objects provide "negative"
information, the other listed information sources provide information about where
the road is, which can be considered "positive" information.

Figure 1.2 is showing an example of a road where the curvature is changing rapidly
and not much information about the change is available from the four listed sources.

Figure 1.2: Picture showing a road where the curvature is changing rapidly.
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1. Introduction

By combining many information sources and correlate them to each other it is pos-
sible to compensate for the weaknesses of every source. For example it may be
possible to detect if one source is wrong if several others are reporting contradictory
information. In cases where lane markings and barriers are providing faulty infor-
mation, the use of stationary targets can help identify different failure modes in the
system. Such as inaccurate lane marking observations. If a lane marking is heading
straight into a stationary target, the observed lane is likely not accurate.

This thesis investigates possible methods to utilize this "negative" information in
the process of creating a road model.

1.2 Aim

The aim is to derive and implement an algorithm for estimating the road geometry.
The algorithm should utilize stationary objects, detected by a radar, in order to
improve the estimation of the road geometry.

1.3 Objectives

In order to achieve the aim, the following objectives are set:

• Design an algorithm capable of modelling the road ahead using information
from host vehicle motion, lane marking observations, barrier estimations and
properties of vehicles in front.

• Extend the algorithm to be able to use information about single stationary
objects, additional to those used for barrier estimation. This last information
source should be easy to turn on and off in order to evaluate the benefit of
using it or not.

• Evaluate the algorithm performance on logged data.

1.4 Limitations

The following limitations has been selected for this thesis

• The estimation of the geometry will only be evaluated with respect to longi-
tudinal control applications, such as Adaptive Cruise Control. Not for lateral
control applications, such as a highway pilot.

4



1. Introduction

• The result is only evaluated at host vehicle speeds above 30 km/h.

• The development will be performed using Matlab. The performance will be
evaluated both by analysis in Matlab and by driving the system on specific
routes.

• Only data from a front sensing radar and camera will be used.

• The system will only be evaluated on European roads.

• Discrete-time models will be used.

1.5 Thesis outline

The thesis consists of five chapters. After the introduction, Chapter 2 presents the
theory used as base to the developed algorithm. Chapter 3 presents the sensor
information used and how the theories have been applied to the road geometry
estimation problem. It describes how the mathematical models of the system is
designed. In Chapter 4 the results of the performance evaluation is presented. The
method used for evaluating the performance is also described. Finally, the discussion
regarding problems with the implemented algorithm, future work and conclusions
are presented in Chapter 5.

5
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2
Theory

This chapter describes the underlying theories used in this thesis. It presents the
methods used and also the most important equations of the implemented mathe-
matical framework.

2.1 Properties of a road

New roads are constructed and designed according to certain rules and require-
ments. The organisation Trafikverket, is responsible for defining the requirements
for Swedish roads [6]. These requirements can and should be used as starting point
for designing a road estimation algorithm. The curvature is an example of such a
property. The curvature is the inverse of the radius and is calculated as

C = 1
R

where R is the radius of the road.

The maximal allowed curvature of a road is depending on the speed limit. In Ta-
ble 2.1, a list of desired maximal curvatures on roads for different speed limits are
presented.

Table 2.1: Examples of recommended maximal road curvatures for different
speed limits [6].

Desired
Speed limit [km/h] maximal curvature [1/m]

60 7.1 · 10−3

80 2.5 · 10−3

100 1.4 · 10−3

110 1.1 · 10−3

120 0.8 · 10−3

There are also requirements for how quickly the curvature is allowed to change. If
the curvature difference between the start and the end curvature of a road segment

7



2. Theory

is larger than a limit value there has to be a transition curve. A transition curve is
a clothoid connecting two road segments. In Table 2.2 the limit values for when a
transition curve has to be used is presented.

Table 2.2: Limit values for curvature differences for different speed limits [6].

Maximal
Speed limit [km/h] curvature change [1/m]

60 3.3 · 10−3

80 2.0 · 10−3

100 1.3 · 10−3

110 1.1 · 10−3

120 1.0 · 10−3

In case a transition curve has to be used, there are rules to how the clothoid has to
be designed. The clothoid has to be designed according to

L = A2 · C (2.1)

where C is the curvature at the end of the road segment and L is the minimal length
of the segment. The parameter A determines the minimal length of the clothoid and
it should at least fulfill the values of Table 2.3. The change of the curvature should
be done linearly along the transition curve, meaning that the curvature rate should
be constant.

Table 2.3: Lower limit for the clothoid parameter [6].

Minimal
Speed limit [km/h] clothoid parameter (A) [m]

60 130
80 185
100 250
110 290
120 325

In Figure 2.1 a comparison of a curve with and without transition curve is made.

8



2. Theory

Figure 2.1: Comparison between curves without (left) and with (right) transition
curve [6].

On public roads there are also connecting curves with opposing curvature directions,
so called S-curves. These combination is also regulated by rules and requirements.
Two opposing curves has to be connected with a straight line in between, which
makes these combinations fall under the same requirements as the ones between a
straight line and a single curve, Table 2.2.

All requirements listed in this section, such as maximum curvatures and curvature
rates, can and should be considered when designing a road geometry estimation
algorithm.

2.2 State representations

The state representation is used to mathematically describe the shape or geometry
of the road in front of the vehicle equipped with the system, see Figure 1.1.

A road geometry can be represented in various ways. Examples of this are calculating
the lateral position from a polynomial function of longitudinal distance, splines for
interpolating between points or a clothoid model where curvature is a function of
distance. It is common to use a coordinate system which is local, i.e it is fixed in
some point of the car. In this thesis the local coordinate system will be fixed in the
middle of the front of the car, the axes direction are according to the SAE-coordinate
system [7], see Figure 2.2.

9



2. Theory

x 

Figure 2.2: Definition of the coordinate system.

To use a polynomial, to represent lateral position from a function of longitudinal
distance, is a way to represent relatively complex shapes with few arguments, for ex-
ample a third degree polynomial is enough to be able to describe an s-curve shape.
There are however drawbacks of using a polynomial of longitudinal distance, the
polynomial cannot represent a change in the road shape far away, if for example
the road is straight at close ranges and then turns. Additionally, it can only ap-
proximately represent a circular shape, which is a drawback since most roads are
designed with a circular radius.

To solve the problem with representing a circular shape, a different model is used
in [5]. This is called the clothoid model, which uses the following states; heading,
curvature and curvature rate. This makes it possible to model a curve and the
transition into or out of the curve. This model is also lacking in some scenarios
of changing road curvature, if the curvature rate is not constant over the region
modelled this model will have problems representing the shape [8].

The road geometry can also be represented with a sampled interval in the region
of interest, i.e from zero to prediction range. This method is used in [3] and [4].
Which states that are represented in each point can be chosen in a number of ways.
It can be position states, heading, curvature or curvature-rates in each point or a
combination.

The angle of the road φ, is linked to positions according to

tan(φ) = dy

dx
(2.2)

where x is the longitudinal position and y is the lateral position according to Fig-
ure 2.2. The curvature, C, is the distance derivative of the heading with regards to
distance, i.e

C = dφ

ds
(2.3)

where s is the distance along the road, i.e.

10



2. Theory

ds =
√
dx2 + dy2 (2.4)

Similarly, the curvature rate, κ, is the derivative of the curvature

κ = dC

ds
(2.5)

It is hence likely that the system will be overdetermined if a combination of the
states are used in a sampled setting, for example the difference of two sampled
curvatures is the curvature-rate multiplied by the distance between the two points.
However, initial conditions are required on the lower level states, so if curvatures
are sampled, initial conditions are required on position and angle to the road.

Below is a quick comparison between state representations. The road to be rep-
resented is consisting of four segments. The first segment is a 50 meter straight,
the second is a 25 meter long transition curve, which is changing curvature linearly
from 0 to 0.007 radians/meter, the third is a 50 meter curve with curvature 0.007
radians/meter and the final segment is a 25 meter straight. The shape of the curves
is shown in Figure 2.3 and the position error as a function of distance is shown in
Figure 2.4.
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Figure 2.3: Comparison of state representations for an example scenario. The
reference shape is the dashed black line, the blue line is a third degree polyno-
mial representation, the green line is a clothoid representation and the red line is a
sampled curvature representation
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Figure 2.4: The absolute distance error for the state representations compared to
the reference, the blue line is from a third degree polynomial representation, the
green line is from a clothoid representation and the red curve is from a sampled
curvature representation

All the states for the respective state representation was computed using a least
squares method [16]. The sampled curvature model is using 20 samples in front of
the vehicle. The mean error in this scenario was 0.25 meters for the polynomial
representation, 0.53 meters for the clothoid model and 0.09 meters for the sampled
curvature representation.

2.3 Statistical sensor fusion

This sections describes the basics of statistical sensor fusion and special variations
of the standard methods used for modeling the road geometry. Bayesian statistics
will be focused on.

2.3.1 Bayesian inference and filtering

The objective when performing inference of any kind is to be able to make decisions
based on specific criteria. Bayesian inference use a probabilistic framework for per-
forming these decisions, based on modeled uncertainties [9]. The applications of the
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2. Theory

framework is for example estimation or classification problems.

The Bayesian strategy base its methods on modeling the quantity of interest as a
random variable with a probability distribution. The distribution is then updated
according to acquired measurements and their uncertainties.

There are three major building blocks of the Bayesian strategy [9]. They are

• Prior
The probability distribution of the unknown parameter before acquiring any
observations. The notations commonly used for the prior is p(x), where x is
the unknown parameter.

• Likelihood
This is the probability distribution for the observations, conditioned on the
parameter x. This is usually noted p(y|x), where y is the observation.

• Posterior
The posterior is the probability distribution of the parameter given the obser-
vation. It contains the information obtained by combining the prior knowledge
regarding the parameter and the acquired observations. It is calculated by us-
ing Bayes’ rule

p(x|y) = p(y|x)p(x)
p(y) ∝ p(y|x)p(x) (2.6)

where the normalization factor is given as

p(y) =
∫
p(y|x)p(x)dx. (2.7)

The above described strategy can be used to estimate the probability distribution
of the state x, given the parameter y. For the cases where x is time dependent, this
strategy can be modified and used recursively at every time step k. The Prior and
the Likelihood will then be denoted p(xk) and p(yk|xk) respectively.

The Posterior is then denoted p(xk|y1:k), where k is the current time-step of the
process that increments as 1, 2, 3, etc. The sub-script of the parameter y, means the
it is a vector containing all samples from time step 1 up to time step k. This recur-
sive strategy of using the Bayesian framework can be used as a base for a filtering
algorithm. In order to use the Bayesian framework for filtering, two distributions
need to be modelled

• The predicted distribution of the states, also called the motion model. This
describes how the unknown parameters are expected to change between time
steps. This distributions is often denoted

p(xk+1|xk)
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• The likelihood distribution, also called the measurement model. This describes
where the observations are likely to be seen. This distributions is often denoted

p(yk|xk)

The objective when performing filtering is usually to compute p(xk|y1:k), which is
the posterior distribution of the unknown parameter, given all observations up to
the current time . By using the Bayesian framework above and Bayes’ rule the joint
posterior distribution for x0:k can be calculated as

p(x0:k|y1:k) = p(y1:k|x0:k)p(x0:k)
p(y1:k)

∝ p(x0)
k∏
i=1

p(yi|xi)p(xi|xi−1) (2.8)

In order to find the marginalized distribution for xk, the variables x0:k−1 need to be
integrated out as

p(xk|y1:k) =
∫
p(x0:k|y1:k)dx0:k−1 (2.9)

The equations 2.8 and 2.9 describe the explicit use of full Bayes’ rule and the com-
plexity of the calculations increase with k. This property makes this method unfea-
sible in a real-time application [9]. The solution to this problem is to use a recursive
method instead. In Figure 2.5, a block diagram showing how the recursive algorithm
works.

yk Update

Prediction

x̂k|k
p(xk|y1:k)

p(xk−1|y1:k−1)p(xk|y1:k−1)

Figure 2.5: Block diagram of a recursive Bayesian filtering algorithm. yk is the
observation and x̂k|k is the estimation of the unknown parameter at time step k.[10]

As can be seen in Figure 2.5 there are two calculations needed at every time step,
the prediction and the update. The prediction needs to compute p(xk|y1:k−1) from
p(xk−1|y1:k−1). It can be calculated using the conditional independencies between
different time steps as follows

p(xk|y1:k−1) =
∫
p(xk, xk−1|y1:k−1)dxk−1

=
∫
p(xk|xk−1, y1:k−1)p(xk−1|y1:k−1)dxk−1

=
∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1

(2.10)

14



2. Theory

This equations is called the Chapman-Kolmogorov equation [9].

The update can be calculated as

p(xk|y1:k) = p(xk|yk, y1:k−1)

= p(yk|xk, y1:k−1)p(xk|y1:k−1)
p(yk|y1:k−1)

= p(yk|xk)p(xk|y1:k−1)
p(yk|y1:k−1)

(2.11)

Equations 2.10 and 2.11 are general and can be applied to any filtering application.

2.3.2 The Kalman filter

There are few examples where it is feasible to use the filter equations mentioned
earlier, as they normally do not have an analytical expression [11]. An important
exception is when the prediction and update models are linear, the probability dis-
tributions are Gaussian and the noise is additive. In these cases, an analytical,
closed form solution can be derived. This method was presented by Kalman in [12].

A linear and Gaussian model with additive noise can be expressed as

xk = Ak−1xk−1 + qk−1

yk = Hkxk + rk
(2.12)

where Ak−1 is the transition matrix corresponding to the motion model and Hk

is the matrix for the measurement model [13]. qk−1 and rk are Gaussian random
variables with covariance matrices Qk−1 and Rk respectively. These equations can
be expressed using normal distributions as

xk|xk−1 ∼ N (Ak−1xk−1, Qk−1)
yk|xk ∼ N (Hkxk, Rk)

(2.13)

By inserting the expressions in Equation 2.13 into Equation 2.10 and 2.11 an ana-
lytical expression for p(xk|y1:k−1) and p(xk|y1:k) can be derived. The commonly used
and well known end result is presented below.

The prediction equations

x̂k|k−1 = Ak−1x̂k−1|k−1

Pk|k−1 = Ak−1Pk−1|k−1A
T
k−1 +Qk−1

(2.14)

where Pk denote the covariance matrix for x at time step k.

The update equations

x̂k|k = x̂k|k−1 +Kkvk

Pk|k = Pkk−1 −KkSkK
T
k

(2.15)
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where the Kalman gain, Kk, the innovation, vk, and the innovation covariance, Sk,
are given by

Kk = Pk|k−1H
T
k S
−1
k

vk = yk −Hkx̂k|k−1

Sk = HkPk|k−1H
T
k +Rk

(2.16)

The full derivation can be found in [9] and [13].

2.3.3 Extended Kalman filter

While the Kalman filter offers an optimal solution to the filtering problem in the
case of linear and Gaussian models, many practical problems contain non-linear
models, which makes the method not applicable. There are, however, methods to
approximate the non-linear models as linear. One of which is called the Extended
Kalman filter [14].

A non-linear model with additive noise can be written as
xk = f(xk−1) + qk−1

yk = h(xk) + rk
(2.17)

where xk is the state, yk is the observation or measurement, qk−1 and rk are Gaussian
random variables with covariance matrices Qk−1 and Rk respectively, f(·) is the
dynamic function for the system and h(·) is the measurement model.

The aim is to approximate the filtering densities used in the Kalman filter as Gaus-
sian. This method uses Taylor series expansions to linearize the system model, f(·),
and the measurement model, h(·), around the previous estimated state using the
below relationships

f(xk−1) + qk−1 ≈ f(x̂k−1|k−1) + f ′(x̂k−1|k−1)(xk−1 − x̂k−1|k−1) + qk−1

h(xk) + rk ≈ h(x̂k|k−1) + h′(x̂k|k−1)(xk − x̂k|k−1) + rk
(2.18)

where x̂ is the estimated state, f ′(·) and h′(·) are the Jacobian matrices for the
system model and the measurement model, respectively.

The resulting algorithm contains the equations below.

The prediction equations

x̂k|k−1 = f(x̂k−1|k−1)
Pk|k−1 = f ′(x̂k−1|k−1)Pk−1|k−1f

′(x̂k−1|k−1)T +Qk−1
(2.19)

The update equations

x̂k|k = x̂k|k−1 +Kkvk

Pk|k = Pkk−1 −KkSkK
T
k

(2.20)
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where Kk, vk, and Sk are given by

Kk = Pk|k−1h
′(x̂k|k−1)TS−1

k

vk = yk − h(x̂k|k−1)
Sk = h′(x̂k|k−1)Pk|k−1h

′(x̂k|k−1)T +Rk

(2.21)

A complete derivation can be found in [9].
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3
Method

This chapter describes how the theories are applied to the road geometry estimation
problem. It presents the available sensor information, its representation and how
the information is used in the estimation process.

The scientific contribution of this thesis is a method or combining multiple sources
of information in order to estimate the road geometry ahead of a host vehicle. The
part which is the most interesting in the sense of contribution is the part where it is
described how single stationary objects are used for the road geometry estimation.
This is described under Section 3.2.3.4.

3.1 Sensor information

This section describes the different inputs used and their representations. The sensor
used is a combined radar and camera sensor which can output its information via a
User Datagram Protocol (UDP). In Figure 3.1, a picture of the sensor is shown.

3.1.1 Host vehicle motion

The sensor outputs the current speed of the host vehicle, vhost,k, and the current
yaw rate, ψ̇k. These signals are assumed to have negligible uncertainties and are
considered as control inputs to the estimation process. The host vehicles side slip
angle is also reported by the sensor. It will be denoted αslip,k. In Section 3.2.2, a
description of how the signals are used can be found.

3.1.2 Lane marking observations

The camera system is able to detect up to four different lane markings, the two
closest to the host vehicle and the two next to them. If they are present and
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Figure 3.1: Picture of the combined radar and camera sensor used as input source
to the estimation process.

detected, they are reported as a third-order polynomial equation as,

yik = ai0,k + ai1,kxk + ai2,kx
2
k + ai3,kx

3
k (3.1)

where i = [1, ..., 4] for the different lane markings, yk is the lateral position and
xk is the corresponding longitudinal position according to the coordinate system in
Figure 2.2. The values a0,k, a1,k, a2,k and a3,k are the coefficients of the polynomial.

Each polynomial has an associated maximal valid range, denoted xil,max,k. In Fig-
ure 3.2 an example of observed lane markings is shown.

Figure 3.2: Picture showing an example of observed lane markings. It can be seen
that the two closest, as well as an adjacent, lane marking are detected.
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3.1.3 Barrier/guard-rail observations

The barrier/guard-rail observations are estimated by the sensor, using series of sta-
tionary radar detections along the road. The system has the possibility the detect
one barrier on each side of the road. When present and detected, they are reported
with a third-order polynomial in the same way as the lane markings as,

yik = bi0,k + bi1,kxk + bi2,kx
2
k + bi3,kx

3
k (3.2)

where i = [1, 2] for the different lane markings, yk is the lateral position and xk is
the corresponding longitudinal position, according to the coordinate system in Fig-
ure 2.2. Here b0,k-b3,k are the coefficients of the polynomial. The barrier-polynomial
has, similarly to the lane markings, a maximal valid range, xib,max,k. In Figure 3.3
an example of detected barriers is shown.

Figure 3.3: Picture showing an example of detected barriers. The green lines
represent the reported barrier estimations.

3.1.4 Moving vehicle observations

The radar and the camera are providing information regarding detected objects and
a fusion algorithm is estimating their motion. The motion states used from the
objects are the longitudinal position, xim,k, lateral position, yim,k, heading, φim,k and
velocity over ground, vim,k, for the ith detected object. All the object motion states
are reported from the radar and camera fusion system with a corresponding estimate
error standard deviation, σx,m, σy,m, σφ,m and σv,m.

A maximum of 64 objects can be detected by the fusion system and possibly be used
for road geometry estimation.

3.1.5 Stationary observations

The stationary observations are reported by the radar. The properties of interest
to the estimation process are their positions, the longitudinal position, xis,k, and the
lateral position, yis,k. A maximum of 64 stationary observations can be reported.
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3.2 System models

This section describes the details of all the models used for the estimation process.
The way the states are represented and how they are stored is presented, as well
as the process model used for time updates. The measurement models for different
information sources are presented in their individual subsections. The method of
detecting outliers is also described in this section.

3.2.1 State representation

The state representation implemented in the Kalman filter is a sampled curvature at
fixed distances along the predicted road. An initial angle between the host vehicle
and the road is also included as a state. The lane width and offset to the lane center
is only estimated by the vision systems reports of the lane limits, they are therefore
not included in the state vector. This is due to no other reliable way to estimate
the lane limits has been derived.

The state vector is then

xk =



φk
C0,k
C1,k
...

Cn,k

 (3.3)

where φk is the angle between the host vehicle and the road and C0,k − Cn,k are
sampled curvatures, all at time k. The curvature is starting from the host vehicle
position, i.e in the origin of the coordinate system in Figure 2.2. The constant n is
the number of sampled points in front of the host vehicle and corresponding to the
number of subsections. The distance, δ, between samples is

δ = PredictionHorizon

n
(3.4)

In Figure 3.4 a graphical representation of the states is shown.

There are dependencies of the positions of the estimated road, the position estimates
are calculated according to

y =
∫ dist

0
sin(φ(s))ds (3.5)

x =
∫ dist

0
cos(φ(s))ds (3.6)
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C1,k 

C2,k 
C3,k C4,k C5,k C6,k 

C7,k 

Figure 3.4: Illustration of the state representation in the local coordinate system.

where

φ(s) = φ0 +
∫ s

0
C(x)dx (3.7)

and C(x) is piecewise linear according to the states in the state vector. The dist
argument is chosen according to the interest of the application. The positions are
numerically calculated where they are used in the road geometry estimation.

In the implementation used, predictionHorizon = 200 meters and n = 40.

3.2.2 Process model

The process model is accounting for the motion of the host vehicle and the evolution
of the road. Since the states describe the road at fixed distances from the host vehicle
and not fixed on the road, the actual points described is changed when the host
vehicle is moving. The distance moved is simply computed by a constant velocity
model.

ds = dt · vhost (3.8)

Where dt is the time since the last sample. It is then assumed that the curvature is
changing linearly between the sampled points. This is described by

Ci,k = Ci,k−1 + Ci+1,k−1 − Ci,k−1

δ
· ds = (1− ds

δ
)Ci,k−1 + ds

δ
· Ci+1,k−1 (3.9)

and the linear change is illustrated by figure 3.5.
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Figure 3.5: Curvature contribution as a function of distance from the host vehicle
for the curvature states corresponding to distances (i− 1) · δ (Blue), i · δ (red) and
(i+ 1) · δ (Green).

Assuming that ds ≤ δ and for any index i < n, the last curvature is assumed to be
constant. Rearranging the terms in equation 2.3, the angle is changing according to

φk = φk−1 + ds · C0,k−1 (3.10)

If ∆ is defined as

∆ = ds

δ

the transition matrix becomes

Ak−1 =



1 ds 0 0 . . . 0
0 (1−∆) ∆ 0 . . . 0
... . . . . . . . . . . . . ...
0 . . . 0 (1−∆) ∆ 0
0 . . . 0 0 (1−∆) ∆
0 . . . 0 0 0 1


(3.11)

It is also necessary to take the host turning into account. This is done using a
constant turn model, where the host yaw rate is assumed constant between samples.
The angle turned between samples is calculated by
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ψk = dψk · dt (3.12)

where ψk is the angle turned and dψk is the current host yaw rate. It is also assumed
to have a small enough error to be used as an input signal to the system. The angle
turned is directly taken from the initial angle state φ, resulting in an input

Bψ =


−1
0
...
0

ψ (3.13)

Additive uncorrelated process noise is also included in the model. This consists of
two noise components, noise added to the angle state qφk ∼ N(0, σ2

φ) and noise added
to each curvature state qCk ∼ N(0, σ2

C). Written in vector form

qk =


qφk
qCk
...
qCk

 (3.14)

This results in the complete update of the states

xk = Ak−1xk−1 +Bk−1ψk + qk (3.15)

The process noise added, is calculated by

qCk = ((1−noiseMin) ·noiseMax ·0.5( vhost
cutOffV

) +noiseMin ·noiseMax)2 ·vhost ·dt (3.16)

where noiseMin = 5 · 10−4, noiseMax = 21 · 10−4 and cutOffV = 12 which is the
cut-off velocity. The noise component for the angle is calculated from

qφk = qCk · ds2 (3.17)

How the noise is changing with the host velocity is illustrated in Figure 3.6.
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Figure 3.6: The magnitude of the curvature noise, qCk , added depending on the
host velocity in rad2

m2·s , i.e before multiplying with dt.

3.2.3 Measurement models

In the framework for this filter, measurements of four different kinds are used, which
come from the different information sources in section 3.1. The formats of the lane
marker observations and the barrier/guard-rail observations are equal, so those are
referred to as polynomials, hence only four kinds of measurements from five sources.

3.2.3.1 Host vehicle motion

Since the use case for the filter is longitudinal vehicle control applications, a driver
is in charge of lateral control. It is then assumed that the driver is driving close to
parallel to the road which is being estimated. The deviation from this assumption
is modelled by measurement noise. So when the vehicle is going parallel to the road,
the angle in which the host vehicle is moving, i.e the host slip angle αslip, can be
used as a measurement on the initial heading state φk. Similarly the curvature of
the host vehicle motion is used as a measurement on the initial curvature C0,k. This
host curvature Chost is calculated by

Chost = dψk/vhost,k (3.18)

Using the notations in equation 2.12

26



3. Method

yk =
[
αslip,k
Chost,k

]
(3.19)

and

hk =
[
1 0 0 . . . 0
0 1 0 . . . 0

]
(3.20)

The measurement noise covariance matrix of the host vehicle motion is modelled as

Rhost = diagonal(σ2
α, σ

2
C) (3.21)

where diagonal(·) is a square matrix with the input parameters on the diagonal,
the measurement standard deviations are σk,α = 0.09 radians and σk,C = 0.003
radians/m.

3.2.3.2 Lane and barrier polynomials

The lane and barrier detectors are both outputting the information in the form of
a third degree polynomial. In order to utilize the information, it is transformed to
a linear combination of the state vector. This means that the polynomial shape is
estimated to angles and curvatures. Using what is known from equation 2.2, the
angle in a point can be estimated from

φpoly = arctan(dy
dx

) (3.22)

where dy
dx

can be calculated from equation 3.1 and 3.2 respectively. This results in

dy

dx
= a1 + 2a2 · x+ 3a3 · x2 ⇒

φpoly = arctan(a1 + 2a2 · x+ 3a3 · x2)
(3.23)

Furthermore to estimate curvature, the relation in equation 2.3 is used. Using the
chain rule results in

C = dφ

ds
= dφ

dx
· dx
ds

(3.24)

where

27



3. Method

dx

ds
=
√

(1 +
(dy
dx

)2
) (3.25)

The resulting curvature estimate is then

Cpoly = dφpoly
ds

= 2a2 + 6a3 · x
(1 + dy

dx
) 3

2
(3.26)

So both curvature and heading estimates from the polynomial can be computed at
a given longitudinal distance, x.

Each polynomial is reporting a valid range which is used to select the measure-
ment points, the initial and final angles and curvatures are estimated and used as
measurements. The initial heading and curvature are corresponding directly to the
states φk and C0,k. To compute an angle estimate from the states at a given dis-
tance, the initial angle is used together with the distance along the road to sum up
the angle change from the curvatures. This is how the measurement matrix is being
calculated for the angle measurement at the valid range. The calculation is using
the assumption of constant curvature rate between samples

H = zeros(4,nStates);
H(1,1) = 1;
H(2,2) = 1;
H(3,1) = 1;
i = 1;
while validRange > i·δ do

H(3,i+1) = H(3,i+1) + δ/2;
H(3,i+2) = δ/2;
i = i + 1;

end
K = (validRange - (i-1)·δ)/δ;
H(3,i+1) = H(3,i+1) + (1 - K/2)K · δ;
H(3,i+2) = (K/2)K · δ;
H(4,i+1) = (1 - K);
H(4,i+2) = K;

Algorithm 1: Calculation of the elements in the measurement matrix, H, for a
polynomial input

The indexation is (row,column) and starting at index 1. The initialization, H =
zeros(rows,columns), means it is a matrix with only zeros and nStates is the number
of states in the state vector. Note that K takes a value between 0 and 1.

The measurement noise of both the lanes and barriers are modelled with a white
uncorrelated noise. The measurement noise covariance matrix for lanes, RL, is
modelled as
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RL = diagonal(σ2
L,φ, σ

2
L,C , 5 · σ2

L,φ, 5 · σ2
L,C) (3.27)

where σL,φ = 0.1 radians and σL,C = 0.005 radians/m. The measurement noise
covariance matrix is similarly shaped for barriers

RB = diagonal(σ2
B,φ, σ

2
B,C , 5 · σ2

B,φ, 5 · σ2
B,C) (3.28)

but in this case σB,φ = 0.25 radians and σB,C = 0.060 radians/m. There are two
reasons for the larger values of the barrier measurement noise. First, the barrier
estimator is inadequate in many situations and it is not outputting any reliability
measure. Second, the barriers on the side of the road are not always completely
parallel to the road of the host vehicle. The benefit of using barriers are that they
often have a longer range and hence can give a better estimate further away.

3.2.3.3 Moving vehicle observations

Vehicles driving in front of the host vehicle can indicate the shape of the road
further away than the range of vision lanes. From the vehicle information, the
longitudinal position and heading of the vehicle are used. The angle is used as
the measurement. The longitudinal distance is used to determine where the angle
is valid. The angle estimate from the states is computed in a similar way as the
ending angle measurement of the polynomials.

H = zeros(1,nStates);
H(1,1) = 1;
i = 1;
while vehicle longitudinal position > longDist(i·δ) do

H(1,i+1) = H(1,i+1) + δ/2;
H(1,i+2) = δ/2;
i = i + 1;

end
K = (validRange - longDist((i-1)·δ))/(longDist(i·δ)) - longDist((i-1)·δ)));
H(1,i+1) = H(1,i+1) + (1 - K/2)K · δ;
H(1,i+2) = (K/2)K · δ;

Algorithm 2: Calculation of the elements in the measurement matrix, H, for a
single preceding vehicle input

Where the longdist(·) function is calculating the longitudinal distance of the esti-
mated road at the input distance along the road according to equation 3.6 and 3.7.
The way the measurement matrix is computed is using an assumption that the left
and right edge of the road has the same heading at a certain longitudinal distance,
i.e the lateral distance does not matter.
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The fusion system is outputting the standard deviation of the heading angle esti-
mate of the car, σfus,heading. Because this is a filtered input to this system, the
measurement variance is doubled.

σ2
heading = 2 · σ2

fus,heading radians
2 (3.29)

An additional noise is added because vehicles are not driving precisely parallel to
the road, this veering is estimated to

σ2
veer = 0.03 radians2 (3.30)

The further away a car is, the more likely it is to be on a road which is not parallel to
the road which is of interest. This applies in both longitudinal and lateral distance.
The additional measurement noise added because of lateral distance to the road is

σ2
lat = lateralDistance

laneWidth
· 0.07 radians2 (3.31)

which means it is proportional to the number of lane widths away it is. The longi-
tudinal distance noise is

σ2
long = longitudinalDistance · 0.003 radians2 (3.32)

The resulting measurement noise is

Rcar = σ2
heading + σ2

veer + σ2
lat + σ2

long (3.33)

3.2.3.4 Stationary object observations

A stationary object observation can indicate that something is obstructing the road
at the position where it is detected. This information can help the road geometry
estimator to detect a curve ahead before there is any other information about the
curve available. The information used from the stationary objects is their longitu-
dinal and lateral position. The lateral position is used as a measurement and the
longitudinal position is used to determine where the measurement is valid. The
lateral position of the current states is calculated using equation 3.5.

The information obtained from the stationary objects are considered as "negative"
information to the estimation process. They tell where the road is likely not to be.
Therefore, a special model for the likelihood is needed, rather than the normally
used model for positive information. The model used is expressed as

p(y|x) = 1
V
N (0; 0, R)− γ

V
N (y;h(x), R) (3.34)

where V is a normalizing factor, R is the measurements noise and γ is a factor
between 0 and 1, determining how "negative" the information is. The resulting
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distribution will, for a one dimensional case, look approximately like the one in
Figure 3.7.

h(x)

Figure 3.7: Example of how the likelihood distribution looks like for a stationary
object measurement for a one dimensional case.

As can be seen, the likelihood for a measurement decreases around the current state.
The area of the "negative" part is equal to the factor γ.

By using this model for the likelihood, the expression for the posterior becomes

p(x|y) ∝ p(y|x)p(x) = 1
V
N (0; 0, R)p(x)− γ

V
p(ȳ|x)p(x) (3.35)

where p(ȳ|x) is the negative part of the likelihood. Applying Bayes rule on the last
term of equation 3.35 results in the following

p(x|y) ∝ 1
V
N (0; 0, R)p(x)− γ

V
p(ȳ)p(x|ȳ) (3.36)

where p(x|ȳ) can be considered as the posterior distribution of x when ȳ is used as a
measurement and p(ȳ) can, in the case of a linear measurement model, be expressed
as

p(ȳ) = N (ȳ;Hx,R +HPHT ) (3.37)

However, the measurement model for the lateral position is non-linear. Therefore
a version of an Extended Kalman Filter is used to process the measurement from
the stationary objects. The measurement equations are then expressed as equations
2.20 and 2.21. It is necessary to derive an expression for h′(x) in order to calculate
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both p(ȳ) and p(x|ȳ). When calculating the lateral position from the states, the
equations 3.5 and 3.7 are used. However, to keep the complexity of the expression
reasonable, it is assumed in equation 3.5 that the angle is piecewise constant over a
distance of δ. The constant angle at the distance of i · δ is calculated by

φ(i · δ) = φ0 +
∫ δ

0
C0 + C1 − C0

δ
· x dx

+
∫ 2·δ

δ
C1 + C2 − C1

δ
· x dx+ . . .

+
∫ i·δ

(i−1)δ
Ci−1 + Ci − Ci−1

δ
· x dx

(3.38)

which is resulting in

φ(i · δ) = φ0 + δ

2(C0 + C1)

+ δ

2(C1 + C2) + . . .

+ δ

2(Ci−1 + Ci)

(3.39)

The constant angle estimate is then used to calculate the lateral position, the esti-
mate at the distance i · δ is calculated according to

h(x) = y =
∫ δ

0
sin(φ(δ)) ds

+
∫ 2·δ

δ
sin(φ(2 · δ)) ds+ . . .

+
∫ i·δ

(i−1)δ
sin(φ(i · δ)) ds

(3.40)

Using the assumption that the angles are piecewise constant results in

h(x) = y = δ · sin(φ(δ))
+ δ · sin(φ(2 · δ)) + . . .

+ δ · sin(φ(i · δ))
(3.41)

With the expression for h(x) it is possible to calculate the Jacobian matrix

h′(x) =
[
∂h
∂φ0

∂h
∂C0

∂h
∂C1

. . . ∂h
∂Cn

]
(3.42)

When calculating the terms, it is necessary to know the measurement index of the
stationary object. In the implementation used this index is calculated by

measIndex = d(stationaryLongPos/δ)e (3.43)

where d(·)e is rounding up to the next integer. For the initial angle, the partial
derivative is calculated by

∂h

∂φ0
=

measIndex∑
k=1

δ · cos(φ(k · δ)) (3.44)
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for the curvatures it is calculated according to

∂h

∂Ci
= δ2

2 · cos(φ(i · δ)) +
measIndex∑
k=i+1

δ2 · cos(φ(k · δ)) (3.45)

for the curvature states where 2 ≤ i ≤ measIndex. For the initial curvature

∂h

∂C0
=

measIndex∑
k=1

δ2

2 · cos(φ(k · δ)) (3.46)

otherwise
∂h

∂Ci
= 0. (3.47)

for the curvatures where i > measIndex.

The resulting h′(x) is then used to calculate p(ȳ) and p(x|ȳ). The distribution
obtained by numerically calculating the complete posterior, using equation 3.36,
is not Gaussian. For a one dimensional case it could look approximately like the
distribution in Figure 3.8.

Figure 3.8: Example of how the posterior distribution can look like after a sta-
tionary object measurement update for a one dimensional case.

Since the state space used in the estimation process is not one dimensional, the calcu-
lation of the posterior becomes more complex. To calculate the full posterior numer-
ically, all dimensions of the state space need to be "gridded" and nGridPointsnStates
calculations would have been necessary. In the implemented algorithm that would
result in more than 1070 calculations per measurement update, which is infeasible
for a real-time system.
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Instead, the posterior is calculated for one state at a time and the covariance be-
tween the states is disregarded. The non-Gaussian posterior is then approximated
as Gaussian using the Maximum Likelihood Estimation (MLE)[17]. An example of
an MLE is shown in Figure 3.9.

Figure 3.9: Example of how the MLE of the posterior distribution can look like.
The blue line is a non-Gaussian distribution and the red line is its MLE distribution.

The correlation matrix for the states before the measurement update is stored and is
then used to calculate the posterior covariance matrix. This way, the covariance of
each state is updated with the stationary object measurements, but the correlation
between the states stays the same. The number of necessary calculation is, with
this method, reduced to approximately nGridPoints ·nStates. In the implemented
algorithm, this results in 2091 calculations per measurement.

3.2.4 Outlier detection

This section describes the methods used for detecting outliers. The limits used to
determine weather the measurement is an outlier or not is also presented.

3.2.4.1 Lane markings and barrier estimations

Since both lane markings and barriers are represented by a third degree polynomial,
the same method of detecting outliers can be applied on both of them. The method
chosen is to set an upper threshold on how much the lateral position at the valid
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range of the polynomials are allowed to differ from the estimated road model of the
previous sample. The lateral error is compared to how long the polynomials are valid
and the relation between the error and the valid range is used as a measurement.
The mathematical expression is written as

Error value = |MeasEndLatPos− LatPosPrevPath|
End distance

· 100 (3.48)

Since the error is calculated relative to the estimation from the previous sample, the
method will contain a form of feedback. This may allow erroneous measurements
to be used as long as they are consistent. However, when using multiple sources
of information, the output from the estimation process is considered as the best
estimate of the road geometry and is therefore used as a reference model for the
outlier detection.

If the above calculated Error value is above a chosen threshold, the measurement
is considered an outlier. In Figure 3.10 an example of the outlier detection for
lane markings is shown. As can be seen, the threshold is set to 8 percent for lane
markings and that value is exceed three times during the example log. The same
threshold is set to 2 percent for the barrier estimations.
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Figure 3.10: Example of lane marking outlier detection. The blue line is the lateral
error as percent of the valid range of the lane markings compared to the estimated
road position. The red line is limit used to determine whether the lane markings
are outliers or not.

In Figure 3.11 an example of a case when the reported lane markings are considered
to be outliers is shown. As can be seen, the reported lane markings (green lines) are
not following the actual lane markings and are therefore incorrect when comparing
them to the estimation of the fused road geometry.
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Figure 3.11: Example of a case when detected lane markings (green lines) are
determined to be outliers.

3.2.4.2 Moving vehicle observations

To determine if the measurements of the preceding vehicles is outliers or not, the
Mahalanobis distance is used. It can intuitively be interpreted as a measurement of
how many standard deviations a point is from the mean of a probability distribution.
It was presented in 1936 by P. C. Mahalanobis and is a commonly used measurement
to reject outliers [15].

The Mahalanobis distance is calculated as

Dm(y) =
√

(y −Hx̂)T (HPHT +R)−1(y −Hx̂) (3.49)

where y is the point to which the Mahalanobis distance is calculated, x̂ is the esti-
mated state, P is the covariance matrix of the state, H is the measurement matrix
and R is the covariance matrix of the measurement.

If the value calculated by equation 3.49 is above 1.5, the heading measurement of
the preceding vehicle is considered as an outlier.
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Results

The results of the road geometry estimation is presented in this chapter. The perfor-
mance measures used to evaluate the algorithm is described, as well as the method
of generating a reference of the road geometry.

4.1 Evaluation method

This section describes how the performance of the algorithm is measured. It de-
scribes how the reference is created and what measurement is used as a performance
value.

4.1.1 Generation of ground truth

To be able to measure the performance of the estimated road geometry, a reference
road geometry needs to be created. An accurate way of doing that would be to use
a GPS and measure the position at each time step. However, in the used setup,
there is no GPS available and the ground truth needs to be generated in an other
way.

The chosen method is to use the measured speed and yaw rate of the host vehicle
to estimate the movement a global coordinate system. This method is knows as
dead-reckoning. In each time step the following calculations are performed.

The movement in the vehicles local coordinate system is

∆xhost,k = vk cos( ψ̇kdt2 )dt

∆yhost,k = vk sin( ψ̇kdt2 )dt
(4.1)

where vk is the velocity of the host vehicle and ψ̇ is the current yaw rate. dt is the
time elepsed from the previous sample.
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The movement in the global coordinate system is

ψk = ψk−1 + ψ̇kdt (4.2)[
∆xk
∆yk

]
=
[
cos(ψk + αslip,k) − sin(ψk + αslip,k)
sin(ψk + αslip,k) cos(ψk + αslip,k)

] [
∆xhost,k
∆yhost,k

]
(4.3)

where ψk is the current heading and αslip,k is the host vehicles slip angle.

The delta distances is summed over time to get the ground truth road geometry.
The dead-reckoning method will drift from the real world result over time. The
error, however, is negligible if the geometry is not used than 200 meter at every
time instance [3], which is a reasonable assumption for this application.

An example of the generated ground truth can be seen in Figure 4.1.
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Figure 4.1: Examples of the generated ground truth in a global coordinate system.
The red dots correspond to the position every 5 seconds.

4.1.2 Performance measure

Two measures are used to evaluate the performance. The first is the root-mean-
square error (RMSE) between the estimated path and the ground truth path. The
estimated and the ground truth positions are compared at headway times between
0 and 5 seconds, sampled every 0.1 seconds. This gives a measurement of the overall
performance and indicates the behaviour over time.

In Figure 4.1 the ground truth for an example log file could be seen. The corre-
sponding result of the position error evaluation can be seen in in Figure 4.2. The
error shown is a 2 (blue) and 4 (red) seconds headway time. As mentioned earlier,
the complete result is calculated between 0 and 5 seconds.
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Figure 4.2: The position error at 2 (blue) and 4 (red) seconds headway time for
an example log file.

The RMSE at different headway times is evaluated over time and is therefor pre-
sented as a result of a complete log file. The result of this analysis for the example
log is shown in Figure 4.3.
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Figure 4.3: The RMSE of the road model estimate is the example log file.

The second measure is how much of the time the estimated path has an error less
than the current lane width. The current lane width is estimated using the reported
lane markers. Some of the functions utilizing the estimated road model need to be
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able to classify which lane objects are most probably in. This second measure then
indicates how well the estimation would meet the needs of such a function.

The result of this second evaluation for the same log used in Figure 4.1 and 4.2 is
shown in Figure 4.4. It can be seen that the estimated is never more than a lane
width wrong for headway time under 2 seconds.
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Figure 4.4: Percent of time the estimated road position is less than one lane width
wrong at different headway times.

Results of the type presented in Figure 4.3 and 4.4 will be the measurement of how
well the estimation algorithm performs in different traffic scenarios. These results
can be studied in Section 4.2.

4.2 Algorithm performance evaluation

In this section the performance of the estimation algorithm is presented. Two dif-
ferent traffic situations are tested and the result for each of them is presented.

4.2.1 Curvy highway

The definition of a curvy highway is that the speed limit of the road is 100 km/h
or higher and has multiple lanes. The "curviness" of the road is not specified with
a number and the scenarios are selected based only on human judgement. Moun-
tainous roads in the Alps are considered difficult in these type of applications and
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are therefore considered as suitable for this evaluation [3]. A picture showing an
example of such a road can be seen in Figure 4.5.

Figure 4.5: Picture showing an example from a curvy highway.

The data set used for curvy highways is 420 seconds long and the average speed of
the host vehicle is 27.3 m/s or 98 km/h.

As mentioned in Section 4.1.2, the first performance measurement used for evalua-
tion is the RMSE at different headway times. In Figure 4.6 a comparison between
three different methods of estimating the road geometry can be seen. The three
methods are: using only lane markers, using lane markers, barriers and preceding
vehicles and using lane markers, barriers, preceding vehicles and stationary object
detections.
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Figure 4.6: RMSE for the estimated road on the curvy highway data set.
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As can be seen in Figure 4.6, the combination of different information sources im-
proves the overall performance of the estimation compared to using only lane mark-
ers and results in a lower RMSE over the complete evaluation scope. It can also be
seen that introducing the use of stationary objects improves the estimation slightly.
However, the improvement is small enough to be caused by varying traffic scenarios
in the selected logs.

The result of the second measurement of performance, the percent of the time the
error estimation is less than a lane width, is presented in Figure 4.7. As can be
expected, the estimation using multiple information sources is superior to using
only lane markers also in this evaluation.
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Figure 4.7: Percent of time the error of the estimated road position is less than
one lane width on the curvy highway data set.

Even though the difference between using stationary objects and not using stationary
objects is small also for this performance measure, it can be seen that the use of
stationary targets makes the estimation error stay within one lane width for a longer
headway time. With stationary objects, the estimation error is less than one lane
width hundred percent of the time up to 3.5 seconds headway time, compared to
just over 3 seconds for the method without stationary objects.

In the data set used, the lane markings are available 99.9 percent of the time.

4.2.2 Urban traffic

The definition of an urban road is that the speed limit of the road is between
50 and 90 km/h and has more than one lane. Typical examples of urban roads
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are arterial roads close to city centers. These roads cause difficulties for a road
geometry estimator because of their rapid changes in curvature and relatively high
speed limits.

In Figure 4.8 an urban traffic scenario is shown.

Figure 4.8: Picture showing an example from an urban road.

The data set used for evaluation on urban roads is 200 seconds long. The average
speed of the host vehicle is 18 m/s or 65 km/h.

The RMSE for the road estimation is shown in Figure 4.9. As can be seen, the
RMSE is significantly higher for the urban case than for curvy highway roads. This
is to be expected and is due to the more rapid changes in curvatures.
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Figure 4.9: RMSE for the estimated road on the urban road data set.
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Similar to the result on the curvy highways, the method which combine different
information sources generates a better result than just using lane markers. The
difference due to addition of stationary objects is, however, smaller in the urban
traffic scenarios. This may be due to the amount of radar scatter picked up in a
more complex traffic scenario, leading to more false detections of stationary objects
that cause the road estimation to be erroneous. A false detection can, for example,
be reflections from the ground or from overhead targets, such as traffic signs. These
detections will be placed where the actual road is and when these are avoided by
the road geometry estimator the result becomes incorrect.

In Figure 4.10 the percent of the time the error of the estimated road is less than
one lane width is shown. Here, the affect of the false detections can be more clearly
seen. The result of the method which uses the stationary object is worse than the
method without stationary objects between 3.5 and 4.5 seconds of headway time.
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Figure 4.10: Percent of time the error of the estimated road position is less than
one lane width on the urban road data set.

In the urban traffic data set, the lane markings are available 96 percent of the time.

44



5
Discussion

This chapter presents discussions regarding the implemented estimation methods
and the results of the thesis. It also elaborates on the problems found during the
implementation and evaluation of the algorithm. Suggestions to future work will
also be stated.

5.1 Estimation methods

The state representation used can in most situations very well fit the shapes of the
road. The fact that it can change the curvature multiple times over the prediction
horizon is useful in some of the curvy urban scenarios. There is a trade off in how
many sampled curvatures are used. The more they are, the better resolution is
obtainable, but the more computationally heavy the filter is to run. The method
of using sampled curvatures at fixed distances from the host vehicle, instead of
them being at fixed points on the road, changes the transition matrix A. The split
contribution to an estimated curvature between itself and the next curvature (non-
zero elements on the diagonal and the superdiagonal), is causing a large covariance
between states. This covariance cannot be tuned because it is inherent in the rep-
resentation. The only benefit of keeping the curvatures at a fixed distance from the
host vehicle is that the measurement models are slightly easier to compute.

The implemented method is heavily affected by the quality of the input from the
sensors. Depending on the quality of every information source, the filter needs to
calibrated accordingly to perform well. If all sensor information is erroneous, the
estimation of the road geometry will also be wrong. A problem that has been noted
during the development is that, if an information source is mostly reliable and the
filters are calibrated according to the well behaving state of the sensor, the effect of
bad, self-consistent, measurements is large and difficult to reject with for example
outlier detection. A way to possibly avoid these behaviours would be to add quality
indicators of the measurements from the sensors, and use these indicators to reject
some of the inaccurate measurements.

Another aspect affecting the Bayesian filter setup is the fact that, all sensor mea-
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surements are filtered before they are received by the estimation algorithm. This
makes the assumption of the Kalman filter, that all measurements are uncorrelated,
to not hold. For this reason, the measurement covariances need to be adapted in
order for the filter not to be too certain of its states. The amount of adaptation
needed is very subjective and depends on the desired behaviour of the filter.

As the estimation algorithm uses the host vehicle motion, such as speed and yaw rate,
the resulting road geometry estimate is only suitable for longitudinal vehicle control
and not for lateral control. This is due to the fact that the lateral vehicle control
would, by itself, have an impact on the host motion and would therefore create a
self-feeding feedback, and may lead to instability and inadequate performance.

5.2 Results

The method chosen to generate the ground truth information is relatively easy to
implement. It uses only sensor information already existing in the vehicle and needs
no additional sensors, like a GPS. There are, however, a few drawbacks. The method
contains systematic error due to the definition of the yaw rate of a vehicle. The yaw
rate is the angular velocity with which the vehicle is turning around its vertical axis.
When a road is banked, the angular velocity is not representing the vehicles motion
in the global coordinate system used in the evaluation. This leads to an error in the
generated ground truth model that will affect the result of the performance analysis.

Further, the result is always evaluated at headway times up to 5 seconds, even
when there are no target vehicles present. In these cases it is not as important how
accurate the estimation is. It is far more important that the estimation is correct
when there are preceding vehicles present, as these are the objects in need of a
lane assignment. The evaluation method could be adapted to include only samples
where there are interesting targets present, and then the result will more accurately
illustrate the performance perceived by a potential user.

The use of single stationary objects did not result in an enhanced performance of
the road geometry estimation. It is common that stationary overhead targets are
distorting the road estimate. Examples of stationary overhead targets are road
signs above the road or bridges passing over the estimated road. Detections of
these objects can then be placed in the middle of the road. A different problem
encountered with the stationary objects is when the estimated road is on the wrong
side of the object, the stationary object then pushes the estimate further out to the
wrong side.

Another phenomenon noticed when evaluating the performance is that the result is
highly dependent on the data set used for evaluation. An example is the difference
between the result on curvy highways and the result on urban roads. This indicates
that the result of the evaluation is difficult to compare if different data sets is used.
The RMSE value of different algorithms evaluated on a different data sets is not

46



5. Discussion

directly comparable to each other. This is a weakens of the RMSE as a performance
measure.

5.3 Future work

To improve the filter performance in the future there are some changes that can be
made. The first suggestion would be to change where the sampled curvatures are
fixed. So instead of being at fixed distances they are at fixed points on the road.
Once a point is passed, a new point is placed at the prediction horizon distance. In
this way there would be no correlation between states due to the transition matrix
and the correlation can instead be tuned with the process noise model depending on
the road type. It could also be beneficial to have a variable distance between sample
depending on for example the host velocity. In low speeds, the prediction horizon
does not need to be very long, but a high resolution is beneficial due to the curvature
changing rapidly in some situations. The high velocity roads generally have much
smaller curvature and curvature rate but a longer prediction horizon is needed. So
by varying the distance between samples, a high resolution can be maintained in
low speed while keeping a longer prediction horizon in high speed.

To improve the use of stationary objects, more information about them would be
necessary. For example, in the current implementation there is no height information
available from the stationary object. The height information could then be used to
disregard those reflections that are likely to be from overhead objects or reflections
from the ground. The problem with the estimated road ending up at the wrong side
of the stationary objects could be be solved by having a better detector of which side
of a stationary object the road is. For example, using the road width and where on
the road the host vehicle is. An alternative solution is to not update with stationary
targets unless being sure of which side of the road it is. A last suggestion is to use a
multi-hypothesis filter to continuously evaluate both sides of the stationary objects
and how likely each side is.

5.4 Conclusions

The use of single stationary objects is shown not to improve the road geometry
estimation performance with the information currently available. Information about
the objects elevation over ground could make it possible to disregard overhead targets
and road reflections. An accurate barrier estimate, based on the stationary objects,
would be more beneficial information for the road geometry estimation process.

The developed algorithm is shown to perform better than to use only lane markings
as the road geometry estimation. The method is able to estimate the lateral position
more accurately than the lane markings at headway times over 2 seconds. This
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makes it more useful for longitudinal vehicle control application, such as ACC,
thanks to its higher potential for correct lane assignments of preceding targets.
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